WO2024127995A1 - Fuel cell system and work vehicle - Google Patents

Fuel cell system and work vehicle Download PDF

Info

Publication number
WO2024127995A1
WO2024127995A1 PCT/JP2023/042728 JP2023042728W WO2024127995A1 WO 2024127995 A1 WO2024127995 A1 WO 2024127995A1 JP 2023042728 W JP2023042728 W JP 2023042728W WO 2024127995 A1 WO2024127995 A1 WO 2024127995A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
power
storage device
electric
power storage
Prior art date
Application number
PCT/JP2023/042728
Other languages
French (fr)
Japanese (ja)
Inventor
哲夫 吉田
Original Assignee
株式会社小松製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小松製作所 filed Critical 株式会社小松製作所
Publication of WO2024127995A1 publication Critical patent/WO2024127995A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/75Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using propulsion power supplied by both fuel cells and batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/40Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for controlling a combination of batteries and fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This disclosure relates to a fuel cell system and a work vehicle.
  • Patent Document 1 In the technical field related to fuel cell systems, an electrical system for a fuel cell is known, as disclosed in Patent Document 1.
  • fuel cell systems have electric auxiliaries for operating the fuel cell. If the electricity generated by the fuel cell is used to power the electric auxiliaries, there is concern that the efficiency of the fuel cell will decrease further.
  • the purpose of this disclosure is to prevent a decrease in efficiency of fuel cell systems.
  • a fuel cell system includes a fuel cell, a power storage device, an electric motor that is driven based on at least one of the power from the fuel cell and the power storage device, an electric auxiliary machine for operating the fuel cell, and a switch device that performs a switch operation to switch between the supply of power from the fuel cell to the electric auxiliary machine and the supply of power from the power storage device to the electric auxiliary machine.
  • the decrease in efficiency of the fuel cell system is suppressed.
  • FIG. 1 is a perspective view that illustrates a work vehicle according to an embodiment.
  • FIG. 2 is a diagram illustrating a schematic configuration of the work vehicle according to the embodiment.
  • FIG. 3 is a diagram for explaining the characteristics of the fuel cell according to the embodiment.
  • FIG. 4 is a diagram showing a schematic view of a part of a fuel cell system according to an embodiment.
  • FIG. 1 is a perspective view that shows a schematic configuration of a work vehicle 2 according to an embodiment.
  • FIG. 2 is a diagram that shows a schematic configuration of a work vehicle 2 according to an embodiment.
  • the work vehicle 2 refers to a vehicle that works at a work site. Examples of work sites include a mine or a quarry.
  • the work vehicle 2 is a transport vehicle that performs transport work to transport a load at the work site.
  • the work vehicle 2 may be a manned vehicle that operates based on the driving operation by a driver who boards the work vehicle 2, or may be an unmanned vehicle that operates without being driven by a driver.
  • the work vehicle 2 is appropriately referred to as a dump truck 2.
  • the dump truck 2 includes a fuel cell system 3, an electric motor 4, a power take-off 6, a hydraulic pump 5, a valve device 7, front wheels 8A, rear wheels 8B, a travel motor 4B, a steering cylinder 9, a vehicle body 10, a dump body 12, and a hoist cylinder 13.
  • the electric motor 4 is driven based on the power generated by the fuel cell system 3.
  • the electric motor 4 includes a drive motor 4A and a traction motor 4B.
  • the hydraulic pump 5 is connected to the drive motor 4A via the power take-off 6.
  • the drive motor 4A drives the hydraulic pump 5.
  • the hydraulic pump 5 discharges hydraulic oil to be supplied to each of the steering cylinder 9 and the hoist cylinder 13.
  • the hydraulic oil discharged from the hydraulic pump 5 is supplied to each of the steering cylinder 9 and the hoist cylinder 13 via the valve device 7.
  • the front wheels 8A and rear wheels 8B each support the vehicle body 10. Front tires 11A are attached to the front wheels 8A. Rear tires 11B are attached to the rear wheels 8B.
  • the front wheels 8A are steered wheels that are steered by the steering cylinder 9.
  • the rear wheels 8B are drive wheels that rotate by the power generated by the travel motor 4B.
  • the travel motor 4B rotates the rear wheels 8B.
  • the dump truck 2 travels as the rear tires 11B attached to the rear wheels 8B rotate.
  • the steering cylinder 9 is a hydraulic cylinder, which is a type of hydraulic actuator.
  • the steering cylinder 9 is driven by hydraulic oil discharged from the hydraulic pump 5.
  • the valve device 7 adjusts the direction and flow rate of the hydraulic oil supplied from the hydraulic pump 5 to the steering cylinder 9.
  • the steering cylinder 9 generates power to steer the front wheels 8A.
  • the vehicle body 10 is supported by the front wheels 8A and the rear wheels 8B.
  • the dump body 12 is supported by the vehicle body 10.
  • the dump body 12 is a member onto which cargo is loaded.
  • the dump body 12 is rotated by a hoist cylinder 13.
  • the dump body 12 is of a rear dump type.
  • the dump body 12 is rotated rearward by the hoist cylinder 13, causing the cargo to be discharged from the dump body 12.
  • the hoist cylinder 13 is a hydraulic cylinder, which is a type of hydraulic actuator.
  • the hoist cylinder 13 is driven by hydraulic oil discharged from the hydraulic pump 5.
  • the valve device 7 adjusts the direction and flow rate of the hydraulic oil supplied from the hydraulic pump 5 to the hoist cylinder 13.
  • the hoist cylinder 13 generates power to rotate the dump body 12.
  • the fuel cell system 3 is mounted on a dump truck 2. As shown in Fig. 2, the fuel cell system 3 has a fuel cell 20, an oxidizing gas supply device 30, a fuel gas supply device 40, a gas discharge device 50, a power conditioning device 60, and a coolant supply device 70.
  • the fuel cell 20 generates electricity by chemically reacting hydrogen, which is a fuel gas, with oxygen, which is an oxidizing gas.
  • the fuel cell 20 has a stack structure in which multiple unit cells are stacked.
  • the oxidizing gas supply device 30 supplies air containing oxygen to the cathode of the fuel cell 20.
  • the oxidizing gas supply device 30 has an air compressor 31, an oxygen enrichment membrane 32, a turbine 33, an air supply line 34, an air supply line 35, and an air supply line 36.
  • the air compressor 31 draws in air from outside the dump truck 2 and supplies it to the fuel cell 20.
  • the turbine 33 is connected to the air compressor 31.
  • the air supply line 34 connects the air compressor 31 and the oxygen enrichment membrane 32.
  • the air drawn in by the air compressor 31 is supplied to the oxygen enrichment membrane 32 via the air supply line 34.
  • the oxygen enrichment membrane 32 generates oxygen-enriched air with an increased oxygen concentration and nitrogen-enriched air with a decreased oxygen concentration from the air.
  • the air supply line 35 connects the oxygen enrichment membrane 32 to the cathode inlet of the fuel cell 20.
  • the oxygen-enriched air generated in the oxygen-enriched membrane 32 is supplied to the cathode of the fuel cell 20 via an air supply line 35.
  • An air supply line 36 connects the oxygen-enriched membrane 32 and the turbine 33.
  • the nitrogen-enriched air generated in the oxygen-enriched membrane 32 is supplied to the turbine 33 via the air supply line 36.
  • the nitrogen-enriched air rotates the turbine 33.
  • the turbine 33 provides a rotational force to the air compressor 31.
  • the fuel gas supply device 40 supplies hydrogen to the anode of the fuel cell 20.
  • the fuel gas supply device 40 has a hydrogen tank 41 and a fuel gas supply line 42.
  • the hydrogen tank 41 contains hydrogen. Hydrogen is filled into the hydrogen tank 41.
  • the fuel gas supply line 42 connects the hydrogen tank 41 to the anode inlet of the fuel cell 20.
  • the hydrogen discharged from the hydrogen tank 41 is supplied to the anode of the fuel cell 20 via the fuel gas supply line 42.
  • a hydrogen pump that supplies hydrogen from the hydrogen tank 41 to the fuel cell 20 may be disposed in the fuel gas supply line 42.
  • the gas exhaust device 50 exhausts the gas discharged from the fuel cell 20 into the atmospheric space around the dump truck 2.
  • the gas exhaust device 50 has an exhaust line 51 and a turbine 52.
  • the exhaust line 51 connects the cathode outlet of the fuel cell 20 to the turbine 52.
  • the turbine 52 rotates by the gas discharged from the fuel cell 20.
  • the power adjustment device 60 has a DC/DC converter 61, an inverter 62, a DC/DC converter 63, and a power storage device 64.
  • the power adjustment device 60 supplies at least one of the power generated by the fuel cell 20 and the power stored in the power storage device 64 to the electric motor 4 (4A, 4B).
  • the electric motor 4 is driven based on at least one of the power from the fuel cell 20 and the power from the power storage device 64.
  • the DC/DC converter 61 boosts the voltage generated by the fuel cell 20.
  • the DC/DC converter 61 supplies the direct current generated by the fuel cell 20 to the inverter 62.
  • the power storage device 64 is charged by the power generated by the fuel cell 20.
  • the power storage device 64 may be charged by a charging device provided outside the dump truck 2.
  • the power storage device 64 may be charged by the regenerative energy of the electric motor 4.
  • the power storage device 64 includes a secondary battery (storage battery).
  • the power storage device 64 includes a lithium ion battery (LiB: Lithium ion Battery).
  • the power storage device 64 may include a lithium ion capacitor (LiC: Lithium ion Capacitor) or an electric double layer capacitor (EDLC: Electric Double Layer Capacitor).
  • the DC/DC converter 63 controls the charging and discharging of the power storage device 64 so that the power storage device 64 can supply power to the inverter 62 in cooperation with the fuel cell 20.
  • the inverter 62 converts the direct current from at least one of the DC/DC converters 61 and 63 into a three-phase alternating current and supplies it to the electric motor 4 (4A, 4B).
  • the electric motor 4 (4A, 4B) is driven based on the three-phase alternating current supplied from the inverter 62.
  • the refrigerant supply device 70 supplies a refrigerant to the fuel cell 20 to cool the fuel cell 20.
  • An example of the refrigerant is water.
  • the refrigerant supply device 70 has a supply line 71, a discharge line 72, a radiator 73, and a refrigerant pump 74.
  • the supply line 71 is connected to a refrigerant inlet of the fuel cell 20.
  • the discharge line 72 is connected to a refrigerant outlet of the fuel cell 20.
  • the radiator 73 is connected to the supply line 71 and the discharge line 72.
  • the refrigerant pump 74 is disposed in the supply line 71.
  • the refrigerant pump 74 supplies the refrigerant to the fuel cell 20.
  • the refrigerant pump 74 drives to circulate the refrigerant in a circulation path including the supply line 71, the fuel cell 20, the discharge line 72, and the radiator 73.
  • the radiator 73 exchanges heat between the refrigerant discharged from the fuel cell 20 and the air outside the dump truck 2 to cool the refrigerant.
  • FIG. 3 is a diagram for explaining the characteristics of the fuel cell 20 according to the embodiment.
  • FIG. 3 shows the relationship between the load factor and the efficiency of the fuel cell 20.
  • the load factor of the fuel cell 20 refers to the ratio of the amount of power actually used to the amount of power generated when the fuel cell 20 operates at the rated capacity (100% capacity of the design).
  • the efficiency (power generation efficiency) of the fuel cell 20 refers to the ratio of the renewable energy (hydrogen) input to the fuel cell 20 that is converted into electrical energy. In FIG. 3, the efficiency is the efficiency of the fuel cell 20 alone. As shown in FIG. 3, the higher the load factor of the fuel cell 20, the lower the efficiency of the fuel cell 20.
  • the efficiency of the fuel cell 20 is high.
  • the load factor of the fuel cell 20 falls below 10%, the efficiency of the fuel cell 20 drops sharply.
  • the fuel cell system 3 has electric auxiliaries for operating the fuel cell 20.
  • the electric auxiliaries include at least one of an air compressor 31 that supplies air to the fuel cell 20 and a coolant pump 74 that supplies coolant to the fuel cell 20. If a hydrogen pump that supplies hydrogen from the hydrogen tank 41 to the fuel cell 20 is disposed in the fuel gas supply line 42, the electric auxiliaries may include a hydrogen pump. If the power generated by the fuel cell 20 is used not only for the electric motor 4 but also for the electric auxiliaries, the load factor of the fuel cell 20 will increase. If the load factor of the fuel cell 20 increases, the efficiency of the fuel cell 20 will decrease.
  • the fuel cell system 3 prevents the power generated by the fuel cell 20 from being used by the electric auxiliary by switching between the supply of power from the fuel cell 20 to the electric auxiliary and the supply of power from the power storage device 64 to the electric auxiliary.
  • the fuel cell system 3 prevents the power generated by the fuel cell 20 from being used by the electric auxiliary by switching between the supply of power from the fuel cell 20 to the electric auxiliary and the supply of power from the power storage device 64 to the electric auxiliary.
  • [Switch device] 4 is a schematic diagram showing a part of a fuel cell system 3 according to an embodiment.
  • the fuel cell system 3 includes a fuel cell 20, a power storage device 64, an electric motor 4, an electric accessory 25, a DC/DC converter 61, a DC/DC converter 63, an inverter 62, a switch device 80, and a controller 90.
  • the electric motor 4 is driven based on at least one of the power from the fuel cell 20 and the power from the power storage device 64. As described above, the electric motor 4 includes the drive motor 4A that drives the hydraulic pump 5 and the traction motor 4B that rotates the rear wheels 8B.
  • the DC/DC converter 61 boosts the voltage generated by the fuel cell 20.
  • the DC/DC converter 63 controls the charging and discharging of the power storage device 64 so that the power storage device 64 can supply power to the inverter 62 in cooperation with the fuel cell 20.
  • the inverter 62 converts the direct current from at least one of the DC/DC converters 61 and 63 into three-phase alternating current and supplies it to the electric motor 4.
  • the electric motor 4 is driven based on the three-phase alternating current supplied from the inverter 62.
  • the electric auxiliary machine 25 is driven to operate the fuel cell 20.
  • the electric auxiliary machine 25 is driven based on at least one of the power from the fuel cell 20 and the power from the power storage device 64.
  • the fuel cell 20 and the power storage device 64 are connected in parallel to the electric motor 4.
  • the electric auxiliary machine 25 is connected in parallel to the fuel cell 20 and the power storage device 64.
  • the switch device 80 performs a switching operation to switch between the supply of power from the fuel cell 20 to the electric auxiliary machine 25 and the supply of power from the power storage device 64 to the electric auxiliary machine 25.
  • the switch device 80 has a first switch 81 arranged between the fuel cell 20 and the electric auxiliary machine 25, and a second switch 82 arranged between the power storage device 64 and the electric auxiliary machine 25.
  • the controller 90 controls the switch device 80. When the first switch 81 is turned on and the fuel cell 20 and the electric auxiliary machine 25 are connected, power is supplied from the fuel cell 20 to the electric auxiliary machine 25. When the first switch 81 is turned off and the connection between the fuel cell 20 and the electric auxiliary machine 25 is released, the supply of power from the fuel cell 20 to the electric auxiliary machine 25 is cut off.
  • the controller 90 performs the switching operation of the switch device 80 based on the load rate of the fuel cell 20.
  • the controller 90 can monitor the load rate of the fuel cell 20 based on the operating state of the DC/DC converter 61.
  • the controller 90 When the load rate of the fuel cell 20 is equal to or higher than a predetermined threshold, the controller 90 performs a switching operation of the switch device 80 so that power is supplied from the power storage device 64 to the electric auxiliary machine 25 and power is not supplied from the fuel cell 20 to the electric auxiliary machine 25.
  • the threshold for the load rate is set to 60%
  • the controller 90 turns off the first switch 81 and turns on the second switch 82 when the load rate of the fuel cell 20 is equal to or higher than 60% and equal to or lower than 100%.
  • the load rate of the fuel cell 20 is high, power is not supplied from the fuel cell 20 to the electric auxiliary machine 25, so the power generated by the fuel cell 20 is not used by the electric auxiliary machine 25 but is used by the electric motor 4.
  • the electric auxiliary machine 25 is driven based on the power supplied from the power storage device 64. Since the power generated by the fuel cell 20 is not used by the electric auxiliary machine 25, an increase in the load rate of the fuel cell 20 is suppressed. Since an increase in the load rate of the fuel cell 20 is suppressed, a decrease in the efficiency of the fuel cell 20 is suppressed.
  • the controller 90 When the load rate of the fuel cell 20 is less than a predetermined threshold, the controller 90 performs a switching operation of the switch device 80 so that power is supplied from the fuel cell 20 to the electric auxiliary machine 25 and power is not supplied from the power storage device 64 to the electric auxiliary machine 25.
  • the controller 90 turns on the first switch 81 and turns off the second switch 82.
  • the load rate of the fuel cell 20 is low, power is not supplied from the power storage device 64 to the electric auxiliary machine 25, so consumption of the power charged in the power storage device 64 is suppressed.
  • the electric auxiliary machine 25 is driven based on the power supplied from the fuel cell 20.
  • the fuel cell system 3 comprises a fuel cell 20, a power storage device 64, an electric motor 4 driven based on at least one of power from the fuel cell 20 and power from the power storage device 64, an electric auxiliary machine 25 for operating the fuel cell 20, and a switch device 80 that performs a switch operation to switch between the supply of power from the fuel cell 20 to the electric auxiliary machine 25 and the supply of power from the power storage device 64 to the electric auxiliary machine 25.
  • the power generated by the fuel cell 20 is not constantly used by the electric auxiliary machine 25, so an increase in the load factor of the fuel cell 20 is suppressed. Since an increase in the load factor of the fuel cell 20 is suppressed, a decrease in the efficiency of the fuel cell 20 is suppressed. Since a decrease in the efficiency of the fuel cell 20 is suppressed, a decrease in the efficiency of the fuel cell system 3 is suppressed.
  • the switch device 80 performs a switching operation based on the load rate of the fuel cell 20.
  • a switching operation is performed so that power is supplied from the power storage device 64 to the electric auxiliary machine 25, thereby preventing the load rate of the fuel cell 20 from becoming even higher.
  • a switching operation is performed so that power is supplied from the fuel cell 20 to the electric auxiliary machine 25, thereby preventing consumption of the power stored in the power storage device 64.
  • the electric auxiliary machine 25, the fuel cell 20, and the power storage device 64 are connected in parallel. This allows the switching operation to be carried out smoothly without complicating the structure of the fuel cell system 3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This fuel cell system comprises: a fuel cell; a power storage device; an electric motor that operates on the basis of at least one among power from the fuel cell and power from the power storage device; an electric auxiliary machine for operating the fuel cell; and a switch device which performs a switching operation for switching between the supply of power from the fuel cell to the electric auxiliary machine and the supply of power from the power storage device to the electric auxiliary machine.

Description

燃料電池システム及び作業車両Fuel cell system and work vehicle
 本開示は、燃料電池システム及び作業車両に関する。 This disclosure relates to a fuel cell system and a work vehicle.
 燃料電池システムに係る技術分野において、特許文献1に開示されているような、燃料電池の電機システムが知られている。 In the technical field related to fuel cell systems, an electrical system for a fuel cell is known, as disclosed in Patent Document 1.
特開2006-286320号公報JP 2006-286320 A
 燃料電池の特性として、燃料電池の負荷率が上昇するほど燃料電池の効率が低下することが知られている。また、燃料電池システムは、燃料電池を作動させるための電動補機を有する。燃料電池が発電した電力が電動補機に使用されると、燃料電池の効率の更なる低下が懸念される。 It is known that a characteristic of fuel cells is that the higher the load factor of the fuel cell, the lower the fuel cell's efficiency. In addition, fuel cell systems have electric auxiliaries for operating the fuel cell. If the electricity generated by the fuel cell is used to power the electric auxiliaries, there is concern that the efficiency of the fuel cell will decrease further.
 本開示は、燃料電池システムの効率の低下を抑制することを目的とする。 The purpose of this disclosure is to prevent a decrease in efficiency of fuel cell systems.
 本開示に従えば、燃料電池と、蓄電装置と、燃料電池からの電力及び蓄電装置からの電力の少なくとも一方に基づいて駆動する電動モータと、燃料電池を作動させるための電動補機と、燃料電池から電動補機への電力の供給と蓄電装置から電動補機への電力の供給とを切り換えるスイッチ動作を実施するスイッチ装置と、を備える、燃料電池システムが提供される。 In accordance with the present disclosure, a fuel cell system is provided that includes a fuel cell, a power storage device, an electric motor that is driven based on at least one of the power from the fuel cell and the power storage device, an electric auxiliary machine for operating the fuel cell, and a switch device that performs a switch operation to switch between the supply of power from the fuel cell to the electric auxiliary machine and the supply of power from the power storage device to the electric auxiliary machine.
 本開示によれば、燃料電池システムの効率の低下が抑制される。 According to this disclosure, the decrease in efficiency of the fuel cell system is suppressed.
図1は、実施形態に係る作業車両を模式的に示す斜視図である。FIG. 1 is a perspective view that illustrates a work vehicle according to an embodiment. 図2は、実施形態に係る作業車両の構成を模式的に示す図である。FIG. 2 is a diagram illustrating a schematic configuration of the work vehicle according to the embodiment. 図3は、実施形態に係る燃料電池の特性を説明するための図である。FIG. 3 is a diagram for explaining the characteristics of the fuel cell according to the embodiment. 図4は、実施形態に係る燃料電池システムの一部を模式的に示す図である。FIG. 4 is a diagram showing a schematic view of a part of a fuel cell system according to an embodiment.
 以下、本開示に係る実施形態について図面を参照しながら説明するが、本開示は実施形態に限定されない。以下で説明する実施形態の構成要素は適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。 Below, embodiments of the present disclosure will be described with reference to the drawings, but the present disclosure is not limited to the embodiments. The components of the embodiments described below can be combined as appropriate. Also, some components may not be used.
[作業車両]
 図1は、実施形態に係る作業車両2を模式的に示す斜視図である。図2は、実施形態に係る作業車両2の構成を模式的に示す図である。作業車両2とは、作業現場で作業する車両をいう。作業現場として、鉱山又は採石場が例示される。実施形態において、作業車両2は、作業現場で積荷を運搬する運搬作業を実施する運搬車両である。作業車両2は、作業車両2に搭乗した運転者による運転操作に基づいて稼働する有人車両でもよいし、運転者による運転操作によらずに無人で稼働する無人車両でもよい。実施形態においては、作業車両2を適宜、ダンプトラック2、と称する。
[Work vehicle]
FIG. 1 is a perspective view that shows a schematic configuration of a work vehicle 2 according to an embodiment. FIG. 2 is a diagram that shows a schematic configuration of a work vehicle 2 according to an embodiment. The work vehicle 2 refers to a vehicle that works at a work site. Examples of work sites include a mine or a quarry. In the embodiment, the work vehicle 2 is a transport vehicle that performs transport work to transport a load at the work site. The work vehicle 2 may be a manned vehicle that operates based on the driving operation by a driver who boards the work vehicle 2, or may be an unmanned vehicle that operates without being driven by a driver. In the embodiment, the work vehicle 2 is appropriately referred to as a dump truck 2.
 図1及び図2に示すように、ダンプトラック2は、燃料電池システム3と、電動モータ4と、パワーテイクオフ6と、油圧ポンプ5と、バルブ装置7と、前輪8Aと、後輪8Bと、走行モータ4Bと、ステアリングシリンダ9と、車体10と、ダンプボディ12と、ホイストシリンダ13とを備える。 As shown in Figures 1 and 2, the dump truck 2 includes a fuel cell system 3, an electric motor 4, a power take-off 6, a hydraulic pump 5, a valve device 7, front wheels 8A, rear wheels 8B, a travel motor 4B, a steering cylinder 9, a vehicle body 10, a dump body 12, and a hoist cylinder 13.
 電動モータ4は、燃料電池システム3が発電した電力に基づいて駆動する。実施形態において、電動モータ4は、駆動モータ4A及び走行モータ4Bを含む。 The electric motor 4 is driven based on the power generated by the fuel cell system 3. In this embodiment, the electric motor 4 includes a drive motor 4A and a traction motor 4B.
 油圧ポンプ5は、パワーテイクオフ6を介して駆動モータ4Aに接続される。駆動モータ4Aは、油圧ポンプ5を駆動させる。油圧ポンプ5は、ステアリングシリンダ9及びホイストシリンダ13のそれぞれに供給される作動油を吐出する。油圧ポンプ5から吐出された作動油は、バルブ装置7を介して、ステアリングシリンダ9及びホイストシリンダ13のそれぞれに供給される。 The hydraulic pump 5 is connected to the drive motor 4A via the power take-off 6. The drive motor 4A drives the hydraulic pump 5. The hydraulic pump 5 discharges hydraulic oil to be supplied to each of the steering cylinder 9 and the hoist cylinder 13. The hydraulic oil discharged from the hydraulic pump 5 is supplied to each of the steering cylinder 9 and the hoist cylinder 13 via the valve device 7.
 前輪8A及び後輪8Bのそれぞれは、車体10を支持する。前輪8Aに前タイヤ11Aが装着される。後輪8Bに後タイヤ11Bが装着される。前輪8Aは、ステアリングシリンダ9により操舵される操舵輪である。後輪8Bは、走行モータ4Bが発生する動力により回転する駆動輪である。走行モータ4Bは、後輪8Bを回転させる。後輪8Bに装着された後タイヤ11Bが回転することにより、ダンプトラック2が走行する。 The front wheels 8A and rear wheels 8B each support the vehicle body 10. Front tires 11A are attached to the front wheels 8A. Rear tires 11B are attached to the rear wheels 8B. The front wheels 8A are steered wheels that are steered by the steering cylinder 9. The rear wheels 8B are drive wheels that rotate by the power generated by the travel motor 4B. The travel motor 4B rotates the rear wheels 8B. The dump truck 2 travels as the rear tires 11B attached to the rear wheels 8B rotate.
 ステアリングシリンダ9は、油圧アクチュエータの一種である油圧シリンダである。ステアリングシリンダ9は、油圧ポンプ5から吐出された作動油に基づいて駆動する。バルブ装置7は、油圧ポンプ5からステアリングシリンダ9に供給される作動油の方向及び流量を調整する。ステアリングシリンダ9は、前輪8Aを操舵する動力を発生する。 The steering cylinder 9 is a hydraulic cylinder, which is a type of hydraulic actuator. The steering cylinder 9 is driven by hydraulic oil discharged from the hydraulic pump 5. The valve device 7 adjusts the direction and flow rate of the hydraulic oil supplied from the hydraulic pump 5 to the steering cylinder 9. The steering cylinder 9 generates power to steer the front wheels 8A.
 車体10は、前輪8A及び後輪8Bのそれぞれに支持される。ダンプボディ12は、車体10に支持される。ダンプボディ12は、積荷が積み込まれる部材である。ダンプボディ12は、ホイストシリンダ13により回動される。ダンプボディ12は、リアダンプ方式である。ホイストシリンダ13によりダンプボディ12が後方に回動することにより、ダンプボディ12から積荷が排出される。 The vehicle body 10 is supported by the front wheels 8A and the rear wheels 8B. The dump body 12 is supported by the vehicle body 10. The dump body 12 is a member onto which cargo is loaded. The dump body 12 is rotated by a hoist cylinder 13. The dump body 12 is of a rear dump type. The dump body 12 is rotated rearward by the hoist cylinder 13, causing the cargo to be discharged from the dump body 12.
 ホイストシリンダ13は、油圧アクチュエータの一種である油圧シリンダである。ホイストシリンダ13は、油圧ポンプ5から吐出された作動油に基づいて駆動する。バルブ装置7は、油圧ポンプ5からホイストシリンダ13に供給される作動油の方向及び流量を調整する。ホイストシリンダ13は、ダンプボディ12を回動させる動力を発生する。 The hoist cylinder 13 is a hydraulic cylinder, which is a type of hydraulic actuator. The hoist cylinder 13 is driven by hydraulic oil discharged from the hydraulic pump 5. The valve device 7 adjusts the direction and flow rate of the hydraulic oil supplied from the hydraulic pump 5 to the hoist cylinder 13. The hoist cylinder 13 generates power to rotate the dump body 12.
[燃料電池システム]
 燃料電池システム3は、ダンプトラック2に搭載される。図2に示すように、燃料電池システム3は、燃料電池20と、酸化ガス供給装置30と、燃料ガス供給装置40と、ガス排出装置50と、電力調整装置60と、冷媒供給装置70とを有する。
[Fuel cell system]
The fuel cell system 3 is mounted on a dump truck 2. As shown in Fig. 2, the fuel cell system 3 has a fuel cell 20, an oxidizing gas supply device 30, a fuel gas supply device 40, a gas discharge device 50, a power conditioning device 60, and a coolant supply device 70.
 燃料電池20は、燃料ガスである水素と酸化ガスである酸素とを化学反応させて発電する。燃料電池20は、複数の単位セルが積層されたスタック構造を有する。 The fuel cell 20 generates electricity by chemically reacting hydrogen, which is a fuel gas, with oxygen, which is an oxidizing gas. The fuel cell 20 has a stack structure in which multiple unit cells are stacked.
 酸化ガス供給装置30は、燃料電池20のカソードに酸素を含む空気を供給する。酸化ガス供給装置30は、エアコンプレッサ31と、酸素富化膜32と、タービン33と、給気ライン34と、給気ライン35と、給気ライン36とを有する。エアコンプレッサ31は、ダンプトラック2の外部の空気を吸引して燃料電池20に供給する。タービン33は、エアコンプレッサ31に接続される。給気ライン34は、エアコンプレッサ31と酸素富化膜32とを接続する。エアコンプレッサ31により吸引された空気は、給気ライン34を介して酸素富化膜32に供給される。酸素富化膜32は、空気から酸素濃度が増大した酸素富化空気と酸素濃度が低下した窒素富化空気とを生成する。給気ライン35は、酸素富化膜32と燃料電池20のカソード入口とを接続する。酸素富化膜32において生成された酸素富化空気は、給気ライン35を介して燃料電池20のカソードに供給される。給気ライン36は、酸素富化膜32とタービン33とを接続する。酸素富化膜32において生成された窒素富化空気は、給気ライン36を介してタービン33に供給される。窒素富化空気は、タービン33を回転させる。タービン33は、エアコンプレッサ31に回転力を与える。 The oxidizing gas supply device 30 supplies air containing oxygen to the cathode of the fuel cell 20. The oxidizing gas supply device 30 has an air compressor 31, an oxygen enrichment membrane 32, a turbine 33, an air supply line 34, an air supply line 35, and an air supply line 36. The air compressor 31 draws in air from outside the dump truck 2 and supplies it to the fuel cell 20. The turbine 33 is connected to the air compressor 31. The air supply line 34 connects the air compressor 31 and the oxygen enrichment membrane 32. The air drawn in by the air compressor 31 is supplied to the oxygen enrichment membrane 32 via the air supply line 34. The oxygen enrichment membrane 32 generates oxygen-enriched air with an increased oxygen concentration and nitrogen-enriched air with a decreased oxygen concentration from the air. The air supply line 35 connects the oxygen enrichment membrane 32 to the cathode inlet of the fuel cell 20. The oxygen-enriched air generated in the oxygen-enriched membrane 32 is supplied to the cathode of the fuel cell 20 via an air supply line 35. An air supply line 36 connects the oxygen-enriched membrane 32 and the turbine 33. The nitrogen-enriched air generated in the oxygen-enriched membrane 32 is supplied to the turbine 33 via the air supply line 36. The nitrogen-enriched air rotates the turbine 33. The turbine 33 provides a rotational force to the air compressor 31.
 燃料ガス供給装置40は、燃料電池20のアノードに水素を供給する。燃料ガス供給装置40は、水素タンク41と、燃料ガス供給ライン42とを有する。水素タンク41は、水素を収容する。水素は、水素タンク41に充填される。燃料ガス供給ライン42は、水素タンク41と燃料電池20のアノード入口とを接続する。水素タンク41から送出された水素は、燃料ガス供給ライン42を介して燃料電池20のアノードに供給される。なお、燃料ガス供給ライン42に、水素タンク41の水素を燃料電池20に供給する水素ポンプが配置されてもよい。 The fuel gas supply device 40 supplies hydrogen to the anode of the fuel cell 20. The fuel gas supply device 40 has a hydrogen tank 41 and a fuel gas supply line 42. The hydrogen tank 41 contains hydrogen. Hydrogen is filled into the hydrogen tank 41. The fuel gas supply line 42 connects the hydrogen tank 41 to the anode inlet of the fuel cell 20. The hydrogen discharged from the hydrogen tank 41 is supplied to the anode of the fuel cell 20 via the fuel gas supply line 42. A hydrogen pump that supplies hydrogen from the hydrogen tank 41 to the fuel cell 20 may be disposed in the fuel gas supply line 42.
 ガス排出装置50は、燃料電池20から排出されたガスをダンプトラック2の周囲の大気空間に排出する。ガス排出装置50は、排気ライン51と、タービン52とを有する。排気ライン51は、燃料電池20のカソード出口とタービン52とを接続する。タービン52は、燃料電池20から排出されたガスにより回転する。 The gas exhaust device 50 exhausts the gas discharged from the fuel cell 20 into the atmospheric space around the dump truck 2. The gas exhaust device 50 has an exhaust line 51 and a turbine 52. The exhaust line 51 connects the cathode outlet of the fuel cell 20 to the turbine 52. The turbine 52 rotates by the gas discharged from the fuel cell 20.
 電力調整装置60は、DC/DCコンバータ61と、インバータ62と、DC/DCコンバータ63と、蓄電装置64とを有する。電力調整装置60は、燃料電池20が発電した電力及び蓄電装置64に蓄えられている電力の少なくとも一方を電動モータ4(4A,4B)に供給する。電動モータ4は、燃料電池20からの電力及び蓄電装置64からの電力の少なくとも一方に基づいて駆動する。 The power adjustment device 60 has a DC/DC converter 61, an inverter 62, a DC/DC converter 63, and a power storage device 64. The power adjustment device 60 supplies at least one of the power generated by the fuel cell 20 and the power stored in the power storage device 64 to the electric motor 4 (4A, 4B). The electric motor 4 is driven based on at least one of the power from the fuel cell 20 and the power from the power storage device 64.
 DC/DCコンバータ61は、燃料電池20で発電された電圧を昇圧する。DC/DCコンバータ61は、燃料電池20で発電された直流電流をインバータ62に供給する。蓄電装置64は、燃料電池20が発電した電力により充電される。蓄電装置64は、ダンプトラック2の外部に設けられた充電装置により充電されてもよい。蓄電装置64は、電動モータ4の回生エネルギーにより充電されてもよい。蓄電装置64は、二次電池(蓄電池)を含む。実施形態において、蓄電装置64は、リチウムイオンバッテリ(LiB:Lithium ion Battery)を含む。なお、蓄電装置64は、リチウムイオンキャパシタ(LiC:Lithium ion Capacitor)を含んでもよいし、電気二重層キャパシタ(EDLC:Electric Double Layer Capacitor)を含んでもよい。DC/DCコンバータ63は、蓄電装置64が燃料電池20と一体となってインバータ62へ電力を供給できるように、蓄電装置64の充放電を制御する。インバータ62は、DC/DCコンバータ61及びDC/DCコンバータ63の少なくとも一方からの直流電流を三相交流電流に変換して電動モータ4(4A,4B)に供給する。電動モータ4(4A,4B)は、インバータ62から供給された三相交流電流に基づいて駆動される。 The DC/DC converter 61 boosts the voltage generated by the fuel cell 20. The DC/DC converter 61 supplies the direct current generated by the fuel cell 20 to the inverter 62. The power storage device 64 is charged by the power generated by the fuel cell 20. The power storage device 64 may be charged by a charging device provided outside the dump truck 2. The power storage device 64 may be charged by the regenerative energy of the electric motor 4. The power storage device 64 includes a secondary battery (storage battery). In the embodiment, the power storage device 64 includes a lithium ion battery (LiB: Lithium ion Battery). The power storage device 64 may include a lithium ion capacitor (LiC: Lithium ion Capacitor) or an electric double layer capacitor (EDLC: Electric Double Layer Capacitor). The DC/DC converter 63 controls the charging and discharging of the power storage device 64 so that the power storage device 64 can supply power to the inverter 62 in cooperation with the fuel cell 20. The inverter 62 converts the direct current from at least one of the DC/DC converters 61 and 63 into a three-phase alternating current and supplies it to the electric motor 4 (4A, 4B). The electric motor 4 (4A, 4B) is driven based on the three-phase alternating current supplied from the inverter 62.
 冷媒供給装置70は、燃料電池20を冷却するために燃料電池20に冷媒を供給する。冷媒として、水が例示される。冷媒供給装置70は、供給ライン71と、排出ライン72と、ラジエータ73と、冷媒ポンプ74とを有する。供給ライン71は、燃料電池20の冷媒入口に接続される。排出ライン72は、燃料電池20の冷媒出口に接続される。ラジエータ73は、供給ライン71と排出ライン72とに接続される。冷媒ポンプ74は、供給ライン71に配置される。冷媒ポンプ74は、燃料電池20に冷媒を供給する。冷媒ポンプ74は、供給ライン71、燃料電池20、排出ライン72、及びラジエータ73を含む循環経路において冷媒が循環するように駆動する。ラジエータ73は、燃料電池20から排出された冷媒とダンプトラック2の外部の空気とを熱交換して冷媒を冷却する。 The refrigerant supply device 70 supplies a refrigerant to the fuel cell 20 to cool the fuel cell 20. An example of the refrigerant is water. The refrigerant supply device 70 has a supply line 71, a discharge line 72, a radiator 73, and a refrigerant pump 74. The supply line 71 is connected to a refrigerant inlet of the fuel cell 20. The discharge line 72 is connected to a refrigerant outlet of the fuel cell 20. The radiator 73 is connected to the supply line 71 and the discharge line 72. The refrigerant pump 74 is disposed in the supply line 71. The refrigerant pump 74 supplies the refrigerant to the fuel cell 20. The refrigerant pump 74 drives to circulate the refrigerant in a circulation path including the supply line 71, the fuel cell 20, the discharge line 72, and the radiator 73. The radiator 73 exchanges heat between the refrigerant discharged from the fuel cell 20 and the air outside the dump truck 2 to cool the refrigerant.
[燃料電池の特性]
 図3は、実施形態に係る燃料電池20の特性を説明するための図である。図3は、燃料電池20の負荷率と効率との関係を示す。燃料電池20の負荷率とは、燃料電池20が定格能力(設計上の100%能力)で作動したときの発電量のうち実際に使用された電力量の割合をいう。燃料電池20の効率(発電効率)とは、燃料電池20に投入された再生可能エネルギー(水素)が電気エネルギーに変換される割合をいう。図3において、効率は、燃料電池20単体での効率である。図3に示すように、燃料電池20の負荷率が上昇するほど燃料電池20の効率が低下する。すなわち、燃料電池20が発生した電力が多量に使用されるほど燃料電池20の効率が低下する。図3に示すように、燃料電池20の負荷率が20%以上30%以下である場合、燃料電池20の効率が高くなる。燃料電池20の負荷率が30%よりも高くなるほど燃料電池20の効率が徐々に低下する。また、燃料電池20の負荷率が10%を下回ると、燃料電池20の効率が急激に低下する。
[Fuel cell characteristics]
FIG. 3 is a diagram for explaining the characteristics of the fuel cell 20 according to the embodiment. FIG. 3 shows the relationship between the load factor and the efficiency of the fuel cell 20. The load factor of the fuel cell 20 refers to the ratio of the amount of power actually used to the amount of power generated when the fuel cell 20 operates at the rated capacity (100% capacity of the design). The efficiency (power generation efficiency) of the fuel cell 20 refers to the ratio of the renewable energy (hydrogen) input to the fuel cell 20 that is converted into electrical energy. In FIG. 3, the efficiency is the efficiency of the fuel cell 20 alone. As shown in FIG. 3, the higher the load factor of the fuel cell 20, the lower the efficiency of the fuel cell 20. In other words, the more the power generated by the fuel cell 20 is used, the lower the efficiency of the fuel cell 20. As shown in FIG. 3, when the load factor of the fuel cell 20 is 20% or more and 30% or less, the efficiency of the fuel cell 20 is high. The higher the load factor of the fuel cell 20 is above 30%, the gradually lower the efficiency of the fuel cell 20. In addition, when the load factor of the fuel cell 20 falls below 10%, the efficiency of the fuel cell 20 drops sharply.
 燃料電池システム3は、燃料電池20を作動させるための電動補機を有する。図2に示した例において、電動補機は、燃料電池20に空気を供給するエアコンプレッサ31、及び燃料電池20に冷媒を供給する冷媒ポンプ74の少なくとも一方を含む。なお、水素タンク41の水素を燃料電池20に供給する水素ポンプが燃料ガス供給ライン42に配置されている場合、電動補機は、水素ポンプを含んでもよい。燃料電池20が発生した電力が電動モータ4のみならず電動補機にも使用されると、燃料電池20の負荷率が上昇することとなる。燃料電池20の負荷率か上昇すると、燃料電池20の効率が低下する。 The fuel cell system 3 has electric auxiliaries for operating the fuel cell 20. In the example shown in FIG. 2, the electric auxiliaries include at least one of an air compressor 31 that supplies air to the fuel cell 20 and a coolant pump 74 that supplies coolant to the fuel cell 20. If a hydrogen pump that supplies hydrogen from the hydrogen tank 41 to the fuel cell 20 is disposed in the fuel gas supply line 42, the electric auxiliaries may include a hydrogen pump. If the power generated by the fuel cell 20 is used not only for the electric motor 4 but also for the electric auxiliaries, the load factor of the fuel cell 20 will increase. If the load factor of the fuel cell 20 increases, the efficiency of the fuel cell 20 will decrease.
 実施形態において、燃料電池システム3は、燃料電池20から電動補機への電力の供給と蓄電装置64から電動補機への電力の供給とを切り換えることによって、燃料電池20が発生した電力が電動補機に使用されることを抑制する。燃料電池20が発生した電力が電動補機に使用されることが抑制されることにより、燃料電池20の負荷率の上昇が抑制されるので、燃料電池20の効率の低下が抑制される。 In this embodiment, the fuel cell system 3 prevents the power generated by the fuel cell 20 from being used by the electric auxiliary by switching between the supply of power from the fuel cell 20 to the electric auxiliary and the supply of power from the power storage device 64 to the electric auxiliary. By preventing the power generated by the fuel cell 20 from being used by the electric auxiliary, an increase in the load factor of the fuel cell 20 is prevented, and therefore a decrease in the efficiency of the fuel cell 20 is prevented.
[スイッチ装置]
 図4は、実施形態に係る燃料電池システム3の一部を模式的に示す図である。図4に示すように、燃料電池システム3は、燃料電池20と、蓄電装置64と、電動モータ4と、電動補機25と、DC/DCコンバータ61と、DC/DCコンバータ63と、インバータ62と、スイッチ装置80と、コントローラ90とを備える。
[Switch device]
4 is a schematic diagram showing a part of a fuel cell system 3 according to an embodiment. As shown in Fig. 4, the fuel cell system 3 includes a fuel cell 20, a power storage device 64, an electric motor 4, an electric accessory 25, a DC/DC converter 61, a DC/DC converter 63, an inverter 62, a switch device 80, and a controller 90.
 電動モータ4は、燃料電池20からの電力及び蓄電装置64からの電力の少なくとも一方に基づいて駆動する。上述のように、電動モータ4は、油圧ポンプ5を駆動させる駆動モータ4A及び後輪8Bを回転させる走行モータ4Bを含む。 The electric motor 4 is driven based on at least one of the power from the fuel cell 20 and the power from the power storage device 64. As described above, the electric motor 4 includes the drive motor 4A that drives the hydraulic pump 5 and the traction motor 4B that rotates the rear wheels 8B.
 DC/DCコンバータ61は、燃料電池20で発電された電圧を昇圧する。DC/DCコンバータ63は、蓄電装置64が燃料電池20と一体となってインバータ62へ電力を供給できるように、蓄電装置64の充放電を制御する。インバータ62は、DC/DCコンバータ61及びDC/DCコンバータ63の少なくとも一方からの直流電流を三相交流電流に変換して電動モータ4に供給する。電動モータ4は、インバータ62から供給された三相交流電流に基づいて駆動される。 The DC/DC converter 61 boosts the voltage generated by the fuel cell 20. The DC/DC converter 63 controls the charging and discharging of the power storage device 64 so that the power storage device 64 can supply power to the inverter 62 in cooperation with the fuel cell 20. The inverter 62 converts the direct current from at least one of the DC/DC converters 61 and 63 into three-phase alternating current and supplies it to the electric motor 4. The electric motor 4 is driven based on the three-phase alternating current supplied from the inverter 62.
 電動補機25は、燃料電池20を作動させるために駆動する。電動補機25は、燃料電池20からの電力及び蓄電装置64からの電力の少なくとも一方に基づいて駆動する。 The electric auxiliary machine 25 is driven to operate the fuel cell 20. The electric auxiliary machine 25 is driven based on at least one of the power from the fuel cell 20 and the power from the power storage device 64.
 電動モータ4に対して、燃料電池20と蓄電装置64とは、並列接続される。電動補機25は、燃料電池20及び蓄電装置64に並列接続される。 The fuel cell 20 and the power storage device 64 are connected in parallel to the electric motor 4. The electric auxiliary machine 25 is connected in parallel to the fuel cell 20 and the power storage device 64.
 スイッチ装置80は、燃料電池20から電動補機25への電力の供給と蓄電装置64から電動補機25への電力の供給とを切り換えるスイッチ動作を実施する。スイッチ装置80は、燃料電池20と電動補機25との間に配置される第1スイッチ81と、蓄電装置64と電動補機25との間に配置される第2スイッチ82とを有する。コントローラ90は、スイッチ装置80を制御する。第1スイッチ81がオンされ、燃料電池20と電動補機25とが接続されることにより、燃料電池20から電動補機25へ電力が供給される。第1スイッチ81がオフされ、燃料電池20と電動補機25との接続が解除されることにより、燃料電池20から電動補機25への電力の供給が遮断される。第2スイッチ82がオンされ、蓄電装置64と電動補機25とが接続されることにより、蓄電装置64から電動補機25へ電力が供給される。第2スイッチ82がオフされ、蓄電装置64と電動補機25との接続が解除されることにより、蓄電装置64から電動補機25への電力の供給が遮断される。 The switch device 80 performs a switching operation to switch between the supply of power from the fuel cell 20 to the electric auxiliary machine 25 and the supply of power from the power storage device 64 to the electric auxiliary machine 25. The switch device 80 has a first switch 81 arranged between the fuel cell 20 and the electric auxiliary machine 25, and a second switch 82 arranged between the power storage device 64 and the electric auxiliary machine 25. The controller 90 controls the switch device 80. When the first switch 81 is turned on and the fuel cell 20 and the electric auxiliary machine 25 are connected, power is supplied from the fuel cell 20 to the electric auxiliary machine 25. When the first switch 81 is turned off and the connection between the fuel cell 20 and the electric auxiliary machine 25 is released, the supply of power from the fuel cell 20 to the electric auxiliary machine 25 is cut off. When the second switch 82 is turned on and the power storage device 64 and the electric auxiliary machine 25 are connected, power is supplied from the power storage device 64 to the electric auxiliary machine 25. When the second switch 82 is turned off and the connection between the power storage device 64 and the electric auxiliary machine 25 is released, the supply of power from the power storage device 64 to the electric auxiliary machine 25 is cut off.
 コントローラ90は、燃料電池20の負荷率に基づいて、スイッチ装置80のスイッチ動作を実施する。コントローラ90は、DC/DCコンバータ61の作動状態に基づいて、燃料電池20の負荷率を監視することができる。 The controller 90 performs the switching operation of the switch device 80 based on the load rate of the fuel cell 20. The controller 90 can monitor the load rate of the fuel cell 20 based on the operating state of the DC/DC converter 61.
 コントローラ90は、燃料電池20の負荷率が予め定められた閾値以上である場合、蓄電装置64から電動補機25へ電力が供給され、燃料電池20から電動補機25へ電力が供給されないように、スイッチ装置80のスイッチ動作を実施する。一例として、負荷率に係る閾値を60%とした場合、コントローラ90は、燃料電池20の負荷率が60%以上100%以下であるときに、第1スイッチ81をオフし、第2スイッチ82をONする。燃料電池20の負荷率が高い場合、燃料電池20から電動補機25に電力が供給されないので、燃料電池20が発生した電力は、電動補機25に使用されず、電動モータ4に使用される。電動補機25は、蓄電装置64から供給された電力に基づいて駆動する。燃料電池20が発生した電力が電動補機25に使用されないので、燃料電池20の負荷率の上昇が抑制される。燃料電池20の負荷率の上昇が抑制されるので、燃料電池20の効率の低下が抑制される。 When the load rate of the fuel cell 20 is equal to or higher than a predetermined threshold, the controller 90 performs a switching operation of the switch device 80 so that power is supplied from the power storage device 64 to the electric auxiliary machine 25 and power is not supplied from the fuel cell 20 to the electric auxiliary machine 25. As an example, when the threshold for the load rate is set to 60%, the controller 90 turns off the first switch 81 and turns on the second switch 82 when the load rate of the fuel cell 20 is equal to or higher than 60% and equal to or lower than 100%. When the load rate of the fuel cell 20 is high, power is not supplied from the fuel cell 20 to the electric auxiliary machine 25, so the power generated by the fuel cell 20 is not used by the electric auxiliary machine 25 but is used by the electric motor 4. The electric auxiliary machine 25 is driven based on the power supplied from the power storage device 64. Since the power generated by the fuel cell 20 is not used by the electric auxiliary machine 25, an increase in the load rate of the fuel cell 20 is suppressed. Since an increase in the load rate of the fuel cell 20 is suppressed, a decrease in the efficiency of the fuel cell 20 is suppressed.
 コントローラ90は、燃料電池20の負荷率が予め定められた閾値未満である場合、燃料電池20から電動補機25へ電力が供給され、蓄電装置64から電動補機25へ電力が供給されないように、スイッチ装置80のスイッチ動作を実施する。コントローラ90は、燃料電池20の負荷率が0%以上60%未満であるときに、第1スイッチ81をオンし、第2スイッチ82をオフする。燃料電池20の負荷率が低い場合、蓄電装置64から電動補機25に電力が供給されないので、蓄電装置64に充電されている電力の消費が抑制される。電動補機25は、燃料電池20から供給された電力に基づいて駆動する。 When the load rate of the fuel cell 20 is less than a predetermined threshold, the controller 90 performs a switching operation of the switch device 80 so that power is supplied from the fuel cell 20 to the electric auxiliary machine 25 and power is not supplied from the power storage device 64 to the electric auxiliary machine 25. When the load rate of the fuel cell 20 is greater than or equal to 0% and less than 60%, the controller 90 turns on the first switch 81 and turns off the second switch 82. When the load rate of the fuel cell 20 is low, power is not supplied from the power storage device 64 to the electric auxiliary machine 25, so consumption of the power charged in the power storage device 64 is suppressed. The electric auxiliary machine 25 is driven based on the power supplied from the fuel cell 20.
[効果]
 以上説明したように、実施形態によれば、燃料電池システム3は、燃料電池20と、蓄電装置64と、燃料電池20からの電力及び蓄電装置64からの電力の少なくとも一方に基づいて駆動する電動モータ4と、燃料電池20を作動させるための電動補機25と、燃料電池20から電動補機25への電力の供給と蓄電装置64から電動補機25への電力の供給とを切り換えるスイッチ動作を実施するスイッチ装置80と、を備える。
[effect]
As described above, according to the embodiment, the fuel cell system 3 comprises a fuel cell 20, a power storage device 64, an electric motor 4 driven based on at least one of power from the fuel cell 20 and power from the power storage device 64, an electric auxiliary machine 25 for operating the fuel cell 20, and a switch device 80 that performs a switch operation to switch between the supply of power from the fuel cell 20 to the electric auxiliary machine 25 and the supply of power from the power storage device 64 to the electric auxiliary machine 25.
 実施形態によれば、燃料電池20が発生した電力が電動補機25に常時使用されないので、燃料電池20の負荷率の上昇が抑制される。燃料電池20の負荷率の上昇が抑制されるので、燃料電池20の効率の低下が抑制される。燃料電池20の効率の低下が抑制されるので、燃料電池システム3の効率の低下が抑制される。 According to the embodiment, the power generated by the fuel cell 20 is not constantly used by the electric auxiliary machine 25, so an increase in the load factor of the fuel cell 20 is suppressed. Since an increase in the load factor of the fuel cell 20 is suppressed, a decrease in the efficiency of the fuel cell 20 is suppressed. Since a decrease in the efficiency of the fuel cell 20 is suppressed, a decrease in the efficiency of the fuel cell system 3 is suppressed.
 スイッチ装置80は、燃料電池20の負荷率に基づいてスイッチ動作を実施する。燃料電池20の負荷率が閾値以上である場合、蓄電装置64から電動補機25へ電力が供給されるようにスイッチ動作が実施されることにより、燃料電池20の負荷率が更に高くなることが抑制される。燃料電池20の負荷率が閾値未満である場合、燃料電池20から電動補機25へ電力が供給されるようにスイッチ動作が実施されることにより、蓄電装置64に充電されている電力の消費が抑制される。 The switch device 80 performs a switching operation based on the load rate of the fuel cell 20. When the load rate of the fuel cell 20 is equal to or greater than a threshold value, a switching operation is performed so that power is supplied from the power storage device 64 to the electric auxiliary machine 25, thereby preventing the load rate of the fuel cell 20 from becoming even higher. When the load rate of the fuel cell 20 is less than the threshold value, a switching operation is performed so that power is supplied from the fuel cell 20 to the electric auxiliary machine 25, thereby preventing consumption of the power stored in the power storage device 64.
 電動補機25と燃料電池20と蓄電装置64とは、並列接続される。これにより、燃料電池システム3の構造の複雑化を招くことなく、スイッチ動作が円滑に実施される。 The electric auxiliary machine 25, the fuel cell 20, and the power storage device 64 are connected in parallel. This allows the switching operation to be carried out smoothly without complicating the structure of the fuel cell system 3.
 2…ダンプトラック(作業車両)、3…燃料電池システム、4…電動モータ、4A…駆動モータ、4B…走行モータ、5…油圧ポンプ、6…パワーテイクオフ、7…バルブ装置、8A…前輪、8B…後輪、9…ステアリングシリンダ、10…車体、11A…前タイヤ、11B…後タイヤ、12…ダンプボディ、13…ホイストシリンダ、20…燃料電池、25…電動補機、30…酸化ガス供給装置、31…エアコンプレッサ、32…酸素富化膜、33…タービン、34…給気ライン、35…給気ライン、36…給気ライン、40…燃料ガス供給装置、41…水素タンク、42…燃料ガス供給ライン、50…ガス排出装置、51…排気ライン、52…タービン、60…電力調整装置、61…DC/DCコンバータ、62…インバータ、63…DC/DCコンバータ、64…蓄電装置、70…冷媒供給装置、71…供給ライン、72…排出ライン、73…ラジエータ、74…冷媒ポンプ、80…スイッチ装置、81…第1スイッチ、82…第2スイッチ、90…コントローラ。 2...Dump truck (work vehicle), 3...Fuel cell system, 4...Electric motor, 4A...Drive motor, 4B...Travel motor, 5...Hydraulic pump, 6...Power take-off, 7...Valve device, 8A...Front wheels, 8B...Rear wheels, 9...Steering cylinder, 10...Vehicle body, 11A...Front tires, 11B...Rear tires, 12...Dump body, 13...Hoist cylinder, 20...Fuel cell, 25...Electric auxiliary machine, 30...Oxidizing gas supply device, 31...Air compressor, 32...Oxygen enrichment membrane, 33...Turbine, 34...Air supply line, 3 5...air supply line, 36...air supply line, 40...fuel gas supply device, 41...hydrogen tank, 42...fuel gas supply line, 50...gas exhaust device, 51...exhaust line, 52...turbine, 60...power conditioning device, 61...DC/DC converter, 62...inverter, 63...DC/DC converter, 64...electricity storage device, 70...coolant supply device, 71...supply line, 72...exhaust line, 73...radiator, 74...coolant pump, 80...switch device, 81...first switch, 82...second switch, 90...controller.

Claims (9)

  1.  燃料電池と、
     蓄電装置と、
     前記燃料電池からの電力及び前記蓄電装置からの電力の少なくとも一方に基づいて駆動する電動モータと、
     前記燃料電池を作動させるための電動補機と、
     前記燃料電池から前記電動補機への電力の供給と前記蓄電装置から前記電動補機への電力の供給とを切り換えるスイッチ動作を実施するスイッチ装置と、を備える、
     燃料電池システム。
    A fuel cell;
    A power storage device;
    an electric motor that is driven based on at least one of the power from the fuel cell and the power storage device;
    an electric accessory for operating the fuel cell;
    a switch device that performs a switching operation to switch between the supply of electric power from the fuel cell to the electric auxiliary and the supply of electric power from the power storage device to the electric auxiliary.
    Fuel cell system.
  2.  前記スイッチ装置は、前記燃料電池の負荷率に基づいて前記スイッチ動作を実施する、
     請求項1に記載の燃料電池システム。
    the switch device performs the switching operation based on a load factor of the fuel cell.
    The fuel cell system according to claim 1 .
  3.  前記スイッチ装置は、前記燃料電池の負荷率が閾値以上である場合、前記蓄電装置から前記電動補機へ電力が供給されるようにスイッチ動作を実施する、
     請求項2に記載の燃料電池システム。
    the switch device performs a switching operation so that electric power is supplied from the power storage device to the electric auxiliary machine when a load factor of the fuel cell is equal to or greater than a threshold value.
    The fuel cell system according to claim 2 .
  4.  前記スイッチ装置は、前記燃料電池の負荷率が閾値未満である場合、前記燃料電池から前記電動補機へ電力が供給されるようにスイッチ動作を実施する、
     請求項2に記載の燃料電池システム。
    the switch device performs a switching operation so that electric power is supplied from the fuel cell to the electric auxiliary machine when the load factor of the fuel cell is less than a threshold value.
    The fuel cell system according to claim 2 .
  5.  前記電動モータに対して前記燃料電池と前記蓄電装置とは並列接続され、
     前記電動補機は、前記燃料電池及び前記蓄電装置に並列接続される、
     請求項1に記載の燃料電池システム。
    the fuel cell and the power storage device are connected in parallel to the electric motor;
    the electric auxiliary machine is connected in parallel to the fuel cell and the power storage device;
    The fuel cell system according to claim 1 .
  6.  前記電動補機は、前記燃料電池に空気を供給するエアコンプレッサ、及び前記燃料電池に冷媒を供給する冷媒ポンプの少なくとも一方を含む、
     請求項1に記載の燃料電池システム。
    the electric auxiliary machine includes at least one of an air compressor that supplies air to the fuel cell and a coolant pump that supplies a coolant to the fuel cell;
    The fuel cell system according to claim 1 .
  7.  請求項1から請求項6のいずれか一項に記載の燃料電池システムを備える、
     作業車両。
    A fuel cell system comprising:
    Work vehicle.
  8.  車輪を備え、
     前記電動モータは、車輪を回転させる、
     請求項7に記載の作業車両。
    Equipped with wheels,
    The electric motor rotates the wheels.
    A work vehicle according to claim 7.
  9.  油圧シリンダと、
     前記油圧シリンダに供給される作動油を吐出する油圧ポンプと、を備え、
     前記電動モータは、前記油圧ポンプを駆動させる、
     請求項7に記載の作業車両。
    A hydraulic cylinder;
    a hydraulic pump that discharges hydraulic oil to be supplied to the hydraulic cylinder;
    The electric motor drives the hydraulic pump.
    A work vehicle according to claim 7.
PCT/JP2023/042728 2022-12-15 2023-11-29 Fuel cell system and work vehicle WO2024127995A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-200398 2022-12-15
JP2022200398A JP2024085719A (en) 2022-12-15 2022-12-15 Fuel cell system and work vehicle

Publications (1)

Publication Number Publication Date
WO2024127995A1 true WO2024127995A1 (en) 2024-06-20

Family

ID=91484835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042728 WO2024127995A1 (en) 2022-12-15 2023-11-29 Fuel cell system and work vehicle

Country Status (2)

Country Link
JP (1) JP2024085719A (en)
WO (1) WO2024127995A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173636A (en) * 1998-12-10 2000-06-23 Matsushita Electric Ind Co Ltd Fuel cell system
JP2002141092A (en) * 2000-11-01 2002-05-17 Equos Research Co Ltd Control method of fuel cell device
JP2005071797A (en) * 2003-08-25 2005-03-17 Toyota Motor Corp Fuel cell system and vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173636A (en) * 1998-12-10 2000-06-23 Matsushita Electric Ind Co Ltd Fuel cell system
JP2002141092A (en) * 2000-11-01 2002-05-17 Equos Research Co Ltd Control method of fuel cell device
JP2005071797A (en) * 2003-08-25 2005-03-17 Toyota Motor Corp Fuel cell system and vehicle

Also Published As

Publication number Publication date
JP2024085719A (en) 2024-06-27

Similar Documents

Publication Publication Date Title
CA2626632C (en) Lift truck with hybrid power source
US8415065B2 (en) Fuel cell system and method of controlling fuel cell system
US8119298B2 (en) Fuel cell system and mobile body
US7420339B2 (en) Regenerative braking system of fuel cell vehicle using super capacitor
JP4206630B2 (en) DC power supply with fuel cell
JP4218202B2 (en) DC power supply with fuel cell
US11325502B2 (en) Electric vehicle
CN100585940C (en) Reduction of voltage loss caused by voltage cycling by use of a rechargeable electric storage device
JP4380676B2 (en) Moving body
JP2007157477A (en) Fuel cell system
JP2010279124A (en) Moving vehicle
JP2021057127A (en) Fuel cell system, control method for fuel cell system, and program
WO2024127995A1 (en) Fuel cell system and work vehicle
JP2012226974A (en) Redox fuel cell system and fuel cell vehicle
WO2024127994A1 (en) Fuel cell system and work vehicle
WO2024127970A1 (en) Fuel cell system and work vehicle
US8658324B2 (en) Fuel cell system
WO2023163109A1 (en) Work machine
WO2024135833A1 (en) Fuel cell system and work machine
US20220024326A1 (en) Power supply control system and power supply control method
CN115528765A (en) Power supply system
JP2019133877A (en) Fuel cell system for electric vehicle
JP2004289924A (en) Driving gear and automobile provided with it, and driving-gear control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23903286

Country of ref document: EP

Kind code of ref document: A1