WO2022199224A1 - 一种混凝土内部水分和氯离子同步传输感知装置 - Google Patents

一种混凝土内部水分和氯离子同步传输感知装置 Download PDF

Info

Publication number
WO2022199224A1
WO2022199224A1 PCT/CN2022/071217 CN2022071217W WO2022199224A1 WO 2022199224 A1 WO2022199224 A1 WO 2022199224A1 CN 2022071217 W CN2022071217 W CN 2022071217W WO 2022199224 A1 WO2022199224 A1 WO 2022199224A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
concrete
moisture
gradient
chloride ions
Prior art date
Application number
PCT/CN2022/071217
Other languages
English (en)
French (fr)
Inventor
田玉鹏
张鹏
鲍玖文
崔祎菲
秦玲
孙建伟
薛善彬
李莹
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Publication of WO2022199224A1 publication Critical patent/WO2022199224A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; ceramics; glass; bricks
    • G01N33/383Concrete, cement

Definitions

  • the invention belongs to the technical field of civil engineering material performance testing equipment, and in particular relates to a synchronous transmission sensing device for moisture and chloride ions in concrete.
  • reinforced concrete is the most widely used building material in the world, but concrete structures often fail to reach the designed service life due to insufficient durability. Concrete serving in extreme environments, such as marine concrete, often faces more serious problems. Durability issues, new bridges and harbour concrete structures will experience severe durability degradation in less than 15 years.
  • Chloride ion can change the acidity and alkalinity of concrete and dissolve the passive film of steel reinforcement, which is one of the main reasons for the deterioration of the durability of reinforced concrete. It is of great significance to study the mechanism and process of chloride ion transmission to improve the durability of coastal concrete structures.
  • chloride in the external environment is first dissolved in water, and is carried into the concrete surface by water under the action of concrete capillary absorption. Due to the "filtering" effect of concrete, water first enters the deeper concrete, and chloride ions accumulate on the surface of the concrete, and the chloride ion concentration gradually increases. Under the action of the concentration gradient force, the chloride ion diffuses to the deeper concrete.
  • the internal moisture content of concrete can generally be characterized by relative humidity, and humidity sensors are usually used to monitor the internal humidity of concrete. Common sensors include: resistive humidity sensors, capacitive humidity sensors and other humidity sensors. However, the linearity and environmental pollution of the humidity sensor are poor.
  • the humidity sensor When monitoring the environmental humidity, the humidity sensor needs to be exposed to the high alkaline environment inside the concrete for a long time, which is easily polluted and affects its measurement accuracy and long-term stability. Moreover, the actual installation process is complicated. Due to the sensor technology and other reasons, the measurement results of the relative humidity inside the concrete by different researchers are quite different. It is difficult to realize the full-life monitoring of concrete with the existing sensors, especially the sensors are easily damaged during the pouring process. Concrete moisture measurement has always been an internationally recognized challenge.
  • chloride ion content in concrete For the determination of chloride ion content in concrete, it can be divided into destructive testing and non-destructive testing according to the sampling method. Common test methods: ion chromatography, chemical titration, spectrophotometry, etc. are destructive testing, and the sample processing process is complicated.
  • non-destructive testing the silver/silver chloride sensor as an ion-selective electrode exhibits a good Nernst response to chloride ions in solution, and the concentration of chloride ions in concrete solution can be directly obtained according to the change of electrode potential.
  • the silver/silver chloride electrode responds quickly to the chloride ion concentration, and the chloride ion concentration can be obtained in a very short time.
  • the asynchronous transmission mechanism of moisture is an important part of grasping the principle of durability deterioration of concrete structures, which is conducive to accurately predicting the service life of structures and taking timely repair measures.
  • Many experts and scholars at home and abroad have tried to reveal the asynchronous transport mechanism of moisture.
  • the invention proposes a synchronous transmission sensing device for moisture and chloride ions in concrete, and develops and designs a multi-gradient, in-situ monitoring sensor.
  • the method and the device provided by the invention have the characteristics of simple operation and accurate test results, and can realize the monitoring of the synchronous transmission of concrete in-situ moisture and chloride ions.
  • the present invention adopts the following technical scheme to realize:
  • a synchronous transmission sensing device for internal moisture and chloride ions in concrete comprising an electrical signal control module, a multi-gradient in-situ monitoring sensor, an electrical signal acquisition module, and a data analysis and storage module connected in sequence, and the electrical signal control module is used to The control of the electrical signal of the multi-gradient in-situ monitoring sensor, the electrical signal acquisition module is used to collect the moisture, temperature and chloride ion content information monitored by the multi-gradient in-situ monitoring sensor, and analyze and process based on the data analysis and storage module;
  • the multi-gradient in-situ monitoring sensor includes a U-shaped support frame and multiple groups of capacitors, temperature sensors and multiple chloride ion sensors arranged on the U-shaped support frame.
  • the upper capacitive plate, the chloride ion sensor includes an inner base and an outer protective layer, and the inner base sequentially includes a first concrete semi-permeable membrane layer, a second annular AgCl layer and a ring-shaped layer from top to bottom.
  • the U-shaped support frame is also provided with an adjustment rod perpendicular to it.
  • the adjustment rod is made of stainless steel screws.
  • the adjustment rod is fixed with a fixed rod parallel to the U-shaped support frame.
  • the fixed rod is used to fix the multi-gradient in-situ monitoring sensor.
  • the adjustment rod A fixed nut is arranged on the top to adjust the height of the fixed rod to realize multi-gradient measurement, and the capacitor and the chloride ion sensor are alternately arranged along the length direction of the U-shaped support frame.
  • the outer protective layer adopts a PVA pipe, and the outer protective layer and the inner layer base are sealed by an alkaline sealant; the first layer of concrete semipermeable Formed by lower curing; the second annular AgCl layer and the alkaline gel layer are separated by a rubber insulating layer, the AgCl layer is prepared by a powder pressing method, and the alkaline gel layer is a mixture of calcium hydroxide and water ; The Ag layer and the MnO 2 layer of the third layer are separated by a rubber insulating layer, and the MnO 2 layer is prepared by a powder pressing method.
  • the electrical signal control module includes a power source, an inverter, and a processor.
  • the power source is converted into direct current through the inverter to provide stimulation current for the multi-gradient in-situ monitoring sensor.
  • the processor includes a voltage controller for controlling stimulation. The voltage magnitude and output sequence of the current.
  • the capacitor plate is made of copper, and the surface of the copper plate is covered with an insulating PVA layer, and the capacitor plates that are opposite to each other and parallel to each other are a group of capacitors, and each group of capacitors is connected in parallel with each other to test the concrete capacitance at different gradients. value, and then obtain the moisture content at the corresponding point.
  • the multi-gradient in-situ monitoring sensor is installed on the steel cage, and concrete is poured. After the maintenance is completed, the test obtains the capacitance C P of a certain point P ;
  • the moisture and chloride ion synchronous transmission sensing device proposed in this scheme is designed based on electrical and electrochemical principles. It responds quickly to the moisture content and chloride ion content, and the test results are stable. At the same time, it can be used to test the synchronization of moisture and chloride ions in concrete in situ. Transmission monitoring; according to the difference in the dielectric constant of different water content test blocks, the capacitance value of concrete can be directly measured to characterize the water penetration process in concrete. The speed and depth of chloride ion transmission provide experimental basis for further revealing the synchronous transmission mechanism of moisture and chloride ions in concrete;
  • the multi-gradient capacitor and multi-gradient chloride ion sensor involved in this scheme are connected in parallel and can be used alone.
  • the multi-gradient capacitor can be used to test the water penetration rate and the change of water content in concrete
  • the multi-gradient chloride ion sensor can be used to monitor the chloride ion in concrete.
  • the erosion depth and concentration change the principle is simple, the effect of environmental impact is small, the test result is rapid, the test result is stable and reliable, and has high practical value and promotion value.
  • FIG. 1 is a schematic block diagram of a sensing device according to an embodiment of the present invention.
  • FIG. 2(a) is a schematic three-dimensional structural diagram of the synchronous transmission sensing device for moisture and chloride ions according to an embodiment of the present invention
  • Fig. 2(b) is a schematic diagram of binding of the synchronous transmission sensing device for moisture and chloride ions according to the embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional structural diagram of a moisture and chloride ion synchronous transmission sensing device according to an embodiment of the present invention
  • Fig. 4 is the internal circuit connection mode of the moisture and chloride ion synchronous transmission sensing device according to the embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional structural diagram of a chloride ion sensor according to an embodiment of the present invention.
  • PC Cl chloride sensor PC Cl 2 chloride sensor, PC 1 capacitor, PC 2 capacitor, PC 3 capacitor, P Tem temperature sensor .
  • This embodiment discloses a synchronous transmission sensing device for moisture and chloride ions in concrete, as shown in FIG. 1 , including an electrical signal control module, a multi-gradient in-situ monitoring sensor, an electrical signal acquisition module, and a data analysis and storage module, which are connected in sequence. specific:
  • the electrical signal control module includes a power source, an inverter and a processor, the power source is an external power source, wherein the inverter is used to convert alternating current to direct current, and provide direct current for the equipment corresponding to the multi-gradient in-situ monitoring sensor, and the processor is used to control the voltage
  • each group of capacitors is energized individually in turn, and other capacitors do not work.
  • the voltage of the output stimulation current is 1-5V
  • the output of the stimulation voltage signal is controlled by the voltage controller, which is sequentially connected with the multi-gradient through wires.
  • the capacitive plates of the capacitive sensor are connected.
  • the multi-gradient in-situ monitoring sensors include multi - gradient capacitors (PC 1, PC 2, PC 3), temperature sensors ( P Tem ) and multi - gradient chloride ion sensors (PC 1 1, PC 1 2), temperature sensors P Tem uses PT1000 thermal resistance to test the temperature of concrete.
  • the electrical signal acquisition module is used to collect the voltage on the multi-gradient chloride ion sensor and convert it into a digital quantity. Each time the data is collected, the mean value filtering of the collection results is carried out for 5 times. After the collection is completed, the data is collected through the 485 bus.
  • the storage module controls the stimulation current output through the electrical signal control module, the stimulation current I in is a sine wave, and the electrical signal I in is sent to the capacitor PC 1 through the electrical signal input terminal, and accordingly, the capacitor 1 at the electrical signal output terminal generates Induced current, the signal acquisition module collects the current signal. At this time, other capacitors do not work.
  • the electrical signal control module After the signal acquisition module collects the current signal, the electrical signal control module will transmit the current and electrical signal of the same strength to the capacitor PC 2 , and collect the output of the electrical signal. Capacitor PC 2 generates an induced current. Similarly, the stimulation current is input to other capacitors in turn, and corresponding electrical signals are collected. After the temperature sensor and the multi-gradient capacitive sensor collect the temperature and humidity data, the data is directly converted into digital quantities, and then passed through the IIC.
  • the bus summarizes the data conversion results to the data analysis and storage module, and the data analysis and storage module converts the voltage value of the data collected by the capacitor into a water content value and stores the final data.
  • FIG. 2(a), Figure 2(b) and Figure 3 it is a schematic diagram of the structure of the multi-gradient in-situ monitoring sensor, including a U-shaped support frame 1 (stainless steel material can be selected); adjustment rod 2, fixed Rod 3, fixed nut 4; temperature sensor 5, capacitor 7, chloride ion sensor 6 and multi-core wire 8, the U-shaped support frame 1 is used to fix the capacitor 7, chloride ion sensor 6 and temperature sensor 5, the capacitor 7 It consists of two parallel copper sheets. The surface of the copper sheets is covered with a layer of insulating PVA material to form a capacitor plate. As shown in Figure 4, the opposite and parallel capacitor plates are a group of working capacitors. The relative distance is about It is 10cm, and the distance between capacitors on the same side is about 5cm.
  • the U-shaped support frame 1 has reserved a plurality of apertures for installing the adjustment rods.
  • the diameter of the apertures is about 8 mm, which can be passed through by the adjustment rods 2.
  • the adjustment The connection method between the rod 2 and the fixed rod 3 is welding.
  • the height of the fixed rod 3 is adjusted on each adjustment rod 2 through the fixed nut 4.
  • the fixed rod 3 is used to fix the multi-gradient in-situ monitoring sensor and is pre-cast before the concrete structure is poured. It is bound on the steel bar (as shown in Figure 2(b)), and the position of the multi-gradient in-situ monitoring sensor is adjusted by adjusting the height of the fixing rod 3 through the fixing nut 4.
  • the chloride ion sensor 6 is divided into four layers, as shown in FIG. 5 , the outermost layer is a protective layer, which is a PVA tube with a diameter of 1.5 cm, and the PVA and the interior are sealed with an alkaline sealant. From top to bottom, there are the first layer of concrete semi-permeable membrane layer, the second layer of annular AgCl layer and cake-shaped alkaline gelling layer, the third layer of annular Ag layer and cake-shaped MnO layer and the fourth layer from top to bottom. Epoxy resin layer; the first layer of concrete semi-permeable membrane is formed by mixing wood chips, cement and water, and then curing in a humid environment.
  • the second layer includes a ring-shaped AgCl layer and a cake-shaped alkaline gel layer, and the AgCl layer and alkali
  • the gel layers are separated by a rubber insulating layer, wherein the AgCl layer is prepared by powder pressing, the cake-shaped alkaline gel layer is a mixture of calcium hydroxide and water, and the third layer is a ring-shaped Ag layer and a cake.
  • MnO 2 layer which is also separated by a rubber insulating layer, MnO 2 is prepared by powder pressing method;
  • the fourth layer is an epoxy resin layer, which is used to connect the fixed wire and the sensor electrode, and the multi-core wire is connected to the Connect the acquisition device.
  • Capacitance is defined as:
  • the relative permittivity of water is about 80, which is much larger than that of dry concrete (about 6-8); it has also been determined in the prior art that the change of concrete capacitance and water content exhibit a good linear relationship.
  • the present embodiment calculates the water content of a certain point P of concrete in the actual project according to the following steps:
  • the multi-gradient in-situ monitoring sensor is installed on the reinforcement cage, concrete is poured, and after the maintenance is basically completed, the test obtains the capacitance C P of a certain point P ;
  • test block into a 105 °C oven and bake it to constant weight, test the capacitance of the concrete round surface of the concrete round cake, and record it as Z d , then the concrete water content ⁇ when the capacitance value of the corresponding test point P is C P is:
  • the multi-gradient capacitive sensor tests the capacitance values of different gradients of concrete through multiple pairs of capacitors.
  • Each pair of capacitors works independently and measures in sequence.
  • the positive electrode of the capacitor is connected to the electrical signal control device to receive the stimulation current, and the other end of the capacitor is connected to the electrical signal control device.
  • the capacitor plate outputs an electrical signal, which is connected to the data acquisition device, and the water content of the corresponding measuring point is obtained through the above formula.
  • Described multi-gradient chloride ion sensor can quickly perceive the change of chloride ion content in concrete through its structural design, and its test chloride ion concentration principle is as follows:
  • the AgCl layer is a slightly soluble salt, and the following electrode reactions occur in the concrete pore solution:
  • the electrode potential when the potential is balanced, the electrode potential can be expressed by the following formula:
  • This scheme can directly measure the capacitance value of concrete to characterize the water infiltration process in concrete based on the difference in the dielectric constants of test blocks with different water contents.
  • the principle is simple, the influence of the environment is small, the test results are rapid, and the test results are stable and reliable, which provides a test basis for further revealing the asynchronous transmission mechanism of moisture and chloride ions in the concrete.
  • the multi-gradient capacitor and the multi-gradient chloride ion sensor are connected in parallel and can be used alone.
  • the multi-gradient capacitor can be used to test the water penetration rate and the change of water content in concrete, and the multi-gradient chloride ion sensor can be used to monitor the chloride ion in concrete. Erosion depth and concentration changes.
  • the stimulation current and output electrical signal of the multi-gradient in-situ monitoring sensor are transmitted through a multi-core wire, one end of the multi-core wire is connected to the multi-gradient in-situ monitoring sensor, and the other end is reserved for a joint when pouring, which is connected to the air plug socket;
  • the functions of the electrical signal control module, electrical signal acquisition module, data analysis and storage module can be realized by the same portable device.
  • the portable device outputs stimulation current and collects electrical signals through a multi-core wire, and the other end of the multi-core wire is connected to the aerial plug plug.
  • the portable device is connected to the sensor embedded in the concrete through the aerial plug, which can realize the irregular monitoring of the moisture content in the concrete.

Abstract

一种混凝土内部水分和氯离子同步传输感知装置,包括电信号控制模块、多梯度原位监测传感器、电信号采集模块和数据分析与储存模块,通过对多梯度原位监测传感器基于电学和电化学原理进行设计,用于原位测试混凝土内部水分和氯离子同步传输的监测;依据不同含水量试块的介电常数的差异,可直接测量混凝土电容值表征混凝土中水分渗透过程,通过设置多梯度传感器,监测混凝土中水分和氯离子的传输过程,得到水分和氯离子传输的速度和深度,为进一步揭示混凝土内部水分和氯离子同步传输机理提供了试验依据,该装置原理简单,受环境影响作用小,测试结果迅速,测试结果稳定、可靠。

Description

一种混凝土内部水分和氯离子同步传输感知装置 技术领域
本发明属于土木工程材料性能测试设备技术领域,具体涉及一种混凝土内部水分和氯离子同步传输感知装置。
背景技术
当前,钢筋混凝土是全世界范围内使用量最大的建筑材料,但混凝土结构常因耐久性不足而达不到设计使用年限,对于极端环境下服役的混凝土,如海工混凝土,往往面临更加严重的耐久性问题,新建桥梁和海港混凝土结构使用不到15年就会出现严重的耐久性劣化。
研究结果显示,海工混凝土的耐久性劣化往往与水和Cl -离子的传输有关。混凝土本身是一种多孔、亲水的材料,外界水分可通过毛细吸收作用进入混凝土内部,同时携带大量可溶性有害介质,如氯离子、二氧化碳、硫酸根离子等。虽然水分运输外界有害物质进入混凝土,但是相关研究显示水分的渗透深度与氯离子的侵入深度并不一致,有害物质的传输速度和侵入的深度都低于水,不同物质的传输速度也不相同。
氯离子可改变混凝土的酸碱度,溶解钢筋钝化膜,是引起钢筋混凝土耐久性劣化的主要原因之一,研究氯离子传输的机理及过程对提高沿海混凝土结构耐久性具有重要意义。一般来说,外界环境中的氯化物首先溶解在水中,在混凝土毛细吸收的作用下由水分携带进入混凝土表层。由于混凝土的“过滤”效应,水分率先进入更深层的混凝土,氯离子在混凝土表层聚集,氯离子浓度逐渐升高,在浓度梯度力的作用下,氯离子向更深层次的混凝土扩散。但是氯离子进一步扩散受到多种因素的影响,如氯离子浓度、水分渗透速度、水分分布等因素的影响,而目前不存在针对检测水分和氯离子同步传输的感知装置。国内外诸多专家和学者尝试揭示水分非同步传输机理,然而目前没有可靠方法能同时有效掌握实际水分和内部离子传输的过程。混凝土内部含水率一般可通过 相对湿度进行表征,通常采用湿度传感器监测混凝土内部湿度,常见传感器包括:电阻型湿敏传感器、电容型湿敏传感器等湿敏传感器。但湿敏元件的线性度及环境污染性差,在监测环境湿度时,湿敏传感器需长期暴露在混凝土内部高碱性环境中,易被污染而影响其测量精度及长期稳定性。而且,实际安装过程复杂,由于传感器技术等原因,不同学者对于混凝土内部相对湿度的测量结果差异较大。通过已有传感器很难实现混凝土的全寿命监测,特别是传感器易在浇筑过程中发生破坏。混凝土湿度测量一直是国际公认的难题。
对于混凝土中氯离子含量的测定,根据取样方式可分为有损检测和无损检测。常见测试方法:离子色谱法、化学滴定法、分光光度法等为有损检测,样品处理过程复杂。无损检测中,银/氯化银传感器作为离子选择电极对溶液中氯离子表现为良好的能斯特响应,可根据电极电位变化直接得到混凝土溶液中氯离子的浓度。而且银/氯化银电极对氯离子浓度响应快速,能在极短的时间内得到氯离子的浓度。
水分非同步传输机理是掌握混凝土结构耐久性劣化原理的重要一环,有利于准确预测结构的服役寿命和采取及时的修复措施。国内外诸多专家和学者尝试揭示水分非同步传输机理,然而目前没有可靠方法能同时有效掌握实际水分和内部离子传输的过程。
发明内容
本发明针对现有混凝土内部水分和氯离子非同步传输研究的方法的缺失,提出一种混凝土内部水分和氯离子同步传输感知装置,并配套研发设计了一种多梯度、原位监测传感器,本发明提供的方法及装置具有操作简单、测试结果精确的特点,可实现混凝土原位水分和氯离子同步传输的监测。
本发明采用以下的技术方案实现的:
一种混凝土内部水分和氯离子同步传输感知装置,包括依次连接的电信号控制模块、多梯度原位监测传感器、电信号采集模块和数据分析与储存模块,电信号控制模块用以实现对施加到多梯度原位监测传感器的电信号的控制,电信号采集模块用以采集多梯度原位监测传感器监测的水分、温度和氯离子含量 信息,并基于数据分析与储存模块进行分析处理;
所述多梯度原位监测传感器包括U型支撑架以及设置在U型支撑架上的多组电容器、温度传感器和多个氯离子传感器,每组电容器包括两片平行设置在U型支撑架侧壁上的电容极板,所述氯离子传感器包括内层基部以及外层保护层,内层基部从上至下依次包括第一层混凝土半透膜层、第二层环状AgCl层和被环状AgCl层环绕的中心碱性胶凝层、第三层环状Ag层和被环状Ag层环绕的中心MnO 2层以及第四层环氧树脂层;
U型支撑架上还设置有与其垂直的调节杆,调节杆采用不锈钢螺丝,调节杆上固定设置有与U型支撑架平行的固定杆,固定杆用于固定多梯度原位监测传感器,调节杆上设置固定螺帽,以调节固定杆的高度进而实现多梯度测量,电容器和氯离子传感器沿U型支撑架的长度方向交替设置。
进一步的,所述外层保护层采用PVA管,外层保护层与内层基部之间通过碱性密封胶密封;第一层混凝土半透膜通过拌和碎木屑、水泥和水后,在湿润环境下养护形成;第二层的环状AgCl层和碱性凝胶层之间通过橡胶绝缘层隔开,AgCl层通过粉压法制备,碱性胶凝层为氢氧化钙和水的拌合物;第三层的Ag层和MnO 2层之间通过橡胶绝缘层分隔开,MnO 2层通过粉压法制备。
进一步的,所述电信号控制模块包括电源、逆变器、处理器,电源通过逆变器转化为直流电,为多梯度原位监测传感器提供刺激电流,处理器包含电压控制器,用于控制刺激电流的电压大小和输出次序。
进一步的,所述电容极板采用铜片,且在铜片的表面覆盖绝缘的PVA层,相互对立平行的电容极板为一组电容器,且每组电容器相互并联,以测试不同梯度处混凝土电容值,进而得到对应点处的含水率。
进一步的,根据测试的电容值获得混凝土的含水率的原理如下:
1)将多梯度原位监测传感器安装钢筋笼上,浇筑混凝土,养护完成后,测试得到某点P的电容C P
2)制备与所监测混凝土相同配比的混凝土试块,放入温度为20±2℃,相对湿度>95%环境中养护若干天(比如一个月),并浸入水中养护若干天(至少4 天),养护完成后,将表面水分擦拭干净,测试混凝土试块表面的电容,记为Z s
3)将混凝土试块放入高温烘箱中烘至恒重,测试混凝土试块表面电容,记为Z d,则对应测试点P电容值为C P时的混凝土含水量θ为:
Figure PCTCN2022071217-appb-000001
与现有技术相比,本发明的优点和积极效果在于:
本方案所提出的水分和氯离子同步传输感知装置,基于电学和电化学原理进行设计,对水分含量和氯离子含量响应迅速,测试结果稳定,同时可用于原位测试混凝土内部水分和氯离子同步传输的监测;依据不同含水量试块的介电常数的差异,可直接测量混凝土电容值表征混凝土中水分渗透过程,通过设置多梯度传感器,监测混凝土中水分和氯离子的传输过程,得到水分和氯离子传输的速度和深度,为进一步揭示混凝土内部水分和氯离子同步传输机理提供了试验依据;
同时本方案中涉及多梯度电容器和多梯度氯离子传感器为并联,可单独使用,多梯度电容器可用于测试混凝土中水分渗透速率和含水量变化,多梯度氯离子传感器可用于监测混凝土中氯离子的侵蚀深度和浓度变化,原理简单,受环境影响作用小,测试结果迅速,测试结果稳定、可靠,具有较高的实用价值和推广价值。
附图说明
图1为本发明实施例所述感知装置的原理框图;
图2(a)为本发明实施例所述水分和氯离子同步传输感知装置的立体结构示意图;
图2(b)为本发明实施例所述水分和氯离子同步传输感知装置的绑扎示意图;
图3为本发明实施例水分和氯离子同步传输感知装置的剖视结构示意图;
图4为本发明实施例水分和氯离子同步传输感知装置的内部线路连接方式;
图5为本发明实施例氯离子传感器的剖视结构示意图。
图中:1U型支撑架,2调节杆,3固定杆,4固定螺帽,5温度传感器,6氯离子传感器,7电容器,8多芯导线,
P Cl氯离子传感器、P Cl2氯离子传感器、P C1电容器、P C2电容器,P C3电容器,P Tem温度传感器。
具体实施方式
为了能够更加清楚地理解本发明的上述目的、特征和优点,下面结合附图及实施例对本发明做进一步说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是,本发明还可以采用不同于在此描述的其他方式来实施,因此,本发明并不限于下面公开的具体实施例。
实施例1
本实施例公开一种混凝土内部水分和氯离子同步传输感知装置,如图1所示,包括依次连接的电信号控制模块、多梯度原位监测传感器、电信号采集模块和数据分析与储存模块,具体的:
所述电信号控制模块包括电源、逆变器和处理器,电源为外接电源,其中,逆变器用以实现交流电转直流电,为多梯度原位监测传感器对应的设备提供直流电,处理器用以控制电压大小,同时实现依次单独对每组电容器通电,其他电容器不工作。例如对电容器P C1施加电流时,其他电容器(P C2,P C3)不工作,输出刺激电流的电压为1~5V,刺激电压信号输出由电压控制器控制,通过导线依次与多梯度电容传感器的电容极板相连。
所述多梯度原位监测传感器包括多梯度电容器(P C1、P C2,P C3)、温度传感器(P Tem)和多梯度氯离子传感器(P Cl1、P Cl2),温度传感器P Tem采用PT1000热电阻,用以测试混凝土的温度。
所述电信号采集模块用以采集多梯度氯离子传感器上的电压并转换成数字量,每次的数据采集进行5次采集结果的均值滤波,采集完成后通过485总线将数据汇总到数据分析与存储模块,比如,通过电信号控制模块控制刺激电流输出,刺激电流I in为正弦波,通过电信号输入端将电信号I in输送给电容器P C1,相应地,电信号输出端的电容器1产生感应电流,信号采集模块采集电流信号, 此时其他电容器不工作,信号采集模块采集电流信号完成后,电信号控制模块将对电容器P C2输送同样强度的电流电信号,并采集电信号输出端的电容器P C2产生感应电流,同理,依次对其他电容器输入刺激电流,采集相应电信号;温度传感器和多梯度电容传感器采集到温度、湿度数据后,将数据直接转换成数字量,然后通过IIC总线将数据转换结果汇总到数据分析与存储模块,数据分析与储存模块将电容器采集数据的电压值转化为含水量值,储存最终数据。
如图2(a)、图2(b)和图3所示,为多梯度原位监测传感器的结构示意图,包括U型支撑架1(已选的可采用不锈钢材质);调节杆2、固定杆3、固定螺帽4;温度传感器5、电容器7、氯离子传感器6和多芯导线8,所述U型支撑架1用于固定电容器7、氯离子传感器6和温度传感器5,所述电容器7由两块平行的铜片组成,铜片的表面覆盖一层绝缘的PVA材料,组成电容极板,如图4所示,相互对立平行的电容极板为一组工作电容器,其相对距离约为10cm,同一侧的电容器相邻的距离约为5cm。
U型支撑架1上预留了多个安装调节杆的孔径,孔径直径为8mm左右,可供调节杆2穿过,结合图2(a)、图2(b)和图3所示,调节杆2与固定杆3的连接方式为焊接,每条调节杆2上通过固定螺帽4调节固定杆3的高度,固定杆3用于固定多梯度原位监测传感器,在混凝土结构浇筑前预先被绑扎在钢筋上(图2(b)所示),通过固定螺帽4调节固定杆3的高度来调节多梯度原位监测传感器的位置。
另外,本实施例中,氯离子传感器6分为四层,如图5所示,其中最外层为保护层,为直径1.5cm的PVA管,PVA与内部之间用碱性密封胶密封,其内部从上至下依次为第一层混凝土半透膜层、第二层环状AgCl层和饼状碱性胶凝层、第三层环状Ag层和饼状MnO 2层和第四层环氧树脂层;第一层混凝土半透膜通过拌和碎木屑、水泥和水后,在湿润环境下养护形成,第二层包括环状AgCl层和饼状碱性胶凝层,AgCl层和碱性凝胶层之间通过橡胶绝缘层隔开,其中AgCl层通过粉压法制备,饼状碱性胶凝层为氢氧化钙和水的拌合物,第三层为环状Ag层和饼状MnO 2层,两者之间同样通过橡胶绝缘层分隔,MnO 2通过粉 压法制备;第四层为环氧树脂层,用于连接固定导线和传感器电极,多芯导线通过航插插头与采集设备相连。
下面对通过介电常数测混凝土中含水量的原理进行详细说明:
电容的定义为:
C=εS/(4πkd);
公式中,S是两平行电容极板的正对面积;k是静电力常量;d是两金属板间距;ε为介电常数。当电容器两级中间存在介质时,介质在外加电场时会产生感应电荷而削弱电场,从而减小电容值,不同物质相对介电常数不同,其中ε受到电容极板间介质的导电性的影响,水的相对介电常数约为80,远大于干混凝土的相对介电常数(约为6-8);现有技术中也已经确定混凝土电容变化与含水量表现为良好的线性关系。本实施例计算实际工程中混凝土的某一点P的含水量按照以下步骤进行:
1)将多梯度原位监测传感器安装钢筋笼上,浇筑混凝土,养护基本完成后,测试得到某点P的电容C P
2)制备与监测混凝土相同配比的圆饼混凝土试块,直径为100mm,高为50mm,放入在温度为20±2℃,相对湿度>95%环境中养护21天,侵入水中养护7天,养护完成后,将表面水分擦拭干净,利用万用表测试圆饼混凝土圆表面的电容,记为Z s
3)然后将试块放入105℃烘箱中烘至恒重,测试混凝土圆饼混凝土圆表面电容,记为Z d,则对应测试点P电容值为C P时的混凝土含水量θ为:
Figure PCTCN2022071217-appb-000002
可见,本实施例中,所述多梯度电容传感器通过多对电容器测试混凝土不同梯度的电容值,每对电容器单独工作,依次测量,其中电容器正极与电信号控制设备连接,接收刺激电流,另一端电容极板输出电信号,与数据采集设备连接,并通过上述公式得到对应测点的含水量。
所述多梯度氯离子传感器通过对其结构设计,可快速感知混凝土中氯离子 含量的变化,其测试氯离子浓度原理如下:
AgCl层是一种微溶盐,在混凝土孔溶液发生如下电极反应:
Figure PCTCN2022071217-appb-000003
根据能斯特响应原理,电位平衡时,电极电位可由以下公式表示:
Figure PCTCN2022071217-appb-000004
式中,
Figure PCTCN2022071217-appb-000005
为Ag/AgCl标准电位,(0.2224V);R为理想气体常数(8.314J·mol -1·K -1);T为测试环境的温度,K;F为法拉第常数(96485.3C·mol -1);α Cl为环境介质中Cl -的活度。
本方案依据不同含水量试块的介电常数的差异,可直接测量混凝土电容值表征混凝土中水分渗透过程,提出通过多梯度电容器监测水分渗透过程混凝土电容值变化监测水分侵入深度和含水量变化。原理简单,受环境影响作用小,测试结果迅速,测试结果稳定、可靠,为进一步揭示混凝土内部水分和氯离子非同步传输机理提供了试验依据。同时本发明中涉及多梯度电容器和多梯度氯离子传感器为并联,可单独使用,多梯度电容器可用于测试混凝土中水分渗透速率和含水量变化,多梯度氯离子传感器可用于监测混凝土中氯离子的侵蚀深度和浓度变化。
具体的,在操作时,通过以下方式实施:
1.在混凝土构件浇筑之前,将多梯度水分监测传感器绑扎在混凝土构件内钢筋上,在埋设之前,通过调节杆2调节传感器上电容器和氯离子传感器的梯度;
2.多梯度原位监测传感器的刺激电流和输出电信号的传递通过多芯导线,多芯导线一端连接多梯度原位监测传感器,另一端浇筑时预留出接头,与航插插座连接;
3.所述电信号控制模块、电信号采集模块、数据分析与储存模块的功能可通过同一便携设备实现,便携设备通过多芯导线输出刺激电流和采集电信号,另一端多芯导线连接航插插头。便携设备通过航插与埋置在混凝土内部的传感器连接,可实现混凝土中水分含量的不定时监测。
以上所述,仅是本发明的较佳实施例而已,并非是对本发明作其它形式的限制,任何熟悉本专业的技术人员可能利用上述揭示的技术内容加以变更或改型为等同变化的等效实施例应用于其它领域,但是凡是未脱离本发明技术方案内容,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与改型,仍属于本发明技术方案的保护范围。

Claims (5)

  1. 一种混凝土内部水分和氯离子同步传输感知装置,其特征在于,包括依次连接的电信号控制模块、多梯度原位监测传感器、电信号采集模块和数据分析与储存模块,电信号控制模块用以实现对施加到多梯度原位监测传感器的电信号的控制,电信号采集模块用以采集多梯度原位监测传感器监测的水分、温度和氯离子含量信息,并基于数据分析与储存模块进行分析处理;
    所述多梯度原位监测传感器包括U型支撑架以及设置在U型支撑架上的多组电容器、温度传感器和多个氯离子传感器,每组电容器包括两片平行设置在U型支撑架侧壁上的电容极板,所述氯离子传感器包括内层基部以及外层保护层,内层基部从上至下依次包括第一层混凝土半透膜层、第二层环状AgCl层和被环状AgCl层环绕的中心碱性胶凝层、第三层环状Ag层和被环状Ag层环绕的中心MnO 2层以及第四层环氧树脂层;
    U型支撑架上还设置有与其垂直的调节杆,调节杆上固定设置有与U型支撑架平行的固定杆,固定杆用于固定多梯度原位监测传感器,调节杆上设置固定螺帽,以调节固定杆的高度进而实现多梯度测量,电容器和氯离子传感器沿U型支撑架的长度方向交替设置。
  2. 根据权利要求1所述的混凝土内部水分和氯离子同步传输感知装置,其特征在于,所述外层保护层采用PVA管,外层保护层与内层基部之间通过碱性密封胶密封;
    第一层混凝土半透膜通过拌和碎木屑、水泥和水后,在湿润环境下养护形成;
    第二层的环状AgCl层和碱性凝胶层之间通过橡胶绝缘层隔开,第二层的环状AgCl层通过粉压法制备,碱性胶凝层为氢氧化钙和水的拌合物;
    第三层的环状Ag层和MnO 2层之间通过橡胶绝缘层分隔开,MnO 2层通过粉压法制备。
  3. 根据权利要求1所述的混凝土内部水分和氯离子同步传输感知装置,其特征在于,所述电信号控制模块包括电源、逆变器、处理器,电源通过逆变器转化为直流电,为多梯度原位监测传感器提供刺激电流,处理器包含电压控制器,用于控制刺激电流的电压大小和输出次序。
  4. 根据权利要求1所述的混凝土内部水分和氯离子同步传输感知装置,其特征在于,所述电容极板采用铜片,且在铜片的表面覆盖绝缘的PVA层,相互对立平行的电容极板为一组电容器,且每组电容器相互并联,以测试不同梯度处混凝土电容值,进而得到对应点处的含水率。
  5. 根据权利要求4所述的混凝土内部水分和氯离子同步传输感知装置,其特征在于,根据测试的电容值获得混凝土的含水率的原理如下:
    1)将多梯度原位监测传感器安装钢筋笼上,浇筑混凝土,养护完成后,测试得到某点P的电容C P
    2)制备与所监测混凝土相同配比的混凝土试块,放入温度为20±2℃,相对湿度>95%环境中养护若干天,并浸入水中养护四天以上,养护完成后,将表面水分擦拭干净,测试混凝土试块表面的电容,记为Z s
    3)将混凝土试块放入高温烘箱中烘至恒重,测试混凝土试块表面电容,记为Z d,则对应测试点P电容值为C P时的混凝土含水量θ为:
    Figure PCTCN2022071217-appb-100001
PCT/CN2022/071217 2021-03-22 2022-01-11 一种混凝土内部水分和氯离子同步传输感知装置 WO2022199224A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110302088.2 2021-03-22
CN202110302088.2A CN113075390A (zh) 2021-03-22 2021-03-22 一种混凝土内部水分和氯离子同步传输感知装置

Publications (1)

Publication Number Publication Date
WO2022199224A1 true WO2022199224A1 (zh) 2022-09-29

Family

ID=76613234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071217 WO2022199224A1 (zh) 2021-03-22 2022-01-11 一种混凝土内部水分和氯离子同步传输感知装置

Country Status (2)

Country Link
CN (1) CN113075390A (zh)
WO (1) WO2022199224A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113075390A (zh) * 2021-03-22 2021-07-06 青岛理工大学 一种混凝土内部水分和氯离子同步传输感知装置
CN114279937B (zh) * 2021-12-29 2023-07-25 山东交通学院 一种混凝土结构抗渗透性能无损检测装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726525A (zh) * 2009-12-10 2010-06-09 哈尔滨工业大学 检测混凝土氯离子含量的埋入式传感器及其制备方法
CN104075756A (zh) * 2014-07-21 2014-10-01 青岛理工大学 混凝土结构耐久性多元复合无线监测系统
WO2015150463A1 (en) * 2014-04-03 2015-10-08 Dublin Institute Of Technology Corrosion detection system and method in concrete structures
CN105807035A (zh) * 2016-04-11 2016-07-27 青岛理工大学 混凝土内部微环境参数原位动态监测系统
CN108474777A (zh) * 2015-07-09 2018-08-31 南特大学 评估氯化物浓度的系统和相应方法及传感器
CN208537465U (zh) * 2017-12-13 2019-02-22 长安大学 一种沥青混凝土含水率检测装置
CN110470706A (zh) * 2019-09-24 2019-11-19 青岛理工大学 一种监测混凝土构件内部水分传输的ect传感器
CN110567513A (zh) * 2019-08-22 2019-12-13 青岛理工大学 一种混凝土结构全寿命性能智慧感知与劣化预警系统及方法
CN113075390A (zh) * 2021-03-22 2021-07-06 青岛理工大学 一种混凝土内部水分和氯离子同步传输感知装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063781B2 (en) * 2002-12-11 2006-06-20 The Johns Hopkins University Techniques for sensing chloride ions in wet or dry media
CN102288623B (zh) * 2011-05-17 2013-04-24 武汉理工大学 一种基于介电常数的新拌混凝土拌合物含水量测定方法及装置
CN103207221A (zh) * 2013-03-22 2013-07-17 中交四航工程研究院有限公司 用于监测混凝土保护层中氯离子浓度和pH值深度分布的传感器及其制备方法
CN104729982B (zh) * 2015-04-10 2017-05-10 北京科技大学 混凝土内钢筋锈蚀风险原位监测方法
CN104965063B (zh) * 2015-06-05 2017-03-08 河海大学 一种基于时域反射的早龄期混凝土养护质量检测方法
CN104965231A (zh) * 2015-07-30 2015-10-07 中国科学院电子学研究所 一种混凝土含水率的检测装置及方法
CN106018261A (zh) * 2016-05-23 2016-10-12 南京航空航天大学 混凝土结构中钢筋腐蚀程度的电化学快速检测方法
CN206696158U (zh) * 2017-04-27 2017-12-01 大连万衡检测有限公司 混凝土腐蚀度检测仪
JP6774100B2 (ja) * 2017-10-03 2020-10-21 株式会社ケット科学研究所 コンクリート充填探知・水分経時変化測定用センサ
CN208847636U (zh) * 2018-07-23 2019-05-10 三峡大学 一种铁塔钢筋混凝土基础钢筋腐蚀程度检测装置
CN108680490B (zh) * 2018-07-23 2024-02-13 三峡大学 一种铁塔钢筋混凝土基础钢筋腐蚀程度检测装置与方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101726525A (zh) * 2009-12-10 2010-06-09 哈尔滨工业大学 检测混凝土氯离子含量的埋入式传感器及其制备方法
WO2015150463A1 (en) * 2014-04-03 2015-10-08 Dublin Institute Of Technology Corrosion detection system and method in concrete structures
CN104075756A (zh) * 2014-07-21 2014-10-01 青岛理工大学 混凝土结构耐久性多元复合无线监测系统
CN108474777A (zh) * 2015-07-09 2018-08-31 南特大学 评估氯化物浓度的系统和相应方法及传感器
CN105807035A (zh) * 2016-04-11 2016-07-27 青岛理工大学 混凝土内部微环境参数原位动态监测系统
CN208537465U (zh) * 2017-12-13 2019-02-22 长安大学 一种沥青混凝土含水率检测装置
CN110567513A (zh) * 2019-08-22 2019-12-13 青岛理工大学 一种混凝土结构全寿命性能智慧感知与劣化预警系统及方法
CN110470706A (zh) * 2019-09-24 2019-11-19 青岛理工大学 一种监测混凝土构件内部水分传输的ect传感器
CN113075390A (zh) * 2021-03-22 2021-07-06 青岛理工大学 一种混凝土内部水分和氯离子同步传输感知装置

Also Published As

Publication number Publication date
CN113075390A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2022199224A1 (zh) 一种混凝土内部水分和氯离子同步传输感知装置
CN101334353B (zh) 一种用于监测钢筋混凝土结构腐蚀的多功能传感器
Dong et al. Effective monitoring of corrosion in reinforcing steel in concrete constructions by a multifunctional sensor
Khireddine et al. Optimization of NASICON composition for Na+ recognition
CN102798657B (zh) 一种海水中重金属铜、锌、铅、镉的现场快速检测方法
CN102495119A (zh) 一种多参数水质监测集成微阵列电极及制备方法
Jin et al. Characterization of Ag/AgCl electrode manufactured by immersion in sodium hypochloride acid for monitoring chloride content in concrete
Jin et al. Investigation on the performance characteristics of chloride selective electrode in concrete
CN106018504B (zh) 一种土壤基质栽培多参数复合传感器的pH检测双补偿方法
Zine et al. Hydrogen-selective microelectrodes based on silicon needles
CN203275253U (zh) 基于非接触式电阻率的水泥基材料渗透性评价系统
US20020048306A1 (en) Method of evaluating the glass-transition temperature of a polymer part during use
CN103698259B (zh) 一种水泥基材料硫酸根侵蚀深度测试方法
Muralidharan et al. Electrochemical studies on the performance characteristics of alkaline solid embeddable sensor for concrete environments
EP2932249B1 (en) An arrangement for an electrochemical measurement
CN114646681B (zh) 一种固体接触式离子选择性电极的可视化检测方法
Rubene et al. Application of electrical impedance spectrometry for measurements of humidity distribution in aerated concrete masonry constructions
Kozhukharov et al. Elucidation of the contribution of modified titania films over the performance of thin film humidity sensors
CN102288662B (zh) 一种金属-金属氧化物pH敏感探针及其制备方法
CN107991370B (zh) 水样重金属检测装置与方法及其微纳传感器
CN111596000A (zh) 用于导电砂浆电渗除湿防腐的试验装置及方法
Lu et al. Corrosion risk assessment of chloride-contaminated concrete structures using embeddable multi-cell sensor system
Michalak et al. High resolution electrochemical monitoring of small pH changes
RU2808661C1 (ru) Способ прогнозирования удельной емкости графитового анодного материала литий-ионного аккумулятора
CN113970579B (zh) 一种大气环境下空气中氯离子沉积率实时在线检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22773887

Country of ref document: EP

Kind code of ref document: A1