WO2024125197A1 - 一种管道泥浆产量测量方法及其实施装置 - Google Patents

一种管道泥浆产量测量方法及其实施装置 Download PDF

Info

Publication number
WO2024125197A1
WO2024125197A1 PCT/CN2023/131923 CN2023131923W WO2024125197A1 WO 2024125197 A1 WO2024125197 A1 WO 2024125197A1 CN 2023131923 W CN2023131923 W CN 2023131923W WO 2024125197 A1 WO2024125197 A1 WO 2024125197A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode array
electrode
mud
pipeline
layer electrode
Prior art date
Application number
PCT/CN2023/131923
Other languages
English (en)
French (fr)
Inventor
程书凤
邢津
王费新
尹纪富
冒小丹
洪国军
周忠玮
舒敏骅
张忱
陆寅松
Original Assignee
中交疏浚技术装备国家工程研究中 心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中交疏浚技术装备国家工程研究中 心有限公司 filed Critical 中交疏浚技术装备国家工程研究中 心有限公司
Publication of WO2024125197A1 publication Critical patent/WO2024125197A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F22/00Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for
    • G01F22/02Methods or apparatus for measuring volume of fluids or fluent solid material, not otherwise provided for involving measurement of pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Definitions

  • the invention relates to a mud production measurement method in the technical field of dredging, in particular to a pipeline mud production measurement method with a single bubble generator and a three-layer electrode array and an implementation device thereof.
  • Pipeline mud concentration is an important parameter of pipeline transportation construction technology, and mud production measurement is directly related to the engineering quantity value.
  • the current instruments for measuring pipeline mud concentration mainly include photoelectric concentration meters, ultrasonic concentration meters and radioactive concentration meters.
  • the photoelectric concentration meter has a small range and is affected by chromaticity; the ultrasonic concentration meter is limited by the diameter of the pipeline; the radioactive concentration meter has environmental and safety hazards.
  • the measurement of mud production requires the flow rate measured by the flow meter and the concentration measured by the concentration meter.
  • Flow meters and production meters are two types of instruments, and they have high requirements for installation space when used together; and the data collected by both require subsequent integrated processing to give real-time production values.
  • the present invention provides a pipeline mud production measurement method and an implementation device thereof, which not only occupies a small space but also can directly measure the pipeline mud production.
  • the present invention provides a method for measuring the mud production in a pipeline, comprising the following steps: first, arranging a single bubble generator upstream of a flow pipe and arranging a three-layer electrode array downstream of the flow pipe; second, obtaining a mud flow rate by collecting and processing voltage signals of two outer electrode arrays of the three-layer electrode array when bubbles flow through the three-layer electrode array; obtaining a mud concentration by collecting and processing voltage signals of an intermediate electrode array of the three-layer electrode array; third, obtaining the mud flow rate and mud concentration through step 2, and calculating the mud production;
  • the number of electrode devices on the middle layer electrode array of the three-layer electrode array is an even number, and the electrode devices are evenly arranged on the wall of the flow pipe in the circumferential direction; the number of electrode devices on the outer two layers of the three-layer electrode array are both even numbers, and the electrode devices are arranged at the upper end of the wall of the flow pipe; the outer two layers of the three-layer electrode array and the middle layer of the three-layer electrode array use excitation signals of different frequencies.
  • the number of electrode devices on the intermediate layer electrode array is sixteen.
  • the method for obtaining the mud concentration through the middle electrode array of the three-layer electrode array is as follows: fresh water/seawater is transported in the flow pipe, and the boundary voltage is measured as U ij ; mud is transported in the flow pipe, and the boundary voltage is measured as V ij , in mV; the mud concentration c can be obtained by the back-projection imaging algorithm and the conductivity-mud formula:
  • Blij is the back projection coefficient
  • L is the lth unit cell after the sensitive field is divided
  • ⁇ ij is the back projection domain
  • ⁇ m is the mud conductivity, in mS/cm
  • ⁇ 0 is the fresh water/sea water conductivity, in mS/cm
  • i represents the i-th excitation
  • j represents the j-th measurement
  • Uij is the boundary voltage of fresh water/sea water in the flow pipe, in mV
  • Vij is the boundary voltage of mud in the flow pipe, in mV
  • c is the obtained mud concentration, in percentage.
  • the number of electrode devices on the outer two layers of electrode arrays of the three-layer electrode array is four, and the method for obtaining the mud flow rate through the outer two layers of electrode arrays of the three-layer electrode array is:
  • the present invention also provides a device for implementing the above-mentioned pipeline mud production measurement method, including a flow pipeline, a pressure sensor, a single bubble generator, a three-layer electrode array, an exhaust pipe, a signal acquisition and processing system, a shielding function signal line, and a data line; wherein the pressure sensor, the single bubble generator, the three-layer electrode array, and the exhaust pipe are arranged in sequence on the flow pipeline along the flow direction, and the pressure sensor, the single bubble generator, and the exhaust pipe are arranged at the upper end of the pipeline of the flow pipeline; the number of electrode devices on the middle layer electrode array of the three-layer electrode array is an even number, and the electrode devices are evenly arranged on the wall of the flow pipeline in a circumferential direction; the number of electrode devices on the outer two layers of the three-layer electrode array are both even numbers, and the electrode devices are arranged at the upper end of the wall of the flow pipeline; the electrode device on the three-layer electrode array is an integrated structure of an electrode sheet and a lead column; the pressure
  • the flow pipe is a horizontal pipe; the installation position of the single bubble generator is no more than one pipe diameter away from the pressure sensor, and the distance from the three-layer electrode array is no less than two times the flow pipe diameter.
  • the electrode device on the middle layer electrode array has an electrode sheet width equal to the interval between the electrode sheets in the radial direction of the pipeline, and an axial width of the electrode sheet is twice the radial width.
  • the signal acquisition and processing system includes a field programmable gate array control module, a digital-to-analog conversion module, a signal acquisition filter module, an electrode gating module, an outer electrode array signal self-excitation module, and an intermediate electrode array signal self-excitation module; wherein the field programmable gate array control module is used to issue instructions and complete related calculations, the digital-to-analog conversion module is used to complete the conversion of electrical signals into digital signals, the signal acquisition filter module is used to collect and filter signals, the electrode gating module is used to control the switching of excitation electrodes and acquisition electrodes, and the outer electrode array signal self-excitation module and the intermediate electrode array signal self-excitation module are used to generate current excitation signals; the field programmable gate array control module communicates with the electrode devices on the outer two layers of the three-layer electrode array through the outer electrode array signal self-excitation module; the field programmable gate array control module communicates with the electrode devices on the intermediate layer electrode array of the three-layer electrode array
  • FIG1 is a schematic diagram of the structure of an implementation device of the present invention.
  • FIG2 is a schematic structural diagram of a middle-layer electrode array of a three-layer electrode array according to an embodiment of the present invention
  • FIG3 is a schematic diagram of the structure of two layers of electrode arrays outside a three-layer electrode array according to an embodiment of the present invention.
  • FIG4 is a schematic diagram of the structure of a signal acquisition and processing system according to an embodiment of the present invention.
  • FIG5 is a schematic diagram of the structure of an electrode device of a three-layer electrode array according to an embodiment of the present invention.
  • the present invention includes a flow line 1, a pressure sensor 2, a data line 3, a single bubble generator 4, an upstream outer electrode array 5, an intermediate electrode array 6, a downstream outer electrode array 7, a shielding function signal line 8, a signal acquisition and processing system 9, and an exhaust pipe 10; wherein the pressure sensor 2, the single bubble generator 4, the upstream outer electrode array 5, the intermediate electrode array 6, the downstream outer electrode array 7, and the exhaust pipe 10 are sequentially arranged on the flow line 1 along the flow direction, and the pressure sensor 2, the single bubble generator 4, and the exhaust pipe 10 are arranged at the upper end of the flow line; the upstream outer electrode array 5, the intermediate electrode array 6, and the downstream outer electrode array 7 constitute a three-layer electrode array;
  • the number of electrode devices on the middle layer electrode array 6 is sixteen, and the sixteen electrode devices are evenly arranged on the wall of the flow pipe in the circumferential direction, and the sixteen electrode devices are symmetrically distributed relative to the axis; the number of electrode devices on the upstream outer electrode array 5 and the downstream outer electrode array 7 are four, and the electrode devices are arranged on the upper end of the wall of the flow pipe 1; the electrode devices on the upstream outer electrode array 5, the middle layer electrode array 6, and the downstream outer electrode array 7 are all integrated structures of electrode sheets 51 and receiving columns 52.
  • the width of the electrode sheets 51 in the radial direction of the pipeline is equal to the interval between the electrode sheets 51, and the axial width of the electrode sheets is twice the radial width.
  • the flow pipe 1 is a horizontal pipe; the installation position of the single bubble generator 4 is no more than one pipe diameter away from the pressure sensor 2, and no less than two flow pipe diameters away from the upstream outer electrode array 5.
  • the pressure sensor 2 is arranged at the top of the pipe of the flow pipe 1, and is used to measure the pipe pressure near the single bubble generator 4.
  • the pressure sensor 2 and the single bubble generator 4 are connected through a data line 3, and the pressure measured by the pressure sensor 2 is used as the pressurization pressure of the single bubble generator 4.
  • the bubbles generated by the single bubble generator 4 are continuous single bubbles, and the plane size of the bubbles is comparable to the size of the electrode sheet 51.
  • the signal acquisition and processing system 9 includes a field programmable gate array control module 91, a digital-to-analog conversion module 92, a signal acquisition filter module 93, an electrode selection module 94, a downstream outer electrode array signal self-excitation module 95, an upstream outer electrode array signal self-excitation module 96, an intermediate layer electrode array signal self-excitation module 97, a downstream outer electrode array signal self-excitation module 98, a signal acquisition filter module 99, a signal acquisition filter module 100, a signal acquisition filter module 101, a signal acquisition filter module 102, a signal acquisition filter module 103, a signal acquisition filter module 104, a signal acquisition filter module 105, a signal acquisition filter module 106, a signal acquisition filter module 107, a signal acquisition filter module 108, a signal acquisition filter module 109, a signal acquisition filter module 110, a signal acquisition filter module 111, a signal acquisition filter module 112, a signal acquisition filter Electrode array terminal 98, middle layer electrode array terminal 99, and upstream outer electrode
  • One end of the middle layer electrode array signal self-excitation module 97 is connected to the field programmable gate array control module 91 and the wiring harness between the digital-to-analog conversion module 92 through a wiring harness, and the other end of the middle layer electrode array signal self-excitation module 97 is connected to the electrode gating module 94 and the wiring harness between the middle layer electrode array terminal 99 through a wiring harness; the wiring harness between the downstream outer electrode array signal self-excitation module 95 and the downstream outer electrode array terminal 98 is connected to the upstream outer electrode array signal self-excitation module 96 and the wiring harness between the upstream outer electrode array terminal 910 through a wiring harness;
  • the downstream outer electrode array terminal 98 is connected to the lead-in post 52 of the electrode device on the downstream outer electrode array 7 through the shielding function signal line 8
  • the upstream outer electrode array terminal 910 is connected to the lead-in post 52 of the electrode device on the upstream outer electrode array 5 through the shielding function signal line 8
  • the middle layer electrode array terminal 99 is connected to the lead-in post 52 of the electrode device on the middle layer electrode array 6 through the shielding function signal line 8.
  • the field programmable gate array control module 91 is used to issue instructions and complete related calculations, the digital-to-analog conversion module 92 is used to complete the conversion of electrical signals into digital signals, the signal acquisition and filtering module 93 is used to acquire and filter signals, the electrode selection module 94 is used to control the switching of excitation electrodes and acquisition electrodes, the downstream outer electrode array signal self-excitation module 95, the upstream outer electrode array signal self-excitation module 96, and the middle layer electrode array signal self-excitation module 97 are used to generate current excitation signals.
  • the outer two layers and the middle layer of the three-layer electrode array use excitation signals of different frequencies.
  • the excitation signal of the middle layer electrode array 6 uses 50KHZ, and the upstream outer electrode array 5 and the downstream outer electrode array 7 use 500KHZ.
  • the acquisition signal does not pass through the electrode selection module 94, and the outer two electrode devices are used for excitation and the inner two electrode devices are used for measurement.
  • the middle layer electrode array 6 uses the adjacent electrode excitation and adjacent electrode acquisition method.
  • the mud concentration is first obtained through the intermediate layer electrode array 6: fresh water/seawater is transported in the flow pipe, and the boundary voltage is measured as U ij ; mud is transported in the flow pipe, and the boundary voltage is measured as V ij , The unit is mV; the mud concentration c can be obtained through the back-projection imaging algorithm and the conductivity-mud formula:
  • Blij is the back projection coefficient
  • L is the lth unit cell after the sensitive field is divided
  • ⁇ ij is the back projection domain
  • ⁇ m is the mud conductivity, in mS/cm
  • ⁇ 0 is the fresh water/sea water conductivity, in mS/cm
  • i represents the i-th excitation
  • j represents the j-th measurement
  • Uij is the boundary voltage of fresh water/sea water in the flow pipe, in mV
  • Vij is the boundary voltage of mud in the flow pipe, in mV
  • c is the obtained mud concentration, in percentage.
  • the upstream outer electrode array 5 and the downstream outer electrode array 7 are used to measure the mud flow rate: when the bubbles generated by the bubble generator 4 pass through the upstream outer electrode array 5 and the downstream outer electrode array 7, it will cause fluctuations in the measurement voltages of the two electrode arrays.
  • the difference between the times t1 and t2 when the maximum voltages appear in the two electrode arrays is the time interval ⁇ t, in seconds, for the bubbles to reach the downstream outer electrode array 7 from the upstream outer electrode array 5.
  • D is the inner diameter of the pipe, in meters; is the average mud concentration, which is the average of the mud concentration measurements between t1 and t2, expressed in percentage; Q is the mud production, expressed in cubic meters per second.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

一种疏浚技术领域的管道泥浆产量测量方法及其实施装置,包括以下步骤:第一,在过流管路上游布置单气泡发生器,在过流管路下游布置三层电极阵列;第二,通过对气泡流过三层电极阵列外侧两层电极阵列时电压信号的采集与处理,得到泥浆流速;通过对三层电极阵列中间层电极阵列电压信号的采集与处理,得到泥浆浓度;第三,通过步骤二得到泥浆流速和泥浆浓度,计算得出泥浆产量;其中,三层电极阵列的中间层电极阵列上的电极装置周向均匀布置在过流管路的壁面上;三层电极阵列外侧两层电极阵列上的电极装置布置在过流管路壁面的上端。本发明设计合理,占用空间小,可以直接测量管道泥浆产量。

Description

一种管道泥浆产量测量方法及其实施装置 技术领域
本发明涉及的是一种疏浚技术领域的泥浆产量测量方法,特别是一种带有单气泡发生器和三层电极阵列的管道泥浆产量测量方法及其实施装置。
背景技术
管道泥浆浓度是管道输送施工工艺的重要参数,泥浆产量计量则直接关系着工程量值。当前管道泥浆浓度的测量仪器主要有光电式浓度计、超声波浓度计和放射性浓度计等。光电式浓度计的量程小,受色度影响;超声波浓度计受管道直径的限制;放射性浓度计的放射源存在环境和安全隐患。泥浆产量的测量则需通过流量计测得流量后与浓度计测得的浓度结合得出。流量计与产量计分属两种类型的仪器,配套使用时对安装空间有较高要求;且对于两者采集的数据还需后续的集成处理才能给出实时产量值。
发明内容
本发明针对现有技术的不足,提出一种管道泥浆产量测量方法及其实施装置,不但占用空间小,还可以直接测量管道泥浆产量。
本发明是通过以下技术方案来实现的:
本发明提供了一种管道泥浆产量测量方法,包括以下步骤:第一,在过流管路上游布置单气泡发生器,在过流管路下游布置三层电极阵列;第二,通过对气泡流过三层电极阵列的外侧两层电极阵列时的电压信号的采集与处理,得到泥浆流速;通过对三层电极阵列的中间层电极阵列的电压信号的采集与处理,得到泥浆浓度;第三,通过步骤二得到泥浆流速和泥浆浓度,计算得出泥浆产量;
其中,所述三层电极阵列的中间层电极阵列上的电极装置个数为双数,电极装置周向均匀布置在过流管路的壁面上;三层电极阵列的外侧两层电极阵列上的电极装置个数均为双数,电极装置布置在过流管路壁面的上端;三层电极阵列的外侧两层电极阵列和中间层电极阵列采用不同频率的激励信号。
进一步地,在本发明的方法中,中间层电极阵列上电极装置的个数为十六个,通 过三层电极阵列的中间层电极阵列得到泥浆浓度的方法为:在过流管路内输送淡水/海水,测得边界电压为Uij;在过流管路内输送泥浆,测得边界电压为Vij,单位为mV;通过反投影成像算法与电导率-泥浆公式可以获得泥浆浓度c:


其中,BLij为反投影系数,L为敏感场划分之后的第l个单元格,Ωij为反投影域;σm为泥浆电导率,单位为mS/cm;σ0为淡水/海水电导率,单位为mS/cm;i表示第i次激励,j表示第j次测量;Uij为过流管路内淡水/海水的边界电压,单位为mV;Vij为过流管路内泥浆的边界电压,单位为mV;c为得到的泥浆浓度,单位为百分比。
更进一步地,在本发明的方法中,三层电极阵列的外侧两层电极阵列上电极装置的个数均为四个,通过三层电极阵列的外侧两层电极阵列得出泥浆流速的方法为:
v=L/Δt;
其中,v为管道断面泥浆的平均流速,单位为米/秒;L为外侧两层电极层间距,单位为米;Δt为气泡从上游外侧电极阵列到达下游外侧电极阵列的时间差,单位为秒。
本发明还提供了一种实施上述管道泥浆产量测量方法的装置,包括过流管路、压力传感器、单气泡发生器、三层电极阵列、排气管、信号采集与处理系统、屏蔽功能信号线、以及数据线;其中,压力传感器、单气泡发生器、三层电极阵列、和排气管沿过流方向依次布置在过流管路上,且压力传感器、单气泡发生器、和排气管布置在过流管路的管道上端;三层电极阵列的中间层电极阵列上电极装置的个数为双数,电极装置周向均匀布置在过流管路的壁面上;三层电极阵列的外侧两层电极阵列上电极装置的个数均为双数,电极装置布置在过流管路壁面的上端;三层电极阵列上的电极装置为电极片和接引柱的一体结构;压力传感器和单气泡发生器通过数据线相连接;信号采集与处理系统通过屏蔽功能信号线与三层电极阵列上的电极装置相连接。
进一步地,在本发明的实施装置中,过流管路为水平管道;单气泡发生器的安装位置距压力传感器不大于一倍管径,距三层电极阵列的距离不小于二倍过流管径。
更进一步地,在本发明的实施装置中,中间层电极阵列上的电极装置,在管道径向方向电极片宽度与电极片之间的间隔等宽,电极片轴向宽度为径向宽度的两倍。
更进一步地,在本发明的实施装置中,信号采集与处理系统包括现场可编程门阵列控制模块、数模转换模块、信号采集滤波模块、电极选通模块、外侧电极阵列信号自激励模块、以及中间层电极阵列信号自激励模块;其中,现场可编程门阵列控制模块用于发布指令并完成相关计算,数模转换模块用于完成电信号向数字的转换,信号采集滤波模块用于对信号进行采集和滤波处理,电极选通模块用于控制激励电极与采集电极的切换,外侧电极阵列信号自激励模块、中间层电极阵列信号自激励模块用于产生电流激励信号;现场可编程门阵列控制模块通过外侧电极阵列信号自激励模块,与三层电极阵列外侧两层电极阵列上的电极装置相通讯;现场可编程门阵列控制模块通过数模转换模块、信号采集滤波模块、电极选通模块、中间层电极阵列信号自激励模块,与三层电极阵列中间层电极阵列上的电极装置相通讯。
与现有技术相比,本发明具有如下有益效果为:本发明设计合理,结构简单,实施装置只需安装于水平管段,对安装空间要求小;反应速度快,自动化程度和集成度高,能够实时给出产量信息;安全环保,安装方便。
附图说明
图1为本发明实施装置的结构示意图;
图2为本发明实施例中三层电极阵列中间层电极阵列的结构示意图;
图3为本发明实施例中三层电极阵列外侧两层电极阵列的结构示意图;
图4为本发明实施例中信号采集与处理系统的结构示意图;
图5为本发明实施例中三层电极阵列的电极装置结构示意图;
图中标号:1、过流管路,2、压力传感器,3、数据线,4、单气泡发生器,5、上游外侧电极阵列,6、中间层电极阵列,7、下游外侧电极阵列,8、屏蔽功能信号线,9、信号采集与处理系统,10、排气管,51、电极片,52、接引柱,91、现场可编程门阵列控制模块,92、数模转换模块,93、信号采集滤波模块,94、电极选通模块,95、下游外侧电极阵列信号自激励模块,96、上游外侧电极阵列信号自激励模块, 97、中间层电极阵列信号自激励模块,98、下游外侧电极阵列接线端,99、中间层电极阵列接线端,910、上游外侧电极阵列接线端。
具体实施方式
下面结合附图对本发明的实施例作详细说明,本实施例以本发明技术方案为前提,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例
本发明如上图1至5所示,本发明包括过流管路1、压力传感器2、数据线3、单气泡发生器4、上游外侧电极阵列5、中间层电极阵列6、下游外侧电极阵列7、屏蔽功能信号线8、信号采集与处理系统9、以及排气管10;其中,压力传感器2、单气泡发生器4、上游外侧电极阵列5、中间层电极阵列6、下游外侧电极阵列7、和排气管10沿过流方向依次布置在过流管路1上,且压力传感器2、单气泡发生器4、和排气管10布置在过流管路的管道上端;上游外侧电极阵列5、中间层电极阵列6、和下游外侧电极阵列7构成三层电极阵列;
中间层电极阵列6上电极装置的个数为十六个,十六个电极装置周向均匀布置在过流管路的壁面上,十六个电极装置相对于轴线对称分布;上游外侧电极阵列5、下游外侧电极阵列7上电极装置的个数均为四个,电极装置布置在过流管路1的壁面上端;上游外侧电极阵列5、中间层电极阵列6、下游外侧电极阵列7上的电极装置均为电极片51和接引柱52的一体结构。中间层电极阵列6上的电极装置,在管道径向方向电极片51宽度与电极片51之间的间隔等宽,电极片轴向宽度为径向宽度的两倍。
过流管路1为水平管道;单气泡发生器4的安装位置距压力传感器2不大于一倍管径,距上游外侧电极阵列5的距离不小于二倍过流管径。压力传感器2布置在过流管路1的管道顶部,用于测量单气泡发生器4附近的管道压力,压力传感器2和单气泡发生器4通过数据线3相连接,压力传感器2测得的压力作为单气泡发生器4的加压压力。单气泡发生器4产生的气泡为连续单气泡,气泡平面尺寸与电极片51大小相当。
信号采集与处理系统9包括现场可编程门阵列控制模块91、数模转换模块92、信号采集滤波模块93、电极选通模块94、下游外侧电极阵列信号自激励模块95、上游外侧电极阵列信号自激励模块96、中间层电极阵列信号自激励模块97、下游外侧 电极阵列接线端98、中间层电极阵列接线端99、以及上游外侧电极阵列接线端910;其中,现场可编程门阵列控制模块91、下游外侧电极阵列信号自激励模块95、以及下游外侧电极阵列接线端98通过线束依次串接在一起,现场可编程门阵列控制模块91、上游外侧电极阵列信号自激励模块96、以及上游外侧电极阵列接线端910通过线束依次串接在一起,现场可编程门阵列控制模块91、数模转换模块92、信号采集滤波模块93、电极选通模块94、以及中间层电极阵列接线端99通过线束依次串接在一起。
中间层电极阵列信号自激励模块97的一端通过线束与现场可编程门阵列控制模块91、数模转换模块92之间的线束连接在一起,中间层电极阵列信号自激励模块97的另一端通过线束与电极选通模块94、中间层电极阵列接线端99之间的线束连接在一起;下游外侧电极阵列信号自激励模块95、下游外侧电极阵列接线端98之间的线束,通过线束与上游外侧电极阵列信号自激励模块96、上游外侧电极阵列接线端910之间的线束连接在一起;
下游外侧电极阵列接线端98通过屏蔽功能信号线8与下游外侧电极阵列7上电极装置的接引柱52连接在一起,上游外侧电极阵列接线端910通过屏蔽功能信号线8与上游外侧电极阵列5上电极装置的接引柱52连接在一起,中间层电极阵列接线端99通过屏蔽功能信号线8与中间层电极阵列6上电极装置的接引柱52连接在一起。
现场可编程门阵列控制模块91用于发布指令并完成相关计算,数模转换模块92用于完成电信号向数字的转换,信号采集滤波模块93用于对信号进行采集和滤波处理,电极选通模块94用于控制激励电极与采集电极的切换,下游外侧电极阵列信号自激励模块95、上游外侧电极阵列信号自激励模块96、中间层电极阵列信号自激励模块97用于产生电流激励信号。
三层电极阵列的外侧两层和中间层采用不同频率的激励信号,中间层电极阵列6激励信号采用50KHZ,上游外侧电极阵列5、下游外侧电极阵列7采用500KHZ。对于上游外侧电极阵列5和下游外侧电极阵列7,采集信号不经过电极选通模块94,采用外侧两个电极装置激励,内侧两个电极装置测量的方式。中间层电极阵列6采用相邻电极激励,相邻电极采集的方式。
在本发明的实施过程中,首先通中间层电极阵列6得到泥浆浓度:在过流管路内输送淡水/海水,测得边界电压为Uij;在过流管路内输送泥浆,测得边界电压为Vij, 单位为mV;通过反投影成像算法与电导率-泥浆公式可以获得泥浆浓度c:


其中,BLij为反投影系数,L为敏感场划分之后的第l个单元格,Ωij为反投影域;σm为泥浆电导率,单位为mS/cm;σ0为淡水/海水电导率,单位为mS/cm;i表示第i次激励,j表示第j次测量;Uij为过流管路内淡水/海水的边界电压,单位为mV;Vij为过流管路内泥浆的边界电压,单位为mV;c为得到的泥浆浓度,单位为百分比。
而后,利用上游外侧电极阵列5、下游外侧电极阵列7测量泥浆流速:气泡发生器4产生的气泡通过上游外侧电极阵列5、下游外侧电极阵列7时,会引起这两个电极阵列测量电压的波动,这两个电极阵列出现最大电压的时刻t1和t2之差为气泡从上游外侧电极阵列5到达下游外侧电极阵列7的时间间隔Δt,单位为秒;所测泥浆流速通过公式转换为管道断面平均流速v=L/Δt,单位为米/秒;L为上游外侧电极阵列5、下游外侧电极阵列7之间的间距,单位为米。
最后,把气泡经过中间层电极阵列6时引起顶端电极电压突变的数据剔除,t1和t2时刻之间的测量值取平均,测得(t1+t2)/2时刻的泥浆产量为:
其中,D为管道内径,单位为米;为泥浆平均浓度,其值为t1至t2时刻之间中间各次泥浆浓度测量值的平均值,单位为百分比;Q为泥浆产量,单位为立方米/秒。
以上对本发明的具体操作方式进行了描述。需要理解的是,本发明并不局限于上述特定操作方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (8)

  1. 一种管道泥浆产量测量方法,其特征在于,包括以下步骤:
    第一,在过流管路上游布置单气泡发生器,在过流管路下游布置三层电极阵列;
    第二,通过对气泡流过三层电极阵列的外侧两层电极阵列时的电压信号的采集与处理,得到泥浆流速;通过对三层电极阵列的中间层电极阵列的电压信号的采集与处理,得到泥浆浓度;
    第三,通过步骤二得到泥浆流速和泥浆浓度,计算得出泥浆产量;
    其中,所述三层电极阵列的中间层电极阵列上的电极装置个数为双数,电极装置周向均匀布置在过流管路的壁面上;三层电极阵列的外侧两层电极阵列上的电极装置个数均为双数,电极装置布置在过流管路壁面的上端;三层电极阵列的外侧两层电极阵列和中间层电极阵列采用不同频率的激励信号。
  2. 根据权利要求1所述的管道泥浆产量测量方法,其特征在于所述中间层电极阵列上电极装置的个数为十六个,通过三层电极阵列中间层电极阵列得到泥浆浓度的方法为:在过流管路内输送淡水/海水,测得边界电压为Uij;在过流管路内输送泥浆,测得边界电压为Vij,单位为mV;通过反投影成像算法与电导率-泥浆公式获得泥浆浓度c:


    其中,BLij为反投影系数,L为敏感场划分之后的第l个单元格,Ωij为反投影域;σm为泥浆电导率,单位为mS/cm;σ0为淡水/海水电导率,单位为mS/cm;i表示第i次激励,j表示第j次测量;Uij为过流管路内淡水/海水的边界电压,单位为mV;Vij为过流管路内泥浆的边界电压,单位为mV;c为得到的泥浆浓度,单位为百分比。
  3. 根据权利要求1所述的管道泥浆产量测量方法,其特征在于所述三层电极阵 列的外侧两层电极阵列上电极装置的个数均为四个,通过三层电极阵列的外侧两层电极阵列得出泥浆流速的方法为:
    v=L/Δt;
    其中,v为管道断面泥浆的平均流速,单位为米/秒;L为外侧两层电极阵列的间距,单位为米;Δt为气泡从上游外侧电极阵列到达下游外侧电极阵列的时间差,单位为秒。
  4. 一种实施权利要求1所述管道泥浆产量测量方法的装置,其特征在于,包括过流管路、压力传感器、单气泡发生器、三层电极阵列、排气管、信号采集与处理系统、屏蔽功能信号线、以及数据线;其中:
    所述压力传感器、单气泡发生器、三层电极阵列、和排气管沿过流方向依次布置在过流管路上,且压力传感器、单气泡发生器、排气管布置在过流管路的管道上端;
    所述三层电极阵列的中间层电极阵列上电极装置的个数为双数,电极装置周向均匀布置在过流管路的壁面上;三层电极阵列的外侧两层电极阵列上电极装置的个数均为双数,电极装置布置在过流管路壁面的上端;
    所述三层电极阵列上的电极装置为电极片和接引柱的一体结构;
    所述压力传感器和单气泡发生器通过数据线相连接;
    所述信号采集与处理系统通过屏蔽功能信号线与三层电极阵列上的电极装置相连接。
  5. 根据权利要求4所述的管道泥浆产量测量方法的实施装置,其特征在于,所述过流管路为水平管道;单气泡发生器的安装位置距压力传感器不大于一倍管径,距三层电极阵列的距离不小于二倍过流管径。
  6. 根据权利要求4所述的管道泥浆产量测量方法的实施装置,其特征在于,所述中间层电极阵列上的电极装置,在管道径向方向电极片宽度与电极片之间的间隔等宽,电极片轴向宽度为径向宽度的两倍。
  7. 根据权利要求4所述的管道泥浆产量测量方法的实施装置,其特征在于,所述信号采集与处理系统包括现场可编程门阵列控制模块、数模转换模块、信号采集滤波模块、电极选通模块、外侧电极阵列信号自激励模块、以及中间层电极阵列信号自激励模块;其中:
    所述现场可编程门阵列控制模块用于发布指令并完成相关计算,数模转换模块用 于完成电信号向数字的转换,信号采集滤波模块用于对信号进行采集和滤波处理,电极选通模块用于控制激励电极与采集电极的切换,外侧电极阵列信号自激励模块、中间层电极阵列信号自激励模块用于产生电流激励信号;
    所述现场可编程门阵列控制模块通过外侧电极阵列信号自激励模块,与三层电极阵列外侧两层电极阵列上的电极装置相通讯;
    所述现场可编程门阵列控制模块通过数模转换模块、信号采集滤波模块、电极选通模块、以及中间层电极阵列信号自激励模块,与三层电极阵列中间层电极阵列上的电极装置相通讯。
  8. 根据权利要求4所述的管道泥浆产量测量方法的实施装置,其特征在于,所述三层电极阵列包括上游外侧电极阵列、中间层电极阵列、以及下游外侧电极阵列,并沿过流方向依次布置在过流管路上。
PCT/CN2023/131923 2022-12-15 2023-11-16 一种管道泥浆产量测量方法及其实施装置 WO2024125197A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211618097.3 2022-12-15
CN202211618097.3A CN116046096A (zh) 2022-12-15 2022-12-15 一种管道泥浆产量测量方法及其实施装置

Publications (1)

Publication Number Publication Date
WO2024125197A1 true WO2024125197A1 (zh) 2024-06-20

Family

ID=86115632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/131923 WO2024125197A1 (zh) 2022-12-15 2023-11-16 一种管道泥浆产量测量方法及其实施装置

Country Status (2)

Country Link
CN (1) CN116046096A (zh)
WO (1) WO2024125197A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116046096A (zh) * 2022-12-15 2023-05-02 中交疏浚技术装备国家工程研究中心有限公司 一种管道泥浆产量测量方法及其实施装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160533A (ja) * 1996-12-03 1998-06-19 Yamatake Honeywell Co Ltd 電磁流量計およびそのフレーム組立体
US6122956A (en) * 1998-09-09 2000-09-26 University Of Florida Method and apparatus for monitoring concentration of a slurry flowing in a pipeline
CN204330664U (zh) * 2014-12-28 2015-05-13 武汉理工大学 管道内泥浆浓度电容式测量装置
CN109839160A (zh) * 2019-03-18 2019-06-04 苏州极目机器人科技有限公司 流量检测设备、流量检测方法及喷洒设备
CN112268586A (zh) * 2020-11-05 2021-01-26 南京梅特朗测控仪表有限公司 一种测量浆液的智能电磁流量计及其测量方法
CN112326740A (zh) * 2020-10-21 2021-02-05 中交天津航道局有限公司 一种疏浚输送管道电学层析泥浆浓度检测装置
CN114487031A (zh) * 2022-02-11 2022-05-13 中交天津航道局有限公司 一种电学层析泥浆浓度计信号处理系统及处理方法
CN114778607A (zh) * 2022-03-11 2022-07-22 上海交通大学 棒束通道内流体相场和浓度场三维分布测量系统
CN116046096A (zh) * 2022-12-15 2023-05-02 中交疏浚技术装备国家工程研究中心有限公司 一种管道泥浆产量测量方法及其实施装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10160533A (ja) * 1996-12-03 1998-06-19 Yamatake Honeywell Co Ltd 電磁流量計およびそのフレーム組立体
US6122956A (en) * 1998-09-09 2000-09-26 University Of Florida Method and apparatus for monitoring concentration of a slurry flowing in a pipeline
CN204330664U (zh) * 2014-12-28 2015-05-13 武汉理工大学 管道内泥浆浓度电容式测量装置
CN109839160A (zh) * 2019-03-18 2019-06-04 苏州极目机器人科技有限公司 流量检测设备、流量检测方法及喷洒设备
CN112326740A (zh) * 2020-10-21 2021-02-05 中交天津航道局有限公司 一种疏浚输送管道电学层析泥浆浓度检测装置
CN112268586A (zh) * 2020-11-05 2021-01-26 南京梅特朗测控仪表有限公司 一种测量浆液的智能电磁流量计及其测量方法
CN114487031A (zh) * 2022-02-11 2022-05-13 中交天津航道局有限公司 一种电学层析泥浆浓度计信号处理系统及处理方法
CN114778607A (zh) * 2022-03-11 2022-07-22 上海交通大学 棒束通道内流体相场和浓度场三维分布测量系统
CN116046096A (zh) * 2022-12-15 2023-05-02 中交疏浚技术装备国家工程研究中心有限公司 一种管道泥浆产量测量方法及其实施装置

Also Published As

Publication number Publication date
CN116046096A (zh) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2024125197A1 (zh) 一种管道泥浆产量测量方法及其实施装置
CN111289579B (zh) 一种基于陆面气液分离集成传感器及持水率矫正方法
WO2021056953A1 (zh) 监测混凝土构件内部水分传输的ect传感器、系统及工艺
CN102998343B (zh) 一种基于阵列式单极电导探针的两相流层析成像系统
CN101441099A (zh) 旋流浓集的稀疏气固两相流电容层析成像测量方法及装置
CN102200463A (zh) 一种基于阻抗测量的液位线性测量方法
US9909910B2 (en) Tomographic and sonar-based processing using electrical probing of a flowing fluid to determine flow rate
CN104155358A (zh) 超声多普勒与电学传感器组合多相流可视化测试装置
CN107314251B (zh) 一种下水管道泄漏故障的检测装置及检测方法
CN104655395B (zh) 基于静电感应的矩形管中粉体流流动参数检测装置及方法
CN112268504A (zh) 一种电缆偏心仪在线检测装置及方法
CN107218975A (zh) 基于螺旋式电容‑圆环式静电传感器的气固两相流检测装置及方法
CN204330664U (zh) 管道内泥浆浓度电容式测量装置
CN107711607B (zh) 一种游动类水产动物生命体征参数的检测装置及检测方法
CN114382459B (zh) 一种用于水平井多相流多参数测量复合测井仪及测量方法
CN110579622B (zh) 基于三角电极电容传感器的金属颗粒流速测量装置及方法
CN103983338A (zh) 多极子矢量接收阵校准方法
CN112710703B (zh) 一种带有导电特性补偿的电导网格传感器三相流成像方法
CN208075918U (zh) 一种多功能井口来液检测装置
CN207962119U (zh) 一种建筑给排水管道及管道监测系统
CN109187670A (zh) 一种通信光缆接续盒智能检测系统
CN205958070U (zh) 基于ect的电容式液位传感器
CN202209964U (zh) 一种流体流速流量测量装置
CN204346671U (zh) 基于静电感应的矩形管中粉体流流动参数检测装置
Bahreinimotlagh et al. Investigation of flow condition in the haftbarm lake using acoustic tomography technology