WO2024125242A1 - 一种被用于无线通信的节点中的方法和装置 - Google Patents

一种被用于无线通信的节点中的方法和装置 Download PDF

Info

Publication number
WO2024125242A1
WO2024125242A1 PCT/CN2023/133159 CN2023133159W WO2024125242A1 WO 2024125242 A1 WO2024125242 A1 WO 2024125242A1 CN 2023133159 W CN2023133159 W CN 2023133159W WO 2024125242 A1 WO2024125242 A1 WO 2024125242A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
signal
channel access
access process
tci state
Prior art date
Application number
PCT/CN2023/133159
Other languages
English (en)
French (fr)
Inventor
吴克颖
宋姝林
张晓博
Original Assignee
上海朗帛通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海朗帛通信技术有限公司 filed Critical 上海朗帛通信技术有限公司
Publication of WO2024125242A1 publication Critical patent/WO2024125242A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access

Definitions

  • the present application relates to a transmission method and apparatus in a wireless communication system, and more particularly to a scheme and apparatus related to Multi-TRP (Multiple Transmission Reception Point) in a wireless communication system.
  • Multi-TRP Multiple Transmission Reception Point
  • the application scenarios of future wireless communication systems are becoming more and more diversified, and different application scenarios have different performance requirements for the system.
  • the 3GPP (3rd Generation Partner Project) RAN (Radio Access Network) #72 plenary meeting decided to study the new air interface technology (NR, New Radio) (or 5G), and the WI (Work Item, Work Item) of the new air interface technology (NR, New Radio) was passed at the 3GPP RAN #75 plenary meeting, and the standardization work on NR began.
  • Multi-antenna technology is a key technology in the 3GPP (3rd Generation Partner Project) LTE (Long-term Evolution) system and NR (New Radio) system.
  • Additional spatial freedom is obtained by configuring multiple antennas at the communication node, such as the base station or UE (User Equipment). Multiple antennas form a beam pointing to a specific direction through beamforming to improve communication quality.
  • the degrees of freedom provided by multi-antenna systems can be used to improve transmission reliability and/or throughput.
  • TRPs Transmitter Receiver Points
  • additional diversity gain can be obtained by utilizing the spatial differences between different TRPs/panels.
  • NR R (release) 16 and R17 downlink and uplink transmission based on multi-beam/TRP/panel are supported to improve transmission reliability and transmission rate, respectively.
  • NR R18 further enhancements to multi-beam/TRP/panel-based transmission are discussed.
  • the inventors have discovered through research that the current multi-beam/TRP/panel-based transmission technology needs to be enhanced when applied to unlicensed spectrum.
  • the present application discloses a solution. It should be noted that although the original intention of the present application is to expand the description for the multi-TRP transmission scenario, the present application can also be used in the single-TRP (single transmit receiving point) transmission scenario. Furthermore, the use of a unified design scheme for different scenarios (including but not limited to multi-TRP and single-TRP) also helps to reduce hardware complexity and cost. In the absence of conflict, the embodiments and features in any node of the present application can be applied to any other node. In the absence of conflict, the embodiments and features in the embodiments of the present application can be arbitrarily combined with each other.
  • the present application discloses a method in a first node used for wireless communication, characterized by comprising:
  • the first signaling includes scheduling information of a first signal, and a first sub-signal and a second sub-signal respectively include different layers of the first signal;
  • first sub-signal is sent in the first time domain resource block in the first sub-frequency band depends on the first channel access process
  • second sub-signal is sent in the first time domain resource block in the first sub-frequency band depends on the second channel access process.
  • the above method determines whether the first sub-signal and the second sub-signal are sent through the first channel access process and the second channel access process respectively, thereby improving the flexibility of the system, increasing the probability of channel access, and improving transmission efficiency.
  • the above method performs the first channel access process and the second channel access process respectively for the first sub-signal and the second sub-signal.
  • the second channel access process avoids interference with other transmissions on the unlicensed spectrum and ensures fairness in channel occupancy.
  • the above method has good backward compatibility.
  • the first SRS resource is used to determine the spatial relationship of the first sub-signal
  • the second SRS resource is used to determine the spatial relationship of the second sub-signal
  • the first SRS resource belongs to a first SRS resource set
  • the second SRS resource belongs to a second SRS resource set.
  • the first SRS resource and the second SRS resource are respectively used to determine the spatial relationship between the first sub-signal and the second sub-signal, thereby improving the robustness and/or transmission efficiency of transmission based on multi-beam/TRP/panel.
  • the first time domain resource block is located within the first time window; the spatial relationship of the first sub-signal is related to the first index, and the spatial relationship of the second sub-signal is related to the second index; the type of the first channel access process depends on whether the first index belongs to the first index set, and the type of the second channel access process depends on whether the second index belongs to the first index set.
  • the first index set and the second index set are used to indicate which uplink transmissions can share channel occupancy, thereby increasing channel access opportunities while avoiding interference with other transmissions.
  • the first TCI state and the second TCI state are used to apply to the first sub-signal and the second sub-signal respectively; the first TCI state and the second TCI state both belong to the first TCI state group; the first index depends on the position of the first TCI state in the first TCI state group, and the second index depends on the position of the second TCI state in the first TCI state group.
  • the first TCI state and the second TCI state are respectively used to apply to the first sub-signal and the second sub-signal.
  • the above method supports using a unified TCI indication to determine the TCI state of the first sub-signal and the second sub-signal, thereby reducing signaling overhead.
  • the present application is characterized in that whether the first sub-signal and the second sub-signal are sent in the first time domain resource block in the first sub-frequency band is related to whether the first sub-signal and the second sub-signal carry the same transmission block.
  • the above method optimizes different multi-beam/TRP/panel transmission modes in the unlicensed spectrum based on the characteristics of different transmission modes.
  • the coverage range of the sensing beam of the first channel access process is different from the coverage range of the sensing beam of the second channel access process.
  • the above method improves the channel access probability while ensuring fairness in channel occupancy.
  • the spatial domain filter of the perception beam of the first channel access process covers the transmission beam of the first sub-signal
  • the spatial domain filter of the perception beam of the second channel access process covers the transmission beam of the second sub-signal
  • the above method ensures that no interference is caused to other transmissions.
  • the present application discloses a method used in a second node of wireless communication, characterized by comprising:
  • Sending a first signaling where the first signaling includes scheduling information of a first signal, and the first sub-signal and the second sub-signal respectively include different layers of the first signal;
  • Whether the first sub-signal is received in the first time domain resource block in the first sub-frequency band depends on a first channel access process, and whether the second sub-signal is received in the first time domain resource block in the first sub-frequency band depends on a second channel access process.
  • the first SRS resource is used to determine the spatial relationship of the first sub-signal
  • the second SRS resource is used to determine the spatial relationship of the second sub-signal
  • the first SRS resource belongs to a first SRS resource set
  • the second SRS resource belongs to a second SRS resource set.
  • the first time domain resource block is located within the first time window; the spatial relationship of the first sub-signal is related to the first index, The spatial relationship of the second sub-signal is related to the second index; the type of the first channel access process depends on whether the first index belongs to the first index set, and the type of the second channel access process depends on whether the second index belongs to the first index set.
  • the first TCI state and the second TCI state are used to apply to the first sub-signal and the second sub-signal respectively; the first TCI state and the second TCI state both belong to the first TCI state group; the first index depends on the position of the first TCI state in the first TCI state group, and the second index depends on the position of the second TCI state in the first TCI state group.
  • the present application is characterized in that whether the first sub-signal and the second sub-signal are received in the first time domain resource block in the first sub-frequency band is related to whether the first sub-signal and the second sub-signal carry the same transmission block.
  • the coverage range of the sensing beam of the first channel access process is different from the coverage range of the sensing beam of the second channel access process.
  • the spatial domain filter of the perception beam of the first channel access process covers the transmission beam of the first sub-signal
  • the spatial domain filter of the perception beam of the second channel access process covers the transmission beam of the second sub-signal
  • the present application discloses a first node used for wireless communication, characterized in that it includes:
  • a first receiver receives a first signaling, where the first signaling includes scheduling information of a first signal, and the first sub-signal and the second sub-signal respectively include different layers of the first signal;
  • a first transmitter performing a first channel access process and a second channel access process
  • first sub-signal is sent in the first time domain resource block in the first sub-frequency band depends on the first channel access process
  • second sub-signal is sent in the first time domain resource block in the first sub-frequency band depends on the second channel access process.
  • the present application discloses a second node used for wireless communication, characterized in that it includes:
  • a second transmitter sends a first signaling, where the first signaling includes scheduling information of the first signal, and the first sub-signal and the second sub-signal respectively include different layers of the first signal;
  • a second receiver receives at least one of the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-frequency band, or abandons receiving the first sub-signal and the second sub-signal in a first time domain resource block in the first sub-frequency band;
  • this application has the following advantages:
  • FIG1 shows a flowchart of a first signaling according to an embodiment of the present application
  • FIG2 shows a schematic diagram of a network architecture according to an embodiment of the present application
  • FIG3 is a schematic diagram showing an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application
  • FIG4 shows a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application
  • FIG5 shows a flow chart of transmission according to an embodiment of the present application
  • FIG6 shows a schematic diagram of a first SRS resource and a second SRS resource according to an embodiment of the present application
  • FIG7 is a schematic diagram showing a second signaling used to determine a first time window and a first index set according to an embodiment of the present application
  • FIG8 is a schematic diagram showing a first TCI state and a second TCI state according to an embodiment of the present application
  • FIG9 shows a schematic diagram of a first sub-signal and a second sub-signal according to an embodiment of the present application
  • FIG10 shows a schematic diagram of a first channel access process and a second channel access process according to an embodiment of the present application
  • FIG11 is a schematic diagram showing a first channel access process and a second channel access process according to another embodiment of the present application.
  • FIG12 is a flow chart showing a channel access process according to an embodiment of the present application.
  • FIG13 shows a flow chart of a channel access process according to another embodiment of the present application.
  • FIG14 shows a structural block diagram of a processing device used in a first node device according to an embodiment of the present application
  • FIG. 15 shows a structural block diagram of a processing device for a device in a second node according to an embodiment of the present application.
  • Embodiment 1 illustrates a flowchart of a first signaling according to an embodiment of the present application, as shown in FIG1.
  • each box represents a step.
  • the order of the steps in the box does not represent a specific time sequence relationship between the steps.
  • the first node in the present application receives a first signaling in step 101, wherein the first signaling includes scheduling information of a first signal, and a first sub-signal and a second sub-signal respectively include different layers of the first signal; a first channel access process and a second channel access process are performed in step 102; and at least one of the first sub-signal and the second sub-signal is sent in a first time domain resource block in a first sub-band in step 103, or, the sending of the first sub-signal and the second sub-signal is abandoned in a first time domain resource block in the first sub-band; wherein whether the first sub-signal is sent in the first time domain resource block in the first sub-band depends on the first channel access process, and whether the second sub-signal is sent in the first time domain resource block in the first sub-band depends on the second channel access process.
  • the protocol layer to which the first signaling belongs includes a MAC layer.
  • the first signaling includes MAC CE.
  • the protocol layer to which the first signaling belongs includes a physical layer.
  • the first signaling includes DCI.
  • the first signaling is DCI.
  • the first signaling includes an uplink scheduling.
  • the first signaling includes an uplink DCI.
  • the first signaling includes DCI format 0_0.
  • the first signaling includes DCI format 0_1.
  • the first signaling includes DCI format 0_2.
  • the first signaling is cell common.
  • the first signaling is cell specific.
  • the first signaling is user equipment group common (UE group common).
  • the first signaling is user equipment group specific (UE group specific).
  • the first signaling is user equipment specific (UE specific).
  • the layer refers to: MIMO (Multiple Input Multiple Output) layer.
  • the layer refers to: transmission layer.
  • the first sub-signal and the second sub-signal occupy the same time-frequency resources.
  • the first sub-signal and the second sub-signal occupy overlapping time-frequency resources.
  • the DMRS of the first sub-signal and the DMRS of the second sub-signal are mapped to different DMRS ports.
  • any antenna port for sending the first sub-signal and any antenna port for sending the second sub-signal are not quasi-co-located.
  • any antenna port for sending the first sub-signal and any antenna port for sending the second sub-signal are not quasi-co-located corresponding to QCL-TypeD.
  • the first sub-band includes a component carrier.
  • the first sub-band includes a BWP (Bandwidth Part).
  • the first sub-frequency band includes an uplink BWP.
  • the first sub-frequency band includes only one RB (Resource Block).
  • the first sub-frequency band includes at least one RB.
  • the first sub-frequency band includes multiple RBs.
  • the first sub-frequency band includes multiple RBs and the multiple RBs are continuous in the frequency domain.
  • the first sub-frequency band includes multiple RBs, and any two RBs among the multiple RBs are not continuous in the frequency domain.
  • the index of the first sub-frequency band is SCellIndex.
  • the index of the first sub-frequency band is ServCellIndex.
  • the index of the first sub-frequency band is BWP-Id.
  • the index of the first sub-frequency band is a positive integer.
  • the index of the first sub-frequency band is a positive integer not greater than 31.
  • the index of the first sub-frequency band is a non-negative integer.
  • the index of the first sub-frequency band is a non-negative integer not greater than 31.
  • the index of the first sub-frequency band is a non-negative integer not greater than 4.
  • the first time domain resource block includes only one time slot.
  • the first time domain resource block includes at least one time slot.
  • the first time domain resource block includes multiple time slots.
  • the first time domain resource is a continuous time period.
  • the first time domain resources include one or more UL (UpLink) transmission bursts.
  • UL UpLink
  • the first time domain resource includes a COT (Channel Occupancy Time).
  • the length of the first time domain resource is no more than one MCOT (Maximum COT, maximum channel occupancy time).
  • the length of the first time domain resource is not greater than T m cop,p , where T m cop,p is a maximum channel occupancy time.
  • T m cop,p refer to 3GPP TS37.213.
  • the length of the first time domain resource is no more than 10 ms (milliseconds).
  • the length of the first time domain resource is no more than 8 ms (milliseconds).
  • the first sub-signal is sent in the first time domain resource block in the first sub-frequency band.
  • the first sub-signal is sent in the first time domain resource block in the first sub-frequency band.
  • the first sub-signal is abandoned from being sent in the first time domain resource block in the first sub-frequency band.
  • the first sub-signal is abandoned from being sent in the first time domain resource block in the first sub-frequency band.
  • the second sub-signal is sent in the first time domain resource block in the first sub-frequency band.
  • the second sub-signal is sent in the first time domain resource block in the first sub-frequency band.
  • the second sub-signal is abandoned from being sent in the first time domain resource block in the first sub-frequency band.
  • the second channel access process determines that the first sub-frequency band is unavailable for transmission, the second sub-signal is abandoned from being sent in the first time domain resource block in the first sub-frequency band.
  • the first sub-signal and the second sub-signal are both sent in the first time domain resource block in the first sub-frequency band.
  • the first channel access process determines that the first sub-frequency band can be used to perform transmission and the second channel access process determines that the first sub-frequency band cannot be used to perform transmission
  • the first sub-signal is sent in the first time domain resource block in the first sub-frequency band
  • the second sub-signal is abandoned in the first time domain resource block in the first sub-frequency band.
  • the first channel access process determines that the first sub-frequency band cannot be used for transmission and the second channel access process determines that the first sub-frequency band can be used for transmission
  • the first sub-signal is abandoned in the first time domain resource block in the first sub-frequency band
  • the second sub-signal is sent in the first time domain resource block in the first sub-frequency band.
  • the first sub-signal and the second sub-signal are both abandoned in the first time domain resource block in the first sub-frequency band.
  • the types of the first channel access process and the second channel access process are indicated by the first signaling.
  • the types of the first channel access process and the second channel access process are indicated by the ChannelAccess-CPext field.
  • the types of the first channel access process and the second channel access process include Type 1 (Type 1), Type 2 (Type 2) and Type 3 (Type 3).
  • the types of the first channel access process and the second channel access process include type 2.
  • the types of the first channel access process and the second channel access process include Type 2A (Type 2A), Type 2B (Type 2B) and Type 2C (Type 2C).
  • the first channel access process includes at least one transmission.
  • the first channel access process includes multiple transmissions.
  • the first channel access process when the type of the first channel access process is type 2A, the first channel access process includes multiple transmissions and the interval (gap) between any two transmissions is at least 25 ⁇ s.
  • the first channel access process when the type of the first channel access process is type 2B, the first channel access process includes multiple transmissions and the interval between any two transmissions is 16 ⁇ s.
  • the first channel access process when the type of the first channel access process is type 2C, the first channel access process includes multiple transmissions and the interval between any two transmissions is greater than 16 ⁇ s.
  • the second channel access process includes at least one transmission.
  • the second channel access process includes multiple transmissions.
  • the second channel access process when the type of the second channel access process is type 2A, the second channel access process includes multiple transmissions and the interval between any two transmissions is at least 25 ⁇ s.
  • the second channel access process when the type of the second channel access process is type 2B, the second channel access process includes multiple transmissions and the interval between any two transmissions is 16 ⁇ s.
  • the second channel access process when the type of the second channel access process is type 2C, the second channel access process includes multiple transmissions and the interval between any two transmissions is greater than 16 ⁇ s.
  • the first node when the type of the first channel access process and the second channel access process is type 3, the first node does not perform channel sensing before sending a transmission.
  • the first channel access process and the second channel access process are respectively uplink channel access processes.
  • the first channel access process and the second channel access process are performed independently.
  • the type of the first channel access process is the same as the type of the second channel access process.
  • the type of the first channel access process is different from the type of the second channel access process.
  • the type of the first channel access process and the type of the second channel access process are indicated by the first signaling.
  • the type of the first channel access process and the type of the second channel access process are indicated separately.
  • determination of the initial value of the counter of the first channel access process and determination of the initial value of the counter of the second channel access process are independent of each other.
  • determination of a contention window of the first channel access process and determination of a contention window of the second channel access process are independent of each other.
  • the first channel access process and the second channel access process overlap in the time domain.
  • the end time of the first channel access process and the end time of the second channel access process are the same.
  • Embodiment 2 illustrates a schematic diagram of a network architecture according to an embodiment of the present application, as shown in FIG2 .
  • FIG2 illustrates a network architecture 200 for LTE (Long-Term Evolution), LTE-A (Long-Term Evolution Advanced) and future 5G systems.
  • the network architecture 200 for LTE, LTE-A and future 5G systems is referred to as EPS (Evolved Packet System) 200.
  • the 5G NR or LTE network architecture 200 may be referred to as 5GS (5G System)/EPS (Evolved Packet System) 200 or some other suitable terminology.
  • 5GS/EPS 200 may include one or more UEs (User Equipment) 201, a UE 241 communicating with UE 201 via a sidelink, NG-RAN (Next Generation Radio Access Network) 202, 5GC (5G Core Network)/EPC (Evolved Packet Core) 210, HSS (Home Subscriber Server)/UDM (Unified Data Management) 220, and Internet service 230.
  • 5GS/EPS 200 may be interconnected with other access networks, but these entities/interfaces are not shown for simplicity.
  • 5GS/EPS 200 provides packet switching services, but those skilled in the art will readily appreciate that the various concepts presented throughout this application may be extended to A network that provides circuit switched services.
  • NG-RAN 202 includes NR (New Radio) Node B (gNB) 203 and other gNBs 204.
  • gNB 203 provides user and control plane protocol terminations toward UE 201.
  • gNB 203 can be connected to other gNBs 204 via an Xn interface (e.g., backhaul).
  • gNB 203 may also be referred to as a base station, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), a TRP (transmit receive point), or some other suitable term.
  • gNB 203 provides an access point to 5GC/EPC 210 for UE 201.
  • Examples of UE 201 include cellular phones, smart phones, session initiation protocol (SIP) phones, laptop computers, personal digital assistants (PDAs), satellite radios, global positioning systems, multimedia devices, video devices, digital audio players (e.g., MP3 players), cameras, game consoles, drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • SIP session initiation protocol
  • PDAs personal digital assistants
  • satellite radios global positioning systems
  • multimedia devices video devices
  • digital audio players e.g., MP3 players
  • cameras e.g., digital audio players
  • game consoles e.g., drones, aircraft, narrowband physical network devices, machine type communication devices, land vehicles, cars, wearable devices, or any other similar functional devices.
  • UE 201 may also refer to UE 201 as a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • gNB203 is connected to 5GC/EPC210 via S1/NG interface.
  • 5GC/EPC210 includes MME (Mobility Management Entity)/AMF (Authentication Management Field)/SMF (Session Management Function) 211, other MME/AMF/SMF214, S-GW (Service Gateway)/UPF (User Plane Function) 212 and P-GW (Packet Data Network Gateway)/UPF213.
  • MME/AMF/SMF211 is the control node that handles the signaling between UE201 and 5GC/EPC210.
  • MME/AMF/SMF211 provides bearer and connection management. All user IP (Internet Protocol) packets are transmitted through S-GW/UPF212, which itself is connected to P-GW/UPF213.
  • P-GW provides UE IP address allocation and other functions.
  • P-GW/UPF 213 is connected to Internet service 230.
  • Internet service 230 includes operator-specific Internet protocol services, which may include Internet, Intranet, IMS (IP Multimedia Subsystem) and Packet switching services.
  • the first node in the present application includes the UE201.
  • the first node in the present application includes the UE241.
  • the second node in the present application includes the gNB203.
  • Embodiment 3 illustrates a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to an embodiment of the present application, as shown in FIG3 .
  • Embodiment 3 shows a schematic diagram of an embodiment of a wireless protocol architecture of a user plane and a control plane according to the present application, as shown in FIG3.
  • FIG3 is a schematic diagram illustrating an embodiment of a radio protocol architecture for a user plane 350 and a control plane 300.
  • FIG3 shows the radio protocol architecture of the control plane 300 between a first communication node device (UE, gNB or RSU in V2X) and a second communication node device (gNB, UE or RSU in V2X), or between two UEs, using three layers: Layer 1, Layer 2, and Layer 3.
  • Layer 1 (L1 layer) is the lowest layer and implements various PHY (physical layer) signal processing functions.
  • the L1 layer will be referred to as PHY301 herein.
  • Layer 2 (L2 layer) 305 is above PHY301 and is responsible for the link between the first communication node device and the second communication node device, or between two UEs.
  • the L2 layer 305 includes a MAC (Medium Access Control) sublayer 302, an RLC (Radio Link Control) sublayer 303, and a PDCP (Packet Data Convergence Protocol) sublayer 304, which terminate at the second communication node device.
  • the PDCP sublayer 304 provides multiplexing between different radio bearers and logical channels.
  • the PDCP sublayer 304 also provides security by encrypting data packets, and provides inter-zone mobility support for the first communication node device between the second communication node device.
  • the RLC sublayer 303 provides segmentation and reassembly of upper layer data packets, retransmission of lost data packets, and reordering of data packets to compensate for out-of-order reception due to HARQ.
  • the MAC sublayer 302 provides multiplexing between logical and transport channels.
  • the MAC sublayer 302 is also responsible for allocating various radio resources (e.g., resource blocks) in a cell between the first communication node devices.
  • the MAC sublayer 302 is also responsible for HARQ operations.
  • the RRC (Radio Resource Control) sublayer 306 in layer 3 (L3 layer) in the control plane 300 is responsible for obtaining radio resources (i.e., radio bearers) and configuring the lower layers using RRC signaling between the second communication node device and the first communication node device.
  • the radio protocol architecture of the user plane 350 includes layer 1 (L1 layer) and layer 2 (L2 layer).
  • the radio protocol architecture for the first communication node device and the second communication node device in the user plane 350 is substantially the same as the corresponding layers and sublayers in the control plane 300 for the physical layer 351, the PDCP sublayer 354 in the L2 layer 355, the RLC sublayer 353 in the L2 layer 355, and the MAC sublayer 352 in the L2 layer 355, but the PDCP sublayer 354 also provides header compression for upper layer data packets to reduce radio transmission overhead.
  • the L2 layer 355 in the user plane 350 also includes a SDAP (Service Data Adaptation Protocol) sublayer 356, which is responsible for QoS flows and data radio bearers (DRBs). Data Radio Bearer) to support the diversity of services.
  • SDAP Service Data Adaptation Protocol
  • DRBs data radio bearers
  • the first communication node device may have several upper layers above the L2 layer 355, including a network layer (e.g., IP layer) terminated at the P-GW on the network side and an application layer terminated at the other end of the connection (e.g., remote UE, server, etc.).
  • a network layer e.g., IP layer
  • an application layer terminated at the other end of the connection (e.g., remote UE, server, etc.).
  • the wireless protocol architecture in FIG. 3 is applicable to the first node in the present application.
  • the wireless protocol architecture in FIG. 3 is applicable to the second node in the present application.
  • the first signaling is generated in the PHY301.
  • the first signaling is generated in the MAC sublayer 302.
  • the first signal is generated by the PHY301 or the PHY351.
  • the higher layer in the present application refers to a layer above the physical layer.
  • the higher layer in the present application refers to the MAC sublayer 302.
  • the higher layer in the present application refers to the RLC sublayer 303.
  • the higher layer in the present application refers to the PDCP sublayer 304.
  • the higher layer in the present application refers to the L2 layer 305 .
  • Embodiment 4 illustrates a schematic diagram of a first communication device and a second communication device according to an embodiment of the present application, as shown in Figure 4.
  • Figure 4 is a block diagram of a first communication device 410 and a second communication device 450 communicating with each other in an access network.
  • the first communication device 410 includes a controller/processor 475 , a memory 476 , a receive processor 470 , a transmit processor 416 , a multi-antenna receive processor 472 , a multi-antenna transmit processor 471 , a transmitter/receiver 418 and an antenna 420 .
  • the second communication device 450 includes a controller/processor 459, a memory 460, a data source 467, a transmit processor 468, a receive processor 456, a multi-antenna transmit processor 457, a multi-antenna receive processor 458, a transmitter/receiver 454 and an antenna 452.
  • the controller/processor 475 implements the functionality of the L2 layer.
  • the controller/processor 475 provides header compression, encryption, packet segmentation and reordering, multiplexing between logical and transport channels, and allocation of radio resources to the second communication device 450 based on various priority metrics.
  • the controller/processor 475 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the second communication device 450.
  • the transmit processor 416 and the multi-antenna transmit processor 471 implement various signal processing functions for the L1 layer (i.e., the physical layer).
  • the transmit processor 416 implements coding and interleaving to facilitate forward error correction (FEC) at the second communication device 450, as well as constellation mapping based on various modulation schemes (e.g., binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), M-phase shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)).
  • FEC forward error correction
  • the multi-antenna transmit processor 471 performs digital spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing on the coded and modulated symbols to generate one or more parallel streams.
  • the transmit processor 416 maps each parallel stream to a subcarrier, multiplexes the modulated symbols with a reference signal (e.g., a pilot) in the time domain and/or frequency domain, and then uses an inverse fast Fourier transform (IFFT) to generate a physical channel carrying a time-domain multi-carrier symbol stream.
  • the multi-antenna transmit processor 471 then performs a transmit analog precoding/beamforming operation on the time-domain multi-carrier symbol stream.
  • Each transmitter 418 converts the baseband multi-carrier symbol stream provided by the multi-antenna transmit processor 471 into a radio frequency stream, and then provides it to a different antenna 420.
  • each receiver 454 receives a signal through its corresponding antenna 452.
  • Each receiver 454 recovers the information modulated onto the RF carrier and converts the RF stream into a baseband multi-carrier symbol stream and provides it to the receiving processor 456.
  • the receiving processor 456 and the multi-antenna receiving processor 458 implement various signal processing functions of the L1 layer.
  • the multi-antenna receiving processor 458 performs a receiving analog precoding/beamforming operation on the baseband multi-carrier symbol stream from the receiver 454.
  • the receiving processor 456 uses a fast Fourier transform (FFT) to convert the baseband multi-carrier symbol stream after the receiving analog precoding/beamforming operation from the time domain to the frequency domain.
  • FFT fast Fourier transform
  • the physical layer data signal and the reference signal are demultiplexed by the receiving processor 456, where the reference signal will be used for channel estimation, and the data signal is recovered after multi-antenna detection in the multi-antenna receiving processor 458 to any parallel stream destined for the second communication device 450.
  • the symbols on each parallel stream are demodulated and recovered in the receive processor 456, and soft decisions are generated.
  • the receive processor 456 then decodes and deinterleaves the soft decisions to recover the upper layer data and control signals transmitted by the first communication device 410 on the physical channel.
  • the upper layer data and control signals are then provided to the controller/processor 459.
  • the controller/processor 459 implements the functions of the L2 layer.
  • the controller/processor 459 may be associated with a memory 460 that stores program codes and data.
  • the memory 460 may be referred to as a computer-readable medium.
  • the controller/processor 459 provides demultiplexing between transport and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover upper layer packets from the core network.
  • the upper layer packets are then provided to all protocol layers above the L2 layer.
  • Various control signals may also be provided to the L3 for L3 processing.
  • the controller/processor 459 is also responsible for error detection using an acknowledgment (ACK) and/or negative acknowledgment (NACK) protocol to support HARQ operations.
  • ACK acknowledgment
  • NACK negative acknowledgment
  • a data source 467 is used to provide upper layer data packets to the controller/processor 459.
  • the data source 467 represents all protocol layers above the L2 layer.
  • the controller/processor 459 implements header compression, encryption, packet segmentation and reordering, and multiplexing between logical and transport channels based on the radio resource allocation of the first communication device 410, and implements L2 layer functions for the user plane and the control plane.
  • the controller/processor 459 is also responsible for HARQ operations, retransmission of lost packets, and signaling to the first communication device 410.
  • the transmit processor 468 performs modulation mapping and channel coding processing, and the multi-antenna transmit processor 457 performs digital multi-antenna spatial precoding, including codebook-based precoding and non-codebook-based precoding, and beamforming processing. Then, the transmit processor 468 modulates the generated parallel stream into a multi-carrier/single-carrier symbol stream, which is then provided to different antennas 452 via the transmitter 454 after analog precoding/beamforming operations in the multi-antenna transmit processor 457. Each transmitter 454 first converts the baseband symbol stream provided by the multi-antenna transmit processor 457 into a radio frequency symbol stream, and then provides it to the antenna 452.
  • the function at the first communication device 410 is similar to the reception function at the second communication device 450 described in the transmission from the first communication device 410 to the second communication device 450.
  • Each receiver 418 receives a radio frequency signal through its corresponding antenna 420, converts the received radio frequency signal into a baseband signal, and provides the baseband signal to the multi-antenna reception processor 472 and the reception processor 470.
  • the reception processor 470 and the multi-antenna reception processor 472 jointly implement the functions of the L1 layer.
  • the controller/processor 475 implements the L2 layer functions.
  • the controller/processor 475 can be associated with a memory 476 that stores program codes and data.
  • the memory 476 can be referred to as a computer-readable medium.
  • the controller/processor 475 provides demultiplexing between transmission and logical channels, packet reassembly, decryption, header decompression, control signal processing to recover the upper layer data packets from the second communication device 450.
  • the upper layer data packets from the controller/processor 475 can be provided to the core network.
  • the controller/processor 475 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
  • the second communication device 450 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the second communication device 450 device at least: receives a first signaling, the first signaling includes scheduling information of a first signal, and the first sub-signal and the second sub-signal respectively include different layers of the first signal; performs a first channel access process and a second channel access process; sends at least one of the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-band, or abandons sending the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-band; whether the first sub-signal is sent in the first time domain resource block in the first sub-band depends on the first channel access process, and whether the second sub-signal is sent in the first time domain resource block in the first sub-band depends on the second channel access process.
  • the second communication device 450 includes: a memory storing a computer-readable instruction program, wherein the computer-readable instruction program generates actions when executed by at least one processor, and the actions include: receiving a first signaling; executing a first channel access process and a second channel access process; sending at least one of the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-band, or giving up sending the first sub-signal and the second sub-signal in a first time domain resource block in the first sub-band.
  • the first communication device 410 includes: at least one processor and at least one memory, the at least one memory includes computer program code; the at least one memory and the computer program code are configured to be used together with the at least one processor.
  • the first communication device 410 device at least: sends a first signaling, the first signaling includes scheduling information of a first signal, and the first sub-signal and the second sub-signal respectively include different layers of the first signal; receives at least one of the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-band, or abandons receiving the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-band; whether the first sub-signal is received in the first time domain resource block in the first sub-band depends on the first channel access process, and whether the second sub-signal is received in the first time domain resource block in the first sub-band depends on the second channel access process.
  • the first communication device 410 includes: a memory storing a computer-readable instruction program, wherein the computer-readable instruction program generates an action when executed by at least one processor, wherein the action includes: sending a first signaling; receiving at least one of the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-band; or receiving at least one of the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-band. The receiving of the first sub-signal and the second sub-signal is abandoned in the resource block.
  • the first node in the present application includes the second communication device 450.
  • the second node in the present application includes the first communication device 410.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to receive the first signaling in the present application; and at least one of ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475, and the memory 476 ⁇ is used to send the first signaling in the present application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to send the first signal in the present application; and at least one of ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475, and the memory 476 ⁇ is used to receive the first signal in the present application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to send the first sub-signal in the present application; at least one of ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475, and the memory 476 ⁇ is used to receive the first sub-signal in the present application.
  • At least one of ⁇ the antenna 452, the receiver 454, the receiving processor 456, the multi-antenna receiving processor 458, the controller/processor 459, the memory 460, and the data source 467 ⁇ is used to send the second sub-signal in the present application; at least one of ⁇ the antenna 420, the transmitter 418, the transmitting processor 416, the multi-antenna transmitting processor 471, the controller/processor 475, and the memory 476 ⁇ is used to receive the second sub-signal in the present application.
  • Embodiment 5 illustrates a flow chart of transmission according to an embodiment of the present application, as shown in FIG5.
  • the first node U1 and the second node N2 are two communication nodes transmitted through the air interface.
  • the steps in blocks F1 to F3 are optional.
  • the second signaling is received in step S100; the third signaling is received in step S101; the first signaling is received in step S10; the first channel access process and the second channel access process are performed in step S11; and at least one of the first sub-signal and the second sub-signal is sent in the first time domain resource block in the first sub-band in step S12.
  • a second signaling is sent in step S200; a third signaling is sent in step S201; a first signaling is sent in step S20; and at least one of the first sub-signal and the second sub-signal is received in a first time domain resource block in a first sub-frequency band in step S21.
  • Example 5 whether the first sub-signal is sent in the first time domain resource block in the first sub-frequency band depends on the first channel access process, and whether the second sub-signal is sent in the first time domain resource block in the first sub-frequency band depends on the second channel access process; the second signaling is used to determine the first time window and the first index set; the third signaling indicates a first TCI state group, and the first TCI state group includes at least two TCI states.
  • the first node U1 is the first node in this application.
  • the second node N2 is the second node in the present application.
  • the air interface between the second node N2 and the first node U1 includes a wireless interface between a base station device and a user equipment.
  • the air interface between the second node N2 and the first node U1 includes a wireless interface between a relay node device and a user equipment.
  • the air interface between the second node N2 and the first node U1 includes a wireless interface between user equipments.
  • the second node N2 is a base station maintaining a serving cell of the first node U1.
  • the first signaling is used by the first node U1 to schedule the first signal.
  • the first signaling is used by the first node U1 to schedule the first sub-signal.
  • the first signaling is used by the first node U1 to schedule the second sub-signal.
  • the first channel is PUSCH.
  • the second channel is PUSCH.
  • the transmission channel corresponding to the first channel includes UL-SCH.
  • the transmission channel corresponding to the second channel includes UL-SCH.
  • the first sub-signal is transmitted on the PUSCH.
  • the second sub-signal is transmitted on PUSCH.
  • the first node U1 sends at least one of the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-band
  • the second node N2 receives at least one of the first sub-signal and the second sub-signal in a first time domain resource block in the first sub-band.
  • the first node U1 sends the first sub-signal in a first time domain resource block in a first sub-frequency band
  • the second node N2 receives the first sub-signal in a first time domain resource block in the first sub-frequency band.
  • the first node U1 sends the second sub-signal in a first time domain resource block in a first sub-frequency band
  • the second node N2 receives the second sub-signal in a first time domain resource block in the first sub-frequency band.
  • the first node U1 sends the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-band
  • the second node N2 receives the first sub-signal and the second sub-signal in a first time domain resource block in the first sub-band.
  • the first node U1 gives up sending the first sub-signal and the second sub-signal in the first time domain resource block in the first sub-band
  • the second node N2 gives up receiving the first sub-signal and the second sub-signal in the first time domain resource block in the first sub-band.
  • the first node U1 gives up sending the first sub-signal in the first time domain resource block in the first sub-frequency band
  • the second node N2 gives up receiving the first sub-signal in the first time domain resource block in the first sub-frequency band.
  • the first node U1 gives up sending the second sub-signal in the first time domain resource block in the first sub-frequency band
  • the second node N2 gives up receiving the second sub-signal in the first time domain resource block in the first sub-frequency band.
  • the step in box F51 in FIG. 5 exists, and the first node receives second signaling, and the second signaling is used by the first node to determine the first time window and the first index set.
  • the step in box F51 in FIG. 5 exists, and the second node sends a second signaling, and the second signaling is used by the first node to determine the first time window and the first index set.
  • the step in box F52 in FIG. 5 exists, and the first node receives the third signaling.
  • the step in box F52 in FIG. 5 exists, and the second node sends the third signaling.
  • the step in box F53 in FIG. 5 exists, and the first node sends at least one of the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-frequency band.
  • the step in box F53 in FIG. 5 exists, and the second node receives at least one of the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-frequency band.
  • the step in box F53 in FIG. 5 does not exist, and the first node abandons sending the first sub-signal and the second sub-signal in the first time domain resource block in the first sub-frequency band.
  • the step in box F53 in FIG. 5 does not exist, and the second node abandons receiving the first sub-signal and the second sub-signal in the first time domain resource block in the first sub-frequency band.
  • Embodiment 6 illustrates a schematic diagram of a first SRS resource and a second SRS resource according to an embodiment of the present application; as shown in FIG6 .
  • the first SRS resource is used to determine the spatial relationship of the first sub-signal
  • the second SRS resource is used to determine the spatial relationship of the second sub-signal
  • the first SRS resource belongs to a first SRS resource set
  • the second SRS resource belongs to a second SRS resource set.
  • the first SRS resource is used by the first node to determine the spatial relationship of the first sub-signal.
  • the second SRS resource is used by the first node to determine the spatial relationship of the second sub-signal.
  • the SRS refers to a Sounding Reference Signal.
  • the first SRS resource set and the second SRS resource set respectively include at least one SRS resource.
  • the first SRS resource set is identified by an SRS-ResourceSetId
  • the second SRS resource set is identified by an SRS-ResourceSetId.
  • the SRS-ResourceSetId of the first SRS resource set is different from the SRS-ResourceSetId of the second SRS resource set.
  • the higher-layer parameter "usage" of the first SRS resource set and the higher-layer parameter "usage” of the second SRS resource set are both set to “nonCodebook", or, the higher-layer parameter "usage” of the first SRS resource set and the higher-layer parameter "usage” of the second SRS resource set are both set to "codebook”.
  • the first SRS resource set and the second SRS resource set are configured by the same higher-layer parameter, and the name of the same higher-layer parameter includes "srs-ResourceSetToAddModList".
  • the first node is configured with two SRS resource sets by the same higher-layer parameter, and the higher-layer parameters "usage" associated with the two SRS resource sets are both set to "nonCodebook” or both set to "codebook", and the name of the same higher-layer parameter includes "srs-ResourceSetToAddModList”.
  • each SRS resource in the first SRS resource set includes at least one SRS port
  • each SRS resource in the second SRS resource set includes at least one SRS port
  • each SRS resource in the first SRS resource set is identified by an SRS-ResourceId
  • each SRS resource in the second SRS resource set is identified by an SRS-ResourceId.
  • the first SRS resource set is indicated by DCI format 0_1.
  • the first SRS resource set is indicated by an SRS resource set indicator.
  • the first SRS resource is indicated by DCI format 0_1.
  • the first SRS resource is indicated by an SRS resource indicator.
  • the number of SRS resources included in the first SRS resource set depends on the maximum number of layers of the MIMO system.
  • the number of SRS resources included in the first SRS resource set depends on the parameter maxMIMO-Layers, and the parameter maxMIMO-Layers is configured by IE PUSCH-ServingCellConfig.
  • the number of SRS resources included in the first SRS resource set depends on the number of PUSCH layers supported by the first node.
  • the second SRS resource set is indicated by DCI format 0_1.
  • the second SRS resource set is indicated by an SRS resource set indicator.
  • the second SRS resource is indicated by DCI format 0_1.
  • the second SRS resource is indicated by an SRS resource indicator.
  • the number of SRS resources included in the first SRS resource set depends on the maximum number of layers of the MIMO system.
  • the number of SRS resources included in the second SRS resource set depends on the parameter maxMIMO-Layers, and the parameter maxMIMO-Layers is configured by IE PUSCH-ServingCellConfig.
  • the number of SRS resources included in the second SRS resource set depends on the number of PUSCH layers supported by the first node.
  • the type of the first SRS resource is configured by a parameter resourceType.
  • the types of the first SRS resources include periodic, semi-persistent, and aperiodic.
  • the first SRS resource when the type of the first SRS resource is semi-persistent, the first SRS resource is activated or deactivated by MAC CE.
  • the first SRS resource is triggered by DCI.
  • the type of the second SRS resource is configured by the parameter resourceType.
  • the types of the second SRS resources include periodic, semi-persistent, and aperiodic.
  • the second SRS resource is activated or deactivated by MAC CE.
  • the second SRS resource is triggered by DCI.
  • the higher layer in the present application refers to a layer above the physical layer.
  • the spatial relationship includes a TCI state.
  • the spatial relationship includes QCL parameters.
  • the spatial relationship includes a QCL relationship.
  • the spatial relationship includes a QCL assumption.
  • the spatial relationship includes a spatial domain filter.
  • the spatial relationship includes a spatial domain transmission filter.
  • the spatial relationship includes a transmit spatial filter (Tx spatial filter).
  • Tx spatial filter transmit spatial filter
  • the spatial relationship includes a transmitting antenna port.
  • the spatial relationship includes a precoder.
  • the first sub-signal is sent through the same antenna port as the SRS port of the first SRS resource.
  • the first node sends the first sub-signal and sends the SRS in the first SRS resource using the same spatial domain filter.
  • the first sub-signal and the SRS in the first SRS resource use the same precoder.
  • the first sub-signal is transmitted through the same antenna port as the SRS port of the first SRS resource.
  • the first node if the first sub-signal is sent, the first node sends the first sub-signal and sends the SRS in the first SRS resource using the same spatial domain filter.
  • the first sub-signal and the SRS in the first SRS resource use the same precoder.
  • the second sub-signal is sent through the same antenna port as the SRS port of the first SRS resource.
  • the first node sends the second sub-signal and sends the SRS in the second SRS resource using the same spatial domain filter.
  • the second sub-signal and the SRS in the second SRS resource use the same precoder.
  • the second sub-signal is transmitted through the same antenna port as the SRS port of the first SRS resource.
  • the first node sends the second sub-signal and sends the SRS in the second SRS resource using the same spatial domain filter.
  • the second sub-signal and the SRS in the second SRS resource adopt the same precoder.
  • the transmit beam of the first SRS resource is used to determine the transmit beam of the first sub-signal.
  • the transmission beam of the first sub-signal and the transmission beam of the first SRS resource are the same.
  • the transmission beam of the second SRS resource is used to determine the transmission beam of the second sub-signal.
  • the transmission beam of the second sub-signal and the transmission beam of the second SRS resource are the same.
  • Embodiment 7 illustrates a schematic diagram of a second signaling according to an embodiment of the present application being used to determine a first time window and a first index set; as shown in FIG7 .
  • Example 7 a second signaling is received, and the second signaling is used to determine a first time window and a first index set; the first time domain resource block is located within the first time window; the spatial relationship of the first sub-signal is related to the first index, and the spatial relationship of the second sub-signal is related to the second index; the type of the first channel access process depends on whether the first index belongs to the first index set, and the type of the second channel access process depends on whether the second index belongs to the first index set.
  • the second signaling is used by the first node to determine a first time window and a first index set.
  • the second signaling includes DCI.
  • the second signaling includes DCI format 2_0.
  • the second signaling is UE-group common.
  • the second signaling includes a CRC (Cyclic Redundancy Check) scrambled by an SFI-RNTI (Slot Format Indication).
  • CRC Cyclic Redundancy Check
  • SFI-RNTI Slot Format Indication
  • the second signaling includes at least one Slot format indicator field.
  • the second signaling includes at least one Slot format indicator field, and the second signaling is configured by a higher-layer parameter, and the name of the higher-layer parameter includes "slotFormatCombToAddModList".
  • the second signaling includes at least one Available RB set Indicator field.
  • the second signaling includes at least one Available RB set Indicator field, and the second signaling is configured by a higher-layer parameter, and the name of the higher-layer parameter includes "availableRB-SetsToAddModList".
  • the second signaling includes at least one COT duration indicator (channel occupancy time indicator) field.
  • the second signaling includes at least one COT duration indicator field, and the second signaling is configured by a higher-layer parameter, and the name of the higher-layer parameter includes "co-DurationsPerCellToAddModList".
  • the second signaling includes at least one Search space set group switching flag field.
  • the second signaling includes at least one Search space set group switching flag field, and the second signaling is configured by a higher layer parameter, and the name of the higher layer parameter includes "switchTriggerToAddModList".
  • the second signaling is DCI format 2_0
  • the payload size of the DCI format 2_0 is configured by a higher-layer parameter
  • the name of the higher-layer parameter includes "dci-PayloadSize”.
  • the second signaling is DCI format 2_0, and the DCI format 2_0 includes at most 128 bits.
  • the second signaling indicates the first time window.
  • the second signaling includes a first field, and the first field in the second signaling is used to determine the first time window.
  • the first field in the second signaling indicates the receiving time of the first time window.
  • the first field in the second signaling indicates a remaining channel occupancy duration (remaining channel occupancy duration).
  • the first domain is a DCI domain.
  • the first domain includes a DCI domain COT duration indicator.
  • the first domain is the DCI domain COT duration indicator.
  • the position of the first domain is configured by the parameter positionInDCI.
  • the first domain is configured by the parameter co-DurationList.
  • the value of the first domain is configured by the parameter co-Duration.
  • the first time window is a COT.
  • the first time window belongs to a COT.
  • the COT refers to Channel Occupancy Time.
  • the unit of the first time window is a time slot.
  • the length of the first time window is not greater than T m cop,p , where T m cop,p is a maximum channel occupancy time.
  • the second signaling indicates the first index set.
  • the second signaling indicates each index in the first index set.
  • the second signaling indicates each index in the second index set.
  • the sentence that the spatial relationship of the first sub-signal is related to the first index means that: the first index is used to identify the first SRS resource.
  • the sentence that the spatial relationship of the first sub-signal is related to the first index means that: the first index is used to identify the first SRS resource set.
  • the first index is the SRS-ResourceId of the first SRS resource.
  • the first index is the SRS-ResourceSetId of the first SRS resource set.
  • the sentence that the spatial relationship of the second sub-signal is related to the second index means that: the second index is used to identify the second SRS resource.
  • the second index is the SRS-ResourceId of the second SRS resource.
  • the second index is the SRS-ResourceSetId of the second SRS resource set.
  • the first index is indicated by the SRS resource indicator field.
  • the first index is indicated by the Second SRS resource indicator field.
  • the second index is indicated by the SRS resource indicator field.
  • the first index and the second index are indicated by the Second SRS resource indicator field and the SRS resource indicator field respectively.
  • the first index set includes multiple SRS-ResourceIds.
  • the first index set is configured by IE SRS-Config.
  • the second index set is identified by an SRS-ResourceSetId.
  • the second index set includes at least one SRS-ResourceId.
  • the second index set includes multiple SRS-ResourceIds.
  • the second index set is configured by IE SRS-Config.
  • IE SRS-Config configures at least one SRS-ResourceSetId in a BWP, any two index sets in the at least one SRS-ResourceSetId are different, and the second index set is different from any index set in the at least one SRS-ResourceSetId.
  • the first channel access procedure is a Type 2 channel access procedure (Type 2 channel access procedure).
  • the first channel access procedure is a Type 1 channel access procedure (Type 1 channel access procedure).
  • the second channel access procedure is a Type 2A channel access procedure (Type 2A channel access procedure).
  • the second channel access procedure is a Type 2 channel access procedure (Type 2 channel access procedure).
  • the second channel access procedure is a Type 1 channel access procedure.
  • the first node switches the channel access process for the first subchannel from a type 1 channel access process to a type 2A channel access process.
  • the first node switches the channel access process for the second subchannel from a type 1 channel access process to a type 2A channel access process.
  • the type of the first channel access process is one of a first type set
  • the type of the second channel access process is one of the first type set
  • the first type set includes at least two types of channel access processes.
  • the first type set includes type 1 and type 2.
  • the first type set includes type 1 and type 2A.
  • the first type set includes type 1, type 2A, type 2B and type 2C.
  • the first type set includes type 1 and at least one of type 2A, type 2B or type 2C.
  • Embodiment 8 illustrates a schematic diagram of a first TCI state and a second TCI state according to an embodiment of the present application; as shown in FIG8 .
  • a third signaling is received, the third signaling indicating a first TCI state group, the first TCI state group including at least two TCI states; the first TCI state and the second TCI state are respectively used to apply to the first sub-signal and the second sub-signal; the first TCI state and the second TCI state both belong to the first TCI state group; the first index depends on the position of the first TCI state in the first TCI state group, and the second index depends on the position of the second TCI state in the first TCI state group.
  • the protocol layer to which the third signaling belongs includes a MAC layer.
  • the third signaling includes MAC CE.
  • the protocol layer to which the third signaling belongs includes a physical layer.
  • the third signaling includes a downlink scheduling.
  • the third signaling includes a downlink DCI.
  • the third signaling includes DCI.
  • the third signaling is one of DCI format 1_1 or DCI format 1_2.
  • the third signaling includes a second field, and the second field in the third signaling indicates the first TCI state group.
  • the second domain includes DCI domain Transmission configuration indication.
  • the second domain includes partial bits of the DCI domain Transmission configuration indication.
  • the second domain includes all bits of the DCI domain Transmission configuration indication.
  • the second field includes 0 bits.
  • the second field includes 3 bits
  • the second field includes 0 bits.
  • the number of bits included in the second field depends on the parameter tci-PresentDCI-1-2.
  • the number of bits included in the second field is 1, 2 or 3.
  • the second domain includes 2, 4 or 8 code points.
  • the second domain includes 8 code points.
  • any code point included in the second domain indicates a TCI state.
  • any code point included in the second domain indicates a pair of TCI states, and the pair of TCI states includes 2 TCI states.
  • the TCI state indicated by the second domain is activated by a MAC CE, and the number of TCI states activated by one MAC CE is no more than 8.
  • the second domain is used to indicate the first TCI status group.
  • the second domain is used to indicate the first TCI state.
  • the second domain is used to indicate the second TCI state.
  • any TCI state in the first TCI state group is used to configure a reference signal used to determine an uplink transmit spatial filter for PUSCH, PUCCH and SRS.
  • any TCI state in the first TCI state group is used for both uplink and downlink.
  • any TCI state in the first TCI state group is used to configure a quasi-co-location of a DMRS for PDSCH, a DMRS for PDCCH and a CSI-RS, and a reference signal for determining an uplink transmit spatial filter for PUSCH, PUCCH and SRS.
  • At least one TCI state in the first TCI state group is used to configure a TCI state used to determine Reference signal for uplink spatial filter transmission of PUSCH, PUCCH and SRS.
  • all TCI states in the first TCI state group correspond to the same TCI codepoint.
  • the number of TCI states included in the first TCI state group is equal to 2.
  • the number of TCI states included in the first TCI state group is greater than 2.
  • all TCI states in the first TCI state group are arranged in sequence.
  • the first TCI state is used for uplink.
  • the first TCI state is only used for uplink.
  • the first TCI state is used for both uplink and downlink.
  • the first TCI state is a UL-TCIState.
  • the first TCI state is a TCIState.
  • the first TCI state is configured by a higher layer parameter dl-OrJoint-TCIStateList.
  • the first TCI state is configured by a higher layer parameter ul-TCI-StateList.
  • the second TCI state is used for uplink.
  • the second TCI state is only used for uplink.
  • the second TCI state is used for both uplink and downlink.
  • the second TCI state is a UL-TCIState.
  • the second TCI state is a TCIState.
  • the second TCI state is configured by a higher layer parameter dl-OrJoint-TCIStateList.
  • the second TCI state is configured by a higher layer parameter ul-TCI-StateList.
  • the first TCI state is applied to the first SRS resource.
  • the first TCI state is applied to the first SRS resource set.
  • the first TCI state is applied to each SRS resource in the first SRS resource set.
  • the second TCI state is applied to the second SRS resource.
  • the second TCI state is applied to the second SRS resource set.
  • the second TCI state is applied to each SRS resource in the second SRS resource set.
  • the first TCI state indicates a first reference signal resource
  • the second TCI state indicates a second reference signal resource
  • the first TCI state indicates that the QCL type corresponding to the first reference signal resource is QCL Type D.
  • the second TCI state indicates that the QCL type corresponding to the second reference signal resource is QCL Type D.
  • the first reference signal resource is one of a CSI-RS resource, a SS/PBCH resource or a SRS resource.
  • the second reference signal resource is one of a CSI-RS resource, a SS/PBCH resource or a SRS resource.
  • the first reference signal resource is used to determine a spatial domain filter for sending the first SRS resource.
  • the second reference signal resource is used to determine a spatial domain filter for sending the second SRS resource.
  • the first node uses the same spatial domain filter to send the SRS in the first SRS resource and to receive or send the reference signal in the first reference signal resource.
  • the first node uses the same spatial domain filter to send the SRS in the second SRS resource and to receive or send the reference signal in the second reference signal resource.
  • the spatial domain filter of the first reference signal resource is used to determine the spatial domain filter of the perceptual beam of the first channel access process; the spatial domain filter of the second reference signal resource is used to determine the spatial domain filter of the perceptual beam of the second channel access process.
  • the spatial domain filter of the perception beam in the first channel access process is the same as the spatial domain filter used by the first node to receive or send a reference signal in the first reference signal resource.
  • the spatial domain filter of the perception beam in the second channel access process is the same as the spatial domain filter used by the first node to receive or send the reference signal in the second reference signal resource.
  • the spatial domain filter of the perception beam of the first channel access process covers the beam of the first reference signal resource
  • the spatial domain filter of the perception beam of the second channel access process covers the beam of the second reference signal resource
  • the sentence that the spatial relationship of the first sub-signal is related to the first index includes: a first reference signal is used to determine the spatial relationship of the first sub-signal, the first TCI state indicates the first reference signal resource, and the first index depends on the position of the first TCI state in the first TCI state group.
  • the sentence that the spatial relationship of the first sub-signal is related to the first index includes: the first reference signal is used to determine the spatial domain filter of the first SRS resource, the first SRS resource is used to determine the spatial relationship of the first sub-signal, the first TCI state indicates the first reference signal resource, and the first index depends on the position of the first TCI state in the first TCI state group.
  • the sentence regarding the spatial relationship of the second sub-signal and the second index includes: a second reference signal is used to determine the spatial relationship of the second sub-signal, the second TCI state indicates the first reference signal resource, and the second index depends on the position of the second TCI state in the first TCI state group.
  • the sentence regarding the spatial relationship of the second sub-signal and the second index includes: the second reference signal is used to determine the spatial domain filter of the second SRS resource, the second SRS resource is used to determine the spatial relationship of the second sub-signal, the second TCI state indicates the second reference signal resource, and the second index depends on the position of the second TCI state in the first TCI state group.
  • the first TCI state is the i1th TCI state in the first TCI state group, and the first index is equal to the i1-1; the i1 is a positive integer not greater than the number of TCI states included in the first TCI state group.
  • the second TCI state is the i2th TCI state in the first TCI state group, and the second index is equal to i2-1; the i2 is a positive integer not greater than the number of TCI states included in the first TCI state group.
  • the first TCI state is the i1th TCI state in the first TCI state group, and the first index is equal to the i1; the i1 is a positive integer not greater than the number of TCI states included in the first TCI state group.
  • the second TCI state is the i2th TCI state in the first TCI state group, and the second index is equal to the i2; the i2 is a positive integer not greater than the number of TCI states included in the first TCI state group.
  • the first TCI state is the i1th TCI state in the first TCI state group that is used only for uplink, and the first index is equal to i1-1; i1 is a positive integer not greater than the number of TCI states used only for uplink included in the first TCI state group.
  • the second TCI state is the i2th TCI state in the first TCI state group that is used only for uplink, and the second index is equal to i2-1; i2 is a positive integer not greater than the number of TCI states used only for uplink included in the first TCI state group.
  • the first TCI state is the i1th TCI state in the first TCI state group that is only used for uplink, and the first index is equal to the i1; the i1 is a positive integer not greater than the number of TCI states used only for uplink included in the first TCI state group.
  • the second TCI state is the i2th TCI state in the first TCI state group that is used only for uplink, and the second index is equal to the i2; the i2 is a positive integer not greater than the number of TCI states used only for uplink included in the first TCI state group.
  • Embodiment 9 illustrates a schematic diagram of a first sub-signal and a second sub-signal according to an embodiment of the present application; as shown in FIG9 .
  • the transport block refers to Transport Block.
  • whether the first sub-signal or the second sub-signal is sent in the first time domain resource block in the first sub-frequency band is related to whether the first sub-signal and the second sub-signal carry the same transmission block.
  • whether the first sub-signal or the second sub-signal is sent in the first time domain resource block in the first sub-frequency band is related to whether the first sub-signal and the second sub-signal carry the same transmission block.
  • whether the first sub-signal or the second sub-signal is sent in the first time domain resource block in the first sub-frequency band is related to whether the first sub-signal and the second sub-signal carry the same transmission block.
  • whether the first sub-signal or the second sub-signal is sent in the first time domain resource block in the first sub-band is related to whether the first sub-signal and the second sub-signal carry the same transmission block.
  • the first sub-signal and the second sub-signal carry the same transmission block
  • the first sub-signal and the second sub-signal are sent together or abandoned together in the first time domain resource block in the first sub-frequency band.
  • the first sub-signal and the second sub-signal are abandoned from being sent in the first time domain resource block in the first sub-band.
  • At least one of the first channel access process or the second channel access process determines that the first sub-frequency When the frequency band cannot be used to perform transmission and the first sub-signal and the second sub-signal carry different transmission blocks, at least one of the first sub-signal and the second sub-signal is transmitted in the first time domain resource block in the first sub-frequency band.
  • the first sub-signal is abandoned in the first time domain resource block in the first sub-band, and the second sub-signal is abandoned in the first time domain resource block in the first sub-band;
  • the first channel access process determines that the first sub-band can be used for transmission, and the second channel access process determines that the first sub-band cannot be used for transmission, and the first sub-signal and the second sub-signal carry different transmission blocks, the first sub-signal is sent in the first time domain resource block in the first sub-band, and the second sub-signal is abandoned in the first time domain resource block in the first sub-band.
  • the first sub-signal and the second sub-signal are both sent in the first time domain resource block in the first sub-frequency band.
  • higher layer signaling is used to determine whether the first sub-signal and the second sub-signal belong to the same transport block.
  • the first signaling is used to determine whether the first sub-signal and the second sub-signal belong to the same transmission block.
  • whether the first sub-signal and the second sub-signal belong to the same transmission block is related to the number of layers of the first signal.
  • the first sub-signal and the second sub-signal belong to different transmission blocks; when the number of layers of the first signal is not greater than 4, the first sub-signal and the second sub-signal belong to the same transmission block.
  • the first sub-signal and the second sub-signal belong to the same transmission block.
  • Embodiment 10 illustrates a schematic diagram of a first channel access process and a second channel access process according to an embodiment of the present application; as shown in FIG. 10 .
  • the coverage of the sensing beam of the first channel access process is different from the coverage of the sensing beam of the second channel access process.
  • the coverage of the sensing beam of the first channel access process and the coverage of the sensing beam of the second channel access process only partially overlap.
  • the coverage range of the sensing beam of the first channel access process and the coverage range of the sensing beam of the second channel access process do not overlap.
  • the spatial domain filter of the perceptual beam of the first channel access process is different from the spatial domain filter of the perceptual beam of the second channel access process.
  • the transmit beam of the first SRS resource is used to determine the perception beam of the first channel access process
  • the transmit beam of the second SRS resource is used to determine the perception beam of the second channel access process
  • the sensing beam of the first channel access process is the same as the transmitting beam of the first SRS resource
  • the sensing beam of the second channel access process is the same as the transmitting beam of the second SRS resource
  • the spatial domain filter for sending the first SRS resource is used to determine the spatial domain filter for the perception beam of the first channel access process
  • the spatial domain filter for sending the second SRS resource is used to determine the spatial domain filter for the perception beam of the second channel access process
  • the spatial domain filter of the perception beam in the first channel access process is the same as the spatial domain filter for sending the first SRS resource
  • the spatial domain filter of the perception beam in the second channel access process is the same as the spatial domain filter for sending the second SRS resource.
  • Embodiment 11 illustrates a schematic diagram of a first channel access process and a second channel access process according to another embodiment of the present application; as shown in FIG11 .
  • the spatial domain filter of the perception beam of the first channel access process covers the transmission beam of the first sub-signal
  • the spatial domain filter of the perception beam of the second channel access process covers the transmission beam of the second sub-signal
  • the transmit beam of the second sub-signal is used to determine the sensing beam of the second channel access process.
  • the sensing beam of the first channel access process is the same as the transmitting beam of the first sub-signal.
  • the sensing beam of the second channel access process is the same as the transmitting beam of the second sub-signal.
  • the spatial domain filter of sending the first sub-signal is used to determine the spatial domain filter of the perceptual beam of the first channel access process.
  • the spatial domain filter of sending the second sub-signal is used to determine the spatial domain filter of the perceptual beam of the second channel access process.
  • the spatial domain filter of the perception beam in the first channel access process is the same as the spatial domain filter for sending the first sub-signal.
  • the spatial domain filter of the perception beam in the second channel access process is the same as the spatial domain filter for sending the second sub-signal.
  • Embodiment 12 shows a flow chart of a channel access process according to an embodiment of the present application; as shown in FIG. 12 .
  • the first channel access process can be described by the flowchart in FIG. 12.
  • the first node senses the channel within a delay period (defer duration) on the first sub-frequency band in step S1201; determines whether all time slots within the delay period are idle (Idle) in step S1202, and if so, proceeds to step S1203, otherwise proceeds to step S1201; sets a first counter in step S1203; determines whether the first counter is 0 in step S1204, and if so, proceeds to step S1205, otherwise proceeds to step S1207; determines whether to send in step S1205, and if so, proceeds to step 1206; performs sending on the first sub-frequency band in step 1206; decrements the first counter by 1 in step S1207; and sets a first counter in step S1208 in an additional sensing period on the first sub-frequency band.
  • the method further comprises the steps of: sensing the channel within an additional sensing slot duration; determining in step S1209 whether the additional sensing slot duration is idle; if so, returning to step S1204; otherwise, proceeding to step S1210; sensing the channel within an additional delay duration on the first sub-band in step S1210 until a non-idle state is detected within the additional delay duration, or detecting that the sensing slot within the additional delay duration is idle; determining in step S1211 whether all sensing slots within the additional delay duration are idle; if so, returning to step S1204; otherwise, returning to step S1210.
  • the first channel access process is a Type 1 uplink channel access process, or one of the Type 1 channel access processes for the frequency range 2-2.
  • the sensing time slot period is considered to be idle.
  • the first power threshold is X Thresh .
  • the first power threshold is not greater than a maximum power threshold X Thresh — max .
  • the maximum power threshold X Thresh_max is determined according to the method in 3GPP TS37.213.
  • the basic unit of perception is a perception time slot with a duration of 9 ⁇ s.
  • a delay period includes a duration of 16 ⁇ s, followed by m p consecutive sensing time slot periods; the m p is a positive integer, and the m p is related to a channel access priority class.
  • the duration of 16 ⁇ s initially includes an idle sensing time slot period.
  • a defer duration is 8 ⁇ s and ends with a sensing slot having a duration of 5 ⁇ s.
  • the value set to the first counter is one of P candidate integers.
  • P belongs to ⁇ 3, 7, 15, 31, 63, 127, 255, 511, 1023 ⁇ .
  • P is the contention window CWp of the channel access priority level p.
  • the P candidate integers are 0, 1, 2, ..., P-1.
  • the first node randomly selects a candidate integer from the P candidate integers as the The initial value to which the first counter is set.
  • the probability of any candidate integer among the P candidate integers being selected as the initial value set for the first counter is equal.
  • Embodiment 13 shows a flowchart of the channel access process according to another embodiment of the present application; as shown in FIG13 .
  • the first channel access process can be described by the flowchart in FIG. 13.
  • the first node in the present application senses the channel within a sensing time on the first sub-frequency band; in step S1302, it is determined whether all sensing time slots within the sensing time are idle (Idle); if so, it proceeds to step S1303, otherwise it returns to step S1301; in step S1303, it sends on the first sub-frequency band.
  • the first channel access process is one of a Type 2A uplink channel access process, a Type 2B uplink channel access process, or a Type 2 channel access process for a frequency range 2-2.
  • the specific definitions of the Type 2A uplink channel access process, the Type 2B uplink channel access process, and the Type 2 channel access process for frequency range 2-2 may be found in sections 4.1.2.1, 4.1.2.2, 4.2.1.2.1, 4.2.1.2.2 and 4.4.2 of 3GPP TS37.213, respectively.
  • the sensing time is a sensing interval.
  • the sensing time is a sensing interval of 25 ⁇ s.
  • the sensing time is a sensing interval of at least 25 ⁇ s.
  • the sensing time is a sensing interval of 25 ⁇ s, and the sensing interval includes a duration of 16 ⁇ s followed by a sensing time slot.
  • the sensing time is a sensing interval of at least 25 ⁇ s, wherein the sensing interval includes a duration of 16 ⁇ s followed by a sensing time slot.
  • the 16 ⁇ s duration includes one sensing time slot at the beginning; if two sensing time slots included in the sensing time are both sensed as idle, the sensing time is considered to be idle.
  • the sensing time is a duration of 16 ⁇ s.
  • the sensing time is a duration of at most 16 ⁇ s.
  • the sensing time is a duration of 16 ⁇ s
  • the duration of 16 ⁇ s includes a sensing time slot in the last 9 ⁇ s.
  • the perception time is a duration of 16 ⁇ s, and the 16 ⁇ s duration includes a perception time slot within the last 9 ⁇ s; if within the perception time, the channel is perceived as idle for at least 5 ⁇ s, and at least 4 ⁇ s of the 5 ⁇ s are within the perception time slot, the channel is considered to be idle within the perception time.
  • the sensing time is a duration of at most 16 ⁇ s, and the duration of 16 ⁇ s includes a sensing time slot within the last 9 ⁇ s.
  • the perception time is a duration of at most 16 ⁇ s, and the 16 ⁇ s duration includes a perception slot within the last 9 ⁇ s; if within the perception time, the channel is perceived as idle for at least 5 ⁇ s, and at least 4 ⁇ s of the 5 ⁇ s are within the perception slot, the channel is considered to be idle within the perception time.
  • the perception time is a delay period.
  • the sensing time is a delay period ending with a sensing time slot having a duration of 5 ⁇ s.
  • Embodiment 14 illustrates a structural block diagram of a processing device in a first node device according to an embodiment of the present application, as shown in FIG14.
  • the processing device 1400 in the first node device includes a first receiver 1401 and a first transmitter 1402.
  • the first node device is a user equipment.
  • the first node device is a relay node device.
  • the first receiver 1401 includes at least one of ⁇ antenna 452, receiver 454, receiving processor 456, multi-antenna receiving processor 458, controller/processor 459, memory 460, data source 467 ⁇ in Embodiment 4.
  • the first transmitter 1402 includes at least one of ⁇ antenna 452, transmitter 454, transmit processor 468, multi-antenna transmit processor 457, controller/processor 459, memory 460, data source 467 ⁇ in Embodiment 4.
  • a first receiver 1401 receives a first signaling
  • the first transmitter 1402 performs a first channel access process and a second channel access process; sends at least one of the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-frequency band, or abandons sending the first sub-signal and the second sub-signal;
  • the first signaling includes scheduling information of the first signal, and the first sub-signal and the second sub-signal respectively include different layers of the first signal; whether the first sub-signal is sent in the first time domain resource block in the first sub-frequency band depends on the first channel access process, and whether the second sub-signal is sent in the first time domain resource block in the first sub-frequency band depends on the second channel access process.
  • the first SRS resource is used to determine the spatial relationship of the first sub-signal
  • the second SRS resource is used to determine the spatial relationship of the second sub-signal
  • the first SRS resource belongs to a first SRS resource set
  • the second SRS resource belongs to a second SRS resource set.
  • receiving second signaling wherein the second signaling is used to determine a first time window and a first index set
  • the first time domain resource block is located within the first time window; the spatial relationship of the first sub-signal is related to the first index, and the spatial relationship of the second sub-signal is related to the second index; the type of the first channel access process depends on whether the first index belongs to the first index set, and the type of the second channel access process depends on whether the second index belongs to the first index set.
  • receiving a third signaling the third signaling indicating a first TCI state group, the first TCI state group including at least two TCI states;
  • the first TCI state and the second TCI state are used to apply to the first sub-signal and the second sub-signal respectively; the first TCI state and the second TCI state both belong to the first TCI state group; the first index depends on the position of the first TCI state in the first TCI state group, and the second index depends on the position of the second TCI state in the first TCI state group.
  • whether the first sub-signal and the second sub-signal are sent in the first time domain resource block in the first sub-frequency band is related to whether the first sub-signal and the second sub-signal carry the same transmission block.
  • the coverage of the sensing beam of the first channel access process is different from the coverage of the sensing beam of the second channel access process.
  • the spatial domain filter of the perception beam of the first channel access process covers the transmission beam of the first sub-signal
  • the spatial domain filter of the perception beam of the second channel access process covers the transmission beam of the second sub-signal
  • Embodiment 15 illustrates a structural block diagram of a processing device in a second node device according to an embodiment of the present application, as shown in FIG15.
  • the processing device 1500 in the second node device includes a second transmitter 1501 and a second receiver 1502.
  • the second node device is a base station device.
  • the second node device is a user equipment.
  • the second node device is a relay node device.
  • the second transmitter 1501 includes at least one of ⁇ antenna 420, transmitter 418, transmit processor 416, multi-antenna transmit processor 471, controller/processor 475, memory 476 ⁇ in Embodiment 4.
  • the second receiver 1502 includes at least one of ⁇ antenna 420, receiver 418, receiving processor 470, multi-antenna receiving processor 472, controller/processor 475, memory 476 ⁇ in Embodiment 4.
  • the second transmitter 1501 sends a first signaling
  • a second receiver 1502 receives at least one of the first sub-signal and the second sub-signal in a first time domain resource block in a first sub-frequency band, or gives up receiving the first sub-signal and the second sub-signal in a first time domain resource block in the first sub-frequency band;
  • the first signaling includes scheduling information of the first signal, and the first sub-signal and the second sub-signal respectively include different layers of the first signal; whether the first sub-signal is received in the first time domain resource block in the first sub-frequency band depends on the first channel access process, and whether the second sub-signal is received in the first time domain resource block in the first sub-frequency band depends on the second channel access process.
  • the first SRS resource is used to determine the spatial relationship of the first sub-signal
  • the second SRS resource is used to determine the spatial relationship of the second sub-signal
  • the first SRS resource belongs to a first SRS resource set
  • the second SRS resource belongs to a second SRS resource set.
  • receiving second signaling wherein the second signaling is used to determine a first time window and a first index set
  • the first time domain resource block is located within the first time window; the spatial relationship of the first sub-signal is related to the first index, The spatial relationship of the second sub-signal is related to the second index; the type of the first channel access process depends on whether the first index belongs to the first index set, and the type of the second channel access process depends on whether the second index belongs to the first index set.
  • receiving a third signaling the third signaling indicating a first TCI state group, the first TCI state group including at least two TCI states;
  • the first TCI state and the second TCI state are used to apply to the first sub-signal and the second sub-signal respectively; the first TCI state and the second TCI state both belong to the first TCI state group; the first index depends on the position of the first TCI state in the first TCI state group, and the second index depends on the position of the second TCI state in the first TCI state group.
  • whether the first sub-signal and the second sub-signal are received in the first time domain resource block in the first sub-frequency band is related to whether the first sub-signal and the second sub-signal carry the same transmission block.
  • the coverage of the sensing beam of the first channel access process is different from the coverage of the sensing beam of the second channel access process.
  • the spatial domain filter of the perception beam of the first channel access process covers the transmission beam of the first sub-signal
  • the spatial domain filter of the perception beam of the second channel access process covers the transmission beam of the second sub-signal
  • each module unit in the above embodiment can be implemented in the form of hardware or in the form of a software function module, and the present application is not limited to any specific form of software and hardware combination.
  • the user equipment, terminal and UE in the present application include but are not limited to drones, communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication devices.
  • drones communication modules on drones, remote-controlled aircraft, aircraft, small aircraft, mobile phones, tablet computers, notebooks, vehicle-mounted communication equipment, wireless sensors, Internet cards, Internet of Things terminals, RFID terminals, NB-IOT terminals, MTC (Machine Type Communication) terminals, eMTC (enhanced MTC) terminals, data cards, Internet cards, vehicle-mounted communication equipment, low-cost mobile phones, low-cost tablet computers and other wireless communication devices.
  • MTC Machine Type Communication
  • the base stations or system equipment in this application include but are not limited to macrocell base stations, microcell base stations, home base stations, relay base stations, gNB (NR Node B) NR Node B, TRP (Transmitter Receiver Point) and other wireless communication equipment.
  • gNB NR Node B
  • TRP Transmitter Receiver Point

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种被用于无线通信的节点中的方法和装置。第一节点接收第一信令,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;执行第一信道接入过程和第二信道接入过程;在第一子频带中的第一时域资源块中发送所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃发送所述第一子信号和所述第二子信号;所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第二信道接入过程。本申请能指示MTRP在非授权系统中的传输,提高了传输效率和灵活性。

Description

一种被用于无线通信的节点中的方法和装置 技术领域
本申请涉及无线通信系统中的传输方法和装置,尤其涉及无线通信系统中和Multi-TRP(Multiple Transmission Reception Point,多发射接收点)有关的方案和装置。
背景技术
未来无线通信系统的应用场景越来越多元化,不同的应用场景对系统提出了不同的性能要求。为了满足多种应用场景的不同的性能需求,在3GPP(3rd Generation Partner Project,第三代合作伙伴项目)RAN(Radio Access Network,无线接入网)#72次全会上决定对新空口技术(NR,New Radio)(或5G)进行研究,在3GPP RAN#75次全会上通过了新空口技术(NR,New Radio)的WI(Work Item,工作项目),开始对NR进行标准化工作。多天线技术是3GPP(3rd Generation Partner Project,第三代合作伙伴项目)LTE(Long-term Evolution,长期演进)系统和NR(New Radio,新无线电)系统中的关键技术。通过在通信节点处,比如基站或UE(User Equipment,用户设备)处,配置多根天线来获得额外的空间自由度。多根天线通过波束赋型,形成波束指向一个特定方向来提高通信质量。多天线系统提供的自由度可以用来提高传输可靠性和/或吞吐量。当多根天线属于多个TRP(Transmitter Receiver Point,发送接收节点)/panel(天线面板)时,利用不同TRP/panel之间的空间差异,可以获得额外的分集增益。在NR R(release)16和R17中,基于多波束/TRP/panel的下行和上行传输分别被支持,用于提高传输的可靠性和传输速率。在NR R18中,基于多波束/TRP/panel的传输的进一步增强被讨论。
为了增加可用频谱来满足日益增长的业务量的需求,从LTE R13及R14开始非授权频谱(共享频谱)上的通信被引入。在非授权频谱中,发射机(基站或者UE)在进行传输之前需要先进行信道接入过程以保证不对其他在非授权频谱上正在进行的传输造成干扰。在NR R17中,基于波束的信道接入过程被引入,以满足不同频率范围(频率范围2-2)的需求。
发明内容
发明人通过研究发现,当被应用于非授权频谱时,当前的基于多波束/TRP/panel的传输技术需要进行增强。
针对上述问题,本申请公开了一种解决方案。需要说明的是,虽然本申请的初衷是针对multi-TRP传输场景展开说明,本申请也能用于single-TRP(单发射接收点)的传输场景中。进一步的,对不同场景(包括但不限于multi-TRP和single-TRP)采用统一的设计方案还有助于降低硬件复杂度和成本。在不冲突的情况下,本申请的任一节点中的实施例和实施例中的特征可以应用到任一其他节点中。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
作为一个实施例,对本申请中的术语(Terminology)的解释是参考3GPP的规范协议TS36系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS38系列的定义。
作为一个实施例,对本申请中的术语的解释是参考3GPP的规范协议TS37系列的定义。
作为一个实施例,对本申请中的术语的解释是参考IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)的规范协议的定义。
本申请公开了一种被用于无线通信的第一节点中的方法,其特征在于,包括:
接收第一信令,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;
执行第一信道接入过程和第二信道接入过程;
在第一子频带中的第一时域资源块中发送所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃发送所述第一子信号和所述第二子信号;
其中,所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第二信道接入过程。
作为一个实施例,上述方法通过所述第一信道接入过程和所述第二信道接入过程分别决定所述第一子信号和所述第二子信号是否被发送,提高了系统的灵活性,增加了信道接入的概率,提高了传输效率。
作为一个实施例,上述方法针对所述第一子信号和所述第二子信号分别执行所述第一信道接入过程和 所述第二信道接入过程,避免了对非授权频谱上的其他传输产生干扰,保证对信道占用的公平性。
作为一个实施例,上述方法具有较好的后向兼容性。
根据本申请的一个方面,其特征在于,第一SRS资源被用于确定所述第一子信号的空间关系,第二SRS资源被用于确定所述第二子信号的空间关系;所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合。
作为一个实施例,所述第一SRS资源和所述第二SRS资源分别被用于确定所述第一子信号和所述第二子信号的空间关系,实现了基于多波束/TRP/panel,提高了传输的鲁棒性和/或传输效率。
根据本申请的一个方面,其特征在于,包括:
接收第二信令,所述第二信令被用于确定第一时间窗和第一索引集合;
其中,所述第一时域资源块位于所述第一时间窗之内;所述第一子信号的空间关系和第一索引有关,所述第二子信号的空间关系和第二索引有关;所述第一信道接入过程的所述类型依赖所述第一索引是否属于所述第一索引集合,所述第二信道接入过程的所述类型依赖所述第二索引是否属于所述第一索引集合。
作为一个实施例,通过所述第一索引集合和所述第二索引集合指示哪些上行传输可以共享信道占用,在增加信道接入机会的同时避免了对其他传输产生干扰。
根据本申请的一个方面,其特征在于,包括:
接收第三信令,所述第三信令指示第一TCI状态组,所述第一TCI状态组包括至少两个TCI状态;
其中,第一TCI状态和第二TCI状态分别被用于应用于所述第一子信号和所述第二子信号;所述第一TCI状态和所述第二TCI状态均属于所述第一TCI状态组;所述第一索引依赖所述第一TCI状态在所述第一TCI状态组中的位置,所述第二索引依赖所述第二TCI状态在所述第一TCI状态组中的位置。
作为一个实施例,所述第一TCI状态和第二TCI状态分别被用于应用于所述第一子信号和所述第二子信号,上述方法支持用unified TCI指示来确定所述第一子信号和所述第二子信号的TCI状态,降低了信令开销。
根据本申请的一个方面,其特征在于,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送和所述第一子信号和所述第二子信号是否携带同一个传输块有关。
作为一个实施例,上述方法基于不同传输方式的特性,对不同的多波束/TRP/panel传输方式在非授权频谱中分别进行优化。
根据本申请的一个方面,其特征在于,所述第一信道接入过程的感知波束的覆盖范围不同于所述第二信道接入过程的感知波束的覆盖范围。
作为一个实施例,上述方法提高了信道接入概率,同时保证了对信道占用的公平性。
根据本申请的一个方面,其特征在于,所述第一信道接入过程的感知波束的空域滤波器覆盖所述第一子信号的发送波束,所述第二信道接入过程的感知波束的空域滤波器覆盖所述第二子信号的发送波束。
作为一个实施例,上述方法确保了对其他传输不会产生干扰。
本申请公开了一种被用于无线通信的第二节点中的方法,其特征在于,包括:
发送第一信令,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;
在第一子频带中的第一时域资源块中接收所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃接收所述第一子信号和所述第二子信号;
其中,所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被接收依赖第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被接收依赖第二信道接入过程。
根据本申请的一个方面,其特征在于,第一SRS资源被用于确定所述第一子信号的空间关系,第二SRS资源被用于确定所述第二子信号的空间关系;所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合。
根据本申请的一个方面,其特征在于,包括:
接收第二信令,所述第二信令被用于确定第一时间窗和第一索引集合;
其中,所述第一时域资源块位于所述第一时间窗之内;所述第一子信号的空间关系和第一索引有关, 所述第二子信号的空间关系和第二索引有关;所述第一信道接入过程的所述类型依赖所述第一索引是否属于所述第一索引集合,所述第二信道接入过程的所述类型依赖所述第二索引是否属于所述第一索引集合。
根据本申请的一个方面,其特征在于,包括:
接收第三信令,所述第三信令指示第一TCI状态组,所述第一TCI状态组包括至少两个TCI状态;
其中,第一TCI状态和第二TCI状态分别被用于应用于所述第一子信号和所述第二子信号;所述第一TCI状态和所述第二TCI状态均属于所述第一TCI状态组;所述第一索引依赖所述第一TCI状态在所述第一TCI状态组中的位置,所述第二索引依赖所述第二TCI状态在所述第一TCI状态组中的位置。
根据本申请的一个方面,其特征在于,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被接收和所述第一子信号和所述第二子信号是否携带同一个传输块有关。
根据本申请的一个方面,其特征在于,所述第一信道接入过程的感知波束的覆盖范围不同于所述第二信道接入过程的感知波束的覆盖范围。
根据本申请的一个方面,其特征在于,所述第一信道接入过程的感知波束的空域滤波器覆盖所述第一子信号的发送波束,所述第二信道接入过程的感知波束的空域滤波器覆盖所述第二子信号的发送波束。
本申请公开了一种被用于无线通信的第一节点,其特征在于,包括:
第一接收机,接收第一信令,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;
第一发射机,执行第一信道接入过程和第二信道接入过程;
在第一子频带中的第一时域资源块中发送所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃发送所述第一子信号和所述第二子信号;
其中,所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第二信道接入过程。
本申请公开了一种被用于无线通信的第二节点,其特征在于,包括:
第二发射机,发送第一信令,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;
第二接收机,在第一子频带中的第一时域资源块中接收所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃接收所述第一子信号和所述第二子信号;
其中,所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被接收依赖所述第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被接收依赖所述第二信道接入过程。
作为一个实施例,和传统方案相比,本申请具备如下优势:
-提高了系统的灵活性;
-提高了传输效率。
附图说明
通过阅读参照以下附图中的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的第一信令的流程图;
图2示出了根据本申请的一个实施例的网络架构的示意图;
图3示出了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图;
图4示出了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图;
图5示出了根据本申请的一个实施例的传输的流程图;
图6示出了根据本申请的一个实施例的第一SRS资源和第二SRS资源的示意图;
图7示出了根据本申请的一个实施例的第二信令被用于确定第一时间窗和第一索引集合的示意图;
图8示出了根据本申请的一个实施例的第一TCI状态和第二TCI状态的示意图;
图9示出了根据本申请的一个实施例的第一子信号和第二子信号的示意图;
图10示出了根据本申请的一个实施例的第一信道接入过程和第二信道接入过程的示意图;
图11示出了根据本申请的另一个实施例的第一信道接入过程和第二信道接入过程的示意图;
图12示出了根据本申请的一个实施例的信道接入过程的流程图;
图13示出了根据本申请的另一个实施例的信道接入过程的流程图;
图14示出了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;
图15示出了根据本申请的一个实施例的用于第二节点中设备的处理装置的结构框图。
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请中的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个实施例的第一信令的流程图,如附图1所示。在附图1所示的100中,每个方框代表一个步骤。特别的,方框中的步骤的顺序不代表各个步骤之间特定的时间先后关系。
在实施例1中,本申请中的所述第一节点在步骤101中接收第一信令,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;在步骤102中执行第一信道接入过程和第二信道接入过程;在步骤103中在第一子频带中的第一时域资源块中发送所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃发送所述第一子信号和所述第二子信号;其中,所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第二信道接入过程。
作为一个实施例,所述第一信令所属的协议层包括MAC层。
作为一个实施例,所述第一信令包括MAC CE。
作为一个实施例,所述第一信令所属的协议层包括物理层。
作为一个实施例,所述第一信令包括DCI。
作为一个实施例,所述第一信令是DCI。
作为一个实施例,所述第一信令包括一个上行调度。
作为一个实施例,所述第一信令包括一个上行DCI。
作为一个实施例,所述第一信令包括DCI格式0_0。
作为一个实施例,所述第一信令包括DCI格式0_1。
作为一个实施例,所述第一信令包括DCI格式0_2。
作为一个实施例,所述第一信令是小区公共(cell common)的。
作为一个实施例,所述第一信令是小区特有(cell specific)的。
作为一个实施例,所述第一信令是用户设备组公共(UE group common)的。
作为一个实施例,所述第一信令是用户设备组特有(UE group specific)的。
作为一个实施例,所述第一信令是用户设备特有(UE specific)的。
作为一个实施例,所述层是指:MIMO(Multiple Input Multiple Output,多输入多输出)层(layer)。
作为一个实施例,所述层是指:传输层(transmission layer)。
作为一个实施例,所述第一子信号和所述第二子信号占用相同的时频资源。
作为一个实施例,所述第一子信号和所述第二子信号占用交叠的时频资源。
作为一个实施例,所述第一子信号的DMRS和所述第二子信号的DMRS被映射到不同的DMRS端口。
作为一个实施例,发送所述第一子信号的任一天线端口和发送所述第二子信号的任一天线端口不是准共址的。
作为一个实施例,发送所述第一子信号的任一天线端口和发送所述第二子信号的任一天线端口不是对应QCL-TypeD的准共址的。
作为一个实施例,所述第一子频带包括一个分量载波(Component Carrier)。
作为一个实施例,所述第一子频带包括一个BWP(Bandwidth Part,带宽部分)。
作为一个实施例,所述第一子频带包括一个上行BWP。
作为一个实施例,所述第一子频带仅包括一个RB(Resource Block,资源块)。
作为一个实施例,所述第一子频带包括至少一个RB。
作为一个实施例,所述第一子频带包括多个RB。
作为一个实施例,所述第一子频带包括多个RB且所述多个RB在频域上连续。
作为一个实施例,所述第一子频带包括多个RB且所述多个RB中的任意两个RB在频域上都不连续。
作为一个实施例,所述第一子频带的索引是SCellIndex。
作为一个实施例,所述第一子频带的索引是ServCellIndex。
作为一个实施例,所述第一子频带的索引是BWP-Id。
作为一个实施例,所述第一子频带的索引是正整数。
作为一个实施例,所述第一子频带的索引是不大于31的正整数。
作为一个实施例,所述第一子频带的索引是非负整数。
作为一个实施例,所述第一子频带的索引是不大于31的非负整数。
作为一个实施例,所述第一子频带的索引是不大于4的非负整数。
作为一个实施例,所述第一时域资源块仅包括一个时隙。
作为一个实施例,所述第一时域资源块包括至少一个时隙。
作为一个实施例,所述第一时域资源块包括多个时隙。
作为一个实施例,所述第一时域资源是一个连续的时间段。
作为一个实施例,所述第一时域资源包括一个或多个UL(UpLink,上行)transmission burst(传输突发)。
作为一个实施例,所述第一时域资源包括一个COT(Channel Occupancy Time,信道占用时间)。
作为一个实施例,所述第一时域资源的长度不大于一个MCOT(Maximum COT,最大信道占用时间)。
作为一个实施例,所述第一时域资源的长度不大于Tm cop,p,所述Tm cop,p是最大信道占用时间,所述Tm cop,p的具体定义参见3GPP TS37.213。
作为一个实施例,所述第一时域资源的长度不大于10ms(毫秒)。
作为一个实施例,所述第一时域资源的长度不大于8ms(毫秒)。
作为一个实施例,当所述第一信道接入过程判断所述第一子频带空闲(idle)时,所述第一子信号在所述第一子频带中的所述第一时域资源块中被发送。
作为一个实施例,当所述第一信道接入过程判断所述第一子频带可以(available)被用于执行传输时,所述第一子信号在所述第一子频带中的所述第一时域资源块中被发送。
作为一个实施例,当所述第一信道接入过程判断所述第一子频带忙(busy)时,所述第一子信号在所述第一子频带中的所述第一时域资源块中被放弃发送。
作为一个实施例,当所述第一信道接入过程判断所述第一子频带不能(unavailable)被用于执行传输时,所述第一子信号在所述第一子频带中的所述第一时域资源块中被放弃发送。
作为一个实施例,当所述第二信道接入过程判断所述第一子频带空闲(idle)时,所述第二子信号在所述第一子频带中的所述第一时域资源块中被发送。
作为一个实施例,当所述第二信道接入过程判断所述第一子频带可以(available)被用于执行传输时,所述第二子信号在所述第一子频带中的所述第一时域资源块中被发送。
作为一个实施例,当所述第二信道接入过程判断所述第一子频带忙(busy)时,所述第二子信号在所述第一子频带中的所述第一时域资源块中被放弃发送。
作为一个实施例,当所述第二信道接入过程判断所述第一子频带不能(unavailable)被用于执行传输时,所述第二子信号在所述第一子频带中的所述第一时域资源块中被放弃发送。
作为一个实施例,当所述第一信道接入过程和所述第二信道接入过程均判断所述第一子频带能被用于执行传输时,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中均被发送。
作为一个实施例,当所述第一信道接入过程判断所述第一子频带能被用于执行传输并且所述第二信道接入过程判断所述第一子频带不能被用于执行传输时,所述第一子信号在所述第一子频带中的所述第一时域资源块中被发送,所述第二子信号在所述第一子频带中的所述第一时域资源块中被放弃发送。
作为一个实施例,当所述第一信道接入过程判断所述第一子频带不能被用于执行传输并且所述第二信道接入过程判断所述第一子频带能被用于执行传输时,所述第一子信号在所述第一子频带中的所述第一时域资源块中被放弃发送,所述第二子信号在所述第一子频带中的所述第一时域资源块中被发送。
作为一个实施例,当所述第一信道接入过程和所述第二信道接入过程均判断所述第一子频带不能被用于执行传输时,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中均被放弃发送。
作为一个实施例,所述第一信道接入过程和所述第二信道接入过程的类型被所述第一信令指示。
作为一个实施例,所述第一信道接入过程和所述第二信道接入过程的类型被ChannelAccess-CPext域指示。
作为一个实施例,所述第一信道接入过程和所述第二信道接入过程的类型包括类型1(Type 1)、类型2(Type 2)和类型3(Type 3)。
作为一个实施例,所述第一信道接入过程和所述第二信道接入过程的类型包括类型2。
作为上述实施例的一个子实施例,所述第一信道接入过程和所述第二信道接入过程的类型包括类型2A(Type 2A)、类型2B(Type 2B)和类型2C(Type 2C)。
作为上述实施例的一个子实施例,所述第一信道接入过程包括至少一次传输。
作为上述实施例的一个子实施例,所述第一信道接入过程包括多次传输。
作为上述实施例的一个子实施例,当所述第一信道接入过程的类型是类型2A时,所述第一信道接入过程包括多次传输且任意两次传输之间的间隔(gap)至少是25μs。
作为上述实施例的一个子实施例,当所述第一信道接入过程的类型是类型2B时,所述第一信道接入过程包括多次传输且任意两次传输之间的间隔是16μs。
作为上述实施例的一个子实施例,当所述第一信道接入过程的类型是类型2C时,所述第一信道接入过程包括多次传输且任意两次传输之间的间隔大于16μs。
作为上述实施例的一个子实施例,所述第二信道接入过程包括至少一次传输。
作为上述实施例的一个子实施例,所述第二信道接入过程包括多次传输。
作为上述实施例的一个子实施例,当所述第二信道接入过程的类型是类型2A时,所述第二信道接入过程包括多次传输且任意两次传输之间的间隔至少是25μs。
作为上述实施例的一个子实施例,当所述第二信道接入过程的类型是类型2B时,所述第二信道接入过程包括多次传输且任意两次传输之间的间隔是16μs。
作为上述实施例的一个子实施例,当所述第二信道接入过程的类型是类型2C时,所述第二信道接入过程包括多次传输且任意两次传输之间的间隔大于16μs。
作为一个实施例,当所述第一信道接入过程和所述第二信道接入过程的类型是类型3时,所述第一节点在发送一次传输前不执行感知(sensing)信道。
作为一个实施例,所述第一信道接入过程和所述第二信道接入过程分别是上行信道接入过程。
作为一个实施例,所述第一信道接入过程和所述第二信道接入过程是独立执行的。
作为一个实施例,所述第一信道接入过程的类型和所述第二信道接入过程的类型相同。
作为一个实施例,所述第一信道接入过程的类型和所述第二信道接入过程的类型不同。
作为一个实施例,所述第一信道接入过程的类型和所述第二信道接入过程的类型是所述第一信令指示的。
作为一个实施例,所述第一信道接入过程的类型和所述第二信道接入过程的类型是分别指示的。
作为一个实施例,所述第一信道接入过程的计数器的初始值的确定和所述第二信道接入过程的计数器的初始值的确定是相互独立的。
作为一个实施例,所述第一信道接入过程的竞争窗口(contention window)的确定和所述第二信道接入过程的竞争窗口的确定是相互独立的。
作为一个实施例,所述第一信道接入过程和所述第二信道接入过程在时域交叠。
作为一个实施例,所述第一信道接入过程和所述第二信道接入过程的结束时间相同。
实施例2
实施例2示例了根据本申请的一个实施例的网络架构的示意图,如附图2所示。
附图2说明了LTE(Long-Term Evolution,长期演进),LTE-A(Long-Term Evolution Advanced,增强长期演进)及未来5G系统的网络架构200。LTE,LTE-A及未来5G系统的网络架构200称为EPS(Evolved Packet System,演进分组系统)200。5G NR或LTE网络架构200可称为5GS(5G System)/EPS(Evolved Packet System,演进分组系统)200或某种其它合适术语。5GS/EPS 200可包括一个或一个以上UE(User Equipment,用户设备)201,一个与UE201进行副链路(Sidelink)通信的UE241,NG-RAN(下一代无线接入网络)202,5GC(5G CoreNetwork,5G核心网)/EPC(Evolved Packet Core,演进分组核心)210,HSS(Home Subscriber Server,归属签约用户服务器)/UDM(Unified Data Management,统一数据管理)220和因特网服务230。5GS/EPS200可与其它接入网络互连,但为了简单未展示这些实体/接口。如附图2所示,5GS/EPS200提供包交换服务,然而所属领域的技术人员将容易了解,贯穿本申请呈现的各种概念可扩展到 提供电路交换服务的网络。NG-RAN202包括NR(New Radio,新无线)节点B(gNB)203和其它gNB204。gNB203提供朝向UE201的用户和控制平面协议终止。gNB203可经由Xn接口(例如,回程)连接到其它gNB204。gNB203也可称为基站、基站收发台、无线电基站、无线电收发器、收发器功能、基本服务集合(BSS)、扩展服务集合(ESS)、TRP(发送接收点)或某种其它合适术语。gNB203为UE201提供对5GC/EPC210的接入点。UE201的实例包括蜂窝式电话、智能电话、会话起始协议(SIP)电话、膝上型计算机、个人数字助理(PDA)、卫星无线电、全球定位系统、多媒体装置、视频装置、数字音频播放器(例如,MP3播放器)、相机、游戏控制台、无人机、飞行器、窄带物理网设备、机器类型通信设备、陆地交通工具、汽车、可穿戴设备,或任何其它类似功能装置。所属领域的技术人员也可将UE201称为移动台、订户台、移动单元、订户单元、无线单元、远程单元、移动装置、无线装置、无线通信装置、远程装置、移动订户台、接入终端、移动终端、无线终端、远程终端、手持机、用户代理、移动客户端、客户端或某个其它合适术语。gNB203通过S1/NG接口连接到5GC/EPC210。5GC/EPC210包括MME(Mobility Management Entity,移动性管理实体)/AMF(Authentication Management Field,鉴权管理域)/SMF(Session Management Function,会话管理功能)211、其它MME/AMF/SMF214、S-GW(Service Gateway,服务网关)/UPF(User Plane Function,用户面功能)212以及P-GW(Packet Date Network Gateway,分组数据网络网关)/UPF213。MME/AMF/SMF211是处理UE201与5GC/EPC210之间的信令的控制节点。大体上MME/AMF/SMF211提供承载和连接管理。所有用户IP(Internet Protocal,因特网协议)包是通过S-GW/UPF212传送,S-GW/UPF212自身连接到P-GW/UPF213。P-GW提供UE IP地址分配以及其它功能。P-GW/UPF213连接到因特网服务230。因特网服务230包括运营商对应因特网协议服务,具体可包括因特网,内联网,IMS(IP Multimedia Subsystem,IP多媒体子系统)和包交换(Packet switching)服务。
作为一个实施例,本申请中的所述第一节点包括所述UE201。
作为一个实施例,本申请中的所述第一节点包括所述UE241。
作为一个实施例,本申请中的所述第二节点包括所述gNB203。
实施例3
实施例3示例了根据本申请的一个实施例的用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。
实施例3示出了根据本申请的一个用户平面和控制平面的无线协议架构的实施例的示意图,如附图3所示。图3是说明用于用户平面350和控制平面300的无线电协议架构的实施例的示意图,图3用三个层展示用于第一通信节点设备(UE,gNB或V2X中的RSU)和第二通信节点设备(gNB,UE或V2X中的RSU)之间,或者两个UE之间的控制平面300的无线电协议架构:层1、层2和层3。层1(L1层)是最低层且实施各种PHY(物理层)信号处理功能。L1层在本文将称为PHY301。层2(L2层)305在PHY301之上,负责第一通信节点设备与第二通信节点设备之间,或者两个UE之间的链路。L2层305包括MAC(Medium Access Control,媒体接入控制)子层302、RLC(Radio Link Control,无线链路层控制协议)子层303和PDCP(Packet Data Convergence Protocol,分组数据汇聚协议)子层304,这些子层终止于第二通信节点设备处。PDCP子层304提供不同无线电承载与逻辑信道之间的多路复用。PDCP子层304还提供通过加密数据包而提供安全性,以及提供第二通信节点设备之间的对第一通信节点设备的越区移动支持。RLC子层303提供上部层数据包的分段和重组装,丢失数据包的重新发射以及数据包的重排序以补偿由于HARQ造成的无序接收。MAC子层302提供逻辑与传输信道之间的多路复用。MAC子层302还负责在第一通信节点设备之间分配一个小区中的各种无线电资源(例如,资源块)。MAC子层302还负责HARQ操作。控制平面300中的层3(L3层)中的RRC(Radio Resource Control,无线电资源控制)子层306负责获得无线电资源(即,无线电承载)且使用第二通信节点设备与第一通信节点设备之间的RRC信令来配置下部层。用户平面350的无线电协议架构包括层1(L1层)和层2(L2层),在用户平面350中用于第一通信节点设备和第二通信节点设备的无线电协议架构对于物理层351,L2层355中的PDCP子层354,L2层355中的RLC子层353和L2层355中的MAC子层352来说和控制平面300中的对应层和子层大体上相同,但PDCP子层354还提供用于上部层数据包的标头压缩以减少无线电发射开销。用户平面350中的L2层355中还包括SDAP(Service Data Adaptation Protocol,服务数据适配协议)子层356,SDAP子层356负责QoS流和数据无线承载(DRB, Data Radio Bearer)之间的映射,以支持业务的多样性。虽然未图示,但第一通信节点设备可具有在L2层355之上的若干上部层,包括终止于网络侧上的P-GW处的网络层(例如,IP层)和终止于连接的另一端(例如,远端UE、服务器等等)处的应用层。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第一节点。
作为一个实施例,附图3中的无线协议架构适用于本申请中的所述第二节点。
作为一个实施例,所述第一信令生成于所述PHY301。
作为一个实施例,所述第一信令生成于所述MAC子层302。
作为一个实施例,所述第一信号生成于所述PHY301,或所述PHY351。
作为一个实施例,本申请中的所述更高层是指物理层以上的层。
作为一个实施例,本申请中的所述更高层是指MAC子层302。
作为一个实施例,本申请中的所述更高层是指RLC子层303。
作为一个实施例,本申请中的所述更高层是指PDCP子层304。
作为一个实施例,本申请中的所述更高层是指L2层305。
作为一个实施例,本申请中的所述更高层是指RRC层306。
实施例4
实施例4示例了根据本申请的一个实施例的第一通信设备和第二通信设备的示意图,如附图4所示。附图4是在接入网络中相互通信的第一通信设备410以及第二通信设备450的框图。
第一通信设备410包括控制器/处理器475,存储器476,接收处理器470,发射处理器416,多天线接收处理器472,多天线发射处理器471,发射器/接收器418和天线420。
第二通信设备450包括控制器/处理器459,存储器460,数据源467,发射处理器468,接收处理器456,多天线发射处理器457,多天线接收处理器458,发射器/接收器454和天线452。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第一通信设备410处,来自核心网络的上层数据包被提供到控制器/处理器475。控制器/处理器475实施L2层的功能性。在DL中,控制器/处理器475提供标头压缩、加密、包分段和重排序、逻辑与传输信道之间的多路复用,以及基于各种优先级量度对第二通信设备450的无线电资源分配。控制器/处理器475还负责HARQ操作、丢失包的重新发射,和到第二通信设备450的信令。发射处理器416和多天线发射处理器471实施用于L1层(即,物理层)的各种信号处理功能。发射处理器416实施编码和交错以促进第二通信设备450处的前向错误校正(FEC),以及基于各种调制方案(例如,二元相移键控(BPSK)、正交相移键控(QPSK)、M相移键控(M-PSK)、M正交振幅调制(M-QAM))的星座映射。多天线发射处理器471对经编码和调制后的符号进行数字空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,生成一个或多个并行流。发射处理器416随后将每一并行流映射到子载波,将调制后的符号在时域和/或频域中与参考信号(例如,导频)复用,且随后使用快速傅立叶逆变换(IFFT)以产生载运时域多载波符号流的物理信道。随后多天线发射处理器471对时域多载波符号流进行发送模拟预编码/波束赋型操作。每一发射器418把多天线发射处理器471提供的基带多载波符号流转化成射频流,随后提供到不同天线420。
在从所述第一通信设备410到所述第二通信设备450的传输中,在所述第二通信设备450处,每一接收器454通过其相应天线452接收信号。每一接收器454恢复调制到射频载波上的信息,且将射频流转化成基带多载波符号流提供到接收处理器456。接收处理器456和多天线接收处理器458实施L1层的各种信号处理功能。多天线接收处理器458对来自接收器454的基带多载波符号流进行接收模拟预编码/波束赋型操作。接收处理器456使用快速傅立叶变换(FFT)将接收模拟预编码/波束赋型操作后的基带多载波符号流从时域转换到频域。在频域,物理层数据信号和参考信号被接收处理器456解复用,其中参考信号将被用于信道估计,数据信号在多天线接收处理器458中经过多天线检测后恢复出以第二通信设备450为目的地的任何并行流。每一并行流上的符号在接收处理器456中被解调和恢复,并生成软决策。随后接收处理器456解码和解交错所述软决策以恢复在物理信道上由第一通信设备410发射的上层数据和控制信号。随后将上层数据和控制信号提供到控制器/处理器459。控制器/处理器459实施L2层的功能。控制器/处理器459可与存储程序代码和数据的存储器460相关联。存储器460可称为计算机可读媒体。在DL中, 控制器/处理器459提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自核心网络的上层数据包。随后将上层数据包提供到L2层之上的所有协议层。也可将各种控制信号提供到L3以用于L3处理。控制器/处理器459还负责使用确认(ACK)和/或否定确认(NACK)协议进行错误检测以支持HARQ操作。
在从所述第二通信设备450到所述第一通信设备410的传输中,在所述第二通信设备450处,使用数据源467来将上层数据包提供到控制器/处理器459。数据源467表示L2层之上的所有协议层。类似于在DL中所描述第一通信设备410处的发送功能,控制器/处理器459基于第一通信设备410的无线资源分配来实施标头压缩、加密、包分段和重排序以及逻辑与传输信道之间的多路复用,实施用于用户平面和控制平面的L2层功能。控制器/处理器459还负责HARQ操作、丢失包的重新发射,和到所述第一通信设备410的信令。发射处理器468执行调制映射、信道编码处理,多天线发射处理器457进行数字多天线空间预编码,包括基于码本的预编码和基于非码本的预编码,和波束赋型处理,随后发射处理器468将产生的并行流调制成多载波/单载波符号流,在多天线发射处理器457中经过模拟预编码/波束赋型操作后再经由发射器454提供到不同天线452。每一发射器454首先把多天线发射处理器457提供的基带符号流转化成射频符号流,再提供到天线452。
在从所述第二通信设备450到所述第一通信设备410的传输中,所述第一通信设备410处的功能类似于在从所述第一通信设备410到所述第二通信设备450的传输中所描述的所述第二通信设备450处的接收功能。每一接收器418通过其相应天线420接收射频信号,把接收到的射频信号转化成基带信号,并把基带信号提供到多天线接收处理器472和接收处理器470。接收处理器470和多天线接收处理器472共同实施L1层的功能。控制器/处理器475实施L2层功能。控制器/处理器475可与存储程序代码和数据的存储器476相关联。存储器476可称为计算机可读媒体。控制器/处理器475提供传输与逻辑信道之间的多路分用、包重组装、解密、标头解压缩、控制信号处理以恢复来自第二通信设备450的上层数据包。来自控制器/处理器475的上层数据包可被提供到核心网络。控制器/处理器475还负责使用ACK和/或NACK协议进行错误检测以支持HARQ操作。
作为一个实施例,所述第二通信设备450包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第二通信设备450装置至少:接收第一信令,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;执行第一信道接入过程和第二信道接入过程;在第一子频带中的第一时域资源块中发送所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃发送所述第一子信号和所述第二子信号;所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第二信道接入过程。
作为一个实施例,所述第二通信设备450包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:接收第一信令;执行第一信道接入过程和第二信道接入过程;在第一子频带中的第一时域资源块中发送所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃发送所述第一子信号和所述第二子信号。
作为一个实施例,所述第一通信设备410包括:至少一个处理器以及至少一个存储器,所述至少一个存储器包括计算机程序代码;所述至少一个存储器和所述计算机程序代码被配置成与所述至少一个处理器一起使用。所述第一通信设备410装置至少:发送第一信令,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;在第一子频带中的第一时域资源块中接收所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃接收所述第一子信号和所述第二子信号;所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被接收依赖所述第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被接收依赖所述第二信道接入过程。
作为一个实施例,所述第一通信设备410包括:一种存储计算机可读指令程序的存储器,所述计算机可读指令程序在由至少一个处理器执行时产生动作,所述动作包括:发送第一信令;在第一子频带中的第一时域资源块中接收所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域 资源块中放弃接收所述第一子信号和所述第二子信号。
作为一个实施例,本申请中的所述第一节点包括所述第二通信设备450。
作为一个实施例,本申请中的所述第二节点包括所述第一通信设备410。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于接收本申请中的所述第一信令;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于发送本申请中的所述第一信令。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于发送本申请中的所述第一信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于发送本申请中的所述第一子信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第一子信号。
作为一个实施例,{所述天线452,所述接收器454,所述接收处理器456,所述多天线接收处理器458,所述控制器/处理器459,所述存储器460,所述数据源467}中至少之一被用于发送本申请中的所述第二子信号;{所述天线420,所述发射器418,所述发射处理器416,所述多天线发射处理器471,所述控制器/处理器475,所述存储器476}中的至少之一被用于接收本申请中的所述第二子信号。
实施例5
实施例5示例了根据本申请的一个实施例的传输的流程图,如附图5所示。在附图5中,第一节点U1和第二节点N2分别是通过空中接口传输的两个通信节点。附图5中,方框F1至方框F3中的步骤分别是可选的.
对于第一节点U1,在步骤S100中接收第二信令;在步骤S101中接收第三信令;在步骤S10中接收第一信令;在步骤S11中执行第一信道接入过程和第二信道接入过程;在步骤S12中在第一子频带中的第一时域资源块中发送所述第一子信号和所述第二子信号中的至少之一。
对于第二节点N2,在步骤S200中发送第二信令;在步骤S201中发送第三信令;在步骤S20中发送第一信令;在步骤S21中在第一子频带中的第一时域资源块中接收所述第一子信号和所述第二子信号中的至少之一。
在实施例5中,所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第二信道接入过程;所述第二信令被用于确定第一时间窗和第一索引集合;所述第三信令指示第一TCI状态组,所述第一TCI状态组包括至少两个TCI状态。
作为一个实施例,所述第一节点U1是本申请中的所述第一节点。
作为一个实施例,所述第二节点N2是本申请中的所述第二节点。
作为一个实施例,所述第二节点N2和所述第一节点U1之间的空中接口包括基站设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点N2和所述第一节点U1之间的空中接口包括中继节点设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点N2和所述第一节点U1之间的空中接口包括用户设备与用户设备之间的无线接口。
作为一个实施例,所述第二节点N2是所述第一节点U1的服务小区维持基站。
作为一个实施例,所述第一信令被所述第一节点U1用于调度所述第一信号。
作为一个实施例,所述第一信令被所述第一节点U1用于调度所述第一子信号。
作为一个实施例,所述第一信令被所述第一节点U1用于调度所述第二子信号。
作为一个实施例,所述第一信道是PUSCH。
作为一个实施例,所述第二信道是PUSCH。
作为一个实施例,所述第一信道对应的传输信道包括UL-SCH。
作为一个实施例,所述第二信道对应的传输信道包括UL-SCH。
作为一个实施例,所述第一子信号在PUSCH上传输。
作为一个实施例,所述第二子信号在PUSCH上传输。
作为一个实施例,所述第一节点U1在第一子频带中的第一时域资源块中发送所述第一子信号和所述第二子信号中的至少之一,所述第二节点N2在第一子频带中的第一时域资源块中接收所述第一子信号和所述第二子信号中的至少之一。
作为一个实施例,所述第一节点U1在第一子频带中的第一时域资源块中发送所述第一子信号,所述第二节点N2在第一子频带中的第一时域资源块中接收所述第一子信号。
作为一个实施例,所述第一节点U1在第一子频带中的第一时域资源块中发送所述第二子信号,所述第二节点N2在第一子频带中的第一时域资源块中接收所述第二子信号。
作为一个实施例,所述第一节点U1在第一子频带中的第一时域资源块中发送所述第一子信号和所述第二子信号,所述第二节点N2在第一子频带中的第一时域资源块中接收所述第一子信号和所述第二子信号。
作为一个实施例,所述第一节点U1在第一子频带中的第一时域资源块中放弃发送所述第一子信号和所述第二子信号,所述第二节点N2在第一子频带中的第一时域资源块中放弃接收所述第一子信号和所述第二子信号。
作为一个实施例,所述第一节点U1在第一子频带中的第一时域资源块中放弃发送所述第一子信号,所述第二节点N2在第一子频带中的第一时域资源块中放弃接收所述第一子信号。
作为一个实施例,所述第一节点U1在第一子频带中的第一时域资源块中放弃发送所述第二子信号,所述第二节点N2在第一子频带中的第一时域资源块中放弃接收所述第二子信号。
作为一个实施例,附图5中的方框F51中的步骤存在,所述第一节点接收第二信令,所述第二信令被所述第一节点用于确定第一时间窗和第一索引集合。
作为一个实施例,附图5中的方框F51中的步骤存在,所述第二节点发送第二信令,所述第二信令被所述第一节点用于确定第一时间窗和第一索引集合。
作为一个实施例,附图5中的方框F52中的步骤存在,所述第一节点接收第三信令。
作为一个实施例,附图5中的方框F52中的步骤存在,所述第二节点发送第三信令。
作为一个实施例,附图5中的方框F53中的步骤存在,所述第一节点在第一子频带中的第一时域资源块中发送所述第一子信号和所述第二子信号中的至少之一。
作为一个实施例,附图5中的方框F53中的步骤存在,所述第二节点在第一子频带中的第一时域资源块中接收所述第一子信号和所述第二子信号中的至少之一。
作为一个实施例,附图5中的方框F53中的步骤不存在,所述第一节点在第一子频带中的第一时域资源块中放弃发送所述第一子信号和所述第二子信号。
作为一个实施例,附图5中的方框F53中的步骤不存在,所述第二节点在第一子频带中的第一时域资源块中放弃接收所述第一子信号和所述第二子信号。
实施例6
实施例6示例了根据本申请的一个实施例的第一SRS资源和第二SRS资源的示意图;如附图6所示。
在实施例6中,第一SRS资源被用于确定所述第一子信号的空间关系,第二SRS资源被用于确定所述第二子信号的空间关系;所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合。
作为一个实施例,所述第一SRS资源被所述第一节点用于确定所述第一子信号的空间关系。
作为一个实施例,所述第二SRS资源被所述第一节点用于确定所述第二子信号的空间关系。
作为一个实施例,所述SRS是指Sounding Reference Signal,探测参考信号。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合分别包括至少一个SRS资源。
作为一个实施例,所述第一SRS资源集合被一个SRS-ResourceSetId所标识,所述第二SRS资源集合被一个SRS-ResourceSetId所标识。
作为一个实施例,所述第一SRS资源集合的SRS-ResourceSetId不同于所述第二SRS资源集合的SRS-ResourceSetId。
作为一个实施例,所述第一SRS资源集合的更高层参数“usage”和所述第二SRS资源集合的更高层参数“usage”都被设置为“nonCodebook”,或者,所述第一SRS资源集合的更高层参数“usage”和所述第二SRS资源集合的更高层参数“usage”都被设置为“codebook”。
作为一个实施例,所述第一SRS资源集合和所述第二SRS资源集合被同一个更高层参数配置,所述同一个更高层参数的名称里包括“srs-ResourceSetToAddModList”。
作为一个实施例,所述第一节点被同一个更高层参数配置了两个SRS资源集合,所述两个SRS资源集合关联的更高层参数“usage”都被设置为“nonCodebook”或都被设置为“codebook”,所述同一个更高层参数的名称里包括“srs-ResourceSetToAddModList”。
作为一个实施例,所述第一SRS资源集合中的每个SRS资源包括至少一个SRS端口,所述第二SRS资源集合中的每个SRS资源包括至少一个SRS端口。
作为一个实施例,所述第一SRS资源集合中的每个SRS资源被一个SRS-ResourceId所标识,所述第二SRS资源集合中的每个SRS资源被一个SRS-ResourceId所标识。
作为一个实施例,所述第一SRS资源集合被DCI格式0_1指示。
作为一个实施例,所述第一SRS资源集合被SRS resource set indicator(SRS资源集合指示器)指示。
作为一个实施例,所述第一SRS资源被DCI格式0_1所指示。
作为一个实施例,所述第一SRS资源被SRS resource indicator(SRS资源指示器)指示。
作为一个实施例,当所述第一SRS资源集合关联的更高层参数“usage”被设置为“nonCodebook”时,所述第一SRS资源集合中包括的SRS资源的数量依赖MIMO系统的最大层(layer)数。
作为上述实施例的一个子实施例,所述第一SRS资源集合包括的SRS资源的数量依赖参数maxMIMO-Layers,所述参数maxMIMO-Layers被IE PUSCH-ServingCellConfig配置。
作为上述实施例的一个子实施例,所述第一SRS资源集合包括的SRS资源的数量依赖所述第一节点所支持的PUSCH的层数。
作为一个实施例,所述第二SRS资源集合被DCI格式0_1指示。
作为一个实施例,所述第二SRS资源集合被SRS resource set indicator(SRS资源集合指示器)所指示。
作为一个实施例,所述第二SRS资源被DCI格式0_1所指示。
作为一个实施例,所述第二SRS资源被SRS resource indicator(SRS资源指示器)所指示。
作为一个实施例,当所述第二SRS资源集合关联的更高层参数“usage”被设置为“nonCodebook”时,所述第一SRS资源集合中包括的SRS资源的数量依赖MIMO系统的最大层(layer)数。
作为上述实施例的一个子实施例,所述第二SRS资源集合包括的SRS资源的数量依赖参数maxMIMO-Layers,所述参数maxMIMO-Layers被IE PUSCH-ServingCellConfig配置。
作为上述实施例的一个子实施例,所述第二SRS资源集合包括的SRS资源的数量依赖所述第一节点所支持的PUSCH的层数。
作为一个实施例,所述第一SRS资源的类型被参数resourceType配置。
作为一个实施例,所述第一SRS资源的类型包括周期的(periodic)、半持续的(semi-persistent),、非周期的(aperiodic)。
作为一个实施例,当所述第一SRS资源的类型是半持续的时,所述第一SRS资源被MAC CE激活或者去激活。
作为一个实施例,当所述第一SRS资源的类型是非周期的时,所述第一SRS资源被DCI触发。
作为一个实施例,所述第二SRS资源的类型被参数resourceType配置。
作为一个实施例,所述第二SRS资源的类型包括周期的(periodic)、半持续的(semi-persistent),、非周期的(aperiodic)。
作为一个实施例,当所述第二SRS资源的类型是半持续的时,所述第二SRS资源被MAC CE激活或者去激活。
作为一个实施例,当所述第二SRS资源的类型是非周期的时,所述第二SRS资源被DCI触发。
作为一个实施例,本申请中的所述更高层是指物理层以上的层。
作为一个实施例,所述空间关系包括TCI状态。
作为一个实施例,所述空间关系包括QCL参数。
作为一个实施例,所述空间关系包括QCL关系。
作为一个实施例,所述空间关系包括QCL假设。
作为一个实施例,所述空间关系包括空域滤波器(spatial domain filter)。
作为一个实施例,所述空间关系包括空域发送滤波器(spatial domain transmission filter)。
作为一个实施例,所述空间关系包括发送空间滤波器(Tx spatial filter)。
作为一个实施例,所述空间关系包括发送天线端口。
作为一个实施例,所述空间关系包括预编码器。
作为一个实施例,所述第一子信号被和所述第一SRS资源的SRS端口相同的天线端口发送。
作为一个实施例,所述第一节点用相同的空域滤波器发送所述第一子信号被和在所述第一SRS资源中发送SRS。
作为一个实施例,所述第一子信号和所述第一SRS资源中的SRS采用相同的预编码器。
作为一个实施例,如果被发送,所述第一子信号被和所述第一SRS资源的SRS端口相同的天线端口发送。
作为一个实施例,如果发送所述第一子信号,所述第一节点用相同的空域滤波器发送所述第一子信号被和在所述第一SRS资源中发送SRS。
作为一个实施例,如果被发送,所述第一子信号和所述第一SRS资源中的SRS采用相同的预编码器。
作为一个实施例,所述第二子信号被和所述第一SRS资源的SRS端口相同的天线端口发送。
作为一个实施例,所述第一节点用相同的空域滤波器发送所述第二子信号被和在所述第二SRS资源中发送SRS。
作为一个实施例,所述第二子信号和所述第二SRS资源中的SRS采用相同的预编码器。
作为一个实施例,如果被发送,所述第二子信号被和所述第一SRS资源的SRS端口相同的天线端口发送。
作为一个实施例,如果发送所述第二子信号,所述第一节点用相同的空域滤波器发送所述第二子信号被和在所述第二SRS资源中发送SRS。
作为一个实施例,如果被发送,所述第二子信号和所述第二SRS资源中的SRS采用相同的预编码器。
作为一个实施例,所述第一SRS资源的发送波束被用于确定所述第一子信号的发送波束。
作为一个实施例,所述第一子信号的发送波束和所述第一SRS资源的发送波束相同。
作为一个实施例,所述第二SRS资源的发送波束被用于确定所述第二子信号的发送波束。
作为一个实施例,所述第二子信号的发送波束和所述第二SRS资源的发送波束相同。
实施例7
实施例7示例了根据本申请的一个实施例的第二信令被用于确定第一时间窗和第一索引集合的示意图;如附图7所示。
在实施例7中,接收第二信令,所述第二信令被用于确定第一时间窗和第一索引集合;所述第一时域资源块位于所述第一时间窗之内;所述第一子信号的空间关系和第一索引有关,所述第二子信号的空间关系和第二索引有关;所述第一信道接入过程的所述类型依赖所述第一索引是否属于所述第一索引集合,所述第二信道接入过程的所述类型依赖所述第二索引是否属于所述第一索引集合。
作为一个实施例,所述第二信令被所述第一节点用于确定第一时间窗和第一索引集合。
作为一个实施例,所述第二信令包括DCI。
作为一个实施例,所述第二信令包括DCI format 2_0。
作为一个实施例,所述第二信令是UE组公共(UE-group common)的。
作为一个实施例,所述第二信令包括被SFI-RNTI(Slot Format Indication,时隙格式指示器)加扰的CRC(Cyclic Redundancy Check,循环冗余校验)。
作为一个实施例,所述第二信令包括至少一个Slot format indicator域。
作为一个实施例,所述第二信令包括至少一个Slot format indicator域,所述第二信令被一个更高层参数配置,所述一个更高层参数的名称里包括“slotFormatCombToAddModList”。
作为一个实施例,所述第二信令包括至少一个Available RB set Indicator(可用RB集合指示器)域。
作为一个实施例,所述第二信令包括至少一个Available RB set Indicator域,所述第二信令被一个更高层参数配置,所述一个更高层参数的名称里包括“availableRB-SetsToAddModList”。
作为一个实施例,所述第二信令包括至少一个COT duration indicator(信道占用时间指示器)域。
作为一个实施例,所述第二信令包括至少一个COT duration indicator域,所述第二信令被一个更高层参数配置,所述一个更高层参数的名称里包括“co-DurationsPerCellToAddModList”。
作为一个实施例,所述第二信令包括至少一个Search space set group switching flag(搜索空间集合组切换标识)域。
作为一个实施例,所述第二信令包括至少一个Search space set group switching flag域,所述第二信令被一个更高层参数配置,所述一个更高层参数的名称里包括“switchTriggerToAddModList”。
作为一个实施例,所述第二信令是DCI格式2_0,所述DCI格式2_0的载荷(playload)尺寸被一个更高层参数配置,所述一个更高层参数的名称里包括“dci-PayloadSize”。
作为一个实施例,所述第二信令是DCI格式2_0,所述DCI格式2_0至多包括128个比特。
作为一个实施例,所述第二信令指示所述第一时间窗。
作为一个实施例,所述第二信令包括第一域,所述第二信令中的所述第一域被用于确定所述第一时间窗。
作为一个实施例,所述第二信令中的所述第一域指示所述第一时间窗的接收时刻。
作为一个实施例,所述第二信令中的所述第一域指示剩余信道占用持续时间(remaining channel occupancy duration)。
作为一个实施例,所述第一域是一个DCI域。
作为一个实施例,所述第一域包括DCI域COT duration indicator。
作为一个实施例,所述第一域是DCI域COT duration indicator。
作为一个实施例,所述第一域的位置被参数positionInDCI配置。
作为一个实施例,所述第一域被参数co-DurationList配置。
作为一个实施例,所述第一域的值被参数co-Duration配置。
作为一个实施例,所述第一时间窗是一个COT。
作为一个实施例,所述第一时间窗属于一个COT。
作为一个实施例,所述COT是指Channel Occupancy Time,信道占用时间。
作为一个实施例,所述第一时间窗的单位是时隙。
作为一个实施例,所述第一时间窗的长度不大于一个MCOT(Maximum COT,最大信道占用时间)。
作为一个实施例,所述第一时间窗的长度不大于Tm cop,p,所述Tm cop,p是最大信道占用时间。
作为一个实施例,所述第二信令指示所述第一索引集合。
作为一个实施例,所述第二信令指示所述第一索引集合中的每个索引。
作为一个实施例,所述第二信令指示所述第二索引集合。
作为一个实施例,所述第二信令指示所述第二索引集合中的每个索引。
作为一个实施例,所述句子所述第一子信号的空间关系和第一索引有关的意思包括:所述第一索引被用于标识所述第一SRS资源。
作为一个实施例,所述句子所述第一子信号的空间关系和第一索引有关的意思包括:所述第一索引被用于标识所述第一SRS资源集合。
作为一个实施例,所述第一索引是所述第一SRS资源的SRS-ResourceId。
作为一个实施例,所述第一索引是所述第一SRS资源集合的SRS-ResourceSetId。
作为一个实施例,所述句子所述第二子信号的空间关系和第二索引有关的意思包括:所述第二索引被用于标识所述第二SRS资源。
作为一个实施例,所述句子所述第二子信号的空间关系和第二索引有关的意思包括:所述第二索引被用于标识所述第二SRS资源集合。
作为一个实施例,所述第二索引是所述第二SRS资源的SRS-ResourceId。
作为一个实施例,所述第二索引是所述第二SRS资源集合的SRS-ResourceSetId。
作为一个实施例,所述第一索引被SRS resource indicator域指示。
作为一个实施例,所述第一索引被Second SRS resource indicator域指示。
作为一个实施例,所述第二索引被SRS resource indicator域指示。
作为一个实施例,所述第二索引被Second SRS resource indicator域指示。
作为一个实施例,所述第一索引和所述第二索引分别被SRS resource indicator域和Second SRS resource indicator域指示。
作为一个实施例,所述第一索引和所述第二索引分别被Second SRS resource indicator域和SRS resource indicator域指示。
作为一个实施例,所述第一索引被SRS resource set indicator域指示。
作为一个实施例,所述第二索引被SRS resource set indicator域指示。
作为一个实施例,所述第一索引是所述第一SRS资源集合的SRS-ResourceSetId,所述第二索引是所述第二SRS资源集合的SRS-ResourceSetId,且所述第一SRS资源集合的所述SRS-ResourceSetId低于所述第二SRS资源集合的所述SRS-ResourceSetId。
作为一个实施例,所述第一索引是所述第一SRS资源集合的SRS-ResourceSetId,所述第二索引是所述第二SRS资源集合的SRS-ResourceSetId,且所述第一SRS资源集合的所述SRS-ResourceSetId高于所述第二SRS资源集合的所述SRS-ResourceSetId。
作为一个实施例,所述第一索引集合被一个SRS-ResourceSetId标识。
作为一个实施例,所述第一索引集合包括至少一个SRS-ResourceId。
作为一个实施例,所述第一索引集合包括多个SRS-ResourceId。
作为一个实施例,所述第一索引集合被IE SRS-Config配置。
作为一个实施例,IE SRS-Config在一个BWP中配置至少一个SRS-ResourceSetId,所述至少一个SRS-ResourceSetId中的任意两个索引集合不相同,所述第一索引集合与所述至少一个SRS-ResourceSetId中的任一索引集合不相同。
作为一个实施例,所述第二索引集合被一个SRS-ResourceSetId标识。
作为一个实施例,所述第二索引集合包括至少一个SRS-ResourceId。
作为一个实施例,所述第二索引集合包括多个SRS-ResourceId。
作为一个实施例,所述第二索引集合被IE SRS-Config配置。
作为一个实施例,IE SRS-Config在一个BWP中配置至少一个SRS-ResourceSetId,所述至少一个SRS-ResourceSetId中的任意两个索引集合不相同,所述第二索引集合与所述至少一个SRS-ResourceSetId中的任一索引集合不相同。
作为一个实施例,当所述第一索引属于所述第一索引集合时,所述第一信道接入过程是类型2A的信道接入过程(Type 2A channel access procedure)。
作为一个实施例,当所述第一索引属于所述第一索引集合时,所述第一信道接入过程是类型2的信道接入过程(Type 2 channel access procedure)。
作为一个实施例,当所述第一索引不属于所述第一索引集合时,所述第一信道接入过程是类型1的信道接入过程(Type 1 channel access procedure)。
作为一个实施例,当所述第二索引属于所述第二索引集合时,所述第二信道接入过程是类型2A的信道接入过程(Type 2A channel access procedure)。
作为一个实施例,当所述第二索引属于所述第二索引集合时,所述第二信道接入过程是类型2的信道接入过程(Type 2 channel access procedure)。
作为一个实施例,当所述第二索引不属于所述第二索引集合时,所述第二信道接入过程是类型1的信道接入过程(Type 1 channel access procedure)。
作为一个实施例,当所述第一索引属于所述第一索引集合时,所述第一节点将针对所述第一子信道的信道接入过程从类型1的信道接入过程转换(switch)为2A的信道接入过程。
作为一个实施例,当所述第二索引属于所述第二索引集合时,所述第一节点将针对所述第二子信道的信道接入过程从类型1的信道接入过程转换(switch)为2A的信道接入过程。
作为一个实施例,所述第一信道接入过程的类型是第一类型集合中之一,所述第二信道接入过程的类型是所述第一类型集合中之一,所述第一类型集合包括至少两种信道接入过程的类型。
作为一个实施例,所述第一类型集合包括类型1和类型2。
作为一个实施例,所述第一类型集合包括类型1和类型2A。
作为一个实施例,所述第一类型集合包括类型1,类型2A,类型2B和类型2C。
作为一个实施例,所述第一类型集合包括类型2A,类型2B或类型2C中的至少之一和类型1。
实施例8
实施例8示例了根据本申请的一个实施例的第一TCI状态和第二TCI状态的示意图;如附图8所示。
在实施例8中,接收第三信令,所述第三信令指示第一TCI状态组,所述第一TCI状态组包括至少两个TCI状态;第一TCI状态和第二TCI状态分别被用于应用于所述第一子信号和所述第二子信号;所述第一TCI状态和所述第二TCI状态均属于所述第一TCI状态组;所述第一索引依赖所述第一TCI状态在所述第一TCI状态组中的位置,所述第二索引依赖所述第二TCI状态在所述第一TCI状态组中的位置。
作为一个实施例,所述第三信令所属的协议层包括MAC层。
作为一个实施例,所述第三信令包括MAC CE。
作为一个实施例,所述第三信令所属的协议层包括物理层。
作为一个实施例,所述第三信令包括一个下行调度。
作为一个实施例,所述第三信令包括一个下行DCI。
作为一个实施例,所述第三信令包括DCI。
作为一个实施例,所述第三信令是DCI format 1_1或DCI format 1_2中之一。
作为一个实施例,所述第三信令包括第二域,所述第三信令中的所述第二域指示所述第一TCI状态组。
作为一个实施例,所述第二域包括DCI域Transmission configuration indication。
作为一个实施例,所述第二域包括DCI域Transmission configuration indication的部分比特。
作为一个实施例,所述第二域包括DCI域Transmission configuration indication的全部比特。
作为一个实施例,当参数tci-PresentDCI没有被配置时,所述第二域包括0个比特。
作为一个实施例,当参数tci-PresentDCI被配置时,所述第二域包括3个比特
作为一个实施例,当参数tci-PresentDCI-1-2没有被配置时,所述第二域包括0个比特。
作为一个实施例,当参数tci-PresentDCI-1-2被配置时,所述第二域包括的比特的数量依赖参数tci-PresentDCI-1-2。
作为一个实施例,当参数tci-PresentDCI-1-2被配置时,所述第二域包括的比特的数量是1、2或者3。
作为一个实施例,所述第二域包括2、4或者8个码点(codepoint)。
作为一个实施例,所述第二域包括8个码点。
作为一个实施例,所述第二域包括的任意一个码点指示一个TCI状态。
作为一个实施例,所述第二域包括的任意一个码点指示一对TCI状态,所述一对TCI状态包括2个TCI状态。
作为一个实施例,所述第二域指示的TCI状态被一个MAC CE激活,所述被一个MAC CE激活的TCI状态的数量不大于8。
作为一个实施例,所述第二域被用于指示所述第一TCI状态组。
作为一个实施例,所述第二域被用于指示所述第一TCI状态。
作为一个实施例,所述第二域被用于指示所述第二TCI状态。
作为一个实施例,所述第一TCI状态组中的任一TCI状态被用于上行。
作为一个实施例,所述第一TCI状态组中的任一TCI状态被用于配置一个被用于确定PUSCH,PUCCH和SRS的上行发送空间滤波器的参考信号。
作为一个实施例,所述第一TCI状态组中的任一TCI状态被同时用于上行和下行。
作为一个实施例,所述第一TCI状态组中的任一TCI状态被用于配置一个用于PDSCH的DMRS,PDCCH的DMRS和CSI-RS的准共址,以及用于确定PUSCH,PUCCH和SRS的上行发送空间滤波器的参考信号。
作为一个实施例,所述第一TCI状态组中存在至少一个TCI状态仅被用于下行。
作为一个实施例,所述第一TCI状态组中存在至少一个TCI状态仅被用于上行。
作为一个实施例,所述第一TCI状态组中存在至少一个TCI状态被用于配置一个用于PDSCH的DMRS,PDCCH的DMRS和CSI-RS的准共址的参考信号。
作为一个实施例,所述第一TCI状态组中存在至少一个TCI状态被用于配置一个被用于确定 PUSCH,PUCCH和SRS的上行发送空间滤波器的参考信号。
作为一个实施例,所述第一TCI状态组中的所有TCI状态对应同一个TCI码点(codepoint)。
作为一个实施例,所述第一TCI状态组包括的TCI状态的数量等于2。
作为一个实施例,所述第一TCI状态组包括的TCI状态的数量大于2。
作为一个实施例,所述第一TCI状态组中的所有TCI状态依次排列。
作为一个实施例,所述第一TCI状态被用于上行。
作为一个实施例,所述第一TCI状态仅被用于上行。
作为一个实施例,所述第一TCI状态同时被用于上行和下行。
作为一个实施例,所述第一TCI状态是一个UL-TCIState。
作为一个实施例,所述第一TCI状态是一个TCIState。
作为一个实施例,所述第一TCI状态被更高层参数dl-OrJoint-TCIStateList配置。
作为一个实施例,所述第一TCI状态被更高层参数ul-TCI-StateList配置。
作为一个实施例,所述第二TCI状态被用于上行。
作为一个实施例,所述第二TCI状态仅被用于上行。
作为一个实施例,所述第二TCI状态同时被用于上行和下行。
作为一个实施例,所述第二TCI状态是一个UL-TCIState。
作为一个实施例,所述第二TCI状态是一个TCIState。
作为一个实施例,所述第二TCI状态被更高层参数dl-OrJoint-TCIStateList配置。
作为一个实施例,所述第二TCI状态被更高层参数ul-TCI-StateList配置。
作为一个实施例,所述第一TCI状态被应用于所述第一SRS资源。
作为一个实施例,所述第一TCI状态被应用于所述第一SRS资源集合。
作为一个实施例,所述第一TCI状态被应用于所述第一SRS资源集合中的每个SRS资源。
作为一个实施例,所述第二TCI状态被应用于所述第二SRS资源。
作为一个实施例,所述第二TCI状态被应用于所述第二SRS资源集合。
作为一个实施例,所述第二TCI状态被应用于所述第二SRS资源集合中的每个SRS资源。
作为一个实施例,所述第一TCI状态指示第一参考信号资源,所述第二TCI状态指示第二参考信号资源。
作为一个实施例,所述第一TCI状态指示所述第一参考信号资源对应的QCL type是QCL TypeD。
作为一个实施例,所述第二TCI状态指示所述第二参考信号资源对应的QCL type是QCL TypeD。
作为一个实施例,所述第一参考信号资源是CSI-RS资源,SS/PBCH资源或SRS资源中之一。
作为一个实施例,所述第二参考信号资源是CSI-RS资源,SS/PBCH资源或SRS资源中之一。
作为一个实施例,所述第一参考信号资源被用于确定发送所述第一SRS资源的空域滤波器。
作为一个实施例,所述第二参考信号资源被用于确定发送所述第二SRS资源的空域滤波器。
作为一个实施例,所述第一节点用相同的空域滤波器在所述第一SRS资源中发送SRS和在所述第一参考信号资源中接收或发送参考信号。
作为一个实施例,所述第一节点用相同的空域滤波器在所述第二SRS资源中发送SRS和在所述第二参考信号资源中接收或发送参考信号。
作为一个实施例,所述第一参考信号资源的空域滤波器被用于确定所述第一信道接入过程的感知波束的空域滤波器;所述第二参考信号资源的空域滤波器被用于确定所述第二信道接入过程的感知波束的空域滤波器。
作为一个实施例,所述第一信道接入过程的感知波束的空域滤波器和所述第一节点在所述第一参考信号资源中接收或发送参考信号的空域滤波器相同。
作为一个实施例,所述第二信道接入过程的感知波束的空域滤波器和所述第一节点在所述第二参考信号资源中接收或发送参考信号的空域滤波器相同。
作为一个实施例,所述第一信道接入过程的感知波束的空域滤波器覆盖所述第一参考信号资源的波束,所述第二信道接入过程的感知波束的空域滤波器覆盖所述第二参考信号资源的波束。
作为一个实施例,所述句子所述第一子信号的空间关系和第一索引有关的意思包括:第一参考信号被用于确定所述第一子信号的空间关系,所述第一TCI状态指示所述第一参考信号资源,所述第一索引依赖所述第一TCI状态在所述第一TCI状态组中的位置。
作为一个实施例,所述句子所述第一子信号的空间关系和第一索引有关的意思包括:第一参考信号被用于确定所述第一SRS资源的空域滤波器,所述第一SRS资源被用于确定所述第一子信号的空间关系,所述第一TCI状态指示所述第一参考信号资源,所述第一索引依赖所述第一TCI状态在所述第一TCI状态组中的位置。
作为一个实施例,所述句子所述第二子信号的空间关系和第二索引有关的意思包括:第二参考信号被用于确定所述第二子信号的空间关系,所述第二TCI状态指示所述第一参考信号资源,所述第二索引依赖所述第二TCI状态在所述第一TCI状态组中的位置。
作为一个实施例,所述句子所述第二子信号的空间关系和第二索引有关的意思包括:第二参考信号被用于确定所述第二SRS资源的空域滤波器,所述第二SRS资源被用于确定所述第二子信号的空间关系,所述第二TCI状态指示所述第二参考信号资源,所述第二索引依赖所述第二TCI状态在所述第一TCI状态组中的位置。
作为一个实施例,所述第一TCI状态是所述第一TCI状态组中的第i1个TCI状态,所述第一索引等于所述i1-1;所述i1是不大于所述第一TCI状态组包括的TCI状态数量的正整数。
作为一个实施例,所述第二TCI状态是所述第一TCI状态组中的第i2个TCI状态,所述第二索引等于所述i2-1;所述i2是不大于所述第一TCI状态组包括的TCI状态数量的正整数。
作为一个实施例,所述第一TCI状态是所述第一TCI状态组中的第i1个TCI状态,所述第一索引等于所述i1;所述i1是不大于所述第一TCI状态组包括的TCI状态数量的正整数。
作为一个实施例,所述第二TCI状态是所述第一TCI状态组中的第i2个TCI状态,所述第二索引等于所述i2;所述i2是不大于所述第一TCI状态组包括的TCI状态数量的正整数。
作为一个实施例,所述第一TCI状态是所述第一TCI状态组中仅被用于上行的TCI状态中的第i1个TCI状态,所述第一索引等于所述i1-1;所述i1是不大于所述第一TCI状态组包括的仅被用于上行的TCI状态数量的正整数。
作为一个实施例,所述第二TCI状态是所述第一TCI状态组中仅被用于上行的TCI状态中的第i2个TCI状态,所述第二索引等于所述i2-1;所述i2是不大于所述第一TCI状态组包括的仅被用于上行的TCI状态数量的正整数。
作为一个实施例,所述第一TCI状态是所述第一TCI状态组中仅被用于上行的TCI状态中的第i1个TCI状态,所述第一索引等于所述i1;所述i1是不大于所述第一TCI状态组包括的仅被用于上行的TCI状态数量的正整数。
作为一个实施例,所述第二TCI状态是所述第一TCI状态组中仅被用于上行的TCI状态中的第i2个TCI状态,所述第二索引等于所述i2;所述i2是不大于所述第一TCI状态组包括的仅被用于上行的TCI状态数量的正整数。
实施例9
实施例9示例了根据本申请的一个实施例的第一子信号和第二子信号的示意图;如附图9所示。
在实施例9中,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送和所述第一子信号和所述第二子信号是否携带同一个传输块有关。
作为一个实施例,所述传输块是指Transport Block。
作为一个实施例,当所述第一信道接入过程和所述第二信道接入过程中的至少之一判断所述第一子频带忙(busy)时,所述第一子信号或所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送和所述第一子信号和所述第二子信号是否携带同一个传输块有关。
作为一个实施例,当所述第一信道接入过程和所述第二信道接入过程中的至少之一判断所述第一子频带不能(unavailable)被用于执行传输时,所述第一子信号或所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送和所述第一子信号和所述第二子信号是否携带同一个传输块有关。
作为一个实施例,当且仅当所述第一信道接入过程和所述第二信道接入过程中的至少之一判断所述第一子频带忙(busy)时,所述第一子信号或所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送和所述第一子信号和所述第二子信号是否携带同一个传输块有关。
作为一个实施例,当且仅当所述第一信道接入过程和所述第二信道接入过程中的至少之一判断所述第一子频带不能(unavailable)被用于执行传输时,所述第一子信号或所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送和所述第一子信号和所述第二子信号是否携带同一个传输块有关。
作为一个实施例,当所述第一子信号和所述第二子信号携带同一个传输块时,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中一起被发送或者一起被放弃发送。
作为一个实施例,当所述第一信道接入过程或所述第二信道接入过程中的至少之一判断所述第一子频带不能被用于执行传输并且所述第一子信号和所述第二子信号携带同一个传输块时,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中被放弃发送。
作为一个实施例,当所述第一信道接入过程或所述第二信道接入过程中的至少之一判断所述第一子频 带不能被用于执行传输并且所述第一子信号和所述第二子信号携带不同传输块时,所述第一子信号和所述第二子信号中的至少之一在所述第一子频带中的所述第一时域资源块中被发送。
作为一个实施例,当所述第一信道接入过程判断所述第一子频带不能被用于执行传输,所述第二信道接入过程判断所述第一子频带能被用于执行传输,并且所述第一子信号和所述第二子信号携带不同传输块时,所述第一子信号在所述第一子频带中的所述第一时域资源块中被放弃发送,所述第二子信号在所述第一子频带中的所述第一时域资源块中被发送;当所述第一信道接入过程判断所述第一子频带能被用于执行传输,所述第二信道接入过程判断所述第一子频带能不被用于执行传输,并且所述第一子信号和所述第二子信号携带不同传输块时,所述第一子信号在所述第一子频带中的所述第一时域资源块中被发送,所述第二子信号在所述第一子频带中的所述第一时域资源块中被放弃发送。
作为一个实施例,当所述第一信道接入过程和所述第二信道接入过程都判断所述第一子频带可以被用于执行传输时,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中都被发送。
作为一个实施例,更高层信令被用于确定所述第一子信号和所述第二子信号是否属于同一个传输块。
作为一个实施例,所述第一信令被用于确定所述第一子信号和所述第二子信号是否属于同一个传输块。
作为一个实施例,所述第一子信号和所述第二子信号是否属于同一个传输块和所述第一信号的层数有关。
作为一个实施例,当所述第一信号的层数大于4时,所述第一子信号和所述第二子信号属于不同的传输块;当所述第一信号的层数不大于4时,所述第一子信号和所述第二子信号属于同一个传输块。
作为一个实施例,当所述第一信号的层数大于4时,所述第一子信号和所述第二子信号属于同一个的传输块。
实施例10
实施例10示例了根据本申请的一个实施例的第一信道接入过程和第二信道接入过程的示意图;如附图10所示。
在实施例10中,所述第一信道接入过程的感知波束的覆盖范围不同于所述第二信道接入过程的感知波束的覆盖范围。
作为一个实施例,所述第一信道接入过程的感知波束的覆盖范围和所述第二信道接入过程的感知波束的覆盖范围仅部分交叠。
作为一个实施例,所述第一信道接入过程的感知波束的覆盖范围和所述第二信道接入过程的感知波束的覆盖范围不交叠。
作为一个实施例,所述第一信道接入过程的感知波束的空域滤波器不同于所述第二信道接入过程的感知波束的空域滤波器。
作为一个实施例,所述第一SRS资源的发送波束被用于确定所述第一信道接入过程的感知波束,所述第二SRS资源的发送波束被用于确定所述第二信道接入过程的感知波束。
作为一个实施例,所述第一信道接入过程的感知波束和所述第一SRS资源的发送波束相同,所述第二信道接入过程的感知波束和所述第二SRS资源的发送波束相同。
作为一个实施例,发送所述第一SRS资源的空域滤波器被用于确定所述第一信道接入过程的感知波束的空域滤波器,发送所述第二SRS资源的空域滤波器被用于确定所述第二信道接入过程的感知波束的空域滤波器。
作为一个实施例,所述第一信道接入过程的感知波束的空域滤波器和发送所述第一SRS资源的空域滤波器相同,所述第二信道接入过程的感知波束的空域滤波器和发送所述第二SRS资源的空域滤波器相同。
作为一个实施例,所述第一信道接入过程的感知波束的空域滤波器覆盖所述第一SRS资源的发送波束,所述第二信道接入过程的感知波束的空域滤波器覆盖所述第二SRS资源的发送波束。
实施例11
实施例11示例了根据本申请的另一个实施例的第一信道接入过程和第二信道接入过程的示意图;如附图11所示。
在实施例11中,所述第一信道接入过程的感知波束的空域滤波器覆盖所述第一子信号的发送波束,所述第二信道接入过程的感知波束的空域滤波器覆盖所述第二子信号的发送波束。
作为一个实施例,所述第一子信号的发送波束被用于确定所述第一信道接入过程的感知波束。
作为一个实施例,所述第二子信号的发送波束被用于确定所述第二信道接入过程的感知波束。
作为一个实施例,所述第一信道接入过程的感知波束和所述第一子信号的发送波束相同。
作为一个实施例,所述第二信道接入过程的感知波束和所述第二子信号的发送波束相同。
作为一个实施例,发送所述第一子信号的空域滤波器被用于确定所述第一信道接入过程的感知波束的空域滤波器。
作为一个实施例,发送所述第二子信号的空域滤波器被用于确定所述第二信道接入过程的感知波束的空域滤波器。
作为一个实施例,所述第一信道接入过程的感知波束的空域滤波器和发送所述第一子信号的空域滤波器相同。
作为一个实施例,所述第二信道接入过程的感知波束的空域滤波器和发送所述第二子信号的空域滤波器相同。
实施例12
实施例12示出了根据本申请的一个实施例的信道接入过程的流程图;如附图12所示。
在实施例12中,所述第一信道接入过程可以由附图12中的流程图来描述。所述第一节点在步骤S1201中在所述第一子频带上的一个延时时段(defer duration)内感知信道;在步骤S1202中判断这个延时时段内的所有时隙时段是否都空闲(Idle),如果是,进行到步骤S1203中,否则进行到步骤S1201中;在步骤S1203中设置第一计数器;在步骤S1204中判断所述第一计数器是否为0,如果是,进行到步骤S1205,否则进行到步骤S1207中;在步骤S1205中决定是否发送,如果是,进行到步骤1206在;在步骤1206中在所述第一子频带上执行发送;在步骤S1207中把所述第一计数器减1;在步骤S1208中在所述第一子频带上的一个附加感知时隙时段(additional sensing slot duration)内感知信道;在步骤S1209中判断这个附加感知时隙时段是否空闲(Idle),如果是,返回到步骤S1204,否则进行到步骤S1210中;在步骤S1210中在所述第一子频带上的一个附加延时时段(additional defer duration)内感知信道,直到在这个附加延时时段内检测到一个非空闲,或者检测到这个附加延时时段内的感知时隙(sensing slot)空闲;在步骤S1211中判断这个附加延时时段内的所有感知时隙是否都空闲(Idle),如果是,返回到步骤S1204;否则返回到步骤S1210。
作为一个实施例,实施例12中,所述第一信道接入过程是Type 1上行信道接入过程,或针对频率范围2-2的Type 1信道接入过程中之一。
作为一个实施例,所述Type 1上行信道接入过程,和所述针对频率范围2-2的Type 1信道接入过程的具体定义分别参见3GPP TS37.213的4.1.1,4.2.1.1和4.4.1章节。
作为一个实施例,附图12中的延时时段,时隙时段,附加感知时隙时段和附加延时时段的具体定义参见3GPP TS37.213。
作为一个实施例,如果所述第一节点在一个感知时隙时段内感知信道明确确定在所述一个感知时隙时段内的至少4μs内检测到的功率低于第一功率阈值,所述一个感知时隙时段被认为是空闲的。
作为一个实施例,所述第一功率阈值是XThresh
作为一个实施例,所述第一功率阈值不大于最大功率阈值XThresh_max
作为一个实施例,所述最大功率阈值XThresh_max是按照3GPP TS37.213中是方法确定的。
作为一个实施例,所述感知的基本单位是一个持续时间为9μs的感知时隙。
作为一个实施例,一个延时时段(defer duration)包括一个16μs的持续时间,随后紧接着mp个连续的感知时隙时段;所述mp是一个正整数,所述mp和信道接入优先等级(channel access priority class)有关。
作为上述实施例的一个子实施例,所述16μs的持续时间在一开始包括一个空闲感知时隙时段。
作为上述实施例的一个子实施例,每个感知时隙是9μs。
作为上述实施例的一个子实施例,所述mp属于{1,2,3,7}。
作为一个实施例,一个延时时段(defer duration)是8μs,并且以一个持续时间为5μs的感知时隙结束。
作为一个实施例,所述第一计数器被设置的值是P个备选整数中的一个备选整数。
作为上述实施例的一个子实施例,所述P属于{3,7,15,31,63,127,255,511,1023}。
作为上述实施例的一个子实施例,所述P是信道接入优先等级p的竞争窗口(contention window)CWp。
作为上述实施例的一个子实施例,所述P个备选整数为0,1,2,…,P-1。
作为上述实施例的一个子实施例,所述第一节点在所述P个备选整数中随机选取一个备选整数作为所 述第一计数器被设置的初始值。
作为上述实施例的一个子实施例,所述P个备选整数中任一备选整数被选取作为所述第一计数器被设置的初始值的概率都相等。
实施例13
实施例13示出了根据本申请的另一个实施例的信道接入过程的流程图;如附图13所示。
在实施例13中,所述第一信道接入过程可以由附图13中的流程图来描述。本申请中的所述第一节点在步骤1301中在所述第一子频带上的一个感知时间内执行感知信道;在步骤S1302中判断这个感知时间内的所有感知时隙是否都空闲(Idle),如果是,进行到步骤S1303中,否则返回到步骤S1301;在步骤S1303中在所述第一子频带上执行发送。
作为一个实施例,实施例13中,所述第一信道接入过程是Type 2A上行信道接入过程,Type 2B的上行信道接入过程,或针对频率范围2-2的Type 2的信道接入过程中之一。
作为一个实施例,所述Type 2A上行信道接入过程,所述Type 2B的上行信道接入过程,和所述针对频率范围2-2的Type 2信道接入过程的具体定义分别参见3GPP TS37.213的4.1.2.1,4.1.2.2,4.2.1.2.1,4.2.1.2.2和4.4.2章节。
作为一个实施例,所述感知时间是一个感知间隔(sensing interval)。
作为一个实施例,所述感知时间是一个25μs的感知间隔(sensing interval)。
作为一个实施例,所述感知时间是一个至少25μs的感知间隔(sensing interval)。
作为一个实施例,所述感知时间是一个25μs的感知间隔,所述感知间隔包括一个16μs的持续时间,然后紧跟着一个感知时隙。
作为一个实施例,所述感知时间是一个至少25μs的感知间隔,所述感知间隔包括一个16μs的持续时间,然后紧跟着一个感知时隙。
作为上述实施例的一个子实施例,所述一个16μs的持续时间在一开始包括一个感知时隙;如果所述感知时间包括的两个感知时隙都被感知为空闲,所述感知时间被认为空闲。
作为一个实施例,所述感知时间是一个16μs的持续时间。
作为一个实施例,所述感知时间是一个至多16μs的持续时间。
作为一个实施例,所述感知时间是一个16μs的持续时间,所述16μs的持续时间在最后9μs内包括一个感知时隙。
作为一个实施例,所述感知时间是一个16μs的持续时间,所述16μs的持续时间在最后9μs内包括一个感知时隙;如果在所述感知时间内,信道在至少5μs内被感知为空闲,并且所述5μs中的至少4μs在所述感知时隙内,信道被认为在所述感知时间内空闲。
作为一个实施例,所述感知时间是一个至多16μs的持续时间,所述16μs的持续时间在最后9μs内包括一个感知时隙。
作为一个实施例,所述感知时间是一个至多16μs的持续时间,所述16μs的持续时间在最后9μs内包括一个感知时隙;如果在所述感知时间内,信道在至少5μs内被感知为空闲,并且所述5μs中的至少4μs在所述感知时隙内,信道被认为在所述感知时间内空闲。
作为一个实施例,所述感知时间是一个延时时段。
作为一个实施例,所述感知时间是一个以一个持续时间为5μs的感知时隙结束的延时时段。
实施例14
实施例14示例了根据本申请的一个实施例的用于第一节点设备中的处理装置的结构框图;如附图14所示。在附图14中,第一节点设备中的处理装置1400包括第一接收机1401和第一发射机1402。
作为一个实施例,所述第一节点设备是用户设备。
作为一个实施例,所述第一节点设备是中继节点设备。
作为一个实施例,所述第一接收机1401包括实施例4中的{天线452,接收器454,接收处理器456,多天线接收处理器458,控制器/处理器459,存储器460,数据源467}中的至少之一。
作为一个实施例,所述第一发射机1402包括实施例4中的{天线452,发射器454,发射处理器468,多天线发射处理器457,控制器/处理器459,存储器460,数据源467}中的至少之一。
第一接收机1401,接收第一信令;
第一发射机1402,执行第一信道接入过程和第二信道接入过程;在第一子频带中的第一时域资源块中发送所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃 发送所述第一子信号和所述第二子信号;
在实施例14中,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第二信道接入过程。
作为一个实施例,第一SRS资源被用于确定所述第一子信号的空间关系,第二SRS资源被用于确定所述第二子信号的空间关系;所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合。
作为一个实施例,接收第二信令,所述第二信令被用于确定第一时间窗和第一索引集合;
其中,所述第一时域资源块位于所述第一时间窗之内;所述第一子信号的空间关系和第一索引有关,所述第二子信号的空间关系和第二索引有关;所述第一信道接入过程的所述类型依赖所述第一索引是否属于所述第一索引集合,所述第二信道接入过程的所述类型依赖所述第二索引是否属于所述第一索引集合。
作为一个实施例,接收第三信令,所述第三信令指示第一TCI状态组,所述第一TCI状态组包括至少两个TCI状态;
其中,第一TCI状态和第二TCI状态分别被用于应用于所述第一子信号和所述第二子信号;所述第一TCI状态和所述第二TCI状态均属于所述第一TCI状态组;所述第一索引依赖所述第一TCI状态在所述第一TCI状态组中的位置,所述第二索引依赖所述第二TCI状态在所述第一TCI状态组中的位置。
作为一个实施例,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送和所述第一子信号和所述第二子信号是否携带同一个传输块有关。
作为一个实施例,所述第一信道接入过程的感知波束的覆盖范围不同于所述第二信道接入过程的感知波束的覆盖范围。
作为一个实施例,所述第一信道接入过程的感知波束的空域滤波器覆盖所述第一子信号的发送波束,所述第二信道接入过程的感知波束的空域滤波器覆盖所述第二子信号的发送波束。
实施例15
实施例15示例了根据本申请的一个实施例的用于第二节点设备中的处理装置的结构框图;如附图15所示。在附图15中,第二节点设备中的处理装置1500包括第二发射机1501和第二接收机1502。
作为一个实施例,所述第二节点设备是基站设备。
作为一个实施例,所述第二节点设备是用户设备。
作为一个实施例,所述第二节点设备是中继节点设备。
作为一个实施例,所述第二发射机1501包括实施例4中的{天线420,发射器418,发射处理器416,多天线发射处理器471,控制器/处理器475,存储器476}中的至少之一。
作为一个实施例,所述第二接收机1502包括实施例4中的{天线420,接收器418,接收处理器470,多天线接收处理器472,控制器/处理器475,存储器476}中的至少之一。
第二发射机1501,发送第一信令;
第二接收机1502,在第一子频带中的第一时域资源块中接收所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃接收所述第一子信号和所述第二子信号;
在实施例15中,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被接收依赖所述第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被接收依赖所述第二信道接入过程。
作为一个实施例,第一SRS资源被用于确定所述第一子信号的空间关系,第二SRS资源被用于确定所述第二子信号的空间关系;所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合。
作为一个实施例,接收第二信令,所述第二信令被用于确定第一时间窗和第一索引集合;
其中,所述第一时域资源块位于所述第一时间窗之内;所述第一子信号的空间关系和第一索引有关, 所述第二子信号的空间关系和第二索引有关;所述第一信道接入过程的所述类型依赖所述第一索引是否属于所述第一索引集合,所述第二信道接入过程的所述类型依赖所述第二索引是否属于所述第一索引集合。
作为一个实施例,接收第三信令,所述第三信令指示第一TCI状态组,所述第一TCI状态组包括至少两个TCI状态;
其中,第一TCI状态和第二TCI状态分别被用于应用于所述第一子信号和所述第二子信号;所述第一TCI状态和所述第二TCI状态均属于所述第一TCI状态组;所述第一索引依赖所述第一TCI状态在所述第一TCI状态组中的位置,所述第二索引依赖所述第二TCI状态在所述第一TCI状态组中的位置。
作为一个实施例,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被接收和所述第一子信号和所述第二子信号是否携带同一个传输块有关。
作为一个实施例,所述第一信道接入过程的感知波束的覆盖范围不同于所述第二信道接入过程的感知波束的覆盖范围。
作为一个实施例,所述第一信道接入过程的感知波束的空域滤波器覆盖所述第一子信号的发送波束,所述第二信道接入过程的感知波束的空域滤波器覆盖所述第二子信号的发送波束。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的用户设备、终端和UE包括但不限于无人机,无人机上的通信模块,遥控飞机,飞行器,小型飞机,手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(Machine Type Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站或者系统设备包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站,gNB(NR节点B)NR节点B,TRP(Transmitter Receiver Point,发送接收节点)等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。基于说明书中所描述的实施例所做出的任何变化和修改,如果能获得类似的部分或者全部技术效果,应当被视为显而易见并属于本发明的保护范围。

Claims (28)

  1. 一种被用于无线通信的第一节点,其特征在于,包括:
    第一接收机,接收第一信令,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;
    第一发射机,执行第一信道接入过程和第二信道接入过程;
    所述第一发射机,在第一子频带中的第一时域资源块中发送所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃发送所述第一子信号和所述第二子信号;
    其中,所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第二信道接入过程。
  2. 根据权利要求1所述的第一节点,其特征在于,第一SRS资源被用于确定所述第一子信号的空间关系,第二SRS资源被用于确定所述第二子信号的空间关系;所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合。
  3. 根据权利要求1或2所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第二信令,所述第二信令被用于确定第一时间窗和第一索引集合;
    其中,所述第一时域资源块位于所述第一时间窗之内;所述第一子信号的空间关系和第一索引有关,所述第二子信号的空间关系和第二索引有关;所述第一信道接入过程的所述类型依赖所述第一索引是否属于所述第一索引集合,所述第二信道接入过程的所述类型依赖所述第二索引是否属于所述第一索引集合。
  4. 根据权利要求3所述的第一节点,其特征在于,包括:
    所述第一接收机,接收第三信令,所述第三信令指示第一TCI状态组,所述第一TCI状态组包括至少两个TCI状态;
    其中,第一TCI状态和第二TCI状态分别被用于应用于所述第一子信号和所述第二子信号;所述第一TCI状态和所述第二TCI状态均属于所述第一TCI状态组;所述第一索引依赖所述第一TCI状态在所述第一TCI状态组中的位置,所述第二索引依赖所述第二TCI状态在所述第一TCI状态组中的位置。
  5. 根据权利要求1至4中任一权利要求所述的第一节点,其特征在于,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送和所述第一子信号和所述第二子信号是否携带同一个传输块有关。
  6. 根据权利要求1至5中任一权利要求所述的第一节点,其特征在于,所述第一信道接入过程的感知波束的覆盖范围不同于所述第二信道接入过程的感知波束的覆盖范围。
  7. 根据权利要求1至6中任一权利要求所述的第一节点,其特征在于,所述第一信道接入过程的感知波束的空域滤波器覆盖所述第一子信号的发送波束,所述第二信道接入过程的感知波束的空域滤波器覆盖所述第二子信号的发送波束。
  8. 一种被用于无线通信的第二节点,其特征在于,包括:
    第二发射机,发送第一信令,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;
    第二接收机,在第一子频带中的第一时域资源块中接收所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃接收所述第一子信号和所述第二子信号;
    其中,所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被接收依赖第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被接收依赖第二信道接入过程。
  9. 根据权利要求8所述的第二节点,其特征在于,第一SRS资源被用于确定所述第一子信号的空间关系,第二SRS资源被用于确定所述第二子信号的空间关系;所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合。
  10. 根据权利要求8或9所述的第二节点,其特征在于,包括:
    所述第二发射机,发送第二信令,所述第二信令被用于确定第一时间窗和第一索引集合;
    其中,所述第一时域资源块位于所述第一时间窗之内;所述第一子信号的空间关系和第一索引有关,所述第二子信号的空间关系和第二索引有关;所述第一信道接入过程的所述类型依赖所述第一索引是否属于所述第一索引集合,所述第二信道接入过程的所述类型依赖所述第二索引是否属于所述第一索引集合。
  11. 根据权利要求10所述的第二节点,其特征在于,包括:
    所述第二发射机,发送第三信令,所述第三信令指示第一TCI状态组,所述第一TCI状态组包括至少两个TCI状态;
    其中,第一TCI状态和第二TCI状态分别被用于应用于所述第一子信号和所述第二子信号;所 述第一TCI状态和所述第二TCI状态均属于所述第一TCI状态组;所述第一索引依赖所述第一TCI状态在所述第一TCI状态组中的位置,所述第二索引依赖所述第二TCI状态在所述第一TCI状态组中的位置。
  12. 根据权利要求8至11中任一权利要求所述的第二节点,其特征在于,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送和所述第一子信号和所述第二子信号是否携带同一个传输块有关。
  13. 根据权利要求8至12中任一权利要求所述的第二节点,其特征在于,所述第一信道接入过程的感知波束的覆盖范围不同于所述第二信道接入过程的感知波束的覆盖范围。
  14. 根据权利要求8至13中任一权利要求所述的第二节点,其特征在于,所述第一信道接入过程的感知波束的空域滤波器覆盖所述第一子信号的发送波束,所述第二信道接入过程的感知波束的空域滤波器覆盖所述第二子信号的发送波束。
  15. 一种被用于无线通信的第一节点中的方法,其特征在于,包括:
    接收第一信令,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;
    执行第一信道接入过程和第二信道接入过程;
    在第一子频带中的第一时域资源块中发送所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃发送所述第一子信号和所述第二子信号;
    其中,所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送依赖所述第二信道接入过程。
  16. 根据权利要求15所述的第一节点中的方法,其特征在于,第一SRS资源被用于确定所述第一子信号的空间关系,第二SRS资源被用于确定所述第二子信号的空间关系;所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合。
  17. 根据权利要求15或16所述的第一节点中的方法,其特征在于,包括:
    接收第二信令,所述第二信令被用于确定第一时间窗和第一索引集合;
    其中,所述第一时域资源块位于所述第一时间窗之内;所述第一子信号的空间关系和第一索引有关,所述第二子信号的空间关系和第二索引有关;所述第一信道接入过程的所述类型依赖所述第一索引是否属于所述第一索引集合,所述第二信道接入过程的所述类型依赖所述第二索引是否属于所述第一索引集合。
  18. 根据权利要求17所述的第一节点中的方法,其特征在于,包括:
    接收第三信令,所述第三信令指示第一TCI状态组,所述第一TCI状态组包括至少两个TCI状态;
    其中,第一TCI状态和第二TCI状态分别被用于应用于所述第一子信号和所述第二子信号;所述第一TCI状态和所述第二TCI状态均属于所述第一TCI状态组;所述第一索引依赖所述第一TCI状态在所述第一TCI状态组中的位置,所述第二索引依赖所述第二TCI状态在所述第一TCI状态组中的位置。
  19. 根据权利要求15至18中任一权利要求所述的第一节点中的方法,其特征在于,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送和所述第一子信号和所述第二子信号是否携带同一个传输块有关。
  20. 根据权利要求15至19中任一权利要求所述的第一节点中的方法,其特征在于,所述第一信道接入过程的感知波束的覆盖范围不同于所述第二信道接入过程的感知波束的覆盖范围。
  21. 根据权利要求15至20中任一权利要求所述的第一节点中的方法,其特征在于,所述第一信道接入过程的感知波束的空域滤波器覆盖所述第一子信号的发送波束,所述第二信道接入过程的感知波束的空域滤波器覆盖所述第二子信号的发送波束。
  22. 一种被用于无线通信的第二节点中的方法,其特征在于,包括:
    发送第一信令,所述第一信令包括第一信号的调度信息,第一子信号和第二子信号分别包括所述第一信号的不同层;
    在第一子频带中的第一时域资源块中接收所述第一子信号和所述第二子信号中的至少之一,或者,在第一子频带中的第一时域资源块中放弃接收所述第一子信号和所述第二子信号;
    其中,所述第一子信号在所述第一子频带中的所述第一时域资源块中是否被接收依赖所述第一信道接入过程,所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被接收依赖所述第二信道接入过程。
  23. 根据权利要求22所述的第二节点中的方法,其特征在于,第一SRS资源被用于确定所述第一子 信号的空间关系,第二SRS资源被用于确定所述第二子信号的空间关系;所述第一SRS资源属于第一SRS资源集合,所述第二SRS资源属于第二SRS资源集合。
  24. 根据权利要求22或23所述的第二节点中的方法,其特征在于,包括:
    发送第二信令,所述第二信令被用于确定第一时间窗和第一索引集合;
    其中,所述第一时域资源块位于所述第一时间窗之内;所述第一子信号的空间关系和第一索引有关,所述第二子信号的空间关系和第二索引有关;所述第一信道接入过程的所述类型依赖所述第一索引是否属于所述第一索引集合,所述第二信道接入过程的所述类型依赖所述第二索引是否属于所述第一索引集合。
  25. 根据权利要求24所述的第二节点中的方法,其特征在于,包括:
    发送第三信令,所述第三信令指示第一TCI状态组,所述第一TCI状态组包括至少两个TCI状态;
    其中,第一TCI状态和第二TCI状态分别被用于应用于所述第一子信号和所述第二子信号;所述第一TCI状态和所述第二TCI状态均属于所述第一TCI状态组;所述第一索引依赖所述第一TCI状态在所述第一TCI状态组中的位置,所述第二索引依赖所述第二TCI状态在所述第一TCI状态组中的位置。
  26. 根据权利要求22至25中任一权利要求所述的第二节点中的方法,其特征在于,所述第一子信号和所述第二子信号在所述第一子频带中的所述第一时域资源块中是否被发送和所述第一子信号和所述第二子信号是否携带同一个传输块有关。
  27. 根据权利要求22至26中任一权利要求所述的第二节点中的方法,其特征在于,所述第一信道接入过程的感知波束的覆盖范围不同于所述第二信道接入过程的感知波束的覆盖范围。
  28. 根据权利要求22至27中任一权利要求所述的第二节点中的方法,其特征在于,所述第一信道接入过程的感知波束的空域滤波器覆盖所述第一子信号的发送波束,所述第二信道接入过程的感知波束的空域滤波器覆盖所述第二子信号的发送波束。
PCT/CN2023/133159 2022-12-13 2023-11-22 一种被用于无线通信的节点中的方法和装置 WO2024125242A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211601918.2 2022-12-13
CN202211601918.2A CN118201117A (zh) 2022-12-13 2022-12-13 一种被用于无线通信的节点中的方法和装置

Publications (1)

Publication Number Publication Date
WO2024125242A1 true WO2024125242A1 (zh) 2024-06-20

Family

ID=91407479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/133159 WO2024125242A1 (zh) 2022-12-13 2023-11-22 一种被用于无线通信的节点中的方法和装置

Country Status (2)

Country Link
CN (1) CN118201117A (zh)
WO (1) WO2024125242A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460360A (zh) * 2018-05-08 2019-11-15 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019222952A1 (zh) * 2018-05-24 2019-11-28 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN113541889A (zh) * 2020-04-14 2021-10-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US20210385837A1 (en) * 2019-02-22 2021-12-09 Shanghai Langbo Communication Technology Company Limited Method and device in user equipment and base station for radio communications

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110460360A (zh) * 2018-05-08 2019-11-15 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
WO2019222952A1 (zh) * 2018-05-24 2019-11-28 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US20210385837A1 (en) * 2019-02-22 2021-12-09 Shanghai Langbo Communication Technology Company Limited Method and device in user equipment and base station for radio communications
CN113541889A (zh) * 2020-04-14 2021-10-22 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Discussion on Channel Access Mechanism for extending NR up to 71 GHz", 3GPP TSG RAN WG1 MEETING #106-BIS-E, R1-2109603, 2 October 2021 (2021-10-02), XP052058546 *

Also Published As

Publication number Publication date
CN118201117A (zh) 2024-06-14

Similar Documents

Publication Publication Date Title
WO2021129242A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2020244382A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2022116986A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024125242A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024125243A1 (zh) 一种被用于无线通信的方法和装置
WO2024179377A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024217346A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024131548A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088393A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024169839A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088397A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024088259A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024146499A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023143225A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024169842A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024183746A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099211A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024199335A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023217075A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024099209A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023227047A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024007879A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024169841A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2024120140A1 (zh) 一种被用于无线通信的节点中的方法和装置
WO2023207705A1 (zh) 一种被用于无线通信的节点中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23902441

Country of ref document: EP

Kind code of ref document: A1