WO2021056953A1 - 监测混凝土构件内部水分传输的ect传感器、系统及工艺 - Google Patents

监测混凝土构件内部水分传输的ect传感器、系统及工艺 Download PDF

Info

Publication number
WO2021056953A1
WO2021056953A1 PCT/CN2020/075746 CN2020075746W WO2021056953A1 WO 2021056953 A1 WO2021056953 A1 WO 2021056953A1 CN 2020075746 W CN2020075746 W CN 2020075746W WO 2021056953 A1 WO2021056953 A1 WO 2021056953A1
Authority
WO
WIPO (PCT)
Prior art keywords
concrete
water
electrode
moisture transmission
monitoring
Prior art date
Application number
PCT/CN2020/075746
Other languages
English (en)
French (fr)
Inventor
张鹏
王文涛
鲍玖文
田玉鹏
赵铁军
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to JP2020564117A priority Critical patent/JP7076162B2/ja
Publication of WO2021056953A1 publication Critical patent/WO2021056953A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/226Construction of measuring vessels; Electrodes therefor

Definitions

  • the invention belongs to the technical field of concrete component durability monitoring equipment, and relates to an ECT sensor, a system and a process for monitoring the internal moisture transmission of the concrete component, which can realize the visual monitoring of the internal moisture transmission of the concrete component.
  • the safety and economic problems caused by insufficient concrete durability are becoming more serious and need to be solved urgently.
  • Moisture is the main reason that affects the durability of concrete.
  • Visual monitoring of moisture and quantification of its distribution are the key to studying the durability of concrete.
  • the ECT technology which emerged in the 1980s, is a method that uses a certain image reconstruction algorithm to invert the distribution of the dielectric constant of the material through the change of the capacitance parameters measured by the array sensor.
  • the ECT technology can realize the non-destructive visualization of the moisture distribution inside the material.
  • the ECT system is mainly composed of three parts: capacitive sensor, data acquisition and information processing system and imaging computer.
  • the capacitive sensor is the core part of the ECT system, and the production of the sensor is to realize the two-dimensional unsaturated moisture transmission imaging inside the cement-based material.
  • the important premise is that the sensor provides experimental and theoretical support for improving the durability design and evaluation mechanism of concrete structures.
  • the electrical capacitance tomography sensor includes a main structure part and a capacitance measurement part.
  • the main structure part is composed of two layers of freely rotatable circular tubes, that is, an outer rotating tube with a certain gap between the two layers, and an inner rotating tube.
  • the capacitance measurement part includes a voltage excitation signal source, a capacitance measurement system formed by a capacitance measurement circuit, and an instrument At least one excitation electrode is adhered to the inner wall of the inner rotating tube, at least one measuring electrode is adhered to the inner wall of the outer rotating tube, and a protective electrode is adhered; when the capacitance measurement system is working, the excitation electrode and voltage The excitation signal source is connected; the measurement electrode is connected to the capacitance measurement circuit, and the measurement is performed through the capacitance measurement system.
  • the excitation electrode is connected to the capacitance measurement circuit and the measurement electrode is connected to the voltage excitation signal source, the measurement is still performed through the capacitance measurement system.
  • Ground potential state; the protection electrode and the shield electrode are connected to the instrument ground and are at ground potential; in view of the problem of insufficient reconstruction image resolution due to the limited measurement data provided by the array capacitive sensor, a capacitor with a double-layer rotating electrode is proposed Tomography sensor can measure the capacitance value between electrodes from any angle, and increase the resolution of the reconstructed image by increasing the capacitance measurement value between the electrode pairs;
  • Chinese patent 201610362533.3 discloses a capacitive imaging sensor for measuring oil-gas-water three-phase circulation parameters, including a measuring tube and an electrode group; the electrode group is at least two groups, and is attached to the On the outer wall of the measuring tube, each set of electrodes includes an inner electrode and an outer electrode, the outer electrode ring is arranged around the inner electrode, and the inner and outer electrodes form a "back"-shaped structure; when measuring a three-phase ring When the oil-water ratio parameter in the fluid is used, the inner electrode is used as the excitation electrode, and the outer electrode is used as the measuring electrode; when the gas-liquid ratio parameter in the three-phase annular fluid is measured, at least a pair of oppositely arranged electrodes is used The inner electrode of one electrode group is used as the excitation electrode, the inner electrode of the other electrode group opposite to it is used as the measuring electrode, and the outer electrodes of the two electrode groups are grounded respectively; it is controlled by optimizing the electrode structure of the ECT sensor. In the sensitive field interval of the measurement, only
  • the sensor structure is improved to improve the performance of the sensor with high temperature, high pressure, and corrosion resistance.
  • a high-precision ECT smart sensor disclosed in Chinese patent 201010261469.2 is installed on the inner pipe wall of the fluid pipeline to be measured, including: A plurality of sensitive capacitor plates with the same structure and a plurality of signal processing circuit boards with the same structure, the plurality of sensitive capacitor plates are distributed evenly on the inner side of the same cross-section of the fluid pipe under test, and each sensitive capacitor plate One side of the stud is fixed and electrically connected to one end of the stud. The stud penetrates the pipe wall of the fluid pipe under test radially outwards.
  • each signal processing circuit board receives and executes commands from the imaging computer through the CAN bus, and the collected analog signals are converted into digital signals required for imaging through the signal processing circuit board, and sent to the remote terminal via the CAN bus.
  • Imaging computer the smart sensor is surrounded by a shielding layer, and the CAN bus is led out from the shielding layer to communicate with the imaging computer; the anti-corrosion electrode treated with Teflon can directly contact the measured fluid, reducing the tube wall capacitance for imaging The effect of the effect makes the measurement result more stable;
  • Chinese patent 201210089479.1 discloses a method and system for measuring the temperature field of polymer melt based on electrical capacitance tomography, which measures the capacitance between capacitor plates of a calibrated capacitive polymer melt temperature field sensor; according to the electrical capacitance tomography image Reconstruction algorithm; reconstruct the polymer melt dielectric constant distribution from the measured capacitance value; establish the relationship model between polymer melt dielectric constant and temperature; convert the polymer melt dielectric constant distribution into corresponding according to the relationship model Temperature field of polymer melt;
  • Chinese patent 201510623768.9 discloses a capacitance tomography sensor applied in a high temperature environment of 300°C.
  • the sensor includes an array distributed measuring electrode resistant to a high temperature of 300°C, a shaft end shield electrode, an insulating isolation layer, an outer shield and a signal transmission line ,
  • the array-distributed measurement electrode includes N measurement electrodes, wherein the value of N is an integer from 8 to 16;
  • the signal transmission line is composed of a cable core, an insulating layer and a shielding wire mesh, and includes a normal temperature section and a resistance to 300°C The high temperature section part; and wherein the shaft end shield electrode is connected to the outer shield cover, and is led out through the shielding screen of the signal transmission line, and then grounded through the connection ground wire of the signal acquisition device of the electrical capacitance tomography system;
  • the insulating isolation layer separates the array distributed measurement electrodes and the shaft end shielding electrode from the outer shielding cover, and fixes the entire sensor; one end of the cable core
  • the signal acquisition device transmits the collected data to the computer for image reconstruction.
  • the array is distributed
  • the measuring electrode is made of a brass sheet with a thickness of 0.01mm ⁇ 0.1mm by corrosion and hollowing, and the array-distributed measuring electrode is fixed on the outer wall of the fluidized bed insulated pipe by positioning hollowing out integral sleeve bonding; its improvement The defect that the traditional electrical capacitance tomography sensor cannot withstand high temperature.
  • ECT technology has become more mature and has achieved certain research results.
  • the ECT sensor in the prior art is mainly used for solid phase concentration measurement, flow pattern recognition measurement and related speed measurement.
  • the purpose of the present invention is to overcome the disadvantages of complex structure in the prior art, the inability to quantitatively monitor the internal moisture content of concrete and the inability to visually monitor the internal moisture transmission of concrete, and seek to design an ECT sensor for monitoring the internal moisture transmission of concrete components, and realize the second problem of cracked concrete.
  • the present invention proposes an ECT sensor for monitoring moisture transmission inside concrete components, which includes a water storage tank, an insulating tube, an electrode plate, a radial shield electrode, an insulating layer, a clamp, a top plate, a bottom plate, a spacer, and a lead hole , Electrode leads, fixing holes and buttresses;
  • the said water storage tank is pasted on the side surface of the concrete test piece.
  • the side surface of the concrete test piece not pasted to the water storage tank is covered with an insulating tube.
  • the outer side of the insulating tube is pasted with electrode plates at equal intervals along its circumferential direction.
  • a radial shield electrode is arranged between the electrode plates, the periphery of the electrode plate and the radial shield electrode is covered with an insulating layer, and the outer periphery of the insulating layer is covered with a clamp to realize the fixation of the entire device;
  • a top plate is set on the top surface of the concrete test piece, a bottom plate is set on the bottom surface of the concrete test piece, a pad is set between the concrete test piece and the bottom plate, a lead hole is opened in the center of the bottom plate, and the electrode lead connected to the electrode plate passes through the lead hole Lead out, the bottom plate is provided with fixing holes, and the corners of the bottom plate are connected with buttresses.
  • the concrete specimen is cylindrical, and the axis of the water storage tank is perpendicular to the axis of the concrete specimen.
  • a scale is provided on the water storage tank.
  • the electrode plate is a copper-platinum electrode plate, which can prevent the direct contact between the concrete test piece and the electrode lead from causing pollution to the concrete test piece or causing a short circuit to the circuit.
  • the clamp is provided with an opening, the opening extends outward, the opening is connected and fixed by a threaded rod and a nut, the opening is provided with a connecting piece, and the left, right, and bottom of the clamp are welded with openings.
  • Iron sheet with holes Iron sheet with holes.
  • the material of the insulating layer is plastic foam.
  • the material of the clamp is stainless steel that can reduce electromagnetic interference.
  • the present invention also provides a system for monitoring the internal moisture transmission of concrete components, which includes the aforementioned ECT sensor, data acquisition device and imaging computer for monitoring internal moisture transmission of concrete components, the lead wires of the electrode plates and the data acquisition The port of the device is connected, and the data acquisition device is connected to the imaging computer.
  • the present invention is based on the above-mentioned ECT sensor system for monitoring the internal moisture transmission of concrete components to carry out the process of imaging the two-dimensional unsaturated moisture transmission in the cracked concrete, including:
  • Pattern and linear back projection algorithm Perform image reconstruction, where C is the normalized capacitance vector, S is the normalized sensitive field matrix, Is the normalized permittivity vector;
  • the data acquisition device automatically eliminates the error capacitance measured by the calibration and presents the final imaging results to the imaging computer;
  • the ECT sensor that monitors the internal moisture transmission of the concrete component over 180 degrees, and make the water level of the water storage tank and the reservoir consistent with the top surface of the concrete specimen to ensure that the water and the concrete specimen are in contact during the measurement process, and observe at different angles The process of water transmission inside the concrete specimen during water injection;
  • the present invention has the following effects:
  • the present invention adopts a circular design to optimize the structure of electrode plates, fixtures and water storage tanks to realize non-destructive monitoring of two-dimensional unsaturated water transmission imaging of cracked concrete, and real-time tracking of the water transmission process in concrete.
  • the present invention discards the traditional sensor structure design suitable for pipeline two-phase flow measurement, and adopts a vertical placement and non-closed design, which is beneficial to real-time monitoring of changes in the internal capacitance signal of the cracked concrete specimen;
  • the copper foil electrode plate of the present invention is pasted on the outer wall of the PVC insulated pipe, which can prevent the electrode plate from directly contacting the concrete test piece, and avoid pollution or circuit short circuit to the concrete test piece;
  • the design of the electrode plate simplifies the hardware structure, improves the data acquisition speed and reduces the edge effect between the electrode plates; the metal outer shield is used for sealing, which effectively suppresses the electromagnetic and noise interference during the measurement process;
  • Water storage tanks and reservoirs facilitate the study of the water transmission process inside the concrete specimens when water is injected at different angles, and more realistically simulate the water transmission inside the concrete in the real environment; it has high sensitivity, low cost, no radiation, simple and portable, It can realize non-destructive monitoring, and the imaging results can be compared with the photographs of the specimens taken, which makes up for the lack of verification methods of traditional sensor imaging results, and provides scientific basis for grasping the law of moisture transmission inside concrete and the study of concrete durability.
  • Figure 1 is a schematic diagram of the main structure of the present invention.
  • Figure 2 is a schematic cross-sectional view of the main structure of the present invention.
  • Figure 3 is a schematic diagram of the vertical installation of the present invention.
  • Figure 4 is a schematic diagram of the horizontal installation of the present invention.
  • Fig. 5 is a schematic diagram of the structure of the bottom plate involved in the present invention.
  • Fig. 6 is a structural diagram of the ECT system involved in step one of the embodiment 1 of the present invention.
  • FIG. 7 is a schematic diagram of the inverted placement measurement state involved in step five of the embodiment 1 of the present invention.
  • the main structure of the ECT sensor for monitoring the internal moisture transmission of concrete components involved in this embodiment includes a concrete specimen 1, a water storage tank 2, an insulating tube 3, an electrode plate 4, a radial shield electrode 5, an insulating layer 6, a clamp 7, and a threaded rod. 8. Nut 9, connector 10, through hole 11, iron sheet 12, top plate 13, bottom plate 14, spacer block 15, lead hole 16, electrode lead 17, fixing hole 18 and buttress 19;
  • the concrete specimen 1 has a cylindrical structure, the side surface of the concrete specimen 1 is pasted with a water storage tank 2, and the axis of the water storage tank 2 is perpendicular to the axis of the concrete specimen 1; the concrete specimen 1 is not pasted with the water storage tank An insulating tube 3 is sleeved on the side surface of the insulating tube 3.
  • a plurality of electrode plates 4 are pasted on the outer surface of the insulating tube 3 at equal intervals along the circumferential direction, and radial shielding electrodes 5 are arranged between adjacent electrode plates 4,
  • the periphery of the electrode plate 4 and the radial shield electrode 5 is covered with an insulating layer 6, and a clamp 7 is sleeved on the periphery of the insulating layer 6.
  • the clamp 7 is provided with an opening that extends outward, and the opening is connected by a threaded rod 8 and a nut 9 Fixed, the opening is provided with a connecting piece 10, the left, right and bottom of the clamp 7 are welded with iron sheets 12 with through holes 11, the top surface of the concrete specimen 1 is provided with a top plate 13, and the bottom surface of the concrete specimen 1 is provided There is a bottom plate 14, a spacer 15 is set between the concrete sample 1 and the bottom plate 14.
  • the center of the bottom plate 14 is provided with a lead hole 16, and the electrode lead 17 connected to the electrode plate 4 is led out through the lead hole 16, and the bottom plate 14 is provided with a fixed Holes 18 and the corners of the bottom plate 14 are connected with buttresses 19.
  • the concrete sample 1 and the water storage tank 2 involved in this embodiment are connected by silicone glue.
  • the concrete sample 1 is a cylinder with a diameter of 15 cm and a height of 5 cm.
  • the water storage tank 2 has a length, width, and height.
  • the plastic tanks of 25cm, 7cm and 5cm are filled with silicone glue, and scale lines are printed on the reservoir 2.
  • the concrete specimen 1 and the water storage tank 2 can also be pasted by other glues, and the size of the water storage tank 2 is not limited to the size disclosed in this embodiment. The size can be designed according to the size of the cylinder.
  • the insulating tube 3 involved in this embodiment is a PVC insulating tube with a diameter of 15.5 cm, a height of 5 cm, and a thickness of 0.5 cm; its diameter is slightly larger than the diameter of the concrete specimen 1 and can fit on the outside of the concrete specimen 1.
  • the electrode plate 4 involved in this embodiment is a copper-platinum electrode plate, which can prevent the concrete specimen 1 from directly contacting the electrode lead 17 from contaminating the concrete specimen 1 or causing a short circuit to the circuit.
  • the number of electrode plates 4 is 10, the length, When the width and height are 5cm, 4cm, and 0.1cm respectively, the structure can be simplified, the data collection speed can be increased, and the edge effect between the electrode plates 4 can be reduced; of course, it is not difficult to understand that other materials can also be used in other embodiments
  • the electrode plates, as well as the number and size of the electrode plates, etc. can be changed according to the size of the concrete specimen 1.
  • the insulating layer 6 involved in this embodiment is made of plastic foam made of existing materials, which can prevent the clamp 7 from interfering with the capacitance measurement.
  • the clamp 7 involved in this embodiment is made of stainless steel that can reduce electromagnetic interference, with a diameter of 16cm, a height of 8cm, a thickness of 0.1cm, an opening length of 8cm, and an outward extending length of 6cm; threaded rod 8, nut 9 It is a hexagonal nut; of course, it is not difficult to understand that in other implementations, the fixture 7 can also be made of other metal materials that reduce electromagnetic interference; its specific size is not limited to the size disclosed in this embodiment, and its size is based on the concrete specimen 1. Size design.
  • the connecting piece 10 involved in this embodiment is a stirrup structure, and the connecting piece 10 connects the clamp 7 with the bottom plate 14;
  • the top plate 13 is a cylindrical plastic plate with a diameter of 15 cm and a thickness of 0.5 cm, which can prevent moisture from evaporating during the measurement.
  • the bottom plate 14 is a plastic plate with a length of 50 cm, a width of 30 cm, and a thickness of 0.5 cm.
  • the specific dimensions of the top plate 13 and the bottom plate 14 are not limited to those disclosed in this embodiment, and their dimensions are based on concrete The size of test piece 1 is designed.
  • the number of lead holes 16 involved in this embodiment is 10, and the diameter is 1 cm; the number of electrode leads 17 is 10; generally, the number of lead holes 16 and electrode leads 17 is related to the number of electrodes, and one electrode corresponds to Set a lead hole and an electrode lead.
  • the number of fixing holes 18 involved in this embodiment is 5, and the diameter is 1 cm, which correspond to the positions of the through holes 11 of the connecting piece 10 and the iron sheet 12 respectively, and are used to fix the concrete specimen 1 and the clamp 7;
  • the buttress 19 involved in this embodiment is a plastic block with a length of 30 cm, a width of 7 cm, and a height of 5 cm, so that the concrete specimen 1 can be turned over during measurement to observe the water transmission inside the concrete specimen 1 when water is poured at different angles. process.
  • the specific size is not limited to the size disclosed in this embodiment, and the size is designed according to the size of the concrete specimen 1.
  • This embodiment proposes a system for monitoring moisture transmission inside concrete components based on the ECT sensor of embodiment 1, which includes the ECT sensor of embodiment 1, and also includes a data acquisition device and an imaging computer, electrode leads of the ECT sensor and data acquisition The port of the device is connected, and the data acquisition device is connected to the imaging computer.
  • the data collection device can be a PTL300E data collection box.
  • the data acquisition device is connected to the imaging computer through the RS232 port, RS485 port or CAN bus interface, so that the ECT sensor, the PTL300E data acquisition device and the imaging computer that monitor the internal moisture transmission of the concrete components form an ECT system.
  • this embodiment proposes a process of imaging the two-dimensional unsaturated water transmission inside cracked concrete with an ECT sensor that monitors the water transmission inside the concrete component, including:
  • the above-mentioned PTL300E data acquisition device can also adopt other types of data acquisition devices, and the communication method between the data acquisition device and the imaging computer is not limited to the above RS232 port, and communication can also be carried out through other ports, such as RS485 Port, CAN bus interface, etc.
  • step 4 Take out the calibrated concrete specimen 1 in step 3, and put it into concrete specimens 1 with different water-cement ratios for measurement. During the measurement, the data acquisition device automatically eliminates the error capacitance measured by the calibration and presents the final imaging result to the imaging computer;
  • the principle of water transmission imaging by the ECT sensor for monitoring the internal moisture transmission of concrete components involved in this embodiment is: different substances have different dielectric constants, and the relative dielectric constant of water is about 80, which is much larger than the relative dielectric constant of dry concrete ( Approximately 6-8). Therefore, after water enters the dry concrete, its relative permittivity changes significantly, which in turn causes a change in the capacitance value. The change in the measured capacitance value reflects the distribution of water in the dry concrete.
  • Multi-electrode Array sensors measure the capacitance signals of moisture at different positions as projection data, and image reconstruction algorithms can reconstruct images reflecting the distribution of moisture inside dry concrete.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明属于混凝土构件耐久性监测设备技术领域,涉及一种监测混凝土构件内部水分传输的ECT传感器、系统及工艺,采用圆形设计,对电极板、夹具和蓄水槽结构进行优化,摒弃了适用于管道两相流测量的传统传感器结构设计,采用立式放置、不闭合式设计,铜箔电极板粘贴于PVC绝缘管外壁,电极板的尺寸和数量简化了硬件结构,采用金属材质外屏蔽罩进行密封,蓄水管和蓄水池便于研究在不同角度注水时混凝土试件内部水分的传输过程;其灵敏度高、成本低、无辐射、简易便携、能够实现无损监测,成像结果可与拍摄的试件照片作对比,弥补了传统传感器成像结果缺乏验证方法的不足,为掌握水分在混凝土内部的传输规律和混凝土耐久性研究提供科学依据。

Description

监测混凝土构件内部水分传输的ECT传感器、系统及工艺 技术领域
本发明属于混凝土构件耐久性监测设备技术领域,涉及一种监测混凝土构件内部水分传输的ECT传感器、系统及工艺,能够实现混凝土构件内部水分传输的可视化监测。
背景技术
混凝土耐久性不足引起的安全和经济问题日益严重,亟待解决。水分是影响混凝土耐久性问题的主要原因,对水分进行可视化监测并对其分布进行量化是研究混凝土耐久性问题的关键。上世纪80年代兴起的ECT技术是一种通过阵列式传感器所测电容参数的变化采用一定的图像重建算法反演得出材料内部介电常数分布的方法,ECT技术能够实现无损可视化材料内部水分分布状态,ECT系统主要由电容式传感器、数据采集及信息处理系统和成像计算机三部分组成,电容式传感器是ECT系统的核心部分,而制作传感器是实现水泥基材料内部二维非饱和水分传输成像的重要前提,传感器为完善混凝土结构耐久性设计和评价机制提供试验和理论支持。
目前,对于传感器的研究主要集中在两个方面,一方面通过改进传感器电容极板的长度、放置位置及增加电极对数来提高传感器精度,例如:中国专利201310420106.2公开的一种具有双层旋转电极的电容层析成像传感器包括有主体结构部分及电容测量部分,所述主体结构部分是由两层可自由旋转的圆形管构成,即两层之间存有一定间隙的外层旋转管、内层旋转管,在所述外层旋转管外周设有屏蔽电极,在所述主体的底部设置有一固定台;所述电容测量部分包含有电压激励信号源、电容测量电路形成的电容测量系统及仪器地;所述内层旋转管的内壁上至少粘附一个激励电极,所述外层旋转管的内壁上至少粘附一个测量电极,并粘附保护电极;电容测量系统工作时,激励电极与电压激励 信号源相连;测量电极与电容测量电路相连,通过电容测量系统进行测量,若激励电极与电容测量电路相连,而测量电极与电压激励信号源相连时,仍通过电容测量系统进行测量,处于虚地电位状态;保护电极与屏蔽电极与仪器地相连,处于地电位;其针对阵列式电容传感器提供的测量数据有限而导致重建图像分辨率不足的问题,提出了一种具有双层旋转电极的电容层析成像传感器,可从任意角度测量电极之间的电容值,通过增加电极对之间的电容测量值来提高重建图像的分辨率;
中国专利201610362533.3公开的一种用于油-气-水三相环流参数测量的电容成像传感器包括测量管和电极组;所述电极组至少为两组,且呈相对的位置关系贴设在所述测量管的外壁,每组电极均包括一内电极和一外电极,所述外电极环设于所述内电极周围,所述内、外电极形成“回”字型结构;当测量三相环状流液中的油-水比参数时,采用内电极作为激励电极,外电极作为测量电极;当测量三相环状流液中的气-液比参数时,采用至少一对相对设置的电极组进行测量,其中,一电极组的内电极作为激励电极,与其相对设置的另一电极组的内电极作为测量电极,两电极组的外电极分别接地;其通过优化设计ECT传感器电极结构,控制测量的敏感场区间,实现仅采用电容值计算出油-气-水三相流的含水率及气-液比。
另一方面通过改进传感器构造来提高传感器耐高温、高压及腐蚀等复杂条件的性能,例如:中国专利201010261469.2公开的一种高精度ECT智能传感器设置于被测流体管道的内管壁上,包括有多个结构相同的敏感电容极板和多个结构相同的信号处理电路板,所述多个敏感电容极板以圆周均布方式分布于被测流体管道同一截面的内侧,每个敏感电容极板的一侧与螺柱的一端固定电连接,螺柱径向向外穿过被测流体管道的管壁,螺柱在被测流体管道外侧的一端与信号处理电路板固定电连接,敏感电容极板的另一侧涂有涂层;信号处理电路板通过单片机自带的闪存存储器独立编址,每个信号处理电路板通过CAN 总线连接,同时该CAN总线通过CAN-USB转换器连接到成像计算机的USB接口上,每个信号处理电路板通过CAN总线接收并执行来自成像计算机的命令,采集到的模拟信号通过信号处理电路板转换为成像所需的数字信号,经CAN总线发送给远端的成像计算机;所述智能传感器外部有屏蔽层包围,从屏蔽层内部引出CAN总线用于与成像计算机通讯;经特氟龙处理的防腐蚀电极可直接接触被测流体,减少了管壁电容对成像效果的影响,使测量结果更加稳定;
中国专利201210089479.1公开的一种基于电容层析成像的聚合物熔体温度场测量方法及系统,通过测量已标定的电容式聚合物熔体温度场传感器电容极板间电容值;根据电容层析图像重建算法;将所测量电容值重构出聚合物熔体介电常数分布;建立聚合物熔体介电常数与温度的关系模型;根据关系模型将聚合物熔体介电常数分布转换为相对应的聚合物熔体温度场;
中国专利201510623768.9公开的一种应用于300℃高温环境下的电容层析成像传感器,所述传感器包括耐300℃高温的阵列分布测量电极、轴端屏蔽电极、绝缘隔离层、外屏蔽罩和信号传输线,其中所述阵列分布测量电极包括N个测量电极,其中N的取值为8~16的整数;所述信号传输线由缆芯、绝缘层和屏蔽丝网组成并包括常温段部分和耐300℃的高温段部分;并且其中所述轴端屏蔽电极与所述外屏蔽罩相连,并经所述信号传输线的屏蔽丝网引出,再通过电容层析成像系统的信号采集设备的连接地线接地;所述绝缘隔离层将所述阵列分布测量电极及所述轴端屏蔽电极与所述外屏蔽罩隔离开,并固定整个传感器;所述信号传输线的高温段部分的缆芯的一端与所述阵列分布测量电极相连,并且另一端通过所述信号传输线的常温段部分连接所述电容层析成像系统的信号采集设备,所述信号采集设备将采集的数据传送至计算机进行图像重建,所述阵列分布测量电极采用腐蚀和镂空的方式由厚度为0.01mm~0.1mm的黄铜片制成,并且所述阵列分布测量电极采用定位镂空整体套粘方式固定在流化床绝缘管道的外壁上;其改进了传统电容层析成像传感器不耐高温的缺陷。
经过30多年的发展ECT技术日渐成熟,并取得了一定的研究成果。但是现有技术中的ECT传感器主要用于固体相浓度测量、流型识别测量及相关速度测量,在水泥基材料领域ECT传感器的相关专利报道少之又少,存在一定的技术与理论空白,亟待进一步完善。
发明内容:
本发明的目的在于克服现有技术存在的构造复杂、无法定量监测混凝土内部水分含量和无法可视化监测混凝土内部水分传输缺点,寻求设计一种监测混凝土构件内部水分传输的ECT传感器,实现开裂混凝土的二维非饱和水分传输成像,实时追踪混凝土中水分传输过程。
为了实现上述目的,本发明采用的技术方案如下:
第一方面,本发明提出了一种监测混凝土构件内部水分传输的ECT传感器,其包括蓄水槽、绝缘管、电极板、径向屏蔽电极、绝缘层、夹具、顶板、底板、垫块、引线孔、电极引线、固定孔和支墩;
所述的蓄水槽黏贴在混凝土试件的侧表面,混凝土试件未粘贴蓄水槽的侧表面上套装绝缘管,绝缘管的外侧面沿其圆周方向等间距的粘贴有电极板,相邻的电极板之间设置有径向屏蔽电极,电极板与径向屏蔽电极的外围覆盖有绝缘层,绝缘层的外围套设有夹具,实现对整个装置的固定;
在混凝土试件的顶面设置有顶板,混凝土试件的底面设置有底板,混凝土试件与底板之间设置有垫块,底板的中心开设有引线孔,与电极板连接的电极引线通过引线孔引出,底板上开设有固定孔,底板的角部与支墩连接。
作为进一步的技术方案,所述的混凝土试件为圆柱形,蓄水槽的轴线与混凝土试件的轴线垂直。
作为进一步的技术方案,所述的蓄水槽上设有刻度。
作为进一步的技术方案,所述的电极板为铜铂电极板,能够防止混凝土试件与电极引线直接接触对混凝土试件造成污染或对电路造成短路。
作为进一步的技术方案,所述的夹具设置有开口,开口向外延伸,开口处通过螺纹杆和螺母连接和固定,开口处设置有连接件,夹具的左侧、右侧和下方焊接有开设通孔的铁片。
作为进一步的技术方案,所述的绝缘层的材质为塑料泡沫。
作为进一步的技术方案,所述的夹具的材质为能够降低电磁干扰的不锈钢。
第二方面,本发明还提供了一种监测混凝土构件内部水分传输的系统,起包括前面所述的监测混凝土构件内部水分传输的ECT传感器、数据采集装置以及成像计算机,电极板的引线与数据采集装置的端口连接,数据采集装置连接到成像计算机。
第三方面,本发明基于上述监测混凝土构件内部水分传输的ECT传感器系统进行开裂混凝土内部二维非饱和水分传输成像的工艺过程,包括:
将电极引线与-数据采集装置的端口连接,数据采集装置连接到成像计算机,使监测混凝土构件内部水分传输的ECT传感器、数据采集装置和成像计算机组成ECT系统,采用激励、接地和测量三种测量模式和线性反投影算法:
Figure PCTCN2020075746-appb-000001
进行图像重建,其中,C为归一化电容矢量,S为归一化敏感场矩阵,
Figure PCTCN2020075746-appb-000002
为归一化介电常数矢量;
测定未安装混凝土试件的监测混凝土构件内部水分传输的ECT传感器的电容值,定为最小电容值,同时,测量监测混凝土构件内部水分传输的ECT传感器的静态电容和耦合电容并存储到数据采集装置中;
取经干燥处理过的混凝土试件固定于步骤二的监测混凝土构件内部水分传输的ECT传感器的内部,将蓄水槽与蓄水池连接,每次向蓄水槽加入设定量的水,依次测得试验最小电容值与最大电容值并标定;
取出标定后的混凝土试件,依次放入不同水灰比的混凝土试件进行测量,测量时数据采集装置自动消除标定所测误差电容并将最终成像结果呈现于成像 计算机;
将监测混凝土构件内部水分传输的ECT传感器翻转180度,并使蓄水槽、蓄水池的水面高度与混凝土试件的顶面保持一致,保证测量过程中水与混凝土试件接触,观察在不同角度注水时混凝土试件内部水分的传输过程;
测量完成后导出数据并进行数据处理,绘制不同水灰比混凝土试件的水分传输变化曲线,绘制水分随时间进入混凝土试件的介电常数变化曲线,根据相介电常数与吸水体积的函数关系得到水分进入的定量信息,将混凝土试件的二维水分传输成像图像与从混凝土试件的正面拍摄的照片比较,验证成像的准确性。
本发明与现有技术相比,具有以下效果:
1.本发明采用圆形设计,对电极板、夹具和蓄水槽结构进行优化,实现无损监测开裂混凝土二维非饱和水分传输成像,实时追踪混凝土中水分传输过程。
2.本发明摒弃了适用于管道两相流测量的传统传感器结构设计,采用立式放置、不闭合式设计,有利于实时监测开裂混凝土试件内部电容信号的变化;
3.本发明的铜箔电极板粘贴于PVC绝缘管外壁,能够防止电极板与混凝土试件直接接触,避免对混凝土试件造成污染或电路短路;
4.电极板的设计简化了硬件结构,提高了数据采集速度并降低了电极板之间的边缘效应;采用金属材质外屏蔽罩进行密封,有效抑制了测量过程中的电磁和噪声干扰;
5.蓄水槽和蓄水池便于研究在不同角度注水时混凝土试件内部水分的传输过程,更加真实的模拟现实环境中混凝土内部的水分传输;其灵敏度高、成本低、无辐射、简易便携、能够实现无损监测,成像结果可与拍摄的试件照片作对比,弥补了传统传感器成像结果缺乏验证方法的不足,为掌握水分在混凝土内部的传输规律和混凝土耐久性研究提供科学依据。
附图说明:
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明的主体结构原理示意图。
图2为本发明的主体结构剖面示意图。
图3为本发明竖向安装示意图。
图4为本发明横向安装示意图。
图5为本发明涉及的底板的结构示意图。
图6为本发明实施例1步骤一涉及的ECT系统结构图。
图7为本发明实施例1步骤五涉及的倒放置测量状态示意图。
图中:1混凝土试件、2蓄水槽、3绝缘管、4电极板、5径向屏蔽电极、6绝缘层、7夹具、8螺纹杆、9螺母、10连接件、11通孔、12铁片、13顶板、14底板、15垫块、16引线孔、17电极引线、18固定孔、19支墩、20蓄水池。
具体实施方式:
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本发明使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非本发明另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合;
下面通过实施例并结合附图对本发明作进一步说明。
实施例1:
本实施例涉及的监测混凝土构件内部水分传输的ECT传感器的主体结构包括混凝土试件1、蓄水槽2、绝缘管3、电极板4、径向屏蔽电极5、绝缘层6、夹具7、螺纹杆8、螺母9、连接件10、通孔11、铁片12、顶板13、底板14、垫块15、引线孔16、电极引线17、固定孔18和支墩19;
在本实施例中,混凝土试件1为圆柱形结构,混凝土试件1的侧表面粘贴有蓄水槽2,蓄水槽2的轴线与混凝土试件1的轴线垂直;混凝土试件1未粘贴蓄水槽2的侧表面上套有一个-绝缘管3,绝缘管3的外侧面沿其圆周方向等间距的粘贴有多个电极板4,相邻的电极板4之间设置有径向屏蔽电极5,电极板4与径向屏蔽电极5的外围覆盖有绝缘层6,绝缘层6的外围套设有夹具7,夹具7设置有开口,开口向外延伸,开口处通过螺纹杆8和螺母9连接和固定,开口处设置有连接件10,夹具7的左侧、右侧和下方焊接有开设通孔11的铁片12,混凝土试件1的顶面设置有顶板13,混凝土试件1的底面设置有底板14,混凝土试件1与底板14之间设置有垫块15,底板14的中心开设有引线孔16,与电极板4连接的电极引线17通过引线孔16引出,底板14上开设有固定孔18,底板14的角部与支墩19连接。
本实施例涉及的混凝土试件1与蓄水槽2之间通过硅酮胶粘贴式连接,混凝土试件1是直径为15cm,高度为5cm的圆柱体,蓄水槽2是长度、宽度和高度分别为25cm、7cm和5cm的塑料槽,采用硅酮胶填缝,蓄水槽2上印制有刻度线。当然不难理解的,在其他实施例中混凝土试件1和蓄水槽2还可以采用别的胶进行黏贴,且蓄水槽2的尺寸也不限于本实施例中公开的尺寸,蓄水槽2的尺寸可以根据圆柱体的尺寸进行设计。
本实施例涉及的绝缘管3是直径为15.5cm,高度为5cm,厚度为0.5cm的PVC绝缘管;其直径微大于凝土试件1的直径,正好可以套装在混凝土试件1的外侧。
本实施例中涉及的电极板4为铜铂电极板,能够防止混凝土试件1与电极引线17直接接触对混凝土试件1造成污染或对电路造成短路,电极板4的数量为10,长度、宽度和高度分别为5cm、4cm和0.1cm时,能够简化结构,提高数据采集速度并降低电极板4之间的边缘效应;当然不难理解的,在其他实施例中还可以采用别的材料的电极板,以及电极板的数量尺寸等都可以根据混凝土试件1的尺寸进行改变。
本实施例中涉及的绝缘层6的材质为现有材料制作的塑料泡沫,能够防止夹具7干扰电容值的测量。
本实施例中涉及的夹具7的材质为能够降低电磁干扰的不锈钢,直径为16cm,高度为8cm,厚度为0.1cm,开口长度为8cm,向外延伸的长度为6cm;螺纹杆8、螺母9为六角螺母;当然不难理解的,在其他实施夹具7还可以采用别的降低电磁干扰的金属材料制作;其具体尺寸也不限于本实施例中公开的尺寸,其尺寸根据混凝土试件1的尺寸进行设计。
本实施例中涉及的连接件10为马镫式结构,连接件10将夹具7与底板14连接;顶板13是直径为15cm,厚度为0.5cm的圆柱形塑料板,能够防止测量过程中的水分蒸发和噪声干扰,并便于观察;底板14是长度为50cm,宽度为30cm,厚度为0.5cm的塑料板;顶板13和底板14的具体尺寸也不限于本实施例中公开的尺寸,其尺寸根据混凝土试件1的尺寸进行设计。
本实施例中涉及的引线孔16的数量为10,直径为1cm;电极引线17的数量为10;一般的,引线孔16和电极引线17的个数与电极的设置个数有关,一个电极对应设置一个引线孔和一个电极引线。
本实施例中涉及的固定孔18的数量为5,直径为1cm,分别与连接件10和铁片12的通孔11位置对应,用于固定混凝土试件1和夹具7;
本实施例中涉及的支墩19是长度为30cm,宽度为7cm,高度为5cm的塑料块,以便于在测量时翻转混凝土试件1,观察在不同角度注水时混凝土试件 1内部水分的传输过程。其具体尺寸也不限于本实施例中公开的尺寸,其尺寸根据混凝土试件1的尺寸进行设计。
实施例2:
本实施例基于实施例1的ECT传感器提出了一种监测混凝土构件内部水分传输的系统,其包括实施例1中的ECT传感器,还包括数据采集装置以及成像计算机,ECT传感器的电极引线与数据采集装置的端口连接,数据采集装置连接到成像计算机。
数据采集装置可以是PTL300E数据采集箱。数据采集装置通过RS232端口、RS485端口或者CAN总线接口连接到成像计算机,使监测混凝土构件内部水分传输的ECT传感器、PTL300E数据采集装置和成像计算机组成ECT系统。
实施例3
本实施例基于实施例1中公开的结构,提出了一种-监测混凝土构件内部水分传输的ECT传感器进行开裂混凝土内部二维非饱和水分传输成像的工艺过程,包括:
一、将电极引线17与PTL300E数据采集装置的端口连接,数据采集装置通过RS232端口连接到成像计算机,使监测混凝土构件内部水分传输的ECT传感器、PTL300E数据采集装置和成像计算机组成ECT系统,采用激励、接地和测量三种测量模式和线性反投影算法:
Figure PCTCN2020075746-appb-000003
进行图像重建,其中,C为归一化电容矢量,S为归一化敏感场矩阵,
Figure PCTCN2020075746-appb-000004
为归一化介电常数矢量;
需要说明的是,上述的PTL300E数据采集装置还可以采用其他型号的数据采集装置,数据采集装置与成像计算机之间的通讯方式也不限于上述的RS232端口,也可以通过其他端口进行通讯,例如RS485端口、CAN总线接口等。
二、测定未安装混凝土试件1的监测混凝土构件内部水分传输的ECT传感器的电容值,定为最小电容值,同时,测量监测混凝土构件内部水分传输的ECT 传感器的静态电容和耦合电容并存储到数据采集装置中;
三、取直径为15cm,高度为5cm的经干燥处理过的混凝土试件1固定于步骤二的监测混凝土构件内部水分传输的ECT传感器的内部,将蓄水槽2与蓄水池20连接,每次向蓄水槽2加入25ml水,依次测得试验最小电容值与最大电容值并标定;
四、取出步骤三标定后的混凝土试件1,依次放入不同水灰比的混凝土试件1进行测量,测量时数据采集装置自动消除标定所测误差电容并将最终成像结果呈现于成像计算机;
五、将步骤四的监测混凝土构件内部水分传输的ECT传感器翻转180度,并使蓄水槽2、蓄水池20的水面高度与混凝土试件1的顶面保持一致,保证测量过程中水与混凝土试件1接触,观察在不同角度注水时混凝土试件1内部水分的传输过程;
六、测量完成后导出数据并进行数据处理,绘制不同水灰比混凝土试件1的水分传输变化曲线,绘制水分随时间进入混凝土试件1的介电常数变化曲线,根据相介电常数与吸水体积的函数关系得到水分进入的定量信息,将混凝土试件1的二维水分传输成像图像与从混凝土试件1的正面拍摄的照片比较,验证成像的准确性。
本实施例涉及的监测混凝土构件内部水分传输的ECT传感器进行水分传输成像原理为:不同物质具有不同的介电常数,水的相对介电常数约为80,远大于干混凝土的相对介电常数(约为6-8),因此,水进入干混凝土后,其相对介电常数发生明显变化,进而引起电容值的变化,测量电容值的变化反映了水分在干混凝土内部的分布情况,采用多电极阵列传感器测得水分在不同位置处的电容信号作为投影数据,通过图像重建算法能够重建出反应干混凝土内部水分分布的图像。

Claims (10)

  1. 监测混凝土构件内部水分传输的ECT传感器,其特征在于,其包括蓄水槽、绝缘管、电极板、径向屏蔽电极、绝缘层、夹具、顶板、底板、垫块、电极引线、固定孔和支墩;
    所述的蓄水槽黏贴在混凝土试件的侧表面,混凝土试件未粘贴蓄水槽的侧表面上套装绝缘管,绝缘管的外侧面沿其圆周方向等间距的粘贴有电极板,相邻的电极板之间设置有径向屏蔽电极,电极板与径向屏蔽电极的外围覆盖有绝缘层,绝缘层的外围套设有夹具,实现对整个装置的固定;在混凝土试件的顶面设置有顶板,混凝土试件的底面设置有底板。
  2. 如权利要求1所述的监测混凝土构件内部水分传输的ECT传感器,其特征在于,所述的混凝土试件为圆柱形,蓄水槽的轴线与混凝土试件的轴线垂直。
  3. 如权利要求1所述的监测混凝土构件内部水分传输的ECT传感器,其特征在于,所述的蓄水槽上设有刻度。
  4. 如权利要求1所述的一种监测混凝土构件内部水分传输的ECT传感器,其特征在于,所述的电极板为铜铂电极板。
  5. 如权利要求1所述的监测混凝土构件内部水分传输的ECT传感器,其特征在于,所述的夹具设置有开口,开口向外延伸,开口处通过螺纹杆和螺母连接和固定,开口处设置有连接件,夹具的左侧、右侧和下方焊接有开设通孔的连接板。
  6. 如权利要求1所述的监测混凝土构件内部水分传输的ECT传感器,其特征在于,所述的绝缘层的材质为塑料泡沫。
  7. 如权利要求1所述的监测混凝土构件内部水分传输的ECT传感器,其特征在于,所述的夹具的材质为能够降低电磁干扰的不锈钢。
  8. 一种监测混凝土构件内部水分传输的系统,其特征在于,包括权利要求1-7任一所述的监测混凝土构件内部水分传输的ECT传感器。
  9. 如权利要求8所述的监测混凝土构件内部水分传输的系统,其特征在于,还包括数据采集装置以及成像计算机,电极板的引线与数据采集装置的端口连接,数据采集装置连接到成像计算机。
  10. 基于权利要求9所述的系统进行开裂混凝土内部二维非饱和水分传输成像的工艺,其特征在于,包括:
    基于监测混凝土构件内部水分传输的系统,采用激励、接地和测量三种测量模式和线性反投影算法:
    Figure PCTCN2020075746-appb-100001
    进行图像重建,其中C为归一化电容矢量,S为归一化敏感场矩阵,
    Figure PCTCN2020075746-appb-100002
    为归一化介电常数矢量;
    测定未安装混凝土试件的监测混凝土构件内部水分传输的ECT传感器的电容值,定为最小电容值,同时,测量监测混凝土构件内部水分传输的ECT传感器的静态电容和耦合电容并存储到数据采集装置中;
    取经干燥处理过的混凝土试件固定于步骤二的监测混凝土构件内部水分传输的ECT传感器的内部,将蓄水槽与蓄水池连接,每次向蓄水槽加入设定量的水,依次测得试验最小电容值与最大电容值并标定;
    取出标定后的混凝土试件,依次放入不同水灰比的混凝土试件进行测量,测量时数据采集装置自动消除标定所测误差电容并将最终成像结果呈现于成像计算机;
    将监测混凝土构件内部水分传输的ECT传感器翻转180度,并使蓄水槽、蓄水池的水面高度与混凝土试件的顶面保持一致,保证测量过程中水与混凝土试件接触,观察在不同角度注水时混凝土试件内部水分的传输过程;
    测量完成后导出数据并进行数据处理,绘制不同水灰比混凝土试件的水分传输变化曲线,绘制水分随时间进入混凝土试件的介电常数变化曲线,根据相介电常数与吸水体积的函数关系得到水分进入的定量信息,将混凝土试件的二维水分传输成像图像与从混凝土试件的正面拍摄的照片比较,验证成像的准确性。
PCT/CN2020/075746 2019-09-24 2020-02-18 监测混凝土构件内部水分传输的ect传感器、系统及工艺 WO2021056953A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020564117A JP7076162B2 (ja) 2019-09-24 2020-02-18 コンクリート部材の内部水分透過を監視するためのectセンサー,システム及びプロセス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910904259.1A CN110470706B (zh) 2019-09-24 2019-09-24 一种监测混凝土构件内部水分传输的ect传感器
CN2019109042591 2019-09-24

Publications (1)

Publication Number Publication Date
WO2021056953A1 true WO2021056953A1 (zh) 2021-04-01

Family

ID=68516566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075746 WO2021056953A1 (zh) 2019-09-24 2020-02-18 监测混凝土构件内部水分传输的ect传感器、系统及工艺

Country Status (3)

Country Link
JP (1) JP7076162B2 (zh)
CN (1) CN110470706B (zh)
WO (1) WO2021056953A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340789A (zh) * 2021-06-15 2021-09-03 中交二公局第三工程有限公司 一种便于清洗且检测精度高的全自动混凝土渗透检测装置
CN113567505A (zh) * 2021-07-23 2021-10-29 国网天津市电力公司电力科学研究院 一种混凝土内部抗裂钢丝网施工质量评定的无损检测方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110470706B (zh) * 2019-09-24 2024-02-20 青岛理工大学 一种监测混凝土构件内部水分传输的ect传感器
CN111257377A (zh) * 2020-02-17 2020-06-09 青岛理工大学 一种ect传感器标定方法
CN111398369B (zh) * 2020-03-26 2022-09-16 青岛理工大学 一种ect传感器结构优化与电磁场分析方法
CN111398371B (zh) * 2020-04-07 2021-03-23 清华大学 一种相含率测量方法及装置
CN111721816A (zh) * 2020-07-29 2020-09-29 青岛理工大学 一种三维ect传感器
CN112285136B (zh) * 2020-10-15 2023-01-10 国网天津市电力公司 即时追踪混凝土二维吸水过程的x射线测量方法
CN113075390A (zh) * 2021-03-22 2021-07-06 青岛理工大学 一种混凝土内部水分和氯离子同步传输感知装置
CN113447538A (zh) * 2021-08-13 2021-09-28 重庆大学 一种普通混凝土抗压强度电容无损检测方法
CN114544717B (zh) * 2022-01-04 2023-09-29 青岛理工大学 一种ect定量监测水分传输方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100332170A1 (en) * 2009-06-30 2010-12-30 Gao Robert X Multiple Excitation Capacitance Polling for Enhanced Electronic Capacitance Tomography
CN103439374A (zh) * 2013-08-23 2013-12-11 华北电力大学 一种组合型印制电路板电容层析成像传感器
CN105466465A (zh) * 2015-11-20 2016-04-06 华北电力大学 一种螺旋结构电极的电容层析成像传感器
CN206920292U (zh) * 2017-05-31 2018-01-23 南京华研智能科技有限公司 混凝土抗渗性能试验装置
CN110470706A (zh) * 2019-09-24 2019-11-19 青岛理工大学 一种监测混凝土构件内部水分传输的ect传感器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0593779A (ja) * 1991-09-30 1993-04-16 Shimadzu Corp シングルフオトンect装置の吸収補正方法
GB9325125D0 (en) * 1993-12-08 1994-02-09 Malcolm Byars Associates Measurement of the impedance of a lossy capacitor
JP5411645B2 (ja) 2009-10-06 2014-02-12 西日本高速道路株式会社 コンクリート表面含浸材の透過抵抗評価試験方法
WO2011153628A1 (en) 2010-06-09 2011-12-15 University Of Manitoba Detection of reinforcement metal corrosion
WO2014135741A1 (en) 2013-03-07 2014-09-12 Rocsole Ltd Method and apparatus for investigating permittivity in a target domain
GB2514114A (en) 2013-05-13 2014-11-19 Univ Bath Apparatus and method for measuring electromagnetic properties
CN103604843B (zh) * 2013-11-27 2017-01-25 华北电力大学 一种应用于液下环境的电容层析成像传感器
CN106896143B (zh) * 2015-12-18 2019-10-08 中国科学院大连化学物理研究所 一种耐高温电容层析成像传感器
CN105738212A (zh) * 2016-01-29 2016-07-06 河海大学 基于电容层析成像技术的岩石三轴试验裂隙扩展观测装置
CN107389748A (zh) * 2017-07-26 2017-11-24 合肥辰工科技有限公司 一种页岩含水量测量装置及方法
CN107632116B (zh) 2017-09-01 2018-10-12 山东大学 一种三维注浆模型试验伺服控制系统及试验方法
CN108152339B (zh) 2017-12-05 2020-05-22 浙江大学 一种应用于低温环境的中心轴式电容层析成像装置
US11891335B2 (en) 2017-12-22 2024-02-06 The Regents Of The University Of California Multi-functional cementitious materials with ultra-high damage tolerance and self-sensing ability
CN210572083U (zh) * 2019-09-24 2020-05-19 青岛理工大学 一种监测混凝土构件内部水分传输的ect传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100332170A1 (en) * 2009-06-30 2010-12-30 Gao Robert X Multiple Excitation Capacitance Polling for Enhanced Electronic Capacitance Tomography
CN103439374A (zh) * 2013-08-23 2013-12-11 华北电力大学 一种组合型印制电路板电容层析成像传感器
CN105466465A (zh) * 2015-11-20 2016-04-06 华北电力大学 一种螺旋结构电极的电容层析成像传感器
CN206920292U (zh) * 2017-05-31 2018-01-23 南京华研智能科技有限公司 混凝土抗渗性能试验装置
CN110470706A (zh) * 2019-09-24 2019-11-19 青岛理工大学 一种监测混凝土构件内部水分传输的ect传感器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340789A (zh) * 2021-06-15 2021-09-03 中交二公局第三工程有限公司 一种便于清洗且检测精度高的全自动混凝土渗透检测装置
CN113340789B (zh) * 2021-06-15 2024-01-19 中交二公局第三工程有限公司 一种便于清洗且检测精度高的全自动混凝土渗透检测装置
CN113567505A (zh) * 2021-07-23 2021-10-29 国网天津市电力公司电力科学研究院 一种混凝土内部抗裂钢丝网施工质量评定的无损检测方法

Also Published As

Publication number Publication date
JP2022511176A (ja) 2022-01-31
JP7076162B2 (ja) 2022-05-27
CN110470706A (zh) 2019-11-19
CN110470706B (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
WO2021056953A1 (zh) 监测混凝土构件内部水分传输的ect传感器、系统及工艺
CN105353004B (zh) 测量环形空间的双螺旋电极电容层析成像传感器
CN102998343B (zh) 一种基于阵列式单极电导探针的两相流层析成像系统
CN105466465B (zh) 一种螺旋结构电极的电容层析成像传感器
WO2018103463A1 (zh) 一种基于石墨烯/水泥复合材料对混凝土中氯离子含量的检测装置和检测方法
CN210834784U (zh) 水合物岩心样品制备及其电阻成像与声波联合探测装置
WO2023093001A1 (zh) 一种ert/ect双模态复合式三维传感器
WO2022199224A1 (zh) 一种混凝土内部水分和氯离子同步传输感知装置
CN105973176B (zh) 一种管道沉积物检测仪及检测方法
CN210572083U (zh) 一种监测混凝土构件内部水分传输的ect传感器
CN1995994A (zh) 建筑物渗漏检测设备
CN111721816A (zh) 一种三维ect传感器
CN204779828U (zh) 一种能够提高精度及长效性的极化探头
CN110006961A (zh) 油脂含量检测方法
CN113123316B (zh) 一种软黏土电渗过程实时测试土体有效电势的装置和方法
CN212255170U (zh) 一种三维ect传感器
CN106093144B (zh) 一种电容式肥液浓度在线检测装置
CN209264821U (zh) 一种便携式绝缘材料表面电导率测量装置
CN113866080A (zh) 一种模拟多孔介质材料盐蚀破坏试验装置及试验方法
CN201740755U (zh) 井口原油含水率在线测量装置的电容传感器
CN102953363A (zh) 一种定量评价土体孔隙率改变的电阻率探测器
CN208283240U (zh) 一种无损检测钢筋锈蚀的装置
CN106350825A (zh) 一种管道电位监测装置和同时监测管道不同区域电位的方法
CN206609868U (zh) 一种氨氮水质分析仪
CN205941471U (zh) 一种便携式氯离子监/检测传感器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020564117

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20867474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20867474

Country of ref document: EP

Kind code of ref document: A1