WO2024127602A1 - Fusion splicing device and fusion splicing method - Google Patents
Fusion splicing device and fusion splicing method Download PDFInfo
- Publication number
- WO2024127602A1 WO2024127602A1 PCT/JP2022/046279 JP2022046279W WO2024127602A1 WO 2024127602 A1 WO2024127602 A1 WO 2024127602A1 JP 2022046279 W JP2022046279 W JP 2022046279W WO 2024127602 A1 WO2024127602 A1 WO 2024127602A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- image
- pixel
- fusion splicer
- recognition unit
- Prior art date
Links
- 238000007526 fusion splicing Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims description 37
- 239000013307 optical fiber Substances 0.000 claims abstract description 290
- 230000004927 fusion Effects 0.000 claims description 70
- 238000003384 imaging method Methods 0.000 claims description 18
- 239000000835 fiber Substances 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 9
- 235000019557 luminance Nutrition 0.000 claims 10
- 238000010586 diagram Methods 0.000 description 16
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
Definitions
- This disclosure relates to a fusion splicer and a fusion splicing method.
- Patent Document 1 describes an optical fiber fusion splicer.
- the optical fiber fusion splicer connects a pair of optical fibers to each other while melting the optical fibers.
- the optical fiber fusion splicer has a fiber feed section that holds multiple optical fibers.
- the fiber feed section moves the multiple optical fibers along the longitudinal direction of the optical fibers.
- the optical fiber fusion splicer includes a camera that continuously captures images of the moving optical fibers, and a control board.
- the control board has an image data processing section that processes image data captured by the camera to recognize the movement of the optical fiber.
- the image data processing section performs image data processing to recognize the operation of the optical fiber from the differences between the multiple image data.
- Patent Document 2 describes a method and device for fusion splicing optical fibers.
- the splicing device includes a mounting section on which the optical fiber is placed, a holder that holds multiple optical fibers, and a TV camera that photographs the multiple optical fibers.
- the TV camera is provided to measure the axial misalignment of the optical fibers.
- Patent document 3 describes an optical fiber fusion splicing device.
- the fusion splicing device includes a positioning table having a V-groove into which the optical fiber is inserted, an imaging camera that images the optical fiber from above the positioning table, and a fine alignment mechanism that aligns the optical fiber.
- the imaging camera outputs the image of the optical fiber obtained by imaging as an imaging signal to an image processing device.
- the image processing device includes a calculation unit that performs calculations for aligning the optical fiber based on the imaging signal to generate a processing signal, and a control unit that controls the operation of the fine alignment mechanism in response to the processing signal from the calculation unit.
- JP 2005-189770 A Japanese Patent Application Laid-Open No. 10-239553 Japanese Patent Application Laid-Open No. 5-164934
- the fusion splicer comprises a stage on which the optical fiber is placed, a drive unit for moving the stage, a microscope for capturing an image of the optical fiber and outputting the brightness of the captured image for each pixel, and a position recognition unit for recognizing the position of the surface of the optical fiber from the brightness of each pixel output by the microscope.
- the drive unit moves the optical fiber at fixed distances. The fixed distance is shorter than the pixel size of the pixels.
- the microscope captures an image of the optical fiber each time the drive unit moves the optical fiber a fixed distance.
- the position recognition unit recognizes the position of the surface of the optical fiber moved by the drive unit from the multiple brightnesses of the multiple images captured by the microscope.
- FIG. 1 is a perspective view showing a fusion splicer according to an embodiment.
- FIG. 2 is a perspective view showing the internal structure of the fusion splicer according to the embodiment.
- FIG. 3 is a perspective view showing a fusion splicer base and optical fibers according to an embodiment.
- FIG. 4 is a block diagram showing the functional configuration of the fusion splicer according to the embodiment.
- FIG. 5 is a schematic diagram showing an image of an optical fiber captured by a microscope.
- FIG. 6 is a diagram showing the position of the optical fiber in an image obtained by imaging.
- FIG. 7 is a diagram showing an image of the optical fiber obtained by imaging.
- FIG. 8 is a flow chart illustrating example steps of a fusion splicing method according to an embodiment.
- FIG. 1 is a perspective view showing a fusion splicer according to an embodiment.
- FIG. 2 is a perspective view showing the internal structure of the fusion splicer according to the embodiment.
- the image may become coarse.
- the magnification of the microscope may be low because multiple optical fibers are imaged.
- the resolution of the microscope is often low. Therefore, since the image of the optical fiber is coarse, the position of the surface of the optical fiber may not be recognized accurately. For example, if the position of the end face of the optical fiber to be fusion-spliced cannot be recognized accurately, connection loss of the optical fiber may occur.
- the present disclosure aims to provide a fusion splicer that can accurately recognize the position of the surface of an optical fiber.
- a fusion splicer includes (1) a stage on which an optical fiber is placed, a drive unit for moving the stage, a microscope for capturing an image of the optical fiber and outputting the brightness of the captured image for each pixel, and a position recognition unit for recognizing the position of the surface of the optical fiber from the brightness of each pixel output by the microscope.
- the drive unit moves the optical fiber at fixed distances. The fixed distance is shorter than the pixel size of the pixel.
- the microscope captures an image of the optical fiber every time the drive unit moves the optical fiber by the fixed distance.
- the position recognition unit recognizes the position of the surface of the optical fiber moved by the drive unit from multiple brightnesses of multiple images captured by the microscope.
- the stage on which the optical fiber is placed is moved by the drive unit, and the microscope captures an image of the moving optical fiber surface.
- the microscope outputs the brightness of the image obtained by capturing an image for each pixel.
- the position recognition unit recognizes the position of the optical fiber from the brightness of each pixel of the image.
- the drive unit moves the optical fiber at fixed distances shorter than the pixel size, and the microscope captures an image of the optical fiber each time the optical fiber moves a fixed distance.
- the position recognition unit then recognizes the position of the moved optical fiber surface from the multiple brightnesses of the multiple images.
- an image is obtained each time the optical fiber moves a fixed distance shorter than the pixel size, and the position of the optical fiber surface is recognized from the multiple brightnesses of the multiple images, so that the position of the optical fiber surface can be recognized with high accuracy. Even if the resolution of the microscope is low and the pixels of the image are coarse, by capturing an image each time it moves a fixed distance shorter than the pixel size, the position of the optical fiber surface can be accurately recognized from the multiple images obtained as a result of the capturing.
- the position recognition unit may recognize, as a reference position, the position of the optical fiber surface in an image in which, among the multiple images, the position of the surface is closest to one side of a pixel. In this case, the position recognition unit can more accurately recognize the position of the optical fiber surface after the movement by recognizing how many times the drive unit has moved the optical fiber a certain distance from the reference position.
- the position recognition unit may recognize as the reference position the position of the optical fiber in an image among the multiple images in which the luminance difference between two pixels aligned along the movement direction of the optical fiber is maximum. In this case, the position recognition unit can easily recognize the reference position from the luminance difference between two pixels aligned along the movement direction.
- the position recognition unit may store the movement distance of the optical fiber from a reference position, and may recognize the position of the surface by adding the movement distance of the optical fiber from the reference position to the reference position.
- the position recognition unit may store the number of times the optical fiber has moved a fixed distance from the reference position, and may recognize the position of the surface by adding the product of the number of times the optical fiber has moved from the reference position and the fixed distance as the moving distance to the reference position.
- the driving unit may move the optical fiber along the longitudinal direction of the optical fiber.
- the driving unit may move the optical fiber in a direction perpendicular to the longitudinal direction of the optical fiber.
- the aforementioned fixed distance may be equal to or less than half the pixel size.
- an image of the optical fiber is captured every time the optical fiber moves a fixed distance that is equal to or less than half the pixel size, so that the position of the optical fiber surface can be recognized more accurately from multiple images.
- the surface may be an end face of the optical fiber located at one end in the longitudinal direction of the optical fiber. In this case, the position of the end face of the optical fiber can be accurately recognized.
- the image processing unit may calculate the luminance difference between two pixels aligned along the moving direction of the optical fiber, and the position recognition unit may store the luminance difference calculated by the image processing unit.
- the fusion splicer may be a multi-fiber fusion splicer that fusion-splices multiple optical fibers together.
- the position recognition unit may store an image captured by the microscope and recognize the position of the optical fiber from the brightness of each output pixel.
- a fusion splicing method includes the steps of: moving a stage on which an optical fiber is placed; capturing an image of the optical fiber; outputting the brightness of the image obtained by the capturing step for each pixel; and recognizing the position of the surface of the optical fiber from the brightness of each pixel.
- the moving step the optical fiber is moved a fixed distance at a time. The fixed distance is shorter than the pixel size of the pixels.
- the capturing step an image of the optical fiber is captured every time the optical fiber moves a fixed distance.
- the position recognition step the position of the surface of the moved optical fiber is recognized from multiple brightnesses of multiple images.
- the surface of the moving optical fiber is imaged, and the brightness of the image obtained by imaging is output for each pixel.
- the position recognition process the position of the optical fiber is recognized from the brightness of each pixel of the image.
- the position of the surface of the moving optical fiber is recognized from the multiple brightnesses of multiple images. Therefore, as in the fusion splicer described above, an image is obtained each time the optical fiber moves a fixed distance shorter than the pixel size, and the position of the surface of the optical fiber is recognized from the multiple brightnesses of the multiple images, so that the position of the surface of the optical fiber can be recognized with high accuracy.
- the position of the surface of the optical fiber can be accurately recognized from the multiple images obtained as a result of the imaging.
- FIG. 1 is a perspective view showing a specific example of a fusion splicer 1.
- the fusion splicer 1 has a box-shaped housing 2 and a windshield cover 6 located on top of the housing 2.
- FIG. 2 is a perspective view showing the windshield cover 6 in an open state.
- the fusion splicer 1 has a fusion splicing section 3 that fuses optical fibers together.
- the fusion splicer 1 has a monitor 5 that displays the state of the fusion splicing of the optical fibers together, as imaged by a microscope 15 (see FIG. 4), which will be described later.
- the fusion splicing unit 3 includes, for example, a pair of fiber positioning units 3a, a pair of electrode rods 3b for discharging, and a pair of fiber holders 3c.
- Each of the optical fibers to be fused is held in the fiber holder 3c.
- the fiber positioning unit 3a is disposed between the pair of fiber holders 3c and positions the end face of the optical fiber fixed to each fiber holder 3c.
- the "end face" refers to the face of the optical fiber located at one end in the longitudinal direction of the optical fiber.
- the pair of electrode rods 3b are disposed between the pair of fiber positioning units 3a.
- the electrode rods 3b are electrodes for fusing the end faces of the optical fibers together by arc discharge.
- the electrode rods 3b and the fiber holders 3c are aligned along the Z-axis direction.
- the Z-axis direction is the direction in which each of the multiple optical fibers to be fusion spliced extends.
- the windshield cover 6 is connected to the housing 2 so as to cover the fusion splicing section 3 in an openable and closable manner.
- the power switch 7 is a push button for switching the power of the fusion splicing machine 1 on and off in response to the operation of the user of the fusion splicing machine 1.
- the connection start switch 8 is a push button for starting the operation of fusing optical fibers together in response to the operation of the user.
- FIG. 3 is a perspective view showing a schematic diagram of the detailed structure of the fusion splicing section 3.
- the fusion splicer 1 has a stage 11 on which multiple optical fibers F to be fusion spliced are placed.
- the fusion splicer 1 is a multi-core fusion machine that fusion splices multiple optical fibers F together.
- the fusion splicer 1 has a pair of stages 11 aligned along the Z-axis direction.
- the base 11 has a main surface 12 on which multiple optical fibers F are placed, and multiple V-grooves 13 that are recessed in the main surface 12 and into which the optical fibers F are inserted.
- the multiple V-grooves 13 are aligned along the X-axis direction that intersects with the Z-axis direction.
- the X-axis direction is an in-plane direction of the main surface 12, and is, for example, a direction perpendicular to the Z-axis direction.
- Each V-groove 13 is recessed from the main surface 12 in the Y-axis direction that intersects with both the X-axis direction and the Z-axis direction.
- the Y-axis direction is, for example, a direction perpendicular to both the X-axis direction and the Z-axis direction.
- the multiple optical fibers F inserted into each V-groove 13 are aligned along the X-axis direction on the main surface 12.
- a pair of electrode rods 3b are arranged on both sides of the multiple optical fibers F in the X-axis direction.
- the fusion splicer 1 has a drive unit 14 that moves the table 11.
- the drive unit 14, for example, moves each of the pair of tables 11.
- the drive unit 14, for example, moves the optical fiber F placed on the table 11 along the Z-axis direction.
- the Z-axis direction is the movement direction of the optical fiber.
- the drive unit 14 adjusts the position of the end face F1 of the optical fiber F by moving the table 11 along the Z-axis direction.
- the drive unit 14 adjusts the position of the optical fiber F in the Z-axis direction so that the distance from the virtual straight line L connecting the pair of electrode rods 3b to the end face F1 is a predetermined distance.
- the drive unit 14 makes this adjustment to the pair of optical fibers F aligned along the Z-axis direction, so that the optical fibers F can be appropriately fusion spliced by the pair of electrode rods 3b.
- the driving unit 14 is, for example, a stepping motor. In this case, the driving unit 14 drives according to the applied pulse voltage.
- the stage 11 moves along the Z-axis direction by driving the driving unit 14.
- the driving unit 14 finely moves the optical fiber F placed on the stage 11 to finely adjust the position of the end face F1 of the optical fiber F.
- "Fine movement” refers to moving a distance shorter than the pixel size of an image captured by the microscope 15 described later.
- the "pixel size” referred to here refers to the length measured along the moving direction of the optical fiber F.
- the driving unit 14 finely moves the optical fiber F by a fixed distance at a time.
- the "fixed distance” refers to, for example, the amount of movement of the optical fiber F per pulse by the driving unit 14.
- the "fixed distance” is 1 ⁇ m or more and less than 10 ⁇ m.
- the "fixed distance” is 2 ⁇ m.
- Figure 4 is a block diagram showing the functions of the microscope 15 and the position recognition unit 20.
- Figure 5 is a diagram showing an image captured by the microscope 15.
- the fusion splicer 1 has a microscope 15 that captures an image of an optical fiber F, and a position recognition unit 20 that recognizes the position of the end face F1 of the optical fiber F from the image of the optical fiber F captured by the microscope 15.
- the microscope 15 captures images of multiple optical fibers F placed on each of a pair of stages 11.
- the microscope 15 is, for example, a CCD camera (Charge-Coupled Device Camera) or a CMOS camera (Complementary Metal Oxide Semiconductor Camera).
- the microscope 15 has, for example, an image sensor 16 and an image processor 17.
- the image sensor 16 captures an image of the optical fiber F
- the image processor 17 processes the image of the optical fiber F captured by the image sensor 16.
- the image processor 17 outputs the brightness of the image for each pixel.
- the pixel size of the image captured by the image sensor 16 is larger than the fixed distance described above.
- the pixel size of the image captured by the image sensor 16 is more than twice the fixed distance described above.
- This pixel size is set to a large value because the fusion splicer 1 is a multi-fiber fusion machine and needs to capture images of multiple optical fibers F lined up along the X-axis direction.
- the pixel size is 10 ⁇ m.
- the position recognition unit 20 may be, for example, a CPU (Central Processing Unit) configured with one or more integrated circuits (ICs).
- the position recognition unit 20 stores an image captured by the imaging element 16.
- the position recognition unit 20 recognizes the position of the optical fiber F from the brightness of each pixel output by the image processing unit 17.
- FIG. 6 is a diagram showing the end face F1 of the optical fiber F in a captured image.
- FIG. 7 is a diagram showing an image of the captured optical fiber F.
- the position recognition unit 20 may not be able to recognize the exact position of the end face F1. More specifically, the position recognition unit 20 may be able to recognize that the end face F1 is located in a blurred pixel X portion in the image, but may not be able to recognize where within pixel X the end face F1 is located.
- the drive unit 14 fine-tunes the position of the end face F1 in the Z-axis direction in order to properly fusion splice the optical fiber F.
- the position recognition unit 20 cannot recognize the exact position of the end face F1 as described above, then the end face F1 may not be in an appropriate position, and it may not be possible to properly fusion splice. In this case, there is a possibility that poor connection or the like may occur.
- the position recognition unit 20 can recognize the exact position of the end face F1. An example of the steps of the fusion splicing method is described below.
- FIG. 8 is a flowchart showing an example of the steps of the fusion splicing method according to this embodiment.
- FIG. 9 shows an image captured by the microscope 15.
- a pair of optical fibers F to be fusion spliced are placed on each of a pair of bases 11 so that a pair of end faces F1 face each other (step of placing optical fibers, step S1).
- the optical fibers F are inserted into each V-groove 13 of the bases 11, and the optical fibers F are placed so that multiple optical fibers F are lined up along the X-axis direction on each base 11.
- the microscope 15 images the optical fiber F (step of imaging an optical fiber, step S2).
- an image M1 of the optical fiber F is obtained by the imaging element 16.
- the image processing unit 17 outputs the luminance of the image M1 for each pixel X1.
- the luminance of each pixel X1 of the image M1 output by the image processing unit 17 is output to the position recognition unit 20.
- the position recognition unit 20 recognizes the position of the end face F1 from the luminance of each pixel X1 of the image M1.
- the position recognition unit 20 recognizes the position of pixel X13, which is between pixel X11 with the highest luminance and pixel X12 with the lowest luminance among the multiple pixels X1, as the position of the end face F1.
- the driving unit 14 moves the stage 11 on which the optical fiber F is placed (stage moving step). For example, the driving unit 14 fixes one of the two stages 11 and moves the unfixed stage 11 along the Z-axis direction. At this time, the driving unit 14 finely moves the optical fiber F to move it a certain distance in the Z-axis direction (step S3). After that, the microscope 15 images the optical fiber F (optical fiber imaging step, step S4). At this time, an image M2 of the optical fiber F is obtained by the imaging element 16.
- the image processing unit 17 outputs the luminance of image M2 for each pixel X1 and calculates the luminance difference.
- the position recognition unit 20 stores the luminance difference calculated by the image processing unit 17.
- the image processing unit 17 calculates, for example, the luminance difference between two pixels X1 aligned along the Z-axis direction (step S5, process of calculating the luminance difference).
- the image processing unit 17 calculates the difference between the luminance of pixel X11 and the luminance of pixel X13 as the luminance difference.
- the image processing unit 17 outputs the luminance of each pixel X1 of image M2 to the position recognition unit 20.
- the position recognition unit 20 determines whether the optical fiber F has reached a fusion-enabled position (step S6, a process for determining whether the optical fiber has reached a fusion-enabled position).
- the "fusion-enabled position" is, for example, the position of the end face F1 at which the optical fiber F can be fused by the electrode rod 3b.
- step S6 determines in step S6 that the optical fiber F has reached the fusion position
- the process proceeds to step S7.
- the drive unit 14 finely moves the optical fiber F
- the microscope 15 captures the optical fiber F to obtain an image M3
- the image processing unit 17 calculates the brightness difference described above for image M3.
- the position recognition unit 20 determines that the optical fiber F has not reached the fusion position
- the drive unit 14 again finely moves the optical fiber F
- the microscope 15 images the optical fiber F to obtain image M4
- the image processing unit 17 calculates the brightness difference described above for image M4.
- the position recognition unit 20 determines that the optical fiber F has reached the fusion position (YES in step S6)
- the position recognition unit 20 recognizes the reference position (step of recognizing the reference position, step S7).
- step S7 the position recognition unit 20 recognizes the position of the end face F1 of the optical fiber F in image M3, of the captured images M1, M2, M3, M4, and M5, in which the position of the end face F1 is closest to one side of pixel X1, as the reference position Y. More specifically, the position recognition unit 20 recognizes the position of the end face F1 of the optical fiber F in image M3, in which the luminance difference between the two pixels X11 and X13 aligned along the Z-axis direction is maximum, as the reference position Y.
- pixel X13 is blurred in images M1 and M2 compared to image M3. That is, the luminance difference of pixel X13 relative to the luminance of pixel X11 is small, so the position recognition unit 20 cannot accurately recognize the position of end face F1 at the time when images M1 and M2 are captured. In contrast, when image M3 is captured, pixel X13 is clearer than images M1 and M2. That is, the luminance difference of pixel X13 relative to the luminance of pixel X11 is large, so the position recognition unit 20 can accurately recognize the position of end face F1 at the time when image M3 is captured.
- the position of one side of pixel X1 and the actual position are in a one-to-one relationship.
- the position recognition unit 20 After recognizing the reference position Y, the position recognition unit 20 recognizes the position of the end face F1 of the optical fiber F (step S8 of recognizing the position of the face of the optical fiber).
- the position recognition unit 20 stores how many times the optical fiber F has moved a certain distance from the reference position Y. In the example of FIG. 9, the optical fiber F has moved twice from the reference position Y. Therefore, the position recognition unit 20 can accurately recognize the position of the end face F1 at the time when the image M5 is captured by adding the product of the number of times the optical fiber F has moved from the reference position Y and the certain distance as the moving distance to the reference position Y.
- the position recognition unit 20 may also store the moving distance of the optical fiber F from the reference position Y, and may recognize the position of the end face F1 by adding the moving distance of the optical fiber F from the reference position Y to the reference position Y.
- the drive unit 14 moves the stage 11 on which the optical fiber F is placed, and the microscope 15 captures an image of the moving surface of the optical fiber F.
- the microscope 15 outputs the brightness of the images M1, M2, M3, M4, and M5 obtained by capturing the images for each pixel X1.
- the position recognition unit 20 recognizes the position of the optical fiber F from the brightness of each pixel X1 of the images M1, M2, M3, M4, and M5.
- the drive unit 14 moves the optical fiber F at a constant distance shorter than the pixel size of the pixel X1, and the microscope 15 captures an image of the optical fiber F each time the optical fiber F moves the constant distance.
- the position recognition unit 20 then recognizes the position of the surface of the moved optical fiber F from the multiple brightnesses of the images M1, M2, M3, M4, and M5. Therefore, images M1, M2, M3, M4, and M5 are obtained by capturing images of the optical fiber F as it moves a fixed distance shorter than the pixel size, and the position of the surface of the optical fiber F can be recognized with high accuracy by recognizing the position of the surface of the optical fiber F from the multiple brightnesses of the images M1, M2, M3, M4, and M5.
- the position of the surface of the optical fiber F can be accurately recognized from the images M1, M2, M3, M4, and M5 by capturing images M1, M2, M3, M4, and M5 every time the optical fiber F moves a fixed distance shorter than the pixel size.
- the position recognition unit 20 may recognize the position of the surface of the optical fiber F in image M3, which is closest to one side of pixel X1 among images M1, M2, M3, M4, and M5, as the reference position Y. In this case, the position recognition unit 20 can recognize how many times the drive unit 14 has moved the optical fiber F a certain distance from the reference position Y, thereby more accurately recognizing the position of the surface of the optical fiber F after it has been moved.
- the position recognition unit 20 may recognize the position of the optical fiber F in image M3, where the luminance difference between two pixels, pixel X11 and pixel X13, aligned along the Z-axis direction among images M1, M2, M3, M4, and M5, is the largest, as the reference position Y.
- the position recognition unit 20 can easily recognize the reference position Y from the luminance difference between pixel X11 and pixel X13, aligned along the Z-axis direction.
- the aforementioned fixed distance may be less than half the pixel size.
- images M1, M2, M3, M4, and M5 of the optical fiber F are captured every time the optical fiber moves a fixed distance that is less than half the pixel size, and the position of the surface of the optical fiber F can be accurately recognized from the images M1, M2, M3, M4, and M5.
- the aforementioned surface may be an end face F1 located at one end in the longitudinal direction of the optical fiber F.
- the position of the end face F1 of the optical fiber F can be accurately recognized.
- the pair of end faces F1 aligned along the Z-axis direction can be appropriately fused, thereby preventing poor contact.
- FIG. 10 is a diagram for explaining a fusion splicing method according to a modified example.
- the driving unit 14 fixes one of the two tables 11 and moves the unfixed table 11 along the Z-axis direction.
- each table 11 is moved a fixed distance so that the pair of optical fibers F approach each other.
- each optical fiber F is captured every time the optical fiber F moves a fixed distance.
- the microscope 15 captures an image of the pair of optical fibers F every time the pair of optical fibers F moves a fixed distance so that they approach each other.
- the position recognition unit 20 recognizes the position of each end face F1 of each moved optical fiber F from the brightness of the image M6. In this case, the position recognition unit 20 can recognize the distance between the pair of end faces F1. Furthermore, if an imaginary straight line L connecting the pair of electrode rods 3b extends along one side of pixel X2 of image M6, it is possible to calculate the distance of each end face F1 from the imaginary straight line L. Therefore, the fusion splicing of the pair of optical fibers F can be performed more appropriately.
- FIG. 11 is a diagram for explaining a fusion splicing method according to another modified example different from that of FIG. 10.
- FIG. 11 corresponds to FIG. 9 described above, and the direction in which the optical fiber F moves is different from that of FIG. 9.
- the driving unit 14 moves the optical fiber F a fixed distance along the X-axis direction.
- the microscope 15 captures the optical fiber F to obtain an image of the side surface F2 of the optical fiber F.
- the position recognition unit 20 acquires images M11, M12, M13, M14, and M15 while moving the optical fiber F a fixed distance along the X-axis direction in a manner similar to that used to acquire images M1, M2, M3, M4, and M5 described above. Then, when the position recognition unit 20 recognizes that the optical fiber F has reached an alignment position, the position recognition unit 20 recognizes the reference position. At this time, the position recognition unit 20 recognizes the position of the side surface F2 of the optical fiber F in image M13, among images M11, M12, M13, M14, and M15, in which the position of the side surface F2 is closest to one side of pixel X3, as the reference position Z.
- the position recognition unit 20 recognizes the position of the side surface F2 of the optical fiber F in image M13 where the luminance difference between two pixels X14, X15 aligned along the X-axis direction is maximum as the reference position Z. After recognizing the reference position Z, the position recognition unit 20 recognizes the position of the side surface F2 of the optical fiber F at the time when the image M15 was captured. Specifically, the position recognition unit 20 can accurately recognize the position of the side surface F2 at the time when the image M15 was captured by adding the product of the number of times the optical fiber F has moved from the reference position Z and a fixed distance to the reference position Z.
- the driving unit 14 moves the optical fiber F along the X-axis direction perpendicular to the longitudinal direction of the optical fiber F.
- the surface of the optical fiber F to be recognized is the side surface F2 of the optical fiber F, which extends along the longitudinal direction of the optical fiber F.
- the position of the side surface F2 of the optical fiber F can be accurately recognized.
- FIG. 12 is a diagram for explaining a fusion splicing method according to a modified example different from those in FIGS. 10 and 11.
- the drive unit 14 moves each of a pair of optical fibers F aligned along the Z-axis direction along the X-axis direction.
- the microscope 15 images the pair of optical fibers F every time each optical fiber F moves a certain distance along the X-axis direction.
- the position recognition unit 20 recognizes the position of each side surface F2 of each moved optical fiber F from the brightness of the image M7. In this case, the position recognition unit 20 can recognize the position of each side surface F2 of the pair of optical fibers F in the X-axis direction. Therefore, the positions of the side surfaces F2 of the pair of optical fibers F can be aligned, making it possible to align the pair of optical fibers F with high precision.
- the present invention is not limited to the above-described embodiments or modifications, and may be modified as appropriate within the scope of the gist described in the claims.
- the shape, size, number, material, and arrangement of each part of the fusion splicer are not limited to the above-described embodiments or modifications, and may be modified as appropriate within the scope of the above-described gist.
- the content and order of the steps of the fusion splicing method are not limited to the above-described embodiments or modifications, and may be modified as appropriate within the scope of the above-described gist.
- a fusion splicer or fusion splicing method may be a combination of multiple forms of the above-described embodiments and various modifications.
- the driving unit 14 is a stepping motor
- the fixed distance which is the amount of movement of the optical fiber F by the driving unit 14 per movement, is 1 ⁇ m or more and less than 10 ⁇ m.
- the microscope 15 images the optical fiber F every time the optical fiber F moves a fixed distance.
- the microscope 15 may image the optical fiber F every time the driving unit 14 moves the optical fiber F by one pulse, or the microscope 15 may image the optical fiber F every time the driving unit 14 moves the optical fiber F by two pulses. In this way, the frequency at which the microscope 15 images the optical fiber F can be changed as appropriate.
- the microscope 15 may be something other than a stepping motor, and the type of the driving unit is not particularly limited.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
The fusion splicing device according to an embodiment comprises: a stage on which an optical fiber is placed; a drive unit which moves the stage; a microscope which captures the optical fiber, and outputs the brightness of an image obtained through capturing for each pixel; and a position recognition unit which recognizes the position of a surface of the optical fiber from the brightness of each pixel output by the microscope. The drive unit sequentially moves the optical fiber by a constant distance. The constant distance is shorter than the pixel size of a pixel. The microscope captures the optical fiber every time the drive unit moves the optical fiber by the constant distance. The position recognition unit recognizes the position of a surface of the optical fiber moved by the drive unit from a plurality of values of brightness of a plurality of images obtained by the microscope.
Description
本開示は、融着接続機および融着接続方法に関する。
This disclosure relates to a fusion splicer and a fusion splicing method.
特許文献1には、光ファイバ融着接続機が記載されている。光ファイバ融着接続機は、一対の光ファイバ同士を溶融させながら当該一対の光ファイバを互いに接続する。光ファイバ融着接続機は、複数の光ファイバを保持するファイバ送り部を有する。ファイバ送り部は、複数の光ファイバを光ファイバの長手方向に沿って移動させる。光ファイバ融着接続機は、移動する光ファイバを連続して撮像するカメラと、制御基板とを備える。制御基板は、カメラによって撮像された画像データを処理して光ファイバの動きを認識する画像データ処理部を有する。画像データ処理部は、複数の画像データの違いから光ファイバの動作を認識する画像データ処理を行う。
Patent Document 1 describes an optical fiber fusion splicer. The optical fiber fusion splicer connects a pair of optical fibers to each other while melting the optical fibers. The optical fiber fusion splicer has a fiber feed section that holds multiple optical fibers. The fiber feed section moves the multiple optical fibers along the longitudinal direction of the optical fibers. The optical fiber fusion splicer includes a camera that continuously captures images of the moving optical fibers, and a control board. The control board has an image data processing section that processes image data captured by the camera to recognize the movement of the optical fiber. The image data processing section performs image data processing to recognize the operation of the optical fiber from the differences between the multiple image data.
特許文献2には、光ファイバの融着接続方法および接続装置が記載されている。接続装置は、光ファイバが載せられる載置部と、複数の光ファイバを保持するホルダと、複数の光ファイバを撮影するTVカメラとを備える。TVカメラは、光ファイバの軸ずれを計測するために設けられる。
Patent Document 2 describes a method and device for fusion splicing optical fibers. The splicing device includes a mounting section on which the optical fiber is placed, a holder that holds multiple optical fibers, and a TV camera that photographs the multiple optical fibers. The TV camera is provided to measure the axial misalignment of the optical fibers.
特許文献3には、光ファイバの融着接続装置が記載されている。融着接続装置は、光ファイバが挿入されるV溝を有する位置決め台と、位置決め台の上方から光ファイバを撮像する撮像カメラと、光ファイバの調心を行う調心微動機構とをを備える。撮像カメラは、撮像によって得られた光ファイバの画像を撮像信号として画像処理装置に出力する。画像処理装置は、撮像信号を基に光ファイバの調心のための演算を行って処理信号を生成する演算部と、演算部の処理信号に応じて調心微動機構の動作を制御する制御部とを有する。
Patent document 3 describes an optical fiber fusion splicing device. The fusion splicing device includes a positioning table having a V-groove into which the optical fiber is inserted, an imaging camera that images the optical fiber from above the positioning table, and a fine alignment mechanism that aligns the optical fiber. The imaging camera outputs the image of the optical fiber obtained by imaging as an imaging signal to an image processing device. The image processing device includes a calculation unit that performs calculations for aligning the optical fiber based on the imaging signal to generate a processing signal, and a control unit that controls the operation of the fine alignment mechanism in response to the processing signal from the calculation unit.
本開示に係る融着接続機は、光ファイバが載せられる台と、台を移動させる駆動部と、光ファイバを撮像するとともに、撮像によって得られた画像の輝度を画素ごとに出力する顕微鏡と、顕微鏡によって出力された画素ごとの輝度から光ファイバの面の位置を認識する位置認識部と、を備える。駆動部は光ファイバを一定距離ずつ移動させる。当該一定距離は、画素の画素サイズよりも短い。顕微鏡は、駆動部が光ファイバを一定距離移動させるごとに光ファイバを撮像する。位置認識部は、顕微鏡によって得られた複数の画像の複数の輝度から、駆動部によって移動した光ファイバの面の位置を認識する。
The fusion splicer according to the present disclosure comprises a stage on which the optical fiber is placed, a drive unit for moving the stage, a microscope for capturing an image of the optical fiber and outputting the brightness of the captured image for each pixel, and a position recognition unit for recognizing the position of the surface of the optical fiber from the brightness of each pixel output by the microscope. The drive unit moves the optical fiber at fixed distances. The fixed distance is shorter than the pixel size of the pixels. The microscope captures an image of the optical fiber each time the drive unit moves the optical fiber a fixed distance. The position recognition unit recognizes the position of the surface of the optical fiber moved by the drive unit from the multiple brightnesses of the multiple images captured by the microscope.
ところで、光ファイバを撮像する顕微鏡の解像度が低い場合、画像が粗くなるということが起こりうる。特に、多心の光ファイバを融着接続する融着接続機では、複数本の光ファイバを撮像するため、顕微鏡の倍率が低倍率となりうる。この場合、顕微鏡の解像度が低いことが多い。よって、光ファイバの画像が粗いので、光ファイバの面の位置を正確に認識できない場合がある。例えば、融着接続される光ファイバの端面の位置を正確に認識できない場合、光ファイバの接続損失が生じる可能性がある。
However, if the resolution of the microscope that images the optical fiber is low, the image may become coarse. In particular, in a fusion splicer that fusion-splices multi-core optical fibers, the magnification of the microscope may be low because multiple optical fibers are imaged. In such cases, the resolution of the microscope is often low. Therefore, since the image of the optical fiber is coarse, the position of the surface of the optical fiber may not be recognized accurately. For example, if the position of the end face of the optical fiber to be fusion-spliced cannot be recognized accurately, connection loss of the optical fiber may occur.
本開示は、光ファイバの面の位置を正確に認識することができる融着接続機を提供することを目的とする。
The present disclosure aims to provide a fusion splicer that can accurately recognize the position of the surface of an optical fiber.
[本開示の実施形態の説明]
最初に本開示の実施形態を列記して説明する。一実施形態に係る融着接続機は、(1)光ファイバが載せられる台と、台を移動させる駆動部と、光ファイバを撮像するとともに、撮像によって得られた画像の輝度を画素ごとに出力する顕微鏡と、顕微鏡によって出力された画素ごとの輝度から光ファイバの面の位置を認識する位置認識部と、を備える。駆動部は光ファイバを一定距離ずつ移動させる。当該一定距離は、画素の画素サイズよりも短い。顕微鏡は、駆動部が光ファイバを一定距離移動させるごとに光ファイバを撮像する。位置認識部は、顕微鏡によって得られた複数の画像の複数の輝度から、駆動部によって移動した光ファイバの面の位置を認識する。 [Description of the embodiments of the present disclosure]
First, the embodiments of the present disclosure will be listed and described. A fusion splicer according to one embodiment includes (1) a stage on which an optical fiber is placed, a drive unit for moving the stage, a microscope for capturing an image of the optical fiber and outputting the brightness of the captured image for each pixel, and a position recognition unit for recognizing the position of the surface of the optical fiber from the brightness of each pixel output by the microscope. The drive unit moves the optical fiber at fixed distances. The fixed distance is shorter than the pixel size of the pixel. The microscope captures an image of the optical fiber every time the drive unit moves the optical fiber by the fixed distance. The position recognition unit recognizes the position of the surface of the optical fiber moved by the drive unit from multiple brightnesses of multiple images captured by the microscope.
最初に本開示の実施形態を列記して説明する。一実施形態に係る融着接続機は、(1)光ファイバが載せられる台と、台を移動させる駆動部と、光ファイバを撮像するとともに、撮像によって得られた画像の輝度を画素ごとに出力する顕微鏡と、顕微鏡によって出力された画素ごとの輝度から光ファイバの面の位置を認識する位置認識部と、を備える。駆動部は光ファイバを一定距離ずつ移動させる。当該一定距離は、画素の画素サイズよりも短い。顕微鏡は、駆動部が光ファイバを一定距離移動させるごとに光ファイバを撮像する。位置認識部は、顕微鏡によって得られた複数の画像の複数の輝度から、駆動部によって移動した光ファイバの面の位置を認識する。 [Description of the embodiments of the present disclosure]
First, the embodiments of the present disclosure will be listed and described. A fusion splicer according to one embodiment includes (1) a stage on which an optical fiber is placed, a drive unit for moving the stage, a microscope for capturing an image of the optical fiber and outputting the brightness of the captured image for each pixel, and a position recognition unit for recognizing the position of the surface of the optical fiber from the brightness of each pixel output by the microscope. The drive unit moves the optical fiber at fixed distances. The fixed distance is shorter than the pixel size of the pixel. The microscope captures an image of the optical fiber every time the drive unit moves the optical fiber by the fixed distance. The position recognition unit recognizes the position of the surface of the optical fiber moved by the drive unit from multiple brightnesses of multiple images captured by the microscope.
この融着接続機では、駆動部によって光ファイバが載せられた台が移動し、顕微鏡によって移動する光ファイバの面が撮像される。顕微鏡は、撮像によって得られた画像の輝度を画素ごとに出力する。位置認識部は、当該画像の画素ごとの輝度から光ファイバの位置を認識する。駆動部は画素の画素サイズよりも短い一定距離ずつ光ファイバを移動させ、顕微鏡は光ファイバが一定距離移動するごとに光ファイバを撮像する。そして、位置認識部は、複数の画像の複数の輝度から移動した光ファイバの面の位置を認識する。したがって、光ファイバが画素サイズより短い一定距離移動するごとに画像が得られ、複数の画像の複数の輝度から光ファイバの面の位置を認識することにより、光ファイバの面の位置を高精度に認識できる。顕微鏡の解像度が低く画像の画素が粗い場合でも、画素サイズより短い一定距離移動するごとに画像を撮像することにより、当該撮像の結果得られた複数の画像から光ファイバの面の位置を正確に認識することができる。
In this fusion splicer, the stage on which the optical fiber is placed is moved by the drive unit, and the microscope captures an image of the moving optical fiber surface. The microscope outputs the brightness of the image obtained by capturing an image for each pixel. The position recognition unit recognizes the position of the optical fiber from the brightness of each pixel of the image. The drive unit moves the optical fiber at fixed distances shorter than the pixel size, and the microscope captures an image of the optical fiber each time the optical fiber moves a fixed distance. The position recognition unit then recognizes the position of the moved optical fiber surface from the multiple brightnesses of the multiple images. Therefore, an image is obtained each time the optical fiber moves a fixed distance shorter than the pixel size, and the position of the optical fiber surface is recognized from the multiple brightnesses of the multiple images, so that the position of the optical fiber surface can be recognized with high accuracy. Even if the resolution of the microscope is low and the pixels of the image are coarse, by capturing an image each time it moves a fixed distance shorter than the pixel size, the position of the optical fiber surface can be accurately recognized from the multiple images obtained as a result of the capturing.
(2)上記(1)において、位置認識部は、複数の画像のうち、光ファイバの面の位置が画素の一辺に最も近い画像における当該面の位置を基準位置として認識してもよい。この場合、位置認識部は、基準位置から駆動部が何回光ファイバを一定距離移動させたかを認識することによって、移動させた後の光ファイバの面の位置をより正確に認識することができる。
(2) In the above (1), the position recognition unit may recognize, as a reference position, the position of the optical fiber surface in an image in which, among the multiple images, the position of the surface is closest to one side of a pixel. In this case, the position recognition unit can more accurately recognize the position of the optical fiber surface after the movement by recognizing how many times the drive unit has moved the optical fiber a certain distance from the reference position.
(3)上記(2)において、位置認識部は、複数の画像のうち、光ファイバの移動方向に沿って並ぶ2つの画素の輝度差が最大となった画像の光ファイバの位置を基準位置として認識してもよい。この場合、位置認識部は、移動方向に沿って並ぶ2つの画素の輝度差から基準位置を容易に認識することができる。
(3) In (2) above, the position recognition unit may recognize as the reference position the position of the optical fiber in an image among the multiple images in which the luminance difference between two pixels aligned along the movement direction of the optical fiber is maximum. In this case, the position recognition unit can easily recognize the reference position from the luminance difference between two pixels aligned along the movement direction.
(4)上記(2)または(3)において、位置認識部は、基準位置からの光ファイバの移動距離を記憶してもよく、基準位置からの光ファイバの移動距離を基準位置に加算して面の位置を認識してもよい。
(4) In the above (2) or (3), the position recognition unit may store the movement distance of the optical fiber from a reference position, and may recognize the position of the surface by adding the movement distance of the optical fiber from the reference position to the reference position.
(5)上記(4)において、位置認識部は、基準位置から何回光ファイバが一定距離移動したかを記憶してもよく、基準位置からの光ファイバの移動回数と一定距離との積を移動距離として基準位置に加算することにより面の位置を認識してもよい。
(5) In (4) above, the position recognition unit may store the number of times the optical fiber has moved a fixed distance from the reference position, and may recognize the position of the surface by adding the product of the number of times the optical fiber has moved from the reference position and the fixed distance as the moving distance to the reference position.
(6)上記(1)から(5)のいずれかにおいて、駆動部は、光ファイバの長手方向に沿って光ファイバを移動させてもよい。
(6) In any of (1) to (5) above, the driving unit may move the optical fiber along the longitudinal direction of the optical fiber.
(7)上記(1)から(5)のいずれかにおいて、駆動部は、光ファイバの長手方向に直交する方向に沿って光ファイバを移動させてもよい。
(7) In any of (1) to (5) above, the driving unit may move the optical fiber in a direction perpendicular to the longitudinal direction of the optical fiber.
(8)上記(1)から(7)のいずれかにおいて、前述した一定距離は、画素サイズの2分の1以下であってもよい。この場合、画素サイズの1/2以下である一定距離移動するごとに光ファイバの画像が撮像されることにより、複数の画像から光ファイバの面の位置をより正確に認識することができる。
(8) In any of (1) to (7) above, the aforementioned fixed distance may be equal to or less than half the pixel size. In this case, an image of the optical fiber is captured every time the optical fiber moves a fixed distance that is equal to or less than half the pixel size, so that the position of the optical fiber surface can be recognized more accurately from multiple images.
(9)上記(1)から(8)のいずれかにおいて、前述した面は、光ファイバの長手方向の一端に位置する光ファイバの端面であってもよい。この場合、光ファイバの端面の位置を正確に認識することができる。
(9) In any of (1) to (8) above, the surface may be an end face of the optical fiber located at one end in the longitudinal direction of the optical fiber. In this case, the position of the end face of the optical fiber can be accurately recognized.
(10)上記(1)から(8)のいずれかにおいて、前述した面は、光ファイバの長手方向に沿って延びる光ファイバの側面であってもよい。この場合、光ファイバの側面の位置を正確に認識することができる。
(10) In any of (1) to (8) above, the surface may be a side surface of the optical fiber extending along the longitudinal direction of the optical fiber. In this case, the position of the side surface of the optical fiber can be accurately recognized.
(11)上記(1)から(10)のいずれかにおいて、顕微鏡は、光ファイバを撮像する撮像素子と、撮像素子によって撮像された光ファイバの画像を処理する画像処理部と、を有してもよい。画像処理部が画像の輝度を画素ごとに出力してもよい。
(11) In any of (1) to (10) above, the microscope may have an image sensor that captures an image of the optical fiber, and an image processor that processes the image of the optical fiber captured by the image sensor. The image processor may output the brightness of the image for each pixel.
(12)上記(11)において、画像処理部は、光ファイバの移動方向に沿って並ぶ2つの画素の輝度差を算出してもよく、位置認識部は、画像処理部によって算出された輝度差を記憶してもよい。
(12) In (11) above, the image processing unit may calculate the luminance difference between two pixels aligned along the moving direction of the optical fiber, and the position recognition unit may store the luminance difference calculated by the image processing unit.
(13)上記(1)から(12)のいずれかにおいて、融着接続機は、複数の光ファイバを一括して融着接続する多心融着機であってもよい。
(13) In any of (1) to (12) above, the fusion splicer may be a multi-fiber fusion splicer that fusion-splices multiple optical fibers together.
(14)上記(1)から(13)のいずれかにおいて、位置認識部は、顕微鏡によって撮像された画像を記憶し、出力された画素ごとの輝度から光ファイバの位置を認識してもよい。
(14) In any of (1) to (13) above, the position recognition unit may store an image captured by the microscope and recognize the position of the optical fiber from the brightness of each output pixel.
(15)上記(1)から(14)のいずれかにおいて、位置認識部は、複数の画素のうち、最も輝度が高い画素と最も輝度が低い画素との間にある画素の位置を面の位置として認識してもよい。
(15) In any of (1) to (14) above, the position recognition unit may recognize, among the multiple pixels, the position of a pixel that is between the pixel with the highest brightness and the pixel with the lowest brightness as the position of the surface.
一実施形態に係る融着接続方法は、(16)光ファイバが載せられた台を移動する工程と、光ファイバを撮像する工程と、撮像する工程によって得られた画像の輝度を画素ごとに出力する工程と、画素ごとの輝度から光ファイバの面の位置を認識する工程と、を備える。移動する工程では、光ファイバを一定距離ずつ移動させる。一定距離は、画素の画素サイズよりも短い。撮像する工程では、光ファイバが一定距離移動するごとに光ファイバを撮像する。位置を認識する工程では、複数の画像の複数の輝度から、移動した光ファイバの面の位置を認識する。
A fusion splicing method according to one embodiment (16) includes the steps of: moving a stage on which an optical fiber is placed; capturing an image of the optical fiber; outputting the brightness of the image obtained by the capturing step for each pixel; and recognizing the position of the surface of the optical fiber from the brightness of each pixel. In the moving step, the optical fiber is moved a fixed distance at a time. The fixed distance is shorter than the pixel size of the pixels. In the capturing step, an image of the optical fiber is captured every time the optical fiber moves a fixed distance. In the position recognition step, the position of the surface of the moved optical fiber is recognized from multiple brightnesses of multiple images.
この融着接続方法では、前述した融着接続機と同様、移動する光ファイバの面が撮像され、撮像によって得られた画像の輝度が画素ごとに出力される。位置を認識する工程では、当該画像の画素ごとの輝度から光ファイバの位置を認識する。この位置の認識では、複数の画像の複数の輝度から移動した光ファイバの面の位置を認識する。したがって、前述した融着接続機と同様、光ファイバが画素サイズより短い一定距離移動するごとに画像が得られ、複数の画像の複数の輝度から光ファイバの面の位置を認識することにより、光ファイバの面の位置を高精度に認識できる。その結果、顕微鏡の解像度が低く画像の画素が粗い場合でも、一定距離移動するごとに画像を撮像することにより、当該撮像の結果得られた複数の画像から光ファイバの面の位置を正確に認識することができる。
In this fusion splicing method, as in the fusion splicer described above, the surface of the moving optical fiber is imaged, and the brightness of the image obtained by imaging is output for each pixel. In the position recognition process, the position of the optical fiber is recognized from the brightness of each pixel of the image. In this position recognition, the position of the surface of the moving optical fiber is recognized from the multiple brightnesses of multiple images. Therefore, as in the fusion splicer described above, an image is obtained each time the optical fiber moves a fixed distance shorter than the pixel size, and the position of the surface of the optical fiber is recognized from the multiple brightnesses of the multiple images, so that the position of the surface of the optical fiber can be recognized with high accuracy. As a result, even if the resolution of the microscope is low and the pixels of the image are coarse, by capturing an image every time it moves a fixed distance, the position of the surface of the optical fiber can be accurately recognized from the multiple images obtained as a result of the imaging.
[本願発明の実施形態の詳細]
本開示の実施形態に係る融着接続機および融着接続方法の具体例について説明する。図面の説明において同一または相当する要素には同一の符号を付し、重複する説明を適宜省略する。図面は、理解の容易化のため、一部を簡略化または誇張して描いている場合があり、寸法比率等は図面に記載のものに限定されない。 [Details of the embodiment of the present invention]
A specific example of a fusion splicer and a fusion splicing method according to an embodiment of the present disclosure will be described. In the description of the drawings, the same or corresponding elements are given the same reference numerals, and duplicated descriptions will be omitted as appropriate. The drawings may be partially simplified or exaggerated for ease of understanding, and the dimensional ratios and the like are not limited to those shown in the drawings.
本開示の実施形態に係る融着接続機および融着接続方法の具体例について説明する。図面の説明において同一または相当する要素には同一の符号を付し、重複する説明を適宜省略する。図面は、理解の容易化のため、一部を簡略化または誇張して描いている場合があり、寸法比率等は図面に記載のものに限定されない。 [Details of the embodiment of the present invention]
A specific example of a fusion splicer and a fusion splicing method according to an embodiment of the present disclosure will be described. In the description of the drawings, the same or corresponding elements are given the same reference numerals, and duplicated descriptions will be omitted as appropriate. The drawings may be partially simplified or exaggerated for ease of understanding, and the dimensional ratios and the like are not limited to those shown in the drawings.
図1は、具体例としての融着接続機1を示す斜視図である。融着接続機1は、箱状の筐体2と、筐体2の上部に位置する風防カバー6とを有する。図2は、風防カバー6が開放された状態を示す斜視図である。図1および図2に示されるように、融着接続機1は光ファイバ同士を融着する融着接続部3を有する。融着接続機1は、後述する顕微鏡15(図4参照)によって撮像された光ファイバ同士の融着接続の状態を表示するモニタ5を有する。さらに、融着接続機1は、融着接続部3において融着された光ファイバの接続部に被せられるファイバ補強スリーブを加熱収縮させる加熱機4と、融着接続機1の電源のオン/オフを切り替える電源スイッチ7と、光ファイバの融着接続を行うための接続開始スイッチ8とを有する。
FIG. 1 is a perspective view showing a specific example of a fusion splicer 1. The fusion splicer 1 has a box-shaped housing 2 and a windshield cover 6 located on top of the housing 2. FIG. 2 is a perspective view showing the windshield cover 6 in an open state. As shown in FIGS. 1 and 2, the fusion splicer 1 has a fusion splicing section 3 that fuses optical fibers together. The fusion splicer 1 has a monitor 5 that displays the state of the fusion splicing of the optical fibers together, as imaged by a microscope 15 (see FIG. 4), which will be described later. In addition, the fusion splicer 1 has a heater 4 that heats and shrinks a fiber reinforcement sleeve that is placed over the connection of the optical fibers fused in the fusion splicing section 3, a power switch 7 that switches the power of the fusion splicer 1 on and off, and a connection start switch 8 for fusion splicing the optical fibers.
融着接続部3は、例えば、一対のファイバ位置決め部3aと、放電を行う一対の電極棒3bと、一対のファイバホルダ3cとを備える。融着対象の光ファイバのそれぞれはファイバホルダ3cに保持される。ファイバ位置決め部3aは、一対のファイバホルダ3cの間に配置され、各ファイバホルダ3cに固定された光ファイバの端面を位置決めする。「端面」とは、光ファイバの長手方向の一端に位置する光ファイバの面を示している。一対の電極棒3bは、一対のファイバ位置決め部3aの間に配置される。電極棒3bは、アーク放電によって光ファイバの端面同士を融着するための電極である。電極棒3bおよびファイバホルダ3cは、Z軸方向に沿って並んでいる。Z軸方向は、融着接続される対象である複数の光ファイバのそれぞれが延在する方向である。
The fusion splicing unit 3 includes, for example, a pair of fiber positioning units 3a, a pair of electrode rods 3b for discharging, and a pair of fiber holders 3c. Each of the optical fibers to be fused is held in the fiber holder 3c. The fiber positioning unit 3a is disposed between the pair of fiber holders 3c and positions the end face of the optical fiber fixed to each fiber holder 3c. The "end face" refers to the face of the optical fiber located at one end in the longitudinal direction of the optical fiber. The pair of electrode rods 3b are disposed between the pair of fiber positioning units 3a. The electrode rods 3b are electrodes for fusing the end faces of the optical fibers together by arc discharge. The electrode rods 3b and the fiber holders 3c are aligned along the Z-axis direction. The Z-axis direction is the direction in which each of the multiple optical fibers to be fusion spliced extends.
風防カバー6は、融着接続部3を開閉自在に覆うように筐体2に連結されている。電源スイッチ7は、融着接続機1の使用者の操作に応じて融着接続機1の電源のオン/オフを切り替えるためのプッシュボタンである。接続開始スイッチ8は、使用者の操作に応じて光ファイバ同士を融着する動作を開始するためのプッシュボタンである。
The windshield cover 6 is connected to the housing 2 so as to cover the fusion splicing section 3 in an openable and closable manner. The power switch 7 is a push button for switching the power of the fusion splicing machine 1 on and off in response to the operation of the user of the fusion splicing machine 1. The connection start switch 8 is a push button for starting the operation of fusing optical fibers together in response to the operation of the user.
図3は、融着接続部3の詳細構造を模式的に示す斜視図である。図3に示されるように、融着接続機1は、融着接続される複数の光ファイバFが載せられる台11を有する。本実施形態において、融着接続機1は、複数の光ファイバFを一括して融着接続する多心融着機である。融着接続機1はZ軸方向に沿って並ぶ一対の台11を有する。
FIG. 3 is a perspective view showing a schematic diagram of the detailed structure of the fusion splicing section 3. As shown in FIG. 3, the fusion splicer 1 has a stage 11 on which multiple optical fibers F to be fusion spliced are placed. In this embodiment, the fusion splicer 1 is a multi-core fusion machine that fusion splices multiple optical fibers F together. The fusion splicer 1 has a pair of stages 11 aligned along the Z-axis direction.
台11は、複数の光ファイバFが載せられる主面12と、主面12において窪んでおり、かつ光ファイバFが入り込む複数のV溝13を有する。台11において、複数のV溝13は、Z軸方向に交差するX軸方向に沿って並んでいる。X軸方向は、主面12の面内方向であって、例えば、Z軸方向に直交する方向である。各V溝13は、主面12からX軸方向およびZ軸方向の双方に交差するY軸方向に窪んでいる。Y軸方向は、例えば、X軸方向およびZ軸方向の双方に直交する方向である。各V溝13に挿入された複数の光ファイバFは、主面12においてX軸方向に沿って並んでいる。一対の電極棒3bは、複数の光ファイバFから見てX軸方向の両側のそれぞれに配置される。
The base 11 has a main surface 12 on which multiple optical fibers F are placed, and multiple V-grooves 13 that are recessed in the main surface 12 and into which the optical fibers F are inserted. In the base 11, the multiple V-grooves 13 are aligned along the X-axis direction that intersects with the Z-axis direction. The X-axis direction is an in-plane direction of the main surface 12, and is, for example, a direction perpendicular to the Z-axis direction. Each V-groove 13 is recessed from the main surface 12 in the Y-axis direction that intersects with both the X-axis direction and the Z-axis direction. The Y-axis direction is, for example, a direction perpendicular to both the X-axis direction and the Z-axis direction. The multiple optical fibers F inserted into each V-groove 13 are aligned along the X-axis direction on the main surface 12. A pair of electrode rods 3b are arranged on both sides of the multiple optical fibers F in the X-axis direction.
融着接続機1は、台11を移動させる駆動部14を有する。駆動部14は、例えば、一対の台11のそれぞれを移動させる。駆動部14は、例えば、台11に載せられた光ファイバFをZ軸方向に沿って移動させる。この場合、Z軸方向は光ファイバの移動方向である。駆動部14は、台11をZ軸方向に沿って移動させることにより、光ファイバFの端面F1の位置を調整する。駆動部14は、一対の電極棒3bを結ぶ仮想直線Lから端面F1までの距離が所定距離となるように光ファイバFのZ軸方向の位置を調整する。駆動部14がZ軸方向に沿って並ぶ一対の光ファイバFに対して当該調整を行うことにより、一対の電極棒3bによる光ファイバFの融着接続を適切に行うことができる。
The fusion splicer 1 has a drive unit 14 that moves the table 11. The drive unit 14, for example, moves each of the pair of tables 11. The drive unit 14, for example, moves the optical fiber F placed on the table 11 along the Z-axis direction. In this case, the Z-axis direction is the movement direction of the optical fiber. The drive unit 14 adjusts the position of the end face F1 of the optical fiber F by moving the table 11 along the Z-axis direction. The drive unit 14 adjusts the position of the optical fiber F in the Z-axis direction so that the distance from the virtual straight line L connecting the pair of electrode rods 3b to the end face F1 is a predetermined distance. The drive unit 14 makes this adjustment to the pair of optical fibers F aligned along the Z-axis direction, so that the optical fibers F can be appropriately fusion spliced by the pair of electrode rods 3b.
駆動部14は、例えば、ステッピングモータである。この場合、駆動部14は、印加されたパルス電圧に応じて駆動する。駆動部14の駆動によって台11がZ軸方向に沿って移動する。例えば、駆動部14は、光ファイバFの端面F1の位置を微調整するために台11に載せられた光ファイバFを微細移動させる。「微細移動」とは、後述する顕微鏡15によって撮像された画像の画素サイズよりも短い距離を移動することを示している。またここで言う「画素サイズ」とは、光ファイバFの移動方向に沿って測った長さを指す。駆動部14は、光ファイバFを一定距離ずつ微細移動させる。「一定距離」は、例えば、駆動部14による1パルスあたりの光ファイバFの移動量を示している。例えば、「一定距離」は、1μm以上かつ10μm未満である。「一定距離」は、一例として、2μmである。
The driving unit 14 is, for example, a stepping motor. In this case, the driving unit 14 drives according to the applied pulse voltage. The stage 11 moves along the Z-axis direction by driving the driving unit 14. For example, the driving unit 14 finely moves the optical fiber F placed on the stage 11 to finely adjust the position of the end face F1 of the optical fiber F. "Fine movement" refers to moving a distance shorter than the pixel size of an image captured by the microscope 15 described later. Also, the "pixel size" referred to here refers to the length measured along the moving direction of the optical fiber F. The driving unit 14 finely moves the optical fiber F by a fixed distance at a time. The "fixed distance" refers to, for example, the amount of movement of the optical fiber F per pulse by the driving unit 14. For example, the "fixed distance" is 1 μm or more and less than 10 μm. As an example, the "fixed distance" is 2 μm.
図4は、顕微鏡15および位置認識部20の機能を示すブロック図である。図5は、顕微鏡15によって撮像された画像を示す図である。図4および図5に示されるように、融着接続機1は、光ファイバFを撮像する顕微鏡15と、顕微鏡15によって撮像された光ファイバFの画像から光ファイバFの端面F1の位置を認識する位置認識部20とを有する。顕微鏡15は、一対の台11のそれぞれに載せられた複数の光ファイバFを撮像する。顕微鏡15は、例えば、CCDカメラ(Charge-Coupled Device Camera)、又はCMOSカメラ(ComplementaryMetal Oxide Semiconductor Camera)である。
Figure 4 is a block diagram showing the functions of the microscope 15 and the position recognition unit 20. Figure 5 is a diagram showing an image captured by the microscope 15. As shown in Figures 4 and 5, the fusion splicer 1 has a microscope 15 that captures an image of an optical fiber F, and a position recognition unit 20 that recognizes the position of the end face F1 of the optical fiber F from the image of the optical fiber F captured by the microscope 15. The microscope 15 captures images of multiple optical fibers F placed on each of a pair of stages 11. The microscope 15 is, for example, a CCD camera (Charge-Coupled Device Camera) or a CMOS camera (Complementary Metal Oxide Semiconductor Camera).
顕微鏡15は、例えば、撮像素子16と、画像処理部17とを有する。撮像素子16は光ファイバFを撮像し、画像処理部17は撮像素子16によって撮像された光ファイバFの画像を処理する。画像処理部17は、当該画像の輝度を画素ごとに出力する。撮像素子16によって撮像される画像の画素サイズは、前述した一定距離よりも大きい。例えば、撮像素子16によって撮像される画像の画素サイズは、前述した一定距離の2倍以上である。この画素サイズは、融着接続機1が多心融着機であってX軸方向に沿って並ぶ複数の光ファイバFを撮像する必要があるため、大きい値とされている。一例として、この画素サイズは10μmである。
The microscope 15 has, for example, an image sensor 16 and an image processor 17. The image sensor 16 captures an image of the optical fiber F, and the image processor 17 processes the image of the optical fiber F captured by the image sensor 16. The image processor 17 outputs the brightness of the image for each pixel. The pixel size of the image captured by the image sensor 16 is larger than the fixed distance described above. For example, the pixel size of the image captured by the image sensor 16 is more than twice the fixed distance described above. This pixel size is set to a large value because the fusion splicer 1 is a multi-fiber fusion machine and needs to capture images of multiple optical fibers F lined up along the X-axis direction. As an example, the pixel size is 10 μm.
位置認識部20としては、例えば、1または複数の集積回路(IC)によって構成されたCPU(中央演算装置)が用いられる。例えば、位置認識部20は、撮像素子16によって撮像された画像を記憶する。位置認識部20は、画像処理部17によって出力された画素ごとの輝度から光ファイバFの位置を認識する。
The position recognition unit 20 may be, for example, a CPU (Central Processing Unit) configured with one or more integrated circuits (ICs). For example, the position recognition unit 20 stores an image captured by the imaging element 16. The position recognition unit 20 recognizes the position of the optical fiber F from the brightness of each pixel output by the image processing unit 17.
図6は、撮像された画像における光ファイバFの端面F1を示す図である。図7は、撮像された光ファイバFの画像を示す図である。図6および図7に示されるように、当該画像の画素サイズが大きい場合には、端面F1の実際のZ軸方向の位置Pがぼやけて、位置認識部20が端面F1の正確な位置を認識できないということが起こりうる。より具体的には、位置認識部20は、当該画像におけるぼやけている画素Xの部分に端面F1があることを認識できるものの、画素Xの中のどの位置に端面F1があるかまでは認識できないということが起こりうる。
FIG. 6 is a diagram showing the end face F1 of the optical fiber F in a captured image. FIG. 7 is a diagram showing an image of the captured optical fiber F. As shown in FIGS. 6 and 7, when the pixel size of the image is large, the actual position P of the end face F1 in the Z-axis direction may become blurred, and the position recognition unit 20 may not be able to recognize the exact position of the end face F1. More specifically, the position recognition unit 20 may be able to recognize that the end face F1 is located in a blurred pixel X portion in the image, but may not be able to recognize where within pixel X the end face F1 is located.
一方、駆動部14は、光ファイバFの融着接続を適切に行うために、端面F1のZ軸方向の位置を微調整する。しかしながら、上記のように位置認識部20が端面F1の正確な位置を認識できない場合には、端面F1が適切な位置でない可能性があるため、融着接続を適切に行えないということが起こりうる。この場合、接続不良等が生じる可能性がある。これに対し、本実施形態に係る融着接続機1及び融着接続方法では、位置認識部20は端面F1の正確な位置を認識できる。以下では、その融着接続方法の工程の例について説明する。
Meanwhile, the drive unit 14 fine-tunes the position of the end face F1 in the Z-axis direction in order to properly fusion splice the optical fiber F. However, if the position recognition unit 20 cannot recognize the exact position of the end face F1 as described above, then the end face F1 may not be in an appropriate position, and it may not be possible to properly fusion splice. In this case, there is a possibility that poor connection or the like may occur. In contrast, in the fusion splicer 1 and fusion splicing method according to this embodiment, the position recognition unit 20 can recognize the exact position of the end face F1. An example of the steps of the fusion splicing method is described below.
図8は、本実施形態に係る融着接続方法の工程の例を示すフローチャートである。図9は、顕微鏡15によって撮像される画像を示す図である。この融着接続方法では、一対の台11のそれぞれに融着接続の対象である一対の光ファイバFを、一対の端面F1が互いに対向するように配置する(光ファイバを配置する工程、ステップS1)。このとき、台11の各V溝13に光ファイバFを挿入し、各台11において複数の光ファイバFがX軸方向に沿って並ぶように光ファイバFの配置を行う。
FIG. 8 is a flowchart showing an example of the steps of the fusion splicing method according to this embodiment. FIG. 9 shows an image captured by the microscope 15. In this fusion splicing method, a pair of optical fibers F to be fusion spliced are placed on each of a pair of bases 11 so that a pair of end faces F1 face each other (step of placing optical fibers, step S1). At this time, the optical fibers F are inserted into each V-groove 13 of the bases 11, and the optical fibers F are placed so that multiple optical fibers F are lined up along the X-axis direction on each base 11.
次に、顕微鏡15が光ファイバFを撮像する(光ファイバを撮像する工程、ステップS2)。このとき、撮像素子16によって光ファイバFの画像M1が得られる。そして、画像処理部17が画像M1の輝度を画素X1ごとに出力する。例えば、画像処理部17によって出力される画像M1の画素X1ごとの輝度は位置認識部20に出力される。この場合、位置認識部20は、画像M1の画素X1ごとの輝度から端面F1の位置を認識する。具体例として、位置認識部20は、複数の画素X1のうち、最も輝度が高い画素X11と最も輝度が低い画素X12との間にある画素X13の位置を端面F1の位置として認識する。
Next, the microscope 15 images the optical fiber F (step of imaging an optical fiber, step S2). At this time, an image M1 of the optical fiber F is obtained by the imaging element 16. Then, the image processing unit 17 outputs the luminance of the image M1 for each pixel X1. For example, the luminance of each pixel X1 of the image M1 output by the image processing unit 17 is output to the position recognition unit 20. In this case, the position recognition unit 20 recognizes the position of the end face F1 from the luminance of each pixel X1 of the image M1. As a specific example, the position recognition unit 20 recognizes the position of pixel X13, which is between pixel X11 with the highest luminance and pixel X12 with the lowest luminance among the multiple pixels X1, as the position of the end face F1.
次に、光ファイバFが載せられた台11を駆動部14が移動する(台を移動する工程)。例えば、駆動部14は、2つの台11のうちの1つを固定させるとともに、固定していない台11をZ軸方向に沿って移動させる。このとき、駆動部14は、光ファイバFを微細移動させて光ファイバFを一定距離だけZ軸方向に移動させる(ステップS3)。その後、顕微鏡15が光ファイバFを撮像する(光ファイバを撮像する工程、ステップS4)。このとき、撮像素子16によって光ファイバFの画像M2が得られる。
Next, the driving unit 14 moves the stage 11 on which the optical fiber F is placed (stage moving step). For example, the driving unit 14 fixes one of the two stages 11 and moves the unfixed stage 11 along the Z-axis direction. At this time, the driving unit 14 finely moves the optical fiber F to move it a certain distance in the Z-axis direction (step S3). After that, the microscope 15 images the optical fiber F (optical fiber imaging step, step S4). At this time, an image M2 of the optical fiber F is obtained by the imaging element 16.
画像処理部17は、画像M2の輝度を画素X1ごとに出力し、輝度差の算出を行う。例えば、位置認識部20は、画像処理部17によって算出された輝度差を記憶する。画像処理部17は、例えば、Z軸方向に沿って並ぶ2つの画素X1の輝度差を算出する(輝度差を算出する工程、ステップS5)。例えば、画像処理部17は、画素X11の輝度と画素X13の輝度との差を輝度差として算出する。画像処理部17は、画像M2の画素X1ごとの輝度を位置認識部20に出力する。
The image processing unit 17 outputs the luminance of image M2 for each pixel X1 and calculates the luminance difference. For example, the position recognition unit 20 stores the luminance difference calculated by the image processing unit 17. The image processing unit 17 calculates, for example, the luminance difference between two pixels X1 aligned along the Z-axis direction (step S5, process of calculating the luminance difference). For example, the image processing unit 17 calculates the difference between the luminance of pixel X11 and the luminance of pixel X13 as the luminance difference. The image processing unit 17 outputs the luminance of each pixel X1 of image M2 to the position recognition unit 20.
位置認識部20は、例えば、光ファイバFが融着可能位置に到達したか否かを判定する(光ファイバが融着可能位置に到達したか否かを判定する工程、ステップS6)。「融着可能位置」は、例えば、電極棒3bによって光ファイバFの融着を行うことが可能な端面F1の位置である。
The position recognition unit 20, for example, determines whether the optical fiber F has reached a fusion-enabled position (step S6, a process for determining whether the optical fiber has reached a fusion-enabled position). The "fusion-enabled position" is, for example, the position of the end face F1 at which the optical fiber F can be fused by the electrode rod 3b.
ステップS6において、光ファイバFが融着可能位置に到達したと位置認識部20が判定した場合には、ステップS7に移行する。一方、ステップS6において、光ファイバFが融着可能位置に到達していないと位置認識部20が判定した場合には、ステップS3に戻る。そして、駆動部14が光ファイバFを微細移動させ、顕微鏡15が光ファイバFを撮像して画像M3を得た後に、画像M3に対して画像処理部17が前述した輝度差の算出を行う。
If the position recognition unit 20 determines in step S6 that the optical fiber F has reached the fusion position, the process proceeds to step S7. On the other hand, if the position recognition unit 20 determines in step S6 that the optical fiber F has not reached the fusion position, the process returns to step S3. Then, the drive unit 14 finely moves the optical fiber F, the microscope 15 captures the optical fiber F to obtain an image M3, and then the image processing unit 17 calculates the brightness difference described above for image M3.
例えば、光ファイバFが融着可能位置に到達していないと位置認識部20が判定した場合には、再度駆動部14が光ファイバFを微細移動させ、顕微鏡15が光ファイバFを撮像して画像M4を得た後に、画像M4に対して画像処理部17が前述した輝度差の算出を行う。例えば、上記と同様に画像M5を得た後には、画像処理部17が画像M5に対して前述した輝度差の算出を行う。そして、光ファイバFが融着可能位置に到達したと位置認識部20が判定した場合(ステップS6においてYES)、位置認識部20が基準位置の認識を行う(基準位置の認識を行う工程、ステップS7)。
For example, if the position recognition unit 20 determines that the optical fiber F has not reached the fusion position, the drive unit 14 again finely moves the optical fiber F, the microscope 15 images the optical fiber F to obtain image M4, and then the image processing unit 17 calculates the brightness difference described above for image M4. For example, after obtaining image M5 in the same manner as above, the image processing unit 17 calculates the brightness difference described above for image M5. Then, if the position recognition unit 20 determines that the optical fiber F has reached the fusion position (YES in step S6), the position recognition unit 20 recognizes the reference position (step of recognizing the reference position, step S7).
ステップS7において、位置認識部20は、撮像された画像M1、画像M2、画像M3、画像M4および画像M5のうち、光ファイバFの端面F1の位置が画素X1の一辺に最も近い画像M3における端面F1の位置を基準位置Yとして認識する。より具体的には、位置認識部20は、Z軸方向に沿って並ぶ2つの画素X11,X13の輝度差が最大となった画像M3の光ファイバFの端面F1の位置を基準位置Yとして認識する。
In step S7, the position recognition unit 20 recognizes the position of the end face F1 of the optical fiber F in image M3, of the captured images M1, M2, M3, M4, and M5, in which the position of the end face F1 is closest to one side of pixel X1, as the reference position Y. More specifically, the position recognition unit 20 recognizes the position of the end face F1 of the optical fiber F in image M3, in which the luminance difference between the two pixels X11 and X13 aligned along the Z-axis direction is maximum, as the reference position Y.
具体例として、画像M1および画像M2は、画像M3と比較して画素X13がぼやけている。すなわち、画素X11の輝度に対する画素X13の輝度差が小さいため、画像M1および画像M2が撮像された時点では位置認識部20は端面F1の位置を正確には認識できない。これに対し、画像M3が撮像されたときには、画像M1および画像M2よりも、画素X13が鮮明である。すなわち、画素X11の輝度に対する画素X13の輝度差が大きいため、画像M3が撮像された時点では位置認識部20は端面F1の位置を正確に認識できる。画素X1の一辺の位置と実際の位置とは1対1となっている。よって、画素X11の輝度に対する画素X13の輝度差が大きく、撮像された端面F1の位置が画素X1の一辺の位置に近いほど、位置認識部20は高精度に端面F1の位置を認識できる。
As a specific example, pixel X13 is blurred in images M1 and M2 compared to image M3. That is, the luminance difference of pixel X13 relative to the luminance of pixel X11 is small, so the position recognition unit 20 cannot accurately recognize the position of end face F1 at the time when images M1 and M2 are captured. In contrast, when image M3 is captured, pixel X13 is clearer than images M1 and M2. That is, the luminance difference of pixel X13 relative to the luminance of pixel X11 is large, so the position recognition unit 20 can accurately recognize the position of end face F1 at the time when image M3 is captured. The position of one side of pixel X1 and the actual position are in a one-to-one relationship. Therefore, the larger the luminance difference of pixel X13 relative to the luminance of pixel X11 is, and the closer the position of the captured end face F1 is to the position of one side of pixel X1, the more accurately the position recognition unit 20 can recognize the position of end face F1.
位置認識部20は、基準位置Yを認識した後には、光ファイバFの端面F1の位置を認識する(光ファイバの面の位置を認識する工程、ステップS8)。位置認識部20は、基準位置Yから何回光ファイバFが一定距離移動したかを記憶している。図9の例では、基準位置Yから光ファイバFが2回移動している。したがって、位置認識部20は、基準位置Yからの光ファイバFの移動回数と一定距離との積を移動距離として基準位置Yに加算することにより、画像M5が撮像された時点における端面F1の位置を正確に認識できる。また、位置認識部20は、基準位置Yからの光ファイバFの移動距離を記憶してもよく、基準位置Yからの光ファイバFの当該移動距離を基準位置Yに加算して端面F1の位置を認識してもよい。
After recognizing the reference position Y, the position recognition unit 20 recognizes the position of the end face F1 of the optical fiber F (step S8 of recognizing the position of the face of the optical fiber). The position recognition unit 20 stores how many times the optical fiber F has moved a certain distance from the reference position Y. In the example of FIG. 9, the optical fiber F has moved twice from the reference position Y. Therefore, the position recognition unit 20 can accurately recognize the position of the end face F1 at the time when the image M5 is captured by adding the product of the number of times the optical fiber F has moved from the reference position Y and the certain distance as the moving distance to the reference position Y. The position recognition unit 20 may also store the moving distance of the optical fiber F from the reference position Y, and may recognize the position of the end face F1 by adding the moving distance of the optical fiber F from the reference position Y to the reference position Y.
次に、本実施形態に係る融着接続機1および融着接続方法から得られる作用効果について説明する。本実施形態に係る融着接続機1および融着接続方法では、駆動部14によって光ファイバFが載せられた台11が移動し、顕微鏡15によって移動する光ファイバFの面が撮像される。顕微鏡15は、撮像によって得られた画像M1,M2,M3,M4,M5の輝度を画素X1ごとに出力する。位置認識部20は、画像M1,M2,M3,M4,M5の画素X1ごとの輝度から光ファイバFの位置を認識する。駆動部14は画素X1の画素サイズよりも短い一定距離ずつ光ファイバFを移動させ、顕微鏡15は光ファイバFが一定距離移動するごとに光ファイバFを撮像する。そして、位置認識部20は、画像M1,M2,M3,M4,M5の複数の輝度から移動した光ファイバFの面の位置を認識する。したがって、光ファイバFが画素サイズより短い一定距離移動して撮像されることによって画像M1,M2,M3,M4,M5が得られ、画像M1,M2,M3,M4,M5の複数の輝度から光ファイバFの面の位置を認識することにより、光ファイバFの面の位置を高精度に認識できる。顕微鏡15の解像度が低く画像M1,M2,M3,M4,M5の画素X1が粗い場合でも、画素サイズより短い一定距離移動するごとに画像M1,M2,M3,M4,M5を撮像することにより、画像M1,M2,M3,M4,M5から光ファイバFの面の位置を正確に認識することができる。
Next, the effects obtained from the fusion splicer 1 and fusion splicing method according to this embodiment will be described. In the fusion splicer 1 and fusion splicing method according to this embodiment, the drive unit 14 moves the stage 11 on which the optical fiber F is placed, and the microscope 15 captures an image of the moving surface of the optical fiber F. The microscope 15 outputs the brightness of the images M1, M2, M3, M4, and M5 obtained by capturing the images for each pixel X1. The position recognition unit 20 recognizes the position of the optical fiber F from the brightness of each pixel X1 of the images M1, M2, M3, M4, and M5. The drive unit 14 moves the optical fiber F at a constant distance shorter than the pixel size of the pixel X1, and the microscope 15 captures an image of the optical fiber F each time the optical fiber F moves the constant distance. The position recognition unit 20 then recognizes the position of the surface of the moved optical fiber F from the multiple brightnesses of the images M1, M2, M3, M4, and M5. Therefore, images M1, M2, M3, M4, and M5 are obtained by capturing images of the optical fiber F as it moves a fixed distance shorter than the pixel size, and the position of the surface of the optical fiber F can be recognized with high accuracy by recognizing the position of the surface of the optical fiber F from the multiple brightnesses of the images M1, M2, M3, M4, and M5. Even if the resolution of the microscope 15 is low and the pixels X1 of the images M1, M2, M3, M4, and M5 are coarse, the position of the surface of the optical fiber F can be accurately recognized from the images M1, M2, M3, M4, and M5 by capturing images M1, M2, M3, M4, and M5 every time the optical fiber F moves a fixed distance shorter than the pixel size.
前述したように、位置認識部20は、画像M1,M2,M3,M4,M5のうち、光ファイバFの面の位置が画素X1の一辺に最も近い画像M3における当該面の位置を基準位置Yとして認識してもよい。この場合、位置認識部20は、基準位置Yから駆動部14が何回光ファイバFを一定距離移動させたかを認識することによって、移動させた後の光ファイバFの面の位置をより正確に認識することができる。
As described above, the position recognition unit 20 may recognize the position of the surface of the optical fiber F in image M3, which is closest to one side of pixel X1 among images M1, M2, M3, M4, and M5, as the reference position Y. In this case, the position recognition unit 20 can recognize how many times the drive unit 14 has moved the optical fiber F a certain distance from the reference position Y, thereby more accurately recognizing the position of the surface of the optical fiber F after it has been moved.
前述したように、位置認識部20は、画像M1,M2,M3,M4,M5のうち、Z軸方向に沿って並ぶ2つの画素X11および画素X13の輝度差が最大となった画像M3の光ファイバFの位置を基準位置Yとして認識してもよい。この場合、位置認識部20は、Z軸方向に沿って並ぶ画素X11および画素X13の輝度差から基準位置Yを容易に認識することができる。
As described above, the position recognition unit 20 may recognize the position of the optical fiber F in image M3, where the luminance difference between two pixels, pixel X11 and pixel X13, aligned along the Z-axis direction among images M1, M2, M3, M4, and M5, is the largest, as the reference position Y. In this case, the position recognition unit 20 can easily recognize the reference position Y from the luminance difference between pixel X11 and pixel X13, aligned along the Z-axis direction.
前述した一定距離は、画素サイズの2分の1以下であってもよい。この場合、画素サイズの1/2以下である一定距離移動するごとに光ファイバFの画像M1,M2,M3,M4,M5が撮像されることにより、画像M1,M2,M3,M4,M5から光ファイバFの面の位置を正確に認識することができる。
The aforementioned fixed distance may be less than half the pixel size. In this case, images M1, M2, M3, M4, and M5 of the optical fiber F are captured every time the optical fiber moves a fixed distance that is less than half the pixel size, and the position of the surface of the optical fiber F can be accurately recognized from the images M1, M2, M3, M4, and M5.
前述した面は、光ファイバFの長手方向の一端に位置する端面F1であってもよい。この場合、光ファイバFの端面F1の位置を正確に認識することができる。その結果、Z軸方向に沿って並ぶ一対の端面F1の融着を適切に行うことができるので、接触不良の発生を抑制できる。
The aforementioned surface may be an end face F1 located at one end in the longitudinal direction of the optical fiber F. In this case, the position of the end face F1 of the optical fiber F can be accurately recognized. As a result, the pair of end faces F1 aligned along the Z-axis direction can be appropriately fused, thereby preventing poor contact.
次に、本開示に係る融着接続機および融着接続方法の種々の変形例について説明する。変形例に係る融着接続機および融着接続方法の一部は、前述した実施形態に係る融着接続機および融着接続方法の一部と同一である。よって、以下では、既出の説明と同一の説明を同一の符号を付して適宜省略する。
Next, various modified examples of the fusion splicer and fusion splicing method according to the present disclosure will be described. Some of the modified fusion splicers and fusion splicing methods are the same as some of the fusion splicers and fusion splicing methods according to the embodiments described above. Therefore, in the following, explanations that are the same as those already described will be omitted as appropriate by assigning the same reference numerals.
図10は、変形例に係る融着接続方法を説明するための図である。前述の実施形態では、駆動部14が2つの台11のうちの1つを固定させるとともに固定していない台11をZ軸方向に沿って移動させる例について説明した。これに対し、変形例に係る融着接続方法では、一対の光ファイバFが互いに接近するように各台11を一定距離ずつ移動させる。
FIG. 10 is a diagram for explaining a fusion splicing method according to a modified example. In the above-described embodiment, an example was described in which the driving unit 14 fixes one of the two tables 11 and moves the unfixed table 11 along the Z-axis direction. In contrast, in the fusion splicing method according to the modified example, each table 11 is moved a fixed distance so that the pair of optical fibers F approach each other.
そして、前述の実施形態と同様、各光ファイバFが一定距離移動するごとに光ファイバFを撮像する。一対の光ファイバFが互いに接近するように一定距離移動するごとに顕微鏡15が一対の光ファイバFを撮像する。位置認識部20は、画像M6の輝度から、移動した各光ファイバFの各端面F1の位置を認識する。この場合、位置認識部20は、一対の端面F1間の距離を認識可能である。また、画像M6の画素X2の一辺に沿って一対の電極棒3bを結ぶ仮想直線Lが延在している場合、各端面F1の仮想直線Lからの距離を算出することが可能である。したがって、一対の光ファイバFの融着接続をより適切に行うことができる。
Then, as in the above embodiment, an image of each optical fiber F is captured every time the optical fiber F moves a fixed distance. The microscope 15 captures an image of the pair of optical fibers F every time the pair of optical fibers F moves a fixed distance so that they approach each other. The position recognition unit 20 recognizes the position of each end face F1 of each moved optical fiber F from the brightness of the image M6. In this case, the position recognition unit 20 can recognize the distance between the pair of end faces F1. Furthermore, if an imaginary straight line L connecting the pair of electrode rods 3b extends along one side of pixel X2 of image M6, it is possible to calculate the distance of each end face F1 from the imaginary straight line L. Therefore, the fusion splicing of the pair of optical fibers F can be performed more appropriately.
図11は、図10とは別の変形例に係る融着接続方法を説明するための図である。図11は、前述した図9に対応しており、光ファイバFが移動する方向が図9とは異なっている。図11に示される変形例では、例えば光ファイバFを調心するために、駆動部14は、光ファイバFをX軸方向に沿って一定距離移動させる。顕微鏡15が光ファイバFを撮像することによって光ファイバFの側面F2の画像が得られる。
FIG. 11 is a diagram for explaining a fusion splicing method according to another modified example different from that of FIG. 10. FIG. 11 corresponds to FIG. 9 described above, and the direction in which the optical fiber F moves is different from that of FIG. 9. In the modified example shown in FIG. 11, for example, in order to align the optical fiber F, the driving unit 14 moves the optical fiber F a fixed distance along the X-axis direction. The microscope 15 captures the optical fiber F to obtain an image of the side surface F2 of the optical fiber F.
前述した画像M1,M2, M3,M4,M5の取得と同様の方法で光ファイバFをX軸方向に沿って一定距離移動させながら、位置認識部20が画像M11,M12, M13,M14,M15を取得する。そして、光ファイバFが調心可能位置に到達したと位置認識部20が認識したときに、位置認識部20が基準位置の認識を行う。このとき、位置認識部20は、画像M11,M12, M13,M14,M15のうち、光ファイバFの側面F2の位置が画素X3の一辺に最も近い画像M13における側面F2の位置を基準位置Zとして認識する。
The position recognition unit 20 acquires images M11, M12, M13, M14, and M15 while moving the optical fiber F a fixed distance along the X-axis direction in a manner similar to that used to acquire images M1, M2, M3, M4, and M5 described above. Then, when the position recognition unit 20 recognizes that the optical fiber F has reached an alignment position, the position recognition unit 20 recognizes the reference position. At this time, the position recognition unit 20 recognizes the position of the side surface F2 of the optical fiber F in image M13, among images M11, M12, M13, M14, and M15, in which the position of the side surface F2 is closest to one side of pixel X3, as the reference position Z.
より具体的には、位置認識部20は、X軸方向に沿って並ぶ2つの画素X14,X15の輝度差が最大となった画像M13の光ファイバFの側面F2の位置を基準位置Zとして認識する。位置認識部20は、基準位置Zを認識した後には、画像M15が撮像された時点における光ファイバFの側面F2の位置を認識する。具体的には、位置認識部20は、基準位置Zからの光ファイバFの移動回数と一定距離との積を基準位置Zに加算することにより、画像M15が撮像された時点における側面F2の位置を正確に認識できる。
More specifically, the position recognition unit 20 recognizes the position of the side surface F2 of the optical fiber F in image M13 where the luminance difference between two pixels X14, X15 aligned along the X-axis direction is maximum as the reference position Z. After recognizing the reference position Z, the position recognition unit 20 recognizes the position of the side surface F2 of the optical fiber F at the time when the image M15 was captured. Specifically, the position recognition unit 20 can accurately recognize the position of the side surface F2 at the time when the image M15 was captured by adding the product of the number of times the optical fiber F has moved from the reference position Z and a fixed distance to the reference position Z.
以上、図11の例において、駆動部14は、光ファイバFの長手方向に直交するX軸方向に沿って光ファイバFを移動させる。そして、光ファイバFの認識対象の面は、光ファイバFの長手方向に沿って延びる光ファイバFの側面F2である。図11の例では、光ファイバFの側面F2の位置を正確に認識することができる。
As described above, in the example of FIG. 11, the driving unit 14 moves the optical fiber F along the X-axis direction perpendicular to the longitudinal direction of the optical fiber F. The surface of the optical fiber F to be recognized is the side surface F2 of the optical fiber F, which extends along the longitudinal direction of the optical fiber F. In the example of FIG. 11, the position of the side surface F2 of the optical fiber F can be accurately recognized.
図12は、図10および図11とは異なる変形例に係る融着接続方法を説明するための図である。図12の例では、駆動部14がZ軸方向に沿って並ぶ一対の光ファイバFのそれぞれをX軸方向に沿って移動させる。そして、各光ファイバFがX軸方向に沿って一定距離移動するごとに顕微鏡15が一対の光ファイバFを撮像する。位置認識部20は、画像M7の輝度から移動した各光ファイバFの各側面F2の位置を認識する。この場合、位置認識部20は、一対の光ファイバFにおける各側面F2のX軸方向の位置を認識可能である。よって、一対の光ファイバFにおける側面F2の位置を揃えることができるので、一対の光ファイバFの高精度な調心が可能となる。
FIG. 12 is a diagram for explaining a fusion splicing method according to a modified example different from those in FIGS. 10 and 11. In the example of FIG. 12, the drive unit 14 moves each of a pair of optical fibers F aligned along the Z-axis direction along the X-axis direction. Then, the microscope 15 images the pair of optical fibers F every time each optical fiber F moves a certain distance along the X-axis direction. The position recognition unit 20 recognizes the position of each side surface F2 of each moved optical fiber F from the brightness of the image M7. In this case, the position recognition unit 20 can recognize the position of each side surface F2 of the pair of optical fibers F in the X-axis direction. Therefore, the positions of the side surfaces F2 of the pair of optical fibers F can be aligned, making it possible to align the pair of optical fibers F with high precision.
以上、本開示に係る融着接続機および融着接続方法の実施形態および種々の変形例について説明した。しかしながら、本発明は、前述の実施形態または変形例に限定されるものではなく、請求の範囲に記載した要旨の範囲内において適宜変更可能である。融着接続機の各部の形状、大きさ、数、材料及び配置態様は、前述の実施形態または変形例に限られず上記の要旨の範囲内において適宜変更可能である。融着接続方法の工程の内容および順序は、前述の実施形態または変形例に限られず上記の要旨の範囲内において適宜変更可能である。前述の実施形態及び種々の変形例のうちの複数の形態が組み合わされた融着接続機または融着接続方法あってもよい。
The above describes the embodiments and various modifications of the fusion splicer and fusion splicing method according to the present disclosure. However, the present invention is not limited to the above-described embodiments or modifications, and may be modified as appropriate within the scope of the gist described in the claims. The shape, size, number, material, and arrangement of each part of the fusion splicer are not limited to the above-described embodiments or modifications, and may be modified as appropriate within the scope of the above-described gist. The content and order of the steps of the fusion splicing method are not limited to the above-described embodiments or modifications, and may be modified as appropriate within the scope of the above-described gist. A fusion splicer or fusion splicing method may be a combination of multiple forms of the above-described embodiments and various modifications.
例えば、前述の実施形態では、駆動部14がステッピングモータであり、駆動部14による光ファイバFの一回あたりの移動量である一定距離が1μm以上かつ10μm未満である例について説明した。そして、光ファイバFが一定距離移動するごとに顕微鏡15が光ファイバFを撮像する例について説明した。例えば、駆動部14が1パルスずつ光ファイバFを移動させる度に顕微鏡15が光ファイバFを撮像してもよいし、駆動部14が2パルス光ファイバFを移動させる度に顕微鏡15が光ファイバFを撮像してもよい。このように、顕微鏡15が光ファイバFを撮像する頻度は適宜変更可能である。但し、一層高精度な位置認識を行うためには、駆動部14が1パルス光ファイバFを移動させる度に顕微鏡15が光ファイバFを撮像することが望ましい。また、駆動部はステッピングモータ以外のものであってもよく、駆動部の種類は特に限定されない。
For example, in the above embodiment, an example was described in which the driving unit 14 is a stepping motor, and the fixed distance, which is the amount of movement of the optical fiber F by the driving unit 14 per movement, is 1 μm or more and less than 10 μm. Then, an example was described in which the microscope 15 images the optical fiber F every time the optical fiber F moves a fixed distance. For example, the microscope 15 may image the optical fiber F every time the driving unit 14 moves the optical fiber F by one pulse, or the microscope 15 may image the optical fiber F every time the driving unit 14 moves the optical fiber F by two pulses. In this way, the frequency at which the microscope 15 images the optical fiber F can be changed as appropriate. However, in order to perform position recognition with even higher accuracy, it is desirable for the microscope 15 to image the optical fiber F every time the driving unit 14 moves the optical fiber F by one pulse. In addition, the driving unit may be something other than a stepping motor, and the type of the driving unit is not particularly limited.
1…融着接続機
2…筐体
3…融着接続部
3a…ファイバ位置決め部
3b…電極棒
3c…ファイバホルダ
4…加熱機
5…モニタ
6…風防カバー
7…電源スイッチ
8…接続開始スイッチ
11…台
12…主面
13…V溝
14…駆動部
15…顕微鏡
16…撮像素子
17…画像処理部
20…位置認識部
F…光ファイバ
F1…端面
F2…側面
L…仮想直線
M1,M2,M3,M4,M5,M6,M7,M11,M12,M13,M14,M15…画像
P…位置
X,X1,X2,X3,X11,X12,X13,X14,X15…画素
Y,Z…基準位置
DESCRIPTION OFSYMBOLS 1...Fusion splicer 2...Housing 3...Fusion splicing section 3a...Fiber positioning section 3b...Electrode rod 3c...Fiber holder 4...Heater 5...Monitor 6...Windshield cover 7...Power switch 8...Connection start switch 11...Base 12...Main surface 13...V-groove 14...Drive section 15...Microscope 16...Imaging element 17...Image processing section 20...Position recognition section F...Optical fiber F1...End face F2...Side L...Virtual straight line M1, M2, M3, M4, M5, M6, M7, M11, M12, M13, M14, M15...Image P...Position X, X1, X2, X3, X11, X12, X13, X14, X15...Pixel Y, Z...Reference position
2…筐体
3…融着接続部
3a…ファイバ位置決め部
3b…電極棒
3c…ファイバホルダ
4…加熱機
5…モニタ
6…風防カバー
7…電源スイッチ
8…接続開始スイッチ
11…台
12…主面
13…V溝
14…駆動部
15…顕微鏡
16…撮像素子
17…画像処理部
20…位置認識部
F…光ファイバ
F1…端面
F2…側面
L…仮想直線
M1,M2,M3,M4,M5,M6,M7,M11,M12,M13,M14,M15…画像
P…位置
X,X1,X2,X3,X11,X12,X13,X14,X15…画素
Y,Z…基準位置
DESCRIPTION OF
Claims (16)
- 光ファイバが載せられる台と、
前記台を移動させる駆動部と、
前記光ファイバを撮像するとともに、撮像によって得られた画像の輝度を画素ごとに出力する顕微鏡と、
前記顕微鏡によって出力された前記画素ごとの輝度から前記光ファイバの面の位置を認識する位置認識部と、
を備え、
前記駆動部は前記光ファイバを一定距離ずつ移動させ、
前記一定距離は、前記画素の画素サイズよりも短く、
前記顕微鏡は、前記駆動部が前記光ファイバを前記一定距離移動させるごとに前記光ファイバを撮像し、
前記位置認識部は、前記顕微鏡によって得られた複数の前記画像の複数の前記輝度から、前記駆動部によって移動した前記光ファイバの面の位置を認識する、
融着接続機。 a stand on which the optical fiber is placed;
A drive unit that moves the platform;
a microscope that captures an image of the optical fiber and outputs the brightness of the image obtained by capturing the image for each pixel;
a position recognition unit that recognizes the position of the surface of the optical fiber from the brightness of each pixel output by the microscope;
Equipped with
The driving unit moves the optical fiber by a fixed distance,
the certain distance is shorter than a pixel size of the pixel,
the microscope captures an image of the optical fiber every time the driving unit moves the optical fiber by the certain distance;
the position recognition unit recognizes a position of the surface of the optical fiber moved by the drive unit from the plurality of the luminances of the plurality of the images obtained by the microscope.
Fusion splicer. - 前記位置認識部は、複数の前記画像のうち、前記光ファイバの面の位置が前記画素の一辺に最も近い前記画像における前記面の位置を基準位置として認識する、
請求項1に記載の融着接続機。 the position recognition unit recognizes, as a reference position, a position of the surface of the optical fiber in an image in which the position of the surface of the optical fiber is closest to one side of the pixel, among the plurality of images;
The fusion splicer of claim 1. - 前記位置認識部は、複数の前記画像のうち、前記光ファイバの移動方向に沿って並ぶ2つの前記画素の輝度差が最大となった前記画像の前記光ファイバの位置を前記基準位置として認識する、
請求項2に記載の融着接続機。 the position recognition unit recognizes, as the reference position, a position of the optical fiber in an image in which a luminance difference between two of the pixels aligned along a moving direction of the optical fiber is maximum among the plurality of images;
The fusion splicer of claim 2. - 前記位置認識部は、前記基準位置からの前記光ファイバの移動距離を記憶し、前記基準位置からの前記光ファイバの移動距離を前記基準位置に加算して前記面の位置を認識する、
請求項2または3に記載の融着接続機。 the position recognition unit stores a moving distance of the optical fiber from the reference position, and recognizes a position of the surface by adding the moving distance of the optical fiber from the reference position to the reference position.
The fusion splicer according to claim 2 or 3. - 前記位置認識部は、前記基準位置から何回前記光ファイバが前記一定距離移動したかを記憶し、前記基準位置からの前記光ファイバの移動回数と前記一定距離との積を前記移動距離として前記基準位置に加算することにより前記面の位置を認識する、
請求項4に記載の融着接続機。 the position recognition unit stores how many times the optical fiber has moved the fixed distance from the reference position, and recognizes the position of the surface by adding the product of the number of times the optical fiber has moved from the reference position and the fixed distance to the reference position as the moving distance.
The fusion splicer of claim 4. - 前記駆動部は、前記光ファイバの長手方向に沿って前記光ファイバを移動させる、
請求項1から請求項5のいずれか一項に記載の融着接続機。 The driving unit moves the optical fiber along a longitudinal direction of the optical fiber.
The fusion splicer according to any one of claims 1 to 5. - 前記駆動部は、前記光ファイバの長手方向に直交する方向に沿って前記光ファイバを移動させる、
請求項1から請求項5のいずれか一項に記載の融着接続機。 The driving unit moves the optical fiber in a direction perpendicular to a longitudinal direction of the optical fiber.
The fusion splicer according to any one of claims 1 to 5. - 前記一定距離は、前記画素サイズの2分の1以下である、
請求項1から請求項7のいずれか一項に記載の融着接続機。 The fixed distance is equal to or less than half the pixel size.
The fusion splicer according to any one of claims 1 to 7. - 前記面は、前記光ファイバの長手方向の一端に位置する前記光ファイバの端面である、
請求項1から請求項8のいずれか一項に記載の融着接続機。 The surface is an end surface of the optical fiber located at one end in a longitudinal direction of the optical fiber.
The fusion splicer according to any one of claims 1 to 8. - 前記面は、前記光ファイバの長手方向に沿って延びる前記光ファイバの側面である、
請求項1から請求項8のいずれか一項に記載の融着接続機。 The face is a side face of the optical fiber extending along a longitudinal direction of the optical fiber.
The fusion splicer according to any one of claims 1 to 8. - 前記顕微鏡は、前記光ファイバを撮像する撮像素子と、前記撮像素子によって撮像された前記光ファイバの画像を処理する画像処理部と、を有し、
前記画像処理部が前記画像の輝度を画素ごとに出力する、
請求項1から請求項10のいずれか一項に記載の融着接続機。 The microscope includes an image pickup element that picks up an image of the optical fiber, and an image processing unit that processes an image of the optical fiber picked up by the image pickup element,
The image processing unit outputs the luminance of the image for each pixel.
The fusion splicer according to any one of claims 1 to 10. - 前記画像処理部は、前記光ファイバの移動方向に沿って並ぶ2つの前記画素の輝度差を算出し、
前記位置認識部は、前記画像処理部によって算出された前記輝度差を記憶する、
請求項11に記載の融着接続機。 The image processing unit calculates a luminance difference between two of the pixels aligned along a moving direction of the optical fiber,
The position recognition unit stores the luminance difference calculated by the image processing unit.
The fusion splicer of claim 11. - 複数の前記光ファイバを一括して融着接続する多心融着機である、
請求項1から請求項12のいずれか一項に記載の融着接続機。 a multi-fiber fusion splicer that fusion-splices a plurality of the optical fibers together;
The fusion splicer according to any one of claims 1 to 12. - 前記位置認識部は、前記顕微鏡によって撮像された画像を記憶し、出力された画素ごとの輝度から前記光ファイバの位置を認識する、
請求項1から請求項13のいずれか一項に記載の融着接続機。 The position recognition unit stores an image captured by the microscope and recognizes a position of the optical fiber from the brightness of each output pixel.
The fusion splicer according to any one of claims 1 to 13. - 前記位置認識部は、複数の前記画素のうち、最も輝度が高い前記画素と最も輝度が低い前記画素との間にある前記画素の位置を前記面の位置として認識する、
請求項1から請求項14のいずれか一項に記載の融着接続機。 the position recognition unit recognizes, as the position of the surface, a position of the pixel between the pixel with the highest luminance and the pixel with the lowest luminance among the plurality of pixels;
The fusion splicer according to any one of claims 1 to 14. - 光ファイバが載せられた台を移動する工程と、
前記光ファイバを撮像する工程と、
前記撮像する工程によって得られた画像の輝度を画素ごとに出力する工程と、
前記画素ごとの輝度から前記光ファイバの面の位置を認識する工程と、
を備え、
前記移動する工程では、前記光ファイバを一定距離ずつ移動させ、
前記一定距離は、前記画素の画素サイズよりも短く、
前記撮像する工程では、前記光ファイバが前記一定距離移動するごとに前記光ファイバを撮像し、
前記位置を認識する工程では、複数の前記画像の複数の前記輝度から、移動した前記光ファイバの面の位置を認識する、
融着接続方法。
moving a table on which the optical fiber is placed;
imaging the optical fiber;
outputting the luminance of the image obtained by the imaging step for each pixel;
Recognizing the position of the surface of the optical fiber from the luminance of each pixel;
Equipped with
In the moving step, the optical fiber is moved by a fixed distance at a time,
the certain distance is shorter than a pixel size of the pixel,
In the imaging step, an image of the optical fiber is captured every time the optical fiber moves the certain distance;
In the step of recognizing the position, a position of the surface of the optical fiber that has been moved is recognized based on the plurality of luminances of the plurality of images.
Fusion splicing method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/046279 WO2024127602A1 (en) | 2022-12-15 | 2022-12-15 | Fusion splicing device and fusion splicing method |
PCT/JP2023/044528 WO2024128236A1 (en) | 2022-12-15 | 2023-12-12 | Fusion splicing device and fusion splicing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/046279 WO2024127602A1 (en) | 2022-12-15 | 2022-12-15 | Fusion splicing device and fusion splicing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024127602A1 true WO2024127602A1 (en) | 2024-06-20 |
Family
ID=91484621
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/046279 WO2024127602A1 (en) | 2022-12-15 | 2022-12-15 | Fusion splicing device and fusion splicing method |
PCT/JP2023/044528 WO2024128236A1 (en) | 2022-12-15 | 2023-12-12 | Fusion splicing device and fusion splicing method |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/044528 WO2024128236A1 (en) | 2022-12-15 | 2023-12-12 | Fusion splicing device and fusion splicing method |
Country Status (1)
Country | Link |
---|---|
WO (2) | WO2024127602A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02149804A (en) * | 1988-10-06 | 1990-06-08 | Philips Gloeilampenfab:Nv | Method and circuit for determining position of end face of optical fiber |
JPH11132907A (en) * | 1997-08-27 | 1999-05-21 | Siemens Ag | Method and device for obtaining information on end face of end part of at least one optical fiber |
US20130205835A1 (en) * | 2012-02-14 | 2013-08-15 | Vytran, Llc | Optical element cleaver and splicer apparatus and methods |
JP2020095109A (en) * | 2018-12-11 | 2020-06-18 | 古河電気工業株式会社 | Fusion splicer |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02310404A (en) * | 1989-05-26 | 1990-12-26 | Citizen Watch Co Ltd | Method and instrument for measuring outside diameter |
JPH0968622A (en) * | 1995-08-31 | 1997-03-11 | Sumitomo Electric Ind Ltd | Optical fiber fusion splicer |
JP2005189770A (en) * | 2003-12-26 | 2005-07-14 | Fujikura Ltd | Fusion splicing apparatus for optical fiber |
-
2022
- 2022-12-15 WO PCT/JP2022/046279 patent/WO2024127602A1/en unknown
-
2023
- 2023-12-12 WO PCT/JP2023/044528 patent/WO2024128236A1/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02149804A (en) * | 1988-10-06 | 1990-06-08 | Philips Gloeilampenfab:Nv | Method and circuit for determining position of end face of optical fiber |
JPH11132907A (en) * | 1997-08-27 | 1999-05-21 | Siemens Ag | Method and device for obtaining information on end face of end part of at least one optical fiber |
US20130205835A1 (en) * | 2012-02-14 | 2013-08-15 | Vytran, Llc | Optical element cleaver and splicer apparatus and methods |
JP2020095109A (en) * | 2018-12-11 | 2020-06-18 | 古河電気工業株式会社 | Fusion splicer |
Also Published As
Publication number | Publication date |
---|---|
WO2024128236A1 (en) | 2024-06-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5611015A (en) | Apparatus and method of splicing polarization-maintaining optical fibers | |
JP3500850B2 (en) | Method and apparatus for observing butted portion of ribbon-type optical fiber | |
JP3176574B2 (en) | Optical fiber observation device and optical fiber fusion splicer | |
US8325242B2 (en) | Image stabilizing apparatus and image pickup apparatus having the same | |
JP6928854B2 (en) | Rotational alignment method for fusion splicer and optical fiber | |
SE502563C2 (en) | Method and Apparatus for Splicing Optical Fibers | |
WO2020162044A1 (en) | Optical fiber fusion splicing method and fusion splicing device | |
WO2024127602A1 (en) | Fusion splicing device and fusion splicing method | |
JP2012242599A (en) | Optical fiber discrimination method and optical fiber fusion splicing method | |
WO2013077002A1 (en) | Optical fiber fusion splicing method | |
US9979868B2 (en) | Image pickup module manufacturing method, and image pickup module manufacturing device | |
JP5290828B2 (en) | Fusion splicer and setting method of splicer | |
JP7516173B2 (en) | Fusion splicer and method for rotational alignment of optical fiber | |
JP2004341452A (en) | Method and device for automatically discriminating constant polarization optical fiber, and method and device for splicing constant polarization optical fibers | |
JP2010256739A (en) | Imaging apparatus | |
JP4190997B2 (en) | Optical fiber fusion splicing device and fusion splicing method | |
JP4785041B2 (en) | Method for measuring the outer diameter of the linear object to be measured | |
JP3389595B2 (en) | Optical fiber observation device and fusion splicing device | |
JP3192934B2 (en) | Multi-core optical fiber fusion splicer | |
JP2008070704A (en) | Fusion splicing machine and fusion splicing method | |
CN216285811U (en) | Optical fiber fusion splicer | |
JP2014123157A (en) | Optical fiber discrimination method and optical fiber fusion splicing method | |
KR101429520B1 (en) | Method of adjusting optical axis of photographing apparatus | |
JP4336056B2 (en) | Optical fiber observation device and optical fiber fusion splicer | |
JP2001305371A (en) | Method and device for fusion splicing optical fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22968512 Country of ref document: EP Kind code of ref document: A1 |