WO2024125088A1 - 一种风电叶片模具型面变形测量方法及装置 - Google Patents

一种风电叶片模具型面变形测量方法及装置 Download PDF

Info

Publication number
WO2024125088A1
WO2024125088A1 PCT/CN2023/125892 CN2023125892W WO2024125088A1 WO 2024125088 A1 WO2024125088 A1 WO 2024125088A1 CN 2023125892 W CN2023125892 W CN 2023125892W WO 2024125088 A1 WO2024125088 A1 WO 2024125088A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
wind turbine
turbine blade
height
blade mold
Prior art date
Application number
PCT/CN2023/125892
Other languages
English (en)
French (fr)
Inventor
黄尚洪
李辉
孟占广
陈万康
李义全
Original Assignee
北玻院 (滕州)复合材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北玻院 (滕州)复合材料有限公司 filed Critical 北玻院 (滕州)复合材料有限公司
Publication of WO2024125088A1 publication Critical patent/WO2024125088A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/32Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring the deformation in a solid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present application relates to the technical field of wind turbine blade mold surface deformation measurement, and in particular to a wind turbine blade mold surface deformation measurement method and device.
  • wind-exposed area and wind-exposed efficiency are two important factors that affect the power generation efficiency of wind turbine blades: the wind-exposed area depends on the length of the blades, while the wind-exposed efficiency depends on the aerodynamic accuracy of the blades.
  • the production of wind turbine blades depends on the wind turbine blade mold, so the accuracy of the wind turbine blade mold determines the accuracy of the blade to a large extent.
  • the industry currently usually uses a laser tracker to scan the product surface in an empty and open state, determine the deformation state of the wind turbine blade, and then adjust the mold to a qualified accuracy through the adjustment parts at the bottom of the wind turbine blade mold.
  • this measurement method has become less and less advantageous:
  • optical measurement has great restrictions on the environment. It can only be measured when the mold is open and unloaded. However, the accuracy of the mold under full load is the most important working condition to be measured.
  • the present application provides a method and device for measuring the deformation of a wind turbine blade mold surface; the method and device for measuring the deformation of a wind turbine blade mold surface do not require manual measurement; the deformation of the mold surface can be measured when the mold is in a fully loaded state; it does not rely on the deployment of a laser tracker, and the management cost of mold debugging and maintenance is lower.
  • the present application provides a method for measuring deformation of a wind turbine blade mold surface, comprising the following steps:
  • the height of the fixed reference point is set on the outer wall of the wind turbine blade mold
  • a height difference change value is calculated, which is the deformation state of the wind turbine blade mold
  • the height difference change values of all measuring points are displayed in a visualization mode to obtain the deformation state of the wind turbine blade mold.
  • the multiple measuring points are arranged at equal intervals on the outer wall of the wind turbine blade mold.
  • step (1) when measuring the high and low deformation states of the longitudinal cross-section of the wind turbine blade mold, step (1)
  • the plurality of measuring points are longitudinally spaced apart on the outer wall of the longitudinal section of the wind turbine blade mold.
  • the plurality of measuring points in step (1) are arranged at laterally spaced intervals on the outer wall of the transverse cross-section of the wind turbine blade mold.
  • the plurality of measuring points in step (1) are arranged in an array on the outer wall of the wind turbine blade mold.
  • the method for measuring the deformation of the wind turbine blade mold surface is performed using a static level.
  • a wind turbine blade mold surface deformation measuring device comprises a reference point height measuring module, a measuring point height measuring module, a data acquisition module and a display module;
  • the reference point height determination module is used to determine the height of the reference point, and the height of the reference point is fixed;
  • the measuring point height determination module is used to determine the height of the measuring point, the measuring point is set on the outer wall of the wind turbine blade mold, and the measuring point height determination module is used to determine the height of the measuring point in the reference state of the wind turbine blade mold, and is used to determine the height of the measuring point after the wind turbine blade mold is used;
  • a data acquisition module is used for receiving, in a reference state of a wind turbine blade mold, a first reference point height value determined by the reference point height determination module and a first measuring point height value determined by the measuring point height determination module, and calculating a height difference between the first measuring point height value and the first reference point height value to obtain a reference height difference h0; and for receiving, after the wind turbine blade mold is used, a second reference point height value determined by the reference point height determination module and a second measuring point height value determined by the measuring point height determination module, and calculating a height difference between the second measuring point height value and the second reference point height value to obtain a process height difference h, and calculating a height difference change value according to the process height difference h and the reference height difference h0;
  • the display module is used to display the height difference change value calculated by the data acquisition module.
  • the reference point height determination module and the measuring point height determination module are both static levels.
  • the spacing intervals are arranged on the outer wall of the wind turbine blade mold.
  • This application has the characteristics of automation and continuity, and can spontaneously measure and feedback the deformation state of the wind turbine blade mold without manual measurement;
  • This application can measure the deformation of the mold surface of the wind turbine blade mold when the mold is fully loaded, which is closer to the pain point of the industry surface measurement, making the wind turbine blade more accurate, thereby improving production capacity and quality;
  • This application uses a high-precision, low-cost static level sensor, so that the wind turbine blade mold no longer relies on the deployment of a laser tracker, and the management cost of mold debugging and maintenance is lower.
  • FIG1 is a schematic diagram of the implementation process of a specific implementation method of the present application.
  • FIG. 2 is a schematic side view of the arrangement of measuring points in Example 1 of the specific implementation method of the present application.
  • FIG. 3 is a schematic top view of the arrangement of measuring points in Example 1 of the specific implementation method of the present application.
  • FIG. 4 is a schematic top view of the arrangement of measuring points in Example 2 of the specific implementation method of the present application.
  • FIG. 5 is a schematic top view of the arrangement of measuring points in Example 3 of the specific implementation method of the present application.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, or it can be the internal connection of two components.
  • connection should be understood in a broad sense.
  • it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, or it can be the internal connection of two components.
  • this application Based on a static level, this application provides a low-cost, high-precision, and high-continuity surface deformation measurement method for a wind turbine blade mold. By reasonably distributing the static level on the back surface of the wind turbine blade mold, the overall deformation state of the wind turbine blade mold can be fed back through the elevation changes of each point.
  • the core idea of the present application is to reflect the vertical direction of the measuring point position by measuring the height difference between the static level on the profile (measuring point 3) and the static level at a fixed height (reference point 2).
  • Height difference change The height difference change of all measuring points reflects the overall deformation state of the wind turbine blade mold.
  • the measuring point When in use, the measuring point will feed back the deformation state of the measuring position to the computer in real time, and can measure the deformation state of the axis, longitudinal section and overall surface in the open and closed mold states.
  • this embodiment discloses a method for measuring deformation of a wind turbine blade mold surface, which is used to determine the height deformation state at a certain longitudinal cross-section position of the mold, and includes the following steps (1) to (5):
  • the height of the reference point 2 is fixed, and a plurality of measuring points 3 are longitudinally spaced apart on the outer wall of any longitudinal section of the wind turbine blade mold 1;
  • a height difference change value is calculated, which is the deformation state of the wind turbine blade mold
  • the height difference change values of all the measuring points 3 are displayed in a visual mode to obtain the height deformation state of the longitudinal cross-section position of the wind turbine blade mold 1 .
  • the multiple measuring points 3 are arranged on the outer wall of the wind turbine blade mold 1 at equal intervals.
  • the measuring points 3 are provided with a plurality of points (the specific number is determined by the user according to the actual size of the mold), and the plurality of measuring points 3 are provided at equal intervals on the wind turbine blade mold 1.
  • the setting of equal spacing is more conducive to the uniformity of data collection and improves data accuracy.
  • the wind turbine blade mold surface deformation measurement method adopts a static level for measurement. When using it, it is necessary to ensure that the static level is in a balanced state and the water surface in the static level is stable and has no fluctuations.
  • the present embodiment also discloses a measuring device used in a method for measuring deformation of a mold surface of a wind turbine blade - a measuring device for measuring deformation of a mold surface of a wind turbine blade, comprising a reference point height measuring module, a measuring point height measuring module, a data acquisition module and a display module;
  • the reference point height determination module is used to determine the height of reference point 2, and the height of reference point 2 is fixed;
  • the measuring point height determination module is used to determine the height of the measuring point 3.
  • a plurality of the measuring points 3 are longitudinally spaced apart on the outer wall of the longitudinal section of the wind turbine blade mold 1.
  • the measuring point height determination module is used to determine the height of the measuring point 3 in the reference state of the wind turbine blade mold 1, and is used to determine the height of the measuring point 3 after the wind turbine blade mold 1 is used.
  • a data acquisition module used for receiving a first reference point height value determined by the reference point height determination module and a first measuring point height value determined by the measuring point height determination module when the wind turbine blade mold 1 is in a reference state, and calculating a height difference between the first measuring point height value and the first reference point height value to obtain a reference height difference h0; used for receiving a second reference point height value determined by the reference point height determination module and a second measuring point height value determined by the measuring point height determination module after the wind turbine blade mold 1 is used, and calculating a height difference between the second measuring point height value and the second reference point height value to obtain a process height difference h, and calculating a height difference change value according to the process height difference h and the reference height difference h0;
  • the display module is used to display the height difference change value calculated by the data acquisition module.
  • the reference point height determination module and the measuring point height determination module are both static levels.
  • the determination modules can specifically adopt static levels, displacement sensors, etc.
  • An optional implementation is to adopt static levels. The beneficial effect of using a static level is that the static level has the advantages of low cost and accurate measurement of height difference, and is very suitable for this application.
  • multiple measuring points 3 there are multiple measuring points 3, and multiple static levels for measuring the heights of the measuring points are connected end to end in sequence and are longitudinally spaced on the outer wall of the longitudinal section of the wind turbine blade mold 1; wherein the static levels are arranged at equal intervals, and the equal spacing is more conducive to the uniformity of data collection and improves data accuracy.
  • the measuring point 3 located at the head end is connected to the reference point 2, and the reference point 2 is connected to a liquid storage tank;
  • the reference point 2 is connected to a gateway, the gateway is connected to a base station, the base station is connected to a cloud server, and the cloud server is connected to a computer; when in use, the reference point 2 and the measuring point 3 will feed back the real-time status to the computer (computer) through the gateway and the cloud server, which is convenient for monitoring by the staff.
  • a plurality of static levels (measuring points 3) are installed at any longitudinal cross-sectional position of the outer wall of the wind turbine blade mold 1, so as to obtain the high and low deformation states of the cross-sectional position.
  • this embodiment discloses a method for measuring deformation of a wind turbine blade mold surface, which is used to determine the height deformation state at a certain transverse cross-sectional position of the mold, and includes the following steps (1) to (5):
  • the height of the reference point 2 is fixed, and a plurality of measuring points 3 are arranged at intervals on the outer wall of any transverse section of the wind turbine blade mold 1;
  • the height difference change value is calculated, That is, the deformation state of the wind turbine blade mold
  • the height difference change values of all the measuring points 3 are displayed in a visual mode to obtain the height deformation state of the transverse cross-sectional position of the wind turbine blade mold 1 .
  • the multiple measuring points 3 are arranged on the outer wall of the wind turbine blade mold 1 at equal intervals.
  • the multiple measuring points 3 are evenly spaced on the outer wall of the wind turbine blade mold 1; the evenly spaced setting is more conducive to the uniformity of data collection and improves data accuracy.
  • the wind turbine blade mold surface deformation measurement method adopts a static level for measurement. When using it, it is necessary to ensure that the static level is in a balanced state and the water surface in the static level is stable and has no fluctuations.
  • this embodiment also discloses a measuring device used in a method for measuring deformation of a mold surface of a wind turbine blade - a measuring device for measuring deformation of a mold surface of a wind turbine blade, comprising a reference point height measuring module, a measuring point height measuring module, a data acquisition module and a display module;
  • the reference point height determination module is used to determine the height of reference point 2, and the height of reference point 2 is fixed;
  • the measuring point height determination module is used to determine the height of the measuring point 3.
  • a plurality of the measuring points 3 are arranged at intervals on the outer wall of the transverse section of the wind turbine blade mold 1.
  • the measuring point height determination module is used to determine the height of the measuring point 3 in the reference state of the wind turbine blade mold 1, and is used to determine the height of the measuring point 3 after the wind turbine blade mold 1 is used.
  • the data acquisition module is used to receive the first reference point height value determined by the reference point height determination module and the first measuring point height value determined by the measuring point height determination module under the reference state of the wind turbine blade mold 1. height value, and calculate the height difference between the first measuring point height value and the first reference point height value to obtain a reference height difference h0; after the wind turbine blade mold 1 is used, receive the second reference point height value measured by the reference point height determination module and the second measuring point height value measured by the measuring point height determination module, and calculate the height difference between the second measuring point height value and the second reference point height value to obtain a process height difference h, and calculate the height difference change value according to the process height difference h and the reference height difference h0;
  • the display module is used to display the height difference change value calculated by the data acquisition module.
  • the reference point height determination module and the measuring point height determination module are both static levels.
  • the determination modules can specifically adopt static levels, displacement sensors, etc.
  • An optional implementation method is to use a static level.
  • the beneficial effect of using a static level is that the static level has the advantages of low cost and accurate measurement of height differences, which is very suitable for this application.
  • multiple measuring points 3 there are multiple measuring points 3, and multiple static levels for measuring the heights of the measuring points are connected end to end in sequence and are arranged at transverse intervals on the outer wall of the transverse section of the wind turbine blade mold 1; wherein the static levels are arranged at equal intervals, and the equal intervals are more conducive to the uniformity of data collection and improve data accuracy.
  • the measuring point 3 located at the head end is connected to the reference point 2, and the reference point 2 is connected to a liquid storage tank;
  • the reference point 2 is connected to a gateway, the gateway is connected to a base station, the base station is connected to a cloud server, and the cloud server is connected to a computer; when in use, the reference point 2 and the measuring point 3 will feed back the real-time status to the computer (computer) through the gateway and the cloud server, which is convenient for monitoring by the staff.
  • a plurality of static levels (measuring points 3) are installed at any transverse cross-sectional position of the outer wall of the wind turbine blade mold, so as to obtain the high and low deformation states of the transverse cross-sectional position of the wind turbine blade mold 1.
  • this embodiment discloses a method for measuring the deformation of a wind turbine blade mold profile, which is used to measure the overall profile change of a wind turbine blade mold under a certain state, and includes the following steps: (1) Step (5):
  • the height of the reference point 2 is fixed, and a plurality of measuring points 3 are arranged in an array on the outer wall of the wind turbine blade mold; specifically, for example, a plurality of columns or rows of measuring points are arranged in parallel at equal intervals along the longitudinal direction or transverse direction of the mold, and each column or row of measuring points includes a plurality of measuring points arranged along the cross section of the mold, and each measuring point is arranged at equal intervals;
  • a height difference change value is calculated, which is the deformation state of the wind turbine blade mold
  • the height difference change values of all the measuring points 3 are displayed in a visual mode to obtain the overall surface deformation state of the wind turbine blade mold 1 .
  • the multiple measuring points 3 are arranged on the outer wall of the wind turbine blade mold 1 at equal intervals.
  • the multiple measuring points 3 are evenly spaced on the outer wall of the wind turbine blade mold 1; the evenly spaced setting is more conducive to the uniformity of data collection and improves data accuracy.
  • the wind turbine blade mold surface deformation measurement method adopts a static level for measurement. When using it, it is necessary to ensure that the static level is in a balanced state and the water surface in the static level is stable and has no fluctuations.
  • this embodiment also discloses a measuring device used in a method for measuring deformation of a mold surface of a wind turbine blade - a measuring device for measuring deformation of a mold surface of a wind turbine blade, comprising a reference point height measuring module, a measuring point height measuring module, a data acquisition module and a display module;
  • the reference point height determination module is used to determine the height of reference point 2, and the height of reference point 2 is fixed;
  • the measuring point height determination module is used to determine the height of the measuring point 3.
  • a plurality of the measuring points 3 are arranged in an array on the outer wall of the wind turbine blade mold.
  • the measuring point height determination module is used to determine the height of the measuring point 3 in the reference state of the wind turbine blade mold 1, and is used to determine the height of the measuring point 3 after the wind turbine blade mold 1 is used;
  • a data acquisition module used for receiving a first reference point height value determined by the reference point height determination module and a first measuring point height value determined by the measuring point height determination module when the wind turbine blade mold 1 is in a reference state, and calculating a height difference between the first measuring point height value and the first reference point height value to obtain a reference height difference h0; used for receiving a second reference point height value determined by the reference point height determination module and a second measuring point height value determined by the measuring point height determination module after the wind turbine blade mold 1 is used, and calculating a height difference between the second measuring point height value and the second reference point height value to obtain a process height difference h, and calculating a height difference change value according to the process height difference h and the reference height difference h0;
  • the display module is used to display the height difference change value calculated by the data acquisition module.
  • the reference point height determination module and the measuring point height determination module are both static levels.
  • the determination modules can specifically adopt static levels, displacement sensors, etc.
  • An optional implementation method is to adopt a static level.
  • the beneficial effect of using a static level is that the static level has the advantages of low cost and accurate measurement of height differences, which is very suitable for this application.
  • the static levels are arranged at equal intervals, and the setting of equal intervals is more conducive to the uniformity of data collection and improves data accuracy.
  • the measuring point 3 located at the head end is connected to the reference point 2, and the reference point 2 is connected to a liquid storage tank;
  • the reference point 2 is connected to a gateway, the gateway is connected to a base station, the base station is connected to a cloud server, and the cloud server is connected to a computer; when in use, the reference point 2 and the measuring point 3 will feed back the real-time status to the computer (computer) through the gateway and the cloud server, which is convenient for monitoring by the staff.
  • a plurality of static level gauges (measurement points 3) are evenly arranged in an array and installed on the outer wall of the wind turbine blade mold.
  • the overall surface deformation of the wind turbine blade mold 1 in this state can be obtained by fitting the height variation relationship of each point.
  • this application has developed a surface measurement method using a low-cost static level sensor, which takes advantage of the static level's ability to accurately measure height differences.
  • the sensor is evenly distributed on the non-product side of the mold (i.e., the back side), realizing continuous and accurate measurement of the wind turbine blade mold in both the open and closed states.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Wind Motors (AREA)

Abstract

一种风电叶片模具型面变形测量方法,包括,固定基准点的高度,测点设置于风电叶片模具的外壁上;风电叶片模具调试至型面精度合格后,将此状态设为基准状态;测量基准状态下基准点和测点之间的高差,设为基准高差h0;测量风电叶片模具使用后基准点和测点之间的高差,设为过程高差h;根据过程高差h与基准高差h0,计算得到高差变化值,即为风电叶片模具的变形状态;若h-h0>0,表示测点位置型面上移,若h-h0<0,表示测点位置型面下移。还公开了一种风电叶片模具型面变形测量装置。

Description

一种风电叶片模具型面变形测量方法及装置
相关申请的交叉引用
本申请要求享有2022年12月14日提交的中国专利申请202211608134.2的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及风电叶片模具型面变形测量技术领域,具体涉及一种风电叶片模具型面变形测量方法及装置。
背景技术
受风面积和受风效率是影响风电叶片发电效率的两个重要因素:受风面积依赖于叶片的长度,受风效率则依赖于叶片的空气动力学精度。
随着风电领域对发电效率提高需求越来越迫切,风电叶片在尺寸上也变得越来越长,以获得更大的受风面积,但尺寸的增大同时也对叶片的空气动力学精度提出了更高的要求。
在工艺上,风电叶片的制作依赖于风电叶片模具,因此风电叶片模具的精度很大程度上决定了叶片精度。对于风电叶片模具精度的测量,目前行业内通常采用激光跟踪仪在空模且打开的状态下扫描产品面表面,确定风电叶片的变形状态后再通过风电叶片模具底部的调节件将模具调节至合格精度。然而,随着技术的逐渐发展,这种测量方法已经越来越不具有优势:
一是数据采集的人工特性,使得风电叶片模具型面的测量和调试时间随着模具尺寸增大而急剧提高;
二是光学测量对环境的限制较大,只能在开模且空载状态下进行测量,但模具在满载服役下的精度才是最需要测量的工况;
三是测量方法对仪器依赖大,激光跟踪仪目前的高价格和待调试模具数 量急剧升高之间的矛盾越来越明显,造成仪器的空间和时间调配成本越来越高。
发明内容
针对相关技术的上述不足,本申请提供一种风电叶片模具型面变形测量方法及装置;该风电叶片模具型面变形测量方法及装置无需人力测量;可测量模具在合模满载状态下的模具型面变形;不依赖激光跟踪仪的调配,模具调试和保养的管理成本更低。
为了解决上述技术问题,本申请提供的一种风电叶片模具型面变形测量方法,包括以下步骤,
(1)固定基准点的高度,测点设置于风电叶片模具的外壁上;
(2)风电叶片模具调试至型面精度合格后,将此状态设为基准状态;
(3)测量基准状态下所述基准点和所述测点之间的高差,设为基准高差h0;
(4)测量风电叶片模具使用后所述基准点和所述测点之间的高差,设为过程高差h;
(5)根据所述过程高差h与所述基准高差h0,计算得到高差变化值,即为风电叶片模具的变形状态;
若h-h0>0,表示测点位置型面上移,
若h-h0<0,表示测点位置型面下移。
可选的,将所有测点的高差变化值采用可视化模式显示,得到风电叶片模具的变形状态。
可选的,所述测点为多个,多个所述测点等间距间隔设置于风电叶片模具的外壁上。
可选的,当测量风电叶片模具纵向截面位置的高低变形状态时,步骤(1) 中多个所述测点在风电叶片模具纵向截面处的外壁上纵向间隔设置。
可选的,当测量风电叶片模具横向截面位置的高低变形状态时,步骤(1)中多个所述测点在风电叶片模具横向截面处的外壁上横向间隔设置。
可选的,当测量风电叶片模具整体型面变形状态时,步骤(1)中多个所述测点在风电叶片模具的外壁上阵列排布设置。
可选的,所述风电叶片模具型面变形测量方法采用静力水准仪进行测定。
一种风电叶片模具型面变形测量装置,包括基准点高度测定模块、测点高度测定模块、数据采集模块和显示模块;
所述基准点高度测定模块,用于测定基准点的高度,所述基准点的高度固定;
所述测点高度测定模块,用于测定测点的高度,所述测点设置于风电叶片模具的外壁上,所述测点高度测定模块用于测定风电叶片模具基准状态下所述测点的高度,及用于测定风电叶片模具使用后所述测点的高度;
数据采集模块,用于风电叶片模具基准状态下,接收所述基准点高度测定模块测定的第一基准点高度值和所述测点高度测定模块测定的第一测点高度值,并计算所述第一测点高度值与所述第一基准点高度值的高差,得到基准高差h0;用于风电叶片模具使用后,接收所述基准点高度测定模块测定的第二基准点高度值和所述测点高度测定模块测定的第二测点高度值,并计算所述第二测点高度值与所述第二基准点高度值的高差,得到过程高差h,并根据所述过程高差h与所述基准高差h0,计算得到高差变化值;
显示模块,用于显示数据采集模块计算得到的高差变化值。
可选的,所述基准点高度测定模块、所述测点高度测定模块均为静力水准仪。
可选的,所述测点为多个,多个用于测定所述测点高度的静力水准仪等 间距间隔设置于所述风电叶片模具外壁上。
与相关技术相比,本申请具有如下有益效果:
1.本申请具有自动化和连续性等特征,无需人力测量即可自发将风电叶片模具的变形状态进行测量并反馈;
2.本申请可测量风电叶片模具在合模满载状态下的模具型面变形,更贴近行业型面测量痛点,使得风电叶片的精度更高,从而提高产能和质量;
3.本申请采用高精度成本低的静力水准仪传感器,使得风电叶片模具不再依赖于激光跟踪仪的调配,模具调试和保养的管理成本更低。
附图说明
为更清楚地说明背景技术或本申请的技术方案,下面对具体实施方式中结合使用的附图作简单地介绍;显而易见地,说明书附图所绘示的结构、比例、大小等,均仅用以配合说明书所揭示的内容,以供熟悉此技术的人士了解与阅读,并非用以限定本申请可实施的限定条件,故不具技术上的实质意义,任何结构的修饰、比例关系的改变或大小的调整,在不影响本申请所能产生的功效及所能达成的目的下,均应仍落在本申请所揭示的技术内容所能涵盖的范围内。
图1为本申请具体实施方式的实施流程示意图。
图2为本申请具体实施方式的实施例1测点布置位置侧视示意图。
图3为本申请具体实施方式的实施例1测点布置位置俯视示意图。
图4为本申请具体实施方式的实施例2测点布置位置俯视示意图。
图5为本申请具体实施方式的实施例3测点布置位置俯视示意图。
图中所示:1-风电叶片模具;2-基准点;3-测点。
具体实施方式
为了使本技术领域的人员更好的理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本申请保护的范围。
同时,本说明书中所引用的术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本申请可实施的范畴。
同时,在本说明书的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个部件内部的连通,对于本领域的普通技术人员而言,可以通过具体情况理解上述术语在本申请中的具体含义。
本申请基于静力水准仪,提供了一种风电叶片模具的低成本、高精度、高连续性的型面变形测量方法,通过将静力水准仪合理分布于风电叶片模具背侧表面,通过各点高程变化,将风电叶片模具整体变形状态反馈出来。
具体的,本申请的核心思想是通过测量型面上的静力水准仪(测点3)和固定高度的静力水准仪(基准点2)之间的高差,反映出测点位置垂直方向的 高差变化;通过所有测点的高差变化,反映出风电叶片模具整体的变形状态。
使用时,测点将测量位置的变形状态实时反馈至计算机,即可测量开模、合模状态下的轴线、纵向截面、整体型面变形状态。
实施例1
如图1所示,本实施例公开了一种风电叶片模具型面变形测量方法,用于测定模具某一纵向截面位置处的高度变形状态,包括以下步骤(1)-步骤(5):
(1)固定基准点2的高度,多个测点3在风电叶片模具1任一纵向截面处的外壁上纵向间隔设置;
(2)风电叶片模具1调试至型面精度合格后,将此状态设为基准状态;
(3)测量基准状态下所述基准点2和所述测点3之间的高差,设为基准高差h0;
(4)测量风电叶片模具1使用后所述基准点2和所述测点3之间的高差,设为过程高差h;
(5)根据所述过程高差h与所述基准高差h0,计算得到高差变化值,即为风电叶片模具的变形状态;
若h-h0>0,表示测点位置型面上移,
若h-h0<0,表示测点位置型面下移。
其中,将所有测点3的高差变化值采用可视化模式显示,得到风电叶片模具1的该纵向截面位置的高低变形状态。
其中,所述测点3为多个,多个所述测点3等间距间隔设置于风电叶片模具1的外壁上。
实际运行时,所述测点3会设置有多个(具体数量,使用者依据模具实际大小自行决定),多个所述测点3等间距间隔设置于所述风电叶片模具1 的外壁上;等间距间隔的设置更利于数据采集的均匀性,提高数据精确性。
其中,所述风电叶片模具型面变形测量方法采用静力水准仪进行测定,使用时,注意要保证静力水准仪处于平衡状态,且静力水准仪中的水面平稳无波动。
如图2和图3所示,本实施例还公开了风电叶片模具型面变形测量方法所使用的测量装置-一种风电叶片模具型面变形测量装置,包括基准点高度测定模块、测点高度测定模块、数据采集模块和显示模块;
所述基准点高度测定模块,用于测定基准点2的高度,所述基准点2的高度固定;
所述测点高度测定模块,用于测定测点3的高度,多个所述测点3在风电叶片模具1纵向截面处的外壁上纵向间隔设置,所述测点高度测定模块用于测定风电叶片模具1基准状态下所述测点3的高度,及用于测定风电叶片模具1使用后所述测点3的高度;
数据采集模块,用于风电叶片模具1基准状态下,接收所述基准点高度测定模块测定的第一基准点高度值和所述测点高度测定模块测定的第一测点高度值,并计算所述第一测点高度值与所述第一基准点高度值的高差,得到基准高差h0;用于风电叶片模具1使用后,接收所述基准点高度测定模块测定的第二基准点高度值和所述测点高度测定模块测定的第二测点高度值,并计算所述第二测点高度值与所述第二基准点高度值的高差,得到过程高差h,并根据所述过程高差h与所述基准高差h0,计算得到高差变化值;
显示模块,用于显示数据采集模块计算得到的高差变化值。
其中,所述基准点高度测定模块、所述测点高度测定模块均为静力水准仪,实际使用时,测定模块(基准点高度测定模块、测点高度测定模块)具体可采用静力水准仪、位移传感器等,可选的实施方式是采用静力水准仪, 采用静力水准仪的有益效果是静力水准仪具有低成本且精确测量高差的优点,非常适于本申请。
其中,实际使用时,所述测点3为多个,多个用于测定所述测点高度的静力水准仪,其内部会依次首尾连接且纵向间隔设置于在风电叶片模具1纵向截面处的外壁上;其中,静力水准仪之间为等间距间隔设置,等间距间隔的设置更利于数据采集的均匀性,提高数据精确性。
其中,位于首端的测点3与所述基准点2连接,所述基准点2连接有储液罐;所述基准点2连接有网关,所述网关连接有基站,所述基站连接有云服务器,所述云服务器连接有计算机;使用时,基准点2和测点3会将实时状态通过网关、云服务器反馈至计算机(计算机),便于工作人员的监测。
本实施例将若干个静力水准仪(测点3)安装在风电叶片模具1外壁任一纵向的截面位置上,可得到该截面位置的高低变形状态。
实施例2
如图1所示,本实施例公开了一种风电叶片模具型面变形测量方法,用于测定模具某一横向截面位置处的高度变形状态,包括以下步骤(1)-步骤(5):
(1)固定基准点2的高度,多个测点3在风电叶片模具1任一横向截面处的外壁上横向间隔设置;
(2)风电叶片模具1调试至型面精度合格后,将此状态设为基准状态;
(3)测量基准状态下所述基准点2和所述测点3之间的高差,设为基准高差h0;
(4)测量风电叶片模具1使用后所述基准点2和所述测点3之间的高差,设为过程高差h;
(5)根据所述过程高差h与所述基准高差h0,计算得到高差变化值, 即为风电叶片模具的变形状态;
若h-h0>0,表示测点位置型面上移,
若h-h0<0,表示测点位置型面下移;
其中,将所有测点3的高差变化值采用可视化模式显示,得到风电叶片模具1的该横向截面位置的高低变形状态。
其中,所述测点3为多个,多个所述测点3等间距间隔设置于风电叶片模具1的外壁上。
实际运行时,所述测点3会设置有多个(具体数量,使用者依据模具实际大小自行决定),多个所述测点3等间距间隔设置于所述风电叶片模具1的外壁上;等间距间隔的设置更利于数据采集的均匀性,提高数据精确性。
其中,所述风电叶片模具型面变形测量方法采用静力水准仪进行测定,使用时,注意要保证静力水准仪处于平衡状态,且静力水准仪中的水面平稳无波动。
如图4所示,本实施例还公开了风电叶片模具型面变形测量方法所使用的测量装置-一种风电叶片模具型面变形测量装置,包括基准点高度测定模块、测点高度测定模块、数据采集模块和显示模块;
所述基准点高度测定模块,用于测定基准点2的高度,所述基准点2的高度固定;
所述测点高度测定模块,用于测定测点3的高度,多个所述测点3在风电叶片模具1横向截面处的外壁上横向间隔设置,所述测点高度测定模块用于测定风电叶片模具1基准状态下所述测点3的高度,及用于测定风电叶片模具1使用后所述测点3的高度;
数据采集模块,用于风电叶片模具1基准状态下,接收所述基准点高度测定模块测定的第一基准点高度值和所述测点高度测定模块测定的第一测点 高度值,并计算所述第一测点高度值与所述第一基准点高度值的高差,得到基准高差h0;用于风电叶片模具1使用后,接收所述基准点高度测定模块测定的第二基准点高度值和所述测点高度测定模块测定的第二测点高度值,并计算所述第二测点高度值与所述第二基准点高度值的高差,得到过程高差h,并根据所述过程高差h与所述基准高差h0,计算得到高差变化值;
显示模块,用于显示数据采集模块计算得到的高差变化值。
其中,所述基准点高度测定模块、所述测点高度测定模块均为静力水准仪,实际使用时,测定模块(基准点高度测定模块、测点高度测定模块)具体可采用静力水准仪、位移传感器等,可选的实施方式是采用静力水准仪,采用静力水准仪的有益效果是静力水准仪具有低成本且精确测量高差的优点,非常适于本申请。
其中,实际使用时,所述测点3为多个,多个用于测定所述测点高度的静力水准仪,其内部会依次首尾连接且横向间隔设置在风电叶片模具1横向截面处的外壁上;其中,静力水准仪之间为等间距间隔设置,等间距间隔的设置更利于数据采集的均匀性,提高数据精确性。
其中,位于首端的测点3与所述基准点2连接,所述基准点2连接有储液罐;所述基准点2连接有网关,所述网关连接有基站,所述基站连接有云服务器,所述云服务器连接有计算机;使用时,基准点2和测点3会将实时状态通过网关、云服务器反馈至计算机(计算机),便于工作人员的监测。
本实施例将若干个静力水准仪(测点3)安装在风电叶片模具外壁任一横向截面位置,可得到风电叶片模具1该横向截面位置的高低变形状态。
实施例3
如图1所示,本实施例公开了一种风电叶片模具型面变形测量方法,用于对风电叶片模具某状态下的整体型面变化的测定,包括以下步骤(1)-步 骤(5):
(1)固定基准点2的高度,多个测点3在风电叶片模具的外壁上阵列排布设置;具体地,例如沿模具纵向、或者横向等间距平行设置多列或多行测点,每列或每行测点包括沿模具该处的截面设置的多个测点,且各测点等间距设置;
(2)风电叶片模具1调试至型面精度合格后,将此状态设为基准状态;
(3)测量基准状态下所述基准点2和所述测点3之间的高差,设为基准高差h0;
(4)测量风电叶片模具1使用后所述基准点2和所述测点3之间的高差,设为过程高差h;
(5)根据所述过程高差h与所述基准高差h0,计算得到高差变化值,即为风电叶片模具的变形状态;
若h-h0>0,表示测点位置型面上移,
若h-h0<0,表示测点位置型面下移;
其中,将所有测点3的高差变化值采用可视化模式显示,得到风电叶片模具1的整体型面变形状态。
其中,所述测点3为多个,多个所述测点3等间距间隔设置于风电叶片模具1的外壁上。
实际运行时,所述测点3会设置有多个(具体数量,使用者依据模具实际大小自行决定),多个所述测点3等间距间隔设置于所述风电叶片模具1的外壁上;等间距间隔的设置更利于数据采集的均匀性,提高数据精确性。
其中,所述风电叶片模具型面变形测量方法采用静力水准仪进行测定,使用时,注意要保证静力水准仪处于平衡状态,且静力水准仪中的水面平稳无波动。
如图5所示,本实施例还公开了风电叶片模具型面变形测量方法所使用的测量装置-一种风电叶片模具型面变形测量装置,包括基准点高度测定模块、测点高度测定模块、数据采集模块和显示模块;
所述基准点高度测定模块,用于测定基准点2的高度,所述基准点2的高度固定;
所述测点高度测定模块,用于测定测点3的高度,多个所述测点3在风电叶片模具的外壁上阵列排布设置,所述测点高度测定模块用于测定风电叶片模具1基准状态下所述测点3的高度,及用于测定风电叶片模具1使用后所述测点3的高度;
数据采集模块,用于风电叶片模具1基准状态下,接收所述基准点高度测定模块测定的第一基准点高度值和所述测点高度测定模块测定的第一测点高度值,并计算所述第一测点高度值与所述第一基准点高度值的高差,得到基准高差h0;用于风电叶片模具1使用后,接收所述基准点高度测定模块测定的第二基准点高度值和所述测点高度测定模块测定的第二测点高度值,并计算所述第二测点高度值与所述第二基准点高度值的高差,得到过程高差h,并根据所述过程高差h与所述基准高差h0,计算得到高差变化值;
显示模块,用于显示数据采集模块计算得到的高差变化值。
其中,所述基准点高度测定模块、所述测点高度测定模块均为静力水准仪,实际使用时,测定模块(基准点高度测定模块、测点高度测定模块)具体可采用静力水准仪、位移传感器等,可选的实施方式是采用静力水准仪,采用静力水准仪的有益效果是静力水准仪具有低成本且精确测量高差的优点,非常适于本申请。
其中,实际使用时,所述测点3为多个,多个用于测定所述测点高度的静力水准仪,其内部会依次首尾连接且在风电叶片模具的外壁上阵列排布设 置;其中,静力水准仪之间为等间距间隔设置,等间距间隔的设置更利于数据采集的均匀性,提高数据精确性。
其中,位于首端的测点3与所述基准点2连接,所述基准点2连接有储液罐;所述基准点2连接有网关,所述网关连接有基站,所述基站连接有云服务器,所述云服务器连接有计算机;使用时,基准点2和测点3会将实时状态通过网关、云服务器反馈至计算机(计算机),便于工作人员的监测。
本实施例将若干个静力水准仪(测点3)阵列均匀排布安装在风电叶片模具外壁,可通过各点的高低变化关系拟合得到风电叶片模具1该状态下的整体型面变形。
基于目前采用激光跟踪仪的种种缺陷,本申请采用低成本的静力水准仪传感器开发了一种型面测量方法,利于静力水准仪可精确测量高差的特点,将该传感器均匀分布于模具非产品面一侧(即背侧),实现风电叶片模具在开模、合模两种状态下的连续精确测量。
尽管通过参考附图并结合优选实施例的方式对本申请进行了详细描述,但本申请并不限于此,在不脱离本申请的精神和实质的前提下,本领域普通技术人员可以对本申请的实施例进行各种等效的修改或替换,而这些修改或替换都应在本申请的涵盖范围内/任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内,因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种风电叶片模具型面变形测量方法,包括以下步骤,
    (1)固定基准点的高度,测点设置于风电叶片模具的外壁上;
    (2)风电叶片模具调试至型面精度合格后,将此状态设为基准状态;
    (3)测量基准状态下所述基准点和所述测点之间的高差,设为基准高差h0;
    (4)测量风电叶片模具使用后所述基准点和所述测点之间的高差,设为过程高差h;
    (5)根据所述过程高差h与所述基准高差h0,计算得到高差变化值,即为风电叶片模具的变形状态;
    若h-h0>0,表示测点位置型面上移,
    若h-h0<0,表示测点位置型面下移。
  2. 根据权利要求1所述的风电叶片模具型面变形测量方法,其中,将所有测点的高差变化值采用可视化模式显示,得到风电叶片模具的变形状态。
  3. 根据权利要求1所述的风电叶片模具型面变形测量方法,其中,所述测点为多个,多个所述测点等间距间隔设置于风电叶片模具的外壁上。
  4. 根据权利要求3所述的风电叶片模具型面变形测量方法,其中,当测量风电叶片模具纵向截面位置的高低变形状态时,步骤(1)中多个所述测点在风电叶片模具纵向截面处的外壁上纵向间隔设置。
  5. 根据权利要求3所述的风电叶片模具型面变形测量方法,其中,当测量风电叶片模具横向截面位置的高低变形状态时,步骤(1)中多个所述测点在风电叶片模具横向截面处的外壁上横向间隔设置。
  6. 根据权利要求3所述的风电叶片模具型面变形测量方法,其中,当测量风电叶片模具整体型面变形状态时,步骤(1)中多个所述测点在风电 叶片模具的外壁上阵列排布设置。
  7. 根据权利要求1所述的风电叶片模具型面变形测量方法,其中,所述风电叶片模具型面变形测量方法采用静力水准仪进行测定。
  8. 一种风电叶片模具型面变形测量装置,包括基准点高度测定模块、测点高度测定模块、数据采集模块和显示模块;
    所述基准点高度测定模块,用于测定基准点的高度,所述基准点的高度固定;
    所述测点高度测定模块,用于测定测点的高度,所述测点设置于风电叶片模具的外壁上,所述测点高度测定模块用于测定风电叶片模具基准状态下所述测点的高度,及用于测定风电叶片模具使用后所述测点的高度;
    数据采集模块,用于风电叶片模具基准状态下,接收所述基准点高度测定模块测定的第一基准点高度值和所述测点高度测定模块测定的第一测点高度值,并计算所述第一测点高度值与所述第一基准点高度值的高差,得到基准高差h0;用于风电叶片模具使用后,接收所述基准点高度测定模块测定的第二基准点高度值和所述测点高度测定模块测定的第二测点高度值,并计算所述第二测点高度值与所述第二基准点高度值的高差,得到过程高差h,并根据所述过程高差h与所述基准高差h0,计算得到高差变化值;
    显示模块,用于显示数据采集模块计算得到的高差变化值。
  9. 根据权利要求8所述的风电叶片模具型面变形测量装置,其中,所述基准点高度测定模块、所述测点高度测定模块均为静力水准仪。
  10. 根据权利要求9所述的风电叶片模具型面变形测量装置,其中,所述测点为多个,多个用于测定所述测点高度的静力水准仪等间距间隔设置于所述风电叶片模具外壁上。
PCT/CN2023/125892 2022-12-14 2023-10-23 一种风电叶片模具型面变形测量方法及装置 WO2024125088A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211608134.2A CN116164697A (zh) 2022-12-14 2022-12-14 一种风电叶片模具型面变形测量方法及装置
CN202211608134.2 2022-12-14

Publications (1)

Publication Number Publication Date
WO2024125088A1 true WO2024125088A1 (zh) 2024-06-20

Family

ID=86412287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125892 WO2024125088A1 (zh) 2022-12-14 2023-10-23 一种风电叶片模具型面变形测量方法及装置

Country Status (2)

Country Link
CN (1) CN116164697A (zh)
WO (1) WO2024125088A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116164697A (zh) * 2022-12-14 2023-05-26 北玻院(滕州)复合材料有限公司 一种风电叶片模具型面变形测量方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238366A (en) * 1992-07-06 1993-08-24 Westinghouse Electric Corp. Method and apparatus for determining turbine blade deformation
CN103344214A (zh) * 2013-07-05 2013-10-09 中南大学 一种1.6次抛物线型特大桥墩测量及墩身线形控制方法
CN204944358U (zh) * 2015-08-27 2016-01-06 合肥凯创汽车零部件有限公司 一种水泵叶轮全叶片跳动检测装置
CN107630794A (zh) * 2017-10-17 2018-01-26 远景能源(江苏)有限公司 风力机机舱推力与基础沉降实时监测系统及监测方法
CN109029349A (zh) * 2018-07-27 2018-12-18 厦门大学嘉庚学院 基于gps定位的沉降监测装置及监测方法
US20190316519A1 (en) * 2018-04-13 2019-10-17 Doosan Heavy Industries & Construction Co., Ltd. Compressor and method for determining blade deformation and gas turbine including the compressor
CN112943558A (zh) * 2021-01-27 2021-06-11 浙江大学 一种风力发电机组叶片损伤监测系统及方法
CN116164697A (zh) * 2022-12-14 2023-05-26 北玻院(滕州)复合材料有限公司 一种风电叶片模具型面变形测量方法及装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5238366A (en) * 1992-07-06 1993-08-24 Westinghouse Electric Corp. Method and apparatus for determining turbine blade deformation
CN103344214A (zh) * 2013-07-05 2013-10-09 中南大学 一种1.6次抛物线型特大桥墩测量及墩身线形控制方法
CN204944358U (zh) * 2015-08-27 2016-01-06 合肥凯创汽车零部件有限公司 一种水泵叶轮全叶片跳动检测装置
CN107630794A (zh) * 2017-10-17 2018-01-26 远景能源(江苏)有限公司 风力机机舱推力与基础沉降实时监测系统及监测方法
US20190316519A1 (en) * 2018-04-13 2019-10-17 Doosan Heavy Industries & Construction Co., Ltd. Compressor and method for determining blade deformation and gas turbine including the compressor
CN109029349A (zh) * 2018-07-27 2018-12-18 厦门大学嘉庚学院 基于gps定位的沉降监测装置及监测方法
CN112943558A (zh) * 2021-01-27 2021-06-11 浙江大学 一种风力发电机组叶片损伤监测系统及方法
CN116164697A (zh) * 2022-12-14 2023-05-26 北玻院(滕州)复合材料有限公司 一种风电叶片模具型面变形测量方法及装置

Also Published As

Publication number Publication date
CN116164697A (zh) 2023-05-26

Similar Documents

Publication Publication Date Title
WO2024125088A1 (zh) 一种风电叶片模具型面变形测量方法及装置
CN205210109U (zh) 一种新型风速风向测试仪
CN207688856U (zh) 电芯厚度测试装置
CN103487696B (zh) 一种母排温升一致性评价方法及装置
CN104176634B (zh) 一种塔式起重机塔身垂直度实时检测方法及装置
WO2022237767A1 (zh) 电池浆料稳定性检测方法及装置
CN105441980A (zh) 铝电解槽阳极电流分布在线监测装置及其监测方法
CN114778995B (zh) 一种高频电刀精度自动测量方法及装置
CN215640707U (zh) 一种硅基负极浆料产气速率的测量装置
CN209055826U (zh) 一种用于桥梁施工智能应力监控装置
CN103034200A (zh) 液位法计算储罐油气液体化工品质量的在线计算装置
CN112013818B (zh) 一种单线隧道内接触网y型吊柱倾角测量计算的方法
CN213147971U (zh) 一种超声波明渠流量计
CN206618636U (zh) 海绵应力测试装置
CN208238738U (zh) 一种锂离子电池极片在线测厚装置
CN209055274U (zh) 一种柔性压力传感器的校准装置
CN115200748B (zh) 基于智能电子体温计状态测量控制系统
CN101008659B (zh) 铝电解槽铝液波动的测试方法及测试探头
CN116260391A (zh) 一种光伏储能发电站智能监控管理系统
CN104808261A (zh) 一种无机械结构的雨量测量传感器
CN206709749U (zh) 一种绝缘子测量装置
CN104571096A (zh) 一种燃煤电厂给煤机故障在线诊断方法及系统
CN204714919U (zh) 铝电解槽阳极电流分布在线监测装置
CN205139064U (zh) 一种lng蒸发速率的测量系统
CN113566931A (zh) 基于边缘计算的闸前反射式水位计智能校准方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23902288

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023902288

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023902288

Country of ref document: EP

Effective date: 20240913