WO2024128164A1 - Acoustic wave device, filter, and communication device - Google Patents

Acoustic wave device, filter, and communication device Download PDF

Info

Publication number
WO2024128164A1
WO2024128164A1 PCT/JP2023/044087 JP2023044087W WO2024128164A1 WO 2024128164 A1 WO2024128164 A1 WO 2024128164A1 JP 2023044087 W JP2023044087 W JP 2023044087W WO 2024128164 A1 WO2024128164 A1 WO 2024128164A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric layer
wave device
acoustic wave
elastic wave
layer
Prior art date
Application number
PCT/JP2023/044087
Other languages
French (fr)
Japanese (ja)
Inventor
哲也 岸野
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024128164A1 publication Critical patent/WO2024128164A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • One aspect of the present disclosure relates to an elastic wave device.
  • Patent Document 1 discloses an example of the configuration of an elastic wave device.
  • An elastic wave device includes a piezoelectric layer and an IDT electrode located on the piezoelectric layer and having a plurality of electrode fingers, where the thickness of the piezoelectric layer is 2p or less when the pitch of the electrode fingers is represented as p, the elastic wave device further includes a dielectric layer located between the piezoelectric layer and the IDT electrode in a first region that includes the tips of the electrode fingers and does not include the center of the intersection region of the electrode fingers, and the elastic wave device is configured to excite a wave in the A1 mode.
  • FIG. 1 shows a schematic top view of an elastic wave device according to a first embodiment.
  • 1 illustrates a schematic diagram of a layered structure of an elastic wave device according to a first preferred embodiment of the present invention.
  • the configurations of MODEL-REF to MODEL2 are shown diagrammatically. Examples of impedance characteristics of MODEL-REF to MODEL-2 are shown below.
  • An example of the phase characteristics of MODEL-REF to MODEL-2 is shown.
  • FIG. 6 is an enlarged view of a region GM1 in FIG. 5 .
  • FIG. 6 is an enlarged view of a region GM2 in FIG. 5 .
  • Another example of the phase characteristics of MODEL-REF to MODEL-2 is shown. Examples of BodeQ for MODEL-REF to MODEL2 are shown below.
  • 13 shows an example of the relationship between ⁇ r and dfr in the “piezoelectric layer: LT” of the second embodiment. Numerical examples of the coefficients corresponding to the curves in FIG. 38 are shown below. 13 shows an example of the relationship between dfr and FOMt in the "piezoelectric layer: LN" of the second embodiment. 13 shows an example of the relationship between ⁇ r and dfr in the “piezoelectric layer: LN” of the second embodiment. Numerical examples of the coefficients corresponding to the curves in FIG. 41 are shown below. In the second embodiment, an example of dfr calculated using actual physical property values of each dielectric layer material is shown. 13 shows an example of the relationship between dfr and FOMt in the third embodiment.
  • 13 shows an example of a phase characteristic in the third embodiment. 13 shows an example of the relationship between dfr and FOMt in the fourth embodiment. 13 shows an example of a phase characteristic in the fourth embodiment. 13 illustrates a schematic configuration of a filter according to a fifth embodiment. 13 illustrates a schematic configuration of a communication device according to a sixth embodiment.
  • FIG. 1 shows a portion of the elastic wave device 1. Specifically, FIG. 1 shows half of the elastic wave device 1 in the D2 direction (e.g., the right half). Therefore, although not explicitly shown in FIG. 1, the elastic wave device 1 also has the remaining half in the D2 direction (e.g., the left half). This also applies to the other figures corresponding to FIG. 1.
  • the elastic wave device 1 may have a support substrate 6 that supports each part of the elastic wave device 1.
  • the support substrate 6 may be a Si substrate.
  • the elastic wave device 1 may have a piezoelectric layer 2 above the support substrate 6.
  • the elastic wave device 1 may have an IDT (Inter-Digital Transducer) electrode 3 on the piezoelectric layer 2.
  • the IDT electrode 3 is also called an excitation electrode.
  • FIGS. 1 and 2 even in the D1 direction, only a portion of the elastic wave device 1 is shown. For example, several hundred IDT electrodes 3 may be arranged in the D1 direction.
  • a reflector consisting of another shorted IDT electrode may be arranged outside the IDT electrode 3.
  • the piezoelectric layer material may be lithium niobate (also referred to as LiNbO 3 :LN).
  • LN lithium niobate
  • the piezoelectric layer according to one embodiment of the present disclosure is an LN layer, it is also written as "piezoelectric layer: LN".
  • the LN layer is also abbreviated as LN.
  • the cut angle of the LN may be set appropriately.
  • the piezoelectric layer 2 may be 120° ⁇ 30° Y-cut X-propagation LN.
  • the piezoelectric layer 2 may be 90°-150° Y-cut X-propagation LT.
  • the IDT electrode 3 may have a busbar 30.
  • a pair of busbars 30 may face each other in the D2 direction.
  • One of the pair of busbars 30 is shown in FIG. 1.
  • the busbar 30 shown in FIG. 1 is also referred to as the first busbar 30a.
  • the other busbar not shown in FIG. 1 is also referred to as the second busbar 30b.
  • the IDT electrode 3 may have a plurality of electrode fingers 32.
  • the electrode fingers 32 may extend from the busbar 30.
  • a first electrode finger 32a and a second electrode finger 32b are shown as the electrode fingers 32.
  • the first electrode finger 32a may extend from the first busbar 30a toward the second busbar 30b.
  • the second electrode finger 32b may extend from the second busbar 30b toward the first busbar 30a.
  • the acoustic wave device 1 may have an intersection region RK where the first electrode finger 32a and the second electrode finger 32b intersect with each other.
  • the multiple electrode fingers 32 may be alternately positioned on the piezoelectric layer 2 with a generally constant spacing in the D1 direction.
  • the pitch of the electrode fingers 32 is represented as p.
  • p may be, for example, the pitch (repetition interval) in the D2 direction between the centers of two adjacent electrode fingers 32.
  • p may be set equal to half the wavelength ⁇ ( ⁇ /2) of the elastic wave excited by the IDT electrode 3.
  • may be defined as twice the length of p.
  • other dimensions may also be expressed with p as the reference.
  • the length of electrode finger 32 in direction D1 is referred to as width w of electrode finger 32.
  • w may be set appropriately depending on, for example, the electrical characteristics required of elastic wave device 1.
  • w may be set depending on p.
  • the ratio of w to p (w/p) is referred to as the duty of electrode finger 32. By changing the duty, the frequency characteristics of elastic wave device 1 can be controlled.
  • the IDT electrode 3 may have a plurality of dummy electrode fingers 35.
  • the dummy electrode fingers 35 allow for more precise control of the frequency characteristics of the acoustic wave device 1.
  • the dummy electrode fingers 35 may extend from the busbar 30.
  • FIG. 1 shows dummy electrode fingers 35 extending from the first busbar 30a.
  • the dummy electrode fingers 35 shown in FIG. 1 are also referred to as first dummy electrode fingers 35a.
  • the dummy electrode fingers 35 not shown in FIG. 1 (dummy electrode fingers 35 extending from the second busbar 30b) are also referred to as second dummy electrode fingers 35b.
  • the pitch of the dummy electrode fingers 35 may be set to a value equal to the pitch of the electrode fingers 32. Therefore, the dummy electrode fingers 35 may face the electrode fingers 32.
  • the first dummy electrode finger 35a may face the tips of each of the multiple second electrode fingers 32b across a gap.
  • the second dummy electrode finger 35b may face the tips of each of the multiple first electrode fingers 32a across a gap.
  • the acoustic wave device 1 may have a first region R1 that includes the tips of the electrode fingers 32 but does not include the center of the intersection region RK.
  • the dielectric layer 4 may be located between the piezoelectric layer 2 and the IDT electrode 3 in the first region R1.
  • the first region R1 may extend along the direction D1 (the arrangement direction of the electrode fingers 32).
  • the first region R1 may be located at both ends of the intersection region RK.
  • the first region R1 may be located between the tip of the electrode finger 32 and the bus bar 30.
  • the dimension dov shown in FIG. 1 represents the length of overlap between the electrode finger 32 and the first region R1 in the direction D2. dov may also be referred to as the first overlap length.
  • the first region R1 may include the tip of the dummy electrode finger 35.
  • the dimension ddm shown in FIG. 1 represents the length of overlap between the dummy electrode finger 35 and the first region R1 in the direction D2.
  • ddm may also be referred to as the second overlap length. In the example of FIG. 1, ddm is equal to the length of the dummy electrode finger 35.
  • the dimension ta shown in FIG. 2 represents the thickness of the piezoelectric layer 2.
  • the dimension t represents the thickness of the dielectric layer 4 in the example of FIG. 2.
  • ta is sufficiently small (where the piezoelectric layer 2 is sufficiently thin) is illustrated.
  • ta in embodiment 1 may be equal to or less than ⁇ (i.e., equal to or less than 2p).
  • the IDT electrode 3 may excite a plate wave (Lamb wave) as an elastic wave.
  • the IDT electrode 3 may excite an A1 mode wave as a plate wave.
  • embodiment 1 illustrates a case in which a plate wave (e.g., an A1 mode Lamb wave) propagates within the piezoelectric layer 2.
  • the elastic wave device 1 may be configured to excite an A1 mode wave.
  • the acoustic wave device 1 may further include a multilayer reflective film 5 in which (i) low acoustic impedance layers 5a having an acoustic impedance lower than that of the piezoelectric layer 2 and (ii) high acoustic impedance layers 5b having an acoustic impedance higher than that of the low acoustic impedance layers 5a are alternately stacked.
  • the multilayer reflective film 5 may be located between the piezoelectric layer 2 and the support substrate 6.
  • the multilayer reflective film 5 may be a laminate unit formed by laminating one low acoustic impedance layer 5a and one high acoustic impedance layer 5b.
  • the acoustic wave device 1 includes four laminate units.
  • An example of the material of the low acoustic impedance layer 5a is SiO2 .
  • An example of the material of the high acoustic impedance layer 5b is a dielectric material such as HfO2 and Ta2O5 .
  • Another example of the material of the high acoustic impedance layer 5b is a metal material such as Mo and W.
  • Simulation model The present inventor (hereinafter, abbreviated as the inventor) constructed simulation models MODEL-REF, MODEL 1, and MODEL 2 in order to study the frequency characteristics of elastic wave device 1.
  • Fig. 3 shows schematic configurations of MODEL-REF to MODEL 2.
  • MODEL-REF is a simulation model (reference simulation model) that serves as a baseline for evaluating the performance of the elastic wave device 1.
  • an elastic wave device that does not have a dielectric layer according to one aspect of the present disclosure is also expressed as "dielectric layer: no.”
  • MODEL-REF is an example of "dielectric layer: no.”
  • MODEL 1 corresponds to the elastic wave device 1 in the example of FIG. 1. Therefore, MODEL 1 has a dielectric layer 4 and has dummy electrode fingers 35.
  • the fact that the elastic wave device has dummy electrode fingers according to one embodiment of the present disclosure is also expressed as "dummy present.”
  • dummy electrode fingers are also abbreviated as dummy.
  • MODEL 1 is an example of "dielectric layer: present, dummy present.”
  • MODEL 2 is an example of "dielectric layer: present, dummy not present.”
  • the inventor derived the frequency characteristics of MODEL-REF to MODEL-2 by simulation using FEM (Finite Element Method).
  • the inventor also set ddm in MODEL1 to 4p.
  • Figure 4 shows examples of impedance characteristics of MODEL-REF to MODEL-2 derived by simulation.
  • the horizontal axis of the graph in Figure 4 shows frequency (unit: MHz), and the vertical axis shows the absolute value (magnitude) of impedance (unit: Ohm).
  • Figure 5 shows an example of the phase characteristics of MODEL-REF to MODEL-2 derived by simulation.
  • the horizontal axis of the graph in Figure 5 indicates frequency, and the vertical axis indicates the phase of impedance (unit: degree).
  • degree (angle) is abbreviated as deg.
  • the phase of impedance is simply abbreviated as phase.
  • the resonant frequency of an elastic wave device is the frequency at which the absolute value of the impedance of the elastic wave device is at a minimum.
  • the resonant frequency is also the frequency at which the phase is 0° in a frequency band where the phase increases monotonically.
  • the anti-resonant frequency of an elastic wave device is the frequency at which the absolute value of the impedance of the elastic wave device is at a maximum.
  • the anti-resonant frequency is also the frequency at which the phase is 0° in a frequency band where the phase decreases monotonically.
  • the band of an elastic wave device is defined by the resonant frequency and anti-resonant frequency of the elastic wave device.
  • the resonant frequency is approximately 5450 MHz and the anti-resonant frequency is approximately 5650 MHz.
  • the frequency band lower than the resonant frequency is also referred to as the first frequency band
  • the band is also referred to as the second frequency band
  • the frequency band higher than the anti-resonant frequency is also referred to as the third frequency band.
  • FIG. 6 is an enlarged view of region GM1 in FIG. 5.
  • the phase region near 90° in some frequency bands in the graph of FIG. 5 is enlarged.
  • the frequency bands in the graph of FIG. 6 roughly coincide with the second frequency band.
  • the maximum value of phase (hereinafter referred to as MaxPhase) is one of the indicators that show the performance of an elastic wave device.
  • the ideal maximum value of MaxPhase is 90°.
  • MODEL 1 and MODEL 2 have reduced loss in the second frequency band compared to MODEL-REF. This confirms that the dielectric layer 4 can contribute to reducing loss in the second frequency band. Furthermore, MODEL 1 and MODEL 2 have reduced ripple in the second frequency band compared to MODEL-REF. This confirms that the dielectric layer 4 can also contribute to reducing ripple in the second frequency band. In this way, the dielectric layer 4 can reduce transverse mode spurious (transverse mode ripple) that occurs in the second frequency band. As described above, the dielectric layer 4 can contribute to reducing loss and ripple in the second frequency band.
  • FIG. 7 is an enlarged view of region GM2 in FIG. 5.
  • the phase region around -90° in some frequency bands in the graph of FIG. 5 is enlarged.
  • the frequency bands in the graph of FIG. 7 include the first frequency band to the third frequency band.
  • the phases of MODEL1 and MODEL2 are closer to -90° than the phase of MODEL-REF. This indicates that the loss in the third frequency band is reduced in MODEL1 and MODEL2 compared to MODEL-REF. In this way, the dielectric layer 4 can also contribute to reducing the loss in the third frequency band.
  • the phases of MODEL 1 and MODEL 2 are slightly larger than the phase of MODEL-REF. This suggests that depending on the design conditions of the dielectric layer 4, the dielectric layer 4 may lead to an increase in loss in the first frequency band.
  • the inventor conducted a more detailed study of the frequency characteristics of MODEL-REF to MODEL 2. Specifically, the inventor conducted a quantitative study based on the FOM ( Figure of Merit).
  • FIG. 8 shows another example of the phase characteristics of MODEL-REF to MODEL-2.
  • the material of the dielectric layer 4 in MODEL-1 and MODEL-2 is different from that in the example of FIG. 5.
  • the inventor derived the BodeQ of each of MODEL-REF to MODEL-2 based on the phase characteristics of FIG. 8.
  • FIG. 9 shows an example of the BodeQ of MODEL-REF to MODEL-2.
  • the vertical axis in the graph of FIG. 9 is BodeQ.
  • BodeQ is one index that indicates the loss characteristics of an elastic wave device. It can be said that the larger the BodeQ, the better the loss characteristics of the elastic wave device.
  • the inventor then derived the average value of BodeQ in each of the regions DD1 to DD3 in FIG. 9 for each of MODEL-REF to MODEL2.
  • Regions DD1 to DD3 in FIG. 9 correspond to the first to third frequency bands, respectively.
  • the average value of BodeQ in region DD1 is referred to as BodeQ1
  • the average value of BodeQ in region DD2 is referred to as BodeQ2
  • the average value of BodeQ in region DD3 is referred to as BodeQ3.
  • the inventor set BodeQ1 to BodeQ3 in MODEL-REF as reference values and derived the FOM for each of the regions DD1 to DD3.
  • the larger the FOM the better the loss and ripple characteristics.
  • the inventor standardized BodeQ1 in each simulation model by BodeQ1 in MODEL-REF to derive the FOM for region DD1 (hereinafter referred to as FOM1).
  • the inventor standardized BodeQ2 in each simulation model by BodeQ2 in MODEL-REF to derive the FOM for region DD2 (hereinafter referred to as FOM2).
  • the inventor then derived the FOM in domain DD3 (hereafter referred to as FOM3) by normalizing BodeQ3 in each simulation model by BodeQ3 in MODEL-REF.
  • FOMt FOM1 x FOM2 x FOM3 ...
  • FOMt FOM1 x FOM2 x FOM3 ...
  • the above-mentioned FOM1 to FOM3 can be considered as indices for local frequency bands.
  • the FOMt can be considered as an index for a global frequency band.
  • FIG 10 shows examples of FOM1 to FOM3 and FOMt for MODEL-REF to MODEL2 derived by the inventor.
  • MODEL1 obtained an FOM1 that was slightly smaller than MODEL-REF.
  • MODEL1 obtained FOM2 and FOM3 that were larger than MODEL-REF.
  • MODEL1 obtained an FOMt that was larger than MODEL-REF.
  • FIG. 11 is a graph showing the relationship between t and dov and FOM2 when a dummy is present.
  • the horizontal axis of the graph is t, and the vertical axis is FOM2.
  • the inventors derived FOM2 for each of the cases of "dov 0.5p, p, 1.5p.”
  • t As shown in Figure 11, a high FOM2 was obtained for all dov values when t was between 0.03p and 0.05p. Therefore, for example, when a dummy is used, t may be between 0.03p and 0.06p.
  • Figure 12 is a graph showing the relationship between t and dov and FOM2 when no dummy is used.
  • Figure 12 is a paired diagram with Figure 11.
  • t was between 0.04p and 0.07p for all dov. Therefore, for example, when there is no dummy, t may be between 0.04p and 0.07p.
  • the first region R1 may include a portion with a length of 0.1p to 2p from the tip of the electrode finger 32 toward the center of the intersection region RK, and may not include a portion with a length exceeding 2p from the tip toward the center.
  • the LT layer and the LN layer were set as follows.
  • the inventor set the width (crossing width) of the crossing region RK in MODEL 1 and MODEL 2 to 23p.
  • the inventor varied t in MODEL 1 and MODEL 2 in various ways within the range of 0.01p to 0.1p and conducted an investigation.
  • dov in MODEL 1 in various ways within the range of 0.5p to 2p and conducted an investigation.
  • FIG. 13 shows an example of the frequency characteristics for "piezoelectric layer: LT, dielectric layer: no".
  • reference numeral 1300A indicates the impedance characteristics
  • reference numeral 1300B indicates the phase characteristics.
  • Figure 14 shows an example of the frequency characteristics for "piezoelectric layer: LN, dielectric layer: no”.
  • reference numeral 1400A indicates the impedance characteristics
  • reference numeral 1400B indicates the phase characteristics.
  • the piezoelectric layer material can affect the frequency characteristics of the elastic wave device.
  • the acoustic characteristics of the piezoelectric layer 2 affect the frequency characteristics. Therefore, it is believed that the acoustic characteristics of the dielectric layer 4 also affect the frequency characteristics. Therefore, the inventors investigated the relationship between the dielectric layer material and the frequency characteristics for each of MODEL 1 (with dummy) and MODEL 2 (without dummy).
  • Fig. 15 shows the sound velocity VL (unit: m/s) of each dielectric layer material.
  • VL in this specification does not represent the sound speed c of the A1 mode wave excited by the acoustic wave device.
  • VL is a value determined only by the dielectric layer material, and is the sound speed of the sound wave propagating through the dielectric layer material.
  • c is the speed at which sound waves propagate inside the acoustic wave device, and varies not only with the material that constitutes the acoustic wave device, but also with the structure and design of the acoustic wave device. Also, for example, if the width w of the electrode fingers 32 is wider in a certain part of the acoustic wave device, c in that part may decrease as the mass of the electrode fingers 32 in that part increases.
  • ⁇ r is the relative dielectric constant of the dielectric layer material.
  • the physical property values set as above roughly cover the actual physical property values of the materials shown in FIG.
  • Fig. 16 is a graph showing an example of the relationship derived by the inventor. The horizontal axis of the graph is VL, and the vertical axis is FOM2. In Fig.
  • t 0.03p
  • t a particularly high FOM2 is obtained when VL ⁇ 9000 m/s.
  • the piezoelectric layer 2 is a 115° ⁇ 30° Y-cut X-propagation LT
  • t may be within the range of 0.03p ⁇ 25%.
  • t may be 0.0225p to 0.0375p.
  • VL may be within the range of 9000 m/s ⁇ 1000 m/s. In other words, VL may be 8000 m/s to 10000 m/s.
  • t 0.05p
  • t a particularly high FOM2 is obtained when VL ⁇ 10,000 m/s.
  • the piezoelectric layer 2 is a 115° ⁇ 30° Y-cut X-propagation LT
  • t may be within the range of 0.05p ⁇ 25%.
  • t may be 0.0375p to 0.0625p.
  • VL may be within the range of 10,000 m/s ⁇ 1,000 m/s. In other words, VL may be 9,000 m/s to 11,000 m/s.
  • Fig. 17 is a graph showing an example of the relationship derived by the inventor.
  • Fig. 17 is a diagram paired with Fig. 16. In Fig.
  • Figure 18 shows examples of phase characteristics of MODEL-REF and MODEL3 derived by simulation.
  • the phase characteristics in the second and third frequency bands are improved compared to MODEL-REF1.
  • ripples occur in the first frequency band.
  • the phase characteristics in the first frequency band are worse than in MODEL-REF1.
  • Figure 19 shows examples of FOM1 to FOM3 and FOMt for MODEL-REF and MODEL-3 derived by the inventor.
  • MODEL-3 obtained larger FOM2 and FOM3 than MODEL-REF.
  • MODEL-3 obtained a significantly smaller FOM1 than MODEL-REF.
  • the small FOM1 in MODEL-3 is caused by ripples in the first frequency band.
  • MODEL-3 obtained a smaller FOMt than MODEL-REF.
  • the ripples in the first frequency band are believed to be caused by the dielectric layer 4.
  • the addition of the dielectric layer 4 may reduce the resonant frequency in the first region R1 of the elastic wave device. This reduction in resonant frequency is believed to cause ripples in the first frequency band.
  • the inventors therefore quantitatively investigated the variation in the resonant frequency that accompanies the addition of the dielectric layer 4.
  • dfr (fr1 - fr0) / fr0 ... (4)
  • dfr may also be referred to as the resonant frequency change rate.
  • fr0 is the acoustic velocity of a wave (e.g., an A1 mode wave) excited by the acoustic wave device at the center of the intersection region RK.
  • fr1 is the acoustic velocity of the wave at the tip of the electrode finger 32 in the first region R1.
  • fr0 may be calculated, for example, as the resonant frequency of an elastic wave device with no dielectric layer (e.g., MODEL-REF).
  • fr1 may be calculated as the resonance frequency of a simulation model MODEL4 in which a dielectric layer 4 is added to the entire upper surface of the piezoelectric layer 2 in MODEL-REF.
  • Fig. 20 shows a schematic configuration of MODEL4.
  • dfr non-zero means that the resonant frequency of the elastic wave device changes with the addition of the dielectric layer 4. Specifically, the fact that dfr is negative means that the resonant frequency decreases with the addition of the dielectric layer 4. On the other hand, the fact that dfr is positive means that the resonant frequency increases with the addition of the dielectric layer 4.
  • Figure 21 shows an example of the phase characteristics of MODEL-REF and MODEL-4 derived by simulation. As shown in Figure 21, the phase characteristics of MODEL-4 are generally shifted toward the lower frequency side compared to the phase characteristics of MODEL-REF. As is clear from this, a decrease in the resonant frequency occurs in MODEL-4 compared to MODEL-REF.
  • Figure 22 is a graph showing an example of the relationship between t and dfr in "piezoelectric layer: LT". The horizontal axis of the graph is t, and the vertical axis is dfr.
  • Reference numeral 2200A in FIG. 22 is a graph showing the relationship between t and dfr for each of the dielectric layer materials " diamond, AlN, Al2O3 , SiO2, SiNx, and Si".
  • Reference numeral 2200B in FIG. 22 is a graph showing the relationship between t and dfr for each of the dielectric layer materials "HfO2, Ta2O5 , TiO2 , ZrO2 , LiTaO3 , and LiNbO3 ".
  • dfr depends on t. Specifically, dfr changes approximately linearly with the change in t. dfr also depends on the dielectric layer material.
  • FIG. 23 is a graph showing an example of the relationship between t and dfr in "piezoelectric layer: LN".
  • FIG. 23 is a paired diagram with FIG. 22.
  • the dielectric layer material in the graph labeled 2300A in FIG. 23 is the same as the example labeled 2200A described above.
  • the dielectric layer material in the graph labeled 2300B in FIG. 23 is the same as the example labeled 2200B described above.
  • dfr also depends on the piezoelectric layer material.
  • the resonant frequency remains almost unchanged (dfr ⁇ 0) or increases (dfr > 0).
  • the resonant frequency tends to decrease (dfr ⁇ 0) due to the effect of adding mass.
  • the inventors have discovered that in an acoustic wave device using the A1 mode, when a dielectric layer is provided between the IDT electrode and the piezoelectric layer, dfr ⁇ 0 or even dfr > 0 may occur.
  • the acoustic wave device can prevent the decrease in the resonant frequency in the first region R1 described above. Therefore, for example, an acoustic wave device can be provided in which the deterioration of FOM1 is small and the improvements in FOM2 and FOM3 are large. In other words, an acoustic wave device with a large FOMt can be provided.
  • Fig. 24 is a graph showing an example of the relationship derived by the inventor. The horizontal axis of the graph is dfr, and the vertical axis is FOMt. In Fig.
  • FOMt depends on dfr. And FOMt also depends on ⁇ r. As can be understood from the above explanations regarding dfr, when dfr is negative, FOMt may deteriorate (e.g., FOMt may fall below 1). On the other hand, when dfr takes a large positive value, FOMt may also deteriorate. In this case, the deterioration of FOMt is caused by VL becoming too large.
  • Fig. 25 is a graph showing an example of the relationship between ⁇ r and dfr in the case of "piezoelectric layer: LT".
  • the horizontal axis of the graph is ⁇ r, and the vertical axis is dfr.
  • the curve "FOMt>1 upper limit” in Figure 25 shows the upper limit value of dfr at which FOMt>1 is realized at a certain ⁇ r.
  • the curve "FOMt>1 lower limit” shows the lower limit value of dfr at which FOMt>1 is realized at a certain ⁇ r.
  • the curve "FOMt>1.5 upper limit” shows the upper limit value of dfr at which FOMt>1.5 is realized at a certain ⁇ r.
  • the curve “FOMt>1.5 lower limit” shows the lower limit value of dfr at which FOMt>1.5 is realized at a certain ⁇ r.
  • ln represents the natural logarithm function
  • a1 and b1 are coefficients determined by data fitting.
  • Fig. 26 shows an example of each coefficient corresponding to the curve in Fig. 25.
  • Fig. 27 is a graph showing an example of the relationship derived by the inventor.
  • Fig. 27 is a diagram paired with Fig. 24. In Fig.
  • Fig. 28 is a graph showing an example of the relationship between ⁇ r and dfr in the case of "piezoelectric layer: LN".
  • Fig. 28 is a diagram paired with Fig. 25. In Fig.
  • Fig. 29 shows an example of coefficients corresponding to the curves in Fig. 28.
  • the frequency characteristics of the elastic wave device are improved by adding the dielectric layer 4. Therefore, for example, the frequency characteristics can be improved by using a dielectric layer material that falls between the curves "FOMt>1 lower limit” and “FOMt>1 upper limit” in the graphs of Figures 25 and 28. Furthermore, the frequency characteristics can be further improved by using a dielectric layer material that falls between the curves "FOMt>1.5 lower limit” and "FOMt>1.5 upper limit.”
  • a dfr in the range of -1% to 2% is generally located between the curves "FOMt>1 lower limit" and "FOMt>1 upper limit". For this reason, in an elastic wave device according to one aspect of the present disclosure, the dfr may be -1% to 2%. By designing an elastic wave device so that the dfr falls within this range, it is expected that the frequency characteristics of the elastic wave device can be improved.
  • ⁇ r may be less than 20, for example.
  • dfr may be -0.2% or more, for example.
  • the decrease in the resonant frequency of the elastic wave device due to the addition of the dielectric layer 4 does not have a significant adverse effect on the frequency characteristics.
  • dfr may be 0% or more. In this case, there is no decrease in the resonant frequency due to the addition of the dielectric layer 4.
  • dfr may be greater than 0%. In this case, the resonant frequency increases with the addition of the dielectric layer 4.
  • the dielectric layer material includes Al 2 O 3 , AlN, SiN x , Si, and SiO 2. These materials are generally located between the curves "FOMt>1 lower limit" and "FOMt>1 upper limit” in the graphs of Figures 25 and 28. Therefore, the dielectric layer 4 may include at least one of Al 2 O 3 , AlN, SiN x , Si, and SiO 2 as a material. As another example, the dielectric layer 4 may include at least one of Al 2 O 3 , AlN, SiN x , and Si as a material.
  • the dielectric layer 4 does not have to contain any of Ta 2 O 5 , ZrO 2 , HfO 2 , and diamond as a main component.
  • the dielectric layer 4 may contain at least one of Al 2 O 3 , AlN, SiN x , Si, and SiO 2 as a main component.
  • the dielectric layer 4 may contain at least one of Al 2 O 3 , AlN, SiN x , and Si as a main component.
  • dielectric layer 4 contains material X as a main component
  • dielectric layer 4 contains material X as a main component
  • the definition of the main component is not necessarily limited to the above example.
  • the dielectric layer 4 may include a first dielectric layer and a second dielectric layer having different sound velocities.
  • the notation "Al 2 O 3 /SiO 2 " represents a two-layer structure in which the first dielectric layer is an Al 2 O 3 layer and the second dielectric layer is an SiO 2 layer.
  • t in FIG. 30 represents the total thickness of the dielectric layer 4 when the dielectric layer 4 is a one-layer structure.
  • t in FIG. 30 represents the thickness of the first layer (first dielectric layer) when the dielectric layer 4 is a two-layer structure.
  • the thickness of the second dielectric layer in the example of FIG. 30 is 0.005p.
  • the total thickness of the dielectric layer 4 of the two-layer structure (i.e., the sum of the thickness of the first dielectric layer and the thickness of the second dielectric layer) is also represented as tt.
  • tt t + 0.005p. Therefore, tt is 0.035p or 0.055p.
  • the dielectric layer 4 having a desired sound velocity can be realized.
  • the material of the first dielectric layer may be a material having a relatively high sound velocity.
  • the first dielectric layer may contain at least one of Al 2 O 3 , AlN, SiN x , Si, and SiO 2 as a main component.
  • the first dielectric layer may contain at least one of Al 2 O 3 , AlN, SiN x , and Si as a main component.
  • the material of the second dielectric layer may be a material having a relatively low sound velocity.
  • the second dielectric layer may contain at least one of Ta2O5 , ZrO2 , and HfO2 as a main component.
  • the second dielectric layer may contain SiO2 as a main component.
  • a dielectric layer 4 having a desired sound speed.
  • a two-layer structure may be designed in which the first dielectric layer is the primary layer and the second dielectric layer is the secondary layer.
  • t may be 50% or more of tt.
  • FIG. 31 shows examples of FOMt calculated by the inventors.
  • the frequency characteristics of the elastic wave device are improved with the addition of dielectric layer 4.
  • the frequency characteristics can be further improved.
  • dfr can be controlled by selecting the dielectric layer material in the one-layer or two-layer dielectric layer 4.
  • dfr can also be controlled by controlling the thickness of the first dielectric layer, the thickness of the second dielectric layer, and the thickness of the IDT electrode 3.
  • dfr can also be controlled by changing the duty at the tip of the electrode finger 32.
  • dfr can also be controlled by changing the thickness at the tip of the electrode finger 32.
  • Fig. 32 is a schematic diagram illustrating a layered structure of an elastic wave device 1M according to a second embodiment.
  • Fig. 32 is a paired view with Fig. 2.
  • the elastic wave device 1M in Fig. 32 is an example of a membrane-type elastic wave device.
  • the results of studies by the inventors on membrane-type elastic wave devices will be described.
  • the elastic wave device 1M does not have to have a multilayer reflective film 5. Furthermore, the elastic wave device 1M may have a support substrate 6M instead of the support substrate 6. The elastic wave device 1M may have a hollow portion MA surrounded by the piezoelectric layer 2 and the support substrate 6M. In other words, the elastic wave device 1M may have a membrane structure defined by the hollow portion MA.
  • the inventors constructed simulation models MODEL-REFM, MODEL1M, and MODEL2M to study the frequency characteristics of elastic wave device 1M.
  • MODEL-REFM is an example of embodiment 2 with "dielectric layer: no”.
  • MODEL1M is an example of embodiment 2 with "dielectric layer: with, dummy with”.
  • MODEL2M is an example of embodiment 2 with "dielectric layer: with, dummy without”.
  • Figs. 33 and 34 show an example of frequency characteristics in the cases of "piezoelectric layer: LT" and “piezoelectric layer: LN" using MODEL-REFM (dielectric layer: absent).
  • Fig. 33 shows an example of frequency characteristics in the case of "piezoelectric layer: LT, dielectric layer: absent”.
  • reference numeral 3300A indicates impedance characteristics
  • reference numeral 3300B indicates phase characteristics.
  • Fig. 34 shows an example of frequency characteristics in the case of "piezoelectric layer: LN, dielectric layer: absent”.
  • reference numeral 3400A indicates impedance characteristics
  • reference numeral 3400B indicates phase characteristics.
  • Fig. 39 shows an example of each coefficient corresponding to each curve in Fig. 38.
  • Fig. 42 shows an example of each coefficient corresponding to each curve in Fig. 41.
  • an elastic wave device may be a membrane-type elastic wave device (e.g., elastic wave device 1M).
  • the inventors have further investigated the design conditions of a non-membrane type elastic wave device (e.g., elastic wave device 1 of embodiment 1) through simulation.
  • the results of the investigation are described in embodiments 3 and 4.
  • embodiment 3 the results of the investigation in the case of "piezoelectric layer: LT" are described.
  • Material: Si Orientation: ( ⁇ , ⁇ , ⁇ ) (-45°, -54.7°, 0°)
  • Multilayer reflective film 5 Material of low acoustic impedance layer 5a: SiO2 Thickness of low acoustic impedance layer 5a: 0.19 ⁇ m Material of high acoustic impedance layer 5b: HfO2 Thickness of high acoustic impedance layer 5b: 0.166 ⁇ m
  • IDT electrode 3 Material: Aluminum Thickness: 0.13 ⁇ m Length of dummy electrode finger (ddm): 4 ⁇ m Gap length: 0.4 ⁇ m Intersection width: 23 ⁇ m First overlap length (dov): 1 ⁇ m
  • the inventors varied the dielectric layer material and the thickness (t) of the dielectric layer 4, and derived the relationship between dfr and FOMt for each of the acoustic wave device types 1 to 4. Specifically, the inventors selected the dielectric layer material from among "AlN, SiO 2 , HfO 2 , Ta 2 O 5 , ZrO 2 , diamond, Al 2 O 3 , SiN x , and TiO 2 " and selected t from among "0.01 ⁇ m, 0.03 ⁇ m, 0.05 ⁇ m, and 0.07 ⁇ m" to derive the above relationship.
  • FIG. 44 shows an example of the relationship between dfr and FOMt in embodiment 3.
  • Reference characters 4400A to 4400D in FIG. 44 indicate graphs for elastic wave device types 1 to 4, respectively.
  • the frequency characteristics of the elastic wave device can be further improved by using SiO2 or SiNx as the dielectric layer material.
  • Figure 45 shows examples of phase characteristics in embodiment 3.
  • References 4500A to 4500D in Figure 45 show graphs for elastic wave device types 1 to 4, respectively.
  • a graph enlarging the area near a phase of 90° is also shown.
  • the inventors set the following acoustic wave device types 1 to 4 under the above simulation conditions.
  • FIG. 46 shows an example of the relationship between dfr and FOMt in embodiment 4.
  • FIG. 46 is a diagram paired with FIG. 44 in embodiment 3.
  • References 4600A to 4600D in FIG. 46 indicate graphs for elastic wave device types 1 to 4 of embodiment 4, respectively.
  • the FOMt was large when the dielectric layer material was SiO 2 , AlN, SiN x , Al 2 O 3 , and TiO 2. It was confirmed in the fourth embodiment that the FOMt was particularly large when the dielectric layer material was SiO 2. Therefore, in the fourth embodiment, by using SiO 2 as the dielectric layer material, it is possible to further improve the frequency characteristics of the elastic wave device.
  • Figure 47 shows an example of phase characteristics in embodiment 4.
  • Figure 47 is a paired diagram with Figure 45 in embodiment 3.
  • Reference numerals 4700A to 4700D in Figure 47 denote graphs for elastic wave device types 1 to 4 of embodiment 4, respectively.
  • the filter 100 may include an acoustic wave device (e.g., the acoustic wave device 1) according to one aspect of the present disclosure.
  • the filter 100 may be a ladder-type filter having a series arm SL and a parallel arm PL.
  • the filter 100 may have a plurality of acoustic wave resonators Res.
  • the acoustic wave resonators Res may have, for example, a common piezoelectric layer 2. Meanwhile, each of the acoustic wave resonators Res may have an individual IDT electrode 3.
  • the filter 100 may have, as the multiple elastic wave resonators Res, (i) at least one series elastic wave resonator Res1S located in the series arm SL, and (ii) at least one parallel elastic wave resonator Res1P located in the parallel arm PL.
  • the filter 100 has two series elastic wave resonators Res1S and one parallel elastic wave resonator Res1P.
  • the series arm PL may be connected to the input terminal Pin and the output terminal Pout.
  • the series elastic wave resonator Res1S-1 is the series elastic wave resonator Res1S connected to the input terminal Pin.
  • the series elastic wave resonator Res1S-2 is the series elastic wave resonator Res1S connected to the output terminal Pout.
  • the parallel arm PL may extend from between the series elastic wave resonators Res1S-1 and Res1S-2.
  • the parallel arm PL may be connected to the ground terminal GND.
  • the filter 100 may have a first acoustic wave resonator located in the parallel arm PL as an acoustic wave device according to one aspect of the present disclosure.
  • the first acoustic wave resonator may be a parallel acoustic wave resonator Res1P.
  • the filter 100 may have an acoustic wave device 1 as the parallel acoustic wave resonator Res1P.
  • the filter 100 may further include a second acoustic wave resonator located in the series arm SL.
  • the second acoustic wave resonator may not include the dielectric layer 4.
  • the filter 100 may include a series acoustic wave resonator Res1S as the second acoustic wave resonator.
  • the effect of the series acoustic wave resonator Res1S on the frequency characteristics of the filter 100 is greater than the effect of the parallel acoustic wave resonator Res1P on the frequency characteristics.
  • the first acoustic wave resonator is the parallel acoustic wave resonator Res1P
  • the effect of the first acoustic wave resonator on the frequency characteristics of the filter 100 in the first frequency band can be reduced.
  • the second acoustic wave resonator does not have a dielectric layer 4, no decrease in FOM1 occurs in the second acoustic wave resonator. In this way, the filter 100 can achieve a filter with excellent frequency characteristics.
  • FIG. 49 illustrates a schematic configuration of a communication device 151 according to the sixth embodiment.
  • the communication device 151 is an application example of an acoustic wave filter according to an aspect of the present disclosure, and performs wireless communication using radio waves.
  • the communication device 151 may include one duplexer 101 as a transmission filter 109 and another duplexer 101 as a reception filter 111.
  • Each of the two duplexers 101 may include a filter (e.g., filter 100) according to an aspect of the present disclosure.
  • the communication device 151 may include a filter according to an aspect of the present disclosure.
  • a transmission information signal TIS containing information to be transmitted may be modulated and frequency-increased (converted into a high-frequency signal having a carrier frequency) by an RF-IC (Radio Frequency-Integrated Circuit) 153, and converted into a transmission signal TS.
  • RF-IC Radio Frequency-Integrated Circuit
  • a bandpass filter 155 may remove unnecessary components from the TS outside the transmission passband.
  • the TS after the unnecessary components have been removed may be amplified by an amplifier 157 and input to the transmission filter 109.
  • the transmit filter 109 may remove unnecessary components outside the transmission passband from the input transmit signal TS.
  • the transmit filter 109 may output the TS after removing the unnecessary components to the antenna 159 via an antenna terminal (e.g., the above-mentioned TCin).
  • the antenna 159 may convert the TS, which is an electrical signal input to itself, into radio waves as a wireless signal, and transmit the radio waves to the outside of the communication device 151.
  • the antenna 159 may also convert the received external radio waves into a received signal RS, which is an electrical signal, and input the RS to the receiving filter 111 via the antenna terminal.
  • the receiving filter 111 may remove unnecessary components from the input RS outside the receiving passband.
  • the receiving filter 111 may output the received signal RS after the unnecessary components have been removed to the amplifier 161.
  • the outputted RS may be amplified by the amplifier 161.
  • the bandpass filter 163 may remove unnecessary components from the amplified RS outside the receiving passband.
  • the RS after the unnecessary components have been removed may be frequency-downgraded and demodulated by the RF-IC 153, and converted into a received information signal RIS.
  • the TIS and RIS may be low-frequency signals (baseband signals) containing appropriate information.
  • the TIS and RIS may be analog voice signals or digitized voice signals.
  • the passband of the wireless signals may be set as appropriate and may conform to various known standards.
  • An elastic wave device comprises a piezoelectric layer and an IDT electrode located on the piezoelectric layer and having a plurality of electrode fingers, where the thickness of the piezoelectric layer is 2p or less when the pitch of the electrode fingers is represented as p, and the elastic wave device further comprises a dielectric layer located between the piezoelectric layer and the IDT electrode in a first region that includes the tips of the electrode fingers and does not include the center of the intersection region of the electrode fingers, and the elastic wave device is configured to excite a wave in A1 mode.
  • the sound velocity of the wave at the center of the intersection region is represented as fr0
  • the sound velocity of the wave at the tip of the electrode finger in the first region is represented as fr1
  • dfr given by the above formula (4) may be greater than or equal to -1% and less than or equal to 2%.
  • the relative dielectric constant of the dielectric layer may be less than 20.
  • dfr may be -0.2% or more.
  • the dielectric layer may contain at least one of Al 2 O 3 , AlN, SiN x , Si, and SiO 2 as a material.
  • the dielectric layer may contain at least one of Al 2 O 3 , AlN, SiN x , and Si as a material.
  • the dielectric layer does not necessarily contain any of Ta 2 O 5 , ZrO 2 , HfO 2 , and diamond as a main component.
  • the dielectric layer may contain at least one of Al 2 O 3 , AlN, SiN x , Si, and SiO 2 as a main component.
  • the dielectric layer may include a first dielectric layer and a second dielectric layer having different sound velocities.
  • the first dielectric layer may contain at least one of Al2O3 , AlN, SiNx , Si, and SiO2 as a main component, and the thickness of the first dielectric layer may be 50% or more of the sum of the thickness of the first dielectric layer and the thickness of the second dielectric layer.
  • the Young's modulus of the dielectric layer may be expressed as E (unit: Pa)
  • the density of the dielectric layer may be expressed as ⁇ (unit: kg/ m3 )
  • the sound velocity VL (unit: m/s) of the dielectric layer given by the above formula (2) may be 3000 m/s or more and 13000 m/s or less.
  • VL may be 5000 m/s or more and 12000 m/s or less.
  • the piezoelectric layer may be a 115° ⁇ 30° Y-cut X-propagation LT layer, the thickness of the dielectric layer may be within the range of 0.03p ⁇ 25%, and VL may be 8000 m/s or more and 10000 m/s or less.
  • the piezoelectric layer may be a 115° ⁇ 30° Y-cut X-propagation LT layer, the thickness of the dielectric layer may be within the range of 0.05p ⁇ 25%, and VL may be 9000 m/s or more and 11000 m/s or less.
  • the piezoelectric layer may be a 120° ⁇ 30° Y-cut X-propagation LN layer, the thickness of the dielectric layer may be within the range of 0.03p ⁇ 25%, and VL may be 7000 m/s or more and 9000 m/s or less.
  • the piezoelectric layer may be a 120° ⁇ 30° Y-cut X-propagation LN layer, the thickness of the dielectric layer may be within the range of 0.05p ⁇ 25%, and VL may be 8000 m/s or more and 10000 m/s or less.
  • the first region may be located at both ends of the intersection region and may extend along the arrangement direction of the electrode fingers.
  • the IDT electrode may further include a bus bar, and at least a portion of the first region may be located between the tips of the electrode fingers and the bus bar.
  • the IDT electrode may further include a plurality of dummy electrode fingers that respectively face the plurality of electrode fingers, and the first region may include the tips of the dummy electrode fingers.
  • the IDT electrode may further include a plurality of dummy electrode fingers that respectively face a plurality of the electrode fingers, the thickness of the dielectric layer may be 0.03p or more and 0.06p or less, and the first region may include a portion having a length of 0.1p or more and 2p or less from the tip of the electrode finger toward the center of the intersection region, and may not include a portion having a length of more than 2p from the tip of the electrode finger toward the center of the intersection region.
  • the IDT electrode may not have a dummy electrode finger that faces at least one of the plurality of electrode fingers, the thickness of the dielectric layer may be 0.04p or more and 0.07p or less, and the first region may include a portion having a length of 0.1p or more and 2p or less from the tip of the electrode finger toward the center of the intersection region, and may not include a portion exceeding 2p from the tip of the electrode finger toward the center of the intersection region.
  • the filter according to aspect 22 of the present disclosure may include an acoustic wave device according to any one of aspects 1 to 21.
  • the filter according to aspect 23 of the present disclosure may be a ladder-type filter having a series arm and a parallel arm in the above-mentioned aspect 22, and the filter may have a first acoustic wave resonator located in the parallel arm as the acoustic wave device.
  • the filter according to aspect 24 of the present disclosure may further include a second acoustic wave resonator located in the series arm in the aspect 23, and the second acoustic wave resonator may not include the dielectric layer.
  • the communication device may include a filter according to any one of aspects 22 to 24.
  • Elastic wave device 1M Elastic wave device (membrane type elastic wave device) 2 Piezoelectric layer 3 IDT electrode 4 Dielectric layer 30 Bus bar 32 Electrode finger 35 Dummy electrode finger 100 Filter (ladder type filter) 151 Communication device R1 First region RK Intersection region PL Parallel arm SL Series arm Res1P Parallel acoustic wave resonator (first acoustic wave resonator) Res1S series elastic wave resonator (second elastic wave resonator)

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

The present invention improves the frequency characteristics of an acoustic wave device. An acoustic wave device according to the present invention includes a piezoelectric layer and an IDT electrode which is located on the piezoelectric layer and which has a plurality of electrode fingers. When the pitch of the electrode fingers is represented by p, the thickness of the piezoelectric layer is no more than 2p. The acoustic wave device also includes a dielectric layer located between the piezoelectric layer and the IDT electrode in a first region which includes the tips of the electrode fingers and which does not include the center of a region where the electrode fingers intersect. The acoustic wave device is configured so as to excite waves in A1 mode.

Description

弾性波装置、フィルタ、および通信装置Acoustic wave device, filter, and communication device
 本開示の一態様は、弾性波装置に関する。 One aspect of the present disclosure relates to an elastic wave device.
 下記の特許文献1には、弾性波装置の構成例が開示されている。 The following Patent Document 1 discloses an example of the configuration of an elastic wave device.
国際公開第2020/045442号International Publication No. 2020/045442
 本開示の一態様に係る弾性波装置は、圧電体層と、前記圧電体層上に位置しており、かつ、複数の電極指を有するIDT電極と、を有しており、前記電極指のピッチをpと表した場合に、前記圧電体層の厚みは2p以下であり、前記弾性波装置は、前記電極指の先端を含み、かつ、前記電極指の交差領域の中央を含まない第1領域において、前記圧電体層とIDT電極との間に位置する誘電体層をさらに有しており、前記弾性波装置は、A1モードの波を励振するように構成されている。 An elastic wave device according to one aspect of the present disclosure includes a piezoelectric layer and an IDT electrode located on the piezoelectric layer and having a plurality of electrode fingers, where the thickness of the piezoelectric layer is 2p or less when the pitch of the electrode fingers is represented as p, the elastic wave device further includes a dielectric layer located between the piezoelectric layer and the IDT electrode in a first region that includes the tips of the electrode fingers and does not include the center of the intersection region of the electrode fingers, and the elastic wave device is configured to excite a wave in the A1 mode.
実施形態1の弾性波装置の模式的な上面図を示す。1 shows a schematic top view of an elastic wave device according to a first embodiment. 実施形態1の弾性波装置の積層構造を模式的に示す。1 illustrates a schematic diagram of a layered structure of an elastic wave device according to a first preferred embodiment of the present invention. MODEL-REF~MODEL2の構成を模式的に示す。The configurations of MODEL-REF to MODEL2 are shown diagrammatically. MODEL-REF~MODEL2のインピーダンス特性の例を示す。Examples of impedance characteristics of MODEL-REF to MODEL-2 are shown below. MODEL-REF~MODEL2の位相特性の例を示す。An example of the phase characteristics of MODEL-REF to MODEL-2 is shown. 図5における領域GM1の拡大図である。FIG. 6 is an enlarged view of a region GM1 in FIG. 5 . 図5における領域GM2の拡大図である。FIG. 6 is an enlarged view of a region GM2 in FIG. 5 . MODEL-REF~MODEL2の位相特性の別の例を示す。Another example of the phase characteristics of MODEL-REF to MODEL-2 is shown. MODEL-REF~MODEL2のBodeQの例を示す。Examples of BodeQ for MODEL-REF to MODEL2 are shown below. MODEL-REF~MODEL2における、FOM1~FOM3およびFOMtの例を示す。Examples of FOM1 to FOM3 and FOMt in MODEL-REF to MODEL2 are shown below. ダミー有における、tおよびdovとFOM2との関係の例を示す。An example of the relationship between t, dov, and FOM2 when a dummy is used is shown below. ダミー無における、tおよびdovとFOM2との関係の例を示す。An example of the relationship between t, dov, and FOM2 when no dummy is used is shown below. 「圧電体層:LT、誘電体層:無」における、周波数特性の例を示す。An example of frequency characteristics in the case of "piezoelectric layer: LT, dielectric layer: absent" is shown. 「圧電体層:LN、誘電体層:無」における、周波数特性の例を示す。An example of frequency characteristics in the case of "piezoelectric layer: LN, dielectric layer: none" is shown. 各誘電体層材料の音速を示す。The sound velocity of each dielectric layer material is shown. 「圧電体層:LT」における、VLとFOM2との関係の例を示す。An example of the relationship between VL and FOM2 in the "piezoelectric layer: LT" is shown. 「圧電体層:LN」における、VLとFOM2との関係の例を示す。An example of the relationship between VL and FOM2 in "piezoelectric layer: LN" is shown. MODEL-REFおよびMODEL3の位相特性の例を示す。An example of the phase characteristics of MODEL-REF and MODEL3 is shown. MODEL-REFおよびMODEL3における、FOM1~FOM3およびFOMtの例を示す。Examples of FOM1 to FOM3 and FOMt in MODEL-REF and MODEL3 are shown below. MODEL4の構成を模式的に示す。The configuration of MODEL4 is shown diagrammatically. MODEL-REFおよびMODEL4の位相特性の例を示す。An example of the phase characteristics of MODEL-REF and MODEL4 is shown. 「圧電体層:LT」における、tとdfrとの関係の例を示す。An example of the relationship between t and dfr in the "piezoelectric layer: LT" is shown below. 「圧電体層:LN」における、tとdfrとの関係の例を示す。An example of the relationship between t and dfr in "piezoelectric layer: LN" is shown. 「圧電体層:LT」における、dfrとFOMtとの関係の例を示す。An example of the relationship between dfr and FOMt in the "piezoelectric layer: LT" is shown. 「圧電体層:LT」における、εrとdfrとの関係の例を示す。An example of the relationship between εr and dfr in the “piezoelectric layer: LT” is shown. 図25における各曲線に対応する各係数の数値例を示す。Numerical examples of the coefficients corresponding to the curves in FIG. 25 are shown below. 「圧電体層:LN」における、dfrとFOMtとの関係の例を示す。An example of the relationship between dfr and FOMt in the case of "piezoelectric layer: LN" is shown. 「圧電体層:LN」における、εrとdfrとの関係の例を示す。An example of the relationship between εr and dfr in the case where the piezoelectric layer is LN is shown. 図28における各曲線に対応する各係数の数値例を示す。Numerical examples of the coefficients corresponding to the curves in FIG. 28 are shown below. 各誘電体層材料の実際の物性値を用いて算出されたdfrの例を示す。An example of dfr calculated using actual physical property values of each dielectric layer material is shown below. 各誘電体層材料の実際の物性値を用いて算出されたFOMtの例を示す。An example of FOMt calculated using actual physical property values of each dielectric layer material is shown below. 実施形態2の弾性波装置の積層構造を模式的に示す。5A and 5B are schematic diagrams illustrating a layered structure of an elastic wave device according to a second embodiment of the present invention. 実施形態2の「圧電体層:LT、誘電体層:無」における、周波数特性の例を示す。13 shows an example of frequency characteristics in the case of "piezoelectric layer: LT, dielectric layer: absent" of the second embodiment. 実施形態2の「圧電体層:LN、誘電体層:無」における、周波数特性の例を示す。13 shows an example of frequency characteristics in the second embodiment where the piezoelectric layer is LN and the dielectric layer is absent. 実施形態2の「圧電体層:LT」における、VLとFOM2との関係の例を示す。13 shows an example of the relationship between VL and FOM2 in the “piezoelectric layer: LT” of the second embodiment. 実施形態2の「圧電体層:LN」における、VLとFOM2との関係の例を示す。13 shows an example of the relationship between VL and FOM2 in the "piezoelectric layer: LN" of the second embodiment. 実施形態2の「圧電体層:LT」における、dfrとFOMtとの関係の例を示す。13 shows an example of the relationship between dfr and FOMt in the “piezoelectric layer: LT” of the second embodiment. 実施形態2の「圧電体層:LT」における、εrとdfrとの関係の例を示す。13 shows an example of the relationship between εr and dfr in the “piezoelectric layer: LT” of the second embodiment. 図38における各曲線に対応する各係数の数値例を示す。Numerical examples of the coefficients corresponding to the curves in FIG. 38 are shown below. 実施形態2の「圧電体層:LN」における、dfrとFOMtとの関係の例を示す。13 shows an example of the relationship between dfr and FOMt in the "piezoelectric layer: LN" of the second embodiment. 実施形態2の「圧電体層:LN」における、εrとdfrとの関係の例を示す。13 shows an example of the relationship between εr and dfr in the “piezoelectric layer: LN” of the second embodiment. 図41における各曲線に対応する各係数の数値例を示す。Numerical examples of the coefficients corresponding to the curves in FIG. 41 are shown below. 実施形態2において、各誘電体層材料の実際の物性値を用いて算出されたdfrの例を示す。In the second embodiment, an example of dfr calculated using actual physical property values of each dielectric layer material is shown. 実施形態3におけるdfrとFOMtとの関係の例を示す。13 shows an example of the relationship between dfr and FOMt in the third embodiment. 実施形態3における位相特性の例を示す。13 shows an example of a phase characteristic in the third embodiment. 実施形態4におけるdfrとFOMtとの関係の例を示す。13 shows an example of the relationship between dfr and FOMt in the fourth embodiment. 実施形態4における位相特性の例を示す。13 shows an example of a phase characteristic in the fourth embodiment. 実施形態5におけるフィルタの概略的な構成を例示する。13 illustrates a schematic configuration of a filter according to a fifth embodiment. 実施形態6における通信装置の概略的な構成を例示する。13 illustrates a schematic configuration of a communication device according to a sixth embodiment.
 〔実施形態1〕
 実施形態1について以下に説明する。説明の便宜上、実施形態1にて説明したコンポーネント(構成要素)と同じ機能を有するコンポーネントについては、以降の各実施形態では同じ符号を付し、その説明を繰り返さない。簡潔化のため、公知の技術事項についても説明を適宜省略する。本明細書において述べる各コンポーネント、各材料、および各数値はいずれも、特に矛盾のない限り、単なる例示である。それゆえ、例えば、特に矛盾のない限り、各コンポーネントの位置関係および接続関係は、各図の例に限定されない。また、各図は、必ずしもスケール通りに図示されていない。本明細書では、特に矛盾のない限り、2つの数AおよびBについての表記「A~B」は、「A以上かつB以下」を表す。
[Embodiment 1]
The first embodiment will be described below. For convenience of explanation, components having the same functions as those described in the first embodiment will be given the same reference numerals in the following embodiments, and the explanations will not be repeated. For the sake of brevity, the explanations of known technical matters will be omitted as appropriate. Each component, each material, and each numerical value described in this specification are merely exemplary unless otherwise inconsistent. Therefore, for example, unless otherwise inconsistent, the positional relationship and connection relationship of each component are not limited to the examples in each figure. In addition, each figure is not necessarily drawn to scale. In this specification, unless otherwise inconsistent, the notation "A to B" for two numbers A and B means "greater than or equal to A and less than or equal to B".
 (弾性波装置1の一構成例)
 図1および図2は、実施形態1の弾性波装置1の一構成例を示す。図1は弾性波装置1の模式的な上面図を示し、図2は弾性波装置1の積層構造を模式的に示す。本明細書では、説明の便宜上、図1および図2に示されている直交座標系(D1・D2・D3座標系)を導入する。
(One Configuration Example of Elastic Wave Device 1)
1 and 2 show an example configuration of an elastic wave device 1 according to embodiment 1. Fig. 1 shows a schematic top view of the elastic wave device 1, and Fig. 2 shows a schematic view of a layered structure of the elastic wave device 1. For convenience of explanation, the present specification introduces an orthogonal coordinate system (D1-D2-D3 coordinate system) shown in Figs. 1 and 2 .
 実施形態1の例におけるD1方向は、弾性波装置1の圧電体層2内を伝搬する弾性波の伝搬方向である。図1に示す通り、弾性波装置1の複数の電極指32は、D1方向に配列されていてよい。D2方向は、D1方向と交差する方向の例である。電極指32は、D2方向に延在していてよい。図2は、図1の弾性波装置1を、ダミー電極指35と重なり合い、かつ、D2方向と平行な切断面によって切断した場合に得られる断面図の例である。D3方向は、弾性波装置1の各部の厚み方向である。本明細書では、D3方向の正の向きを上方向として説明する。したがって、D3方向の負の向きは下方向である。 In the example of embodiment 1, the D1 direction is the propagation direction of an elastic wave propagating within the piezoelectric layer 2 of the elastic wave device 1. As shown in FIG. 1, the multiple electrode fingers 32 of the elastic wave device 1 may be arranged in the D1 direction. The D2 direction is an example of a direction intersecting the D1 direction. The electrode fingers 32 may extend in the D2 direction. FIG. 2 is an example of a cross-sectional view obtained when the elastic wave device 1 of FIG. 1 is cut along a cut surface that overlaps with the dummy electrode finger 35 and is parallel to the D2 direction. The D3 direction is the thickness direction of each part of the elastic wave device 1. In this specification, the positive direction of the D3 direction is described as the upward direction. Therefore, the negative direction of the D3 direction is the downward direction.
 図1では、弾性波装置1の一部の部分が示されている。具体的には、図1では、D2方向における弾性波装置1の半分の部分(例:右半分の部分)が示されている。このため、図1では明示されていないが、弾性波装置1は、D2方向における残り半分の部分(例:左半分の部分)をさらに有している。このことは、図1に対応する各図にも当てはまる。 FIG. 1 shows a portion of the elastic wave device 1. Specifically, FIG. 1 shows half of the elastic wave device 1 in the D2 direction (e.g., the right half). Therefore, although not explicitly shown in FIG. 1, the elastic wave device 1 also has the remaining half in the D2 direction (e.g., the left half). This also applies to the other figures corresponding to FIG. 1.
 図2に示す通り、弾性波装置1は、弾性波装置1の各部を支持する支持基板6を有していてよい。一例として、支持基板6は、Si基板であってよい。弾性波装置1は、支持基板6よりも上側に、圧電体層2を有していてよい。弾性波装置1は、圧電体層2上にIDT(Inter-Digital Transducer)電極3を有していてよい。IDT電極3は、励振電極とも称される。図1~図2では、D1方向においても、弾性波装置1の一部のみが示されている。例えば、IDT電極3は、D1方向に数100本配列されていてもよい。また、IDT電極3の外側に、ショートされた別のIDT電極からなる反射器が配置されていてもよい。 2, the elastic wave device 1 may have a support substrate 6 that supports each part of the elastic wave device 1. As an example, the support substrate 6 may be a Si substrate. The elastic wave device 1 may have a piezoelectric layer 2 above the support substrate 6. The elastic wave device 1 may have an IDT (Inter-Digital Transducer) electrode 3 on the piezoelectric layer 2. The IDT electrode 3 is also called an excitation electrode. In FIGS. 1 and 2, even in the D1 direction, only a portion of the elastic wave device 1 is shown. For example, several hundred IDT electrodes 3 may be arranged in the D1 direction. In addition, a reflector consisting of another shorted IDT electrode may be arranged outside the IDT electrode 3.
 圧電体層2は、圧電性を有する単結晶材料によって構成されてよい。圧電体層2の材料(圧電体層材料)の一例としては、タンタル酸リチウム(LiTaO:LTとも称される)を挙げることができる。本開示の一態様に係る圧電体層がLT層であることを、「圧電体層:LT」とも表記する。このように、本明細書では、LT層をLTとも略記する。LTのカット角は、適宜設定されてよい。例えば、圧電体層2は、115°±30°YカットX伝搬のLTであってよい。言い換えれば、圧電体層2は、85°~145°YカットX伝搬のLTであってよい。 The piezoelectric layer 2 may be made of a single crystal material having piezoelectricity. An example of the material (piezoelectric layer material) of the piezoelectric layer 2 is lithium tantalate (also referred to as LiTaO 3 :LT). The piezoelectric layer according to one embodiment of the present disclosure is an LT layer, which is also referred to as "piezoelectric layer:LT". Thus, in this specification, the LT layer is also abbreviated as LT. The cut angle of the LT may be set appropriately. For example, the piezoelectric layer 2 may be a 115°±30° Y-cut X-propagation LT. In other words, the piezoelectric layer 2 may be an 85° to 145° Y-cut X-propagation LT.
 X軸およびY軸はそれぞれ、圧電体層2の結晶方位軸である。例えば、「85°YカットX伝搬のLT」とは、「X軸方向が弾性波の伝搬方向である場合に、X軸を中心軸としてY軸から85°回転した軸を法線とする面によって切断したLT」を意味する。X軸およびY軸は、D1~D3方向と関連していてもよい。例えば、X軸の方向は、D1方向と一致していてもよい。ただし、X軸およびY軸は、D1~D3方向と関連していなくともよい。 The X-axis and Y-axis are the crystal orientation axes of the piezoelectric layer 2. For example, "85° Y-cut X-propagation LT" means "LT cut by a plane whose normal line is an axis rotated 85° from the Y-axis around the X-axis, when the X-axis direction is the propagation direction of the elastic wave." The X-axis and Y-axis may be related to the D1 to D3 directions. For example, the direction of the X-axis may coincide with the D1 direction. However, the X-axis and Y-axis do not have to be related to the D1 to D3 directions.
 圧電体層材料の別の例としては、ニオブ酸リチウム(LiNbO:LNとも称される)であってよい。本明細書では、本開示の一態様に係る圧電体層がLN層であることを、「圧電体層:LN」とも表記する。このように、本明細書では、LN層をLNとも略記する。LNのカット角は、適宜設定されてよい。例えば、圧電体層2は、120°±30°YカットX伝搬のLNであってよい。言い換えれば、圧電体層2は、90°~150°YカットX伝搬のLTであってよい。 Another example of the piezoelectric layer material may be lithium niobate (also referred to as LiNbO 3 :LN). In this specification, when the piezoelectric layer according to one embodiment of the present disclosure is an LN layer, it is also written as "piezoelectric layer: LN". Thus, in this specification, the LN layer is also abbreviated as LN. The cut angle of the LN may be set appropriately. For example, the piezoelectric layer 2 may be 120°±30° Y-cut X-propagation LN. In other words, the piezoelectric layer 2 may be 90°-150° Y-cut X-propagation LT.
 弾性波装置1は、圧電体層2とIDT電極3との間に、誘電体層4を有していてよい。後述の各説明から理解できる通り、誘電体層4は、弾性波装置1の周波数特性の改善に寄与する付加的なコンポーネントである。このことから、誘電体層4は、付加膜とも称される。誘電体層4の材料(誘電体層材料)の例としては、SiO(酸化ケイ素)、HfO(酸化ハフニウム)、AlN(窒化アルミニウム)、Al(酸化アルミニウム)、Ta(窒化タンタル)、SiN(窒化ケイ素)、Si(シリコン)、ZrO(酸化ジルコニウム)、TiO(酸化チタン)、およびダイヤモンドなどを挙げることができる。誘電体層材料は、上述したこれらの材料の組み合わせであってもよい。誘電体層4の詳細については後述する。後述の通り、誘電体層4は、弾性波装置1の周波数特性の改善に寄与しうる。 The elastic wave device 1 may have a dielectric layer 4 between the piezoelectric layer 2 and the IDT electrode 3. As will be understood from the following descriptions, the dielectric layer 4 is an additional component that contributes to improving the frequency characteristics of the elastic wave device 1. For this reason, the dielectric layer 4 is also called an additional film. Examples of the material (dielectric layer material) of the dielectric layer 4 include SiO 2 (silicon oxide), HfO 2 (hafnium oxide), AlN (aluminum nitride), Al 2 O 3 (aluminum oxide), Ta 2 O 5 (tantalum nitride), SiN x (silicon nitride), Si (silicon), ZrO 2 (zirconium oxide), TiO 2 (titanium oxide), and diamond. The dielectric layer material may be a combination of the above-mentioned materials. The dielectric layer 4 will be described in detail later. As will be described later, the dielectric layer 4 can contribute to improving the frequency characteristics of the elastic wave device 1.
 図1を再び参照する。IDT電極3は、バスバー30を有していてよい。弾性波装置1では、一対のバスバー30が、D2方向において互いに対向していてよい。図1には、一対のバスバー30のうちの1つが示されている。図1に示されているバスバー30を、第1バスバー30aとも称する。図1に示されていないもう一方のバスバーを、第2バスバー30bとも称する。 Referring again to FIG. 1, the IDT electrode 3 may have a busbar 30. In the acoustic wave device 1, a pair of busbars 30 may face each other in the D2 direction. One of the pair of busbars 30 is shown in FIG. 1. The busbar 30 shown in FIG. 1 is also referred to as the first busbar 30a. The other busbar not shown in FIG. 1 is also referred to as the second busbar 30b.
 IDT電極3は、複数の電極指32を有していてよい。電極指32は、バスバー30から延在していてよい。図1には、電極指32として、第1電極指32aおよび第2電極指32bが示されている。第1電極指32aは、第1バスバー30aから第2バスバー30b側へと延在していてよい。第2電極指32bは、第2バスバー30bから第1バスバー30a側へと延在していてよい。したがって、弾性波装置1は、第1電極指32aと第2電極指32bとが互いに交差する交差領域RKを有しうる。 The IDT electrode 3 may have a plurality of electrode fingers 32. The electrode fingers 32 may extend from the busbar 30. In FIG. 1, a first electrode finger 32a and a second electrode finger 32b are shown as the electrode fingers 32. The first electrode finger 32a may extend from the first busbar 30a toward the second busbar 30b. The second electrode finger 32b may extend from the second busbar 30b toward the first busbar 30a. Thus, the acoustic wave device 1 may have an intersection region RK where the first electrode finger 32a and the second electrode finger 32b intersect with each other.
 複数の電極指32のそれぞれは、圧電体層2上において、D1方向に概ね一定の間隔を有するように、交互に繰り返して位置していてよい。本明細書では、電極指32のピッチをpとして表す。pは、例えば、隣り合う2つの電極指32の中心間の、D2方向におけるピッチ(繰り返し間隔)であってよい。一例として、pは、IDT電極3によって励振される弾性波の波長λの半値(λ/2)と等しく設定されてよい。この場合、λは、pの2倍の長さとして規定されてよい。そこで、実施形態1では、λ=2pである場合を例示する。本明細書では、その他の寸法についても、pを基準して表す場合がある。 The multiple electrode fingers 32 may be alternately positioned on the piezoelectric layer 2 with a generally constant spacing in the D1 direction. In this specification, the pitch of the electrode fingers 32 is represented as p. p may be, for example, the pitch (repetition interval) in the D2 direction between the centers of two adjacent electrode fingers 32. As an example, p may be set equal to half the wavelength λ (λ/2) of the elastic wave excited by the IDT electrode 3. In this case, λ may be defined as twice the length of p. Thus, in embodiment 1, a case where λ=2p is illustrated as an example. In this specification, other dimensions may also be expressed with p as the reference.
 また、本明細書では、D1方向における電極指32の長さを、電極指32の幅wと称する。wは、例えば、弾性波装置1に要求される電気特性に応じて適宜設定されてよい。一例として、wは、pに応じて設定されてよい。本明細書では、pに対するwの比率(w/p)を、電極指32のDuty(デューティ)と称する。Dutyを変更することにより、弾性波装置1の周波数特性を制御できる。 Furthermore, in this specification, the length of electrode finger 32 in direction D1 is referred to as width w of electrode finger 32. w may be set appropriately depending on, for example, the electrical characteristics required of elastic wave device 1. As an example, w may be set depending on p. In this specification, the ratio of w to p (w/p) is referred to as the duty of electrode finger 32. By changing the duty, the frequency characteristics of elastic wave device 1 can be controlled.
 IDT電極3は、複数のダミー電極指35を有していてよい。ダミー電極指35によれば、弾性波装置1の周波数特性をより精密に制御しうる。ダミー電極指35は、バスバー30から延在していてよい。図1には、第1バスバー30aから延在するダミー電極指35が示されている。図1に示されているダミー電極指35を、第1ダミー電極指35aとも称する。図1に示されていないダミー電極指35(第2バスバー30bから延在するダミー電極指35)を、第2ダミー電極指35bとも称する。 The IDT electrode 3 may have a plurality of dummy electrode fingers 35. The dummy electrode fingers 35 allow for more precise control of the frequency characteristics of the acoustic wave device 1. The dummy electrode fingers 35 may extend from the busbar 30. FIG. 1 shows dummy electrode fingers 35 extending from the first busbar 30a. The dummy electrode fingers 35 shown in FIG. 1 are also referred to as first dummy electrode fingers 35a. The dummy electrode fingers 35 not shown in FIG. 1 (dummy electrode fingers 35 extending from the second busbar 30b) are also referred to as second dummy electrode fingers 35b.
 ダミー電極指35のピッチは、電極指32のピッチと等しい値に設定されてよい。したがって、ダミー電極指35は、電極指32と対向しうる。例えば、図1に示す通り、第1ダミー電極指35aは、ギャップを介して、複数の第2電極指32bのそれぞれの先端と対向しうる。また、図1には示されていないが、第2ダミー電極指35bは、ギャップを介して、複数の第1電極指32aのそれぞれの先端と対向しうる。 The pitch of the dummy electrode fingers 35 may be set to a value equal to the pitch of the electrode fingers 32. Therefore, the dummy electrode fingers 35 may face the electrode fingers 32. For example, as shown in FIG. 1, the first dummy electrode finger 35a may face the tips of each of the multiple second electrode fingers 32b across a gap. Also, although not shown in FIG. 1, the second dummy electrode finger 35b may face the tips of each of the multiple first electrode fingers 32a across a gap.
 図1に示す通り、弾性波装置1は、電極指32の先端を含み、かつ、交差領域RKの中央を含まない第1領域R1を有しうる。そして、図2に示す通り、誘電体層4は、第1領域R1において、圧電体層2とIDT電極3との間に位置していてよい。 As shown in FIG. 1, the acoustic wave device 1 may have a first region R1 that includes the tips of the electrode fingers 32 but does not include the center of the intersection region RK. As shown in FIG. 2, the dielectric layer 4 may be located between the piezoelectric layer 2 and the IDT electrode 3 in the first region R1.
 図1に示す通り、第1領域R1は、D1方向(電極指32の配列方向)に沿って延在していてよい。そして、第1領域R1は、交差領域RKの両端に位置しうる。 As shown in FIG. 1, the first region R1 may extend along the direction D1 (the arrangement direction of the electrode fingers 32). The first region R1 may be located at both ends of the intersection region RK.
 図1に示す通り、第1領域R1の少なくとも一部は、電極指32の先端とバスバー30との間に位置しうる。図1に示す寸法dovは、D2方向において、電極指32と第1領域R1とが重なり合っている長さを表す。dovは、第1オーバラップ長と称されてもよい。 As shown in FIG. 1, at least a portion of the first region R1 may be located between the tip of the electrode finger 32 and the bus bar 30. The dimension dov shown in FIG. 1 represents the length of overlap between the electrode finger 32 and the first region R1 in the direction D2. dov may also be referred to as the first overlap length.
 また、図1に示す通り、第1領域R1は、ダミー電極指35の先端を含みうる。図1に示す寸法ddmは、D2方向において、ダミー電極指35と第1領域R1とが重なり合っている長さを表す。ddmは、第2オーバラップ長と称されてもよい。図1の例におけるddmは、ダミー電極指35の長さに等しい。 Also, as shown in FIG. 1, the first region R1 may include the tip of the dummy electrode finger 35. The dimension ddm shown in FIG. 1 represents the length of overlap between the dummy electrode finger 35 and the first region R1 in the direction D2. ddm may also be referred to as the second overlap length. In the example of FIG. 1, ddm is equal to the length of the dummy electrode finger 35.
 図2に示す寸法taは、圧電体層2の厚みを表す。寸法tは、図2の例における誘電体層4の厚みを表す。実施形態1では、taが十分に小さい場合(圧電体層2が十分に薄い場合)を例示する。 The dimension ta shown in FIG. 2 represents the thickness of the piezoelectric layer 2. The dimension t represents the thickness of the dielectric layer 4 in the example of FIG. 2. In the first embodiment, a case where ta is sufficiently small (where the piezoelectric layer 2 is sufficiently thin) is illustrated.
 一例として、実施形態1におけるtaは、λ以下(すなわち、2p以下)であってよい。この場合、IDT電極3は、弾性波として板波(ラム波)を励振しうる。例えば、IDT電極3は、板波としてA1モードの波を励振しうる。そこで、実施形態1では、板波(例:A1モードラム波)が圧電体層2内を伝播する場合を例示する。このように、弾性波装置1は、A1モードの波を励振するように構成されていてよい。 As an example, ta in embodiment 1 may be equal to or less than λ (i.e., equal to or less than 2p). In this case, the IDT electrode 3 may excite a plate wave (Lamb wave) as an elastic wave. For example, the IDT electrode 3 may excite an A1 mode wave as a plate wave. Thus, embodiment 1 illustrates a case in which a plate wave (e.g., an A1 mode Lamb wave) propagates within the piezoelectric layer 2. In this manner, the elastic wave device 1 may be configured to excite an A1 mode wave.
 図2に示す通り、弾性波装置1は、(i)圧電体層2よりも低い音響インピーダンスを有する低音響インピーダンス層5aと、(ii)低音響インピーダンス層5aよりも高い音響インピーダンスを有する高音響インピーダンス層5bと、が交互に積層された多層反射膜5をさらに有していてよい。多層反射膜5は、圧電体層2と支持基板6との間に位置していてよい。 As shown in FIG. 2, the acoustic wave device 1 may further include a multilayer reflective film 5 in which (i) low acoustic impedance layers 5a having an acoustic impedance lower than that of the piezoelectric layer 2 and (ii) high acoustic impedance layers 5b having an acoustic impedance higher than that of the low acoustic impedance layers 5a are alternately stacked. The multilayer reflective film 5 may be located between the piezoelectric layer 2 and the support substrate 6.
 図2に示す通り、多層反射膜5は、1つの低音響インピーダンス層5aと1つの高音響インピーダンス層5bとが積層されて成る積層ユニットであってよい。図2の例では、弾性波装置1は、4つの積層ユニットを含んでいる。低音響インピーダンス層5aの材料の例としては、SiOなどが挙げられる。高音響インピーダンス層5bの材料の例としては、HfOおよびTaなどの誘電体材料が挙げられる。高音響インピーダンス層5bの材料の別の例としては、MoおよびWなどの金属材料が挙げられる。 As shown in Fig. 2, the multilayer reflective film 5 may be a laminate unit formed by laminating one low acoustic impedance layer 5a and one high acoustic impedance layer 5b. In the example of Fig. 2, the acoustic wave device 1 includes four laminate units. An example of the material of the low acoustic impedance layer 5a is SiO2 . An example of the material of the high acoustic impedance layer 5b is a dielectric material such as HfO2 and Ta2O5 . Another example of the material of the high acoustic impedance layer 5b is a metal material such as Mo and W.
 (シミュレーションモデル)
 本願の発明者(以下では、発明者と略記)は、弾性波装置1の周波数特性を検討するために、シミュレーションモデルMODEL-REF、MODEL1、およびMODEL2を構築した。図3は、MODEL-REF~MODEL2の構成を模式的に示す。
(Simulation model)
The present inventor (hereinafter, abbreviated as the inventor) constructed simulation models MODEL-REF, MODEL 1, and MODEL 2 in order to study the frequency characteristics of elastic wave device 1. Fig. 3 shows schematic configurations of MODEL-REF to MODEL 2.
 図3に示す通り、MODEL-REFは、誘電体層4を有していない。したがって、MODEL-REFでは、t=0である。MODEL-REFは、弾性波装置1の性能評価のためのベースラインとしてのシミュレーションモデル(参照用シミュレーションモデル)である。本明細書では、例えば、弾性波装置が本開示の一態様に係る誘電体層を有していないことを、「誘電体層:無」とも表記する。MODEL-REFは、「誘電体層:無」の例である。 As shown in FIG. 3, MODEL-REF does not have a dielectric layer 4. Therefore, in MODEL-REF, t=0. MODEL-REF is a simulation model (reference simulation model) that serves as a baseline for evaluating the performance of the elastic wave device 1. In this specification, for example, an elastic wave device that does not have a dielectric layer according to one aspect of the present disclosure is also expressed as "dielectric layer: no." MODEL-REF is an example of "dielectric layer: no."
 図3に示す通り、MODEL1は、図1の例における弾性波装置1に対応している。したがって、MODEL1は、誘電体層4を有しており、かつ、ダミー電極指35を有している。本明細書では、例えば、弾性波装置が本開示の一態様に係るダミー電極指を有していることを、「ダミー有」とも表記する。このように、本明細書では、ダミー電極指をダミーとも略記する。MODEL1は、「誘電体層:有、ダミー有」の例である。MODEL2は、MODEL1とは異なり、ダミー電極指35を有していない。したがって、MODEL2では、ddm=0である。MODEL2は、「誘電体層:有、ダミー無」の例である。 As shown in FIG. 3, MODEL 1 corresponds to the elastic wave device 1 in the example of FIG. 1. Therefore, MODEL 1 has a dielectric layer 4 and has dummy electrode fingers 35. In this specification, for example, the fact that the elastic wave device has dummy electrode fingers according to one embodiment of the present disclosure is also expressed as "dummy present." Thus, in this specification, dummy electrode fingers are also abbreviated as dummy. MODEL 1 is an example of "dielectric layer: present, dummy present." Unlike MODEL 1, MODEL 2 does not have dummy electrode fingers 35. Therefore, in MODEL 2, ddm = 0. MODEL 2 is an example of "dielectric layer: present, dummy not present."
 発明者は、FEM(Finite Element Method,有限要素法)を用いたシミュレーションにより、MODEL-REF~MODEL2の周波数特性をそれぞれ導出した。発明者は、シミュレーション条件を、
  ・圧電体層:125°YカットX伝搬のLT(ta=0.41p)
  ・低音響インピーダンス層:SiO(厚み:0.15p)
  ・高音響インピーダンス層:HfO(厚み:0.19p)
  ・多層反射膜の層数:8
  ・IDT電極:Al(厚み:0.13p)
  ・p=1μm
の通り設定した。そして、発明者は、
  ・MODEL1における誘電体層:AlN(t=0.03p、dov=p)
  ・MODEL2における誘電体層:AlN(t=0.05p、dov=p)
と設定した。また、発明者は、MODEL1におけるddmを4pに設定した。
The inventor derived the frequency characteristics of MODEL-REF to MODEL-2 by simulation using FEM (Finite Element Method). The inventor set the simulation conditions as follows:
Piezoelectric layer: 125° Y-cut X-propagation LT (ta=0.41p)
Low acoustic impedance layer: SiO2 (thickness: 0.15p)
High acoustic impedance layer: HfO2 (thickness: 0.19p)
Number of layers in multilayer reflective film: 8
IDT electrode: Al (thickness: 0.13p)
p = 1 μm
The inventor then set the following:
Dielectric layer in MODEL 1: AlN (t=0.03p, dov=p)
Dielectric layer in MODEL 2: AlN (t=0.05p, dov=p)
The inventor also set ddm in MODEL1 to 4p.
 図4は、シミュレーションによって導出された、MODEL-REF~MODEL2のインピーダンス特性の例を示す。図4のグラフにおける横軸は周波数(単位:MHz)を示し、縦軸はインピーダンスの絶対値(大きさ)(単位:Ohm)を示す。 Figure 4 shows examples of impedance characteristics of MODEL-REF to MODEL-2 derived by simulation. The horizontal axis of the graph in Figure 4 shows frequency (unit: MHz), and the vertical axis shows the absolute value (magnitude) of impedance (unit: Ohm).
 図5は、シミュレーションによって導出された、MODEL-REF~MODEL2の位相特性の例を示す。図5のグラフにおける横軸は周波数を示し、縦軸はインピーダンスの位相(単位:degree)を示す。図5では、degree(角度)は、degと略記されている。以下の説明では、インピーダンスの位相を、単に位相と略記する。 Figure 5 shows an example of the phase characteristics of MODEL-REF to MODEL-2 derived by simulation. The horizontal axis of the graph in Figure 5 indicates frequency, and the vertical axis indicates the phase of impedance (unit: degree). In Figure 5, degree (angle) is abbreviated as deg. In the following explanation, the phase of impedance is simply abbreviated as phase.
 ある弾性波装置の共振周波数は、当該弾性波装置のインピーダンスの絶対値が最小値をとる周波数である。共振周波数は、位相が単調増加する周波数帯域において、当該位相が0°となる周波数でもある。ある弾性波装置の反共振周波数は、当該弾性波装置のインピーダンスの絶対値が最大値をとる周波数である。反共振周波数は、位相が単調減少する周波数帯域において、当該位相が0°となる周波数でもある。 The resonant frequency of an elastic wave device is the frequency at which the absolute value of the impedance of the elastic wave device is at a minimum. The resonant frequency is also the frequency at which the phase is 0° in a frequency band where the phase increases monotonically. The anti-resonant frequency of an elastic wave device is the frequency at which the absolute value of the impedance of the elastic wave device is at a maximum. The anti-resonant frequency is also the frequency at which the phase is 0° in a frequency band where the phase decreases monotonically.
 弾性波装置の帯域は、当該弾性波装置の共振周波数および反共振周波数によって規定される。図4から理解できる通り、各シミュレーションモデルに係る弾性波装置において、共振周波数は約5450MHzであり、反共振周波数は約5650MHzである。本明細書では、共振周波数よりも低周波側の周波数帯を第1周波数帯とも称し、帯域を第2周波数帯とも称し、反共振周波数よりも高周波側の周波数帯を第3周波数帯とも称する。 The band of an elastic wave device is defined by the resonant frequency and anti-resonant frequency of the elastic wave device. As can be seen from FIG. 4, in the elastic wave devices according to each simulation model, the resonant frequency is approximately 5450 MHz and the anti-resonant frequency is approximately 5650 MHz. In this specification, the frequency band lower than the resonant frequency is also referred to as the first frequency band, the band is also referred to as the second frequency band, and the frequency band higher than the anti-resonant frequency is also referred to as the third frequency band.
 図6は、図5における領域GM1の拡大図である。図6のグラフでは、図5のグラフにおける一部の周波数帯における、90°付近の位相領域が拡大されている。図6のグラフにおける周波数帯は、第2周波数帯に概ね一致する。位相の最大値(以下、MaxPhaseと称する)は、弾性波装置の性能を示す指標の1つである。MaxPhaseの最大値の理想値は、90°である。MaxPhaseが高くなるほど(すなわち、MaxPhaseが90°により近くなるほど)、弾性波装置におけるエネルギー損失(以下、ロスと略記)が小さくなる。 FIG. 6 is an enlarged view of region GM1 in FIG. 5. In the graph of FIG. 6, the phase region near 90° in some frequency bands in the graph of FIG. 5 is enlarged. The frequency bands in the graph of FIG. 6 roughly coincide with the second frequency band. The maximum value of phase (hereinafter referred to as MaxPhase) is one of the indicators that show the performance of an elastic wave device. The ideal maximum value of MaxPhase is 90°. The higher MaxPhase is (i.e., the closer MaxPhase is to 90°), the smaller the energy loss (hereinafter abbreviated as loss) in the elastic wave device.
 図6に示す通り、MODEL1およびMODEL2では、MODEL-REFに比べて第2周波数帯におけるロスが低減している。このことは、誘電体層4が第2周波数帯におけるロスの低減に寄与しうることを裏付けている。さらに、MODEL1およびMODEL2では、MODEL-REFに比べて、第2周波数帯におけるリップルが低減している。このことは、誘電体層4が第2周波数帯におけるリップルの低減にも寄与しうることを裏付けている。このように、誘電体層4によれば、第2周波数帯における生じる横モードスプリアス(横モードリップル)を低減できる。以上の通り、誘電体層4は、第2周波数帯におけるロスの低減およびリップルの低減に寄与しうる。 As shown in FIG. 6, MODEL 1 and MODEL 2 have reduced loss in the second frequency band compared to MODEL-REF. This confirms that the dielectric layer 4 can contribute to reducing loss in the second frequency band. Furthermore, MODEL 1 and MODEL 2 have reduced ripple in the second frequency band compared to MODEL-REF. This confirms that the dielectric layer 4 can also contribute to reducing ripple in the second frequency band. In this way, the dielectric layer 4 can reduce transverse mode spurious (transverse mode ripple) that occurs in the second frequency band. As described above, the dielectric layer 4 can contribute to reducing loss and ripple in the second frequency band.
 図7は、図5における領域GM2の拡大図である。図7のグラフでは、図5のグラフにおける一部の周波数帯における、-90°付近の位相領域が拡大されている。図7のグラフにおける周波数帯は、第1周波数帯~第3周波数帯を含む。図7に示す通り、第3周波数帯では、MODEL1およびMODEL2のそれぞれの位相は、MODEL-REFの位相よりも-90°に近い。このことは、MODEL1およびMODEL2では、MODEL-REFに比べて、第3周波数帯におけるロスが低減していることを示している。このように、誘電体層4は、第3周波数帯におけるロスの低減にも寄与しうる。 FIG. 7 is an enlarged view of region GM2 in FIG. 5. In the graph of FIG. 7, the phase region around -90° in some frequency bands in the graph of FIG. 5 is enlarged. The frequency bands in the graph of FIG. 7 include the first frequency band to the third frequency band. As shown in FIG. 7, in the third frequency band, the phases of MODEL1 and MODEL2 are closer to -90° than the phase of MODEL-REF. This indicates that the loss in the third frequency band is reduced in MODEL1 and MODEL2 compared to MODEL-REF. In this way, the dielectric layer 4 can also contribute to reducing the loss in the third frequency band.
 その一方、第1周波数帯では、MODEL1およびMODEL2のそれぞれの位相は、MODEL-REFの位相よりもわずかに大きい。このことは、誘電体層4の設計条件次第では、当該誘電体層4は第1周波数帯におけるロスの増加を招きうることを示唆している。この結果を踏まえ、発明者は、MODEL-REF~MODEL2の周波数特性について、より詳細な検討を行った。具体的には、発明者は、FOM(Figure of Merit)に基づく定量的検討を行った。 On the other hand, in the first frequency band, the phases of MODEL 1 and MODEL 2 are slightly larger than the phase of MODEL-REF. This suggests that depending on the design conditions of the dielectric layer 4, the dielectric layer 4 may lead to an increase in loss in the first frequency band. Based on this result, the inventor conducted a more detailed study of the frequency characteristics of MODEL-REF to MODEL 2. Specifically, the inventor conducted a quantitative study based on the FOM (Figure of Merit).
 (FOMに基づく検討)
 図8は、MODEL-REF~MODEL2の位相特性の別の例を示す。図8の例では、MODEL1およびMODEL2における誘電体層4の材料が、図5の例とは異なっている。発明者は、図8の位相特性に基づいて、MODEL-REF~MODEL2のそれぞれのBodeQを導出した。図9は、MODEL-REF~MODEL2のBodeQの例を示す。図9のグラフにおける縦軸は、BodeQである。BodeQは、弾性波装置のロス特性を示す指標の1つである。BodeQが大きいほど、弾性波装置のロス特性は良好であると言える。
(FOM-based review)
FIG. 8 shows another example of the phase characteristics of MODEL-REF to MODEL-2. In the example of FIG. 8, the material of the dielectric layer 4 in MODEL-1 and MODEL-2 is different from that in the example of FIG. 5. The inventor derived the BodeQ of each of MODEL-REF to MODEL-2 based on the phase characteristics of FIG. 8. FIG. 9 shows an example of the BodeQ of MODEL-REF to MODEL-2. The vertical axis in the graph of FIG. 9 is BodeQ. BodeQ is one index that indicates the loss characteristics of an elastic wave device. It can be said that the larger the BodeQ, the better the loss characteristics of the elastic wave device.
 続いて、発明者は、MODEL-REF~MODEL2のそれぞれについて、図9の領域DD1~DD3のそれぞれにおけるBodeQの平均値を導出した。図9の領域DD1~DD3はそれぞれ、第1周波数帯~第3周波数帯に対応する。本明細書では、領域DD1におけるBodeQの平均値をBodeQ1と称し、領域DD2におけるBodeQの平均値をBodeQ2と称し、領域DD3におけるBodeQの平均値をBodeQ3と称する。 The inventor then derived the average value of BodeQ in each of the regions DD1 to DD3 in FIG. 9 for each of MODEL-REF to MODEL2. Regions DD1 to DD3 in FIG. 9 correspond to the first to third frequency bands, respectively. In this specification, the average value of BodeQ in region DD1 is referred to as BodeQ1, the average value of BodeQ in region DD2 is referred to as BodeQ2, and the average value of BodeQ in region DD3 is referred to as BodeQ3.
 続いて、発明者は、MODEL-REFにおけるBodeQ1~BodeQ3を基準値として設定し、領域DD1~DD3のそれぞれにおけるFOMを導出した。一般的に、FOMが大きいほど、ロス特性およびリップル特性が良好である。具体的には、発明者は、各シミュレーションモデルにおけるBodeQ1を、MODEL-REFにおけるBodeQ1によって規格化することにより、領域DD1におけるFOM(以下、FOM1と表記)を導出した。そして、発明者は、各シミュレーションモデルにおけるBodeQ2を、MODEL-REFにおけるBodeQ2によって規格化することにより、領域DD2におけるFOM(以下、FOM2と表記)を導出した。そして、発明者は、各シミュレーションモデルにおけるBodeQ3を、MODEL-REFにおけるBodeQ3によって規格化することにより、領域DD3におけるFOM(以下、FOM3と表記)を導出した。 Next, the inventor set BodeQ1 to BodeQ3 in MODEL-REF as reference values and derived the FOM for each of the regions DD1 to DD3. Generally, the larger the FOM, the better the loss and ripple characteristics. Specifically, the inventor standardized BodeQ1 in each simulation model by BodeQ1 in MODEL-REF to derive the FOM for region DD1 (hereinafter referred to as FOM1). Then, the inventor standardized BodeQ2 in each simulation model by BodeQ2 in MODEL-REF to derive the FOM for region DD2 (hereinafter referred to as FOM2). The inventor then derived the FOM in domain DD3 (hereafter referred to as FOM3) by normalizing BodeQ3 in each simulation model by BodeQ3 in MODEL-REF.
 さらに、発明者は、FOM1~FOM3を用いて、第1周波数帯~第3周波数帯の周波数特性を総合的に示す総合FOM(以下、FOMtと表記)を導出した。具体的には、発明者は、下記の式(1)、
  FOMt=FOM1×FOM2×FOM3  …(1)
によって、FOMtを導出した。上述のFOM1~FOM3は、局所的な周波数帯についての指標であると言える。これに対し、FOMtは、大域的な周波数帯についての指標であると言える。
Furthermore, the inventors have derived a total FOM (hereinafter, referred to as FOMt) that comprehensively indicates the frequency characteristics of the first to third frequency bands by using FOM1 to FOM3.
FOMt = FOM1 x FOM2 x FOM3 ... (1)
The above-mentioned FOM1 to FOM3 can be considered as indices for local frequency bands. In contrast, the FOMt can be considered as an index for a global frequency band.
 図10は、発明者によって導出された、MODEL-REF~MODEL2におけるFOM1~FOM3およびFOMtの例を示す。図10に示す通り、MODEL1では、MODEL-REFよりもわずかに小さいFOM1が得られた。その一方、MODEL1では、MODEL-REFよりも大きいFOM2およびFOM3が得られた。その結果、MODEL1では、MODEL-REFよりも大きいFOMtが得られた。 Figure 10 shows examples of FOM1 to FOM3 and FOMt for MODEL-REF to MODEL2 derived by the inventor. As shown in Figure 10, MODEL1 obtained an FOM1 that was slightly smaller than MODEL-REF. On the other hand, MODEL1 obtained FOM2 and FOM3 that were larger than MODEL-REF. As a result, MODEL1 obtained an FOMt that was larger than MODEL-REF.
 MODEL2では、MODEL-REFよりもかなり小さいFOM1が得られた。その一方、MODEL2では、MODEL-REFよりもやや大きいFOM3が得られた。また、MODEL2では、MODEL-REFと同等のFOM2が得られた。その結果、MODEL2では、MODEL-REFよりもやや小さいFOMtが得られた。 With MODEL2, an FOM1 was obtained that was significantly smaller than with MODEL-REF. On the other hand, with MODEL2, an FOM3 was obtained that was slightly larger than with MODEL-REF. Also, with MODEL2, an FOM2 equivalent to that of MODEL-REF was obtained. As a result, with MODEL2, an FOMt was obtained that was slightly smaller than with MODEL-REF.
 図10の結果は、MODEL1は、総合的にはMODEL-REFよりも良好な周波数特性を有していることを示している。その一方、図10の結果は、MODEL2では、総合的にはMODEL-REFよりも周波数特性が低下していることを示している。この結果を踏まえ、発明者は、弾性波装置の各設計条件について、さらに詳細な検討を行った。 The results in Figure 10 show that MODEL 1 has better overall frequency characteristics than MODEL-REF. On the other hand, the results in Figure 10 show that MODEL 2 has worse overall frequency characteristics than MODEL-REF. Based on these results, the inventors conducted a more detailed study of each design condition of the elastic wave device.
 (tとdovとの関係についての検討)
 発明者は、「誘電体層:有」の弾性波装置の設計条件に関する検討を行った。発明者は、MODEL1(ダミー有)について、tおよびdovを様々に変化させ、それぞれの場合についてFOM2を導出した。図11は、ダミー有の場合における、tおよびdovとFOM2との関係を示すグラフである。当該グラフにおける横軸はtであり、縦軸はFOM2である。発明者は、「dov=0.5p、p、1.5p」のそれぞれの場合について、FOM2を導出した。
(Consideration of the relationship between t and dov)
The inventors have studied the design conditions for an elastic wave device with a dielectric layer. The inventors varied t and dov for MODEL 1 (with dummy) and derived FOM2 for each case. FIG. 11 is a graph showing the relationship between t and dov and FOM2 when a dummy is present. The horizontal axis of the graph is t, and the vertical axis is FOM2. The inventors derived FOM2 for each of the cases of "dov=0.5p, p, 1.5p."
 図11に示す通り、いずれのdovにおいても、tが0.03p~0.05pの場合に、高いFOM2が得られた。したがって、例えば、ダミー有の場合におけるtは、0.03p~0.06pであってよい。 As shown in Figure 11, a high FOM2 was obtained for all dov values when t was between 0.03p and 0.05p. Therefore, for example, when a dummy is used, t may be between 0.03p and 0.06p.
 続いて、発明者は、MODEL2(ダミー無)について、tおよびdovを様々に変化させ、それぞれの場合についてFOM2を導出した。図12は、ダミー無の場合における、tおよびdovとFOM2との関係を示すグラフである。図12は、図11と対になる図である。 Next, the inventors varied t and dov for MODEL2 (no dummy) and derived FOM2 for each case. Figure 12 is a graph showing the relationship between t and dov and FOM2 when no dummy is used. Figure 12 is a paired diagram with Figure 11.
 図12に示す通り、いずれのdovにおいても、tが0.04p~0.07pの場合に、高いFOM2が得られた。したがって、例えば、ダミー無の場合におけるtは、0.04p~0.07pであってよい。 As shown in Figure 12, a high FOM2 was obtained when t was between 0.04p and 0.07p for all dov. Therefore, for example, when there is no dummy, t may be between 0.04p and 0.07p.
 上述の通り、ダミーの有無によらず、0.5p~1.5pに亘るdovにおいて、高いFOM2が得られた。このことから、例えば、ダミーの有無によらず、第1領域R1は、電極指32の先端から交差領域RKの中央側に向かって長さ0.1p~2pの部分を含んでいてよく、かつ、当該先端から当該中央側に向かって長さ2pを超える部分を含んでいなくともよい。 As described above, a high FOM2 was obtained at dov ranging from 0.5p to 1.5p, regardless of whether a dummy was used. For this reason, for example, regardless of whether a dummy was used, the first region R1 may include a portion with a length of 0.1p to 2p from the tip of the electrode finger 32 toward the center of the intersection region RK, and may not include a portion with a length exceeding 2p from the tip toward the center.
 (圧電体層材料についての検討)
 発明者は、「圧電体層:LT」および「圧電体層:LN」のそれぞれについて、弾性波装置の設計条件に関する検討を行った。この検討において、発明者は、
  ・LT層:121°YカットX伝搬のLT(ta=0.41p)
  ・LN層:125°YカットX伝搬のLN(ta=0.41p)
として、LT層およびLN層をそれぞれ設定した。発明者は、MODEL1およびMODEL2における交差領域RKの幅(交差幅)を、23pに設定した。発明者は、MODEL1およびMODEL2におけるtを0.01p~0.1pの範囲で様々に変化させ、検討を行った。さらに、発明者は、MODEL1におけるdovを0.5p~2pの範囲で様々に変化させ、検討を行った。
(Consideration of piezoelectric layer materials)
The inventors have conducted a study on the design conditions of the elastic wave device for each of the "piezoelectric layer: LT" and the "piezoelectric layer: LN".
LT layer: 121° Y-cut X-propagating LT (ta=0.41p)
LN layer: 125° Y-cut X-propagating LN (ta=0.41p)
The LT layer and the LN layer were set as follows. The inventor set the width (crossing width) of the crossing region RK in MODEL 1 and MODEL 2 to 23p. The inventor varied t in MODEL 1 and MODEL 2 in various ways within the range of 0.01p to 0.1p and conducted an investigation. Furthermore, the inventor varied dov in MODEL 1 in various ways within the range of 0.5p to 2p and conducted an investigation.
 はじめに、発明者は、MODEL-REF(誘電体層:無)について、「圧電体層:LT」および「圧電体層:LN」のそれぞれの場合における周波数特性を導出した。図13は、「圧電体層:LT、誘電体層:無」における周波数特性の例を示す。図13における符号1300Aはインピーダンス特性を示し、符号1300Bは位相特性を示す。図14は、「圧電体層:LN、誘電体層:無」における周波数特性の例を示す。図14における符号1400Aはインピーダンス特性を示し、符号1400Bは位相特性を示す。 First, the inventor derived the frequency characteristics for MODEL-REF (dielectric layer: no) in the cases of "piezoelectric layer: LT" and "piezoelectric layer: LN". Figure 13 shows an example of the frequency characteristics for "piezoelectric layer: LT, dielectric layer: no". In Figure 13, reference numeral 1300A indicates the impedance characteristics, and reference numeral 1300B indicates the phase characteristics. Figure 14 shows an example of the frequency characteristics for "piezoelectric layer: LN, dielectric layer: no". In Figure 14, reference numeral 1400A indicates the impedance characteristics, and reference numeral 1400B indicates the phase characteristics.
 図13および図14に示す通り、圧電体層材料は、弾性波装置の周波数特性に影響を及ぼしうる。例えば、圧電体層2の音響特性が、当該周波数特性に影響を及ぼすと考えられる。このことから、誘電体層4の音響特性も、当該周波数特性に影響を及ぼすと考えられる。そこで、発明者は、MODEL1(ダミー有)およびMODEL2(ダミー無)のそれぞれについて、誘電体層材料と当該周波数特性との関係について検討を行った。 As shown in Figures 13 and 14, the piezoelectric layer material can affect the frequency characteristics of the elastic wave device. For example, it is believed that the acoustic characteristics of the piezoelectric layer 2 affect the frequency characteristics. Therefore, it is believed that the acoustic characteristics of the dielectric layer 4 also affect the frequency characteristics. Therefore, the inventors investigated the relationship between the dielectric layer material and the frequency characteristics for each of MODEL 1 (with dummy) and MODEL 2 (without dummy).
 発明者は、図15に示す各材料を誘電体層材料として用いて、検討を行った。図15には、各誘電体層材料の音速VL(単位:m/s)が示されている。ある材料(例:誘電体層材料)の音速VLは、下記の式(2)、
  VL=(E/ρ)1/2  …(2)
によって与えられる。Eは当該材料のヤング率(単位:Pa)であり、ρは当該材料の密度(単位:kg/m)である。
The inventors conducted a study using the materials shown in Fig. 15 as the dielectric layer materials. Fig. 15 shows the sound velocity VL (unit: m/s) of each dielectric layer material. The sound velocity VL of a certain material (e.g., dielectric layer material) is calculated by the following formula (2):
VL = (E / ρ) 1/2 ... (2)
where E is the Young's modulus of the material (unit: Pa) and ρ is the density of the material (unit: kg/m 3 ).
 本明細書におけるVLは、弾性波装置によって励振されるA1モードの波の音速cを表すわけではないことに留意されたい。VLは誘電体層材料のみによって決まる値であり、当該誘電体層材料中を伝搬する音波の音速である。一方、cは弾性波装置の内部を音波が伝搬する速度であり、当該弾性波装置を構成する材料のみならず、当該弾性波装置の構造および設計によっても変化する。また、例えば、弾性波装置のある部分において電極指32の幅wが広がっている場合、当該部分における電極指32の質量の増加に伴い、当該部分におけるcが減少しうる。 Please note that VL in this specification does not represent the sound speed c of the A1 mode wave excited by the acoustic wave device. VL is a value determined only by the dielectric layer material, and is the sound speed of the sound wave propagating through the dielectric layer material. On the other hand, c is the speed at which sound waves propagate inside the acoustic wave device, and varies not only with the material that constitutes the acoustic wave device, but also with the structure and design of the acoustic wave device. Also, for example, if the width w of the electrode fingers 32 is wider in a certain part of the acoustic wave device, c in that part may decrease as the mass of the electrode fingers 32 in that part increases.
 また、当業者にとって明らかである通り、誘電体層材料のVLは、当該誘電体層材料の音響インピーダンスZにも関連している。Zは、下記の式(3)、
  Z=(E×ρ)1/2  …(3)
によって与えられる。
As will be appreciated by those skilled in the art, the VL of a dielectric layer material is also related to the acoustic impedance Z of the dielectric layer material, which is given by the following equation (3):
Z = (E × ρ) 1/2 ... (3)
is given by:
 発明者は、
  ・E=50GPa、150GPa、250GPa、350GPa
  ・ρ=2000kg/m、3500kg/m、5000kg/m、6500kg/m、8000kg/m
  ・εr=3、8、13、23、33、43
の通り、誘電体層4の各物性値を設定し、シミュレーションを行った。εrは、誘電体層材料の比誘電率である。上記の通り設定した各物性値は、図15に示す各材料の実際の物性値を概ねカバーしている。
The inventors,
E = 50 GPa, 150 GPa, 250 GPa, 350 GPa
ρ=2000 kg/ m3 , 3500 kg/ m3 , 5000 kg/ m3 , 6500 kg/ m3 , 8000 kg/ m3
εr=3, 8, 13, 23, 33, 43
Simulations were performed by setting the physical property values of the dielectric layer 4 as shown in Table 1. εr is the relative dielectric constant of the dielectric layer material. The physical property values set as above roughly cover the actual physical property values of the materials shown in FIG.
 (FOM2に関する検討)
 発明者は、「圧電体層:LT」の場合について、ダミー有およびダミー無のそれぞれにおけるVLとFOM2との関係を導出した。図16は、発明者によって導出された当該関係の例を示すグラフである。当該グラフの横軸はVLであり、縦軸はFOM2である。図16において、
  ・符号1600A:「圧電体層:LT、t=0.03p、ダミー有」
  ・符号1600B:「圧電体層:LT、t=0.05p、ダミー有」
  ・符号1600C:「圧電体層:LT、t=0.03p、ダミー無」
  ・符号1600D:「圧電体層:LT、t=0.05p、ダミー無」
の場合のグラフを示す。
(FOM2 Consideration)
The inventor derived the relationship between VL and FOM2 in the case of "piezoelectric layer: LT" with and without a dummy. Fig. 16 is a graph showing an example of the relationship derived by the inventor. The horizontal axis of the graph is VL, and the vertical axis is FOM2. In Fig. 16,
Reference number 1600A: "Piezoelectric layer: LT, t=0.03p, with dummy"
Reference number 1600B: "Piezoelectric layer: LT, t=0.05p, with dummy"
Code 1600C: "Piezoelectric layer: LT, t=0.03p, no dummy"
Code 1600D: "Piezoelectric layer: LT, t=0.05p, no dummy"
The graph shows the case.
 図16に示す通り、FOM2は、VLに依存する。そして、FOM2は、tおよびεrにも依存する。符号1600Aおよび1600Bのグラフに示す通り、t=0.03pの場合、概ね3000~12500m/sの範囲のVLにおいて、高いFOM2(すなわち、第2周波数帯における良好な周波数特性)が得られる。また、符号1600Cおよび1600Dのグラフのグラフに示す通り、t=0.05pの場合、概ね5000~12500m/sの範囲のVLにおいて、高いFOM2が得られる。これらのことから、例えば、VLは、3000m/s~13000m/sであってよい。そして、VLは、5000m/s~12000m/sであってもよい(後述の図17についての説明も参照)。 As shown in FIG. 16, FOM2 depends on VL. And FOM2 also depends on t and εr. As shown in the graphs with reference numbers 1600A and 1600B, when t=0.03p, a high FOM2 (i.e., good frequency characteristics in the second frequency band) is obtained for a VL in the range of approximately 3000 to 12500 m/s. Also, as shown in the graphs with reference numbers 1600C and 1600D, when t=0.05p, a high FOM2 is obtained for a VL in the range of approximately 5000 to 12500 m/s. From these, for example, VL may be 3000 m/s to 13000 m/s. And VL may be 5000 m/s to 12000 m/s (see also the explanation of FIG. 17 below).
 さらに、符号1600Aおよび1600Bのグラフに示す通り、t=0.03pの場合、VL≒9000m/sにおいて、特に高いFOM2が得られる。このことから、例えば、圧電体層2が115°±30°YカットX伝搬のLTである場合、tは0.03p±25%の範囲内にあってよい。言い換えれば、tは、0.0225p~0.0375pであってよい。そして、VLは、9000m/s±1000m/sの範囲内にあってよい。言い換えれば、VLは、8000m/s~10000m/sであってよい。 Furthermore, as shown in the graphs with reference numerals 1600A and 1600B, when t = 0.03p, a particularly high FOM2 is obtained when VL ≈ 9000 m/s. For this reason, for example, when the piezoelectric layer 2 is a 115° ± 30° Y-cut X-propagation LT, t may be within the range of 0.03p ± 25%. In other words, t may be 0.0225p to 0.0375p. And VL may be within the range of 9000 m/s ± 1000 m/s. In other words, VL may be 8000 m/s to 10000 m/s.
 また、符号1600Cおよび1600Dのグラフのグラフに示す通り、t=0.05pの場合、VL≒10000m/sにおいて、特に高いFOM2が得られる。このことから、例えば、圧電体層2が115°±30°YカットX伝搬のLTである場合、tは0.05p±25%の範囲内にあってもよい。言い換えれば、tは、0.0375p~0.0625pであってもよい。そして、VLは、10000m/s±1000m/sの範囲内にあってよい。言い換えれば、VLは、9000m/s~11000m/sであってよい。 Furthermore, as shown in the graphs of symbols 1600C and 1600D, when t = 0.05p, a particularly high FOM2 is obtained when VL ≈ 10,000 m/s. For this reason, for example, when the piezoelectric layer 2 is a 115° ± 30° Y-cut X-propagation LT, t may be within the range of 0.05p ± 25%. In other words, t may be 0.0375p to 0.0625p. And VL may be within the range of 10,000 m/s ± 1,000 m/s. In other words, VL may be 9,000 m/s to 11,000 m/s.
 続いて、発明者は、「圧電体層:LN」の場合について、ダミー有およびダミー無のそれぞれにおけるVLとFOM2との関係を導出した。図17は、発明者によって導出された当該関係の例を示すグラフである。図17は、図16と対になる図である。図17において、
  ・符号1700A:「圧電体層:LN、t=0.03p、ダミー有」
  ・符号1700B:「圧電体層:LN、t=0.05p、ダミー有」
  ・符号1700C:「圧電体層:LN、t=0.03p、ダミー無」
  ・符号1700D:「圧電体層:LN、t=0.05p、ダミー無」
の場合のグラフを示す。
Next, the inventor derived the relationship between VL and FOM2 in the case of "piezoelectric layer: LN" with and without a dummy. Fig. 17 is a graph showing an example of the relationship derived by the inventor. Fig. 17 is a diagram paired with Fig. 16. In Fig. 17,
Reference number 1700A: "Piezoelectric layer: LN, t=0.03p, with dummy"
Reference number 1700B: "Piezoelectric layer: LN, t=0.05p, with dummy"
Code 1700C: "Piezoelectric layer: LN, t=0.03p, no dummy"
Reference number 1700D: "Piezoelectric layer: LN, t=0.05p, no dummy"
The graph shows the case.
 符号1700Aおよび1700Bのグラフに示す通り、t=0.03pの場合、概ね3000~12000m/sの範囲のVLにおいて、高いFOM2が得られる。また、符号1700Cおよび1700Dのグラフに示す通り、t=0.05pの場合、概ね5000~12000m/sの範囲のVLにおいて、高いFOM2が得られる。 As shown in the graphs labeled 1700A and 1700B, when t = 0.03p, a high FOM2 is obtained for a VL in the range of approximately 3000 to 12000 m/s. Also, as shown in the graphs labeled 1700C and 1700D, when t = 0.05p, a high FOM2 is obtained for a VL in the range of approximately 5000 to 12000 m/s.
 さらに、符号1700Aおよび1700Bのグラフに示す通り、t=0.03pの場合、VL≒8000m/sにおいて、特に高いFOM2が得られる。このことから、例えば、圧電体層2が120°±30°YカットX伝搬のLNである場合、tは0.03p±25%の範囲内にあってよい。そして、VLは、8000m/s±1000m/sの範囲内にあってよい。言い換えれば、VLは、7000m/s~9000m/sであってよい。 Furthermore, as shown in the graphs denoted by symbols 1700A and 1700B, when t = 0.03p, a particularly high FOM2 is obtained when VL ≈ 8000 m/s. For this reason, for example, when the piezoelectric layer 2 is 120° ± 30° Y-cut X-propagation LN, t may be within the range of 0.03p ± 25%. And VL may be within the range of 8000 m/s ± 1000 m/s. In other words, VL may be 7000 m/s to 9000 m/s.
 また、符号1700Cおよび1700Dのグラフに示す通り、t=0.05pの場合、VL≒9000m/sにおいて、特に高いFOM2が得られる。このことから、例えば、圧電体層2が120°±30°YカットX伝搬のLNである場合、tは0.05p±25%の範囲内にあってもよい。そして、VLは、9000m/s±1000m/sの範囲内にあってよい。言い換えれば、VLは、8000m/s~10000m/sであってよい。第2周波数帯の特性(FOM2)が改善するこれらのパラメータ範囲において、第3周波数帯の特性(FOM3)が改善することも、発明者によって確認された。 Furthermore, as shown in the graphs labeled 1700C and 1700D, when t = 0.05p, a particularly high FOM2 is obtained when VL ≈ 9000 m/s. For this reason, for example, when the piezoelectric layer 2 is 120° ± 30° Y-cut X-propagation LN, t may be within the range of 0.05p ± 25%. And VL may be within the range of 9000 m/s ± 1000 m/s. In other words, VL may be 8000 m/s to 10000 m/s. The inventors have also confirmed that in these parameter ranges where the characteristics of the second frequency band (FOM2) improve, the characteristics of the third frequency band (FOM3) also improve.
 (FOM1に関する検討)
 以上の通り、発明者は、FOM2を改善するための弾性波装置の設計条件を見出した。ただし、FOM1が小さい場合、FOM2が改善されたとしても、FOMtが悪化しうる。このことを検討するため、発明者は、新たなシミュレーションモデルMODEL3を構築した。MODEL3は、「誘電体層:有、ダミー有」の一例である。MODEL3は、誘電体層4の材料を除いては、MODEL1と同じである。発明者は、MODEL3における誘電体層4の物性値を、E=150GPa、ρ=3500kg/cm、εr=8に設定した。
(FOM1 Consideration)
As described above, the inventors have found design conditions for an elastic wave device to improve FOM2. However, when FOM1 is small, FOMt may deteriorate even if FOM2 is improved. To consider this, the inventors have constructed a new simulation model, MODEL3. MODEL3 is an example of "Dielectric layer: yes, dummy yes". MODEL3 is the same as MODEL1 except for the material of dielectric layer 4. The inventors set the physical properties of dielectric layer 4 in MODEL3 to E = 150 GPa, ρ = 3500 kg/ cm3 , and εr = 8.
 図18は、シミュレーションによって導出された、MODEL-REFおよびMODEL3の位相特性の例を示す。図18に示す通り、MODEL3では、第2周波数帯および第3周波数帯における位相特性が、MODEL-REF1に比べて改善されている。その一方、MODEL3では、第1周波数帯においてリップルが生じている。このため、MODEL3では、第1周波数帯における位相特性が、MODEL-REF1に比べて悪化している。 Figure 18 shows examples of phase characteristics of MODEL-REF and MODEL3 derived by simulation. As shown in Figure 18, in MODEL3, the phase characteristics in the second and third frequency bands are improved compared to MODEL-REF1. On the other hand, in MODEL3, ripples occur in the first frequency band. As a result, in MODEL3, the phase characteristics in the first frequency band are worse than in MODEL-REF1.
 図19は、発明者によって導出された、MODEL-REFおよびMODEL3におけるFOM1~FOM3およびFOMtの例を示す。図19に示す通り、MODEL3では、MODEL-REFよりも大きいFOM2およびFOM3が得られた。その一方、MODEL3では、MODEL-REFよりもかなり小さいFOM1が得られた。MODEL3における小さいFOM1は、第1周波数帯におけるリップルに起因している。その結果、MODEL3では、MODEL-REFよりも小さいFOMtが得られた。 Figure 19 shows examples of FOM1 to FOM3 and FOMt for MODEL-REF and MODEL-3 derived by the inventor. As shown in Figure 19, MODEL-3 obtained larger FOM2 and FOM3 than MODEL-REF. On the other hand, MODEL-3 obtained a significantly smaller FOM1 than MODEL-REF. The small FOM1 in MODEL-3 is caused by ripples in the first frequency band. As a result, MODEL-3 obtained a smaller FOMt than MODEL-REF.
 第1周波数帯におけるリップルは、誘電体層4に起因して生じると考えられる。例えば、VLが小さい場合、誘電体層4の付加に伴って弾性波装置の第1領域R1における共振周波数が低下しうる。そして、当該共振周波数の低下が第1周波数帯におけるリップルを生じさせると考えられる。そこで、発明者は、誘電体層4の付与に伴う当該共振周波数の変動について定量的に検討した。 The ripples in the first frequency band are believed to be caused by the dielectric layer 4. For example, when VL is small, the addition of the dielectric layer 4 may reduce the resonant frequency in the first region R1 of the elastic wave device. This reduction in resonant frequency is believed to cause ripples in the first frequency band. The inventors therefore quantitatively investigated the variation in the resonant frequency that accompanies the addition of the dielectric layer 4.
 具体的には、発明者は、下記の式(4)、
  dfr=(fr1-fr0)/fr0 …(4)
によって与えられるdfrを用いて、検討を行った。dfrは、共振周波数変化率と称されてもよい。fr0は、交差領域RKの中央における、弾性波装置によって励振される波(例:A1モードの波)の音速である。fr1は、第1領域R1のうち、電極指32の先端における、当該波の音速である。
Specifically, the inventors have found that
dfr = (fr1 - fr0) / fr0 ... (4)
The study was performed using dfr given by the following equation. dfr may also be referred to as the resonant frequency change rate. fr0 is the acoustic velocity of a wave (e.g., an A1 mode wave) excited by the acoustic wave device at the center of the intersection region RK. fr1 is the acoustic velocity of the wave at the tip of the electrode finger 32 in the first region R1.
 fr0は、例えば、「誘電体層:無」の弾性波装置(例:MODEL-REF)の共振周波数として算出されてよい。発明者は、MODEL-REFを用いて、fr0=5236MHzという値を算出した。 fr0 may be calculated, for example, as the resonant frequency of an elastic wave device with no dielectric layer (e.g., MODEL-REF). The inventors used MODEL-REF to calculate fr0 = 5236 MHz.
 fr1は、例えば、MODEL-REFにおける圧電体層2の上面全体に誘電体層4を付加したシミュレーションモデルMODEL4の共振周波数として算出されてよい。図20は、MODEL4の構成を模式的に示す。発明者は、MODEL4における誘電体層4の物性値を、E=50GPa、ρ=3500kg/m、εr=8に設定した。発明者は、MODEL4を用いて、fr1=5200MHzという値を算出した。したがって、式(4)により、dfr=-0.69%という値が得られた。 For example, fr1 may be calculated as the resonance frequency of a simulation model MODEL4 in which a dielectric layer 4 is added to the entire upper surface of the piezoelectric layer 2 in MODEL-REF. Fig. 20 shows a schematic configuration of MODEL4. The inventors set the physical properties of the dielectric layer 4 in MODEL4 to E = 50 GPa, ρ = 3500 kg/ m3 , and εr = 8. Using MODEL4, the inventors calculated a value of fr1 = 5200 MHz. Therefore, a value of dfr = -0.69% was obtained from equation (4).
 dfrが非零であることは、誘電体層4の付加に伴って弾性波装置の共振周波数が変化することを意味している。具体的には、dfrが負であることは、誘電体層4の付加に伴って当該共振周波数が低下することを意味している。他方、dfrが正であることは、誘電体層4の付加に伴って当該共振周波数が増加することを意味している。 The fact that dfr is non-zero means that the resonant frequency of the elastic wave device changes with the addition of the dielectric layer 4. Specifically, the fact that dfr is negative means that the resonant frequency decreases with the addition of the dielectric layer 4. On the other hand, the fact that dfr is positive means that the resonant frequency increases with the addition of the dielectric layer 4.
 図21は、シミュレーションによって導出された、MODEL-REFおよびMODEL4のそれぞれの位相特性の例を示す。図21に示す通り、MODEL4における位相特性は、MODEL-REFにおける位相特性に対して全般的に低周波側にシフトしている。このことから明らかである通り、MODEL4では、MODEL-REFに対して、共振周波数の低下が生じている。 Figure 21 shows an example of the phase characteristics of MODEL-REF and MODEL-4 derived by simulation. As shown in Figure 21, the phase characteristics of MODEL-4 are generally shifted toward the lower frequency side compared to the phase characteristics of MODEL-REF. As is clear from this, a decrease in the resonant frequency occurs in MODEL-4 compared to MODEL-REF.
 (tとdfrとの関係についての検討)
 発明者は、MODEL4について、tおよび誘電体層材料を様々に変化させ、それぞれの場合についてdfrを導出した。図22は、「圧電体層:LT」における、tとdfrとの関係の例を示すグラフである。当該グラフにおける横軸はtであり、縦軸はdfrである。
(Consideration of the relationship between t and dfr)
The inventors varied t and the dielectric layer material for MODEL 4 and derived dfr for each case. Figure 22 is a graph showing an example of the relationship between t and dfr in "piezoelectric layer: LT". The horizontal axis of the graph is t, and the vertical axis is dfr.
 図22の符号2200Aは、誘電体層材料「ダイヤモンド、AlN、Al、SiO、SiN、Si」のそれぞれにおける、tとdfrとの関係を示すグラフである。図22の符号2200Bは、誘電体層材料「HfO、Ta、TiO、ZrO、LiTaO、LiNbO」のそれぞれにおける、tとdfrとの関係を示すグラフである。図22に示す通り、dfrは、tに依存する。具体的には、dfrは、tの変化に伴って概ね線形的に変化する。dfrは、誘電体層材料にも依存する。 Reference numeral 2200A in FIG. 22 is a graph showing the relationship between t and dfr for each of the dielectric layer materials " diamond, AlN, Al2O3 , SiO2, SiNx, and Si". Reference numeral 2200B in FIG. 22 is a graph showing the relationship between t and dfr for each of the dielectric layer materials "HfO2, Ta2O5 , TiO2 , ZrO2 , LiTaO3 , and LiNbO3 ". As shown in FIG. 22, dfr depends on t. Specifically, dfr changes approximately linearly with the change in t. dfr also depends on the dielectric layer material.
 図23は、「圧電体層:LN」における、tとdfrとの関係の例を示すグラフである。図23は、図22と対になる図である。図23の符号2300Aのグラフにおける誘電体層材料は、上述の符号2200Aにおける例と同じである。図23の符号2300Bのグラフにおける誘電体層材料は、上述の符号2200Bにおける例と同じである。図22および図23から理解できる通り、dfrは圧電体層材料にも依存する。 FIG. 23 is a graph showing an example of the relationship between t and dfr in "piezoelectric layer: LN". FIG. 23 is a paired diagram with FIG. 22. The dielectric layer material in the graph labeled 2300A in FIG. 23 is the same as the example labeled 2200A described above. The dielectric layer material in the graph labeled 2300B in FIG. 23 is the same as the example labeled 2200B described above. As can be seen from FIG. 22 and FIG. 23, dfr also depends on the piezoelectric layer material.
 図22~図23の例において、誘電体層材料として特定の材料を選択し、かつ、特定の膜厚tを選択した場合には、共振周波数がほとんど変わらない(dfr≒0)、または、共振周波数が大きくなる(dfr>0)ことに注目されたい。一般的に、弾性波素子の表面(圧電体層上およびIDT電極上)に誘電体層を設けた場合には、質量付加の効果によって共振周波数は低下する(dfr<0)傾向がある。しかし、発明者は、A1モードを用いた弾性波装置において、IDT電極と圧電体層との間に誘電体層を付与した場合、dfr≒0になるか、むしろdfr>0になることがあることを発見した。すなわち、本開示の一態様に係る弾性波装置は、上述の第1領域R1における共振周波数の低下を防ぐことができる。したがって、例えば、FOM1の悪化が小さく、かつFOM2とFOM3との改善が大きい弾性波装置を提供できる。すなわち、FOMtが大きい弾性波装置を提供できる。 22 to 23, it should be noted that when a specific material is selected as the dielectric layer material and a specific film thickness t is selected, the resonant frequency remains almost unchanged (dfr ≒ 0) or increases (dfr > 0). In general, when a dielectric layer is provided on the surface of an acoustic wave element (on the piezoelectric layer and on the IDT electrode), the resonant frequency tends to decrease (dfr < 0) due to the effect of adding mass. However, the inventors have discovered that in an acoustic wave device using the A1 mode, when a dielectric layer is provided between the IDT electrode and the piezoelectric layer, dfr ≒ 0 or even dfr > 0 may occur. In other words, the acoustic wave device according to one aspect of the present disclosure can prevent the decrease in the resonant frequency in the first region R1 described above. Therefore, for example, an acoustic wave device can be provided in which the deterioration of FOM1 is small and the improvements in FOM2 and FOM3 are large. In other words, an acoustic wave device with a large FOMt can be provided.
 (LTに関するさらなる検討)
 発明者は、「圧電体層:LT」の場合について、ダミー有およびダミー無のそれぞれにおけるdfrとFOMtとの関係を導出した。図24は、発明者によって導出された当該関係の例を示すグラフである。当該グラフにおける横軸はdfrであり、縦軸はFOMtである。図24において、
  ・符号2400A:「圧電体層:LT、t=0.03p、ダミー有」
  ・符号2400B:「圧電体層:LT、t=0.05p、ダミー有」
  ・符号2400C:「圧電体層:LT、t=0.03p、ダミー無」
  ・符号2400D:「圧電体層:LT、t=0.05p、ダミー無」
の場合のグラフを示す。
Further considerations regarding LT
The inventor derived the relationship between dfr and FOMt in the case of "piezoelectric layer: LT" with and without a dummy. Fig. 24 is a graph showing an example of the relationship derived by the inventor. The horizontal axis of the graph is dfr, and the vertical axis is FOMt. In Fig. 24,
Code 2400A: "Piezoelectric layer: LT, t=0.03p, with dummy"
Reference number 2400B: "Piezoelectric layer: LT, t=0.05p, with dummy"
Code 2400C: "Piezoelectric layer: LT, t=0.03p, no dummy"
Code 2400D: "Piezoelectric layer: LT, t=0.05p, no dummy"
The graph shows the case.
 図24に示す通り、FOMtは、dfrに依存する。そして、FOMtは、εrにも依存する。dfrに関する上述の各説明から理解できる通り、dfrが負である場合、FOMtは悪化しうる(例:FOMtが1を下回りうる)。その一方、dfrが大きい正の値を取る場合にも、FOMtは悪化しうる。この場合におけるFOMtの悪化は、VLが大きくなりすぎることに起因している。 As shown in Figure 24, FOMt depends on dfr. And FOMt also depends on εr. As can be understood from the above explanations regarding dfr, when dfr is negative, FOMt may deteriorate (e.g., FOMt may fall below 1). On the other hand, when dfr takes a large positive value, FOMt may also deteriorate. In this case, the deterioration of FOMt is caused by VL becoming too large.
 発明者は、図24に基づき、図25のグラフを導出した。図25は、「圧電体層:LT」の場合における、εrとdfrとの関係の例を示すグラフである。当該グラフにおける横軸はεrであり、縦軸はdfrである。図25において、
  ・符号2500A:「圧電体層:LT、t=0.03p、ダミー有」
  ・符号2500B:「圧電体層:LT、t=0.05p、ダミー有」
  ・符号2500C:「圧電体層:LT、t=0.03p、ダミー無」
  ・符号2500D:「圧電体層:LT、t=0.05p、ダミー無」
の場合のグラフを示す。図25の各グラフでは、実際の誘電体層材料におけるεrとdfrとの組み合わせもプロットされている。
The inventor derived the graph of Fig. 25 based on Fig. 24. Fig. 25 is a graph showing an example of the relationship between εr and dfr in the case of "piezoelectric layer: LT". The horizontal axis of the graph is εr, and the vertical axis is dfr. In Fig. 25,
Code 2500A: "Piezoelectric layer: LT, t=0.03p, with dummy"
Code 2500B: "Piezoelectric layer: LT, t=0.05p, with dummy"
Code 2500C: "Piezoelectric layer: LT, t=0.03p, no dummy"
Code 2500D: "Piezoelectric layer: LT, t=0.05p, no dummy"
In each graph of FIG. 25, a combination of εr and dfr for actual dielectric layer materials is also plotted.
 図25における曲線「FOMt>1 上限」は、あるεrにおいて、FOMt>1が実現されるdfrの上限値を示す。曲線「FOMt>1 下限」は、あるεrにおいて、FOMt>1が実現されるdfrの下限値を示す。曲線「FOMt>1.5 上限」は、あるεrにおいて、FOMt>1.5が実現されるdfrの上限値を示す。曲線「FOMt>1.5 下限」は、あるεrにおいて、FOMt>1.5が実現されるdfrの下限値を示す。 The curve "FOMt>1 upper limit" in Figure 25 shows the upper limit value of dfr at which FOMt>1 is realized at a certain εr. The curve "FOMt>1 lower limit" shows the lower limit value of dfr at which FOMt>1 is realized at a certain εr. The curve "FOMt>1.5 upper limit" shows the upper limit value of dfr at which FOMt>1.5 is realized at a certain εr. The curve "FOMt>1.5 lower limit" shows the lower limit value of dfr at which FOMt>1.5 is realized at a certain εr.
 図25における各曲線は、下記の式(5)、
  dfr=a1×ln(1/εr)+b1  …(5)
によって表される。式(5)におけるlnは、自然対数関数を表す。a1およびb1は、データフィッティングによって決定される係数である。
Each curve in FIG. 25 is expressed by the following formula (5):
dfr=a1×ln(1/εr)+b1 ... (5)
In equation (5), ln represents the natural logarithm function, and a1 and b1 are coefficients determined by data fitting.
 図26は、図25における曲線に対応する各係数の例を示す。図26に示す通り、例えば、符号2500Aのグラフにおける各曲線に対応する係数は、
  ・FOMt>1 上限:a1=0.801、b1=3.137
  ・FOMt>1 下限:a1=0.065、b1=-0.493
  ・FOMt>1.5 上限:a1=0.964、b1=2.846
  ・FOMt>1.5 下限:a1=0.161、b1=-0.058
の通りである。
Fig. 26 shows an example of each coefficient corresponding to the curve in Fig. 25. As shown in Fig. 26, for example, the coefficients corresponding to each curve in the graph with reference numeral 2500A are as follows:
FOMt>1 Upper limit: a1 = 0.801, b1 = 3.137
FOMt>1 Lower limit: a1=0.065, b1=-0.493
FOMt>1.5 Upper limit: a1=0.964, b1=2.846
FOMt>1.5 Lower limit: a1=0.161, b1=-0.058
As stated above.
 (LNに関するさらなる検討)
 続いて、発明者は、「圧電体層:LN」の場合について、ダミー有およびダミー無のそれぞれにおけるdfrとFOMtとの関係を導出した。図27は、発明者によって導出された当該関係の例を示すグラフである。図27は、図24と対になる図である。図27において、
  ・符号2700A:「圧電体層:LN、t=0.03p、ダミー有」
  ・符号2700B:「圧電体層:LN、t=0.05p、ダミー有」
  ・符号2700C:「圧電体層:LN、t=0.03p、ダミー無」
  ・符号2700D:「圧電体層:LN、t=0.05p、ダミー無」
の場合のグラフを示す。
Further Considerations Regarding LN
Next, the inventor derived the relationship between dfr and FOMt in the case of "piezoelectric layer: LN" with and without a dummy. Fig. 27 is a graph showing an example of the relationship derived by the inventor. Fig. 27 is a diagram paired with Fig. 24. In Fig. 27,
Reference number 2700A: "Piezoelectric layer: LN, t=0.03p, with dummy"
Reference number 2700B: "Piezoelectric layer: LN, t=0.05p, with dummy"
Code 2700C: "Piezoelectric layer: LN, t=0.03p, no dummy"
Code 2700D: "Piezoelectric layer: LN, t=0.05p, no dummy"
The graph shows the case.
 発明者は、図27に基づき、図28のグラフを導出した。図28は、「圧電体層:LN」の場合における、εrとdfrとの関係の例を示すグラフである。図28は、図25と対になる図である。図28において、
  ・符号2800A:「圧電体層:LN、t=0.03p、ダミー有」
  ・符号2800B:「圧電体層:LN、t=0.05p、ダミー有」
  ・符号2800C:「圧電体層:LN、t=0.03p、ダミー無」
  ・符号2800D:「圧電体層:LN、t=0.05p、ダミー無」
の場合のグラフを示す。図28における各曲線も、上述の式(5)によって表される。
The inventor derived the graph of Fig. 28 based on Fig. 27. Fig. 28 is a graph showing an example of the relationship between εr and dfr in the case of "piezoelectric layer: LN". Fig. 28 is a diagram paired with Fig. 25. In Fig. 28,
Code 2800A: "Piezoelectric layer: LN, t=0.03p, with dummy"
Reference number 2800B: "Piezoelectric layer: LN, t=0.05p, with dummy"
Code 2800C: "Piezoelectric layer: LN, t=0.03p, no dummy"
Code 2800D: "Piezoelectric layer: LN, t=0.05p, no dummy"
28 shows a graph for the case where each curve in FIG. 28 is also expressed by the above-mentioned formula (5).
 図29は、図28における各曲線に対応する各係数の例を示す。図29に示す通り、例えば、符号2800Aのグラフにおける各曲線に対応する係数は、
  ・FOMt>1 上限:a1=1.515、b1=5.824
  ・FOMt>1 下限:a1=0.612、b1=1.012
  ・FOMt>1.5 上限:a1=1.751、b1=5.562
  ・FOMt>1.5 下限:a1=0.671、b1=1.389
の通りである。
Fig. 29 shows an example of coefficients corresponding to the curves in Fig. 28. As shown in Fig. 29, for example, the coefficients corresponding to the curves in the graph with reference numeral 2800A are as follows:
FOMt>1 Upper limit: a1=1.515, b1=5.824
FOMt>1 Lower limit: a1=0.612, b1=1.012
FOMt>1.5 Upper limit: a1=1.751, b1=5.562
FOMt>1.5 Lower limit: a1=0.671, b1=1.389
As stated above.
 (誘電体層材料についての考察)
 FOMt>1であれば、誘電体層4の付加に伴い弾性波装置の周波数特性が改善する。したがって、例えば、図25および図28のグラフにおいて、曲線「FOMt>1 下限」と「FOMt>1 上限」との間に位置する誘電体層材料を用いることにより、当該周波数特性を改善できる。さらに、曲線「FOMt>1.5 下限」と「FOMt>1.5 上限」との間に位置する誘電体層材料を用いることにより、当該周波数特性をより一層改善できる。
(Considerations regarding dielectric layer materials)
If FOMt>1, the frequency characteristics of the elastic wave device are improved by adding the dielectric layer 4. Therefore, for example, the frequency characteristics can be improved by using a dielectric layer material that falls between the curves "FOMt>1 lower limit" and "FOMt>1 upper limit" in the graphs of Figures 25 and 28. Furthermore, the frequency characteristics can be further improved by using a dielectric layer material that falls between the curves "FOMt>1.5 lower limit" and "FOMt>1.5 upper limit."
 図25および図28に示す通り、-1%~2%の範囲のdfrは、曲線「FOMt>1 下限」と「FOMt>1 上限」との間に概ね位置している。このことから、本開示の一態様に係る弾性波装置において、dfrは、-1%~2%であってよい。dfrが当該範囲に属するように弾性波装置を設計することにより、当該弾性波装置の周波数特性を改善できると期待される。 As shown in Figures 25 and 28, a dfr in the range of -1% to 2% is generally located between the curves "FOMt>1 lower limit" and "FOMt>1 upper limit". For this reason, in an elastic wave device according to one aspect of the present disclosure, the dfr may be -1% to 2%. By designing an elastic wave device so that the dfr falls within this range, it is expected that the frequency characteristics of the elastic wave device can be improved.
 さらに、図25および図28のグラフに示す通り、εrの増加に伴って、dfrが低下する傾向が見出された。このことから、例えば、εrは、20未満であってよい。そして、例えば、dfrは、-0.2%以上であってよい。この場合、誘電体層4の付加に伴う弾性波装置の共振周波数の低下は、周波数特性にそれほど悪影響を及ぼさない。別の例として、dfrは、0%以上であってもよい。この場合、誘電体層4の付加に伴う共振周波数の低下が生じない。さらに別の例として、dfrは、0%より大きくともよい。この場合、誘電体層4の付加に伴い、共振周波数が増加する。 Furthermore, as shown in the graphs of Figures 25 and 28, a tendency was found for dfr to decrease with an increase in εr. For this reason, εr may be less than 20, for example. And dfr may be -0.2% or more, for example. In this case, the decrease in the resonant frequency of the elastic wave device due to the addition of the dielectric layer 4 does not have a significant adverse effect on the frequency characteristics. As another example, dfr may be 0% or more. In this case, there is no decrease in the resonant frequency due to the addition of the dielectric layer 4. As yet another example, dfr may be greater than 0%. In this case, the resonant frequency increases with the addition of the dielectric layer 4.
 誘電体層材料の主要な候補としては、Al、AlN、SiN、Si、およびSiOを挙げることができる。これらの材料は、図25および図28のグラフにおいて、曲線「FOMt>1 下限」と「FOMt>1 上限」との間に概ね位置しているためである。したがって、誘電体層4は、Al、AlN、SiN、Si、およびSiOのうちの少なくとも1つを材料として含んでいてよい。別の例として、誘電体層4は、Al、AlN、SiN、およびSiのうちの少なくとも1つを材料として含んでいてもよい。 Major candidates for the dielectric layer material include Al 2 O 3 , AlN, SiN x , Si, and SiO 2. These materials are generally located between the curves "FOMt>1 lower limit" and "FOMt>1 upper limit" in the graphs of Figures 25 and 28. Therefore, the dielectric layer 4 may include at least one of Al 2 O 3 , AlN, SiN x , Si, and SiO 2 as a material. As another example, the dielectric layer 4 may include at least one of Al 2 O 3 , AlN, SiN x , and Si as a material.
 ところで、図25および図28のグラフにおいて、Ta、ZrO、およびHfOは、曲線「FOMt>1 下限」の下側に位置している。その一方、ダイヤモンドは、曲線「FOMt>1 上限」の上側に位置している。このことから、誘電体層4は、Ta、ZrO、HfO、およびダイヤモンドのいずれをも主成分として含んでいなくともよい。その替わり、例えば、誘電体層4は、Al、AlN、SiN、Si、およびSiOのうちの少なくとも1つを主成分として含んでいてよい。別の例として、誘電体層4は、Al、AlN、SiN、およびSiのうちの少なくとも1つを主成分として含んでいてもよい。 By the way, in the graphs of FIG. 25 and FIG. 28, Ta 2 O 5 , ZrO 2 , and HfO 2 are located below the curve "FOMt>1 lower limit". On the other hand, diamond is located above the curve "FOMt>1 upper limit". From this, the dielectric layer 4 does not have to contain any of Ta 2 O 5 , ZrO 2 , HfO 2 , and diamond as a main component. Instead, for example, the dielectric layer 4 may contain at least one of Al 2 O 3 , AlN, SiN x , Si, and SiO 2 as a main component. As another example, the dielectric layer 4 may contain at least one of Al 2 O 3 , AlN, SiN x , and Si as a main component.
 本明細書において、「誘電体層4が材料Xを主成分として含む」とは、例えば「誘電体層4における材料Xの含有率が50%以上である」ことを意味すると理解されてよい。ただし、主成分の定義は、上記の例に必ずしも限定されないことに留意されたい。 In this specification, "dielectric layer 4 contains material X as a main component" may be understood to mean, for example, that "the content of material X in dielectric layer 4 is 50% or more." However, it should be noted that the definition of the main component is not necessarily limited to the above example.
 (様々な誘電体層材料におけるdfrの数値例)
 発明者は、様々な誘電体層材料の実際の物性値を用いて、様々な設計条件におけるdfrを算出した。図30は、発明者によって算出されたdfrの例を示す。図30における下側の4つの例から理解できる通り、誘電体層4は、互いに異なる音速を有する第1誘電体層と第2誘電体層とを含んでいてよい。
(Numerical examples of dfr for various dielectric layer materials)
The inventors calculated dfr under various design conditions using actual physical properties of various dielectric layer materials. Figure 30 shows examples of dfr calculated by the inventors. As can be seen from the four examples on the bottom side of Figure 30, the dielectric layer 4 may include a first dielectric layer and a second dielectric layer having different sound velocities.
 図30において、例えば、「Al/SiO」という表記は、第1誘電体層がAl層であり、かつ、第2誘電体層がSiO層であるという2層構造を表す。図30におけるtは、誘電体層4が1層構造である場合には、誘電体層4の全厚を表す。その一方、図30におけるtは、誘電体層4が2層構造である場合には、1層目(第1誘電体層)の厚みを表す。図30の例における第2誘電体層の厚みは、0.005pである。本明細書では、2層構造の誘電体層4の全厚(すなわち、第1誘電体層の厚みと第2誘電体層の厚みとの和)を、ttとも表記する。図30の例では、tt=t+0.005pである。したがって、ttは0.035pまたは0.055pである。図30の例におけるこれらの事項は、以降の各図においても当てはまる。 In FIG. 30, for example, the notation "Al 2 O 3 /SiO 2 " represents a two-layer structure in which the first dielectric layer is an Al 2 O 3 layer and the second dielectric layer is an SiO 2 layer. t in FIG. 30 represents the total thickness of the dielectric layer 4 when the dielectric layer 4 is a one-layer structure. On the other hand, t in FIG. 30 represents the thickness of the first layer (first dielectric layer) when the dielectric layer 4 is a two-layer structure. The thickness of the second dielectric layer in the example of FIG. 30 is 0.005p. In this specification, the total thickness of the dielectric layer 4 of the two-layer structure (i.e., the sum of the thickness of the first dielectric layer and the thickness of the second dielectric layer) is also represented as tt. In the example of FIG. 30, tt = t + 0.005p. Therefore, tt is 0.035p or 0.055p. These matters in the example of FIG. 30 also apply to each of the following figures.
 第1誘電体層の材料および第2誘電体層の材料を適切に選定することにより、所望の音速を有する誘電体層4を実現できる。一例として、第1誘電体層の材料は、比較的高い音速を有する材料であってよい。このため、例えば、第1誘電体層は、Al、AlN、SiN、Si、およびSiOのうちの少なくとも1つを主成分として含んでいてよい。別の例として、第1誘電体層は、Al、AlN、SiN、およびSiのうちの少なくとも1つを主成分として含んでいてもよい。 By appropriately selecting the material of the first dielectric layer and the material of the second dielectric layer, the dielectric layer 4 having a desired sound velocity can be realized. As an example, the material of the first dielectric layer may be a material having a relatively high sound velocity. For example, the first dielectric layer may contain at least one of Al 2 O 3 , AlN, SiN x , Si, and SiO 2 as a main component. As another example, the first dielectric layer may contain at least one of Al 2 O 3 , AlN, SiN x , and Si as a main component.
 その一方、第2誘電体層の材料は、比較的低い音速を有する材料であってよい。このため、例えば、第2誘電体層は、Ta2O、ZrO、およびHfOうちの少なくとも1つを主成分として含んでいてよい。また、図30に示す通り、第2誘電体層は、SiOを主成分として含んでいてもよい。 On the other hand, the material of the second dielectric layer may be a material having a relatively low sound velocity. For example, the second dielectric layer may contain at least one of Ta2O5 , ZrO2 , and HfO2 as a main component. Also, as shown in FIG. 30, the second dielectric layer may contain SiO2 as a main component.
 第1誘電体層の厚みおよび第2誘電体層の厚みを適切に設定することにより、所望の音速を有する誘電体層4を実現することもできる。一例として、第1誘電体層が主要な層であり、第2誘電体層が副次的な層であるように、2層構造が設計されてよい。このことから、例えば、tは、ttの50%以上であってよい。図30の各例は、この条件を満たしている。 By appropriately setting the thickness of the first dielectric layer and the thickness of the second dielectric layer, it is also possible to realize a dielectric layer 4 having a desired sound speed. As an example, a two-layer structure may be designed in which the first dielectric layer is the primary layer and the second dielectric layer is the secondary layer. Thus, for example, t may be 50% or more of tt. Each example in Figure 30 satisfies this condition.
 (様々な誘電体層材料におけるFOMtの数値例)
 続いて、発明者は、様々な誘電体層材料の実際の物性値を用いて、様々な設計条件におけるFOMtを算出した。図31は、発明者によって算出されたFOMtの例を示す。図31において、「FOMt>1」を満たす設計条件を適用することにより、誘電体層4の付加に伴い弾性波装置の周波数特性が改善する。そして、「FOMt>1.5」を満たす設計条件を適用することにより、当該周波数特性をより一層改善できる。
(Numerical examples of FOMt for various dielectric layer materials)
Next, the inventors calculated FOMt under various design conditions using actual physical property values of various dielectric layer materials. Fig. 31 shows examples of FOMt calculated by the inventors. In Fig. 31, by applying a design condition that satisfies "FOMt>1", the frequency characteristics of the elastic wave device are improved with the addition of dielectric layer 4. Furthermore, by applying a design condition that satisfies "FOMt>1.5", the frequency characteristics can be further improved.
 上述の通り、1層構造または2層構造の誘電体層4における誘電体層材料の選定によって、dfrを制御できる。加えて、第1誘電体層の厚み、第2誘電体層の厚み、および、IDT電極3の厚みの制御により、dfrを制御することもできる。そして、電極指32の先端におけるDutyを変化させることにより、dfrを制御することもできる。また、電極指32の先端における厚みを変化させることにより、dfrを制御することもできる。 As described above, dfr can be controlled by selecting the dielectric layer material in the one-layer or two-layer dielectric layer 4. In addition, dfr can also be controlled by controlling the thickness of the first dielectric layer, the thickness of the second dielectric layer, and the thickness of the IDT electrode 3. And, dfr can also be controlled by changing the duty at the tip of the electrode finger 32. Also, dfr can also be controlled by changing the thickness at the tip of the electrode finger 32.
 〔実施形態2〕
 図32は、実施形態2の弾性波装置1Mの積層構造を模式的に示す。図32は、図2と対になる図である。図32における弾性波装置1Mは、メンブレンタイプの弾性波装置の一例である。実施形態2では、メンブレンタイプの弾性波装置に対する発明者の検討結果について述べる。
[Embodiment 2]
Fig. 32 is a schematic diagram illustrating a layered structure of an elastic wave device 1M according to a second embodiment. Fig. 32 is a paired view with Fig. 2. The elastic wave device 1M in Fig. 32 is an example of a membrane-type elastic wave device. In the second embodiment, the results of studies by the inventors on membrane-type elastic wave devices will be described.
 図32に示す通り、弾性波装置1Mは、多層反射膜5を有していなくともよい。そして、弾性波装置1Mは、支持基板6に替えて、支持基板6Mを有していてよい。弾性波装置1Mは、圧電体層2と支持基板6Mとによって囲まれた中空部MAを有していてよい。言い換えれば、弾性波装置1Mは、中空部MAによって規定されるメンブレン構造を有していてよい。 As shown in FIG. 32, the elastic wave device 1M does not have to have a multilayer reflective film 5. Furthermore, the elastic wave device 1M may have a support substrate 6M instead of the support substrate 6. The elastic wave device 1M may have a hollow portion MA surrounded by the piezoelectric layer 2 and the support substrate 6M. In other words, the elastic wave device 1M may have a membrane structure defined by the hollow portion MA.
 実施形態2において、発明者は、弾性波装置1Mの周波数特性を検討するために、シミュレーションモデルMODEL-REFM、MODEL1M、およびMODEL2Mを構築した。MODEL-REFMは、実施形態2における「誘電体層:無」の例である。MODEL1Mは、実施形態2における「誘電体層:有、ダミー有」の例である。MODEL2Mは、実施形態2における「誘電体層:有、ダミー無」の例である。 In embodiment 2, the inventors constructed simulation models MODEL-REFM, MODEL1M, and MODEL2M to study the frequency characteristics of elastic wave device 1M. MODEL-REFM is an example of embodiment 2 with "dielectric layer: no". MODEL1M is an example of embodiment 2 with "dielectric layer: with, dummy with". MODEL2M is an example of embodiment 2 with "dielectric layer: with, dummy without".
 発明者は、実施形態2におけるシミュレーション条件を、
  ・LT層:121°YカットX伝搬のLT(ta=0.41p)
  ・LN層:125°YカットX伝搬のLN(ta=0.41p)
  ・IDT電極:Al(厚み:0.13p)
の通り設定した。そして、発明者は、
  ・「圧電体層:LT」におけるDuty:0.55
  ・「圧電体層:LN」におけるDuty:0.60
と設定した。
The inventors set the simulation conditions in the second embodiment as follows:
LT layer: 121° Y-cut X-propagating LT (ta=0.41p)
LN layer: 125° Y-cut X-propagating LN (ta=0.41p)
IDT electrode: Al (thickness: 0.13p)
The inventor then set the following:
Duty in "piezoelectric layer: LT": 0.55
Duty in "Piezoelectric layer: LN": 0.60
It was set as follows.
 (実施形態2におけるシミュレーションによる検討)
 発明者は、実施形態2においても、実施形態1と同様の検討を行った。まず、図33および図34に示す通り、発明者は、MODEL-REFM(誘電体層:無)を用いて、「圧電体層:LT」および「圧電体層:LN」のそれぞれの場合における周波数特性を導出した。図33は、「圧電体層:LT、誘電体層:無」における周波数特性の例を示す。図33における符号3300Aはインピーダンス特性を示し、符号3300Bは位相特性を示す。図34は、「圧電体層:LN、誘電体層:無」における周波数特性の例を示す。図34における符号3400Aはインピーダンス特性を示し、符号3400Bは位相特性を示す。
(Study by simulation in the second embodiment)
The inventors conducted the same study on the second embodiment as on the first embodiment. First, as shown in Figs. 33 and 34, the inventors derived frequency characteristics in the cases of "piezoelectric layer: LT" and "piezoelectric layer: LN" using MODEL-REFM (dielectric layer: absent). Fig. 33 shows an example of frequency characteristics in the case of "piezoelectric layer: LT, dielectric layer: absent". In Fig. 33, reference numeral 3300A indicates impedance characteristics, and reference numeral 3300B indicates phase characteristics. Fig. 34 shows an example of frequency characteristics in the case of "piezoelectric layer: LN, dielectric layer: absent". In Fig. 34, reference numeral 3400A indicates impedance characteristics, and reference numeral 3400B indicates phase characteristics.
 続いて、発明者は、MODEL1MおよびMODEL2Mを用いて、さらなる検討を行った。図35に示す通り、発明者は、「圧電体層:LT」の場合について、VLとFOM2との関係を導出した。図35において、
  ・符号3500A:「圧電体層:LT、t=0.03p、ダミー有」
  ・符号3500B:「圧電体層:LT、t=0.05p、ダミー有」
  ・符号3500C:「圧電体層:LT、t=0.03p、ダミー無」
  ・符号3500D:「圧電体層:LT、t=0.05p、ダミー無」
の場合のグラフを示す。
Next, the inventors conducted further studies using MODEL1M and MODEL2M. As shown in Fig. 35, the inventors derived the relationship between VL and FOM2 for the case of "piezoelectric layer: LT".
Reference number 3500A: "Piezoelectric layer: LT, t=0.03p, with dummy"
Reference number 3500B: "Piezoelectric layer: LT, t=0.05p, with dummy"
Code 3500C: "Piezoelectric layer: LT, t=0.03p, no dummy"
Reference number 3500D: "Piezoelectric layer: LT, t=0.05p, no dummy"
The graph shows the case.
 そして、図36に示す通り、発明者は、「圧電体層:LN」の場合について、VLとFOM2との関係を導出した。図36において、
  ・符号3600A:「圧電体層:LN、t=0.03p、ダミー有」
  ・符号3600B:「圧電体層:LN、t=0.05p、ダミー有」
  ・符号3600C:「圧電体層:LN、t=0.03p、ダミー無」
  ・符号3600D:「圧電体層:LN、t=0.05p、ダミー無」
の場合のグラフを示す。
As shown in Fig. 36, the inventor derived the relationship between VL and FOM2 in the case of "piezoelectric layer: LN".
Reference number 3600A: "Piezoelectric layer: LN, t=0.03p, with dummy"
Reference number 3600B: "Piezoelectric layer: LN, t=0.05p, with dummy"
Reference number 3600C: "Piezoelectric layer: LN, t=0.03p, no dummy"
Reference number 3600D: "Piezoelectric layer: LN, t=0.05p, no dummy"
The graph shows the case.
 続いて、図37に示す通り、発明者は、「圧電体層:LT」の場合について、dfrとFOMtとの関係を導出した。図37において、
  ・符号3700A:「圧電体層:LT、t=0.03p、ダミー有」
  ・符号3700B:「圧電体層:LT、t=0.05p、ダミー有」
  ・符号3700C:「圧電体層:LT、t=0.03p、ダミー無」
  ・符号3700D:「圧電体層:LT、t=0.05p、ダミー無」
の場合のグラフを示す。
Next, as shown in FIG. 37, the inventor derived the relationship between dfr and FOMt in the case of "piezoelectric layer: LT". In FIG. 37,
Reference number 3700A: "Piezoelectric layer: LT, t=0.03p, with dummy"
Reference number 3700B: "Piezoelectric layer: LT, t=0.05p, with dummy"
Reference number 3700C: "Piezoelectric layer: LT, t=0.03p, no dummy"
Reference number 3700D: "Piezoelectric layer: LT, t=0.05p, no dummy"
The graph shows the case.
 そして、図38に示す通り、発明者は、「圧電体層:LT」の場合について、εrとdfrとの関係を導出した。図38において、
  ・符号3800A:「圧電体層:LT、t=0.03p、ダミー有」
  ・符号3800B:「圧電体層:LT、t=0.05p、ダミー有」
  ・符号3800C:「圧電体層:LT、t=0.03p、ダミー無」
  ・符号3800D:「圧電体層:LT、t=0.05p、ダミー無」
の場合のグラフを示す。図38における各曲線も、上述の式(5)によって表される。
As shown in FIG. 38, the inventor derived the relationship between εr and dfr in the case of "piezoelectric layer: LT".
Reference number 3800A: "Piezoelectric layer: LT, t=0.03p, with dummy"
Reference number 3800B: "Piezoelectric layer: LT, t=0.05p, with dummy"
Code 3800C: "Piezoelectric layer: LT, t=0.03p, no dummy"
Code 3800D: "Piezoelectric layer: LT, t=0.05p, no dummy"
Each curve in FIG. 38 is also expressed by the above-mentioned formula (5).
 図39は、図38における各曲線に対応する各係数の例を示す。図39に示す通り、例えば、符号3800Aのグラフにおける各曲線に対応する係数は、
  ・FOMt>1 上限:a1=0.979、b1=3.783
  ・FOMt>1 下限:a1=0.097、b1=-0.689
  ・FOMt>1.5 上限:a1=0.954、b1=3.499
  ・FOMt>1.5 下限:a1=0.065、b1=-0.593
の通りである。
Fig. 39 shows an example of each coefficient corresponding to each curve in Fig. 38. As shown in Fig. 39, for example, the coefficients corresponding to each curve in the graph with reference numeral 3800A are as follows:
FOMt>1 Upper limit: a1=0.979, b1=3.783
FOMt>1 Lower limit: a1 = 0.097, b1 = -0.689
FOMt>1.5 Upper limit: a1=0.954, b1=3.499
FOMt>1.5 Lower limit: a1=0.065, b1=-0.593
As stated above.
 続いて、図40に示す通り、発明者は、「圧電体層:LN」の場合について、dfrとFOMtとの関係を導出した。図40において、
  ・符号4000A:「圧電体層:LN、t=0.03p、ダミー有」
  ・符号4000B:「圧電体層:LN、t=0.05p、ダミー有」
  ・符号4000C:「圧電体層:LN、t=0.03p、ダミー無」
  ・符号4000D:「圧電体層:LN、t=0.05p、ダミー無」
の場合のグラフを示す。
Next, as shown in Fig. 40, the inventor derived the relationship between dfr and FOMt in the case of "piezoelectric layer: LN".
Code 4000A: "Piezoelectric layer: LN, t=0.03p, with dummy"
Code 4000B: "Piezoelectric layer: LN, t=0.05p, with dummy"
Code 4000C: "Piezoelectric layer: LN, t=0.03p, no dummy"
Code 4000D: "Piezoelectric layer: LN, t=0.05p, no dummy"
The graph shows the case.
 そして、図41に示す通り、発明者は、「圧電体層:LN」の場合について、εrとdfrとの関係を導出した。図41において、
  ・符号4100A:「圧電体層:LN、t=0.03p、ダミー有」
  ・符号4100B:「圧電体層:LN、t=0.05p、ダミー有」
  ・符号4100C:「圧電体層:LN、t=0.03p、ダミー無」
  ・符号4100D:「圧電体層:LN、t=0.05p、ダミー無」
の場合のグラフを示す。図41における各曲線も、上述の式(5)によって表される。
As shown in FIG. 41, the inventor derived the relationship between εr and dfr in the case of "piezoelectric layer: LN".
Reference number 4100A: "Piezoelectric layer: LN, t=0.03p, with dummy"
Reference number 4100B: "Piezoelectric layer: LN, t=0.05p, with dummy"
Reference number 4100C: "Piezoelectric layer: LN, t=0.03p, no dummy"
Reference number 4100D: "Piezoelectric layer: LN, t=0.05p, no dummy"
41 shows a graph for the case where each curve in FIG. 41 is also expressed by the above-mentioned formula (5).
 図42は、図41おける各曲線に対応する各係数の例を示す。図42に示す通り、例えば、符号4100Aのグラフにおける各曲線に対応する係数は、
  ・FOMt>1 上限:a1=1.164、b1=4.181
  ・FOMt>1 下限:a1=0.239、b1=-0.724
  ・FOMt>1.5 上限:a1=1.143、b1=4.039
  ・FOMt>1.5 下限:a1=0.239、b1=-0.624
の通りである。
Fig. 42 shows an example of each coefficient corresponding to each curve in Fig. 41. As shown in Fig. 42, for example, the coefficients corresponding to each curve in the graph of reference numeral 4100A are as follows:
FOMt>1 Upper limit: a1=1.164, b1=4.181
FOMt>1 Lower limit: a1 = 0.239, b1 = -0.724
FOMt>1.5 Upper limit: a1=1.143, b1=4.039
FOMt>1.5 Lower limit: a1=0.239, b1=-0.624
As stated above.
 発明者は、実施形態2においても、様々な誘電体層材料の実際の物性値を用いて、様々な設計条件におけるdfrを算出した。図43は、実施形態2において発明者によって算出されたdfrの例を示す。以上の各説明から理解できる通り、実施形態2の各シミュレーションにおいても、実施形態1と概ね同様の傾向が確認された。このことから明らかである通り、本開示の一態様に係る弾性波装置は、メンブレンタイプの弾性波装置(例:弾性波装置1M)であってもよい。
 〔実施形態3〕
In the second embodiment, the inventors calculated dfr under various design conditions using actual physical property values of various dielectric layer materials. Fig. 43 shows an example of dfr calculated by the inventors in the second embodiment. As can be understood from the above descriptions, the simulations of the second embodiment also showed roughly the same trends as those of the first embodiment. As is clear from this, an elastic wave device according to one aspect of the present disclosure may be a membrane-type elastic wave device (e.g., elastic wave device 1M).
[Embodiment 3]
 発明者は、非メンブレンタイプの弾性波装置(例:実施形態1の弾性波装置1)の設計条件について、シミュレーションによるさらなる検討を行った。実施形態3および4では、当該検討の結果について述べる。実施形態3では、「圧電体層:LT」の場合における検討結果について述べる。 The inventors have further investigated the design conditions of a non-membrane type elastic wave device (e.g., elastic wave device 1 of embodiment 1) through simulation. The results of the investigation are described in embodiments 3 and 4. In embodiment 3, the results of the investigation in the case of "piezoelectric layer: LT" are described.
 実施形態3におけるシミュレーション条件は、下記の通りである。
 圧電体層2
  ・材料:LT
  ・方位:(Φ,θ,ψ)=(0°,24°,0°)
  ・厚み(ta):0.4μm
 支持基板6
  ・材料:Si
  ・方位:(Φ,θ,ψ)=(-45°,-54.7°,0°)
 多層反射膜5
  ・低音響インピーダンス層5aの材料:SiO
  ・低音響インピーダンス層5aの厚み:0.19μm
  ・高音響インピーダンス層5bの材料:HfO
  ・高音響インピーダンス層5bの厚み:0.166μm
 IDT電極3
  ・材料:Al
  ・厚み:0.13μm
  ・ダミー電極指の長さ(ddm):4μm
  ・ギャップ長:0.4μm
  ・交差幅:23μm
  ・第1オーバーラップ長(dov):1μm
The simulation conditions in the third embodiment are as follows.
Piezoelectric layer 2
Material: LT
Orientation: (Φ, θ, ψ) = (0°, 24°, 0°)
Thickness (ta): 0.4 μm
Support substrate 6
Material: Si
Orientation: (Φ, θ, ψ) = (-45°, -54.7°, 0°)
Multilayer reflective film 5
Material of low acoustic impedance layer 5a: SiO2
Thickness of low acoustic impedance layer 5a: 0.19 μm
Material of high acoustic impedance layer 5b: HfO2
Thickness of high acoustic impedance layer 5b: 0.166 μm
IDT electrode 3
Material: Aluminum
Thickness: 0.13 μm
Length of dummy electrode finger (ddm): 4 μm
Gap length: 0.4 μm
Intersection width: 23 μm
First overlap length (dov): 1 μm
 発明者は、上記シミュレーション条件の下で、実施形態3において下記の弾性波装置(共振子)タイプ1~4を設定した。
 弾性波装置タイプ1
  ・ピッチ(p):1.0438μm
  ・Duty:0.4
 弾性波装置タイプ2
  ・ピッチ:1.1085μm
  ・Duty:0.45
 弾性波装置タイプ3
  ・ピッチ:1.1924μm
  ・Duty:0.6
 弾性波装置タイプ4
  ・ピッチ:1.2231μm
  ・Duty:0.6
Under the above simulation conditions, the inventors set the following acoustic wave devices (resonators) Types 1 to 4 in the third embodiment.
Elastic wave device type 1
Pitch (p): 1.0438 μm
Duty: 0.4
Elastic wave device type 2
Pitch: 1.1085 μm
Duty: 0.45
Elastic wave device type 3
Pitch: 1.1924 μm
Duty: 0.6
Elastic Wave Device Type 4
Pitch: 1.2231 μm
Duty: 0.6
 発明者は、誘電体層材料および誘電体層4の厚み(t)を様々に変化させ、それぞれの場合について、弾性波装置タイプ1~4におけるdfrとFOMtとの関係を導出した。具体的には、発明者は、誘電体層材料を「AlN、SiO、HfO、Ta、ZrO、ダイヤモンド、Al、SiN、およびTiO」の内から選択するとともに、tを「0.01μm、0.03μm、0.05μm、および0.07μm」の内から選択し、上記関係を導出した。 The inventors varied the dielectric layer material and the thickness (t) of the dielectric layer 4, and derived the relationship between dfr and FOMt for each of the acoustic wave device types 1 to 4. Specifically, the inventors selected the dielectric layer material from among "AlN, SiO 2 , HfO 2 , Ta 2 O 5 , ZrO 2 , diamond, Al 2 O 3 , SiN x , and TiO 2 " and selected t from among "0.01 μm, 0.03 μm, 0.05 μm, and 0.07 μm" to derive the above relationship.
 図44は、実施形態3におけるdfrとFOMtとの関係の例を示す。図44における符号4400A~4400Dはそれぞれ、弾性波装置タイプ1~4についてのグラフを示す。図44の点線丸囲み部に示す通り、弾性波装置タイプ1~4のいずれにおいても、dfr=0の近傍においてFOMtが特に大きくなることが確認された。それゆえ、dfr≒0に設定することにより、弾性波装置の周波数特性をより一層改善できる。 FIG. 44 shows an example of the relationship between dfr and FOMt in embodiment 3. Reference characters 4400A to 4400D in FIG. 44 indicate graphs for elastic wave device types 1 to 4, respectively. As shown in the dotted circled areas in FIG. 44, it was confirmed that in all of elastic wave device types 1 to 4, FOMt becomes particularly large near dfr = 0. Therefore, by setting dfr ≒ 0, the frequency characteristics of the elastic wave device can be further improved.
 さらに、図44に示す通り、誘電体層材料がSiO、AlN、SiN、Al、およびTiOの場合に、FOMtが大きくなることが確認された。実施形態3では、誘電体層材料がSiOおよびSiNの場合に、FOMtが特に大きくなることが確認された。それゆえ、実施形態3では、誘電体層材料としてSiOまたはSiNを用いることにより、弾性波装置の周波数特性をより一層改善できる。 44, it was confirmed that the FOMt was large when the dielectric layer materials were SiO2 , AlN, SiNx , Al2O3 , and TiO2 . In the third embodiment, it was confirmed that the FOMt was particularly large when the dielectric layer materials were SiO2 and SiNx . Therefore, in the third embodiment, the frequency characteristics of the elastic wave device can be further improved by using SiO2 or SiNx as the dielectric layer material.
 続いて、発明者は、図44の点線丸囲み部に属する誘電体層材料とtとの組み合わせについて、弾性波装置タイプ1~4の位相特性を導出した。図45は、実施形態3における位相特性の例を示す。図45における符号4500A~4500Dはそれぞれ、弾性波装置タイプ1~4についてのグラフを示す。符号4500A~4500Dのそれぞれでは、位相90°付近の領域を拡大したグラフも合わせて示されている。図45における凡例「Ref」は、上述のMODEL-REFを表す。したがって、図45における「Ref」では、t=0である。 The inventors then derived the phase characteristics of elastic wave device types 1 to 4 for combinations of dielectric layer materials and t that belong to the dotted circled area in Figure 44. Figure 45 shows examples of phase characteristics in embodiment 3. References 4500A to 4500D in Figure 45 show graphs for elastic wave device types 1 to 4, respectively. For each of references 4500A to 4500D, a graph enlarging the area near a phase of 90° is also shown. The legend "Ref" in Figure 45 represents the above-mentioned MODEL-REF. Therefore, for "Ref" in Figure 45, t=0.
 図45に示す通り、誘電体層材料がSiOであり、かつ、t=0.03μmの場合に、弾性波装置タイプ1~4の全てにおいて良好な位相特性が得られた。また、誘電体層材料がAlN、AlO3、およびSiNの場合にも、概ね良好な位相特性が得られた。
 〔実施形態4〕
45, when the dielectric layer material was SiO2 and t = 0.03 μm, good phase characteristics were obtained in all of acoustic wave device types 1 to 4. Also, when the dielectric layer material was AlN, Al2O3 , or SiNx , good phase characteristics were generally obtained.
[Embodiment 4]
 実施形態4では、「圧電体層:LN」の場合における検討結果について述べる。実施形態4におけるシミュレーション条件は、下記の通りである。
 圧電体層2
  ・材料:LN
  ・方位:(Φ,θ,ψ)=(0°,15°,0°)
  ・厚み(ta):0.376μm
 支持基板6
  ・材料:Si
  ・方位:(Φ,θ,ψ)=(-45°,-54.7°,0°)
 多層反射膜5
  ・低音響インピーダンス層5aの材料:SiO
  ・低音響インピーダンス層5aの厚み:0.19μm
  ・高音響インピーダンス層5bの材料:HfO
  ・高音響インピーダンス層5bの厚み:0.166μm
 IDT電極3
  ・材料:Al
  ・厚み:0.11μm
  ・ダミー電極指の長さ(ddm):4μm
  ・ギャップ長:0.4μm
  ・交差幅:23μm
  ・第1オーバーラップ長(dov)=1μm
In the fourth embodiment, the results of the study on the case where the piezoelectric layer is LN will be described. The simulation conditions in the fourth embodiment are as follows.
Piezoelectric layer 2
Material: LN
Orientation: (Φ, θ, ψ) = (0°, 15°, 0°)
Thickness (ta): 0.376 μm
Support substrate 6
Material: Si
Orientation: (Φ, θ, ψ) = (-45°, -54.7°, 0°)
Multilayer reflective film 5
Material of low acoustic impedance layer 5a: SiO2
Thickness of low acoustic impedance layer 5a: 0.19 μm
Material of high acoustic impedance layer 5b: HfO2
Thickness of high acoustic impedance layer 5b: 0.166 μm
IDT electrode 3
Material: Aluminum
Thickness: 0.11 μm
Length of dummy electrode finger (ddm): 4 μm
Gap length: 0.4 μm
Intersection width: 23 μm
First overlap length (dov) = 1 μm
 実施形態4において、発明者は、上記シミュレーション条件の下で、下記の弾性波装置タイプ1~4を設定した。
 弾性波装置タイプ1
  ・ピッチ(p):0.9411μm
  ・Duty:0.55
 弾性波装置タイプ2
  ・ピッチ:0.9876μm
  ・Duty:0.55
 弾性波装置タイプ3
  ・ピッチ:1.3096μm
  ・Duty:0.45
 弾性波装置タイプ4
  ピッチ:1.3449μm
  Duty:0.45
In the fourth embodiment, the inventors set the following acoustic wave device types 1 to 4 under the above simulation conditions.
Elastic wave device type 1
Pitch (p): 0.9411 μm
Duty: 0.55
Elastic wave device type 2
Pitch: 0.9876 μm
Duty: 0.55
Elastic wave device type 3
Pitch: 1.3096 μm
Duty: 0.45
Elastic Wave Device Type 4
Pitch: 1.3449 μm
Duty: 0.45
 発明者は、実施形態3と同じ誘電体層材料とtとの組み合わせに対して、実施形態4の弾性波装置タイプ1~4におけるdfrとFOMtとの関係を導出した。図46は、実施形態4におけるdfrとFOMtとの関係の例を示す。図46は、実施形態3における図44と対になる図である。図46における符号4600A~4600Dはそれぞれ、実施形態4の弾性波装置タイプ1~4についてのグラフを示す。図46の点線丸囲み部に示す通り、実施形態4の弾性波装置タイプ1~4のいずれにおいても、dfr=0の近傍においてFOMtが特に大きくなることが確認された。それゆえ、実施形態4においても、dfr≒0に設定することにより、弾性波装置の周波数特性をより一層改善できる。 The inventor derived the relationship between dfr and FOMt in elastic wave device types 1 to 4 of embodiment 4 for the same combination of dielectric layer material and t as in embodiment 3. FIG. 46 shows an example of the relationship between dfr and FOMt in embodiment 4. FIG. 46 is a diagram paired with FIG. 44 in embodiment 3. References 4600A to 4600D in FIG. 46 indicate graphs for elastic wave device types 1 to 4 of embodiment 4, respectively. As shown in the dotted circled areas in FIG. 46, it was confirmed that in all of elastic wave device types 1 to 4 of embodiment 4, FOMt becomes particularly large near dfr = 0. Therefore, in embodiment 4 as well, by setting dfr ≒ 0, the frequency characteristics of the elastic wave device can be further improved.
 図46に示す通り、実施形態4においても、誘電体層材料がSiO、AlN、SiN、Al、およびTiOの場合に、FOMtが大きくなることが確認された。実施形態4では、誘電体層材料がSiOの場合に、FOMtが特に大きくなることが確認された。それゆえ、実施形態4では、誘電体層材料としてSiOを用いることにより、弾性波装置の周波数特性をより一層改善できる。 46 , it was also confirmed in the fourth embodiment that the FOMt was large when the dielectric layer material was SiO 2 , AlN, SiN x , Al 2 O 3 , and TiO 2. It was confirmed in the fourth embodiment that the FOMt was particularly large when the dielectric layer material was SiO 2. Therefore, in the fourth embodiment, by using SiO 2 as the dielectric layer material, it is possible to further improve the frequency characteristics of the elastic wave device.
 続いて、発明者は、図46の点線丸囲み部に属する誘電体層材料とtとの組み合わせについて、実施形態4の弾性波装置タイプ1~4の位相特性を導出した。図47は、実施形態4における位相特性の例を示す。図47は、実施形態3における図45と対になる図である。図47における符号4700A~4700Dはそれぞれ、実施形態4の弾性波装置タイプ1~4についてのグラフを示す。 The inventors then derived the phase characteristics of elastic wave device types 1 to 4 of embodiment 4 for combinations of the dielectric layer materials and t that belong to the dotted circled area in Figure 46. Figure 47 shows an example of phase characteristics in embodiment 4. Figure 47 is a paired diagram with Figure 45 in embodiment 3. Reference numerals 4700A to 4700D in Figure 47 denote graphs for elastic wave device types 1 to 4 of embodiment 4, respectively.
 図47に示す通り、実施形態4においても、誘電体層材料がSiOであり、かつ、t=0.03μmの場合に、弾性波装置タイプ1~4の全てにおいて良好な位相特性が得られた。実施形態4においても、誘電体層材料がAlN、AlO3、およびSiNの場合に、概ね良好な位相特性が得られた。 47, in the fourth embodiment as well, when the dielectric layer material was SiO2 and t = 0.03 μm, good phase characteristics were obtained in all of the acoustic wave device types 1 to 4. In the fourth embodiment as well, when the dielectric layer material was AlN, Al2O3 , or SiNx , generally good phase characteristics were obtained.
 〔実施形態5〕
 図48は、実施形態5におけるフィルタ100(周波数フィルタ)の概略的な構成を例示する。フィルタ100は、本開示の一態様に係る弾性波装置(例:弾性波装置1)を含んでいてよい。図48に示す通り、フィルタ100は、直列腕SLと並列腕PLとを有するラダー型フィルタであってよい。フィルタ100は、複数の弾性波共振子Resを有していてよい。複数の弾性波共振子Resは、例えば、共通の圧電体層2を有していてよい。その一方、複数の弾性波共振子Resのそれぞれは、個別のIDT電極3を有していてよい。
[Embodiment 5]
48 illustrates a schematic configuration of a filter 100 (frequency filter) according to the fifth embodiment. The filter 100 may include an acoustic wave device (e.g., the acoustic wave device 1) according to one aspect of the present disclosure. As illustrated in FIG. 48 , the filter 100 may be a ladder-type filter having a series arm SL and a parallel arm PL. The filter 100 may have a plurality of acoustic wave resonators Res. The acoustic wave resonators Res may have, for example, a common piezoelectric layer 2. Meanwhile, each of the acoustic wave resonators Res may have an individual IDT electrode 3.
 フィルタ100は、複数の弾性波共振子Resとして、(i)直列腕SLに位置する少なくとも1つの直列弾性波共振子Res1Sと、(ii)並列腕PLに位置する少なくとも1つの並列弾性波共振子Res1Pと、を有していてよい。図48の例では、フィルタ100は、2つの直列弾性波共振子Res1Sと1つの並列弾性波共振子Res1Pとを有している。 The filter 100 may have, as the multiple elastic wave resonators Res, (i) at least one series elastic wave resonator Res1S located in the series arm SL, and (ii) at least one parallel elastic wave resonator Res1P located in the parallel arm PL. In the example of FIG. 48, the filter 100 has two series elastic wave resonators Res1S and one parallel elastic wave resonator Res1P.
 直列腕PLは、入力端子Pinおよび出力端子Poutに接続されていてよい。図48の例における直列弾性波共振子Res1S-1は、入力端子Pinに接続されている直列弾性波共振子Res1Sである。直列弾性波共振子Res1S-2は、出力端子Poutに接続されている直列弾性波共振子Res1Sである。並列腕PLは、直列弾性波共振子Res1S-1と直列弾性波共振子Res1S-2との間から延びていてよい。並列腕PLは、接地端子GNDに接続されていてよい。 The series arm PL may be connected to the input terminal Pin and the output terminal Pout. In the example of FIG. 48, the series elastic wave resonator Res1S-1 is the series elastic wave resonator Res1S connected to the input terminal Pin. The series elastic wave resonator Res1S-2 is the series elastic wave resonator Res1S connected to the output terminal Pout. The parallel arm PL may extend from between the series elastic wave resonators Res1S-1 and Res1S-2. The parallel arm PL may be connected to the ground terminal GND.
 フィルタ100は、並列腕PLに位置する第1弾性波共振子を、本開示の一態様に係る弾性波装置弾として有していてよい。一例として、第1弾性波共振子は、並列弾性波共振子Res1Pであってよい。したがって、例えば、フィルタ100は、並列弾性波共振子Res1Pとして弾性波装置1を有していてよい。 The filter 100 may have a first acoustic wave resonator located in the parallel arm PL as an acoustic wave device according to one aspect of the present disclosure. As an example, the first acoustic wave resonator may be a parallel acoustic wave resonator Res1P. Thus, for example, the filter 100 may have an acoustic wave device 1 as the parallel acoustic wave resonator Res1P.
 また、フィルタ100は、直列腕SLに位置する第2弾性波共振子をさらに有していてよい。当該第2弾性波共振子は、誘電体層4を有していなくともよい。したがって、例えば、フィルタ100は、第2弾性波共振子として直列弾性波共振子Res1Sを有していてよい。 The filter 100 may further include a second acoustic wave resonator located in the series arm SL. The second acoustic wave resonator may not include the dielectric layer 4. Thus, for example, the filter 100 may include a series acoustic wave resonator Res1S as the second acoustic wave resonator.
 一般的に、直列弾性波共振子Res1Sがフィルタ100の周波数特性に与える影響は、並列弾性波共振子Res1Pが当該周波数特性に与える影響よりも大きいと考えられる。このため、第1弾性波共振子が並列弾性波共振子Res1Pである場合、例えば誘電体層4に起因して当該第1弾性波共振子におけるFOM1の低下が生じたとしても、当該第1弾性波共振子が第1周波数帯においてフィルタ100の周波数特性に与える影響を小さくできる。また、第2弾性波共振子は誘電体層4を有していないので、当該第2弾性波共振子ではFOM1の低下が生じない。このように、フィルタ100によれば、優れた周波数特性を有するフィルタを実現できる。 In general, it is considered that the effect of the series acoustic wave resonator Res1S on the frequency characteristics of the filter 100 is greater than the effect of the parallel acoustic wave resonator Res1P on the frequency characteristics. For this reason, when the first acoustic wave resonator is the parallel acoustic wave resonator Res1P, even if a decrease in FOM1 occurs in the first acoustic wave resonator due to the dielectric layer 4, the effect of the first acoustic wave resonator on the frequency characteristics of the filter 100 in the first frequency band can be reduced. Furthermore, since the second acoustic wave resonator does not have a dielectric layer 4, no decrease in FOM1 occurs in the second acoustic wave resonator. In this way, the filter 100 can achieve a filter with excellent frequency characteristics.
 〔実施形態6〕
 図49は、実施形態6における通信装置151の概略的な構成を例示する。通信装置151は、本開示の一態様に係る弾性波フィルタの一適用例であり、電波を利用した無線通信を行う。通信装置151は、送信フィルタ109としての1つの分波器101と、受信フィルタ111としての別の1つの分波器101とを含んでいてよい。2つの分波器101のそれぞれは、本開示の一態様に係るフィルタ(例:フィルタ100)を含んでいてよい。このように、通信装置151は、本開示の一態様に係るフィルタを含んでいてよい。
[Embodiment 6]
49 illustrates a schematic configuration of a communication device 151 according to the sixth embodiment. The communication device 151 is an application example of an acoustic wave filter according to an aspect of the present disclosure, and performs wireless communication using radio waves. The communication device 151 may include one duplexer 101 as a transmission filter 109 and another duplexer 101 as a reception filter 111. Each of the two duplexers 101 may include a filter (e.g., filter 100) according to an aspect of the present disclosure. In this manner, the communication device 151 may include a filter according to an aspect of the present disclosure.
 通信装置151において、送信すべき情報を含む送信情報信号TISは、RF-IC(Radio Frequency-Integrated Circuit)153によって変調および周波数の引き上げ(搬送波周波数を有する高周波信号への変換)がなされ、送信信号TSへと変換されてよい。バンドパスフィルタ155は、TSについて、送信用の通過帯以外の不要成分を除去してよい。次いで、不要成分除去後のTSは、増幅器157によって増幅されて、送信フィルタ109に入力されてよい。 In the communication device 151, a transmission information signal TIS containing information to be transmitted may be modulated and frequency-increased (converted into a high-frequency signal having a carrier frequency) by an RF-IC (Radio Frequency-Integrated Circuit) 153, and converted into a transmission signal TS. A bandpass filter 155 may remove unnecessary components from the TS outside the transmission passband. Next, the TS after the unnecessary components have been removed may be amplified by an amplifier 157 and input to the transmission filter 109.
 送信フィルタ109は、入力された送信信号TSから送信用の通過帯以外の不要成分を除去してよい。送信フィルタ109は、アンテナ端子(例:上述のTCin)を介して、不要成分除去後のTSをアンテナ159に出力してよい。アンテナ159は、自身に入力された電気信号であるTSを、無線信号としての電波に変換し、当該電波を通信装置151の外部に送信してよい。 The transmit filter 109 may remove unnecessary components outside the transmission passband from the input transmit signal TS. The transmit filter 109 may output the TS after removing the unnecessary components to the antenna 159 via an antenna terminal (e.g., the above-mentioned TCin). The antenna 159 may convert the TS, which is an electrical signal input to itself, into radio waves as a wireless signal, and transmit the radio waves to the outside of the communication device 151.
 また、アンテナ159は、受信した外部からの電波を、電気信号である受信信号RSに変換し、アンテナ端子を介して当該RSを受信フィルタ111に入力してよい。受信フィルタ111は、入力されたRSから受信用の通過帯以外の不要成分を除去してよい。受信フィルタ111は、不要成分除去後の受信信号RSを増幅器161へ出力してよい。出力されたRSは、増幅器161によって増幅されてよい。バンドパスフィルタ163は、増幅後のRSについて、受信用の通過帯以外の不要成分を除去してよい。不要成分除去後のRSは、RF-IC153によって周波数の引き下げおよび復調がなされ、受信情報信号RISへと変換されてよい。 The antenna 159 may also convert the received external radio waves into a received signal RS, which is an electrical signal, and input the RS to the receiving filter 111 via the antenna terminal. The receiving filter 111 may remove unnecessary components from the input RS outside the receiving passband. The receiving filter 111 may output the received signal RS after the unnecessary components have been removed to the amplifier 161. The outputted RS may be amplified by the amplifier 161. The bandpass filter 163 may remove unnecessary components from the amplified RS outside the receiving passband. The RS after the unnecessary components have been removed may be frequency-downgraded and demodulated by the RF-IC 153, and converted into a received information signal RIS.
 TISおよびRISは、適宜な情報を含む低周波信号(ベースバンド信号)であってよい。例えば、TISおよびRISは、アナログ音声信号であってもよいし、あるいはデジタル化された音声信号であってよい。無線信号の通過帯は、適宜に設定されてよく、公知の各種の規格に準拠してよい。 The TIS and RIS may be low-frequency signals (baseband signals) containing appropriate information. For example, the TIS and RIS may be analog voice signals or digitized voice signals. The passband of the wireless signals may be set as appropriate and may conform to various known standards.
 〔まとめ〕
 本開示の態様1に係る弾性波装置は、圧電体層と、前記圧電体層上に位置しており、かつ、複数の電極指を有するIDT電極と、を有しており、前記電極指のピッチをpと表した場合に、前記圧電体層の厚みは2p以下であり、前記弾性波装置は、前記電極指の先端を含み、かつ、前記電極指の交差領域の中央を含まない第1領域において、前記圧電体層とIDT電極との間に位置する誘電体層をさらに有しており、前記弾性波装置は、A1モードの波を励振するように構成されている。
〔summary〕
An elastic wave device according to aspect 1 of the present disclosure comprises a piezoelectric layer and an IDT electrode located on the piezoelectric layer and having a plurality of electrode fingers, where the thickness of the piezoelectric layer is 2p or less when the pitch of the electrode fingers is represented as p, and the elastic wave device further comprises a dielectric layer located between the piezoelectric layer and the IDT electrode in a first region that includes the tips of the electrode fingers and does not include the center of the intersection region of the electrode fingers, and the elastic wave device is configured to excite a wave in A1 mode.
 本開示の態様2に係る弾性波装置では、前記態様1において、前記交差領域の中央における、前記波の音速をfr0と表し、前記第1領域のうち、前記電極指の先端における、前記波の音速をfr1と表し、上述の式(4)によって与えられるdfrは、-1%以上かつ2%以下であってよい。 In the elastic wave device according to aspect 2 of the present disclosure, in aspect 1, the sound velocity of the wave at the center of the intersection region is represented as fr0, the sound velocity of the wave at the tip of the electrode finger in the first region is represented as fr1, and dfr given by the above formula (4) may be greater than or equal to -1% and less than or equal to 2%.
 本開示の態様3に係る弾性波装置では、前記態様2において、前記誘電体層の比誘電率は、20未満であってよい。 In the elastic wave device according to aspect 3 of the present disclosure, in aspect 2, the relative dielectric constant of the dielectric layer may be less than 20.
 本開示の態様4に係る弾性波装置では、前記態様3において、dfrは、-0.2%以上であってよい。 In the elastic wave device according to aspect 4 of the present disclosure, in aspect 3, dfr may be -0.2% or more.
 本開示の態様5に係る弾性波装置では、前記態様1から4のいずれか1つにおいて、前記誘電体層は、Al、AlN、SiN、Si、およびSiOのうちの少なくとも1つを材料として含んでいてよい。 In the elastic wave device according to a fifth aspect of the present disclosure, in any one of the first to fourth aspects, the dielectric layer may contain at least one of Al 2 O 3 , AlN, SiN x , Si, and SiO 2 as a material.
 本開示の態様6に係る弾性波装置では、前記態様1から5のいずれか1つにおいて、前記誘電体層は、Al、AlN、SiN、およびSiのうちの少なくとも1つを材料として含んでいてよい。 In the elastic wave device according to a sixth aspect of the present disclosure, in any one of the first to fifth aspects, the dielectric layer may contain at least one of Al 2 O 3 , AlN, SiN x , and Si as a material.
 本開示の態様7に係る弾性波装置では、前記態様1から6のいずれか1つにおいて、前記誘電体層は、Ta、ZrO、HfO、およびダイヤモンドのいずれをも主成分として含んでいなくともよい。 In the elastic wave device according to a seventh aspect of the present disclosure, in any one of the first to sixth aspects, the dielectric layer does not necessarily contain any of Ta 2 O 5 , ZrO 2 , HfO 2 , and diamond as a main component.
 本開示の態様8に係る弾性波装置では、前記態様1から7のいずれか1つにおいて、前記誘電体層は、Al、AlN、SiN、Si、およびSiOのうちの少なくとも1つを主成分として含んでいてもよい。 In the elastic wave device according to an eighth aspect of the present disclosure, in any one of the first to seventh aspects, the dielectric layer may contain at least one of Al 2 O 3 , AlN, SiN x , Si, and SiO 2 as a main component.
 本開示の態様9に係る弾性波装置では、前記態様1から4のいずれか1つにおいて、前記誘電体層は、互いに異なる音速を有する第1誘電体層と第2誘電体層とを含んでいてよい。 In the elastic wave device according to aspect 9 of the present disclosure, in any one of aspects 1 to 4, the dielectric layer may include a first dielectric layer and a second dielectric layer having different sound velocities.
 本開示の態様10に係る弾性波装置では、前記態様9において、前記第1誘電体層は、Al、AlN、SiN、Si、およびSiOのうちの少なくとも1つを主成分として含んでいてよく、前記第1誘電体層の厚みは、前記第1誘電体層の厚みと前記第2誘電体層の厚みとの和の50%以上であってよい。 In an elastic wave device according to aspect 10 of the present disclosure, in accordance with aspect 9, the first dielectric layer may contain at least one of Al2O3 , AlN, SiNx , Si, and SiO2 as a main component, and the thickness of the first dielectric layer may be 50% or more of the sum of the thickness of the first dielectric layer and the thickness of the second dielectric layer.
 本開示の態様11に係る弾性波装置では、前記態様1から10のいずれか1つにおいて、前記誘電体層のヤング率をE(単位:Pa)と表し、前記誘電体層の密度をρ(単位:kg/m)と表し、上述の式(2)によって与えられる前記誘電体層の音速VL(単位:m/s)は、3000m/s以上かつ13000m/s以下であってよい。 In an elastic wave device according to aspect 11 of the present disclosure, in any one of aspects 1 to 10, the Young's modulus of the dielectric layer may be expressed as E (unit: Pa), the density of the dielectric layer may be expressed as ρ (unit: kg/ m3 ), and the sound velocity VL (unit: m/s) of the dielectric layer given by the above formula (2) may be 3000 m/s or more and 13000 m/s or less.
 本開示の態様12に係る弾性波装置では、前記態様11において、VLは、5000m/s以上かつ12000m/s以下であってよい。 In the elastic wave device according to aspect 12 of the present disclosure, in aspect 11, VL may be 5000 m/s or more and 12000 m/s or less.
 本開示の態様13に係る弾性波装置では、前記態様11において、前記圧電体層は、115°±30°YカットX伝搬のLT層であってよく、前記誘電体層の厚みは、0.03p±25%の範囲内にあってよく、VLは、8000m/s以上かつ10000m/s以下であってよい。 In the elastic wave device according to aspect 13 of the present disclosure, in the above-mentioned aspect 11, the piezoelectric layer may be a 115°±30° Y-cut X-propagation LT layer, the thickness of the dielectric layer may be within the range of 0.03p±25%, and VL may be 8000 m/s or more and 10000 m/s or less.
 本開示の態様14に係る弾性波装置では、前記態様11において、前記圧電体層は、115°±30°YカットX伝搬のLT層であってよく、前記誘電体層の厚みは、0.05p±25%の範囲内にあってよく、VLは、9000m/s以上かつ11000m/s以下であってよい。 In the elastic wave device according to aspect 14 of the present disclosure, in the above-mentioned aspect 11, the piezoelectric layer may be a 115°±30° Y-cut X-propagation LT layer, the thickness of the dielectric layer may be within the range of 0.05p±25%, and VL may be 9000 m/s or more and 11000 m/s or less.
 本開示の態様15に係る弾性波装置では、前記態様11において、前記圧電体層は、120°±30°YカットX伝搬のLN層であってよく、前記誘電体層の厚みは、0.03p±25%の範囲内にあってよく、VLは、7000m/s以上かつ9000m/s以下であってよい。 In the elastic wave device according to aspect 15 of the present disclosure, in the above-mentioned aspect 11, the piezoelectric layer may be a 120°±30° Y-cut X-propagation LN layer, the thickness of the dielectric layer may be within the range of 0.03p±25%, and VL may be 7000 m/s or more and 9000 m/s or less.
 本開示の態様16に係る弾性波装置では、前記態様11において、前記圧電体層は、120°±30°YカットX伝搬のLN層であってよく、前記誘電体層の厚みは、0.05p±25%の範囲内にあってよく、VLは、8000m/s以上かつ10000m/s以下であってよい。 In the elastic wave device according to aspect 16 of the present disclosure, in the above-mentioned aspect 11, the piezoelectric layer may be a 120°±30° Y-cut X-propagation LN layer, the thickness of the dielectric layer may be within the range of 0.05p±25%, and VL may be 8000 m/s or more and 10000 m/s or less.
 本開示の態様17に係る弾性波装置では、前記態様1から16のいずれか1つにおいて、前記第1領域は、前記交差領域の両端に位置していてよく、かつ、前記電極指の配列方向に沿って延在していてよい。 In the elastic wave device according to aspect 17 of the present disclosure, in any one of aspects 1 to 16, the first region may be located at both ends of the intersection region and may extend along the arrangement direction of the electrode fingers.
 本開示の態様18に係る弾性波装置では、前記態様1から17のいずれか1つにおいて、前記IDT電極は、バスバーをさらに有していてよく、前記第1領域の少なくとも一部は、前記電極指の先端と前記バスバーとの間に位置していてよい。 In the elastic wave device according to aspect 18 of the present disclosure, in any one of aspects 1 to 17, the IDT electrode may further include a bus bar, and at least a portion of the first region may be located between the tips of the electrode fingers and the bus bar.
 本開示の態様19に係る弾性波装置では、前記態様1から18のいずれか1つにおいて、前記IDT電極は、複数の前記電極指にそれぞれ対向する複数のダミー電極指をさらに有していてよく、前記第1領域は、前記ダミー電極指の先端を含んでいてよい。 In an elastic wave device according to aspect 19 of the present disclosure, in any one of aspects 1 to 18, the IDT electrode may further include a plurality of dummy electrode fingers that respectively face the plurality of electrode fingers, and the first region may include the tips of the dummy electrode fingers.
 本開示の態様20に係る弾性波装置では、前記態様1から19のいずれか1つにおいて、前記IDT電極は、複数の前記電極指にそれぞれ対向する複数のダミー電極指をさらに有していてよく、前記誘電体層の厚みは、0.03p以上かつ0.06p以下であってよく、前記第1領域は、前記電極指の先端から前記交差領域の中央側に向かって長さ0.1p以上かつ2p以下の部分を含んでいてよく、かつ、前記電極指の先端から前記交差領域の中央側に向かって長さ2pを超える部分を含んでいなくともよい。 In an elastic wave device according to aspect 20 of the present disclosure, in any one of aspects 1 to 19, the IDT electrode may further include a plurality of dummy electrode fingers that respectively face a plurality of the electrode fingers, the thickness of the dielectric layer may be 0.03p or more and 0.06p or less, and the first region may include a portion having a length of 0.1p or more and 2p or less from the tip of the electrode finger toward the center of the intersection region, and may not include a portion having a length of more than 2p from the tip of the electrode finger toward the center of the intersection region.
 本開示の態様21に係る弾性波装置では、前記態様1から18のいずれか1つにおいて、前記IDT電極は、複数の前記電極指のうちの少なくとも1つに対向するダミー電極指を有していなくともよく、前記誘電体層の厚みは、0.04p以上かつ0.07p以下であってよく、前記第1領域は、前記電極指の先端から前記交差領域の中央側に向かって長さ0.1p以上かつ2p以下の部分を含んでいてよく、かつ、前記電極指の先端から前記交差領域の中央側に向かって2pを超える部分を含んでいなくともよい。 In an elastic wave device according to aspect 21 of the present disclosure, in any one of aspects 1 to 18, the IDT electrode may not have a dummy electrode finger that faces at least one of the plurality of electrode fingers, the thickness of the dielectric layer may be 0.04p or more and 0.07p or less, and the first region may include a portion having a length of 0.1p or more and 2p or less from the tip of the electrode finger toward the center of the intersection region, and may not include a portion exceeding 2p from the tip of the electrode finger toward the center of the intersection region.
 本開示の態様22に係るフィルタは、前記態様1から21のいずれか1つに係る弾性波装置を備えていてよい。 The filter according to aspect 22 of the present disclosure may include an acoustic wave device according to any one of aspects 1 to 21.
 本開示の態様23に係るフィルタは、前記態様22において、直列腕と並列腕とを有するラダー型フィルタであってよく、前記フィルタは、前記並列腕に位置する第1弾性波共振子を、前記弾性波装置として有していてよい。 The filter according to aspect 23 of the present disclosure may be a ladder-type filter having a series arm and a parallel arm in the above-mentioned aspect 22, and the filter may have a first acoustic wave resonator located in the parallel arm as the acoustic wave device.
 本開示の態様24に係るフィルタは、前記態様23において、前記直列腕に位置する第2弾性波共振子をさらに有していてよく、前記第2弾性波共振子は、前記誘電体層を有していなくともよい。 The filter according to aspect 24 of the present disclosure may further include a second acoustic wave resonator located in the series arm in the aspect 23, and the second acoustic wave resonator may not include the dielectric layer.
 本開示の態様25に係る通信装置は、前記態様22から24のいずれか1つに係るフィルタを備えていてよい。 The communication device according to aspect 25 of the present disclosure may include a filter according to any one of aspects 22 to 24.
 〔付記事項〕
 以上、本開示に係る発明について、諸図面および実施例に基づいて説明してきた。しかし、本開示に係る発明は上述した各実施形態に限定されるものではない。すなわち、本開示に係る発明は本開示で示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本開示に係る発明の技術的範囲に含まれる。つまり、当業者であれば本開示に基づき種々の変形または修正を行うことが容易であることに注意されたい。また、これらの変形または修正は本開示の範囲に含まれることに留意されたい。
[Additional Notes]
The invention according to the present disclosure has been described above based on the drawings and examples. However, the invention according to the present disclosure is not limited to the above-mentioned embodiments. In other words, the invention according to the present disclosure can be modified in various ways within the scope of the present disclosure, and the embodiments obtained by appropriately combining the technical means disclosed in the different embodiments are also included in the technical scope of the invention according to the present disclosure. In other words, it should be noted that a person skilled in the art can easily make various modifications or corrections based on the present disclosure. It should also be noted that these modifications or corrections are included in the scope of the present disclosure.
 1 弾性波装置
 1M 弾性波装置(メンブレン型の弾性波装置)
 2 圧電体層
 3 IDT電極
 4 誘電体層
 30 バスバー
 32 電極指
 35 ダミー電極指
 100 フィルタ(ラダー型フィルタ)
 151 通信装置
 R1 第1領域
 RK 交差領域
 PL 並列腕
 SL 直列腕
 Res1P 並列弾性波共振子(第1弾性波共振子)
 Res1S 直列弾性波共振子(第2弾性波共振子)
1 Elastic wave device 1M Elastic wave device (membrane type elastic wave device)
2 Piezoelectric layer 3 IDT electrode 4 Dielectric layer 30 Bus bar 32 Electrode finger 35 Dummy electrode finger 100 Filter (ladder type filter)
151 Communication device R1 First region RK Intersection region PL Parallel arm SL Series arm Res1P Parallel acoustic wave resonator (first acoustic wave resonator)
Res1S series elastic wave resonator (second elastic wave resonator)

Claims (25)

  1.  弾性波装置であって、
     圧電体層と、
     前記圧電体層上に位置しており、かつ、複数の電極指を有するIDT電極と、を有しており、
     前記電極指のピッチをpと表した場合に、前記圧電体層の厚みは2p以下であり、
     前記弾性波装置は、前記電極指の先端を含み、かつ、前記電極指の交差領域の中央を含まない第1領域において、前記圧電体層とIDT電極との間に位置する誘電体層をさらに有しており、
     前記弾性波装置は、A1モードの波を励振するように構成されている、弾性波装置。
    1. An acoustic wave device, comprising:
    A piezoelectric layer;
    an IDT electrode located on the piezoelectric layer and having a plurality of electrode fingers;
    When the pitch of the electrode fingers is represented as p, the thickness of the piezoelectric layer is 2p or less,
    the elastic wave device further includes a dielectric layer located between the piezoelectric layer and the IDT electrode in a first region that includes tips of the electrode fingers but does not include a center of an intersection region of the electrode fingers,
    The acoustic wave device is configured to excite waves in an A1 mode.
  2.  前記交差領域の中央における、前記波の音速をfr0と表し、
     前記第1領域のうち、前記電極指の先端における、前記波の音速をfr1と表し、
     下記の式、
      dfr=(fr1-fr0)/fr0
    によって与えられるdfrは、-1%以上かつ2%以下である、請求項1に記載の弾性波装置。
    The sound speed of the wave at the center of the intersection region is denoted as fr0,
    The acoustic velocity of the wave at the tip of the electrode finger in the first region is represented as fr1,
    The following formula,
    dfr=(fr1-fr0)/fr0
    2. The acoustic wave device of claim 1, wherein dfr given by: is greater than or equal to −1% and less than or equal to 2%.
  3.  前記誘電体層の比誘電率は、20未満である、請求項2に記載の弾性波装置。 The elastic wave device of claim 2, wherein the dielectric layer has a relative dielectric constant of less than 20.
  4.  dfrは、-0.2%以上である、請求項3に記載の弾性波装置。 The elastic wave device according to claim 3, wherein dfr is -0.2% or more.
  5.  前記誘電体層は、Al、AlN、SiN、Si、およびSiOのうちの少なくとも1つを材料として含んでいる、請求項1から4のいずれか1項に記載の弾性波装置。 The acoustic wave device according to claim 1 , wherein the dielectric layer contains at least one of Al 2 O 3 , AlN, SiN x , Si, and SiO 2 as a material.
  6.  前記誘電体層は、Al、AlN、SiN、およびSiのうちの少なくとも1つを材料として含んでいる、請求項1から5のいずれか1項に記載の弾性波装置。 The acoustic wave device according to claim 1 , wherein the dielectric layer contains at least one of Al 2 O 3 , AlN, SiN x , and Si as a material.
  7.  前記誘電体層は、Ta、ZrO、HfO、およびダイヤモンドのいずれをも主成分として含んでいない、請求項1から6のいずれか1項に記載の弾性波装置。 The acoustic wave device according to claim 1 , wherein the dielectric layer does not contain any of Ta 2 O 5 , ZrO 2 , HfO 2 , and diamond as a main component.
  8.  前記誘電体層は、Al、AlN、SiN、Si、およびSiOのうちの少なくとも1つを主成分として含んでいる、請求項1から7のいずれか1項に記載の弾性波装置。 The acoustic wave device according to claim 1 , wherein the dielectric layer contains at least one of Al 2 O 3 , AlN, SiN x , Si, and SiO 2 as a main component.
  9.  前記誘電体層は、互いに異なる音速を有する第1誘電体層と第2誘電体層とを含んでいる、請求項1から4のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 4, wherein the dielectric layer includes a first dielectric layer and a second dielectric layer having different sound velocities.
  10.  前記第1誘電体層は、Al、AlN、SiN、Si、およびSiOのうちの少なくとも1つを主成分として含んでおり、
     前記第1誘電体層の厚みは、前記第1誘電体層の厚みと前記第2誘電体層の厚みとの和の50%以上である、請求項9に記載の弾性波装置。
    The first dielectric layer contains at least one of Al 2 O 3 , AlN, SiN x , Si, and SiO 2 as a main component;
    The acoustic wave device according to claim 9 , wherein a thickness of the first dielectric layer is equal to or greater than 50% of a sum of a thickness of the first dielectric layer and a thickness of the second dielectric layer.
  11.  前記誘電体層のヤング率をE(単位:Pa)と表し、
     前記誘電体層の密度をρ(単位:kg/m)と表し、
     下記の式、
      VL=(E/ρ)1/2
    によって与えられる前記誘電体層の音速VL(単位:m/s)は、3000m/s以上かつ13000m/s以下である、請求項1から10のいずれか1項に記載の弾性波装置。
    The Young's modulus of the dielectric layer is represented as E (unit: Pa),
    The density of the dielectric layer is represented as ρ (unit: kg/m 3 ),
    The following formula,
    VL = (E/ρ) 1/2
    11. The elastic wave device according to claim 1, wherein a sound velocity VL (unit: m/s) of the dielectric layer given by: is 3000 m/s or more and 13000 m/s or less.
  12.  VLは、5000m/s以上かつ12000m/s以下である、請求項11に記載の弾性波装置。 The elastic wave device according to claim 11, wherein VL is 5000 m/s or more and 12000 m/s or less.
  13.  前記圧電体層は、115°±30°YカットX伝搬のLT層であり、
     前記誘電体層の厚みは、0.03p±25%の範囲内にあり、
     VLは、8000m/s以上かつ10000m/s以下である、請求項11に記載の弾性波装置。
    The piezoelectric layer is a 115°±30° Y-cut X-propagation LT layer,
    The thickness of the dielectric layer is within the range of 0.03p±25%;
    The acoustic wave device according to claim 11, wherein VL is not less than 8000 m/s and not more than 10000 m/s.
  14.  前記圧電体層は、115°±30°YカットX伝搬のLT層であり、
     前記誘電体層の厚みは、0.05p±25%の範囲内にあり、
     VLは、9000m/s以上かつ11000m/s以下である、請求項11に記載の弾性波装置。
    The piezoelectric layer is a 115°±30° Y-cut X-propagation LT layer,
    The thickness of the dielectric layer is within the range of 0.05p±25%;
    The acoustic wave device according to claim 11 , wherein VL is not less than 9000 m/s and not more than 11000 m/s.
  15.  前記圧電体層は、120°±30°YカットX伝搬のLN層であり、
     前記誘電体層の厚みは、0.03p±25%の範囲内にあり、
     VLは、7000m/s以上かつ9000m/s以下である、請求項11に記載の弾性波装置。
    The piezoelectric layer is a 120°±30° Y-cut X-propagation LN layer,
    The thickness of the dielectric layer is within the range of 0.03p±25%;
    The acoustic wave device according to claim 11 , wherein VL is not less than 7000 m/s and not more than 9000 m/s.
  16.  前記圧電体層は、120°±30°YカットX伝搬のLN層であり、
     前記誘電体層の厚みは、0.05p±25%の範囲内にあり、
     VLは、8000m/s以上かつ10000m/s以下である、請求項11に記載の弾性波装置。
    The piezoelectric layer is a 120°±30° Y-cut X-propagation LN layer,
    The thickness of the dielectric layer is within the range of 0.05p±25%;
    The acoustic wave device according to claim 11, wherein VL is not less than 8000 m/s and not more than 10000 m/s.
  17.  前記第1領域は、前記交差領域の両端に位置しており、かつ、前記電極指の配列方向に沿って延在している、請求項1から16のいずれか1項に記載の弾性波装置。 The elastic wave device according to any one of claims 1 to 16, wherein the first region is located at both ends of the intersection region and extends along the arrangement direction of the electrode fingers.
  18.  前記IDT電極は、バスバーをさらに有しており、
     前記第1領域の少なくとも一部は、前記電極指の先端と前記バスバーとの間に位置している、請求項1から17のいずれか1項に記載の弾性波装置。
    The IDT electrode further includes a bus bar,
    The acoustic wave device according to claim 1 , wherein at least a portion of the first region is located between a tip of the electrode finger and the bus bar.
  19.  前記IDT電極は、複数の前記電極指にそれぞれ対向する複数のダミー電極指をさらに有しており、
     前記第1領域は、前記ダミー電極指の先端を含む、請求項1から18のいずれか1項に記載の弾性波装置。
    the IDT electrode further includes a plurality of dummy electrode fingers facing the plurality of electrode fingers,
    The acoustic wave device according to claim 1 , wherein the first region includes a tip of the dummy electrode finger.
  20.  前記IDT電極は、複数の前記電極指にそれぞれ対向する複数のダミー電極指をさらに有しており、
     前記誘電体層の厚みは、0.03p以上かつ0.06p以下であり、
     前記第1領域は、前記電極指の先端から前記交差領域の中央側に向かって長さ0.1p以上かつ2p以下の部分を含み、かつ、前記電極指の先端から前記交差領域の中央側に向かって長さ2pを超える部分を含まない、請求項1から19のいずれか1項に記載の弾性波装置。
    the IDT electrode further includes a plurality of dummy electrode fingers facing the plurality of electrode fingers,
    The thickness of the dielectric layer is 0.03p or more and 0.06p or less,
    20. An elastic wave device according to claim 1, wherein the first region includes a portion having a length of 0.1p or more and 2p or less from the tip of the electrode finger toward the center of the intersection region, and does not include a portion having a length exceeding 2p from the tip of the electrode finger toward the center of the intersection region.
  21.  前記IDT電極は、複数の前記電極指のうちの少なくとも1つに対向するダミー電極指を有しておらず、
     前記誘電体層の厚みは、0.04p以上かつ0.07p以下であり、
     前記第1領域は、前記電極指の先端から前記交差領域の中央側に向かって長さ0.1p以上かつ2p以下の部分を含み、かつ、前記電極指の先端から前記交差領域の中央側に向かって長さ2pを超える部分を含まない、請求項1から18のいずれか1項に記載の弾性波装置。
    the IDT electrode does not have a dummy electrode finger opposed to at least one of the plurality of electrode fingers,
    The thickness of the dielectric layer is 0.04p or more and 0.07p or less,
    19. An elastic wave device according to claim 1, wherein the first region includes a portion having a length of 0.1p or more and 2p or less from the tip of the electrode finger toward the center of the intersection region, and does not include a portion having a length exceeding 2p from the tip of the electrode finger toward the center of the intersection region.
  22.  請求項1から21のいずれか1項に記載の弾性波装置を備えている、フィルタ。 A filter comprising an acoustic wave device according to any one of claims 1 to 21.
  23.  前記フィルタは、直列腕と並列腕とを有するラダー型フィルタであり、
     前記フィルタは、前記並列腕に位置する第1弾性波共振子を、前記弾性波装置として有している、請求項22に記載のフィルタ。
    the filter is a ladder-type filter having a series arm and a parallel arm,
    The filter according to claim 22 , wherein the filter includes a first acoustic wave resonator located in the parallel arm as the acoustic wave device.
  24.  前記フィルタは、前記直列腕に位置する第2弾性波共振子をさらに有しており、
     前記第2弾性波共振子は、前記誘電体層を有していない、請求項23に記載のフィルタ。
    the filter further includes a second acoustic wave resonator located in the series arm,
    The filter of claim 23 , wherein the second acoustic wave resonator does not have the dielectric layer.
  25.  請求項22から24のいずれか1項に記載のフィルタを備えている、通信装置。 A communication device comprising a filter according to any one of claims 22 to 24.
PCT/JP2023/044087 2022-12-12 2023-12-08 Acoustic wave device, filter, and communication device WO2024128164A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-198123 2022-12-12
JP2022198123 2022-12-12

Publications (1)

Publication Number Publication Date
WO2024128164A1 true WO2024128164A1 (en) 2024-06-20

Family

ID=91484899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/044087 WO2024128164A1 (en) 2022-12-12 2023-12-08 Acoustic wave device, filter, and communication device

Country Status (1)

Country Link
WO (1) WO2024128164A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153289A (en) * 2012-01-24 2013-08-08 Taiyo Yuden Co Ltd Acoustic wave device and method for manufacturing the same
WO2020130128A1 (en) * 2018-12-21 2020-06-25 京セラ株式会社 Elastic wave device, splitter, and communication device
WO2021065684A1 (en) * 2019-09-30 2021-04-08 株式会社村田製作所 Elastic wave device
WO2021220887A1 (en) * 2020-04-27 2021-11-04 株式会社村田製作所 Elastic wave device
WO2022039210A1 (en) * 2020-08-19 2022-02-24 株式会社村田製作所 Elastic wave device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013153289A (en) * 2012-01-24 2013-08-08 Taiyo Yuden Co Ltd Acoustic wave device and method for manufacturing the same
WO2020130128A1 (en) * 2018-12-21 2020-06-25 京セラ株式会社 Elastic wave device, splitter, and communication device
WO2021065684A1 (en) * 2019-09-30 2021-04-08 株式会社村田製作所 Elastic wave device
WO2021220887A1 (en) * 2020-04-27 2021-11-04 株式会社村田製作所 Elastic wave device
WO2022039210A1 (en) * 2020-08-19 2022-02-24 株式会社村田製作所 Elastic wave device

Similar Documents

Publication Publication Date Title
JP6959819B2 (en) Multiplexer
WO2018168836A1 (en) Acoustic wave element, acoustic wave filter device, and multiplexer
US9276558B2 (en) Surface acoustic wave device including a confinement layer
US12113509B2 (en) Acoustic wave device with IDT electrode including al metal layer and high acoustic impedance metal layer
JP6870684B2 (en) Multiplexer
JP6530494B2 (en) Surface acoustic wave device
WO2019138813A1 (en) Elastic wave device, multiplexer, high-frequency front end circuit, and communication device
JP7278305B2 (en) Acoustic wave device, branching filter and communication device
US20220224311A1 (en) Acoustic wave device
JP2019102883A (en) Elastic wave device, high frequency front end circuit and communication device
JP7147865B2 (en) Acoustic wave device
US20220029600A1 (en) Acoustic wave device
US20220116017A1 (en) Acoustic wave device
WO2021079830A1 (en) Elastic wave device
US20210242857A1 (en) Acoustic wave filter
CN113872562A (en) Surface acoustic wave device
CN113454912B (en) Elastic wave device
JP7073392B2 (en) Elastic wave element
JP2020182130A (en) Filter and multiplexer
WO2021085609A1 (en) Acoustic wave filter
JP2020080519A (en) Surface acoustic wave element
WO2024128164A1 (en) Acoustic wave device, filter, and communication device
WO2023074373A1 (en) Elastic wave resonator, elastic wave filter device, and multiplexer
JPWO2010125934A1 (en) Elastic wave device
WO2020241776A1 (en) Elastic wave device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23903451

Country of ref document: EP

Kind code of ref document: A1