WO2024127877A1 - 残容量算出装置及びプログラム - Google Patents

残容量算出装置及びプログラム Download PDF

Info

Publication number
WO2024127877A1
WO2024127877A1 PCT/JP2023/040731 JP2023040731W WO2024127877A1 WO 2024127877 A1 WO2024127877 A1 WO 2024127877A1 JP 2023040731 W JP2023040731 W JP 2023040731W WO 2024127877 A1 WO2024127877 A1 WO 2024127877A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacity
section
interval
remaining capacity
remaining
Prior art date
Application number
PCT/JP2023/040731
Other languages
English (en)
French (fr)
Inventor
正規 内山
俊一 久保
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2024127877A1 publication Critical patent/WO2024127877A1/ja

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This disclosure relates to a remaining capacity calculation device and program.
  • Patent Document 1 describes a technology for calculating the SOC of a storage battery using an SOC-OCV map that shows the correlation between the SOC (State Of Charge) and the open circuit voltage.
  • the primary objective of this disclosure is to provide a remaining capacity calculation device and program that can improve the accuracy of calculating the remaining capacity of a storage battery.
  • the present disclosure provides a remaining capacity calculation device that calculates a remaining capacity of a storage battery when the storage battery is charged and discharged, a first interval calculation unit that calculates a reference remaining capacity of the storage battery based on a correlation between the open circuit voltage and a remaining capacity of the storage battery at a detection timing of an open circuit voltage of the storage battery, and calculates a predetermined interval including the reference remaining capacity as a first capacity interval; a second interval calculation unit that calculates a second capacity interval by adding a capacity change amount, which is a change in current capacity due to charging and discharging of the storage battery from the time of calculation of the past capacity interval, to a maximum remaining capacity and a minimum remaining capacity of a past capacity interval calculated at the detection timing before the present time, respectively; a third interval calculation unit that calculates an interval including an overlapping interval between the first capacity interval and the second capacity interval as a third capacity interval including an actual remaining capacity at the detection timing; Equipped with.
  • the reference remaining capacity of the battery is calculated based on the correlation between the open circuit voltage of the battery and the remaining capacity, and a first capacity interval is calculated as a predetermined interval including the reference remaining capacity.
  • the second capacity interval is calculated by adding the capacity change amount, which is the change in current capacity due to charging and discharging of the battery since the calculation of the past capacity interval, to the maximum remaining capacity and minimum remaining capacity of the past capacity interval calculated at the timing of detecting the open circuit voltage of the battery prior to the present time.
  • the first capacity interval is calculated taking into consideration the variation in remaining capacity caused by the detection conditions of the open circuit voltage of the battery and the charging and discharging conditions of the battery
  • the second capacity interval is calculated taking into consideration the integration error of the integrated value of the current capacity
  • the interval including the overlapping interval of each capacity interval is calculated as the third capacity interval, thereby making it possible to narrow the range of the third capacity interval including the actual remaining capacity of the battery. Narrowing the range of the third capacity interval improves the calculation accuracy of the remaining capacity of the battery.
  • FIG. 1 is a diagram showing a schematic configuration of a battery system according to a first embodiment
  • FIG. 2 is a diagram showing a method for setting a first capacity section
  • FIG. 3 is a diagram showing a method for setting a second capacity section
  • FIG. 4 is a diagram showing a method for setting a third capacity section
  • FIG. 5 is a flowchart showing a control procedure performed by the BMU.
  • FIG. 6 is a diagram showing an example of control for calculating a full charge capacity
  • FIG. 7 is a flowchart showing a procedure of control performed by the BMU according to the second embodiment.
  • FIG. 8 is a diagram illustrating an example of control for calculating the full charge capacity.
  • FIG. 1 is a diagram showing the schematic configuration of a battery system in this embodiment.
  • the battery system includes a rotating electric machine 10 that is the power source for running the vehicle, a battery pack 20 consisting of multiple single cells 21, and a Battery Management Unit (BMU) 30 that monitors the state of the battery pack 20.
  • BMU Battery Management Unit
  • the battery pack 20 is used as a power source for the rotating electric machine 10 and is connected to the rotating electric machine 10. More specifically, the rotating electric machine 10 has an inverter that controls the current of each phase.
  • the battery pack 20 is configured as a series connection of multiple single cells 21. A positive power supply line 11 extending from the most positive terminal of each of the series-connected single cells 21 is connected to the positive side of the inverter, and a negative power supply line 12 extending from the most negative terminal of each of the series-connected single cells 21 is connected to the negative side of the inverter. This allows current to flow between the battery pack 20 and the rotating electric machine 10.
  • Each single cell 21 is a rechargeable storage battery, specifically a lithium-ion storage battery.
  • the BMU 30 is composed of a microcomputer having a CPU and various memories.
  • the BMU 30 includes a voltage detection unit 31, a current detection unit 32, and a calculation unit 33.
  • the voltage detection unit 31 is connected to both ends of each cell 21 via wiring such as a wire harness, and detects the terminal voltage of each cell 21.
  • the voltage detection unit 31 detects the open circuit voltage, which is the voltage between both terminals when the cell 21 is not loaded and is in a non-energized state when the vehicle starts running or when the vehicle is externally charged. For example, when the vehicle starts running, the voltage detection unit 31 detects the open circuit voltage of the cell 21 at a timing before the ignition switch is turned on and the cell 21 starts to be energized. Also, when the vehicle is externally charged, the voltage detection unit 31 detects the open circuit voltage of the cell 21 at a timing before the external charger provided outside the vehicle starts to energize the battery pack 20.
  • the current detection unit 32 detects the charging/discharging current of the battery pack 20 at predetermined time intervals.
  • the current detection unit 32 acquires a detection signal from a current sensor 13 provided on the negative power line 12, and detects the charging/discharging current of the battery pack 20 based on the detection signal.
  • the detection values of the voltage detection unit 31 and the current detection unit 32 are input to the calculation unit 33.
  • the calculation unit 33 sequentially calculates the remaining capacity of each cell 21 constituting the battery pack 20 when the cell 21 is being charged and discharged. In this embodiment, the calculation unit 33 calculates the current capacity [Ah] as the remaining capacity of the cell 21. Note that the calculation unit 33 may calculate the power capacity [Wh] or the SOC [%] as the remaining capacity of the cell 21 instead of the current capacity [Ah].
  • the correlation between the open circuit voltage and the remaining capacity may have a plateau region in which the open circuit voltage is stable over a wide range of remaining capacity. In the plateau region, the change in the open circuit voltage accompanying the change in the remaining capacity is small, so it may be difficult to calculate the remaining capacity with high accuracy from the open circuit voltage.
  • an integration error accumulates if the current integration period is extended, so it may be difficult to calculate the remaining capacity with high accuracy from the current integration value.
  • a lithium ion battery is used as the single cell 21.
  • lithium iron phosphate is used as the positive electrode active material
  • graphite may be used as the negative electrode active material.
  • the calculation unit 33 calculates the capacity range within which the remaining capacity of each of the cells 21 constituting the battery pack 20 can be assumed, and improves the accuracy of calculating the remaining capacity by narrowing down the range of the capacity range.
  • the method of calculating the capacity range of the cells 21 is described below.
  • the calculation unit 33 uses multiple correlations defined in advance as correlations between the open circuit voltage of the single cell 21 and the remaining capacity at the timing of detection of the open circuit voltage of the single cell 21, calculates multiple reference remaining capacities corresponding to the open circuit voltage of the single cell 21 for each correlation, and calculates a section including each of the reference remaining capacities as the first capacity section A.
  • the calculation unit 33 predetermines a charging characteristic M1 indicating the correlation between the open circuit voltage of the single cell 21 and the remaining capacity during charging, and a discharging characteristic M2 indicating the correlation between the open circuit voltage of the single cell 21 and the remaining capacity during discharging, and calculates the reference remaining capacity using the charging characteristic M1 and the discharging characteristic M2.
  • the calculation unit 33 sets the reference remaining capacity corresponding to the detection value Vr of the open circuit voltage of the single cell 21 in the charging characteristic M1 as the minimum remaining capacity A_min of the first capacity section A, and sets the reference remaining capacity corresponding to the detection value Vr of the open circuit voltage of the single cell 21 in the discharging characteristic M2 as the maximum remaining capacity A_max of the first capacity section A. In this case, the calculation unit 33 calculates the section determined by the maximum remaining capacity A_max and the minimum remaining capacity A_min as the first capacity section A. The calculation unit 33 may use a value calculated based on the detection value of the voltage detection unit 31 as the detection value Vr of the open circuit voltage of the single battery 21.
  • the charge characteristic M1 and discharge characteristic M2 of the single cell 21 are predefined based on the open circuit voltage measured, for example, before shipment from the factory, as follows, and are stored in a memory unit provided in the BMU 30.
  • the open circuit voltage defining the discharge characteristic M2 is measured after a predetermined rest time has elapsed since the discharge is stopped each time a predetermined capacity is discharged from the single cell 21.
  • the measurement of the open circuit voltage defining the discharge characteristic M2 is repeated from a fully charged state in which the open circuit voltage of the single cell 21 is equal to or higher than the upper limit voltage, until the open circuit voltage of the single cell 21 falls below the lower limit voltage.
  • the open circuit voltage defining the charge characteristic M1 is measured after a predetermined rest time has elapsed since the charging is stopped each time a predetermined capacity is charged to the single cell 21.
  • the measurement of the open circuit voltage defining the charge characteristic M1 is repeated from a state in which the open circuit voltage of the single cell 21 falls below the lower limit voltage, until the single cell 21 is fully charged. From the viewpoint of noise reduction, it is preferable that the single cell 21 is charged and discharged at a low current.
  • the calculation unit 33 calculates the second capacity section B by adding the change in current capacity due to charging and discharging of the single cell 21 since the calculation of the past capacity section to the maximum remaining capacity and minimum remaining capacity of the past capacity section calculated at the detection timing of the open circuit voltage prior to the present time.
  • FIG. 3 shows an example of a case where the first capacity section A calculated at the previous detection timing of the open circuit voltage is used as the past capacity section and the second capacity section B is calculated.
  • the calculation unit 33 calculates the maximum remaining capacity B_max of the second capacity section B by adding the integrated value IS of the current capacity since the calculation of the first capacity section A to the previous maximum remaining capacity A_max of the first capacity section A.
  • the calculation unit 33 calculates the minimum remaining capacity B_min of the second capacity section B by adding the integrated value IS of the current capacity since the calculation of the first capacity section A to the previous minimum remaining capacity A_min of the first capacity section A.
  • the integrated current capacity value IS is a positive value
  • the remaining capacities A_max and A_min are shifted to the charging side
  • the integrated current capacity value IS is a negative value
  • the remaining capacities A_max and A_min are shifted to the discharging side.
  • the calculation unit 33 calculates the third capacity range C based on the current first capacity range A and the current second capacity range B at the timing of detecting the open circuit voltage of the single battery 21.
  • the calculation unit 33 may set the remaining capacity between the maximum remaining capacity A_max of the first capacity range A and the maximum remaining capacity B_max of the second capacity range B as the maximum remaining capacity C_max of the third capacity range C, and may set the remaining capacity between the minimum remaining capacity A_min of the first capacity range A and the minimum remaining capacity B_min of the second capacity range B as the minimum remaining capacity C_min of the third capacity range C.
  • the calculation unit 33 may also set the overlapping range of the first capacity range A and the second capacity range B as the third capacity range C.
  • the calculation unit 33 calculates the maximum remaining capacity B_max of the second capacity section B as the maximum remaining capacity C_max of the third capacity section C, and calculates the minimum remaining capacity A_min of the first capacity section A as the minimum remaining capacity C_min of the third capacity section C.
  • the calculation unit 33 calculates the second capacity section B using the previous first capacity section A, but the previous third capacity section C may be used as the past capacity section instead of the previous first capacity section A.
  • the calculation unit 33 calculates the maximum remaining capacity B_max and minimum remaining capacity B_min of the current second capacity section B by adding the integrated value IS of the current capacity since the calculation of the third capacity section C to the maximum remaining capacity C_max and minimum remaining capacity C_min of the third capacity section C calculated at the timing of the previous detection of the open circuit voltage.
  • the calculation unit 33 calculates the full charge capacity using the third capacity section C of the cell 21. In this embodiment, the calculation unit 33 determines whether the cell 21 is in a fully charged state, and calculates the full charge capacity when it is determined that the cell 21 is in a fully charged state. For example, when the battery pack 20 is being charged by an external charger, the calculation unit 33 determines that the cell 21 is in a fully charged state when it is determined that the terminal voltage of the cell 21 has reached the full charge voltage value.
  • the calculation unit 33 determines that the cell 21 is in a fully charged state when it is determined that the open circuit voltage of the cell 21 is equal to or higher than the full charge voltage value at the time when the open circuit voltage of the cell 21 is detected.
  • the calculation unit 33 determines that the cell 21 is in a fully charged state, it calculates the full charge capacity range of the cell 21 based on the previous third capacity range C and the change in current capacity due to charging and discharging of the cell 21 since the calculation of the third capacity range C, and calculates the full charge capacity using the full charge capacity range. Specifically, the calculation unit 33 adds the integrated value IS of the current capacity due to charging and discharging of the cell 21 since the calculation of the third capacity range C to the maximum remaining capacity C_max and minimum remaining capacity C_min of the previous third capacity range C to calculate the maximum and minimum values of the full charge capacity range, and sets the range determined by these maximum and minimum values as the full charge capacity range.
  • the calculation unit 33 calculates the capacity within the full charge capacity range as the full charge capacity of the cell 21. For example, the calculation unit 33 calculates the maximum value of the full charge capacity section or a value obtained by shifting that maximum value by a predetermined value toward the discharge side, the minimum value of the full charge section or a value obtained by shifting that minimum value by a predetermined value toward the charge side, or the arithmetic mean or weighted mean value of the maximum and minimum values of the full charge section as the full charge capacity of the single cell 21.
  • FIG. 5 shows a control procedure in which the above-mentioned calculation method for the first, second, and third capacity ranges A, B, and C and the full charge capacity is applied to the calculation of the SOH, which indicates the deterioration state of the battery pack 20.
  • This control is repeatedly executed by the BMU 30 at a predetermined control period.
  • step S10 it is determined whether the reset condition for the third capacitance range C is met. In this embodiment, it is determined whether the period during which the calculation of the third capacitance range C is not performed continues for a predetermined time or more (for example, several tens of hours or several days). A situation in which the calculation of the third capacitance range C is not performed may be a situation in which the vehicle is left unattended and the ignition switch is left off for a long time. In addition, if it is determined that the elapsed time since the previous calculation of the third capacitance range C cannot be measured due to some malfunction, it may be determined that the reset condition for the third capacitance range C is met. If the determination is affirmative in step S10, the process proceeds to step S11.
  • step S11 the third capacitance range C is reset to a predetermined initial range.
  • the first capacitance range A calculated at the detection timing of the open circuit voltage before the current time may be used as the initial range of the third capacitance range C.
  • step S12 the process proceeds to step S12.
  • the process of step S10 corresponds to the "period determination unit," and the process of step S11 corresponds to the "reset unit.”
  • step S12 it is determined whether the open circuit voltage of the cell 21 is detectable. In this embodiment, it is determined that the open circuit voltage of the cell 21 is detectable before current begins to flow through the cell 21 when the vehicle starts to travel or when the vehicle is being externally charged, and it is determined that the open circuit voltage of the cell 21 is not detectable in other cases. If a negative determination is made in step S12, the process proceeds to step S19.
  • step S19 the current capacity due to charging and discharging of the single cell 21 from the previous timing of detection of the open circuit voltage is integrated to calculate an integrated value IS.
  • the current capacity due to charging and discharging of the single cell 21 may be calculated based on the detection value of the current sensor 13. After processing in step S19, proceed to step S20.
  • step S13 the open circuit voltage of the cell 21 is detected.
  • the open circuit voltage of the cell 21 may be detected by regarding the terminal voltage of the cell 21 after a predetermined time has elapsed since the cell 21 was in a non-energized state as the open circuit voltage, or by estimating the open circuit voltage from the terminal voltage of the cell 21 in a powered state.
  • the detection value of the voltage detection unit 31 may be used as the terminal voltage of the cell 21.
  • the first capacity range A is calculated.
  • the maximum remaining capacity A_max and the minimum remaining capacity A_min of the first capacity range A are calculated from the detected open circuit voltage of the single cell 21 using the charging characteristic M1 indicating the correlation between the open circuit voltage of the single cell 21 during charging and the remaining capacity, and the discharging characteristic M2 indicating the correlation between the open circuit voltage of the single cell 21 during discharging.
  • the first capacity range A it is not limited to using two correlations between the open circuit voltage and the remaining capacity.
  • the detection error of the open circuit voltage is determined in advance, and the two correction values of the open circuit voltage are calculated by decreasing and increasing the detection error amount for the detected open circuit voltage, and the maximum remaining capacity A_max and the minimum remaining capacity A_min of the first capacity range A are calculated from the two correction values.
  • the first capacity range A may be calculated using three or more correlations between the open circuit voltage and remaining capacity of the single battery 21. Note that the process of step S14 corresponds to the "first range calculation unit.”
  • step S15 the second capacity range B is calculated.
  • the second capacity range B is calculated by adding the integrated value IS of the current capacity due to the charging and discharging of the single cell 21 from the time when the third capacity range C was calculated to the maximum remaining capacity and minimum remaining capacity of the third capacity range C at the previous timing of detection of the open circuit voltage.
  • the integrated value IS of the current capacity may be the value calculated in the process of step S19.
  • the processes of steps S15 and S19 correspond to the "second range calculation unit".
  • step S16 it is determined whether or not to calculate the third capacity interval C. For example, if it is determined that the first capacity interval A has been calculated in a range wider than the specified range, it is determined that it is difficult to narrow down the range of the third capacity interval C, and it is determined that the third capacity interval C will not be calculated. Also, for example, if it is within a specified time from the timing of the previous open circuit voltage detection, it is determined that the change from the previous third capacity interval C is small, and it is determined that the third capacity interval C will not be calculated this time. In cases other than those mentioned above, it is determined that the third capacity interval C will be calculated. If the determination in step S16 is positive, proceed to step S17.
  • step S17 the third capacity interval C is calculated.
  • the overlapping interval between the first capacity interval A and the second capacity interval B calculated by the processing in steps S14 and S15 is calculated as the third capacity interval C.
  • the processing in step S17 corresponds to the "third interval calculation unit.”
  • step S18 the integrated value IS of the current capacity due to charging and discharging of the single cell 21 is reset to 0, and the process proceeds to step S20. If the determination in step S16 is negative, the process proceeds to step S20 without performing the processes in steps S17 and S18.
  • step S20 it is determined whether the cell 21 is in a fully charged state. If the determination in step S20 is positive, the process proceeds to step S21. On the other hand, if the determination in step S20 is negative, the process proceeds to step S24. The process in step S20 corresponds to the "full charge determination unit.”
  • step S21 it is determined whether the full charge capacity is reliable.
  • the full charge capacity section is calculated using the third capacity section C of the single battery 21, and the capacity within the full charge capacity section is calculated as the full charge capacity.
  • the width of the third capacity section C is used as a determination parameter for determining the reliability of the full charge capacity, and the reliability of the full charge capacity is determined based on the determination parameter.
  • step S22 if the width of the third capacity section C is equal to or smaller than a predetermined width, it is determined that the calculation accuracy of the full charge capacity is ensured, and it is determined that the full charge capacity is reliable. In this case, the process proceeds to step S22. On the other hand, if the width of the third capacity section C is wider than the predetermined width, it is determined that the calculation accuracy of the full charge capacity is not ensured, and it is determined that the full charge capacity is not reliable. In this case, the process proceeds to step S24. Note that the process of step S21 corresponds to the "reliability determination unit".
  • step S22 the full charge capacity section FCC of the cell 21 is calculated.
  • the maximum remaining capacity C_max and minimum remaining capacity C_min of the third capacity section C are added to the integrated value IS of the current capacity due to charging and discharging of the cell 21 from the time of calculation of the third capacity section C to calculate the maximum and minimum values of the full charge capacity section FCC, and the section determined by these maximum and minimum values is set as the full charge capacity section FCC.
  • the integrated value IS of the current capacity may be the value calculated by the process of step S19.
  • step S23 the capacity within the full charge capacity section FCC is calculated as the full charge capacity of the cell 21.
  • the processes of steps S22 and S23 correspond to a "full charge capacity calculation unit".
  • step S24 it is determined whether the calculation of the full charge capacity of each of the cells 21 that make up the battery pack 20 has been completed. If the full charge capacity of each of the cells 21 has been calculated, the process proceeds to step S25. On the other hand, if there is a cell among the cells 21 that make up the battery pack 20 for which the full charge capacity has not been calculated, this control ends.
  • step S25 the SOH of the battery pack 20 is calculated.
  • the SOH [%] of the battery pack 20 is expressed as (current full charge capacity of the battery pack 20/reference full charge capacity of the battery pack 20) x 100.
  • the reference full charge capacity of the battery pack 20 indicates the capacity that can be discharged as the battery pack 20, and is, for example, a capacity specified at the time of designing the battery pack 20 or at the time of vehicle testing.
  • the current full charge capacity of the battery pack 20 is, for example, the product of the smallest full charge capacity of the cells 21 constituting the battery pack 20, the number of series of the battery pack 20, and a specified voltage.
  • the specified voltage may be the average voltage when the battery pack 20 is discharged, and may be specified at the time of designing the vehicle.
  • the current full charge capacity of the battery pack 20 may be corrected taking into account the variation in remaining capacity of each cell 21 and the deterioration of the battery pack 20.
  • step S26 the calculated SOH of the battery pack 20 is notified to other devices.
  • the SOH of the battery pack 20 may be displayed on the vehicle's instrument panel or on the vehicle's car navigation system, or the SOH of the battery pack 20 may be notified to a server outside the vehicle or a mobile terminal such as a smartphone.
  • FIG. 6 shows an example of the control in which the third capacity range C and the full charge capacity range FCC are calculated.
  • the discharge of the battery pack 20 and the open circuit voltage are detected in the order of (a), (b), and (c), and in (d), the battery pack 20 is charged from the state (c) to the fully charged state.
  • an initial section is set as the third capacity section C of the single cell 21.
  • the width of the third capacity section C is wider than the plateau region in the correlation between the open circuit voltage of the single cell 21 and the remaining capacity, and there is a concern that the calculation accuracy of the remaining capacity will be low.
  • the third capacity section C is calculated as an overlapping section of the first capacity section A and the second capacity section B, which are calculated using different methods. This allows the range of the third capacity section C to be accurately narrowed, and the range of the third capacity section C in FIG. 6(b) is narrower than that in FIG. 6(a).
  • the current second capacity range B is calculated using the third capacity range C at the previous timing of detection of the open circuit voltage of the single cell 21, and the current third capacity range C is calculated based on the current first and second capacity ranges A and B.
  • the previous third capacity range C is carried over to the calculation of the current third capacity range C, so that the range of the current third capacity range C can be accurately narrowed. Therefore, the range of the third capacity range C in (c) is narrowed compared to (b) in Figure 6. Then, the width of the third capacity range C in Figure 6 (c) becomes equal to or less than a predetermined width, and it is determined that the full charge capacity is reliable. As a result, calculation of the full charge capacity range FCC is permitted.
  • the maximum remaining capacity C_max and minimum remaining capacity C_min of the third capacity section C in FIG. 6(c) are added to the integrated value IS of the current capacity due to charging of the single cell 21 from the time of calculation of the third capacity section C, and the full charge capacity section FCC is calculated.
  • the range of the full charge capacity section FCC is narrowed, and the calculation accuracy of the full charge capacity can be improved.
  • the reference remaining capacity of the single cell 21 is calculated based on the correlation between the open circuit voltage of the single cell 21 and the remaining capacity, and a first capacity section A is calculated as a predetermined section including the reference remaining capacity.
  • a capacity change amount which is a change in current capacity due to charging and discharging of the single cell 21 since the calculation of the past capacity section, is added to the maximum remaining capacity and minimum remaining capacity of the past capacity section calculated at the timing of detection of the open circuit voltage of the single cell 21 prior to the present time, respectively, to calculate a second capacity section B.
  • the first capacity section A is calculated taking into consideration the variation in remaining capacity caused by the detection conditions of the open circuit voltage of the single cell 21 and the charging and discharging conditions of the single cell 21, and the second capacity section B is calculated taking into consideration the integration error of the integrated value IS of the current capacity, and a section including the overlapping section of each capacity section A and B is calculated as a third capacity section C, thereby making it possible to narrow down the range of the third capacity section C including the actual remaining capacity of the single cell 21. By narrowing the range of the third capacity section C, the accuracy of calculating the remaining capacity of the single battery 21 can be improved.
  • the first capacity range A By calculating the first capacity range A using multiple correlations between the open circuit voltage and remaining capacity, it is possible to properly calculate the first capacity range A while assuming that there is variation in the charge/discharge characteristics of the actual single cells 21.
  • multiple correlations with different degrees of deterioration of the single cells 21 may be used.
  • multiple correlations determined within the range of allowable tolerance for the single cells 21 may be used.
  • the width of the third capacity section C is used as a judgment parameter for judging the reliability of the full charge capacity, and the reliability of the full charge capacity is judged based on the judgment parameter. If it is judged that the full charge capacity is reliable, calculation of the full charge capacity is permitted. This makes it possible to calculate the full charge capacity of the single battery 21 in a situation where the calculation accuracy of the full charge capacity is high.
  • the third capacity interval C is reset to a predetermined initial interval. This makes it possible to prevent the second capacity interval B from being calculated using the unreliable third capacity interval C.
  • the first embodiment may be modified as follows.
  • the calculation unit 33 may calculate the second capacity section B by adding the integrated current capacity IS obtained by reducing or correcting the detection error of the current capacity to the minimum remaining capacity in the past capacity section (for example, the previous third capacity section C) and adding the integrated current capacity IS obtained by increasing or correcting the detection error of the current capacity to the maximum remaining capacity in the past capacity section. Specifically, in step S19 of FIG. 5, the integrated current capacity IS1 obtained by reducing or correcting the detection error of the current capacity and the integrated current capacity IS2 obtained by increasing or correcting the detection error of the current capacity may be calculated.
  • the integrated current capacity IS1 obtained by reducing or correcting the detection error may be calculated according to the following formula (A), and the integrated current capacity IS2 obtained by increasing or correcting the detection error may be calculated according to the following formula (B).
  • the detection error of the current capacity may be determined in advance.
  • the second capacity section B may be calculated by adding the integrated value IS1 to the minimum remaining capacity of the past capacity section and adding the integrated value IS2 to the maximum remaining capacity of the past capacity section.
  • the minimum remaining capacity in the past capacity section is added less, taking into account the detection error of the current capacity.
  • the maximum remaining capacity in the past capacity section is added more, taking into account the detection error of the current capacity. This makes it possible to properly calculate the second capacity section B, taking into account that the detection value of the current capacity includes sensor error, etc.
  • the full charge capacity section FCC may be calculated by adding the integrated value IS1, which has been corrected by subtracting the detection error, to the minimum remaining capacity C_min of the third capacity section C, and adding the integrated value IS2, which has been corrected by adding the detection error, to the maximum remaining capacity C_max of the third capacity section C.
  • the calculation unit 33 may update the second capacity section B each time in the process of step S19 in FIG. 5. In this case, the process of step S15 does not need to be performed.
  • the integrated value IS of the current capacity calculated in the process of step S19 may be used to calculate the full charge capacity section FCC.
  • the minimum remaining capacity C_min of the third capacity range C may be calculated according to the following formula (C)
  • the maximum remaining capacity C_max of the third capacity range C may be calculated according to the following formula (D).
  • C_min ( ⁇ ⁇ A_min + ⁇ ⁇ B_min) / ( ⁇ + ⁇ ) (Formula C)
  • C_max ( ⁇ A_max+ ⁇ B_max)/( ⁇ + ⁇ ) (Formula D)
  • ⁇ , ⁇ , ⁇ , and ⁇ are weighting coefficients.
  • the ratio of the coefficients ⁇ and ⁇ of the second capacity section B to the coefficients ⁇ and ⁇ of the first capacity section A may be set to be larger than when the remaining capacity of the battery 21 is high.
  • the second capacity section B is reflected compared to the first capacity section A, and the third capacity section C is calculated.
  • the BMU 30 may detect the temperature of the assembled battery 20 and variably set each of the coefficients ⁇ , ⁇ , ⁇ , and ⁇ according to the temperature of the assembled battery 20.
  • a parameter other than the width of the third capacity range C may be used as the judgment parameter.
  • the difference between the third capacity range C and the second capacity range B at the time of calculating the third capacity range C may be used as the judgment parameter, and whether or not the full charge capacity is reliable may be judged based on the judgment parameter. In this case, for example, if the following formulas (E), (F), and (G) are satisfied, it may be judged that the full charge capacity is reliable.
  • the limitation degree is less than a predetermined amount, it is determined that the calculation accuracy of the full charge capacity is not ensured, and the full charge capacity is determined to be unreliable.
  • a value indicating the extent to which the third capacity section C is limited relative to the first capacity section A may be calculated.
  • an integrated value of the left side of each of the formulas (E), (F), and (G) may be calculated, and whether or not the full charge capacity is reliable may be determined based on whether or not the integrated value is equal to or greater than a predetermined amount.
  • the width of the full charge capacity section, the maximum capacity value of the full charge capacity section, and the minimum capacity value of the full charge capacity section may be used as a judgment parameter, and whether or not the full charge capacity is reliable may be judged based on the judgment parameter.
  • the processing of step S22 may be performed prior to the processing of step S21. Specifically, if the width of the full charge capacity section is equal to or less than a predetermined width, it is judged that the full charge capacity is reliable, and if the width of the full charge capacity section is wider than the predetermined width, it is judged that the full charge capacity is unreliable.
  • the maximum capacity value of the full charge capacity section is equal to or less than a first predetermined value, it is judged that the full charge capacity is reliable, and if the maximum capacity value of the full charge capacity section is greater than the first predetermined value, it is judged that the full charge capacity is unreliable. If the minimum capacity value of the full charge capacity is equal to or more than a second predetermined value, it is judged that the full charge capacity is reliable, and if the minimum capacity value of the full charge capacity section is smaller than the second predetermined value, it is judged that the full charge capacity is unreliable. Note that the first predetermined value is greater than the second predetermined value.
  • steps S10, S11, and S16 do not need to be performed.
  • step S24 the SOC of the battery pack 20 may be calculated.
  • the SOC [%] of the battery pack 20 is expressed as (current remaining capacity of the battery pack 20/current full charge capacity of the battery pack 20) x 100.
  • the full charge capacity of each cell 21 calculated in the process of step S23 may be used as the current full charge capacity of the battery pack 20.
  • the current remaining capacity of the battery pack 20 may be calculated based on the third capacity range C of each cell 21 calculated in the process of step S17. Also, the processes of steps S24 to S26 do not have to be performed.
  • the remaining capacity of each battery 21 may be calculated using the third capacity range C.
  • the calculation unit 33 may calculate the remaining capacity of the battery 21 as the maximum remaining capacity C_max or the maximum remaining capacity C_max of the third capacity range C shifted toward the discharge side by a predetermined value, the minimum remaining capacity C_min or the minimum remaining capacity C_min of the third capacity range C shifted toward the charge side by a predetermined value, or the arithmetic mean value or weighted mean value of the maximum remaining capacity C_max and the minimum remaining capacity C_min of the third capacity range C.
  • the calculation unit 33 may calculate the remaining capacity of the battery 21 as the maximum remaining capacity C_max or the maximum remaining capacity C_max of the third capacity range C shifted toward the discharge side by a predetermined value, the minimum remaining capacity C_min or the minimum remaining capacity C_min of the third capacity range C shifted toward the charge side by a predetermined value, or the arithmetic mean value or weighted mean value of the maximum remaining capacity C_max and the minimum remaining capacity C_min
  • the maximum power (i.e., Win, Wout) that can be input/output from the assembled battery 20 may be set using the third capacity range C.
  • the processes of steps S20 to S26 may not be performed.
  • the full charge capacity is calculated when the open circuit voltage of the cell 21 is detected, instead of when the cell 21 is determined to be in a fully charged state.
  • FIG. 7 shows the control procedure for calculating the full charge capacity. This control is repeatedly executed by the BMU 30 at a predetermined control period. For convenience, the same processes in FIG. 7 as those shown in FIG. 5 are denoted by the same reference numerals.
  • step S30 it is determined whether the cell 21 is in a fully charged state. In this embodiment, it is assumed that the battery pack 20 is being charged by an external charger, and if it is determined that the terminal voltage of the cell 21 has reached the full charge voltage value, it is determined that the cell 21 is in a fully charged state. If the determination in step S30 is negative, the process proceeds to step S31. If the determination in step S32 is positive, the process proceeds to step S32.
  • step S31 the current capacity due to charging and discharging of the single cell 21 from the time when it is determined that the single cell 21 is in a fully charged state is integrated to calculate an integrated value IS.
  • the current capacity due to charging and discharging of the single cell 21 may be calculated based on the detection value of the current sensor 13.
  • step S32 the integrated value IS of the current capacity calculated in the processing of step S31 is reset to 0. After the processing of steps S31 and S32, the process proceeds to step S12.
  • steps S12 to S17 and S19 are the same as those in the first embodiment.
  • the process in step S17 proceeds to step S22.
  • the processes in steps S22 and S23 are the same as those in the first embodiment. Note that the process in step S16 is omitted in FIG. 7.
  • the process in step S31 corresponds to the "integrated value calculation unit”
  • the processes in steps S22 and S23 correspond to the "full charge capacity calculation unit”.
  • step S33 the integrated current capacity IS calculated in the process of step S19 is reset to 0.
  • the integrated current capacity IS calculated in the process of step S19 is the integrated current capacity IS due to charging and discharging of the single cell 21 from the timing of the previous detection of the open circuit voltage.
  • FIG. 8 shows an example of how the third capacity range C and the full charge capacity range FCC are calculated.
  • the discharge and open circuit voltage of the battery pack 20 are detected in the order of (a), (b), and (c).
  • a third capacity range C is set when the cell 21 is in a fully charged state.
  • the third capacity range C when the cell 21 is in a fully charged state may be an initial setting range that is set in advance.
  • the third capacity range C is updated using the current first capacity range A and second capacity range B, and the full charge capacity range FCC is calculated using the third capacity range C.
  • the integrated value ISA of the current capacity due to charging and discharging of the single cell 21 during the period from the timing of FIG. 8(a) to the timing of FIG. 8(b) is added to the maximum remaining capacity C_max and minimum remaining capacity C_min of the third capacity section C, which is the set section.
  • the integrated value ISA of the current capacity due to charging and discharging of the single cell 21 during the period from the timing of FIG. 8(a) to the timing of FIG. 8(b) is added to the maximum remaining capacity C_max and minimum remaining capacity C_min of the third capacity section C at the timing of FIG. 8(b).
  • the integrated value ISB of the current capacity due to the charging and discharging of the single cell 21 during the period from the timing of FIG. 8(b) to the timing of FIG. 8(c) is added to the maximum remaining capacity C_max and the minimum remaining capacity C_min of the third capacity section C in FIG. 8(b).
  • the integrated value ISB of the current capacity may be calculated in the process of step S19 in FIG. 7.
  • the integrated value ISA+ISB of the current capacity due to the charging and discharging of the single cell 21 during the period from the timing of FIG. 8(a) to the timing of FIG. 8(c) is added to the maximum remaining capacity C_max and the minimum remaining capacity C_min of the third capacity section C in FIG. 8(c).
  • the integrated value ISA+ISB of the current capacity may be calculated in the process of step S31 in FIG. 7.
  • the full charge capacity of the cell 21 can be calculated each time the open circuit voltage of the cell 21 is detected.
  • step S33 in FIG. 7 the process of calculating the SOH and SOC of the battery pack 20 may be performed as in the first embodiment. Furthermore, after the process of step S17 in FIG. 7, the remaining capacity of each cell 21 may be calculated using the third capacity range C and the maximum power that can be input/output from the battery pack 20 may be set as in the first embodiment.
  • the calculation unit 33 may calculate the SOH of the cell 21 using the third capacity section C instead of the full charge capacity.
  • the capacity within the full charge capacity section FCC is calculated as the full charge capacity of the cell 21, and the SOH of the cell 21 is calculated by dividing the full charge capacity by the reference full charge capacity of the cell 21.
  • the reference full charge capacity of the cell 21 is the capacity that was specified when the cell 21 was designed or when the vehicle was tested.
  • the battery system has been described as a battery system for a vehicle, but it may also be a battery system for a moving body other than a vehicle, such as an aircraft or a ship. It may also be a battery system for a body other than a moving body, i.e., a stationary battery system. Specifically, it can be applied to a battery system provided in association with a building such as a house, a store, or a public facility.
  • the vehicle control device and the method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor and memory programmed to execute one or more functions embodied in a computer program.
  • the vehicle control device and the method thereof described in the present disclosure may be realized by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • the vehicle control device and the method thereof described in the present disclosure may be realized by one or more dedicated computers configured by combining a processor and memory programmed to execute one or more functions with a processor configured with one or more hardware logic circuits.
  • the computer program may be stored in a computer-readable non-transient tangible recording medium as instructions executed by the computer.
  • [Configuration 4] The storage capacity calculation device of any one of configurations 1 to 3, wherein, in calculating the third capacity range, the third range calculation unit determines the remaining capacity between the maximum remaining capacity of the first capacity range and the maximum remaining capacity of the second capacity range as the maximum remaining capacity of the third capacity range, and determines the remaining capacity between the minimum remaining capacity of the first capacity range and the minimum remaining capacity of the second capacity range as the minimum remaining capacity of the third capacity range.
  • the third interval calculation unit determines an overlapping interval between the first capacity interval and the second capacity interval as the third capacity interval.
  • the second section calculation unit calculates the second capacity section by adding the capacity change amount obtained by reducing/correcting the detection error of the current capacity to the minimum remaining capacity of the past capacity section, and by adding the capacity change amount obtained by increasing/correcting the detection error of the current capacity to the maximum remaining capacity of the past capacity section.
  • [Configuration 7] a full charge determination unit that determines whether the storage battery is in a fully charged state; and a full charge capacity calculation unit that, when it is determined that the storage battery is in the fully charged state, calculates a full charge capacity range of the storage battery based on the third capacity range calculated at the previous detection timing and a change in current capacity due to charging and discharging of the storage battery since the calculation of the third capacity range, and calculates a full charge capacity from the full charge capacity range.
  • the remaining capacity calculation device according to any one of configurations 1 to 6, further comprising: a full charge capacity calculation unit that calculates a full charge capacity range of the storage battery based on the third capacity range calculated by the third range calculation unit and the capacity integrated value calculated by the integrated value calculation unit at the detection timing, and calculates a full charge capacity from the full charge capacity range.
  • a reliability determination unit that determines reliability of the full charge capacity calculated by the full charge capacity calculation unit based on the determination parameters, the reliability determination unit determining ...
  • a period determination unit that determines whether a period during which the calculation of the third capacity section is not performed continues for a predetermined time or more;

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

残容量算出装置(30)は、蓄電池(21)の充電時及び放電時において蓄電池の残容量を算出する。残容量算出装置は、蓄電池の開回路電圧の検出タイミングにおいて、開回路電圧と蓄電池の残容量との相関関係により蓄電池の基準残容量を算出するとともに、その基準残容量を含む所定区間を、第1容量区間として算出する第1区間算出部と、現時点よりも前の検出タイミングにおいて算出した過去容量区間の最大残容量及び最小残容量に対して、過去容量区間の算出時からの蓄電池の充放電による電流容量の変化分である容量変化分をそれぞれ加算して、第2容量区間を算出する第2区間算出部と、検出タイミングにおいて、第1容量区間と第2容量区間との重複区間を含む区間を、実際の残容量を含む第3容量区間として算出する第3区間算出部と、を備える。

Description

残容量算出装置及びプログラム 関連出願の相互参照
 本出願は、2022年12月12日に出願された日本出願番号2022-198097号に基づくもので、ここにその記載内容を援用する。
 本開示は、残容量算出装置及びプログラムに関する。
 従来、蓄電池の残容量を算出するものが知られている。例えば、特許文献1には、SOC(State Of Charge)と開回路電圧(Open Circuit Voltage)との相関関係を示すSOC-OCVマップを用いて蓄電池のSOCを算出する技術が記載されている。
特開2010-266221号公報
 蓄電池の残容量を高精度に算出することが難しいことがある。例えば、蓄電池の開回路電圧と残容量との相関関係におけるプラトー領域では、残容量の変化に伴う開回路電圧の変化が小さいため、開回路電圧から残容量を高精度に算出することが難しい。また、例えば、蓄電池の充放電電流を積算して残容量を算出する場合、電流積算期間が長期化すると積算誤差が蓄積されるため、電流積算値から残容量を高精度に算出することが難しい。
 本開示は、蓄電池の残容量の算出精度を向上できる残容量算出装置及びプログラムを提供することを主たる目的とする。
 本開示は、蓄電池の充電時及び放電時において当該蓄電池の残容量を算出する残容量算出装置であって、
 前記蓄電池の開回路電圧の検出タイミングにおいて、前記開回路電圧と前記蓄電池の残容量との相関関係により前記蓄電池の基準残容量を算出するとともに、その基準残容量を含む所定区間を、第1容量区間として算出する第1区間算出部と、
 現時点よりも前の前記検出タイミングにおいて算出した過去容量区間の最大残容量及び最小残容量に対して、当該過去容量区間の算出時からの前記蓄電池の充放電による電流容量の変化分である容量変化分をそれぞれ加算して、第2容量区間を算出する第2区間算出部と、
 前記検出タイミングにおいて、前記第1容量区間と前記第2容量区間との重複区間を含む区間を、実際の残容量を含む第3容量区間として算出する第3区間算出部と、
を備える。
 蓄電池の開回路電圧の検出タイミングにおいて、蓄電池の開回路電圧と残容量との相関関係により当該蓄電池の基準残容量が算出されるとともに、その基準残容量を含む所定区間として第1容量区間が算出される。また、現時点よりも前の蓄電池の開回路電圧の検出タイミングにおいて算出した過去容量区間の最大残容量及び最小残容量に対して、当該過去容量区間の算出時からの蓄電池の充放電による電流容量の変化分である容量変化分をそれぞれ加算して、第2容量区間が算出される。この場合、蓄電池の開回路電圧の検出条件及び蓄電池の充放電条件により生じる残容量のばらつきを考慮して第1容量区間を算出したり、電流容量の積算値の積算誤差を考慮して第2容量区間を算出したりするとともに、各容量区間の重複区間を含む区間を第3容量区間として算出することにより、蓄電池の実際の残容量を含む第3容量区間の範囲を絞り込むことが可能となる。第3容量区間の範囲が絞り込まれることにより、蓄電池の残容量の算出精度を向上することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態に係る電池システムの概略構成を示す図であり、 図2は、第1容量区間の設定方法を示す図であり、 図3は、第2容量区間の設定方法を示す図であり、 図4は、第3容量区間の設定方法を示す図であり、 図5は、BMUが行う制御の手順を示すフローチャートであり、 図6は、満充電容量を算出する制御の一例を示す図であり、 図7は、第2実施形態に係るBMUが行う制御の手順を示すフローチャートであり、 図8は、満充電容量を算出する制御の一例を示す図である。
 <第1実施形態>
 以下、本開示に係る残容量算出装置を具体化した第1実施形態について、図面を参照しつつ説明する。本実施形態では、電気自動車やハイブリッド自動車等の電動車両に搭載される電池システムについて具体的な構成を説明する。
 図1は、本実施形態における電池システムの概略構成を示す図である。電池システムは、車両の走行動力源である回転電機10と、複数の単電池21からなる組電池20と、組電池20の状態を監視するBMU(Battery Management Unit)30とを備えている。
 組電池20は、回転電機10の電源として用いられるものであり、回転電機10に接続されている。詳しくは、回転電機10は各相の電流を制御するインバータを有している。組電池20は、複数の単電池21の直列接続体として構成されている。直列接続された各単電池21の最も正極側の端子から延びる正極側電源線11が、インバータの正極側に接続され、直列接続された各単電池21の最も負極側の端子から延びる負極側電源線12が、インバータの負極側に接続されている。これにより、組電池20と回転電機10との間の通電が可能になっている。各単電池21は、充放電可能な蓄電池であり、具体的には、リチウムイオン蓄電池である。
 BMU30は、CPUや各種メモリを備えるマイクロコンピュータから構成される。BMU30は、電圧検出部31と、電流検出部32と、算出部33とを備えている。電圧検出部31は、ワイヤーハーネス等の配線を介して各単電池21の両端に接続され、各単電池21の端子電圧を検出する。本実施形態では、電圧検出部31は、車両の走行開始時又は車両の外部充電時において、単電池21に負荷がかかっておらず、単電池21が無通電状態である場合の両端子間の電圧である開回路電圧を検出する。例えば、電圧検出部31は、車両の走行開始時において、イグニッションスイッチがオン操作され、単電池21の通電が開始される前のタイミングで単電池21の開回路電圧を検出する。また、電圧検出部31は、車両の外部充電時において、車両の外部に備えられた外部充電器による組電池20への通電が開始される前のタイミングで単電池21の開回路電圧を検出する。
 電流検出部32は、所定時間ごとに組電池20の充放電電流を検出する。図1では、電流検出部32は、負極側電源線12上に設けられた電流センサ13の検出信号を取得し、その検出信号に基づいて組電池20の充放電電流を検出する。電圧検出部31の検出値及び電流検出部32の検出値は、算出部33に入力される。
 算出部33は、組電池20を構成する各単電池21の充電時及び放電時において各単電池21の残容量を逐次算出する。本実施形態では、算出部33は、単電池21の残容量として、電流容量[Ah]を算出する。なお、算出部33は、単電池21の残容量として、電流容量[Ah]に代えて、電力容量[Wh]を算出してもよいし、SOC[%]を算出してもよい。
 ところで、単電池21の残容量を高精度に算出することが難しいことがある。詳しくは、開回路電圧と残容量との相関関係に、残容量の広い範囲で開回路電圧が安定しているプラトー領域が生じることがある。プラトー領域では、残容量の変化に伴う開回路電圧の変化が小さいため、開回路電圧から残容量を高精度に算出することが難しいことがある。また、単電池21の充放電電流を積算して残容量を算出する場合、電流積算期間が長期化すると積算誤差が蓄積されるため、電流積算値から残容量を高精度に算出することが難しいことがある。本実施形態では、単電池21としてリチウムイオン蓄電池が用いられている。リチウムイオン蓄電池では、その正極活物質にはリン酸鉄リチウムが使用され、その負極活物質には黒鉛が使用されることがある。この場合、単電池21の開回路電圧と残容量との相関関係におけるプラトー領域の存在が顕著となり、単電池21の残容量を高精度に算出することが難しくなることが懸念される。
 この点に鑑みて、本実施形態では、算出部33は、組電池20を構成する各単電池21の残容量が取り得る容量区間を算出するとともに、その容量区間の範囲を絞り込むことにより、残容量の算出精度の向上を図ることとしている。以下では、単電池21の容量区間の算出手法について説明する。
 算出部33は、単電池21の開回路電圧の検出タイミングにおいて、単電池21の開回路電圧と残容量との相関関係として予め規定した複数の相関関係を用い、当該相関関係ごとに、単電池21の開回路電圧に対応する複数の基準残容量を算出するとともに、それら各基準残容量を含む区間を第1容量区間Aとして算出する。本実施形態では、図2に示すように、算出部33は、充電中における単電池21の開回路電圧と残容量との相関関係を示す充電特性M1と、放電中における単電池21の開回路電圧と残容量との相関関係を示す放電特性M2とを定めておき、充電特性M1及び放電特性M2を用いて基準残容量を算出する。算出部33は、充電特性M1における単電池21の開回路電圧の検出値Vrに対応する基準残容量を、第1容量区間Aの最小残容量A_minとするとともに、放電特性M2における単電池21の開回路電圧の検出値Vrに対応する基準残容量を、第1容量区間Aの最大残容量A_maxとする。この場合、算出部33は、最大残容量A_max及び最小残容量A_minにより定められる区間を、第1容量区間Aとして算出する。なお、算出部33は、単電池21の開回路電圧の検出値Vrとして、電圧検出部31の検出値に基づいて算出した値を用いるとよい。
 単電池21の充電特性M1及び放電特性M2は、例えば工場出荷前において以下のように計測された開回路電圧に基づいて予め規定され、BMU30が備える記憶部に記憶されている。放電特性M2を規定する開回路電圧は、単電池21に対して所定容量の放電が行われる毎に、その放電を停止してから所定の休止時間を経て計測される。放電特性M2を規定する開回路電圧の計測は、単電池21の開回路電圧が上限電圧以上である満充電状態から、単電池21の開回路電圧が下限電圧を下回るまで繰り返し行われる。充電特性M1を規定する開回路電圧は、単電池21に対して所定容量の充電が行われる毎に、その充電を停止してから所定の休止時間を経て計測される。充電特性M1を規定する開回路電圧の計測は、単電池21の開回路電圧が下限電圧を下回った状態から、単電池21の満充電状態まで繰り返し行われる。なお、ノイズ低減の観点から、単電池21の充放電は低電流で行われるとよい。
 算出部33は、現時点よりも前の開回路電圧の検出タイミングにおいて算出した過去容量区間の最大残容量及び最小残容量に対して、当該過去容量区間の算出時からの単電池21の充放電による電流容量の変化分をそれぞれ加算して、第2容量区間Bを算出する。図3に、前回の開回路電圧の検出タイミングにおいて算出した第1容量区間Aが過去容量区間として用いられ、第2容量区間Bが算出される場合の一例を示す。算出部33は、前回の第1容量区間Aの最大残容量A_maxに対して、その第1容量区間Aの算出時からの電流容量の積算値ISを加算して、第2容量区間Bの最大残容量B_maxを算出する。算出部33は、前回の第1容量区間Aの最小残容量A_minに対して、その第1容量区間Aの算出時からの電流容量の積算値ISを加算して、第2容量区間Bの最小残容量B_minを算出する。なお、本実施形態では、電流容量の積算値ISが正値の場合、各残容量A_max,A_minは充電側にシフトし、電流容量の積算値ISが負値の場合、各残容量A_max,A_minは放電側にシフトする。
 算出部33は、単電池21の開回路電圧の検出タイミングにおいて、今回の第1容量区間Aと今回の第2容量区間Bとに基づいて、第3容量区間Cを算出する。ここで、算出部33は、第3容量区間Cの算出において、第1容量区間Aの最大残容量A_maxと第2容量区間Bの最大残容量B_maxとの間の残容量を第3容量区間Cの最大残容量C_maxとするとともに、第1容量区間Aの最小残容量A_minと第2容量区間Bの最小残容量B_minとの間の残容量を第3容量区間Cの最小残容量C_minとするとよい。また、算出部33は、第1容量区間Aと第2容量区間Bとの重複区間を、第3容量区間Cとしてもよい。この場合、例えば図4では、算出部33は、第2容量区間Bの最大残容量B_maxを第3容量区間Cの最大残容量C_maxとして算出し、第1容量区間Aの最小残容量A_minを第3容量区間Cの最小残容量C_minとして算出する。
 先の図3では、算出部33は、前回の第1容量区間Aを用いて第2容量区間Bを算出する一例を説明したが、前回の第1容量区間Aに代えて、過去容量区間として前回の第3容量区間Cを用いてもよい。この場合、算出部33は、前回の開回路電圧の検出タイミングにおいて算出した第3容量区間Cの最大残容量C_max及び最小残容量C_minに対して、その第3容量区間Cの算出時からの電流容量の積算値ISをそれぞれ加算して、今回の第2容量区間Bの最大残容量B_max及び最小残容量B_minを算出する。
 上述した各区間A,B,Cが算出されることにより、異なる手法で算出された第1容量区間A及び第2容量区間Bを用いて第3容量区間Cの範囲を絞り込むことが可能となる。
 算出部33は、単電池21の第3容量区間Cを用いて満充電容量を算出する。本実施形態では、算出部33は、単電池21が満充電状態であるか否かを判定し、その単電池21が満充電状態であると判定した場合、満充電容量を算出する。例えば、外部充電器により組電池20の充電が行われている状況では、算出部33は、単電池21の端子電圧が満充電電圧値に到達したと判定した場合に、その単電池21が満充電状態であると判定する。また、例えば、回転電機10の回生発電により組電池20の充電が行われ、単電池21が満充電状態となる状況では、算出部33は、単電池21の開回路電圧が検出されたタイミングにおいて、単電池21の開回路電圧が満充電電圧値以上であると判定した場合に、その単電池21が満充電状態であると判定する。
 算出部33は、単電池21が満充電状態であると判定した場合、前回の第3容量区間Cと、その第3容量区間Cの算出時からの単電池21の充放電による電流容量の変化分とに基づいて、単電池21の満充電容量区間を算出し、その満充電容量区間を用いて満充電容量を算出する。具体的には、算出部33は、前回の第3容量区間Cの最大残容量C_max及び最小残容量C_minに対して、その第3容量区間Cの算出時からの単電池21の充放電による電流容量の積算値ISを加算して、満充電容量区間の最大値及び最小値を算出し、それら最大値及び最小値により定まる区間を満充電容量区間とする。算出部33は、満充電容量区間内の容量を、単電池21の満充電容量として算出する。例えば、算出部33は、満充電容量区間の最大値又はその最大値を所定値だけ放電側にシフトさせた値や、満充電区間の最小値又はその最小値を所定値だけ充電側にシフトさせた値、満充電区間の最大値及び最小値の相加平均値又は重み付け平均値を、単電池21の満充電容量として算出する。
 図5に、上述した第1,第2,第3容量区間A,B,C及び満充電容量の算出手法を、組電池20の劣化状態を示すSOHの算出に適用した制御の手順を示す。この制御は、BMU30により所定の制御周期で繰り返し実行される。
 ステップS10では、第3容量区間Cのリセット条件に該当するか否かを判定する。本実施形態では、第3容量区間Cの算出が行われない期間が所定時間(例えば、数10時間又は数日)以上継続しているか否かを判定する。第3容量区間Cの算出が行われない状況としては、車両が放置されており、イグニッションスイッチが長時間オフのままになっている状況が考えられる。また、何らかの不具合により前回の第3容量区間Cの算出時からの経過時間を計測できないと判定した場合に、第3容量区間Cのリセット条件に該当すると判定してもよい。ステップS10において肯定判定した場合、ステップS11に進む。ステップS11では、第3容量区間Cを所定の初期区間にリセットする。例えば、第3容量区間Cの初期区間として、現時点よりも前の開回路電圧の検出タイミングに算出された第1容量区間Aを用いてもよい。ステップS11の処理の後、ステップS12に進む。一方、ステップS10において否定判定した場合、ステップS11の処理を行わずに、ステップS12に進む。なお、ステップS10の処理が「期間判定部」に相当し、ステップS11の処理が「リセット部」に相当する。
 ステップS12では、単電池21の開回路電圧が検出可能であるか否かを判定する。本実施形態では、車両の走行開始時又は車両の外部充電時における単電池21の通電開始前において単電池21の開回路電圧が検出可能であると判定し、それ以外の場合において単電池21の開回路電圧が検出不可能であると判定する。ステップS12において否定判定した場合、ステップS19に進む。
 ステップS19では、前回の開回路電圧の検出タイミングからの単電池21の充放電による電流容量を積算して積算値ISを算出する。単電池21の充放電による電流容量は、電流センサ13の検出値に基づいて算出したものを用いるとよい。ステップS19の処理の後、ステップS20に進む。
 一方、ステップS12において肯定判定した場合、ステップS13に進む。ステップS13では、単電池21の開回路電圧を検出する。例えば、単電池21が無通電状態となってから所定時間経過した後の単電池21の端子電圧を開回路電圧とみなしたり、通電状態の単電池21の端子電圧から開回路電圧を推定したりして、単電池21の開回路電圧を検出するとよい。単電池21の端子電圧としては、電圧検出部31の検出値を用いるとよい。
 ステップS14では、第1容量区間Aを算出する。本実施形態では、充電中における単電池21の開回路電圧と残容量との相関関係を示す充電特性M1と、放電中における単電池21の開回路電圧と残容量との相関関係を示す放電特性M2とを用いて、検出した単電池21の開回路電圧から第1容量区間Aの最大残容量A_max及び最小残容量A_minを算出する。なお、第1容量区間Aを算出する場合に、開回路電圧と残容量との相関関係を2つ用いることに限らない。例えば、単電池21の開回路電圧と残容量との相関関係を1つ用いて、第1容量区間Aを算出することも可能である。この場合、開回路電圧の検出誤差分を予め定めておき、検出した開回路電圧に対して検出誤差分を減補正及び増補正することにより、開回路電圧の補正値を2つ算出し、それら2つの補正値から第1容量区間Aの最大残容量A_max及び最小残容量A_minを算出すればよい。また、例えば、単電池21の開回路電圧と残容量との相関関係を3つ以上用いて、第1容量区間Aを算出してもよい。なお、ステップS14の処理が「第1区間算出部」に相当する。
 ステップS15では、第2容量区間Bを算出する。本実施形態では、前回の開回路電圧の検出タイミングにおける第3容量区間Cの最大残容量及び最小残容量に対して、当該第3容量区間Cの算出時からの単電池21の充放電による電流容量の積算値ISをそれぞれ加算して、第2容量区間Bを算出する。ステップS15の処理において、電流容量の積算値ISは、ステップS19の処理により算出した値を用いるとよい。本実施形態では、ステップS15,S19の処理が「第2区間算出部」に相当する。
 ステップS16では、第3容量区間Cの算出を行うか否かを判定する。例えば、所定範囲より広い範囲の第1容量区間Aが算出されていると判定した場合、第3容量区間Cの範囲を絞り込むことが難しいと判定し、第3容量区間Cの算出を行わないと判定する。また、例えば、前回の開回路電圧の検出タイミングから所定時間以内である場合、前回の第3容量区間Cからの変化が小さいと判定し、今回の第3容量区間Cの算出を行わないと判定する。上述した場合以外において、第3容量区間Cの算出を行うと判定する。ステップS16において肯定判定した場合、ステップS17に進む。
 ステップS17では、第3容量区間Cを算出する。本実施形態では、ステップS14,S15の処理により算出した第1容量区間Aと第2容量区間Bとの重複区間を、第3容量区間Cとして算出する。なお、ステップS17の処理が「第3区間算出部」に相当する。
 なお、上述した各区間A~CやステップS19の処理で算出した電流容量の積算値ISを、BMU30が備えるバックアップ用のメモリに記憶するとよい。これにより、イグニッションスイッチのオフ後も各区間A~Cや電流容量の積算値ISが保存され、複数回のトリップに亘って第3容量区間Cが算出可能になる。
 ステップS18では、単電池21の充放電による電流容量の積算値ISを0にリセットし、ステップS20に進む。なお、ステップS16において否定判定した場合、ステップS17,S18の処理を行わずに、ステップS20に進む。
 ステップS20では、単電池21が満充電状態であるか否かを判定する。ステップS20において肯定判定した場合、ステップS21に進む。一方、ステップS20において否定判定した場合、ステップS24に進む。なお、ステップS20の処理が「満充電判定部」に相当する。
 ステップS21では、満充電容量の信頼性があるか否かを判定する。本実施形態では、単電池21の第3容量区間Cを用いて満充電容量区間を算出し、その満充電容量区間内の容量を満充電容量として算出する。この場合、第3容量区間Cの幅が狭いほど満充電容量の算出精度が高く、満充電容量の信頼性が高いと考えられる。そこで、第3容量区間Cの幅を満充電容量の信頼性を判定する判定パラメータとし、その判定パラメータに基づいて、満充電容量の信頼性を判定する。具体的には、第3容量区間Cの幅が所定幅以下である場合、満充電容量の算出精度が確保されると判定し、満充電容量の信頼性があると判定する。この場合、ステップS22に進む。一方、第3容量区間Cの幅が所定幅より広い場合、満充電容量の算出精度が確保されないと判定し、満充電容量の信頼性がないと判定する。この場合、ステップS24に進む。なお、ステップS21の処理が「信頼性判定部」に相当する。
 ステップS22では、単電池21の満充電容量区間FCCを算出する。ここでは、第3容量区間Cの最大残容量C_max及び最小残容量C_minに対して、その第3容量区間Cの算出時からの単電池21の充放電による電流容量の積算値ISを加算して、満充電容量区間FCCの最大値及び最小値を算出し、それら最大値及び最小値により定まる区間を満充電容量区間FCCとする。電流容量の積算値ISは、ステップS19の処理により算出した値を用いるとよい。ステップS23では、満充電容量区間FCC内の容量を、単電池21の満充電容量として算出する。なお、ステップS22,S23の処理が「満充電容量算出部」に相当する。
 ステップS24では、組電池20を構成する各単電池21の満充電容量の算出が完了した否かを判定する。各単電池21の満充電容量が算出されている場合、ステップS25に進む。一方、組電池20を構成する各単電池21のうち満充電容量が算出されていない単電池が存在する場合、本制御を終了する。
 ステップS25では、組電池20のSOHを算出する。組電池20のSOH[%]は、(現在の組電池20の満充電容量/組電池20の基準満充電容量)×100で表される。組電池20の基準満充電容量は、組電池20として放電可能な容量を示し、例えば組電池20の設計時又は車両試験時に規定された容量である。現在の組電池20の満充電容量は、例えば、組電池20を構成する単電池21のうち最小の満充電容量と、組電池20の直列数と、規定電圧との積である。規定電圧は、組電池20を放電するときの平均電圧であるとよく、車両の設計時に規定されるとよい。なお、各単電池21の残容量のばらつきや組電池20の劣化を考慮して、現在の組電池20の満充電容量を補正してもよい。
 ステップS26では、算出した組電池20のSOHを他の機器へ通知する。この場合、例えば、車両のインスツルメントパネルや車両のカーナビに組電池20のSOHを表示させたり、車両の外部のサーバやスマートフォン等のモバイル端末に組電池20のSOHを通知させたりすることが考えられる。
 図6に、第3容量区間C及び満充電容量区間FCCが算出される制御の一例を示す。図6において、(a),(b),(c)の順に組電池20の放電及び開回路電圧の検出が行われ、(d)において、(c)の状態から満充電状態まで組電池20の充電が行われる。
 図6(a)では、単電池21の第3容量区間Cとして初期区間が設定されている。この場合では、例えば単電池21の開回路電圧と残容量との相関関係におけるプラトー領域よりも第3容量区間Cの幅が広く、残容量の算出精度が低いことが懸念される。図6(b)では、異なる手法により算出された第1容量区間A及び第2容量区間Bの重複区間として、第3容量区間Cが算出される。これにより、第3容量区間Cの範囲を的確に絞り込むことができ、図6において(a)に比べて(b)の第3容量区間Cの範囲が絞り込まれている。
 本実施形態では、前回の単電池21の開回路電圧の検出タイミングにおける第3容量区間Cを用いて、今回の第2容量区間Bが算出されるとともに、今回の第1,第2容量区間A,Bに基づいて、今回の第3容量区間Cが算出される。これにより、前回の第3容量区間Cが今回の第3容量区間Cの算出に引き継がれるため、今回の第3容量区間Cの範囲を的確に絞り込むことができる。そのため、図6において(b)に比べて(c)の第3容量区間Cの範囲が絞り込まれている。そして、図6(c)における第3容量区間Cの幅が所定幅以下となり、満充電容量の信頼性があると判定される。これにより、満充電容量区間FCCの算出が許可される。
 図6(d)では、図6(c)における第3容量区間Cの最大残容量C_max及び最小残容量C_minに対して、その第3容量区間Cの算出時からの単電池21の充電による電流容量の積算値ISが加算され、満充電容量区間FCCが算出される。この場合、満充電容量区間FCCの範囲が絞り込まれており、満充電容量の算出精度を向上することができる。
 以上詳述した本実施形態によれば、以下の効果が得られるようになる。
 単電池21の開回路電圧の検出タイミングにおいて、単電池21の開回路電圧と残容量との相関関係により単電池21の基準残容量が算出されるとともに、その基準残容量を含む所定区間として第1容量区間Aが算出される。また、現時点よりも前の単電池21の開回路電圧の検出タイミングにおいて算出した過去容量区間の最大残容量及び最小残容量に対して、当該過去容量区間の算出時からの単電池21の充放電による電流容量の変化分である容量変化分をそれぞれ加算して、第2容量区間Bが算出される。この場合、単電池21の開回路電圧の検出条件及び単電池21の充放電条件により生じる残容量のばらつきを考慮して第1容量区間Aを算出したり、電流容量の積算値ISの積算誤差を考慮して第2容量区間Bを算出したりするとともに、各容量区間A,Bの重複区間を含む区間を第3容量区間Cとして算出することにより、単電池21の実際の残容量を含む第3容量区間Cの範囲を絞り込むことが可能となる。第3容量区間Cの範囲が絞り込まれることにより、単電池21の残容量の算出精度を向上することができる。
 開回路電圧と残容量との複数の相関関係を用いて第1容量区間Aを算出することで、実際の単電池21での充放電特性にばらつきがあることを想定しつつ、第1容量区間Aを適正に算出することができる。上記以外に、単電池21の劣化度合の異なる複数の相関関係を用いてもよい。又は、単電池21において許容公差の範囲内で定められた複数の相関関係を用いてもよい。
 第3容量区間Cの幅が満充電容量の信頼性を判定する判定パラメータとして用いられ、その判定パラメータに基づいて満充電容量の信頼性判定が行われる。満充電容量の信頼性があると判定された場合に、満充電容量の算出が許可される。これにより、満充電容量の算出精度が高い状況において単電池21の満充電容量を算出できる。
 第3容量区間Cの算出が行われない期間が長時間継続している場合では、既に算出された第3容量区間Cの信頼性が低下していると考えられる。そこで、本実施形態によれば、第3容量区間Cの算出が行われない期間が所定時間以上継続していると判定された場合、第3容量区間Cが所定の初期区間にリセットされる。これにより、信頼性の低い第3容量区間Cを用いて第2容量区間Bの算出が行われることを抑制することができる。
 <第1実施形態の変形例>
 上記第1実施形態は以下の様に変更して実施してもよい。
 ・算出部33は、過去容量区間(例えば、前回の第3容量区間C)の最小残容量に対して、電流容量の検出誤差分を減補正した電流容量の積算値ISを加算するとともに、過去容量区間の最大残容量に対して、電流容量の検出誤差分を増補正した電流容量の積算値ISを加算して、第2容量区間Bを算出してもよい。具体的には、先の図5のステップS19において、電流容量の検出誤差分を減補正した場合の電流容量の積算値IS1と、電流容量の検出誤差分を増補正した電流容量の積算値IS2とを算出するとよい。例えば、検出誤差分を減補正した積算値IS1は、下式(A)のように算出され、検出誤差分を増補正した積算値IS2は、下式(B)のように算出されるとよい。なお、電流容量の検出誤差分を予め定めておくとよい。
 IS1(今回値)=IS1(前回値)+(電流容量-検出誤差分) (数式A)
 IS2(今回値)=IS2(前回値)+(電流容量+検出誤差分) (数式B)
 この場合、ステップS15において、積算値IS1を、過去容量区間の最小残容量に対して加算し、積算値IS2を、過去容量区間の最大残容量に対して加算して第2容量区間Bを算出するとよい。
 上記構成によれば、過去容量区間の最小残容量が、電流容量の検出誤差分を加味して少なめに加算される。一方で、過去容量区間の最大残容量が、電流容量の検出誤差分を加味して多めに加算される。これにより、電流容量の検出値にセンサ誤差等が含まれることを考慮しつつ、第2容量区間Bを適正に算出することができる。
 なお、ステップS22において、検出誤差分を減補正した積算値IS1を第3容量区間Cの最小残容量C_minに対して加算し、検出誤差を増補正した積算値IS2を第3容量区間Cの最大残容量C_maxに対して加算して、満充電容量区間FCCを算出してもよい。
 ・算出部33は、単電池21の開回路電圧の検出タイミングにおいて第2容量区間Bを算出することに代えて、先の図5のステップS19の処理において第2容量区間Bを都度更新することとしてもよい。この場合、ステップS15の処理は行わなくてもよい。なお、ステップS19の処理で算出した電流容量の積算値ISは、満充電容量区間FCCの算出に用いるとよい。
 ・先の図5のステップS17の処理において、第3容量区間Cの最小残容量C_minを下式(C)のように算出し、第3容量区間Cの最大残容量C_maxを下式(D)のように算出してもよい。
 C_min=(α×A_min+β×B_min)/(α+β) (数式C)
 C_max=(γ×A_max+ε×B_max)/(γ+ε) (数式D)
 ここで、α,β,γ,εは重み付け係数である。各係数α,β,γ,εを、固定値(具体的には、α=β=γ=ε=1)に設定したり、単電池21の残容量に応じて可変設定したりするとよい。例えば、単電池21の残容量(具体的には、各残容量A_min,A_max,B_min,B_max)が低い場合には、単電池21の残容量が高い場合に比べて、第1容量区間Aの係数α,γに対する第2容量区間Bの係数β,εの割合(言い換えると、係数比β/α,ε/γ)を大きく設定するとよい。この場合、第1容量区間Aに比べて第2容量区間Bが反映され、第3容量区間Cが算出される。また、BMU30は組電池20の温度を検出し、組電池20の温度に応じて各係数α,β,γ,εを可変設定してもよい。
 ・先の図5のステップS21の処理において、第3容量区間Cの幅以外を判定パラメータとしてもよい。例えば、第3容量区間Cの算出時における第3容量区間C及び第2容量区間Bの差を判定パラメータとし、その判定パラメータに基づいて、満充電容量の信頼性があるか否かを判定してもよい。この場合、例えば、下式(E),(F),(G)が成り立つ場合、満充電容量の信頼性があると判定してもよい。
 C_min-B_min≧所定量 (数式E)
 B_max-C_max≧所定量 (数式F)
 (C_min-B_min)+(B_max-C_max)≧所定量 (数式G)
 ここで、各式(E),(F),(G)の左辺は、第2容量区間Bに対して第3容量区間Cの範囲がどの程度限定されたかを示す限定度合である。限定度合が所定量以上である場合、満充電容量の算出精度が確保されると判定し、満充電容量の信頼性があると判定する。一方、限定度合が所定量未満である場合、満充電容量の算出精度が確保されないと判定し、満充電容量の信頼性がないと判定する。限定度合として、第2容量区間Bに代えて、第1容量区間Aに対して第3容量区間Cがどの程度限定されたかを示す値を算出してもよい。また、各式(E),(F),(G)の左辺の積算値を算出し、その積算値が所定量以上であるか否かに基づいて満充電容量の信頼性があるか否かを判定してもよい。
 また、例えば、満充電容量区間の幅と、満充電容量区間の最大容量値と、満充電容量区間の最小容量値との少なくともいずれかを判定パラメータとし、その判定パラメータに基づいて、満充電容量の信頼性があるか否かを判定してもよい。この場合、ステップS20の処理の後、ステップS21の処理に先立ち、ステップS22の処理を行うとよい。具体的には、満充電容量区間の幅が所定幅以下である場合、満充電容量の信頼性があると判定し、満充電容量区間の幅が所定幅より広い場合、満充電容量の信頼性がないと判定する。満充電容量区間の最大容量値が第1所定値以下である場合、満充電容量の信頼性があると判定し、満充電容量区間の最大容量値が第1所定値より大きい場合、満充電容量の信頼性がないと判定する。満充電容量の最小容量値が第2所定値以上である場合、満充電容量の信頼性があると判定し、満充電容量区間の最小容量値が第2所定値より小さい場合、満充電容量の信頼性がないと判定する。なお、第1所定値は、第2所定値よりも大きい値である。
 ・先の図5において、ステップS10,S11,S16の処理を行わなくてもよい。
 ・先の図5において、ステップS25,S26の処理に代えて、その他の処理を行ってもよい。例えば、ステップS24において肯定判定した場合、組電池20のSOCを算出してもよい。組電池20のSOC[%]は、(現在の組電池20の残容量/現在の組電池20の満充電容量)×100で表される。現在の組電池20の満充電容量として、ステップS23の処理で算出した各単電池21の満充電容量を用いるとよい。現在の組電池20の残容量を、ステップS17の処理で算出した各単電池21の第3容量区間Cに基づいて算出するとよい。また、ステップS24~S26の処理を行わなくてもよい。
 ・先の図5のステップS17の処理の後において、第3容量区間Cを用いて各単電池21の残容量を算出する処理を行ってもよい。この場合、例えば、算出部33は、第3容量区間Cの最大残容量C_max又は最大残容量C_maxを所定値だけ放電側にシフトさせた値や、第3容量区間Cの最小残容量C_min又は最小残容量C_minを所定値だけ充電側にシフトさせた値、第3容量区間Cの最大残容量C_max及び最小残容量C_minの相加平均値又は重み付け平均値を、単電池21の残容量として算出すればよい。また、先の図5のステップS17の処理の後において、第3容量区間Cを用いて、組電池20から入出力が可能な最大電力(つまり、Win,Wout)を設定してもよい。第3容量区間Cを用いて各単電池21の残容量の算出や組電池20から入出力可能な最大電力の設定を行う場合、ステップS20~S26の処理を行わなくてもよい。
 <第2実施形態>
 以下、第2実施形態について、先の第1実施形態との相違点を中心に図面を参照しつつ説明する。本実施形態では、単電池21が満充電状態であると判定されたタイミングに代えて、単電池21の開回路電圧の検出タイミングにおいて満充電容量が算出される。
 図7に、満充電容量を算出する制御の手順を示す。この制御は、BMU30により所定の制御周期で繰り返し実行される。なお、図7において、先の図5に示した処理と同一の処理については、便宜上、同一の符号を付している。
 ステップS30では、単電池21が満充電状態であるか否かを判定する。本実施形態では、外部充電器により組電池20の充電が行われている状況を想定し、単電池21の端子電圧が満充電電圧値に到達したと判定した場合に、その単電池21が満充電状態であると判定する。ステップS30において否定判定した場合、ステップS31に進む。ステップS32において肯定判定した場合、ステップS32に進む。
 ステップS31では、単電池21が満充電状態であると判定されたタイミングからの単電池21の充放電による電流容量を積算して積算値ISを算出する。単電池21の充放電による電流容量は、電流センサ13の検出値に基づいて算出したものを用いるとよい。ステップS32では、ステップS31の処理において算出した電流容量の積算値ISを0にリセットする。ステップS31,S32の処理の後、ステップS12に進む。
 ステップS12~S17,S19の処理は、第1実施形態と同様である。ステップS17の処理の後、ステップS22に進む。ステップS22,S23の処理は、第1実施形態と同様である。なお、図7では、ステップS16の処理を省略している。本実施形態において、ステップS31の処理が「積算値算出部」に相当し、ステップS22,S23の処理が「満充電容量算出部」に相当する。
 ステップS23の処理の後、ステップS33に進む。ステップS33では、ステップS19の処理において算出した電流容量の積算値ISを0にリセットする。なお、ステップS19の処理において算出される電流容量の積算値ISは、前回の開回路電圧の検出タイミングからの単電池21の充放電による電流容量の積算値ISである。ステップS33の処理の後、本制御を終了する。
 図8に、第3容量区間C及び満充電容量区間FCCが算出される一例を示す。図8において、(a),(b),(c)の順に組電池20の放電及び開回路電圧の検出が行われる。
 図8(a)では、単電池21が満充電状態である場合の第3容量区間Cが設定されている。単電池21が満充電状態である場合の第3容量区間Cは、予め設定された初回設定区間であればよい。
 図8(b),(c)では、今回の第1容量区間A及び第2容量区間Bを用いて第3容量区間Cの更新が行われるとともに、その第3容量区間Cを用いて満充電容量区間FCCが算出される。
 図8(b)において、第2容量区間Bの算出では、設定区間である第3容量区間Cの最大残容量C_max及び最小残容量C_minに対して、図8(a)のタイミングから(b)のタイミングまでの期間における単電池21の充放電による電流容量の積算値ISAが加算される。また、満充電容量区間FCCの算出では、図8(b)のタイミングにおける第3容量区間Cの最大残容量C_max及び最小残容量C_minに対して、図8(a)のタイミングから(b)のタイミングまでの期間における単電池21の充放電による電流容量の積算値ISAが加算される。
 図8(c)において、第2容量区間Bの算出では、図8(b)における第3容量区間Cの最大残容量C_max及び最小残容量C_minに対して、図8(b)のタイミングから(c)のタイミングまでの期間における単電池21の充放電による電流容量の積算値ISBが加算される。ここで、電流容量の積算値ISBとして、先の図7のステップS19の処理において算出されたものが用いられるとよい。満充電容量区間FCCの算出では、図8(c)における第3容量区間Cの最大残容量C_max及び最小残容量C_minに対して、図8(a)のタイミングから(c)のタイミングまでの期間における単電池21の充放電による電流容量の積算値ISA+ISBが加算される。ここで、電流容量の積算値ISA+ISBとして、先の図7のステップS31の処理において算出されたものが用いられるとよい。
 上記構成によれば、単電池21の開回路電圧が検出された各タイミングで単電池21の満充電容量の算出を行うことができる。
 なお、図7のステップS33の処理の後において、第1実施形態と同様に、組電池20のSOH、SOCを算出する処理を行ってもよい。また、図7のステップS17の処理の後において、第1実施形態と同様に、第3容量区間Cを用いて各単電池21の残容量の算出や組電池20から入出力可能な最大電力の設定を行ってもよい。
 <その他の実施形態>
 なお、上記各実施形態は、以下のように変更して実施してもよい。
 ・算出部33は、満充電容量に代えて、第3容量区間Cを用いて単電池21のSOHを算出してもよい。この場合、先の図5のステップS23の処理において、満充電容量区間FCC内の容量を単電池21の満充電容量として算出するとともに、その満充電容量を単電池21の基準満充電容量で除算して、単電池21のSOHを算出すればよい。単電池21の基準満充電容量は、単電池21の設計時又は車両試験時に規定された容量である。
 ・上記実施形態では、電池システムを車両用の電池システムとして説明したが、飛行体や船舶等、車両以外の移動体の電池システムであってもよい。また、移動体以外の電池システム、すなわち定置式の電池システムであってもよい。具体的には、住宅や店舗、公共設備等の建物に付随して設けられる電池システムに適用することが可能である。
 ・本開示に記載の車両制御装置及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の車両制御装置及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の車両制御装置及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
 ・以下、上述した各実施形態から抽出される特徴的な構成を記載する。
[構成1]
 蓄電池(21)の充電時及び放電時において当該蓄電池の残容量を算出する残容量算出装置(30)であって、
 前記蓄電池の開回路電圧の検出タイミングにおいて、前記開回路電圧と前記蓄電池の残容量との相関関係により前記蓄電池の基準残容量を算出するとともに、その基準残容量を含む所定区間を、第1容量区間として算出する第1区間算出部と、
 現時点よりも前の前記検出タイミングにおいて算出した過去容量区間の最大残容量及び最小残容量に対して、当該過去容量区間の算出時からの前記蓄電池の充放電による電流容量の変化分である容量変化分をそれぞれ加算して、第2容量区間を算出する第2区間算出部と、
 前記検出タイミングにおいて、前記第1容量区間と前記第2容量区間との重複区間を含む区間を、実際の残容量を含む第3容量区間として算出する第3区間算出部と、
を備える、残容量算出装置。
[構成2]
 前記第1区間算出部は、前記検出タイミングにおいて、前記相関関係として規定した複数の相関関係を用い、当該相関関係ごとに、前記開回路電圧に対応する複数の前記基準残容量を算出するとともに、それら各基準残容量を含む区間を前記第1容量区間として算出する、構成1に記載の残容量算出装置。
[構成3]
 前記第2区間算出部は、現時点よりも前に前記第3区間算出部により算出された前記第3容量区間を前記過去容量区間とし、その第3容量区間の最大残容量及び最小残容量に対して、前記第3容量区間の算出時からの前記蓄電池の充放電による前記容量変化分をそれぞれ加算して、前記第2容量区間を算出する、構成1又は2に記載の残容量算出装置。
[構成4]
 前記第3区間算出部は、前記第3容量区間の算出において、前記第1容量区間の最大残容量と前記第2容量区間の最大残容量との間の前記残容量を前記第3容量区間の最大残容量とするとともに、前記第1容量区間の最小残容量と前記第2容量区間の最小残容量との間の前記残容量を前記第3容量区間の最小残容量とする、構成1~3のいずれか1つに記載の蓄電容量算出装置。
[構成5]
 前記第3区間算出部は、前記第1容量区間と前記第2容量区間との重複区間を、前記第3容量区間とする、構成1~3のいずれか1つに記載の蓄電容量算出装置。
[構成6]
 前記第2区間算出部は、前記過去容量区間の最小残容量に対して、前記電流容量の検出誤差分を減補正した前記容量変化分を加算し、前記過去容量区間の最大残容量に対して、前記電流容量の検出誤差分を増補正した前記容量変化分を加算して、前記第2容量区間を算出する、構成1~5のいずれか1つに記載の残容量算出装置。
[構成7]
 前記蓄電池が満充電状態であることを判定する満充電判定部と、
 前記満充電状態であると判定された場合に、前回の前記検出タイミングで算出された前記第3容量区間と、その第3容量区間の算出時からの前記蓄電池の充放電による電流容量の変化分とに基づいて、前記蓄電池の満充電容量区間を算出し、その満充電容量区間から満充電容量を算出する満充電容量算出部と、を備える、構成1~6のいずれか1つに記載の残容量算出装置。
[構成8]
 前記蓄電池の満充電時からの前記蓄電池の充放電による電流容量の積算値を容量積算値として算出する積算値算出部と、
 前記検出タイミングにおいて、前記第3区間算出部により算出された前記第3容量区間と、前記積算値算出部により算出された前記容量積算値とに基づいて、前記蓄電池の満充電容量区間を算出し、その満充電容量区間から満充電容量を算出する満充電容量算出部と、を備える、構成1~6のいずれか1つに記載の残容量算出装置。
[構成9]
 前記第3区間算出部により算出された前記第3容量区間の幅と、前記満充電容量算出部により算出された前記満充電容量区間の幅と、前記満充電容量区間の最大容量値又は最小容量値と、前記第3容量区間の算出時における前記第3容量区間及び前記第1容量区間の差と、前記第3容量区間の算出時における前記第3容量区間及び前記第2容量区間の差との少なくともいずれかを判定パラメータとし、その判定パラメータに基づいて、前記満充電容量算出部により算出された前記満充電容量の信頼性を判定する信頼性判定部と、
 前記信頼性判定部により信頼性ありと判定されたことを条件に、前記満充電容量算出部による前記満充電容量の算出を許可する許可部と、を備える構成7又は8に記載の残容量算出装置。
[構成10]
 前記第3容量区間の算出が行われない期間が所定時間以上継続しているか否かを判定する期間判定部と、
 前記第3容量区間の算出が行われない期間が所定時間以上継続していると判定された場合、前記第3容量区間をリセットするリセット部を備える、構成1~9のいずれか1つに記載の残容量算出装置。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (11)

  1.  蓄電池(21)の充電時及び放電時において当該蓄電池の残容量を算出する残容量算出装置(30)であって、
     前記蓄電池の開回路電圧の検出タイミングにおいて、前記開回路電圧と前記蓄電池の残容量との相関関係により前記蓄電池の基準残容量を算出するとともに、その基準残容量を含む所定区間を、第1容量区間として算出する第1区間算出部と、
     現時点よりも前の前記検出タイミングにおいて算出した過去容量区間の最大残容量及び最小残容量に対して、当該過去容量区間の算出時からの前記蓄電池の充放電による電流容量の変化分である容量変化分をそれぞれ加算して、第2容量区間を算出する第2区間算出部と、
     前記検出タイミングにおいて、前記第1容量区間と前記第2容量区間との重複区間を含む区間を、実際の残容量を含む第3容量区間として算出する第3区間算出部と、
    を備える、残容量算出装置。
  2.  前記第1区間算出部は、前記検出タイミングにおいて、前記相関関係として規定した複数の相関関係を用い、当該相関関係ごとに、前記開回路電圧に対応する複数の前記基準残容量を算出するとともに、それら各基準残容量を含む区間を前記第1容量区間として算出する、請求項1に記載の残容量算出装置。
  3.  前記第2区間算出部は、現時点よりも前に前記第3区間算出部により算出された前記第3容量区間を前記過去容量区間とし、その第3容量区間の最大残容量及び最小残容量に対して、前記第3容量区間の算出時からの前記蓄電池の充放電による前記容量変化分をそれぞれ加算して、前記第2容量区間を算出する、請求項1に記載の残容量算出装置。
  4.  前記第3区間算出部は、前記第3容量区間の算出において、前記第1容量区間の最大残容量と前記第2容量区間の最大残容量との間の前記残容量を前記第3容量区間の最大残容量とするとともに、前記第1容量区間の最小残容量と前記第2容量区間の最小残容量との間の前記残容量を前記第3容量区間の最小残容量とする、請求項1に記載の残容量算出装置。
  5.  前記第3区間算出部は、前記第1容量区間と前記第2容量区間との重複区間を、前記第3容量区間とする、請求項1に記載の残容量算出装置。
  6.  前記第2区間算出部は、前記過去容量区間の最小残容量に対して、前記電流容量の検出誤差分を減補正した前記容量変化分を加算し、前記過去容量区間の最大残容量に対して、前記電流容量の検出誤差分を増補正した前記容量変化分を加算して、前記第2容量区間を算出する、請求項1に記載の残容量算出装置。
  7.  前記蓄電池が満充電状態であることを判定する満充電判定部と、
     前記満充電状態であると判定された場合に、前回の前記検出タイミングで算出された前記第3容量区間と、その第3容量区間の算出時からの前記蓄電池の充放電による電流容量の変化分とに基づいて、前記蓄電池の満充電容量区間を算出し、その満充電容量区間から満充電容量を算出する満充電容量算出部と、を備える、請求項1に記載の残容量算出装置。
  8.  前記蓄電池の満充電時からの前記蓄電池の充放電による電流容量の積算値を容量積算値として算出する積算値算出部と、
     前記検出タイミングにおいて、前記第3区間算出部により算出された前記第3容量区間と、前記積算値算出部により算出された前記容量積算値とに基づいて、前記蓄電池の満充電容量区間を算出し、その満充電容量区間から満充電容量を算出する満充電容量算出部と、を備える、請求項1に記載の残容量算出装置。
  9.  前記第3区間算出部により算出された前記第3容量区間の幅と、前記満充電容量算出部により算出された前記満充電容量区間の幅と、前記満充電容量区間の最大容量値又は最小容量値と、前記第3容量区間の算出時における前記第3容量区間及び前記第1容量区間の差と、前記第3容量区間の算出時における前記第3容量区間及び前記第2容量区間の差との少なくともいずれかを判定パラメータとし、その判定パラメータに基づいて、前記満充電容量算出部により算出された前記満充電容量の信頼性を判定する信頼性判定部と、
     前記信頼性判定部により信頼性ありと判定されたことを条件に、前記満充電容量算出部による前記満充電容量の算出を許可する許可部と、を備える請求項7又は8に記載の残容量算出装置。
  10.  前記第3容量区間の算出が行われない期間が所定時間以上継続しているか否かを判定する期間判定部と、
     前記第3容量区間の算出が行われない期間が所定時間以上継続していると判定された場合、前記第3容量区間をリセットするリセット部を備える、請求項1に記載の残容量算出装置。
  11.  蓄電池(21)の充電時及び放電時において当該蓄電池の残容量を算出する処理をコンピュータ(30)に実行させるプログラムであって、
     前記蓄電池の開回路電圧の検出タイミングにおいて、前記開回路電圧と前記蓄電池の残容量との相関関係により前記蓄電池の基準残容量を算出するとともに、その基準残容量を含む所定区間を、第1容量区間として算出する第1区間算出ステップと、
     現時点よりも前の前記検出タイミングにおいて算出した過去容量区間の最大残容量及び最小残容量に対して、当該過去容量区間の算出時からの前記蓄電池の充放電による電流容量の変化分である容量変化分をそれぞれ加算して、第2容量区間を算出する第2区間算出ステップと、
     前記検出タイミングにおいて、前記第1容量区間と前記第2容量区間との重複区間を含む区間を、実際の残容量を含む第3容量区間として算出する第3区間算出ステップと、
    を前記コンピュータに実行させる、プログラム。
PCT/JP2023/040731 2022-12-12 2023-11-13 残容量算出装置及びプログラム WO2024127877A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022198097A JP2024083972A (ja) 2022-12-12 2022-12-12 残容量算出装置及びプログラム
JP2022-198097 2022-12-12

Publications (1)

Publication Number Publication Date
WO2024127877A1 true WO2024127877A1 (ja) 2024-06-20

Family

ID=91485515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040731 WO2024127877A1 (ja) 2022-12-12 2023-11-13 残容量算出装置及びプログラム

Country Status (2)

Country Link
JP (1) JP2024083972A (ja)
WO (1) WO2024127877A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057537A (ja) * 2011-09-07 2013-03-28 Gs Yuasa Corp 電池管理装置、電池パック、電池管理プログラム、及び、soc推定方法
JP2017125813A (ja) * 2016-01-15 2017-07-20 株式会社Gsユアサ 蓄電素子管理装置、蓄電素子モジュール、車両および蓄電素子管理方法
WO2022050540A1 (ko) * 2020-09-04 2022-03-10 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법
JP2022518896A (ja) * 2019-11-04 2022-03-17 エルジー エナジー ソリューション リミテッド 炭素系ハイブリッド負極を備える二次電池の寿命特性の予測方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013057537A (ja) * 2011-09-07 2013-03-28 Gs Yuasa Corp 電池管理装置、電池パック、電池管理プログラム、及び、soc推定方法
JP2017125813A (ja) * 2016-01-15 2017-07-20 株式会社Gsユアサ 蓄電素子管理装置、蓄電素子モジュール、車両および蓄電素子管理方法
JP2022518896A (ja) * 2019-11-04 2022-03-17 エルジー エナジー ソリューション リミテッド 炭素系ハイブリッド負極を備える二次電池の寿命特性の予測方法
WO2022050540A1 (ko) * 2020-09-04 2022-03-10 주식회사 엘지에너지솔루션 배터리 관리 장치 및 방법

Also Published As

Publication number Publication date
JP2024083972A (ja) 2024-06-24

Similar Documents

Publication Publication Date Title
US10712393B2 (en) Energy storage device management apparatus, energy storage device module, vehicle, and energy storage device management method
US11163010B2 (en) Secondary battery deterioration estimation device and secondary battery deterioration estimation method
US7688032B2 (en) Battery remaining capacity detecting apparatus and battery remaining capacity detecting method
JP4845066B1 (ja) 蓄電デバイスの状態検知方法及びその装置
US11214168B2 (en) Deterioration state computation method and deterioration state computation device
JP6300000B2 (ja) 充電状態推定装置、充電状態推定方法
US11143710B2 (en) Device for estimating degradation of secondary cell, and method for estimating degradation of secondary cell
US20200191875A1 (en) Battery state estimating apparatus, battery state estimating method, non-transitory computer readable medium, control circuit and power storage system
US11828807B2 (en) Method and apparatus with battery state estimation
US11029363B2 (en) Method and device for predicting battery life
JP6171128B2 (ja) 電池制御システム、車両制御システム
JPWO2018211824A1 (ja) 電池制御装置および車両システム
EP4152022B1 (en) Method for determining full-charge capacity of battery pack, method for determining state of health of battery pack, system, and apparatus
JP2012088157A (ja) 二次電池の制御装置
JP5911407B2 (ja) バッテリの健全度算出装置および健全度算出方法
JP7116205B2 (ja) 組電池の制御システム
JP2014176196A (ja) 電池制御装置及び電池制御方法
CN112969929B (zh) 电池控制装置
JP2019144211A (ja) 推定装置および推定方法
WO2024127877A1 (ja) 残容量算出装置及びプログラム
JP3975738B2 (ja) 蓄電池の状態検出装置
JP4872513B2 (ja) 電池の電流−電圧特性検出装置およびそれを用いた内部抵抗検出装置
JP2018063115A (ja) 二次電池の充電状態推定システム
WO2014038555A1 (ja) 電池残量検出装置、電池システム、電池残量検出方法およびプログラム
KR102672694B1 (ko) 저장 매체를 이용한 배터리 관리 시스템의 soc 보정방법