WO2024127970A1 - Fuel cell system and work vehicle - Google Patents

Fuel cell system and work vehicle Download PDF

Info

Publication number
WO2024127970A1
WO2024127970A1 PCT/JP2023/042481 JP2023042481W WO2024127970A1 WO 2024127970 A1 WO2024127970 A1 WO 2024127970A1 JP 2023042481 W JP2023042481 W JP 2023042481W WO 2024127970 A1 WO2024127970 A1 WO 2024127970A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
hydrogen
conversion element
thermoelectric conversion
cell system
Prior art date
Application number
PCT/JP2023/042481
Other languages
French (fr)
Japanese (ja)
Inventor
英世 戎崎
宏昌 海部
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024127970A1 publication Critical patent/WO2024127970A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to a fuel cell system and a work vehicle.
  • Fuel cells are known, such as that disclosed in Patent Document 1. Fuel cells are more energy efficient than internal combustion engines, and are therefore expected to be a power source for mobility such as automobiles and buses.
  • the first method is to improve the performance of the fuel cell by increasing the power generation efficiency of the fuel cell itself.
  • the second method is to recover energy from the exhaust gas and waste heat from the fuel cell.
  • the operating temperature of fuel cells is low at around 80°C compared to internal combustion engines, and the temperature difference with the surrounding environment is small, so waste heat utilization has not progressed as much as with mobility equipped with internal combustion engines.
  • the purpose of this disclosure is to improve the efficiency of fuel cell systems.
  • a fuel cell system includes a fuel cell, a thermoelectric conversion element, a first member that faces a first surface of the thermoelectric conversion element and supplies hydrogen to the fuel cell, a second member that faces a second surface of the thermoelectric conversion element and receives a coolant from the fuel cell, and a storage battery connected to the thermoelectric conversion element.
  • This disclosure improves the efficiency of fuel cell systems.
  • FIG. 1 is a perspective view that illustrates a work vehicle according to an embodiment.
  • FIG. 2 is a diagram illustrating a schematic configuration of the work vehicle according to the embodiment.
  • FIG. 3 is a diagram showing a schematic view of a part of a fuel cell system according to an embodiment.
  • FIG. 4 is a diagram showing a schematic diagram of a thermoelectric conversion element when the fuel cell according to the embodiment consumes hydrogen.
  • FIG. 5 is a diagram showing a schematic diagram of a thermoelectric conversion element when hydrogen is being filled into a hydrogen tank according to an embodiment.
  • FIG. 6 is a diagram showing a schematic view of a part of a fuel cell system according to an embodiment.
  • FIG. 7 is a diagram showing a schematic view of a part of a fuel cell system according to an embodiment.
  • FIG. 1 is a perspective view that shows a schematic configuration of a work vehicle 2 according to an embodiment.
  • FIG. 2 is a diagram that shows a schematic configuration of a work vehicle 2 according to an embodiment.
  • the work vehicle 2 refers to a vehicle that works at a work site. Examples of work sites include a mine or a quarry.
  • the work vehicle 2 is a transport vehicle that performs transport work to transport a load at the work site.
  • the work vehicle 2 may be a manned vehicle that operates based on the driving operation by a driver who boards the work vehicle 2, or may be an unmanned vehicle that operates without being driven by a driver.
  • the work vehicle 2 is appropriately referred to as a dump truck 2.
  • the dump truck 2 includes a fuel cell system 3, an electric motor 4, a power take-off 6, a hydraulic pump 5, a valve device 7, front wheels 8A, rear wheels 8B, a travel motor 4B, a steering cylinder 9, a vehicle body 10, a dump body 12, and a hoist cylinder 13.
  • the electric motor 4 is driven based on the power generated by the fuel cell system 3.
  • the electric motor 4 includes a drive motor 4A and a traction motor 4B.
  • the hydraulic pump 5 is connected to the drive motor 4A via the power take-off 6.
  • the drive motor 4A drives the hydraulic pump 5.
  • the hydraulic pump 5 discharges hydraulic oil to be supplied to each of the steering cylinder 9 and the hoist cylinder 13.
  • the hydraulic oil discharged from the hydraulic pump 5 is supplied to each of the steering cylinder 9 and the hoist cylinder 13 via the valve device 7.
  • the front wheels 8A and rear wheels 8B each support the vehicle body 10. Front tires 11A are attached to the front wheels 8A. Rear tires 11B are attached to the rear wheels 8B.
  • the front wheels 8A are steered wheels that are steered by the steering cylinder 9.
  • the rear wheels 8B are drive wheels that rotate by the power generated by the travel motor 4B.
  • the travel motor 4B rotates the rear wheels 8B.
  • the dump truck 2 travels as the rear tires 11B attached to the rear wheels 8B rotate.
  • the steering cylinder 9 is a hydraulic cylinder, which is a type of hydraulic actuator.
  • the steering cylinder 9 is driven by hydraulic oil discharged from the hydraulic pump 5.
  • the valve device 7 adjusts the direction and flow rate of the hydraulic oil supplied from the hydraulic pump 5 to the steering cylinder 9.
  • the steering cylinder 9 generates power to steer the front wheels 8A.
  • the vehicle body 10 is supported by the front wheels 8A and the rear wheels 8B.
  • the dump body 12 is supported by the vehicle body 10.
  • the dump body 12 is a member onto which cargo is loaded.
  • the dump body 12 is rotated by a hoist cylinder 13.
  • the dump body 12 is of a rear dump type.
  • the dump body 12 is rotated rearward by the hoist cylinder 13, causing the cargo to be discharged from the dump body 12.
  • the hoist cylinder 13 is a hydraulic cylinder, which is a type of hydraulic actuator.
  • the hoist cylinder 13 is driven by hydraulic oil discharged from the hydraulic pump 5.
  • the valve device 7 adjusts the direction and flow rate of the hydraulic oil supplied from the hydraulic pump 5 to the hoist cylinder 13.
  • the hoist cylinder 13 generates power to rotate the dump body 12.
  • the fuel cell system 3 is mounted on a dump truck 2. As shown in Fig. 2, the fuel cell system 3 has a fuel cell 20, an oxidizing gas supply device 30, a fuel gas supply device 40, a gas discharge device 50, a power conditioning device 60, and a coolant supply device 70.
  • the fuel cell 20 generates electricity by chemically reacting hydrogen, which is a fuel gas, with oxygen, which is an oxidizing gas.
  • the fuel cell 20 has a stack structure in which multiple unit cells are stacked.
  • the oxidizing gas supply device 30 supplies air containing oxygen to the cathode of the fuel cell 20.
  • the oxidizing gas supply device 30 has an air compressor 31, an oxygen enrichment membrane 32, a turbine 33, an air supply line 34, an air supply line 35, and an air supply line 36.
  • the air compressor 31 draws in air from outside the dump truck 2 and supplies it to the fuel cell 20.
  • the turbine 33 is connected to the air compressor 31.
  • the air supply line 34 connects the air compressor 31 and the oxygen enrichment membrane 32.
  • the air drawn in by the air compressor 31 is supplied to the oxygen enrichment membrane 32 via the air supply line 34.
  • the oxygen enrichment membrane 32 generates oxygen-enriched air with an increased oxygen concentration and nitrogen-enriched air with a decreased oxygen concentration from the air.
  • the air supply line 35 connects the oxygen enrichment membrane 32 to the cathode inlet of the fuel cell 20.
  • the oxygen-enriched air generated in the oxygen-enriched membrane 32 is supplied to the cathode of the fuel cell 20 via an air supply line 35.
  • An air supply line 36 connects the oxygen-enriched membrane 32 and the turbine 33.
  • the nitrogen-enriched air generated in the oxygen-enriched membrane 32 is supplied to the turbine 33 via the air supply line 36.
  • the nitrogen-enriched air rotates the turbine 33.
  • the turbine 33 provides a rotational force to the air compressor 31.
  • the fuel gas supply device 40 supplies hydrogen to the anode of the fuel cell 20.
  • the fuel gas supply device 40 has a hydrogen tank 41 and a fuel gas supply line 42.
  • the hydrogen tank 41 contains hydrogen. Hydrogen is filled into the hydrogen tank 41.
  • the fuel gas supply line 42 connects the hydrogen tank 41 to the anode inlet of the fuel cell 20.
  • the hydrogen discharged from the hydrogen tank 41 is supplied to the anode of the fuel cell 20 via the fuel gas supply line 42.
  • a hydrogen pump that supplies hydrogen from the hydrogen tank 41 to the fuel cell 20 may be disposed in the fuel gas supply line 42.
  • the gas exhaust device 50 exhausts the gas discharged from the fuel cell 20 into the atmospheric space around the dump truck 2.
  • the gas exhaust device 50 has an exhaust line 51 and a turbine 52.
  • the exhaust line 51 connects the cathode outlet of the fuel cell 20 to the turbine 52.
  • the turbine 52 rotates by the gas discharged from the fuel cell 20.
  • the power adjustment device 60 has a DC/DC converter 61, an inverter 62, a DC/DC converter 63, and a power storage device 64.
  • the power adjustment device 60 supplies at least one of the power generated by the fuel cell 20 and the power stored in the power storage device 64 to the electric motor 4 (4A, 4B).
  • the electric motor 4 is driven based on at least one of the power from the fuel cell 20 and the power from the power storage device 64.
  • the DC/DC converter 61 boosts the voltage generated by the fuel cell 20.
  • the DC/DC converter 61 supplies the direct current generated by the fuel cell 20 to the inverter 62.
  • the power storage device 64 is charged by the power generated by the fuel cell 20.
  • the power storage device 64 may be charged by a charging device provided outside the dump truck 2.
  • the power storage device 64 may be charged by the regenerative energy of the electric motor 4.
  • the power storage device 64 includes a secondary battery (storage battery).
  • the power storage device 64 includes a lithium ion battery (LiB: Lithium ion Battery).
  • the power storage device 64 may include a lithium ion capacitor (LiC: Lithium ion Capacitor) or an electric double layer capacitor (EDLC: Electric Double Layer Capacitor).
  • the DC/DC converter 63 controls the charging and discharging of the power storage device 64 so that the power storage device 64 can supply power to the inverter 62 in cooperation with the fuel cell 20.
  • the inverter 62 converts the direct current from at least one of the DC/DC converters 61 and 63 into a three-phase alternating current and supplies it to the electric motor 4 (4A, 4B).
  • the electric motor 4 (4A, 4B) is driven based on the three-phase alternating current supplied from the inverter 62.
  • the refrigerant supply device 70 supplies a refrigerant to the fuel cell 20 to cool the fuel cell 20.
  • An example of the refrigerant is water.
  • the refrigerant supply device 70 has a supply line 71, a discharge line 72, a radiator 73, and a refrigerant pump 74.
  • the supply line 71 is connected to a refrigerant inlet of the fuel cell 20.
  • the discharge line 72 is connected to a refrigerant outlet of the fuel cell 20.
  • the radiator 73 is connected to the supply line 71 and the discharge line 72.
  • the refrigerant pump 74 is disposed in the supply line 71.
  • the refrigerant pump 74 supplies the refrigerant to the fuel cell 20.
  • the refrigerant pump 74 drives to circulate the refrigerant in a circulation path including the supply line 71, the fuel cell 20, the discharge line 72, and the radiator 73.
  • the radiator 73 exchanges heat between the refrigerant discharged from the fuel cell 20 and the air outside the dump truck 2 to cool the refrigerant.
  • Thermoelectric conversion element 3 is a schematic diagram showing a part of a fuel cell system 3 according to an embodiment. As shown in FIG. 3, the fuel cell system 3 includes a fuel cell 20, a fuel gas supply device 40, a refrigerant supply device 70, a thermoelectric conversion element 100, and a storage battery 200.
  • the fuel gas supply device 40 has a hydrogen tank 41 that stores hydrogen, and a fuel gas supply line 42 that connects the hydrogen tank 41 to the anode inlet of the fuel cell 20.
  • the fuel gas supply line 42 includes a fuel gas supply tube that connects the hydrogen tank 41 to the anode inlet of the fuel cell 20.
  • a heat transfer section 42R is provided in a portion of the fuel gas supply line 42 (fuel gas supply tube).
  • the heat transfer section 42R includes a bent section in which a portion of the fuel gas supply tube is bent multiple times.
  • the size of the heat transfer surface per unit area of the heat transfer section 42R is larger than the size of the heat transfer surface per unit area of the fuel gas supply tube in the portion where the heat transfer section 42R is not provided.
  • Each of the hydrogen tank 41 and the fuel gas supply line 42 (fuel gas supply tube) functions as a first member that supplies hydrogen to the fuel cell 20.
  • the refrigerant supply device 70 has a supply line 71 connected to the refrigerant inlet of the fuel cell 20, a discharge line 72 connected to the refrigerant outlet of the fuel cell 20, a radiator 73 connected to each of the supply line 71 and the discharge line 72, and a refrigerant pump 74.
  • the supply line 71 includes a supply tube connected to the refrigerant inlet of the fuel cell 20.
  • the discharge line 72 includes a discharge tube connected to the refrigerant outlet of the fuel cell 20.
  • the refrigerant pump 74 drives the refrigerant to circulate in a circulation path including the supply line 71, the fuel cell 20, the discharge line 72, and the radiator 73.
  • the radiator 73 exchanges heat between the refrigerant discharged from the fuel cell 20 and the air outside the dump truck 2 to cool the refrigerant.
  • a heat transfer section 72R is provided in a part of the discharge line 72 (discharge tube).
  • the heat transfer section 72R includes a bent section in which a part of the discharge tube is bent multiple times.
  • the size of the heat transfer surface per unit area of the heat transfer portion 72R is larger than the size of the heat transfer surface per unit area of the exhaust tube in the portion where the heat transfer portion 72R is not provided.
  • the exhaust line 72 (exhaust tube) and the radiator 73 each function as a second member to which the coolant is supplied from the fuel cell 20.
  • the storage battery 200 is connected to the thermoelectric conversion element 100.
  • the storage battery 200 may be considered as at least a part of the power storage device 64, or may be considered as a power storage device different from the power storage device 64.
  • the thermoelectric conversion element 100 When the thermoelectric conversion element 100 generates power due to the Seebeck effect, the storage battery 200 is charged with the power generated by the thermoelectric conversion element 100.
  • the thermoelectric conversion element 100 cools the surrounding object due to the Peltier effect.
  • the thermoelectric conversion element 100 has a first surface that faces the heat transfer portion 42R of the fuel gas supply line 42, and a second surface that faces the heat transfer portion 72R of the exhaust line 72. When a temperature difference occurs between the first surface and the second surface, the thermoelectric conversion element 100 generates electricity due to the Seebeck effect.
  • FIG. 4 is a schematic diagram showing the thermoelectric conversion element 100 when the fuel cell 20 according to the embodiment consumes hydrogen.
  • the fuel cell 20 generates power by consuming hydrogen supplied from a hydrogen tank 41.
  • hydrogen filled in the hydrogen tank 41 is supplied to the fuel cell 20 via a fuel gas supply line 42.
  • the hydrogen tank 41 is filled with compressed hydrogen.
  • the temperature of the hydrogen flowing out of the hydrogen tank 41 decreases due to the principle of adiabatic expansion.
  • the hydrogen that flows out of the hydrogen tank 41 and has a reduced temperature flows through the fuel gas supply line 42.
  • the temperature of the hydrogen flowing through the heat transfer section 42R of the fuel gas supply line 42 is, for example, -20°C or higher and 0°C or lower.
  • the fuel cell 20 When hydrogen is consumed, the fuel cell 20 generates power. As a result, the temperature of the coolant that absorbs heat from the fuel cell 20 rises. That is, when hydrogen is consumed, the temperature of the coolant flowing out of the coolant outlet of the fuel cell 20 is high.
  • the high-temperature coolant that flows out of the coolant outlet of the fuel cell 20 flows through the discharge line 72.
  • the temperature of the coolant flowing through the heat transfer section 72R of the discharge line 72 is, for example, about 80°C.
  • thermoelectric conversion element 100 faces the heat transfer section 42R of the fuel gas supply line 42.
  • the second surface of the thermoelectric conversion element 100 faces the heat transfer section 72R of the exhaust line 72.
  • the first surface of the thermoelectric conversion element 100 is cooled by hydrogen flowing through the heat transfer section 42R of the fuel gas supply line 42.
  • the second surface of the thermoelectric conversion element 100 is heated by the refrigerant flowing through the heat transfer section 72R of the exhaust line 72.
  • Hydrogen functions as a cold source for the thermoelectric conversion element 100.
  • the refrigerant functions as a hot source for the thermoelectric conversion element 100.
  • the thermoelectric conversion element 100 When hydrogen is consumed, the thermoelectric conversion element 100 generates electricity by the Seebeck effect.
  • the storage battery 200 is charged with the electricity generated by the thermoelectric conversion element 100.
  • FIG. 5 is a schematic diagram showing the thermoelectric conversion element 100 during hydrogen filling when hydrogen is filled into the hydrogen tank 41 according to the embodiment.
  • hydrogen is filled into the hydrogen tank 41 at any timing.
  • a hydrogen filling port is provided in the dump truck 2.
  • a hydrogen supply device located outside the dump truck 2 is connected to the hydrogen filling port. Hydrogen supplied from the hydrogen supply device is filled into the hydrogen tank 41.
  • hydrogen is not supplied from the hydrogen tank 41 to the fuel cell 20. In other words, during hydrogen filling, hydrogen is not consumed by the fuel cell 20.
  • the hydrogen tank 41 is filled with compressed hydrogen.
  • the temperature of the hydrogen being filled into the hydrogen tank 41 rises due to the principle of adiabatic compression.
  • the temperature of the hydrogen tank 41 and the temperature of the fuel gas supply line 42 connected to the hydrogen tank 41 also rise.
  • the temperature of the heat transfer section 42R of the fuel gas supply line 42 when filling with hydrogen is, as an example, about 80°C.
  • the fuel cell 20 When hydrogen is being filled, the fuel cell 20 is not generating electricity. Therefore, the temperature of the coolant flowing out of the coolant outlet of the fuel cell 20 when hydrogen is being filled is lower than the temperature of the coolant flowing out of the coolant outlet of the fuel cell 20 when hydrogen is being consumed.
  • the high-temperature coolant that flows out of the coolant outlet of the fuel cell 20 flows through the discharge line 72.
  • the temperature of the coolant flowing through the heat transfer section 72R of the discharge line 72 when hydrogen is being filled is, by way of example, between 50°C and 80°C.
  • thermoelectric conversion element 100 faces the heat transfer section 42R of the fuel gas supply line 42.
  • the second surface of the thermoelectric conversion element 100 faces the heat transfer section 72R of the discharge line 72.
  • the first surface of the thermoelectric conversion element 100 is heated by the heat transfer section 42R of the fuel gas supply line 42, the temperature of which has increased.
  • the second surface of the thermoelectric conversion element 100 is cooled by the refrigerant flowing through the heat transfer section 72R of the discharge line 72.
  • Hydrogen functions as a hot heat source for the thermoelectric conversion element 100.
  • the refrigerant functions as a cold heat source for the thermoelectric conversion element 100.
  • thermoelectric conversion element 100 cools the fuel gas supply line 42 by the Peltier effect.
  • the fuel gas supply line 42 is cooled, thereby cooling the hydrogen tank 41 connected to the fuel gas supply line 42.
  • the fuel cell system 3 comprises a fuel cell 20, a thermoelectric conversion element 100, a fuel gas supply line 42 (fuel gas supply tube) facing a first surface of the thermoelectric conversion element 100 and supplying hydrogen to the fuel cell 20, and a discharge line 72 (discharge tube) facing a second surface of the thermoelectric conversion element 100 and receiving a refrigerant from the fuel cell 20.
  • the Seebeck effect or Peltier effect can be exerted on the thermoelectric conversion element 100 by the temperature difference between hydrogen and the refrigerant.
  • the Seebeck effect converts the thermal energy of the refrigerant flowing out from the refrigerant outlet of the fuel cell 20 into electrical energy.
  • the Peltier effect suppresses the temperature rise of the fuel gas supply line 42 and the hydrogen tank 41. This improves the efficiency of the fuel cell system 3.
  • the hydrogen tank 41 is made of plastic, it is preferable to suppress the temperature rise of the hydrogen tank 41 during hydrogen filling in order to suppress thermal deterioration of the hydrogen tank 41.
  • the hydrogen filling speed for the hydrogen tank 41 is reduced in order to suppress the temperature rise of the hydrogen tank 41, the hydrogen filling time will be extended. If the temperature of hydrogen before filling the hydrogen tank 41 is reduced in order to suppress the temperature rise of the hydrogen tank 41, the load on the hydrogen supply device (hydrogen station) will be increased. According to the embodiment, when hydrogen is being filled, the Peltier effect of the thermoelectric conversion element 100 suppresses the temperature rise of the fuel gas supply line 42 and the hydrogen tank 41.
  • Fig. 6 is a diagram showing a schematic view of a part of a fuel cell system 3 according to an embodiment.
  • the fuel gas supply line 42 faces the first surface of the thermoelectric conversion element 100
  • the exhaust line 72 faces the second surface of the thermoelectric conversion element 100.
  • the hydrogen tank 41 may face the first surface of the thermoelectric conversion element 100
  • the radiator 73 may face the second surface of the thermoelectric conversion element 100.
  • FIG. 7 is a schematic diagram of a portion of a fuel cell system 3 according to an embodiment.
  • FIG. 7 shows a cross section of a hydrogen tank 41.
  • a ring-shaped thermoelectric conversion element 100B may be arranged around the hydrogen tank 41.
  • An exhaust line 720 (exhaust tube) may be arranged around the thermoelectric conversion element 100B.
  • the exhaust line 720 may be arranged so as to be wound around the thermoelectric conversion element 100B.
  • the hydrogen tank 41 faces the inner peripheral surface of the thermoelectric conversion element 100B.
  • the exhaust line 720 faces the outer peripheral surface of the thermoelectric conversion element 100B.
  • the thermoelectric conversion element 100B can also exhibit the Seebeck effect or the Peltier effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This fuel cell system comprises: a fuel cell; a thermoelectric conversion element; a first member which faces a first surface of the thermoelectric conversion element and which supplies hydrogen to the fuel cell; a second member which faces a second surface of the thermoelectric conversion element and to which a refrigerant is supplied from the fuel cell; and a storage battery which connects to the thermoelectric conversion element.

Description

燃料電池システム及び作業車両Fuel cell system and work vehicle
 本開示は、燃料電池システム及び作業車両に関する。 This disclosure relates to a fuel cell system and a work vehicle.
 燃料電池システムに係る技術分野において、特許文献1に開示されているような、燃料電池が知られている。燃料電池は、内燃機関に比べてエネルギー効率が高いため、自動車又はバスなどのモビリティーの動力源として期待されている。 In the technical field related to fuel cell systems, fuel cells are known, such as that disclosed in Patent Document 1. Fuel cells are more energy efficient than internal combustion engines, and are therefore expected to be a power source for mobility such as automobiles and buses.
特開平07-099057号公報Japanese Patent Application Laid-Open No. 07-099057
 モビリティーの総保有コスト(TCO:Total Cost of Ownership)の改善又はエネルギー有効利用の観点から、燃料電池の更なる効率向上が求められている。燃料電池の発電効率を高める方法は、大きく2つに分けられる。第1の方法は、燃料電池そのものの発電効率を高めることで、燃料電池の性能向上によるものである。第2の方法は、燃料電池からの排気や排熱からエネルギー回収を行うものである。しかし、第2の方法については、燃料電池の作動温度が80℃程度と内燃機関に対して低く、周辺環境との温度差が小さいため、内燃機関搭載モビリティーのように排熱利用が進んでいない。 Further improvements in the efficiency of fuel cells are required from the perspective of improving the total cost of ownership (TCO) of mobility or efficient energy utilization. There are two main methods for increasing the power generation efficiency of fuel cells. The first method is to improve the performance of the fuel cell by increasing the power generation efficiency of the fuel cell itself. The second method is to recover energy from the exhaust gas and waste heat from the fuel cell. However, with the second method, the operating temperature of fuel cells is low at around 80°C compared to internal combustion engines, and the temperature difference with the surrounding environment is small, so waste heat utilization has not progressed as much as with mobility equipped with internal combustion engines.
 本開示は、燃料電池システムの効率を向上することを目的とする。 The purpose of this disclosure is to improve the efficiency of fuel cell systems.
 本開示に従えば、燃料電池と、熱電変換素子と、熱電変換素子の第1面に対向し、燃料電池に水素を供給する第1部材と、熱電変換素子の第2面に対向し、燃料電池から冷媒が供給される第2部材と、熱電変換素子に接続される蓄電池と、を備える、燃料電池システムが提供される。 In accordance with the present disclosure, a fuel cell system is provided that includes a fuel cell, a thermoelectric conversion element, a first member that faces a first surface of the thermoelectric conversion element and supplies hydrogen to the fuel cell, a second member that faces a second surface of the thermoelectric conversion element and receives a coolant from the fuel cell, and a storage battery connected to the thermoelectric conversion element.
 本開示によれば、燃料電池システムの効率が向上する。 This disclosure improves the efficiency of fuel cell systems.
図1は、実施形態に係る作業車両を模式的に示す斜視図である。FIG. 1 is a perspective view that illustrates a work vehicle according to an embodiment. 図2は、実施形態に係る作業車両の構成を模式的に示す図である。FIG. 2 is a diagram illustrating a schematic configuration of the work vehicle according to the embodiment. 図3は、実施形態に係る燃料電池システムの一部を模式的に示す図である。FIG. 3 is a diagram showing a schematic view of a part of a fuel cell system according to an embodiment. 図4は、実施形態に係る燃料電池が水素を消費する水素消費時における熱電変換素子を模式的に示す図である。FIG. 4 is a diagram showing a schematic diagram of a thermoelectric conversion element when the fuel cell according to the embodiment consumes hydrogen. 図5は、実施形態に係る水素タンクに水素を充填する水素充填時における熱電変換素子を模式的に示す図である。FIG. 5 is a diagram showing a schematic diagram of a thermoelectric conversion element when hydrogen is being filled into a hydrogen tank according to an embodiment. 図6は、実施形態に係る燃料電池システムの一部を模式的に示す図である。FIG. 6 is a diagram showing a schematic view of a part of a fuel cell system according to an embodiment. 図7は、実施形態に係る燃料電池システムの一部を模式的に示す図である。FIG. 7 is a diagram showing a schematic view of a part of a fuel cell system according to an embodiment.
 以下、本開示に係る実施形態について図面を参照しながら説明するが、本開示は実施形態に限定されない。以下で説明する実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。 Below, embodiments of the present disclosure will be described with reference to the drawings, but the present disclosure is not limited to the embodiments. The components of the embodiments described below can be combined as appropriate. Also, some components may not be used.
[作業車両]
 図1は、実施形態に係る作業車両2を模式的に示す斜視図である。図2は、実施形態に係る作業車両2の構成を模式的に示す図である。作業車両2とは、作業現場で作業する車両をいう。作業現場として、鉱山又は採石場が例示される。実施形態において、作業車両2は、作業現場で積荷を運搬する運搬作業を実施する運搬車両である。作業車両2は、作業車両2に搭乗した運転者による運転操作に基づいて稼働する有人車両でもよいし、運転者による運転操作によらずに無人で稼働する無人車両でもよい。実施形態においては、作業車両2を適宜、ダンプトラック2、と称する。
[Work vehicle]
FIG. 1 is a perspective view that shows a schematic configuration of a work vehicle 2 according to an embodiment. FIG. 2 is a diagram that shows a schematic configuration of a work vehicle 2 according to an embodiment. The work vehicle 2 refers to a vehicle that works at a work site. Examples of work sites include a mine or a quarry. In the embodiment, the work vehicle 2 is a transport vehicle that performs transport work to transport a load at the work site. The work vehicle 2 may be a manned vehicle that operates based on the driving operation by a driver who boards the work vehicle 2, or may be an unmanned vehicle that operates without being driven by a driver. In the embodiment, the work vehicle 2 is appropriately referred to as a dump truck 2.
 図1及び図2に示すように、ダンプトラック2は、燃料電池システム3と、電動モータ4と、パワーテイクオフ6と、油圧ポンプ5と、バルブ装置7と、前輪8Aと、後輪8Bと、走行モータ4Bと、ステアリングシリンダ9と、車体10と、ダンプボディ12と、ホイストシリンダ13とを備える。 As shown in Figures 1 and 2, the dump truck 2 includes a fuel cell system 3, an electric motor 4, a power take-off 6, a hydraulic pump 5, a valve device 7, front wheels 8A, rear wheels 8B, a travel motor 4B, a steering cylinder 9, a vehicle body 10, a dump body 12, and a hoist cylinder 13.
 電動モータ4は、燃料電池システム3が発電した電力に基づいて駆動する。実施形態において、電動モータ4は、駆動モータ4A及び走行モータ4Bを含む。 The electric motor 4 is driven based on the power generated by the fuel cell system 3. In this embodiment, the electric motor 4 includes a drive motor 4A and a traction motor 4B.
 油圧ポンプ5は、パワーテイクオフ6を介して駆動モータ4Aに接続される。駆動モータ4Aは、油圧ポンプ5を駆動させる。油圧ポンプ5は、ステアリングシリンダ9及びホイストシリンダ13のそれぞれに供給される作動油を吐出する。油圧ポンプ5から吐出された作動油は、バルブ装置7を介して、ステアリングシリンダ9及びホイストシリンダ13のそれぞれに供給される。 The hydraulic pump 5 is connected to the drive motor 4A via the power take-off 6. The drive motor 4A drives the hydraulic pump 5. The hydraulic pump 5 discharges hydraulic oil to be supplied to each of the steering cylinder 9 and the hoist cylinder 13. The hydraulic oil discharged from the hydraulic pump 5 is supplied to each of the steering cylinder 9 and the hoist cylinder 13 via the valve device 7.
 前輪8A及び後輪8Bのそれぞれは、車体10を支持する。前輪8Aに前タイヤ11Aが装着される。後輪8Bに後タイヤ11Bが装着される。前輪8Aは、ステアリングシリンダ9により操舵される操舵輪である。後輪8Bは、走行モータ4Bが発生する動力により回転する駆動輪である。走行モータ4Bは、後輪8Bを回転させる。後輪8Bに装着された後タイヤ11Bが回転することにより、ダンプトラック2が走行する。 The front wheels 8A and rear wheels 8B each support the vehicle body 10. Front tires 11A are attached to the front wheels 8A. Rear tires 11B are attached to the rear wheels 8B. The front wheels 8A are steered wheels that are steered by the steering cylinder 9. The rear wheels 8B are drive wheels that rotate by the power generated by the travel motor 4B. The travel motor 4B rotates the rear wheels 8B. The dump truck 2 travels as the rear tires 11B attached to the rear wheels 8B rotate.
 ステアリングシリンダ9は、油圧アクチュエータの一種である油圧シリンダである。ステアリングシリンダ9は、油圧ポンプ5から吐出された作動油に基づいて駆動する。バルブ装置7は、油圧ポンプ5からステアリングシリンダ9に供給される作動油の方向及び流量を調整する。ステアリングシリンダ9は、前輪8Aを操舵する動力を発生する。 The steering cylinder 9 is a hydraulic cylinder, which is a type of hydraulic actuator. The steering cylinder 9 is driven by hydraulic oil discharged from the hydraulic pump 5. The valve device 7 adjusts the direction and flow rate of the hydraulic oil supplied from the hydraulic pump 5 to the steering cylinder 9. The steering cylinder 9 generates power to steer the front wheels 8A.
 車体10は、前輪8A及び後輪8Bのそれぞれに支持される。ダンプボディ12は、車体10に支持される。ダンプボディ12は、積荷が積み込まれる部材である。ダンプボディ12は、ホイストシリンダ13により回動される。ダンプボディ12は、リアダンプ方式である。ホイストシリンダ13によりダンプボディ12が後方に回動することにより、ダンプボディ12から積荷が排出される。 The vehicle body 10 is supported by the front wheels 8A and the rear wheels 8B. The dump body 12 is supported by the vehicle body 10. The dump body 12 is a member onto which cargo is loaded. The dump body 12 is rotated by a hoist cylinder 13. The dump body 12 is of a rear dump type. The dump body 12 is rotated rearward by the hoist cylinder 13, causing the cargo to be discharged from the dump body 12.
 ホイストシリンダ13は、油圧アクチュエータの一種である油圧シリンダである。ホイストシリンダ13は、油圧ポンプ5から吐出された作動油に基づいて駆動する。バルブ装置7は、油圧ポンプ5からホイストシリンダ13に供給される作動油の方向及び流量を調整する。ホイストシリンダ13は、ダンプボディ12を回動させる動力を発生する。 The hoist cylinder 13 is a hydraulic cylinder, which is a type of hydraulic actuator. The hoist cylinder 13 is driven by hydraulic oil discharged from the hydraulic pump 5. The valve device 7 adjusts the direction and flow rate of the hydraulic oil supplied from the hydraulic pump 5 to the hoist cylinder 13. The hoist cylinder 13 generates power to rotate the dump body 12.
[燃料電池システム]
 燃料電池システム3は、ダンプトラック2に搭載される。図2に示すように、燃料電池システム3は、燃料電池20と、酸化ガス供給装置30と、燃料ガス供給装置40と、ガス排出装置50と、電力調整装置60と、冷媒供給装置70とを有する。
[Fuel cell system]
The fuel cell system 3 is mounted on a dump truck 2. As shown in Fig. 2, the fuel cell system 3 has a fuel cell 20, an oxidizing gas supply device 30, a fuel gas supply device 40, a gas discharge device 50, a power conditioning device 60, and a coolant supply device 70.
 燃料電池20は、燃料ガスである水素と酸化ガスである酸素とを化学反応させて発電する。燃料電池20は、複数の単位セルが積層されたスタック構造を有する。 The fuel cell 20 generates electricity by chemically reacting hydrogen, which is a fuel gas, with oxygen, which is an oxidizing gas. The fuel cell 20 has a stack structure in which multiple unit cells are stacked.
 酸化ガス供給装置30は、燃料電池20のカソードに酸素を含む空気を供給する。酸化ガス供給装置30は、エアコンプレッサ31と、酸素富化膜32と、タービン33と、給気ライン34と、給気ライン35と、給気ライン36とを有する。エアコンプレッサ31は、ダンプトラック2の外部の空気を吸引して燃料電池20に供給する。タービン33は、エアコンプレッサ31に接続される。給気ライン34は、エアコンプレッサ31と酸素富化膜32とを接続する。エアコンプレッサ31により吸引された空気は、給気ライン34を介して酸素富化膜32に供給される。酸素富化膜32は、空気から酸素濃度が増大した酸素富化空気と酸素濃度が低下した窒素富化空気とを生成する。給気ライン35は、酸素富化膜32と燃料電池20のカソード入口とを接続する。酸素富化膜32において生成された酸素富化空気は、給気ライン35を介して燃料電池20のカソードに供給される。給気ライン36は、酸素富化膜32とタービン33とを接続する。酸素富化膜32において生成された窒素富化空気は、給気ライン36を介してタービン33に供給される。窒素富化空気は、タービン33を回転させる。タービン33は、エアコンプレッサ31に回転力を与える。 The oxidizing gas supply device 30 supplies air containing oxygen to the cathode of the fuel cell 20. The oxidizing gas supply device 30 has an air compressor 31, an oxygen enrichment membrane 32, a turbine 33, an air supply line 34, an air supply line 35, and an air supply line 36. The air compressor 31 draws in air from outside the dump truck 2 and supplies it to the fuel cell 20. The turbine 33 is connected to the air compressor 31. The air supply line 34 connects the air compressor 31 and the oxygen enrichment membrane 32. The air drawn in by the air compressor 31 is supplied to the oxygen enrichment membrane 32 via the air supply line 34. The oxygen enrichment membrane 32 generates oxygen-enriched air with an increased oxygen concentration and nitrogen-enriched air with a decreased oxygen concentration from the air. The air supply line 35 connects the oxygen enrichment membrane 32 to the cathode inlet of the fuel cell 20. The oxygen-enriched air generated in the oxygen-enriched membrane 32 is supplied to the cathode of the fuel cell 20 via an air supply line 35. An air supply line 36 connects the oxygen-enriched membrane 32 and the turbine 33. The nitrogen-enriched air generated in the oxygen-enriched membrane 32 is supplied to the turbine 33 via the air supply line 36. The nitrogen-enriched air rotates the turbine 33. The turbine 33 provides a rotational force to the air compressor 31.
 燃料ガス供給装置40は、燃料電池20のアノードに水素を供給する。燃料ガス供給装置40は、水素タンク41と、燃料ガス供給ライン42とを有する。水素タンク41は、水素を収容する。水素は、水素タンク41に充填される。燃料ガス供給ライン42は、水素タンク41と燃料電池20のアノード入口とを接続する。水素タンク41から送出された水素は、燃料ガス供給ライン42を介して燃料電池20のアノードに供給される。なお、燃料ガス供給ライン42に、水素タンク41の水素を燃料電池20に供給する水素ポンプが配置されてもよい。 The fuel gas supply device 40 supplies hydrogen to the anode of the fuel cell 20. The fuel gas supply device 40 has a hydrogen tank 41 and a fuel gas supply line 42. The hydrogen tank 41 contains hydrogen. Hydrogen is filled into the hydrogen tank 41. The fuel gas supply line 42 connects the hydrogen tank 41 to the anode inlet of the fuel cell 20. The hydrogen discharged from the hydrogen tank 41 is supplied to the anode of the fuel cell 20 via the fuel gas supply line 42. A hydrogen pump that supplies hydrogen from the hydrogen tank 41 to the fuel cell 20 may be disposed in the fuel gas supply line 42.
 ガス排出装置50は、燃料電池20から排出されたガスをダンプトラック2の周囲の大気空間に排出する。ガス排出装置50は、排気ライン51と、タービン52とを有する。排気ライン51は、燃料電池20のカソード出口とタービン52とを接続する。タービン52は、燃料電池20から排出されたガスにより回転する。 The gas exhaust device 50 exhausts the gas discharged from the fuel cell 20 into the atmospheric space around the dump truck 2. The gas exhaust device 50 has an exhaust line 51 and a turbine 52. The exhaust line 51 connects the cathode outlet of the fuel cell 20 to the turbine 52. The turbine 52 rotates by the gas discharged from the fuel cell 20.
 電力調整装置60は、DC/DCコンバータ61と、インバータ62と、DC/DCコンバータ63と、蓄電装置64とを有する。電力調整装置60は、燃料電池20が発電した電力及び蓄電装置64に蓄えられている電力の少なくとも一方を電動モータ4(4A,4B)に供給する。電動モータ4は、燃料電池20からの電力及び蓄電装置64からの電力の少なくとも一方に基づいて駆動する。 The power adjustment device 60 has a DC/DC converter 61, an inverter 62, a DC/DC converter 63, and a power storage device 64. The power adjustment device 60 supplies at least one of the power generated by the fuel cell 20 and the power stored in the power storage device 64 to the electric motor 4 (4A, 4B). The electric motor 4 is driven based on at least one of the power from the fuel cell 20 and the power from the power storage device 64.
 DC/DCコンバータ61は、燃料電池20で発電された電圧を昇圧する。DC/DCコンバータ61は、燃料電池20で発電された直流電流をインバータ62に供給する。蓄電装置64は、燃料電池20が発電した電力により充電される。蓄電装置64は、ダンプトラック2の外部に設けられた充電装置により充電されてもよい。蓄電装置64は、電動モータ4の回生エネルギーにより充電されてもよい。蓄電装置64は、二次電池(蓄電池)を含む。実施形態において、蓄電装置64は、リチウムイオンバッテリ(LiB:Lithium ion Battery)を含む。なお、蓄電装置64は、リチウムイオンキャパシタ(LiC:Lithium ion Capacitor)を含んでもよいし、電気二重層キャパシタ(EDLC:Electric Double Layer Capacitor)を含んでもよい。DC/DCコンバータ63は、蓄電装置64が燃料電池20と一体となってインバータ62へ電力を供給できるように、蓄電装置64の充放電を制御する。インバータ62は、DC/DCコンバータ61及びDC/DCコンバータ63の少なくとも一方からの直流電流を三相交流電流に変換して電動モータ4(4A,4B)に供給する。電動モータ4(4A,4B)は、インバータ62から供給された三相交流電流に基づいて駆動される。 The DC/DC converter 61 boosts the voltage generated by the fuel cell 20. The DC/DC converter 61 supplies the direct current generated by the fuel cell 20 to the inverter 62. The power storage device 64 is charged by the power generated by the fuel cell 20. The power storage device 64 may be charged by a charging device provided outside the dump truck 2. The power storage device 64 may be charged by the regenerative energy of the electric motor 4. The power storage device 64 includes a secondary battery (storage battery). In the embodiment, the power storage device 64 includes a lithium ion battery (LiB: Lithium ion Battery). The power storage device 64 may include a lithium ion capacitor (LiC: Lithium ion Capacitor) or an electric double layer capacitor (EDLC: Electric Double Layer Capacitor). The DC/DC converter 63 controls the charging and discharging of the power storage device 64 so that the power storage device 64 can supply power to the inverter 62 in cooperation with the fuel cell 20. The inverter 62 converts the direct current from at least one of the DC/DC converters 61 and 63 into a three-phase alternating current and supplies it to the electric motor 4 (4A, 4B). The electric motor 4 (4A, 4B) is driven based on the three-phase alternating current supplied from the inverter 62.
 冷媒供給装置70は、燃料電池20を冷却するために燃料電池20に冷媒を供給する。冷媒として、水が例示される。冷媒供給装置70は、供給ライン71と、排出ライン72と、ラジエータ73と、冷媒ポンプ74とを有する。供給ライン71は、燃料電池20の冷媒入口に接続される。排出ライン72は、燃料電池20の冷媒出口に接続される。ラジエータ73は、供給ライン71と排出ライン72とに接続される。冷媒ポンプ74は、供給ライン71に配置される。冷媒ポンプ74は、燃料電池20に冷媒を供給する。冷媒ポンプ74は、供給ライン71、燃料電池20、排出ライン72、及びラジエータ73を含む循環経路において冷媒が循環するように駆動する。ラジエータ73は、燃料電池20から排出された冷媒とダンプトラック2の外部の空気とを熱交換して冷媒を冷却する。 The refrigerant supply device 70 supplies a refrigerant to the fuel cell 20 to cool the fuel cell 20. An example of the refrigerant is water. The refrigerant supply device 70 has a supply line 71, a discharge line 72, a radiator 73, and a refrigerant pump 74. The supply line 71 is connected to a refrigerant inlet of the fuel cell 20. The discharge line 72 is connected to a refrigerant outlet of the fuel cell 20. The radiator 73 is connected to the supply line 71 and the discharge line 72. The refrigerant pump 74 is disposed in the supply line 71. The refrigerant pump 74 supplies the refrigerant to the fuel cell 20. The refrigerant pump 74 drives to circulate the refrigerant in a circulation path including the supply line 71, the fuel cell 20, the discharge line 72, and the radiator 73. The radiator 73 exchanges heat between the refrigerant discharged from the fuel cell 20 and the air outside the dump truck 2 to cool the refrigerant.
[熱電変換素子]
 図3は、実施形態に係る燃料電池システム3の一部を模式的に示す図である。図3に示すように、燃料電池システム3は、燃料電池20と、燃料ガス供給装置40と、冷媒供給装置70と、熱電変換素子100と、蓄電池200とを備える。
[Thermoelectric conversion element]
3 is a schematic diagram showing a part of a fuel cell system 3 according to an embodiment. As shown in FIG. 3, the fuel cell system 3 includes a fuel cell 20, a fuel gas supply device 40, a refrigerant supply device 70, a thermoelectric conversion element 100, and a storage battery 200.
 燃料ガス供給装置40は、水素を収容する水素タンク41と、水素タンク41と燃料電池20のアノード入口とを接続する燃料ガス供給ライン42とを有する。燃料ガス供給ライン42は、水素タンク41と燃料電池20のアノード入口とを接続する燃料ガス供給チューブを含む。燃料ガス供給ライン42(燃料ガス供給チューブ)の一部に熱伝達部42Rが設けられる。熱伝達部42Rは、燃料ガス供給チューブの一部を複数回屈曲させた屈曲部を含む。熱伝達部42Rの単位面積当たりの熱伝達面の大きさは、熱伝達部42Rが設けられていない部分の燃料ガス供給チューブの単位面積当たりの熱伝達面の大きさよりも大きい。水素タンク41及び燃料ガス供給ライン42(燃料ガス供給チューブ)のそれぞれは、燃料電池20に水素を供給する第1部材として機能する。 The fuel gas supply device 40 has a hydrogen tank 41 that stores hydrogen, and a fuel gas supply line 42 that connects the hydrogen tank 41 to the anode inlet of the fuel cell 20. The fuel gas supply line 42 includes a fuel gas supply tube that connects the hydrogen tank 41 to the anode inlet of the fuel cell 20. A heat transfer section 42R is provided in a portion of the fuel gas supply line 42 (fuel gas supply tube). The heat transfer section 42R includes a bent section in which a portion of the fuel gas supply tube is bent multiple times. The size of the heat transfer surface per unit area of the heat transfer section 42R is larger than the size of the heat transfer surface per unit area of the fuel gas supply tube in the portion where the heat transfer section 42R is not provided. Each of the hydrogen tank 41 and the fuel gas supply line 42 (fuel gas supply tube) functions as a first member that supplies hydrogen to the fuel cell 20.
 冷媒供給装置70は、燃料電池20の冷媒入口に接続される供給ライン71と、燃料電池20の冷媒出口に接続される排出ライン72と、供給ライン71及び排出ライン72のそれぞれに接続されるラジエータ73と、冷媒ポンプ74とを有する。供給ライン71は、燃料電池20の冷媒入口に接続される供給チューブを含む。排出ライン72は、燃料電池20の冷媒出口に接続される排出チューブを含む。冷媒ポンプ74は、供給ライン71、燃料電池20、排出ライン72、及びラジエータ73を含む循環経路において冷媒が循環するように駆動する。ラジエータ73は、燃料電池20から排出された冷媒とダンプトラック2の外部の空気とを熱交換して冷媒を冷却する。排出ライン72(排出チューブ)の一部に熱伝達部72Rが設けられる。熱伝達部72Rは、排出チューブの一部を複数回屈曲させた屈曲部を含む。熱伝達部72Rの単位面積当たりの熱伝達面の大きさは、熱伝達部72Rが設けられていない部分の排出チューブの単位面積当たりの熱伝達面の大きさよりも大きい。排出ライン72(排出チューブ)及びラジエータ73のそれぞれは、燃料電池20から冷媒が供給される第2部材として機能する。 The refrigerant supply device 70 has a supply line 71 connected to the refrigerant inlet of the fuel cell 20, a discharge line 72 connected to the refrigerant outlet of the fuel cell 20, a radiator 73 connected to each of the supply line 71 and the discharge line 72, and a refrigerant pump 74. The supply line 71 includes a supply tube connected to the refrigerant inlet of the fuel cell 20. The discharge line 72 includes a discharge tube connected to the refrigerant outlet of the fuel cell 20. The refrigerant pump 74 drives the refrigerant to circulate in a circulation path including the supply line 71, the fuel cell 20, the discharge line 72, and the radiator 73. The radiator 73 exchanges heat between the refrigerant discharged from the fuel cell 20 and the air outside the dump truck 2 to cool the refrigerant. A heat transfer section 72R is provided in a part of the discharge line 72 (discharge tube). The heat transfer section 72R includes a bent section in which a part of the discharge tube is bent multiple times. The size of the heat transfer surface per unit area of the heat transfer portion 72R is larger than the size of the heat transfer surface per unit area of the exhaust tube in the portion where the heat transfer portion 72R is not provided. The exhaust line 72 (exhaust tube) and the radiator 73 each function as a second member to which the coolant is supplied from the fuel cell 20.
 蓄電池200は、熱電変換素子100に接続される。蓄電池200は、蓄電装置64の少なくとも一部とみなされてもよいし、蓄電装置64とは異なる蓄電装置とみなされてもよい。ゼーベック効果により熱電変換素子100が発電した場合、蓄電池200は、熱電変換素子100が発電した電力で充電される。蓄電池200から熱電変換素子100に電力が供給された場合、熱電変換素子100は、ペルチェ効果により周囲の物体を冷却する。 The storage battery 200 is connected to the thermoelectric conversion element 100. The storage battery 200 may be considered as at least a part of the power storage device 64, or may be considered as a power storage device different from the power storage device 64. When the thermoelectric conversion element 100 generates power due to the Seebeck effect, the storage battery 200 is charged with the power generated by the thermoelectric conversion element 100. When power is supplied from the storage battery 200 to the thermoelectric conversion element 100, the thermoelectric conversion element 100 cools the surrounding object due to the Peltier effect.
 熱電変換素子100は、燃料ガス供給ライン42の熱伝達部42Rが対向する第1面と、排出ライン72の熱伝達部72Rが対向する第2面とを有する。第1面と第2面とに温度差が生じると、熱電変換素子100は、ゼーベック効果により発電する。 The thermoelectric conversion element 100 has a first surface that faces the heat transfer portion 42R of the fuel gas supply line 42, and a second surface that faces the heat transfer portion 72R of the exhaust line 72. When a temperature difference occurs between the first surface and the second surface, the thermoelectric conversion element 100 generates electricity due to the Seebeck effect.
 図4は、実施形態に係る燃料電池20が水素を消費する水素消費時における熱電変換素子100を模式的に示す図である。燃料電池20は、水素タンク41から供給される水素を消費することにより発電する。水素消費時において、水素タンク41に充填されている水素が燃料ガス供給ライン42を介して燃料電池20に供給される。水素タンク41には圧縮された水素が充填されている。水素タンク41から流出する水素の温度は、断熱膨張の原理により低下する。水素タンク41から流出し温度が低下した水素は、燃料ガス供給ライン42を流れる。燃料ガス供給ライン42の熱伝達部42Rを流れる水素の温度は、一例として、-20℃以上0℃以下である。 FIG. 4 is a schematic diagram showing the thermoelectric conversion element 100 when the fuel cell 20 according to the embodiment consumes hydrogen. The fuel cell 20 generates power by consuming hydrogen supplied from a hydrogen tank 41. When hydrogen is consumed, hydrogen filled in the hydrogen tank 41 is supplied to the fuel cell 20 via a fuel gas supply line 42. The hydrogen tank 41 is filled with compressed hydrogen. The temperature of the hydrogen flowing out of the hydrogen tank 41 decreases due to the principle of adiabatic expansion. The hydrogen that flows out of the hydrogen tank 41 and has a reduced temperature flows through the fuel gas supply line 42. The temperature of the hydrogen flowing through the heat transfer section 42R of the fuel gas supply line 42 is, for example, -20°C or higher and 0°C or lower.
 水素消費時において、燃料電池20が発電している。そのため、燃料電池20から熱を奪った冷媒の温度は、上昇する。すなわち、水素消費時において、燃料電池20の冷媒出口から流出する冷媒の温度は、高い。燃料電池20の冷媒出口から流出し温度が高い冷媒は、排出ライン72を流れる。排出ライン72の熱伝達部72Rを流れる冷媒の温度は、一例として、80℃程度である。 When hydrogen is consumed, the fuel cell 20 generates power. As a result, the temperature of the coolant that absorbs heat from the fuel cell 20 rises. That is, when hydrogen is consumed, the temperature of the coolant flowing out of the coolant outlet of the fuel cell 20 is high. The high-temperature coolant that flows out of the coolant outlet of the fuel cell 20 flows through the discharge line 72. The temperature of the coolant flowing through the heat transfer section 72R of the discharge line 72 is, for example, about 80°C.
 このように、燃料電池20が水素を消費する水素消費時において、水素の温度が冷媒の温度よりも低くなる。熱電変換素子100の第1面は、燃料ガス供給ライン42の熱伝達部42Rに対向する。熱電変換素子100の第2面は、排出ライン72の熱伝達部72Rに対向する。熱電変換素子100の第1面は、燃料ガス供給ライン42の熱伝達部42Rを流れる水素により冷却される。熱電変換素子100の第2面は、排出ライン72の熱伝達部72Rを流れる冷媒により加熱される。水素は、熱電変換素子100の冷熱源として機能する。冷媒は、熱電変換素子100の温熱源として機能する。水素消費時において、熱電変換素子100は、ゼーベック効果により発電する。蓄電池200は、熱電変換素子100が発電した電力で充電される。 In this way, when the fuel cell 20 consumes hydrogen, the temperature of the hydrogen becomes lower than the temperature of the refrigerant. The first surface of the thermoelectric conversion element 100 faces the heat transfer section 42R of the fuel gas supply line 42. The second surface of the thermoelectric conversion element 100 faces the heat transfer section 72R of the exhaust line 72. The first surface of the thermoelectric conversion element 100 is cooled by hydrogen flowing through the heat transfer section 42R of the fuel gas supply line 42. The second surface of the thermoelectric conversion element 100 is heated by the refrigerant flowing through the heat transfer section 72R of the exhaust line 72. Hydrogen functions as a cold source for the thermoelectric conversion element 100. The refrigerant functions as a hot source for the thermoelectric conversion element 100. When hydrogen is consumed, the thermoelectric conversion element 100 generates electricity by the Seebeck effect. The storage battery 200 is charged with the electricity generated by the thermoelectric conversion element 100.
 図5は、実施形態に係る水素タンク41に水素を充填する水素充填時における熱電変換素子100を模式的に示す図である。水素タンク41の水素が消費された場合、任意のタイミングで水素タンク41に水素が充填される。ダンプトラック2に水素充填ポートが設けられる。水素タンク41に水素を充填する場合、ダンプトラック2の外部に存在する水素供給装置(水素ステーション)と水素充填ポートとが接続される。水素供給装置から供給された水素が水素タンク41に充填される。水素充填時において、水素タンク41から燃料電池20に水素は供給されない。すなわち、水素充填時において、水素は、燃料電池20に消費されない。 FIG. 5 is a schematic diagram showing the thermoelectric conversion element 100 during hydrogen filling when hydrogen is filled into the hydrogen tank 41 according to the embodiment. When the hydrogen in the hydrogen tank 41 is consumed, hydrogen is filled into the hydrogen tank 41 at any timing. A hydrogen filling port is provided in the dump truck 2. When filling the hydrogen tank 41 with hydrogen, a hydrogen supply device (hydrogen station) located outside the dump truck 2 is connected to the hydrogen filling port. Hydrogen supplied from the hydrogen supply device is filled into the hydrogen tank 41. During hydrogen filling, hydrogen is not supplied from the hydrogen tank 41 to the fuel cell 20. In other words, during hydrogen filling, hydrogen is not consumed by the fuel cell 20.
 水素タンク41に圧縮された水素が充填される。水素タンク41に充填される水素の温度は、断熱圧縮の原理により上昇する。水素タンク41に充填される水素の温度が上昇するので、水素タンク41の温度及び水素タンク41に接続されている燃料ガス供給ライン42の温度も上昇する。水素充填時における燃料ガス供給ライン42の熱伝達部42Rの温度は、一例として、80℃程度である。 The hydrogen tank 41 is filled with compressed hydrogen. The temperature of the hydrogen being filled into the hydrogen tank 41 rises due to the principle of adiabatic compression. As the temperature of the hydrogen being filled into the hydrogen tank 41 rises, the temperature of the hydrogen tank 41 and the temperature of the fuel gas supply line 42 connected to the hydrogen tank 41 also rise. The temperature of the heat transfer section 42R of the fuel gas supply line 42 when filling with hydrogen is, as an example, about 80°C.
 水素充填時において、燃料電池20は発電していない。そのため、水素充填時において燃料電池20の冷媒出口から流出する冷媒の温度は、水素消費時において燃料電池20の冷媒出口から流出する冷媒の温度よりも低い。燃料電池20の冷媒出口から流出し温度が高い冷媒は、排出ライン72を流れる。水素充填時において排出ライン72の熱伝達部72Rを流れる冷媒の温度は、一例として、50℃以上80℃以下である。 When hydrogen is being filled, the fuel cell 20 is not generating electricity. Therefore, the temperature of the coolant flowing out of the coolant outlet of the fuel cell 20 when hydrogen is being filled is lower than the temperature of the coolant flowing out of the coolant outlet of the fuel cell 20 when hydrogen is being consumed. The high-temperature coolant that flows out of the coolant outlet of the fuel cell 20 flows through the discharge line 72. The temperature of the coolant flowing through the heat transfer section 72R of the discharge line 72 when hydrogen is being filled is, by way of example, between 50°C and 80°C.
 このように、水素タンク41に水素を充填する水素充填時において、水素の温度が冷媒の温度よりも高くなる。熱電変換素子100の第1面は、燃料ガス供給ライン42の熱伝達部42Rに対向する。熱電変換素子100の第2面は、排出ライン72の熱伝達部72Rに対向する。熱電変換素子100の第1面は、温度上昇した燃料ガス供給ライン42の熱伝達部42Rにより加熱される。熱電変換素子100の第2面は、排出ライン72の熱伝達部72Rを流れる冷媒により冷却される。水素は、熱電変換素子100の温熱源として機能する。冷媒は、熱電変換素子100の冷熱源として機能する。水素充電時において、蓄電池200から熱電変換素子100に電力が供給される。熱電変換素子100は、ペルチェ効果により燃料ガス供給ライン42を冷却する。水素充電時において、燃料ガス供給ライン42が冷却されることにより、燃料ガス供給ライン42に接続されている水素タンク41が冷却される。 In this way, when hydrogen is filled into the hydrogen tank 41, the temperature of the hydrogen becomes higher than the temperature of the refrigerant. The first surface of the thermoelectric conversion element 100 faces the heat transfer section 42R of the fuel gas supply line 42. The second surface of the thermoelectric conversion element 100 faces the heat transfer section 72R of the discharge line 72. The first surface of the thermoelectric conversion element 100 is heated by the heat transfer section 42R of the fuel gas supply line 42, the temperature of which has increased. The second surface of the thermoelectric conversion element 100 is cooled by the refrigerant flowing through the heat transfer section 72R of the discharge line 72. Hydrogen functions as a hot heat source for the thermoelectric conversion element 100. The refrigerant functions as a cold heat source for the thermoelectric conversion element 100. During hydrogen charging, power is supplied from the storage battery 200 to the thermoelectric conversion element 100. The thermoelectric conversion element 100 cools the fuel gas supply line 42 by the Peltier effect. During hydrogen charging, the fuel gas supply line 42 is cooled, thereby cooling the hydrogen tank 41 connected to the fuel gas supply line 42.
[効果]
 以上説明したように、実施形態によれば、燃料電池システム3は、燃料電池20と、熱電変換素子100と、熱電変換素子100の第1面に対向し、燃料電池20に水素を供給する燃料ガス供給ライン42(燃料ガス供給チューブ)と、熱電変換素子100の第2面に対向し、燃料電池20から冷媒が供給される排出ライン72(排出チューブ)と、を備える。
[effect]
As described above, according to the embodiment, the fuel cell system 3 comprises a fuel cell 20, a thermoelectric conversion element 100, a fuel gas supply line 42 (fuel gas supply tube) facing a first surface of the thermoelectric conversion element 100 and supplying hydrogen to the fuel cell 20, and a discharge line 72 (discharge tube) facing a second surface of the thermoelectric conversion element 100 and receiving a refrigerant from the fuel cell 20.
 実施形態によれば、水素と冷媒との温度差により、熱電変換素子100にゼーベック効果又はペルチェ効果を発揮させることができる。水素消費時においては、ゼーベック効果により、燃料電池20の冷媒出口から流出した冷媒の熱エネルギーが電気エネルギーに変換される。水素充填時においては、ペルチェ効果により、燃料ガス供給ライン42及び水素タンク41の温度上昇が抑制される。そのため、燃料電池システム3の効率が向上する。例えば水素タンク41がプラスチック製である場合、水素タンク41の熱劣化を抑制するために、水素充填時に水素タンク41の温度上昇が抑制されることが好ましい。水素タンク41の温度上昇を抑制するために、水素タンク41に対する水素充填速度を低下させた場合、水素充填時間が長期化してしまう。水素タンク41の温度上昇を抑制するために、水素タンク41に充填前の水素の温度を低下させる場合、水素供給装置(水素ステーション)の負荷が大きくなってしまう。実施形態によれば、水素充填時においては、熱電変換素子100のペルチェ効果により、燃料ガス供給ライン42及び水素タンク41の温度上昇が抑制される。 According to the embodiment, the Seebeck effect or Peltier effect can be exerted on the thermoelectric conversion element 100 by the temperature difference between hydrogen and the refrigerant. When hydrogen is consumed, the Seebeck effect converts the thermal energy of the refrigerant flowing out from the refrigerant outlet of the fuel cell 20 into electrical energy. When hydrogen is being filled, the Peltier effect suppresses the temperature rise of the fuel gas supply line 42 and the hydrogen tank 41. This improves the efficiency of the fuel cell system 3. For example, if the hydrogen tank 41 is made of plastic, it is preferable to suppress the temperature rise of the hydrogen tank 41 during hydrogen filling in order to suppress thermal deterioration of the hydrogen tank 41. If the hydrogen filling speed for the hydrogen tank 41 is reduced in order to suppress the temperature rise of the hydrogen tank 41, the hydrogen filling time will be extended. If the temperature of hydrogen before filling the hydrogen tank 41 is reduced in order to suppress the temperature rise of the hydrogen tank 41, the load on the hydrogen supply device (hydrogen station) will be increased. According to the embodiment, when hydrogen is being filled, the Peltier effect of the thermoelectric conversion element 100 suppresses the temperature rise of the fuel gas supply line 42 and the hydrogen tank 41.
[その他の実施形態]
 図6は、実施形態に係る燃料電池システム3の一部を模式的に示す図である。上述の実施形態においては、熱電変換素子100の第1面に燃料ガス供給ライン42が対向し、熱電変換素子100の第2面に排出ライン72が対向することとした。図6に示すように、熱電変換素子100の第1面に水素タンク41が対向し、熱電変換素子100の第2面にラジエータ73が対向してもよい。
[Other embodiments]
Fig. 6 is a diagram showing a schematic view of a part of a fuel cell system 3 according to an embodiment. In the above-described embodiment, the fuel gas supply line 42 faces the first surface of the thermoelectric conversion element 100, and the exhaust line 72 faces the second surface of the thermoelectric conversion element 100. As shown in Fig. 6, the hydrogen tank 41 may face the first surface of the thermoelectric conversion element 100, and the radiator 73 may face the second surface of the thermoelectric conversion element 100.
 図7は、実施形態に係る燃料電池システム3の一部を模式的に示す図である。図7は、水素タンク41の断面を示す。図7に示すように、水素タンク41の周囲に環状の熱電変換素子100Bが配置されてもよい。熱電変換素子100Bの周囲に排出ライン720(排出チューブ)が配置されてもよい。排出ライン720は、熱電変換素子100Bに巻き付けられるように配置されてもよい。熱電変換素子100Bの内周面に水素タンク41が対向する。熱電変換素子100Bの外周面に排出ライン720が対向する。図7に示す例においても、熱電変換素子100Bは、ゼーベック効果又はペルチェ効果を発揮することができる。 FIG. 7 is a schematic diagram of a portion of a fuel cell system 3 according to an embodiment. FIG. 7 shows a cross section of a hydrogen tank 41. As shown in FIG. 7, a ring-shaped thermoelectric conversion element 100B may be arranged around the hydrogen tank 41. An exhaust line 720 (exhaust tube) may be arranged around the thermoelectric conversion element 100B. The exhaust line 720 may be arranged so as to be wound around the thermoelectric conversion element 100B. The hydrogen tank 41 faces the inner peripheral surface of the thermoelectric conversion element 100B. The exhaust line 720 faces the outer peripheral surface of the thermoelectric conversion element 100B. In the example shown in FIG. 7, the thermoelectric conversion element 100B can also exhibit the Seebeck effect or the Peltier effect.
 2…ダンプトラック(作業車両)、3…燃料電池システム、4…電動モータ、4A…駆動モータ、4B…走行モータ、5…油圧ポンプ、6…パワーテイクオフ、7…バルブ装置、8A…前輪、8B…後輪、9…ステアリングシリンダ、10…車体、11A…前タイヤ、11B…後タイヤ、12…ダンプボディ、13…ホイストシリンダ、20…燃料電池、30…酸化ガス供給装置、31…エアコンプレッサ、32…酸素富化膜、33…タービン、34…給気ライン、35…給気ライン、36…給気ライン、40…燃料ガス供給装置、41…水素タンク、42…燃料ガス供給ライン(燃料ガス供給チューブ)、42R…熱伝達部、50…ガス排出装置、51…排気ライン、52…タービン、60…電力調整装置、61…DC/DCコンバータ、62…インバータ、63…DC/DCコンバータ、64…蓄電装置、70…冷媒供給装置、71…供給ライン、72…排出ライン(排出チューブ)、72R…熱伝達部、73…ラジエータ、74…冷媒ポンプ、100…熱電変換素子、100B…熱電変換素子、200…蓄電池、720…排出ライン(排出チューブ)。 2...Dump truck (work vehicle), 3...Fuel cell system, 4...Electric motor, 4A...Drive motor, 4B...Travel motor, 5...Hydraulic pump, 6...Power take-off, 7...Valve device, 8A...Front wheels, 8B...Rear wheels, 9...Steering cylinder, 10...Vehicle body, 11A...Front tires, 11B...Rear tires, 12...Dump body, 13...Hoist cylinder, 20...Fuel cell, 30...Oxidizing gas supply device, 31...Air compressor, 32...Oxygen enrichment membrane, 33...Turbine, 34...Air supply line, 35...Air supply line, 36...Air supply line, 40...Fuel gas supply device 41...hydrogen tank, 42...fuel gas supply line (fuel gas supply tube), 42R...heat transfer section, 50...gas exhaust device, 51...exhaust line, 52...turbine, 60...power conditioning device, 61...DC/DC converter, 62...inverter, 63...DC/DC converter, 64...electricity storage device, 70...refrigerant supply device, 71...supply line, 72...exhaust line (exhaust tube), 72R...heat transfer section, 73...radiator, 74...refrigerant pump, 100...thermoelectric conversion element, 100B...thermoelectric conversion element, 200...storage battery, 720...exhaust line (exhaust tube).

Claims (6)

  1.  燃料電池と、
     熱電変換素子と、
     前記熱電変換素子の第1面に対向し、前記燃料電池に水素を供給する第1部材と、
     前記熱電変換素子の第2面に対向し、前記燃料電池から冷媒が供給される第2部材と、
     前記熱電変換素子に接続される蓄電池と、を備える、
     燃料電池システム。
    A fuel cell;
    A thermoelectric conversion element;
    a first member that faces a first surface of the thermoelectric conversion element and supplies hydrogen to the fuel cell;
    a second member facing a second surface of the thermoelectric conversion element and receiving a coolant from the fuel cell;
    A storage battery connected to the thermoelectric conversion element.
    Fuel cell system.
  2.  前記燃料電池が水素を消費する水素消費時において、前記水素の温度が前記冷媒の温度よりも低くなり、
     前記水素消費時において、前記熱電変換素子は、ゼーベック効果により発電し、
     前記蓄電池は、前記熱電変換素子が発電した電力で充電される、
     請求項1に記載の燃料電池システム。
    When the fuel cell consumes hydrogen, the temperature of the hydrogen becomes lower than the temperature of the coolant,
    When the hydrogen is consumed, the thermoelectric conversion element generates electricity by the Seebeck effect,
    The storage battery is charged with the power generated by the thermoelectric conversion element.
    The fuel cell system according to claim 1 .
  3.  前記第1部材に水素を充填する水素充填時において、前記水素の温度が前記冷媒の温度よりも高くなり、
     前記水素充填時において、前記蓄電池から前記熱電変換素子に電力が供給され、前記熱電変換素子は、ペルチェ効果により前記第1部材を冷却する、
     請求項2に記載の燃料電池システム。
    When hydrogen is filled into the first member, the temperature of the hydrogen becomes higher than the temperature of the refrigerant,
    During the hydrogen filling, power is supplied from the storage battery to the thermoelectric conversion element, and the thermoelectric conversion element cools the first member by a Peltier effect.
    The fuel cell system according to claim 2 .
  4.  水素を収容する水素タンクと、
     前記水素タンクと前記燃料電池のアノード入口とを接続する燃料ガス供給チューブと、を備え、
     前記第1部材は、前記水素タンク及び前記燃料ガス供給チューブの少なくとも一方を含む、
     請求項1に記載の燃料電池システム。
    A hydrogen tank for storing hydrogen;
    a fuel gas supply tube connecting the hydrogen tank and an anode inlet of the fuel cell;
    The first member includes at least one of the hydrogen tank and the fuel gas supply tube.
    The fuel cell system according to claim 1 .
  5.  前記燃料電池の冷媒出口に接続される排出チューブと、
     前記排出チューブに接続されるラジエータと、を備え、
     前記第2部材は、前記排出チューブ及び前記ラジエータの少なくとも一つを含む、
     請求項1に記載の燃料電池システム。
    a discharge tube connected to a coolant outlet of the fuel cell;
    a radiator connected to the exhaust tube;
    The second member includes at least one of the exhaust tube and the radiator.
    The fuel cell system according to claim 1 .
  6.  請求項1から請求項5のいずれか一項に記載の燃料電池システムを備える、
     作業車両。
    A fuel cell system comprising:
    Work vehicle.
PCT/JP2023/042481 2022-12-16 2023-11-28 Fuel cell system and work vehicle WO2024127970A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022201257A JP2024086233A (en) 2022-12-16 2022-12-16 Fuel cell system and work vehicle
JP2022-201257 2022-12-16

Publications (1)

Publication Number Publication Date
WO2024127970A1 true WO2024127970A1 (en) 2024-06-20

Family

ID=91484873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042481 WO2024127970A1 (en) 2022-12-16 2023-11-28 Fuel cell system and work vehicle

Country Status (2)

Country Link
JP (1) JP2024086233A (en)
WO (1) WO2024127970A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10252995A (en) * 1997-03-17 1998-09-22 Matsushita Electric Ind Co Ltd Hydrogen gas filling device, and its filling method
JP2006024418A (en) * 2004-07-07 2006-01-26 Nissan Motor Co Ltd Fuel cell system
JP2008190658A (en) * 2007-02-06 2008-08-21 Japan Steel Works Ltd:The Hydrogen filling device
JP2017128202A (en) * 2016-01-20 2017-07-27 新明和工業株式会社 Work vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10252995A (en) * 1997-03-17 1998-09-22 Matsushita Electric Ind Co Ltd Hydrogen gas filling device, and its filling method
JP2006024418A (en) * 2004-07-07 2006-01-26 Nissan Motor Co Ltd Fuel cell system
JP2008190658A (en) * 2007-02-06 2008-08-21 Japan Steel Works Ltd:The Hydrogen filling device
JP2017128202A (en) * 2016-01-20 2017-07-27 新明和工業株式会社 Work vehicle

Also Published As

Publication number Publication date
JP2024086233A (en) 2024-06-27

Similar Documents

Publication Publication Date Title
CA2282292C (en) An electrochemical propulsion system
EP1182721B1 (en) Thermal management system for an electrochemical engine
US20070068713A1 (en) Automobile driving system and automobile
US20060046895A1 (en) Vehicular control system for regenerative braking
CN102610838A (en) Thermal management system of fuel cell, fuel cell system, and vehicle with the fuel cell system
JP3141606B2 (en) Fuel cell electric vehicle
JP5246040B2 (en) Cooling device for fuel cell system
CA2261123A1 (en) Fuel cell system for an electric vehicle
JP2008288149A (en) Fuel cell system
WO2022220717A1 (en) Hydrogen storage arrangement
WO2024127970A1 (en) Fuel cell system and work vehicle
JP2006073404A (en) Power source cooling apparatus and vehicle loaded with it
CN112349925A (en) Fuel cell vehicle
JP2018156791A (en) Operation control method and operation control system for fuel cell vehicle
JP2000149974A (en) Electric vehicle
JP4382584B2 (en) Cooling device and vehicle equipped with the same
WO2024127994A1 (en) Fuel cell system and work vehicle
WO2024127995A1 (en) Fuel cell system and work vehicle
JP7393745B2 (en) Energy recovery system for fuel cell vehicles
CN110867595A (en) Fuel cell system and fuel cell automobile power system
JP4537511B2 (en) Power storage unit
WO2023163109A1 (en) Work machine
JP2005129342A (en) Fuel cell system
US20230182692A1 (en) Braking system for a vehicle
US20220410658A1 (en) Cooling system, and a method of controlling a cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23903262

Country of ref document: EP

Kind code of ref document: A1