WO2020241776A1 - Elastic wave device - Google Patents

Elastic wave device Download PDF

Info

Publication number
WO2020241776A1
WO2020241776A1 PCT/JP2020/021187 JP2020021187W WO2020241776A1 WO 2020241776 A1 WO2020241776 A1 WO 2020241776A1 JP 2020021187 W JP2020021187 W JP 2020021187W WO 2020241776 A1 WO2020241776 A1 WO 2020241776A1
Authority
WO
WIPO (PCT)
Prior art keywords
support substrate
elastic wave
euler angles
wave device
condition
Prior art date
Application number
PCT/JP2020/021187
Other languages
French (fr)
Japanese (ja)
Inventor
英樹 岩本
彰 道上
努 ▲高▼井
中尾 武志
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2020241776A1 publication Critical patent/WO2020241776A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves

Definitions

  • the present invention relates to an elastic wave device.
  • Patent Document 1 discloses an example of an elastic wave device.
  • an IDT electrode Inter Digital Transducer
  • a composite substrate in which a piezoelectric single crystal substrate and a silicon single crystal substrate are laminated.
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of the silicon single crystal substrate are ( ⁇ 45 °, ⁇ 54.7 °, ⁇ ).
  • the higher-order mode cannot be sufficiently suppressed, and there is a risk that the filter characteristics of the elastic wave device may deteriorate.
  • An object of the present invention is to provide an elastic wave device capable of effectively suppressing a higher-order mode.
  • the elastic wave device comprises a support substrate made of silicon, a piezoelectric layer directly or indirectly provided on the support substrate, and an IDT electrode provided on the piezoelectric layer.
  • the condition that ⁇ at the oiler angle ( ⁇ , ⁇ , ⁇ ) of the support substrate is ⁇ 55 ° ⁇ ⁇ ⁇ -45 ° or ⁇ 45 ° ⁇ ⁇ -33 ° and the oiler angle ( ⁇ , ⁇ ) of the support substrate are provided. At least one of the conditions that ⁇ in ⁇ , ⁇ ) is ⁇ 60 ° ⁇ ⁇ M or ⁇ M ⁇ ⁇ 45 ° is satisfied, and the ⁇ M is the Euler angle ( ⁇ ) of the (111) plane of silicon. , ⁇ , ⁇ ).
  • the higher-order mode can be effectively suppressed.
  • FIG. 1 is a plan view of an elastic wave device according to a first embodiment of the present invention.
  • FIG. 2 is a front sectional view of the elastic wave device according to the first embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship between ⁇ at the Euler angles of the support substrate and the phase of the higher-order mode.
  • FIG. 4 is a front sectional view of an elastic wave device according to a first modification of the first embodiment of the present invention.
  • FIG. 5 is a front sectional view of an elastic wave device according to a second modification of the first embodiment of the present invention.
  • FIG. 6 is a diagram showing the relationship between ⁇ at the Euler angles of the support substrate and the phase of the higher-order mode.
  • FIG. 1 is a plan view of an elastic wave device according to a first embodiment of the present invention.
  • the elastic wave device 1 has a piezoelectric substrate 2.
  • the IDT electrode 3 is provided on the piezoelectric substrate 2.
  • An elastic wave is excited by applying an AC voltage to the IDT electrode 3.
  • a pair of reflectors 8A and 8B are provided on both sides of the IDT electrode 3 on the piezoelectric substrate 2 in the elastic wave propagation direction.
  • the elastic wave device 1 of the present embodiment is an elastic wave resonator.
  • the elastic wave device according to the present invention is not limited to the elastic wave resonator, and may be a filter device having a plurality of elastic wave resonators, a multiplexer including the filter device, or the like.
  • the IDT electrode 3 has a first bus bar 16 and a second bus bar 17 facing each other.
  • the IDT electrode 3 has a plurality of first electrode fingers 18 each having one end connected to the first bus bar 16. Further, the IDT electrode 3 has a plurality of second electrode fingers 19 each having one end connected to the second bus bar 17.
  • the plurality of first electrode fingers 18 and the plurality of second electrode fingers 19 are interleaved with each other.
  • the IDT electrode 3 is made of an Al layer.
  • the materials of the reflector 8A and the reflector 8B are the same as those of the IDT electrode 3.
  • the materials of the IDT electrode 3, the reflector 8A and the reflector 8B are not limited to the above.
  • the IDT electrode 3, the reflector 8A and the reflector 8B may be made of a laminated metal film in which a plurality of metal layers are laminated.
  • the film thickness of the IDT electrode 3 is 0.05 ⁇ in the present embodiment.
  • the film thickness of the IDT electrode 3 is not limited to the above.
  • FIG. 2 is a front sectional view of the elastic wave device according to the first embodiment.
  • the piezoelectric substrate 2 of the elastic wave device 1 has a support substrate 4, a bass velocity film 5 provided on the support substrate 4, and a piezoelectric layer 6 provided on the bass velocity film 5.
  • the IDT electrode 3, the reflector 8A, and the reflector 8B are provided on the piezoelectric layer 6.
  • the support substrate 4 is made of silicon.
  • the condition that ⁇ at the Euler angles ( ⁇ , ⁇ , ⁇ ) of the support substrate 4 is ⁇ 55 ° ⁇ ⁇ ⁇ ⁇ 45 ° or ⁇ 45 ° ⁇ ⁇ ⁇ 33 ° is defined as the first condition.
  • the second condition is that ⁇ at the Euler angles ( ⁇ , ⁇ , ⁇ ) of the support substrate 4 is ⁇ 60 ° ⁇ ⁇ M or ⁇ M ⁇ ⁇ 45 °.
  • ⁇ M is ⁇ at the Euler angles ( ⁇ , ⁇ , ⁇ ) of the (111) plane of silicon. More specifically, ⁇ M is ⁇ 54.7356 ° when expressed up to the fourth decimal place. In the following, ⁇ M may be expressed as ⁇ 54.73 °, which is the notation up to the second decimal place, or ⁇ 54.7 °, which is the notation up to the first decimal place.
  • the Euler angles of the support substrate 4 of this embodiment satisfy the first condition. It is sufficient that the Euler angles of the support substrate 4 satisfy at least one of the first condition and the second condition. In this embodiment, an example is shown in which the Euler angles of the support substrate 4 satisfy the first condition and do not satisfy the second condition. However, it is preferable that the Euler angles of the support substrate 4 satisfy both the first condition and the second condition.
  • the low sound velocity film 5 is a relatively low sound velocity film. More specifically, the sound velocity of the bulk wave propagating in the bass velocity film 5 is lower than the sound velocity of the bulk wave propagating in the piezoelectric layer 6.
  • the bass velocity film 5 is a silicon oxide film. Silicon oxide is represented by SiO x . x is any positive number. In the elastic wave device 1, the silicon oxide constituting the bass velocity film 5 is SiO 2 .
  • the material of the bass velocity film 5 is not limited to the above, and for example, a material containing glass, silicon nitride, tantalum oxide, or a compound obtained by adding fluorine, carbon, or boron to silicon oxide may be used. it can.
  • the bass velocity film 5 does not necessarily have to be provided.
  • the piezoelectric layer 6 is a lithium tantalate layer.
  • the material of the piezoelectric layer 6 is not limited to the above, and may be a piezoelectric single crystal such as lithium niobate or an appropriate piezoelectric ceramic.
  • the first condition is that ⁇ at Euler angles ( ⁇ , ⁇ , ⁇ ) of the support substrate 4 is ⁇ 55 ° ⁇ ⁇ -45 ° or ⁇ 45 ° ⁇ ⁇ -33 °. To be satisfied. Thereby, the higher-order mode can be effectively suppressed. The details will be described below.
  • the higher-order mode is a higher-order mode that occurs in the vicinity of 1.5 times the resonance frequency of the elastic wave device.
  • the design parameters of the elastic wave device are as follows.
  • Support substrate material Silicon (Si)
  • the Euler angles ( ⁇ , ⁇ , ⁇ ) of the support substrate were changed in 1 ° increments within the range of ⁇ : ⁇ 55 ° ⁇ ⁇ ⁇ 33 °.
  • Bass sound film Material: SiO 2 , Film thickness: 0.15 ⁇
  • Piezoelectric layer Material: LiTaO 3 , film thickness: 0.2 ⁇ IDT electrode: Material ... Al, film thickness ... 0.05 ⁇ IDT electrode wavelength ⁇ : 2 ⁇ m
  • FIG. 3 is a diagram showing the relationship between ⁇ at the Euler angles of the support substrate and the phase of the higher-order mode.
  • the vertical axis in FIG. 3 is the maximum value of the phase in the higher-order mode in the changed phase characteristics for each ⁇ .
  • the condition that ⁇ at the Euler angles of the support substrate 4 is ⁇ 54 ° ⁇ ⁇ ⁇ ⁇ 47 ° or ⁇ 43 ° ⁇ ⁇ ⁇ ⁇ 34 ° is used as the third condition. .. It is preferable that the Euler angles of the support substrate 4 satisfy the third condition. Thereby, as shown in FIG. 3, the higher-order mode can be further suppressed.
  • the piezoelectric layer 6 of the elastic wave device 1 is indirectly provided on the support substrate 4 via the bass velocity film 5.
  • the support substrate 4 is a substrate having a relatively high sound velocity. More specifically, the speed of sound of the bulk wave propagating in the support substrate 4 is higher than the speed of sound of the elastic wave propagating in the piezoelectric layer 6.
  • the Q value can be increased and the energy of the elastic wave is piezoelectricized by providing the laminated structure in which the support substrate 4, the bass velocity film 5, and the piezoelectric layer 6 are laminated in this order. It can be effectively confined to the body layer 6 side.
  • the configuration of the laminated structure of the piezoelectric substrate 2 is not limited to the above.
  • a first modification and a second modification of the first embodiment in which only the configuration of the piezoelectric substrate is different from that of the first embodiment, will be shown.
  • the Q value can be increased and the higher-order mode can be effectively suppressed as in the first embodiment.
  • the piezoelectric substrate 22A has a hypersonic film 27 provided between the support substrate 4 and the hypersonic film 5.
  • the hypersonic film 27 is a film having a relatively high sound velocity. More specifically, the sound velocity of the bulk wave propagating in the hypersonic film 27 is higher than the sound velocity of the elastic wave propagating in the piezoelectric layer 6.
  • Examples of the material of the treble speed film 27 include aluminum oxide, silicon carbide, silicon nitride, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, crystal, alumina, zirconia, cordierite, mulite, steatite, and the like.
  • a medium containing the above materials as a main component such as forsterite, magnesia, DLC (diamond-like carbon) film, or diamond, can be used.
  • the piezoelectric layer 6 is provided directly on the support substrate 4. As described above, the piezoelectric substrate 22B does not necessarily have to have a bass velocity film.
  • ⁇ at Euler angles ( ⁇ , ⁇ , ⁇ ) of the support substrate 4 is ⁇ 60 ° ⁇ ⁇ M or ⁇ M ⁇ ⁇ 45 °, and the second condition is satisfied. It differs from the first embodiment in that it is used. In this embodiment, the Euler angles of the support substrate 4 do not satisfy the first condition. Except for the above points, the elastic wave device of the second embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
  • the higher-order mode can be effectively suppressed.
  • the details will be described below.
  • the higher-order mode is a higher-order mode that occurs in the vicinity of 1.5 times the resonance frequency of the elastic wave device.
  • the design parameters of the elastic wave device are as follows.
  • FIG. 6 is a diagram showing the relationship between ⁇ at the Euler angles of the support substrate and the phase of the higher-order mode.
  • the vertical axis in FIG. 6 is the maximum value of the phase in the higher-order mode in the changed phase characteristics for each ⁇ .
  • ⁇ at the Euler angles of the support substrate 4 is within the range of ⁇ 60 ° ⁇ ⁇ M or ⁇ M ⁇ ⁇ 45 °. By being present, the higher-order mode can be effectively suppressed.
  • ⁇ at the Euler angles of the support substrate 4 is ⁇ 59.73 ° ⁇ ⁇ ⁇ 55.73 ° or ⁇ 53.73 ° ⁇ ⁇ ⁇ ⁇ 45.73 °.
  • the condition be the fourth condition. It is preferable that the Euler angles of the support substrate 4 satisfy the fourth condition. As a result, as shown in FIG. 6, the higher-order mode can be further suppressed.
  • the numerical value after the decimal point in the fourth condition is the same as the numerical value after the decimal point of ⁇ M.
  • the fourth condition is -59.7356 ° ⁇ ⁇ ⁇ -55.7356 ° or -53.7356 ° ⁇ ⁇ ⁇ -45.7356 °.
  • the Euler angles of the support substrate 4 satisfy both the first condition and the second condition. More specifically, -55 ° ⁇ ⁇ -45 ° or -45 ° ⁇ ⁇ -33 °, and -60 ° ⁇ ⁇ -54.7 ° or -54.7 ° ⁇ ⁇ -. It is preferably 45 °. In this case, the higher-order mode can be further suppressed.
  • the Euler angles of the support substrate 4 satisfy at least one of the third condition and the fourth condition. More specifically, the condition that -54 ° ⁇ ⁇ ⁇ -47 ° or -43 ° ⁇ ⁇ ⁇ -34 ° and -59.73 ° ⁇ ⁇ ⁇ -55.73 ° or -53.73 ° ⁇ ⁇ It is more preferable that at least one of the conditions of ⁇ ⁇ 45.73 ° is satisfied. Thereby, as shown in FIG. 3 or 6, the higher-order mode can be suppressed more effectively.
  • the Euler angles of the support substrate 4 satisfy both the third condition and the fourth condition. Thereby, the higher-order mode can be suppressed more reliably and more effectively.
  • Elastic wave device 2 ... Piezoelectric substrate 3 . IDT electrode 4 ... Support substrate 5 ... Bass sound film 6 . Piezoelectric layers 8A, 8B ... Piezoelectrics 16, 17 ... First, second bus bars 18, 19 ... First 1, 2nd electrode fingers 22A, 22B ... Piezoelectric substrate 27 ... High sound velocity film

Abstract

Provided is an elastic wave device that can effectively suppress higher-order modes. This elastic wave device 1 comprises a support substrate 4 that comprises silicon, a piezoelectric layer 6 that is provided directly or indirectly on the support substrate 4, and an IDT electrode 3 that is provided on the piezoelectric layer 6. The elastic wave device satisfies the condition that the φ of the Euler angles (φ, θ, ψ) of the support substrate 4 satisfies -55°<φ<-45° or -45°<φ<-33° and/or the condition that the θ of the Euler angles (φ, θ, ψ) of the support substrate 4 satisfies -60°<θ<θM or θM<θ<-45°, θM being the θ of the Euler angles (φ, θ, ψ) of the (111) plane of silicon.

Description

弾性波装置Elastic wave device
 本発明は、弾性波装置に関する。 The present invention relates to an elastic wave device.
 従来、弾性波装置は携帯電話機のフィルタなどに広く用いられている。下記の特許文献1には、弾性波装置の一例が開示されている。この弾性波装置においては、圧電単結晶基板及びシリコン単結晶基板が積層された複合基板上に、IDT電極(Inter Digital Transducer)が設けられている。シリコン単結晶基板のオイラー角(φ,θ,ψ)は(-45°,-54.7°,ψ)とされている。 Conventionally, elastic wave devices have been widely used as filters for mobile phones. The following Patent Document 1 discloses an example of an elastic wave device. In this elastic wave device, an IDT electrode (Inter Digital Transducer) is provided on a composite substrate in which a piezoelectric single crystal substrate and a silicon single crystal substrate are laminated. The Euler angles (φ, θ, ψ) of the silicon single crystal substrate are (−45 °, −54.7 °, ψ).
国際公開第2017/209131号International Publication No. 2017/209131
 しかしながら、上記の弾性波装置においては、高次モードを十分に抑制することができず、弾性波装置のフィルタ特性などが劣化するおそれがあった。 However, in the above-mentioned elastic wave device, the higher-order mode cannot be sufficiently suppressed, and there is a risk that the filter characteristics of the elastic wave device may deteriorate.
 本発明の目的は、高次モードを効果的に抑制することができる、弾性波装置を提供することにある。 An object of the present invention is to provide an elastic wave device capable of effectively suppressing a higher-order mode.
 本発明に係る弾性波装置は、シリコンからなる支持基板と、前記支持基板上に直接的または間接的に設けられている圧電体層と、前記圧電体層上に設けられているIDT電極とを備え、前記支持基板のオイラー角(φ,θ,ψ)におけるφが-55°<φ<-45°または-45°<φ<-33°である条件及び前記支持基板のオイラー角(φ,θ,ψ)におけるθが-60°<θ<θまたはθ<θ<-45°である条件のうち少なくとも一方を満たし、前記θが、シリコンの(111)面のオイラー角(φ,θ,ψ)におけるθである。 The elastic wave device according to the present invention comprises a support substrate made of silicon, a piezoelectric layer directly or indirectly provided on the support substrate, and an IDT electrode provided on the piezoelectric layer. The condition that φ at the oiler angle (φ, θ, ψ) of the support substrate is −55 ° <φ <φ <-45 ° or −45 ° <φ <-33 ° and the oiler angle (φ, ψ) of the support substrate are provided. At least one of the conditions that θ in θ, ψ) is −60 ° <θ <θ M or θ M <θ <−45 ° is satisfied, and the θ M is the Euler angle (φ) of the (111) plane of silicon. , Θ, ψ).
 本発明に係る弾性波装置によれば、高次モードを効果的に抑制することができる。 According to the elastic wave device according to the present invention, the higher-order mode can be effectively suppressed.
図1は、本発明の第1の実施形態に係る弾性波装置の平面図である。FIG. 1 is a plan view of an elastic wave device according to a first embodiment of the present invention. 図2は、本発明の第1の実施形態に係る弾性波装置の正面断面図である。FIG. 2 is a front sectional view of the elastic wave device according to the first embodiment of the present invention. 図3は、支持基板のオイラー角におけるφと高次モードの位相との関係を示す図である。FIG. 3 is a diagram showing the relationship between φ at the Euler angles of the support substrate and the phase of the higher-order mode. 図4は、本発明の第1の実施形態の第1の変形例に係る弾性波装置の正面断面図である。FIG. 4 is a front sectional view of an elastic wave device according to a first modification of the first embodiment of the present invention. 図5は、本発明の第1の実施形態の第2の変形例に係る弾性波装置の正面断面図である。FIG. 5 is a front sectional view of an elastic wave device according to a second modification of the first embodiment of the present invention. 図6は、支持基板のオイラー角におけるθと高次モードの位相との関係を示す図である。FIG. 6 is a diagram showing the relationship between θ at the Euler angles of the support substrate and the phase of the higher-order mode.
 以下、図面を参照しつつ、本発明の具体的な実施形態を説明することにより、本発明を明らかにする。 Hereinafter, the present invention will be clarified by explaining specific embodiments of the present invention with reference to the drawings.
 なお、本明細書に記載の各実施形態は、例示的なものであり、異なる実施形態間において、構成の部分的な置換または組み合わせが可能であることを指摘しておく。 It should be noted that each of the embodiments described herein is exemplary and that partial replacement or combination of configurations is possible between different embodiments.
 図1は、本発明の第1の実施形態に係る弾性波装置の平面図である。 FIG. 1 is a plan view of an elastic wave device according to a first embodiment of the present invention.
 弾性波装置1は圧電性基板2を有する。圧電性基板2上にはIDT電極3が設けられている。IDT電極3に交流電圧を印加することにより、弾性波が励振される。圧電性基板2上におけるIDT電極3の弾性波伝搬方向両側には、一対の反射器8A及び反射器8Bが設けられている。本実施形態の弾性波装置1は弾性波共振子である。もっとも、本発明に係る弾性波装置は弾性波共振子には限定されず、複数の弾性波共振子を有するフィルタ装置や、該フィルタ装置を含むマルチプレクサなどであってもよい。 The elastic wave device 1 has a piezoelectric substrate 2. The IDT electrode 3 is provided on the piezoelectric substrate 2. An elastic wave is excited by applying an AC voltage to the IDT electrode 3. A pair of reflectors 8A and 8B are provided on both sides of the IDT electrode 3 on the piezoelectric substrate 2 in the elastic wave propagation direction. The elastic wave device 1 of the present embodiment is an elastic wave resonator. However, the elastic wave device according to the present invention is not limited to the elastic wave resonator, and may be a filter device having a plurality of elastic wave resonators, a multiplexer including the filter device, or the like.
 IDT電極3は、対向し合う第1のバスバー16及び第2のバスバー17を有する。IDT電極3は、第1のバスバー16にそれぞれ一端が接続されている複数の第1の電極指18を有する。さらに、IDT電極3は、第2のバスバー17にそれぞれ一端が接続されている複数の第2の電極指19を有する。複数の第1の電極指18と複数の第2の電極指19とは互いに間挿し合っている。 The IDT electrode 3 has a first bus bar 16 and a second bus bar 17 facing each other. The IDT electrode 3 has a plurality of first electrode fingers 18 each having one end connected to the first bus bar 16. Further, the IDT electrode 3 has a plurality of second electrode fingers 19 each having one end connected to the second bus bar 17. The plurality of first electrode fingers 18 and the plurality of second electrode fingers 19 are interleaved with each other.
 IDT電極3はAl層からなる。反射器8A及び反射器8Bの材料も、IDT電極3と同様の材料である。なお、IDT電極3、反射器8A及び反射器8Bの材料は上記に限定されない。あるいは、IDT電極3、反射器8A及び反射器8Bは複数の金属層が積層された積層金属膜からなっていてもよい。IDT電極3の電極指ピッチにより規定される波長をλとしたときに、本実施形態においては、IDT電極3の膜厚は0.05λである。もっとも、IDT電極3の膜厚は上記に限定されない。 The IDT electrode 3 is made of an Al layer. The materials of the reflector 8A and the reflector 8B are the same as those of the IDT electrode 3. The materials of the IDT electrode 3, the reflector 8A and the reflector 8B are not limited to the above. Alternatively, the IDT electrode 3, the reflector 8A and the reflector 8B may be made of a laminated metal film in which a plurality of metal layers are laminated. When the wavelength defined by the electrode finger pitch of the IDT electrode 3 is λ, the film thickness of the IDT electrode 3 is 0.05λ in the present embodiment. However, the film thickness of the IDT electrode 3 is not limited to the above.
 図2は、第1の実施形態に係る弾性波装置の正面断面図である。 FIG. 2 is a front sectional view of the elastic wave device according to the first embodiment.
 弾性波装置1の圧電性基板2は、支持基板4と、支持基板4上に設けられている低音速膜5と、低音速膜5上に設けられている圧電体層6とを有する。圧電体層6上に、上記IDT電極3、反射器8A及び反射器8Bが設けられている。 The piezoelectric substrate 2 of the elastic wave device 1 has a support substrate 4, a bass velocity film 5 provided on the support substrate 4, and a piezoelectric layer 6 provided on the bass velocity film 5. The IDT electrode 3, the reflector 8A, and the reflector 8B are provided on the piezoelectric layer 6.
 支持基板4はシリコンからなる。ここで、支持基板4のオイラー角(φ,θ,ψ)におけるφが-55°<φ<-45°または-45°<φ<-33°である条件を第1の条件とする。他方、支持基板4のオイラー角(φ,θ,ψ)におけるθが-60°<θ<θまたはθ<θ<-45°である条件を第2の条件とする。θは、シリコンの(111)面のオイラー角(φ,θ,ψ)におけるθである。より具体的には、θは、小数点第4位までの表記とすると-54.7356°である。なお、以下においては、θを小数点第2位までの表記である、-54.73°とすることや、小数点第1位までの表記である、-54.7°とすることもある。 The support substrate 4 is made of silicon. Here, the condition that φ at the Euler angles (φ, θ, ψ) of the support substrate 4 is −55 ° <φ <φ < −45 ° or −45 ° <φ < −33 ° is defined as the first condition. On the other hand, the second condition is that θ at the Euler angles (φ, θ, ψ) of the support substrate 4 is −60 ° <θ <θ M or θ M <θ <−45 °. θ M is θ at the Euler angles (φ, θ, ψ) of the (111) plane of silicon. More specifically, θ M is −54.7356 ° when expressed up to the fourth decimal place. In the following, θ M may be expressed as −54.73 °, which is the notation up to the second decimal place, or −54.7 °, which is the notation up to the first decimal place.
 本実施形態の支持基板4のオイラー角は第1の条件を満たす。なお、支持基板4のオイラー角が、第1の条件及び第2の条件のうち少なくとも一方の条件を満たしていればよい。本実施形態においては、支持基板4のオイラー角が第1の条件を満たし、第2の条件を満たさない例を示す。もっとも、支持基板4のオイラー角は、第1の条件及び第2の条件の両方を満たすことが好ましい。 The Euler angles of the support substrate 4 of this embodiment satisfy the first condition. It is sufficient that the Euler angles of the support substrate 4 satisfy at least one of the first condition and the second condition. In this embodiment, an example is shown in which the Euler angles of the support substrate 4 satisfy the first condition and do not satisfy the second condition. However, it is preferable that the Euler angles of the support substrate 4 satisfy both the first condition and the second condition.
 低音速膜5は相対的に低音速な膜である。より具体的には、低音速膜5を伝搬するバルク波の音速は、圧電体層6を伝搬するバルク波の音速よりも低い。本実施形態においては、低音速膜5は酸化ケイ素膜である。酸化ケイ素はSiOで表される。xは任意の正数である。弾性波装置1においては、低音速膜5を構成する酸化ケイ素はSiOである。なお、低音速膜5の材料は上記に限定されず、例えば、ガラス、酸窒化ケイ素、酸化タンタル、または、酸化ケイ素にフッ素、炭素やホウ素を加えた化合物を主成分とする材料を用いることができる。なお、低音速膜5は必ずしも設けられていなくともよい。 The low sound velocity film 5 is a relatively low sound velocity film. More specifically, the sound velocity of the bulk wave propagating in the bass velocity film 5 is lower than the sound velocity of the bulk wave propagating in the piezoelectric layer 6. In this embodiment, the bass velocity film 5 is a silicon oxide film. Silicon oxide is represented by SiO x . x is any positive number. In the elastic wave device 1, the silicon oxide constituting the bass velocity film 5 is SiO 2 . The material of the bass velocity film 5 is not limited to the above, and for example, a material containing glass, silicon nitride, tantalum oxide, or a compound obtained by adding fluorine, carbon, or boron to silicon oxide may be used. it can. The bass velocity film 5 does not necessarily have to be provided.
 圧電体層6はタンタル酸リチウム層である。なお、圧電体層6の材料は上記に限定されず、ニオブ酸リチウムなどの圧電単結晶や、適宜の圧電セラミックスからなっていてもよい。 The piezoelectric layer 6 is a lithium tantalate layer. The material of the piezoelectric layer 6 is not limited to the above, and may be a piezoelectric single crystal such as lithium niobate or an appropriate piezoelectric ceramic.
 本実施形態の特徴は、支持基板4のオイラー角(φ,θ,ψ)におけるφが-55°<φ<-45°または-45°<φ<-33°である、第1の条件が満たされていることにある。それによって、高次モードを効果的に抑制することができる。この詳細を以下において説明する。 The feature of this embodiment is that the first condition is that φ at Euler angles (φ, θ, ψ) of the support substrate 4 is −55 ° <φ <-45 ° or −45 ° <φ <-33 °. To be satisfied. Thereby, the higher-order mode can be effectively suppressed. The details will be described below.
 第1の実施形態と同様の積層構造を有する弾性波装置において、支持基板のオイラー角(φ,θ,ψ)におけるφと高次モードの位相との関係を求めた。なお、上記高次モードは、弾性波装置の共振周波数の1.5倍付近に生じる高次モードである。ここで、弾性波装置の設計パラメータは以下の通りである。 In an elastic wave device having a laminated structure similar to that of the first embodiment, the relationship between φ at Euler angles (φ, θ, ψ) of the support substrate and the phase of the higher-order mode was obtained. The higher-order mode is a higher-order mode that occurs in the vicinity of 1.5 times the resonance frequency of the elastic wave device. Here, the design parameters of the elastic wave device are as follows.
 支持基板の材料:シリコン(Si)
 支持基板のオイラー角(φ,θ,ψ)におけるφ:-55°≦φ≦-33°の範囲内において1°刻みで変化させた。
 支持基板のオイラー角(φ,θ,ψ)におけるθ:θ=-54.73°
 支持基板のオイラー角(φ,θ,ψ)におけるψ:ψ=45°
 低音速膜:材料…SiO、膜厚…0.15λ
 圧電体層:材料…LiTaO、膜厚…0.2λ
 IDT電極:材料…Al、膜厚…0.05λ
 IDT電極の波長λ:2μm
Support substrate material: Silicon (Si)
The Euler angles (φ, θ, ψ) of the support substrate were changed in 1 ° increments within the range of φ: −55 ° ≦ φ ≦ −33 °.
Θ: θ = −54.73 ° at Euler angles (φ, θ, ψ) of the support substrate
Ψ: ψ = 45 ° at Euler angles (φ, θ, ψ) of the support substrate
Bass sound film: Material: SiO 2 , Film thickness: 0.15λ
Piezoelectric layer: Material: LiTaO 3 , film thickness: 0.2λ
IDT electrode: Material ... Al, film thickness ... 0.05λ
IDT electrode wavelength λ: 2 μm
 図3は、支持基板のオイラー角におけるφと高次モードの位相との関係を示す図である。なお、図3における縦軸は、変化させたφ毎の位相特性における、高次モードの位相の最大値である。 FIG. 3 is a diagram showing the relationship between φ at the Euler angles of the support substrate and the phase of the higher-order mode. The vertical axis in FIG. 3 is the maximum value of the phase in the higher-order mode in the changed phase characteristics for each φ.
 図3に示すように、支持基板のオイラー角(φ,θ,ψ)におけるφが-45°の場合には、高次モードの位相の値が大きく、弾性波装置のフィルタ特性などの劣化が問題となる。一方で、φが-45°よりも小さい場合及び大きい場合には、高次モードが抑制されていることがわかる。さらに、φが-55°よりも大きくなると、高次モードが効果的に抑制されていることがわかる。同様に、φが-33°よりも小さくなると、高次モードが効果的に抑制されていることがわかる。従って、図2に示す第1の実施形態のように、支持基板4のオイラー角におけるφが、-55°<φ<-45°または-45°<φ<-33°の範囲内であることにより、高次モードを効果的に抑制することができる。 As shown in FIG. 3, when φ at Euler angles (φ, θ, ψ) of the support substrate is −45 °, the phase value of the higher-order mode is large, and the filter characteristics of the elastic wave device are deteriorated. It becomes a problem. On the other hand, when φ is smaller or larger than −45 °, it can be seen that the higher-order mode is suppressed. Further, when φ becomes larger than −55 °, it can be seen that the higher-order mode is effectively suppressed. Similarly, when φ is smaller than −33 °, it can be seen that the higher-order mode is effectively suppressed. Therefore, as in the first embodiment shown in FIG. 2, φ at the Euler angles of the support substrate 4 is within the range of −55 ° <φ <−45 ° or −45 ° <φ < −33 °. Therefore, the higher-order mode can be effectively suppressed.
 図3中の二点鎖線により示すように、支持基板4のオイラー角におけるφが-54°≦φ≦-47°または-43°≦φ≦-34°である条件を第3の条件とする。支持基板4のオイラー角が第3の条件を満たすことが好ましい。それによって、図3に示すように、高次モードをより一層抑制することができる。 As shown by the alternate long and short dash line in FIG. 3, the condition that φ at the Euler angles of the support substrate 4 is −54 ° ≦ φ ≦ −47 ° or −43 ° ≦ φ ≦ −34 ° is used as the third condition. .. It is preferable that the Euler angles of the support substrate 4 satisfy the third condition. Thereby, as shown in FIG. 3, the higher-order mode can be further suppressed.
 弾性波装置1の圧電体層6は、低音速膜5を介して支持基板4上に間接的に設けられている。ここで、本実施形態においては、支持基板4は相対的に高音速な基板である。より具体的には、支持基板4を伝搬するバルク波の音速は、圧電体層6を伝搬する弾性波の音速よりも高い。本実施形態においては、支持基板4、低音速膜5及び圧電体層6がこの順序で積層された積層構造が設けられていることにより、Q値を高めることができ、弾性波のエネルギーを圧電体層6側に効果的に閉じ込めることができる。 The piezoelectric layer 6 of the elastic wave device 1 is indirectly provided on the support substrate 4 via the bass velocity film 5. Here, in the present embodiment, the support substrate 4 is a substrate having a relatively high sound velocity. More specifically, the speed of sound of the bulk wave propagating in the support substrate 4 is higher than the speed of sound of the elastic wave propagating in the piezoelectric layer 6. In the present embodiment, the Q value can be increased and the energy of the elastic wave is piezoelectricized by providing the laminated structure in which the support substrate 4, the bass velocity film 5, and the piezoelectric layer 6 are laminated in this order. It can be effectively confined to the body layer 6 side.
 もっとも、圧電性基板2の上記積層構造の構成は上記に限定されない。以下において、圧電性基板の構成のみが第1の実施形態と異なる、第1の実施形態の第1の変形例及び第2の変形例を示す。第1の変形例及び第2の変形例においても、第1の実施形態と同様に、Q値を高めることができ、かつ高次モードを効果的に抑制することができる。 However, the configuration of the laminated structure of the piezoelectric substrate 2 is not limited to the above. In the following, a first modification and a second modification of the first embodiment, in which only the configuration of the piezoelectric substrate is different from that of the first embodiment, will be shown. In the first modification and the second modification as well, the Q value can be increased and the higher-order mode can be effectively suppressed as in the first embodiment.
 図4に示す第1の変形例においては、圧電性基板22Aは、支持基板4と低音速膜5との間に設けられている高音速膜27を有する。高音速膜27は相対的に高音速な膜である。より具体的には、高音速膜27を伝搬するバルク波の音速は、圧電体層6を伝搬する弾性波の音速よりも高い。 In the first modification shown in FIG. 4, the piezoelectric substrate 22A has a hypersonic film 27 provided between the support substrate 4 and the hypersonic film 5. The hypersonic film 27 is a film having a relatively high sound velocity. More specifically, the sound velocity of the bulk wave propagating in the hypersonic film 27 is higher than the sound velocity of the elastic wave propagating in the piezoelectric layer 6.
 高音速膜27の材料としては、例えば、酸化アルミニウム、炭化ケイ素、窒化ケイ素、酸窒化ケイ素、シリコン、サファイア、タンタル酸リチウム、ニオブ酸リチウム、水晶、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト、マグネシア、DLC(ダイヤモンドライクカーボン)膜またはダイヤモンドなど、上記材料を主成分とする媒質を用いることができる。 Examples of the material of the treble speed film 27 include aluminum oxide, silicon carbide, silicon nitride, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, crystal, alumina, zirconia, cordierite, mulite, steatite, and the like. A medium containing the above materials as a main component, such as forsterite, magnesia, DLC (diamond-like carbon) film, or diamond, can be used.
 図5に示す第2の変形例の圧電性基板22Bにおいては、支持基板4上に直接的に圧電体層6が設けられている。このように、圧電性基板22Bは、低音速膜を必ずしも有していなくともよい。 In the piezoelectric substrate 22B of the second modification shown in FIG. 5, the piezoelectric layer 6 is provided directly on the support substrate 4. As described above, the piezoelectric substrate 22B does not necessarily have to have a bass velocity film.
 以下において、図2を援用して、本発明の第2の実施形態の詳細を説明する。 In the following, the details of the second embodiment of the present invention will be described with reference to FIG.
 第2の実施形態は、支持基板4のオイラー角(φ,θ,ψ)におけるθが-60°<θ<θまたはθ<θ<-45°であり、第2の条件が満たされている点において、第1の実施形態と異なる。なお、本実施形態においては、支持基板4のオイラー角は上記第1の条件を満たさない。上記の点以外においては、第2の実施形態の弾性波装置は第1の実施形態の弾性波装置1と同様の構成を有する。 In the second embodiment, θ at Euler angles (φ, θ, ψ) of the support substrate 4 is −60 ° <θ <θ M or θ M <θ <−45 °, and the second condition is satisfied. It differs from the first embodiment in that it is used. In this embodiment, the Euler angles of the support substrate 4 do not satisfy the first condition. Except for the above points, the elastic wave device of the second embodiment has the same configuration as the elastic wave device 1 of the first embodiment.
 本実施形態においても、高次モードを効果的に抑制することができる。この詳細を以下において説明する。 Also in this embodiment, the higher-order mode can be effectively suppressed. The details will be described below.
 第2の実施形態と同様の積層構造を有する弾性波装置において、支持基板のオイラー角(φ,θ,ψ)におけるθと高次モードの位相との関係を求めた。なお、上記高次モードは、弾性波装置の共振周波数の1.5倍付近に生じる高次モードである。ここで、弾性波装置の設計パラメータは以下の通りである。 In an elastic wave device having a laminated structure similar to that of the second embodiment, the relationship between θ at the Euler angles (φ, θ, ψ) of the support substrate and the phase of the higher-order mode was obtained. The higher-order mode is a higher-order mode that occurs in the vicinity of 1.5 times the resonance frequency of the elastic wave device. Here, the design parameters of the elastic wave device are as follows.
 支持基板の材料:シリコン(Si)
 支持基板のオイラー角(φ,θ,ψ)におけるφ:φ=-45°
 支持基板のオイラー角(φ,θ,ψ)におけるθ:-41.73°≦θ≦-44.73°の範囲内において1°刻みで変化させた。
 支持基板のオイラー角(φ,θ,ψ)におけるψ:ψ=45°
 低音速膜:材料…SiO、膜厚…0.15λ
 圧電体層:材料…LiTaO、膜厚…0.2λ
 IDT電極:材料…Al、膜厚…0.05λ
 IDT電極の波長λ:2μm
Support substrate material: Silicon (Si)
Φ: φ = -45 ° at Euler angles (φ, θ, ψ) of the support substrate
The Euler angles (φ, θ, ψ) of the support substrate were changed in 1 ° increments within the range of θ: −41.73 ° ≦ θ ≦ −44.73 °.
Ψ: ψ = 45 ° at Euler angles (φ, θ, ψ) of the support substrate
Bass sound film: Material: SiO 2 , Film thickness: 0.15λ
Piezoelectric layer: Material: LiTaO 3 , film thickness: 0.2λ
IDT electrode: Material ... Al, film thickness ... 0.05λ
IDT electrode wavelength λ: 2 μm
 図6は、支持基板のオイラー角におけるθと高次モードの位相との関係を示す図である。なお、図6における縦軸は、変化させたθ毎の位相特性における、高次モードの位相の最大値である。 FIG. 6 is a diagram showing the relationship between θ at the Euler angles of the support substrate and the phase of the higher-order mode. The vertical axis in FIG. 6 is the maximum value of the phase in the higher-order mode in the changed phase characteristics for each θ.
 図6に示すように、支持基板のオイラー角(φ,θ,ψ)におけるθがθ、すなわち-54.73°の場合には、高次モードの位相の値が大きく、弾性波装置のフィルタ特性などの劣化が問題となる。一方で、θがθ、すなわち-54.73°よりも小さい場合及び大きい場合には、高次モードが抑制されていることがわかる。さらに、θが-60°よりも大きくなると、高次モードが効果的に抑制されていることがわかる。同様に、φが-45°よりも小さくなると、高次モードが効果的に抑制されていることがわかる。従って、図2を援用して示す第2の実施形態のように、支持基板4のオイラー角におけるθが、-60°<θ<-θまたはθ<θ<-45°の範囲内であることにより、高次モードを効果的に抑制することができる。 As shown in FIG. 6, when θ at the Euler angles (φ, θ, ψ) of the support substrate is θ M , that is, −54.73 °, the phase value in the higher-order mode is large, and the elastic wave device has a large phase value. Deterioration of filter characteristics becomes a problem. On the other hand, when θ is smaller than or larger than θ M , that is, −54.73 °, it can be seen that the higher-order mode is suppressed. Further, when θ becomes larger than −60 °, it can be seen that the higher-order mode is effectively suppressed. Similarly, when φ is smaller than −45 °, it can be seen that the higher-order mode is effectively suppressed. Therefore, as in the second embodiment shown with reference to FIG. 2, θ at the Euler angles of the support substrate 4 is within the range of −60 ° <θ <−θ M or θ M <θ <−45 °. By being present, the higher-order mode can be effectively suppressed.
 図6中の二点鎖線により示すように、支持基板4のオイラー角におけるθが-59.73°≦θ≦-55.73°または-53.73°≦θ≦-45.73°である条件を第4の条件とする。支持基板4のオイラー角が第4の条件を満たすことが好ましい。それによって、図6に示すように、高次モードをより一層抑制することができる。 As shown by the alternate long and short dash line in FIG. 6, θ at the Euler angles of the support substrate 4 is −59.73 ° ≦ θ ≦ −55.73 ° or −53.73 ° ≦ θ ≦ −45.73 °. Let the condition be the fourth condition. It is preferable that the Euler angles of the support substrate 4 satisfy the fourth condition. As a result, as shown in FIG. 6, the higher-order mode can be further suppressed.
 なお、第4の条件における小数点以下の数値は、θの小数点以下の数値と同じである。例えば、小数点第4位までの表記とすると、第4の条件は-59.7356°≦θ≦-55.7356°または-53.7356°≦θ≦-45.7356°である条件となる。 The numerical value after the decimal point in the fourth condition is the same as the numerical value after the decimal point of θ M. For example, in the notation up to the fourth decimal place, the fourth condition is -59.7356 ° ≤ θ ≤ -55.7356 ° or -53.7356 ° ≤ θ ≤ -45.7356 °.
 支持基板4のオイラー角が、上記第1の条件及び上記第2の条件の両方を満たすことが好ましい。より具体的には、-55°<φ<-45°または-45°<φ<-33°であり、かつ-60°<θ<-54.7°または-54.7°<θ<-45°であることが好ましい。この場合には、高次モードをより一層抑制することができる。 It is preferable that the Euler angles of the support substrate 4 satisfy both the first condition and the second condition. More specifically, -55 ° <φ <-45 ° or -45 ° <φ <-33 °, and -60 ° <θ <-54.7 ° or -54.7 ° <θ <-. It is preferably 45 °. In this case, the higher-order mode can be further suppressed.
 支持基板4のオイラー角が、第3の条件及び第4の条件のうち少なくとも一方を満たすことがより好ましい。より具体的には、-54°≦φ≦-47°または-43°≦φ≦-34°である条件及び-59.73°≦θ≦-55.73°または-53.73°≦θ≦-45.73°である条件のうち少なくとも一方が満たされていることがより好ましい。それによって、図3または図6において示したように、高次モードをより一層効果的に抑制することができる。 It is more preferable that the Euler angles of the support substrate 4 satisfy at least one of the third condition and the fourth condition. More specifically, the condition that -54 ° ≤ φ ≤ -47 ° or -43 ° ≤ φ ≤ -34 ° and -59.73 ° ≤ θ ≤ -55.73 ° or -53.73 ° ≤ θ It is more preferable that at least one of the conditions of ≦ −45.73 ° is satisfied. Thereby, as shown in FIG. 3 or 6, the higher-order mode can be suppressed more effectively.
 支持基板4のオイラー角が、第3の条件及び第4の条件の両方を満たすことがさらに好ましい。それによって、高次モードをより確実に、かつより一層効果的に抑制することができる。 It is more preferable that the Euler angles of the support substrate 4 satisfy both the third condition and the fourth condition. Thereby, the higher-order mode can be suppressed more reliably and more effectively.
1…弾性波装置
2…圧電性基板
3…IDT電極
4…支持基板
5…低音速膜
6…圧電体層
8A,8B…反射器
16,17…第1,第2のバスバー
18,19…第1,第2の電極指
22A,22B…圧電性基板
27…高音速膜
1 ... Elastic wave device 2 ... Piezoelectric substrate 3 ... IDT electrode 4 ... Support substrate 5 ... Bass sound film 6 ... Piezoelectric layers 8A, 8B ... Piezoelectrics 16, 17 ... First, second bus bars 18, 19 ... First 1, 2nd electrode fingers 22A, 22B ... Piezoelectric substrate 27 ... High sound velocity film

Claims (3)

  1.  シリコンからなる支持基板と、
     前記支持基板上に直接的または間接的に設けられている圧電体層と、
     前記圧電体層上に設けられているIDT電極と、
    を備え、
     前記支持基板のオイラー角(φ,θ,ψ)におけるφが-55°<φ<-45°または-45°<φ<-33°である条件及び前記支持基板のオイラー角(φ,θ,ψ)におけるθが-60°<θ<θまたはθ<θ<-45°である条件のうち少なくとも一方を満たし、
     前記θが、シリコンの(111)面のオイラー角(φ,θ,ψ)におけるθである、弾性波装置。
    A support board made of silicon and
    A piezoelectric layer directly or indirectly provided on the support substrate,
    The IDT electrode provided on the piezoelectric layer and
    With
    Conditions where φ at the Euler angles (φ, θ, ψ) of the support substrate is −55 ° <φ <-45 ° or −45 ° <φ <-33 ° and the Euler angles (φ, θ, ψ) of the support substrate At least one of the conditions that θ in ψ) is −60 ° <θ <θ M or θ M <θ <−45 ° is satisfied.
    An elastic wave device in which θ M is θ at Euler angles (φ, θ, ψ) of the (111) plane of silicon.
  2.  前記支持基板のオイラー角(φ,θ,ψ)におけるφが-54°≦φ≦-47°または-43°≦φ≦-34°である条件及び前記支持基板のオイラー角(φ,θ,ψ)におけるθが-59.73°≦θ≦-55.73°または-53.73°≦θ≦-45.73°である条件のうち少なくとも一方を満たす、請求項1に記載の弾性波装置。 Conditions where φ at the Euler angles (φ, θ, ψ) of the support substrate is −54 ° ≦ φ ≦ −47 ° or −43 ° ≦ φ ≦ −34 ° and the Euler angles (φ, θ, ψ) of the support substrate The elastic wave according to claim 1, which satisfies at least one of the conditions that θ in ψ) is −59.73 ° ≦ θ ≦ −55.73 ° or −53.73 ° ≦ θ ≦ −45.73 °. apparatus.
  3.  前記支持基板と前記圧電体層との間に低音速膜が設けられており、
     前記低音速膜を伝搬するバルク波の音速が、前記圧電体層を伝搬するバルク波の音速よりも低い、請求項1または2に記載の弾性波装置。
    A bass velocity film is provided between the support substrate and the piezoelectric layer.
    The elastic wave device according to claim 1 or 2, wherein the sound velocity of the bulk wave propagating in the bass film is lower than the sound velocity of the bulk wave propagating in the piezoelectric layer.
PCT/JP2020/021187 2019-05-31 2020-05-28 Elastic wave device WO2020241776A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-102568 2019-05-31
JP2019102568 2019-05-31

Publications (1)

Publication Number Publication Date
WO2020241776A1 true WO2020241776A1 (en) 2020-12-03

Family

ID=73552229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021187 WO2020241776A1 (en) 2019-05-31 2020-05-28 Elastic wave device

Country Status (1)

Country Link
WO (1) WO2020241776A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164211A1 (en) * 2017-03-09 2018-09-13 株式会社村田製作所 Multiplexer, high-frequency front end circuit, and communication device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018164211A1 (en) * 2017-03-09 2018-09-13 株式会社村田製作所 Multiplexer, high-frequency front end circuit, and communication device

Similar Documents

Publication Publication Date Title
WO2020100744A1 (en) Elastic wave device
JP6822597B2 (en) Elastic wave device, high frequency front end circuit and communication device
JP4356613B2 (en) Boundary acoustic wave device
WO2020209190A1 (en) Elastic wave device and multiplexer
US20220014175A1 (en) Acoustic wave device
US11456719B2 (en) Acoustic wave device
JP7147865B2 (en) Acoustic wave device
WO2020184621A1 (en) Elastic wave device
JP7433873B2 (en) Acoustic wave resonators, filters, and multiplexers
JP2023036845A (en) Acoustic wave device
CN111446942A (en) Elastic wave device
WO2022202917A1 (en) Elastic wave device
WO2020241776A1 (en) Elastic wave device
WO2021090861A1 (en) Elastic wave device
WO2021090775A1 (en) Elastic wave device
WO2022264933A1 (en) Elastic wave device
WO2022168799A1 (en) Elastic wave device
WO2022168798A1 (en) Elastic wave device
WO2022138443A1 (en) Elastic wave device
WO2022168796A1 (en) Elastic wave device
US20240113682A1 (en) Acoustic wave device
WO2022224470A1 (en) Resonator
WO2021024762A1 (en) Elastic-wave filter device
WO2021210551A1 (en) Elastic wave device
WO2022019169A1 (en) Ladder-type filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20814394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20814394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP