WO2024124792A1 - 含硬硼钙石的连铸保护渣及其应用 - Google Patents

含硬硼钙石的连铸保护渣及其应用 Download PDF

Info

Publication number
WO2024124792A1
WO2024124792A1 PCT/CN2023/093842 CN2023093842W WO2024124792A1 WO 2024124792 A1 WO2024124792 A1 WO 2024124792A1 CN 2023093842 W CN2023093842 W CN 2023093842W WO 2024124792 A1 WO2024124792 A1 WO 2024124792A1
Authority
WO
WIPO (PCT)
Prior art keywords
colemanite
parts
continuous casting
slag
protection slag
Prior art date
Application number
PCT/CN2023/093842
Other languages
English (en)
French (fr)
Inventor
赵春宝
李晓阳
陈永艳
王岩
马帅
王希彬
任义
Original Assignee
西峡龙成冶金材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西峡龙成冶金材料有限公司 filed Critical 西峡龙成冶金材料有限公司
Priority to KR1020247014294A priority Critical patent/KR20240095220A/ko
Publication of WO2024124792A1 publication Critical patent/WO2024124792A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present disclosure relates to the technical field of protective slag, and in particular, to a continuous casting protective slag containing colemanite and application thereof.
  • the boron-containing raw material added to the continuous casting protective slag is usually borax, but the crystal water content of borax is too high.
  • borax In the protective slag granulation tower, it loses water and explodes into powder during the process of turning from aqueous solution to solid particles, resulting in a lot of dust, so the amount added is limited.
  • the lightweight dual-phase steel successfully produced by Ansteel Co., Ltd. has met the design requirements in all indicators. Its elongation is significantly better than the traditional 980MPa grade dual-phase steel, and its density is reduced by 5%.
  • the global debut of lightweight dual-phase steel represents that Ansteel has reached a leading level in the development of high-strength and lightweight automotive steel.
  • the present invention provides a continuous casting protection slag containing colemanite.
  • the raw material includes colemanite, and the mass fraction of the colemanite in the raw material is 1-25%.
  • the mass fraction of colemanite in the raw material is 8-20%.
  • the raw materials of the protective slag include 11-16 parts of fluorite and 2-5 parts of imported carbon by weight. black, 3-6 parts of earthy graphite, 58-65 parts of wollastonite, 5-9 parts of calcite, 0.5-3 parts of light-burned magnesia, 1-4 parts of bauxite, 1-4 parts of lithium carbonate, 8-20 parts of colemanite and 1-3 parts of polyvinyl alcohol.
  • the protective slag includes the following chemical components in weight percentage: CaO 35.0-39.0wt%, SiO 2 29.5-33.5wt%, Al 2 O 3 3-5wt%, Fe 2 O 3 0.3-1.5Pa ⁇ s, MgO 1.5-3wt%, Na 2 O 0-0.5wt%, F 5-8.5wt%, Li 2 O 0.8-1.5wt%, B 2 O 3 4-10wt%, C 3-6wt% and inevitable impurities.
  • the protective slag includes the following chemical components in weight percentage: CaO 36.0-39.0wt%, SiO 2 30.5-33.0wt%, Al 2 O 3 3-4wt%, Fe 2 O 3 0.3-0.7wt%, MgO 1.5-2wt%, Na 2 O 0-0.3wt%, F 5-6.5wt%, Li 2 O 1.0-1.5wt%, B 2 O 3 5-8wt%, C 3-5wt% and inevitable impurities.
  • the dibasic basicity is 1.13-1.18.
  • the melting temperature is 1100-1130°C.
  • the viscosity at 1300° C. is 0.11-0.14 Pa ⁇ s.
  • the present disclosure also provides an application of the colemanite-containing continuous casting protection slag as described in any of the above items in the continuous casting of high-strength lightweight dual-phase steel.
  • the pulling speed of the high-strength lightweight dual-phase steel is 1-1.15 m/min.
  • the main components of the high-strength lightweight dual-phase steel include C 0.16-0.17wt%, Si 1.2-1.5wt%, Mn 1.9-2.1wt% and Al 0.02-0.05wt%.
  • the high-strength lightweight dual-phase steel mentioned in the present disclosure has a pulling speed of 1-1.15 m/min, and its main components are as follows:
  • the silicon content in this steel is relatively high, higher than the range of 0.4% for conventional carbon steel.
  • the thermal resistance of the continuous casting shell is relatively high, and the shell of the primary continuous casting shell will be very thin. This is also the root cause of the alarm of the crystallizer expert system during the continuous casting process.
  • the manganese content in the molten steel is too high, higher than the conventional range of 1.6%, indicating that the shell strength is very high. If the liquid slag has poor fluidity, it will lead to weak filling ability of the protective slag in the channel between the shell and the copper plate. The uneven thickness of the slag film can easily lead to uneven consumption, which is the cause of longitudinal cracks.
  • the slag film of the protective slag is poorly lubricated, it can easily lead to increased friction between the ingot and the crystallizer, thereby increasing the tendency of the slab to crack transversely.
  • the inventor studied the characteristics of steel grades and continuous casting process conditions, and designed the performance indicators and composition of the protective slag in a targeted manner.
  • An embodiment of the present disclosure provides a continuous casting mold slag containing colemanite, wherein the raw material includes colemanite, and the mass fraction of the colemanite in the raw material is 1-25%.
  • the present invention adopts colemanite to replace borax, and colemanite can be added in a relatively larger amount in the protective slag to avoid the occurrence of dust pollution caused by excessive addition of borax and the explosion of the protective slag.
  • the large amount of colemanite added makes the protective slag contain a large amount of B 2 O 3 , and B 2 O 3 can effectively reduce the melting point of the protective slag, refine the protective slag film, reduce the viscosity of the protective slag, and have good filling fluidity and lubricity.
  • B 2 O 3 can effectively reduce the melting point of the protective slag, refine the protective slag film, reduce the viscosity of the protective slag, and have good filling fluidity and lubricity.
  • the most important thing is that it can replace some expensive materials, such as lithium carbonate, and reduce the cost of the protective slag while ensuring the performance of the protective slag.
  • the mass fraction of colemanite can be 4-23%, 6-22% or 7-21%, such as 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24% or 25%, or an interval value between any two of the above endpoint values.
  • the mass fraction of colemanite in the raw material is 8-20%.
  • the raw materials of the protective slag include, by weight, 11-16 parts of fluorite, 2-5 parts of imported carbon black, 3-6 parts of earthy graphite, 58-65 parts of wollastonite, 5-9 parts of calcite, 0.5-3 parts of light-burned magnesia, 1-4 parts of bauxite, 1-4 parts of lithium carbonate, 8-20 parts of colemanite and 1-3 parts of polyvinyl alcohol.
  • a binder In order to ensure the strength of the protective slag particles, a binder is required. However, in order to ensure the lubrication effect, binders containing Na elements such as sodium carboxymethyl cellulose and dextrin cannot be selected. Therefore, this scheme specially selects polyvinyl alcohol as a binder.
  • the raw material composition of the protective slag includes the following (by weight): fluorite can be 11 parts, 12 parts, 13 parts, 14 parts, 15 parts or 16 parts; imported carbon black can be 2 parts, 3 parts, 4 parts or 5 parts; earthy graphite can be 3 parts, 4 parts, 5 parts or 6 parts; wollastonite can be 58 parts, 59 parts, 60 parts, 61 parts, 62 parts, 63 parts, 64 parts or 65 parts; calcite can be 5 parts, 6 parts, 7 parts, 8 parts or 9 parts; light-burned magnesia can be 0.5 parts, 1.0 parts, 1.5 parts, 2.0 parts, 2.5 parts or 3 parts; bauxite can be 1 part, 2 parts, 3 parts or 4 parts; lithium carbonate can be 1 part, 2 parts, 3 parts or 4 parts; colemanite can be 8 parts, 10 parts, 12 parts, 14 parts, 16 parts, 18 parts or 20 parts; polyvinyl alcohol can be 1 part, 2 parts, 3 parts; wherein, the weight proportions of
  • the protective slag includes the following chemical components in weight percentage: CaO 35.0-39.0wt%, SiO 2 29.5-33.5wt%, Al 2 O 3 3-5wt%, Fe 2 O 3 0.3-1.5wt%, MgO 1.5-3wt%, Na 2 O 0-0.5wt%, F 5-8.5wt%, Li 2 O 0.8-1.5wt%, B 2 O 3 4-10wt%, C 3-6wt% and inevitable impurities.
  • the Na element is avoided as much as possible in the component design of the protective slag.
  • the Na element and calcium oxide are together, which easily form calcite, which is easy to crystallize and has a negative impact on the lubricating effect. Therefore, the Na element is not introduced into the protective slag as much as possible.
  • This embodiment designs the use of lithium carbonate and colemanite to minimize the use of other sodium-containing raw materials and reduce the introduction of sodium ions into the protective slag.
  • the mold slag includes the following chemical components (by weight percentage): CaO can be 35.0wt%, 36.0wt%, 37.0wt%, 38.0wt% or 39.0wt%; SiO2 can be 29.5wt%, 30.0wt%, 30.5wt% , 31.0wt%, 31.5wt%, 32.0wt%, 32.5wt%, 33.0wt% or 33.5wt%; Al2O3 can be 3wt%, 3.5wt%, 4wt%, 4.5wt% or 5wt%; Fe2O3 can be 0.3wt%, 0.5wt%, 0.7wt%, 0.9wt%, 1.2wt% or 1.5wt%; MgO can be 1.5wt%, 2.0wt%, 2.5wt% or 3wt%; Na2 O may be 0.1wt%, 0.2wt%, 0.3wt%, 0.4wt% or 0.5wt%; F may be 5wt%,
  • the mold slag includes the following chemical components in weight percentage: CaO 36.0-39.0wt%, SiO 2 30.5-33.0wt%, Al 2 O 3 3-4wt%, Fe 2 O 3 0.3-0.7wt%, MgO 1.5-2wt%, Na 2 O 0-0.3wt%, F 5-6.5wt%, Li 2 O 1.0-1.5wt%, B 2 O 3 5-8wt%, C 3-5wt% and unavoidable impurities.
  • the binary basicity is 1.13-1.18.
  • the binary basicity may be 1.13, 1.14, 1.15, 1.16, 1.17 or 1.18, or an interval value between any two of the above endpoints.
  • the binary basicity is reduced. After the basicity is reduced, the crystals precipitated from the slag film are reduced, and the glass body is increased, which can play a role in lubricating the cast billet. At the same time, after the basicity is reduced, it is beneficial to the heat transfer of the billet shell, and the continuous casting primary billet shell is formed faster, avoiding The crystallizer expert system alarm problem is eliminated; however, considering that this type of steel is prone to longitudinal crack defects, if the basicity is designed too low, the ingot will easily produce longitudinal crack defects, and if the basicity is too high, the increase in the thickness of the solid slag film will easily cause an alarm problem. After laboratory analysis, the basicity can be designed to be 1.13-1.18.
  • the melting temperature is 1100-1130°C.
  • the melting point is lowered.
  • a lower melting point needs to be designed.
  • lithium oxide and colemanite are added to the protective slag.
  • Conventional measures to lower the melting point are to introduce industrial soda ash, NaF2 , cryolite and other materials to lower the melting point, but these materials all contain Na elements.
  • Lithium oxide has a good effect of reducing the melting point, and can also improve the slag film morphology, refine the grains, and the liquid protective slag can form relatively small and uniform crystals during the cooling process, which improves the protective slag's uniform control of heat transfer ability, thereby avoiding alarm problems and longitudinal crack defects during continuous casting.
  • the price of lithium carbonate is too high.
  • Colemanite is a mineral material, different from borax.
  • Borax has a low melting point, but it is easy to produce white balls under the high temperature environment of the granulation tower.
  • the effective recovery rate of colemanite boron oxide is high, and boron oxide has a better melting point reduction effect than lithium oxide.
  • colemanite has a price advantage over borax and lithium carbonate.
  • lithium carbonate and colemanite are designed to be used together, and the protective slag composition is controlled to contain 0.8-1.5wt% Li 2 O and 4-10wt% B 2 O 3 to ensure that the melting point is within the range of 1100-1130°C.
  • the melting temperature may be 1100° C., 1150° C., 1200° C., 1250° C. or 1130° C., or an interval value between any two of the above endpoints.
  • the viscosity at 1300° C. is 0.11-0.14 Pa ⁇ s.
  • the viscosity is reduced.
  • the continuous casting billet shell of this steel grade has high strength, and the gap between the billet shell and the copper plate is small. Therefore, the friction force of the copper plate on the billet shell is large, and the lubrication ability of the protective slag needs to be improved.
  • the continuous casting billet drawing speed is only 1-1.15m/min, the viscosity cannot be too low. If it is too low, the liquid slag is consumed too quickly, which is easy to cause unevenness in the process of forming a solid slag film, and is more likely to cause longitudinal and transverse cracks. Therefore, the viscosity is designed to be 0.11-0.14Pa ⁇ S.
  • the viscosity at 1300° C. may be 0.11 Pa ⁇ s, 0.12 Pa ⁇ s, 0.13 Pa ⁇ s or 0.14 Pa ⁇ s, or an interval value between any two of the above endpoint values.
  • the crystallization rate is less than 1%.
  • the crystallization rate may be 0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, etc.
  • An embodiment of the present disclosure also provides an application of the continuous casting protection slag containing colemanite as described in any one of the aforementioned embodiments in the continuous casting of high-strength lightweight dual-phase steel.
  • the present invention adopts colemanite to replace borax, and colemanite can be added in a relatively larger amount in the protective slag to avoid the occurrence of dust pollution caused by excessive addition of borax and the explosion of the protective slag.
  • the large amount of colemanite added makes the protective slag contain a large amount of B 2 O 3 , and B 2 O 3 can effectively reduce the melting point of the protective slag, refine the protective slag film, reduce the viscosity of the protective slag, and have good filling fluidity and lubricity.
  • B 2 O 3 can effectively reduce the melting point of the protective slag, refine the protective slag film, reduce the viscosity of the protective slag, and have good filling fluidity and lubricity.
  • the most important thing is that it can replace some expensive materials, such as lithium carbonate, and reduce the cost of the protective slag while ensuring the performance of the protective slag.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a continuous casting protective slag for high-strength lightweight dual-phase steel comprises: fluorite powder, imported carbon black, earthy graphite powder, wollastonite powder, calcite powder, light-burned magnesia powder, bauxite powder, lithium carbonate, colemanite powder, and polyvinyl alcohol, and their weight percentages are 13%, 2%, 5%, 55%, 6%, 1%, 3%, 3%, 10%, and 2%, respectively.
  • a continuous casting protective slag for high-strength lightweight dual-phase steel the composition and exact content of each component are: CaO: 37.2%, SiO2 : 31.7%, Al2O3 : 3.5%, Fe2O3 : 0.6%, MgO: 1.9%, Na2O : 0.0 %, F: 5.8%, Li2O : 1.2 %, B2O3: 5%, C : 5%, binary basicity (CaO/ SiO2 mass percentage) 1.17, melting point: 1110°C, viscosity at 1300°C 0.12 Pa ⁇ S, crystallization rate: 0%.
  • the test was conducted at Anshan Iron and Steel, first on the last two furnaces, then on the last half-casting, and finally on the whole casting.
  • the test protection slag model was A
  • the test casting steel was DP980
  • the cross section was 230 ⁇ 1250
  • the casting speed was 1.1m/min. It was divided into 3 castings.
  • the A-type continuous casting protection slag had good spreadability and fluidity in the crystallizer
  • the total slag layer was 50-70mm
  • the liquid slag thickness was 10-13mm, and it could well isolate the molten steel and powder slag layer.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • a continuous casting protective slag for high-strength lightweight dual-phase steel comprises: fluorite powder, imported carbon black, earthy graphite powder, wollastonite powder, calcite powder, light-burned magnesia powder, bauxite powder, lithium carbonate, colemanite powder, and polyvinyl alcohol, and their weight percentages are 14%, 2.5%, 3.5%, 52%, 5%, 1.5%, 3%, 2%, 15%, and 1.5%, respectively.
  • a continuous casting protective slag for high-strength lightweight dual-phase steel the composition and accurate content of each component are: CaO: 36.9%, SiO2 : 32.1%, Al2O3 : 3.5%, Fe2O3 : 0.5%, MgO: 1.6%, Na2O : 0.2 %, F: 6.2% , Li2O : 0.9%, B2O3: 7.5%, C : 4%, binary basicity (CaO/ SiO2 mass percentage) 1.15, melting point: 1125°C, viscosity at 1300°C 0.11 Pa ⁇ S, crystallization rate: 0%.
  • the test was conducted in a domestic factory, first in the last two furnaces, then in the last half pouring, and finally in the whole pouring.
  • the test protection slag model was B
  • the test casting steel was DP980
  • the cross section was 230 ⁇ 1300
  • the casting speed was 1.1m/min. It was divided into 3 pourings.
  • the B-type continuous casting protection slag had good spreadability and fluidity in the crystallizer
  • the total slag layer was 50-70mm
  • the liquid slag thickness was 9-12mm, and it could well isolate the molten steel and powder slag layer.
  • the flame on the crystallizer surface was moderate, and the slag consumption was moderate, averaging 0.55-0.6kg/t, ensuring a good lubrication effect.
  • the slag strips were small, no alarm occurred in the crystallizer, and the surface of the test ingot was smooth and defect-free, achieving the purpose of the test.
  • a continuous casting protective slag for high-strength lightweight dual-phase steel comprises: fluorite powder, imported carbon black, earthy graphite powder, wollastonite powder, soda ash, calcite powder, light-burned magnesia powder, bauxite powder, lithium carbonate, colemanite powder, and polyvinyl alcohol, and their weight percentages are 14%, 2%, 4%, 51%, 4%, 8%, 1%, 3%, 3%, 8%, and 2%, respectively.
  • a continuous casting protective slag for high-strength lightweight dual-phase steel the composition and accurate content of each component are: CaO: 38.1%, SiO2 : 29.3%, Al2O3 : 3.5%, Fe2O3 : 0.6%, MgO: 1.9%, Na2O : 2.4 %, F: 6.2%, Li2O : 1.2 %, B2O3: 4 %, C : 5%, binary basicity (CaO/ SiO2 mass percentage) 1.3, melting point: 1140°C, viscosity at 1300°C 0.13Pa ⁇ S, crystallization rate: 30%.
  • the test was conducted in Anshan Iron and Steel, first in the last four furnaces, the test protection slag model C, the test casting steel type is DP980, the cross section is 230 ⁇ 1250, and the pulling speed is 1.0m/min.
  • the C-type continuous casting protection slag has good spreadability and fluidity in the crystallizer, the total slag layer is 50-70mm, the liquid slag thickness is 8-11mm, and it can better isolate the molten steel and powder slag layer.
  • the flame on the surface of the crystallizer is moderate, and the slag consumption is moderate, averaging 0.5-0.53kg/t, ensuring a good lubrication effect.
  • the slag strips are generated quickly, resulting in 3 alarm accidents.
  • the surface of the test ingot produces bonding vibration marks due to the alarm pulling speed drop to 0.1m/min.
  • the test effect is worse than A/B.
  • the main reason is that the addition of soda ash, the increase of yew feldspar in the liquid slag film, and the high basicity and crystallization rate lead to faster slag strip production.
  • a continuous casting protective slag for high-strength lightweight duplex steel comprises: fluorite powder, imported carbon black, earthy graphite powder, wollastonite powder, calcite powder, light-burned magnesia powder, bauxite powder, lithium carbonate, colemanite powder, and polyvinyl alcohol, and their weight percentages are 15%, 3%, 3%, 42%, 2%, 2%, 3%, 4%, 18%, and 3%, respectively.
  • a continuous casting protective slag for high-strength lightweight dual-phase steel the composition and accurate content of each component are: CaO: 36.1%, SiO2 : 33.8%, Al2O3: 3.9%, Fe2O3 : 0.7%, MgO: 2.6%, Na2O : 0.0 % , F: 6.5%, Li2O : 1.9 %, B2O3 : 9%, C : 4.5%, binary basicity (CaO/ SiO2 mass percentage) 1.07, melting point: 1070°C, viscosity at 1300°C 0.09 Pa ⁇ S, crystallization rate: 0%.
  • the test was carried out at Anshan Iron and Steel Co., Ltd., and the last four furnaces were tested.
  • the test protection slag type was E
  • the test casting steel type was DP980.
  • the cross section is 230 ⁇ 1250
  • the casting speed is 1.15m/min.
  • the E-type continuous casting protection slag has good spreadability and fluidity in the crystallizer, the total slag layer is 50-70mm, the liquid slag thickness is 6-8mm, the liquid slag layer is thin, the flame on the surface of the crystallizer is large, the slag consumption is moderate and averages 0.55-0.6kg/t, the consumption is large, there are fewer slag strips during the test, and the crystallizer has no alarm.
  • the billet surface is not smooth, the vibration marks are deep, and the longitudinal and transverse crack rates are as high as 10%.
  • the test effect is not ideal. The main reason is that more Li 2 O and B 2 O 3 are added, resulting in low melting point and viscosity, and large liquid slag consumption.
  • the protective slag is designed according to the composition of foreign protective slag, and its protective slag components include: fluorite powder, imported carbon black, soda ash, earthy graphite powder, wollastonite powder, calcite powder, light-burned magnesia powder, bauxite powder, and sodium carboxymethyl cellulose, and their weight percentages are 15%, 2%, 7%, 4%, 53%, 13%, 1%, 3%, and 2%, respectively.
  • composition and exact content of each component are: CaO: 39.5%, SiO 2 : 28.3%, Al 2 O 3 : 4.3%, Fe 2 O 3 : 0.6%, MgO: 1.7%, Na 2 O: 4.5%, F: 6.7%, C: 5%, binary basicity (CaO/SiO 2 mass percentage) 1.38, melting point: 1150°C, viscosity at 1300°C 0.10 Pa ⁇ S, crystallization rate: 100%.
  • the test was conducted in Anshan Iron and Steel.
  • the test protection slag model was E
  • the test casting steel was DP980
  • the cross section was 230 ⁇ 1250
  • the pulling speed was 1.1m/min.
  • the E-type continuous casting protection slag had good spreadability and fluidity in the crystallizer
  • the total slag layer was 50-70mm
  • the liquid slag thickness was 12-15mm
  • the flame on the crystallizer surface was moderate
  • the slag consumption was moderate, averaging 0.38-0.44kg/t, ensuring good lubrication effect.
  • the slag strips were generated quickly, and alarms frequently occurred in the crystallizer.
  • the surface of the test ingot produced bonding vibration marks due to the alarm pulling speed being reduced to 0.1m/min, and the test effect was poor.
  • the main reason is that the basicity is high, the slag strips are generated quickly, the liquid slag cannot be consumed through the gap between the crystallizer and the copper plate, the crystallization rate is high, and the lubrication is poor.
  • the comparative continuous casting protective slag designed includes: fluorite powder, imported carbon black, earthy graphite powder, wollastonite powder, calcite powder, light-burned magnesia powder, bauxite powder, lithium carbonate, colemanite powder, and polyvinyl alcohol, and their weight percentages are 12%, 3%, 3%, 64.5%, 6%, 3%, 4%, 1.5%, 2%, and 1%, respectively.
  • composition and exact content of each component are: CaO: 36.9%, SiO 2 : 33.6%, Al 2 O 3 : 4.2%, Fe 2 O 3 : 0.7%, MgO: 2.1%, Na 2 O: 0.0%, F: 5.5%, Li 2 O: 0.5%, B 2 O 3 : 2%, C: 4.5%, binary basicity (CaO/SiO 2 mass percentage) 1.1, melting point: 1140°C, viscosity at 1300°C 0.13 Pa ⁇ S, crystallization rate: 40%.
  • test protection slag type was F
  • test casting steel was DP980
  • cross section was 230 ⁇ 1250
  • casting speed was 1.0m/min.
  • the F-type continuous casting protection slag had good spreadability and fluidity in the crystallizer
  • the total slag layer was 50-70mm
  • the liquid slag thickness was 12-15mm, and it could better isolate the molten steel and powder slag layer.
  • the flame on the crystallizer surface was moderate, and the slag consumption was moderate, averaging 0.42-0.50 kg/t.
  • the slag strips were large, the crystallizer expert system gave an alarm, the columnar rate was as high as 30%, and the test effect was poor.
  • the continuous casting protection slag for high-strength and lightweight dual-phase steel provided in the embodiment of the present disclosure has better performance than the continuous casting protection slag for high-strength and lightweight dual-phase steel in the comparison example, indicating that the continuous casting protection slag for high-strength and lightweight dual-phase steel provided in the embodiment of the present disclosure can effectively ensure the smooth casting process of high-strength and lightweight dual-phase steel and prevent crack defects.
  • the high-strength lightweight dual-phase steel continuous casting protective slag provided by the present invention is applied to the continuous casting of high-strength lightweight dual-phase steel, which can effectively solve the longitudinal and transverse cracks defects currently occurring in the continuous casting production process of high-strength lightweight dual-phase steel due to the thin primary billet shell of the steel grade, the high strength of the billet shell, and the large friction between the billet shell and the copper plate.
  • the present disclosure provides a continuous casting protective slag containing colemanite and its application.
  • the present disclosure uses colemanite to replace borax.
  • Colemanite can be added in a relatively larger amount in the protective slag to avoid the occurrence of dust pollution caused by excessive addition of borax and the explosion of the protective slag.
  • the large amount of colemanite added makes the protective slag contain a large amount of B2O3 .
  • B2O3 can effectively reduce the melting point of the protective slag, refine the protective slag film, reduce the viscosity of the protective slag, and have good filling fluidity and lubricity.
  • the most important thing is that it can replace some expensive materials, and reduce the cost of the protective slag while ensuring the performance of the protective slag. Therefore, it has excellent practical characteristics and broad application prospects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

含硬硼钙石的连铸保护渣及其应用,其中含硬硼钙石的连铸保护渣原料包括硬硼钙石,原料中硬硼钙石的质量分数为1-25%。

Description

含硬硼钙石的连铸保护渣及其应用
相关申请的交叉引用
本公开要求于2022年12月13日提交中国专利局的申请号为CN202211602664.6、名称为“含硬硼钙石的连铸保护渣及其应用”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及保护渣技术领域,具体而言,涉及含硬硼钙石的连铸保护渣及其应用。
背景技术
连铸保护渣添加的含硼原料通常是硼砂,但硼砂的结晶水含量占比过高,其在保护渣造粒塔中,由水溶液变成固态颗粒过程中失水爆裂成粉现象严重,粉尘多,故加入量受到限制。
随着“国六”排放标准陆续实施,对汽车行业节能减排和车身轻量化提出更高要求,汽车要实现轻量化必然需要研发轻量化材料,集成高强钢、铝合金等多种轻质材料是未来汽车用材的发展方向。兼具超高强度、高成型性能和低密度的新一代高强钢,是全球钢铁企业重要的研发方向。
鞍钢股份成功生产的轻质双相钢各项指标均达到设计要求,其伸长率明显优于传统的980MPa级双相钢,同时密度减轻5%。轻质双相钢的全球首发,代表鞍钢在高强轻质汽车钢开发上达到领先水平。
然而,现有的连铸结晶器保护渣在鞍钢用于生产此类钢种时,在生产过程中结晶器专家系统频繁发生报警问题,连铸坯纵裂、横向凹陷率高达60%,无法满足生产需要,急需开发一种能满足该钢种生产所需要的保护渣。
发明内容
本公开提供一种含硬硼钙石的连铸保护渣,原料包括硬硼钙石,所述原料中硬硼钙石的质量分数为1-25%。
可选地,所述原料中硬硼钙石的质量分数为8-20%。
可选地,按重量份数计,所述保护渣的原料包括11-16份的萤石、2-5份的进口炭 黑、3-6份的土状石墨、58-65份的硅灰石、5-9份的方解石、0.5-3份的轻烧镁砂、1-4份的铝矾土、1-4份的碳酸锂、8-20份的硬硼钙石和1-3份的聚乙烯醇。
可选地,所述保护渣包括如下重量百分比的化学成分:CaO 35.0~39.0wt%、SiO2 29.5~33.5wt%、Al2O3 3~5wt%、Fe2O3 0.3~1.5Pa·s、MgO 1.5~3wt%、Na2O 0~0.5wt%、F 5~8.5wt%、Li2O 0.8~1.5wt%、B2O3 4~10wt%、C 3~6wt%和不可避免的杂质。
可选地,所述保护渣包括如下重量百分比的化学成分:CaO 36.0~39.0wt%、SiO2 30.5~33.0wt%、Al2O3 3~4wt%、Fe2O3 0.3~0.7wt%、MgO 1.5~2wt%、Na2O 0~0.3wt%、F 5~6.5wt%、Li2O 1.0~1.5wt%、B2O3 5~8wt%、C 3~5wt%和不可避免的杂质。
可选地,二元碱度为1.13-1.18。
可选地,熔化温度为1100-1130℃。
可选地,1300℃下的粘度为0.11-0.14Pa·s。
本公开还提供一种前述任意一项所述的含硬硼钙石的连铸保护渣在高强度轻质双相钢连铸中的应用。
可选地,所述高强度轻质双相钢拉速为1-1.15m/min。
可选地,所述高强度轻质双相钢的主要成分包括C 0.16-0.17wt%、Si 1.2-1.5wt%、Mn 1.9-2.1wt%和Al 0.02-0.05wt%。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
本公开所提到的高强度轻质双相钢拉速1-1.15m/min,其主要成分如下表:
从上述成分看,首先是该钢种成分中硅含量较高,高于常规碳钢0.4%以内的范围,连铸坯壳的热阻较高,初生连铸坯坯壳会非常薄,这也是连铸过程中常引发结晶器专家系统报警的根源,其次是钢水中的锰含量过高,高于常规1.6%以内范围,说明坯壳强度非常高,液态渣如果流动性差就会导致保护渣在坯壳与铜板之间通道内充填能力弱, 渣膜厚度不均、易产生消耗不均匀现象,这是导致纵裂纹产生的原因;另外,如果保护渣的渣膜如果润滑不良,又容易导致铸坯与结晶器之间的摩擦力增大,从而又会中增加板坯横裂倾向。
发明人研究钢种特性及连铸工艺条件,有针对性的设计了保护渣性能指标及成分。
本公开一实施方式提供一种含硬硼钙石的连铸保护渣,原料包括硬硼钙石,所述原料中硬硼钙石的质量分数为1-25%。
本公开采用硬硼钙石代替硼砂,硬硼钙石在保护渣中相对可以加入更多的量,以避免加硼砂多会造成保护渣爆裂、粉尘过多容易造成粉尘污染现象的产生。另外,硬硼钙石加入量多,使保护渣中含B2O3量大,B2O3能有效降低保护渣的熔点,细化保护渣膜,保护渣的粘度降低,充填流动性好,润滑性好,最主要的是它可以代替部分价格昂贵的材料,比如碳酸锂,在保证保护渣性能的前提下,使保护渣成本降低。
可选地,硬硼钙石的质量分数可以为4-23%、6-22%或7-21%,诸如1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%、20%、21%、22%、23%、24%或25%,或者上述任意两个端点值之间的区间值。
在本公开的一些可选实施方式中,所述原料中硬硼钙石的质量分数为8-20%。在本公开的一些可选实施方式中,按重量份数计,所述保护渣的原料包括11-16份的萤石、2-5份的进口炭黑、3-6份的土状石墨、58-65份的硅灰石、5-9份的方解石、0.5-3份的轻烧镁砂、1-4份的铝矾土、1-4份的碳酸锂、8-20份的硬硼钙石和1-3份的聚乙烯醇。
高强钢生产过程中由于坯壳与铜板缝隙较小,为形成均匀初生坯壳,最忌讳渣条产生影响液渣流入均匀性,因此,需运用复合配碳技术,确保保护渣熔化的三层结构,同时为保证保护渣快速熔化,配碳不宜太高,必须引用颗粒更小的进口炭黑,保证其骨架作用,控制熔化速度。
为保证保护渣颗粒强度,需用到粘合剂,但为保证润滑效果又不能选择羧甲基纤维素钠、糊精等含Na元素的粘合剂,因此本方案特选用聚乙烯醇作粘合剂。
可选地,保护渣的原料组成包括以下(按重量份数计),萤石可以为11份、12份、13份、14份、15份或16份;进口炭黑可以为2份、3份、4份或5份;土状石墨可以为3份、4份、5份或6份;硅灰石可以为58份、59份、60份、61份、62份、63份、64份或65份;方解石可以为5份、6份、7份、8份或9份;轻烧镁砂可以为0.5份、1.0份、1.5份、2.0份、2.5份或3份;铝矾土可以为1份、2份、3份或4份;碳酸锂可以为1份、2份、3份或4份;硬硼钙石可以为8份、10份、12份、14份、16份、 18份或20份;聚乙烯醇可以为1份、2份、3份;其中,上述原料的重量份数可以为各自范围内上述任意两个端点值之间的区间值,本公开中保护渣的原料组成的重量份数不限于此。
在本公开的一些可选实施方式中,所述保护渣包括如下重量百分比的化学成分:CaO 35.0~39.0wt%、SiO2 29.5~33.5wt%、Al2O3 3~5wt%、Fe2O3 0.3~1.5wt%、MgO 1.5~3wt%、Na2O 0~0.5wt%、F 5~8.5wt%、Li2O 0.8~1.5wt%、B2O3 4~10wt%、C 3~6wt%和不可避免的杂质。
需要特别说明的是,为保证保护渣具有良好的润滑效果,在保护渣的成分设计中尽量避免引入Na元素,Na元素与氧化钙在一起,容易形成黄长石,黄长石容易结晶,对润滑效果起负面影响,故保护渣中尽量不引入Na元素。本实施方式设计碳酸锂与硬硼钙石搭配使用,尽量减少其他含钠原料的使用,减少保护渣中钠离子的引入。
可选地,保护渣包括以下化学成分(按重量百分比计):CaO可以为35.0wt%、36.0wt%、37.0wt%、38.0wt%或39.0wt%;SiO2可以为29.5wt%、30.0wt%、30.5wt%、31.0wt%、31.5wt%、32.0wt%、32.5wt%、33.0wt%或33.5wt%;Al2O3可以为3wt%、3.5wt%、4wt%、4.5wt%或5wt%;Fe2O3可以为0.3wt%、0.5wt%、0.7wt%、0.9wt%、1.2wt%或1.5wt%;MgO可以为1.5wt%、2.0wt%、2.5wt%或3wt%;Na2O可以为0.1wt%、0.2wt%、0.3wt%、0.4wt%或0.5wt%;F可以为5wt%、5.5wt%、6.0wt%、6.5wt%、7.0wt%、7.5wt%、8.0wt%或8.5wt%;Li2O可以为0.8wt%、0.9wt%、1.0wt%、1.2wt%、1.4wt%或1.5wt%;B2O3可以为4wt%、5wt%、6wt%、7wt%、8wt%、9wt%或10wt%;C可以为3wt%、4wt%、5wt%或6wt%以及不可避免的杂质;其中,上述原料的重量百分比可以为各自范围内上述任意两个端点值之间的区间值,本公开中保护渣的原料组成的重量百分比不限于此。
在本公开的一些可选实施方式中,所述保护渣包括如下重量百分比的化学成分:CaO 36.0~39.0wt%、SiO2 30.5~33.0wt%、Al2O3 3~4wt%、Fe2O3 0.3~0.7wt%、MgO 1.5~2wt%、Na2O 0~0.3wt%、F 5~6.5wt%、Li2O 1.0~1.5wt%、B2O3 5~8wt%、C 3~5wt%和不可避免的杂质。在本公开的一些可选实施方式中,二元碱度为1.13-1.18。
可选地,二元碱度可以为1.13、1.14、1.15、1.16、1.17或1.18,或者上述任意两个端点值之间的区间值。
本实施方式中降低了二元碱度,碱度降低后渣膜析出的晶体减少,玻璃体增多,可以起到润滑铸坯的作用,同时降低碱度后,利于坯壳传热,连铸初生坯壳形成更快,避 免结晶器专家系统报警问题;但是考虑此钢种易发生纵裂缺陷,碱度设计太低,铸坯容易产生纵裂缺陷,而碱度过高,固态渣膜厚度增加易引发报警问题,经过实验室分析,可选地,可以将将碱度设计为1.13-1.18。
在本公开的一些可选实施方式中,熔化温度为1100-1130℃。
本实施方式中降低了熔点,为提升保护渣快速熔化能力,提高吨钢保护渣消耗量,避免结晶器专家系统报警,需设计较低的熔点。为保证较低熔点,在保护渣中加入氧化锂和硬硼钙石。常规降低熔点的措施是,引入工业纯碱、NaF2、冰晶石等材料降低熔点,但是这些材料中都含有Na元素,保护渣熔化后在结晶过程中易生产霞石、钙铝黄长石等高熔点物质,恶化保护渣的润滑效果,引发结晶器专家系统报警。而氧化锂具有很好的降低熔点的作用,同时可以改善渣膜形态,细化晶粒,液态保护渣在冷却过程中可形成较细小而均匀的晶体,提升保护渣均匀控制传热能力,从而避免连铸过程中发生报警问题及纵裂纹缺陷,但碳酸锂价格过高,若保护渣大量引用,必然造成成本过高,产品失去市场竞争优势;硬硼钙石属矿石材料,不同于硼砂,硼砂的熔点低,但在造粒塔的高温环境下易产生白球,选用硬硼钙石氧化硼的有效收得率高,且氧化硼具有比氧化锂更好的降熔点作用,此外,硬硼钙石较硼砂和碳酸锂更具有价格优势。因此,设计碳酸锂与硬硼钙石搭配使用,控制保护渣成分中包含0.8~1.5wt%的Li2O及4~10wt%的B2O3,保证熔点在1100-1130℃范围内。
可选地,熔化温度可以为1100℃、1150℃、1200℃、1250℃或1130℃,或者上述任意两个端点值之间的区间值。
在本公开的一些可选实施方式中,1300℃下的粘度为0.11-0.14Pa·s。
本实施方式中降低了粘度,该钢种连铸坯壳强度高,坯壳与铜板之间缝隙较小,因此坯壳受到铜板的摩擦力较大,需要提升保护渣的润滑能力。考虑连铸坯拉坯速度只有1-1.15m/min,粘度又不能太低,若太低,液渣消耗太快,在形成固态渣膜过程中易引起不均匀现象,更容易引起纵裂纹及横裂纹缺陷,因此,粘度设计为0.11-0.14Pa·S。
可选地,1300℃下的粘度可以为0.11Pa·s、0.12Pa·s、0.13Pa·s或0.14Pa·s,或者上述任意两个端点值之间的区间值。
在本公开的一些可选实施方式中,析晶率小于1%。
可选地,析晶率可以为0%、0.1%、0.2%、0.3%、0.4%、0.5%等。
本公开一实施方式还提供一种前述实施方式任意一项所述的含硬硼钙石的连铸保护渣在高强度轻质双相钢连铸中的应用。
本公开采用硬硼钙石代替硼砂,硬硼钙石在保护渣中相对可以加入更多的量,以避免加硼砂多会造成保护渣爆裂、粉尘过多容易造成粉尘污染现象的产生。另外,硬硼钙石加入量多,使保护渣中含B2O3量大,B2O3能有效降低保护渣的熔点,细化保护渣膜,保护渣的粘度降低,充填流动性好,润滑性好,最主要的是它可以代替部分价格昂贵的材料,比如碳酸锂,在保证保护渣性能的前提下,使保护渣成本降低。
实施例
以下结合实施例对本公开的特征和性能作详细描述。
实施例一:
一种高强度轻质双相钢用连铸保护渣包括:萤石粉、进口炭黑、土状石墨粉、硅灰石粉、方解石粉、轻烧镁砂粉、铝矾土粉、碳酸锂、硬硼钙石粉,聚乙烯醇,其重量百分比分别是13%、2%、5%、55%、6%、1%、3%、3%、10%、2%。
一种高强度轻质双相钢用连铸保护渣,各成分的组成及准确含量分别是:CaO:37.2%,SiO2:31.7%,Al2O3:3.5%,Fe2O3:0.6%,MgO:1.9%,Na2O:0.0%,F:5.8%,Li2O:1.2%,B2O3:5%,C:5%,二元碱度(CaO/SiO2质量百分比)1.17,熔点:1110℃,1300℃下粘度0.12Pa·S,析晶率:0%。
试验在鞍钢进行,首先在最后两炉试验,然后最后半浇次试验,最后整个浇次试验,试验保护渣型号A,试验浇铸钢种为DP980,断面230×1250,拉速1.1m/min。分3个浇次进行。试验过程中,A型连铸保护渣在结晶器内具有良好的铺展性和流动性,总渣层为50-70mm,液渣厚度10-13mm,能较好的隔绝钢液和粉渣层,结晶器表面火焰适中,渣耗量适中平均在0.5-0.55kg/t,确保良好润滑效果,试验过程中渣条较小,结晶器无报警情况发生,试验铸坯表面光滑无缺陷产生,达到试验目的。
实施例二:
一种高强度轻质双相钢用连铸保护渣包括:萤石粉、进口炭黑、土状石墨粉、硅灰石粉、方解石粉、轻烧镁砂粉、铝矾土粉、碳酸锂、硬硼钙石粉,聚乙烯醇,其重量百分比分别是14%、2.5%、3.5%、52%、5%、1.5%、3%、2%、15%、1.5%。
一种高强度轻质双相钢用连铸保护渣,各成分的组成及准确含量分别是:CaO:36.9%,SiO2:32.1%,Al2O3:3.5%,Fe2O3:0.5%,MgO:1.6%,Na2O:0.2%,F:6.2%,Li2O:0.9%,B2O3:7.5%,C:4%,二元碱度(CaO/SiO2质量百分比)1.15,熔点:1125℃,1300℃下粘度0.11Pa·S,析晶率:0%。
试验在国内某厂进行试验,首先在最后两炉试验,然后最后半浇次试验,最后整个浇次试验,试验保护渣型号B,试验浇铸钢种为DP980,断面230×1300,拉速1.1m/min。分3个浇次进行。试验过程中,B型连铸保护渣在结晶器内具有良好的铺展性和流动性,总渣层为50-70mm,液渣厚度9-12mm,能较好的隔绝钢液和粉渣层,结晶器表面火焰适中,渣耗量适中平均在0.55-0.6kg/t,确保良好润滑效果,试验过程中渣条较小,结晶器无报警情况发生,试验铸坯表面光滑无缺陷产生,达到试验目的。
对比例一:
一种高强度轻质双相钢用连铸保护渣包括:萤石粉、进口炭黑、土状石墨粉、硅灰石粉、纯碱、方解石粉、轻烧镁砂粉、铝矾土粉、碳酸锂、硬硼钙石粉,聚乙烯醇,其重量百分比分别是14%、2%、4%、51%、4%、8%、1%、3%、3%、8%、2%。
一种高强度轻质双相钢用连铸保护渣,各成分的组成及准确含量分别是:CaO:38.1%,SiO2:29.3%,Al2O3:3.5%,Fe2O3:0.6%,MgO:1.9%,Na2O:2.4%,F:6.2%,Li2O:1.2%,B2O3:4%,C:5%,二元碱度(CaO/SiO2质量百分比)1.3,熔点:1140℃,1300℃下粘度0.13Pa·S,析晶率:30%。
试验在鞍钢进行,首先在最后四炉试验,试验保护渣型号C,试验浇铸钢种为DP980,断面230×1250,拉速1.0m/min。试验过程中,C型连铸保护渣在结晶器内具有良好的铺展性和流动性,总渣层为50-70mm,液渣厚度8-11mm,能较好的隔绝钢液和粉渣层,结晶器表面火焰适中,渣耗量适中平均在0.5-0.53kg/t,确保良好润滑效果,试验过程中渣条生成较快,产生3此报警事故,试验铸坯表面因报警拉速降为0.1m/min而产生粘结型振痕,试验效果较A/B差,主要原因是因为加有纯碱、液渣膜中黄长石增加,碱度和析晶率高导致渣条生产较快。
对比例二:
一种高强度轻质双相钢用连铸保护渣包括:萤石粉、进口炭黑、土状石墨粉、硅灰石粉、方解石粉、轻烧镁砂粉、铝矾土粉、碳酸锂、硬硼钙石粉,聚乙烯醇,其重量百分比分别是15%、3%、3%、42%、2%、2%、3%、4%、18%、3%。
一种高强度轻质双相钢用连铸保护渣,各成分的组成及准确含量分别是:CaO:36.1%,SiO2:33.8%,Al2O3:3.9%,Fe2O3:0.7%,MgO:2.6%,Na2O:0.0%,F:6.5%,Li2O:1.9%,B2O3:9%,C:4.5%,二元碱度(CaO/SiO2质量百分比)1.07,熔点:1070℃,1300℃下粘度0.09Pa·S,析晶率:0%。
试验在鞍钢进行,在最后四炉试验,试验保护渣型号E,试验浇铸钢种为DP980, 断面230×1250,拉速1.15m/min。试验过程中,E型连铸保护渣在结晶器内具有良好的铺展性和流动性,总渣层为50-70mm,液渣厚度6-8mm,液渣层偏薄,结晶器表面火焰较大,渣耗量适中平均在0.55-0.6kg/t,消耗量偏大,试验过程中渣条较少,结晶器未发生报警情况,然而经过铸坯检查,铸坯表面不光滑,振痕较深,纵裂纹和横裂纹率高达10%,试验效果不太理想,主要原因是加入Li2O和B2O3较多,造成熔点和粘度偏低,液渣消耗量量大。
对比例三
按照国外保护渣成分设计保护渣,其保护渣成分包括:萤石粉、进口炭黑、纯碱、土状石墨粉、硅灰石粉、方解石粉、轻烧镁砂粉、铝矾土粉、羧甲基纤维素钠,其重量百分比分别是15%、2%、7%、4%、53%、13%、1%、3%、2%。
各成分的组成及准确含量分别是:CaO:39.5%,SiO2:28.3%,Al2O3:4.3%,Fe2O3:0.6%,MgO:1.7%,Na2O:4.5%,F:6.7%,C:5%,二元碱度(CaO/SiO2质量百分比)1.38,熔点:1150℃,1300℃下粘度0.10Pa·S,析晶率:100%。
试验在鞍钢进行,在最后四炉试验,试验保护渣型号E,试验浇铸钢种为DP980,断面230×1250,拉速1.1m/min。试验过程中,E型连铸保护渣在结晶器内具有良好的铺展性和流动性,总渣层为50-70mm,液渣厚度12-15mm,结晶器表面火焰适中,渣耗量适中平均在0.38-0.44kg/t,确保良好润滑效果,试验过程中渣条生成较快,结晶器内频繁发生报警,试验铸坯表面因报警拉速降为0.1m/min而产生粘结型振痕,试验效果较差。主要原因是碱度高,渣条生成快,液渣不能通过结晶器与铜板缝隙消耗,析晶率高、造成润滑不良。
对比例四
对比例设计连铸保护渣包括:萤石粉、进口炭黑、土状石墨粉、硅灰石粉、方解石粉、轻烧镁砂粉、铝矾土粉、碳酸锂、硬硼钙石粉,聚乙烯醇,其重量百分比分别是12%、3%、3%、64.5%、6%、3%、4%、1.5%、2%、1%。
各成分的组成及准确含量分别是:CaO:36.9%,SiO2:33.6%,Al2O3:4.2%,Fe2O3:0.7%,MgO:2.1%,Na2O:0.0%,F:5.5%,Li2O:0.5%,B2O3:2%,C:4.5%,二元碱度(CaO/SiO2质量百分比)1.1,熔点:1140℃,1300℃下粘度0.13Pa·S,析晶率:40%。
试验在鞍钢进行,在最后四炉试验,试验保护渣型号F,试验浇铸钢种为DP980,断面230×1250,拉速1.0m/min。试验过程中,F型连铸保护渣在结晶器内具有良好的铺展性和流动性,总渣层为50-70mm,液渣厚度12-15mm,能较好的隔绝钢液和粉渣层, 结晶器表面火焰适中,渣耗量适中平均在0.42-0.50kg/t,试验过程中渣条较大,结晶器专家系统发生报警,纵列率高达30%,试验效果较差。
由此可以看出,本公开实施例所提供的高强度轻质双相钢用连铸保护渣较对比例中的高强度轻质双相钢用连铸保护渣各项性能均更佳,说明本公开实施例提供的高强度轻质双相钢用连铸保护渣能够有效保证高强度轻质双相钢浇铸工艺顺行及防止裂纹缺陷。
综上,本公开提供的高强度轻质双相钢用连铸保护渣应用于高强度轻质双相钢连铸,能有效解决高强度轻质双相钢目前在连铸生产过程中出现的由于钢种初生坯壳薄、坯壳强度高,坯壳与铜板摩擦力大导致的纵裂及横裂缺陷。
以上所述仅为本公开可选的实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开提供了含硬硼钙石的连铸保护渣及其应用,本公开采用硬硼钙石代替硼砂,硬硼钙石在保护渣中相对可以加入更多的量,以避免加硼砂多会造成保护渣爆裂、粉尘过多容易造成粉尘污染现象的产生。另外,硬硼钙石加入量多,使保护渣中含B2O3量大,B2O3能有效降低保护渣的熔点,细化保护渣膜,保护渣的粘度降低,充填流动性好,润滑性好,最主要的是它可以代替部分价格昂贵的材料,在保证保护渣性能的前提下,使保护渣成本降低,因此具有优异的实用特性和广泛的应用前景。

Claims (12)

  1. 一种含硬硼钙石的连铸保护渣,其特征在于,原料包括硬硼钙石,所述原料中硬硼钙石的质量分数为1-25%。
  2. 根据权利要求1所述的含硬硼钙石的连铸保护渣,其特征在于,所述原料中硬硼钙石的质量分数为8-20%。
  3. 根据权利要求1或2所述的含硬硼钙石的连铸保护渣,其特征在于,按重量份数计,所述保护渣的原料包括11-16份的萤石、2-5份的进口炭黑、3-6份的土状石墨、58-65份的硅灰石、5-9份的方解石、0.5-3份的轻烧镁砂、1-4份的铝矾土、1-4份的碳酸锂、8-20份的硬硼钙石和1-3份的聚乙烯醇。
  4. 根据权利要求1或2所述的含硬硼钙石的连铸保护渣,其特征在于,所述保护渣包括如下重量百分比的化学成分:CaO 35.0~39.0wt%、SiO229.5~33.5wt%、Al2O33~5wt%、Fe2O30.3~1.5wt%、MgO 1.5~3wt%、Na2O 0~0.5wt%、F5~8.5wt%、Li2O 0.8~1.5wt%、B2O34~10wt%、C 3~6wt%和不可避免的杂质。
  5. 根据权利要求1或2所述的含硬硼钙石的连铸保护渣,其特征在于,所述保护渣包括如下重量百分比的化学成分:CaO 36.0~39.0wt%、SiO230.5~33.0wt%、Al2O33~4wt%、Fe2O30.3~0.7wt%、MgO 1.5~2wt%、Na2O 0~0.3wt%、F5~6.5wt%、Li2O 1.0~1.5wt%、B2O35~8wt%、C 3~5wt%和不可避免的杂质。
  6. 根据权利要求1或2所述的含硬硼钙石的连铸保护渣,其特征在于,二元碱度为1.13-1.18。
  7. 根据权利要求1或2所述的含硬硼钙石的连铸保护渣,其特征在于,熔化温度为1100-1130℃。
  8. 根据权利要求1或2所述的含硬硼钙石的连铸保护渣,其特征在于,1300℃下的粘度为0.11-0.14Pa·s。
  9. 根据权利要求1或2所述的含硬硼钙石的连铸保护渣,其特征在于,析晶率小于1%。
  10. 一种权利要求1-9任意一项所述的含硬硼钙石的连铸保护渣在高强度轻质双相钢连铸中的应用。
  11. 根据权利要求10所述的应用,其特征在于,所述高强度轻质双相钢拉速为1-1.15m/min。
  12. 根据权利要求10或11所述的应用,其特征在于,所述高强度轻质双相钢的主要 成分包括C 0.16-0.17wt%、Si 1.2-1.5wt%、Mn 1.9-2.1wt%和Al 0.02-0.05wt%。
PCT/CN2023/093842 2022-12-13 2023-05-12 含硬硼钙石的连铸保护渣及其应用 WO2024124792A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247014294A KR20240095220A (ko) 2022-12-13 2023-05-12 코레마나이트를 함유한 연속주조 보호 슬래그 및 그 응용

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211602664.6A CN115870466A (zh) 2022-12-13 2022-12-13 含硬硼钙石的连铸保护渣及其应用
CN202211602664.6 2022-12-13

Publications (1)

Publication Number Publication Date
WO2024124792A1 true WO2024124792A1 (zh) 2024-06-20

Family

ID=85767346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093842 WO2024124792A1 (zh) 2022-12-13 2023-05-12 含硬硼钙石的连铸保护渣及其应用

Country Status (3)

Country Link
KR (1) KR20240095220A (zh)
CN (1) CN115870466A (zh)
WO (1) WO2024124792A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115870466A (zh) * 2022-12-13 2023-03-31 西峡龙成冶金材料有限公司 含硬硼钙石的连铸保护渣及其应用
CN116622430B (zh) * 2023-04-28 2024-07-09 北京天力创玻璃科技开发有限公司 真空等温锻造工艺用玻璃润滑剂及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2259872A1 (de) * 1972-12-07 1974-06-12 Ferrocast Fa Beim vergiessen von stahl auf dessen oberflaeche aufzubringendes und dort aufschmelzendes gemenge
US4020892A (en) * 1971-11-16 1977-05-03 Hoesch Aktiengesellschaft Method for continuous casting of steel
CN103121091A (zh) * 2013-03-12 2013-05-29 西峡龙成冶金材料有限公司 一种季节性连铸结晶器保护渣
RU2555277C1 (ru) * 2014-01-09 2015-07-10 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Шлакообразующая смесь для непрерывной разливки стали
RU2662511C1 (ru) * 2017-09-04 2018-07-26 Публичное акционерное общество "Северсталь" Шлакообразующая смесь для разливки сортовой заготовки из высокоуглеродистых марок стали
CN110000352A (zh) * 2019-05-05 2019-07-12 西峡县西保冶金材料有限公司 一种塑料模具钢专用连铸结晶器功能保护材料
CN115870466A (zh) * 2022-12-13 2023-03-31 西峡龙成冶金材料有限公司 含硬硼钙石的连铸保护渣及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020892A (en) * 1971-11-16 1977-05-03 Hoesch Aktiengesellschaft Method for continuous casting of steel
DE2259872A1 (de) * 1972-12-07 1974-06-12 Ferrocast Fa Beim vergiessen von stahl auf dessen oberflaeche aufzubringendes und dort aufschmelzendes gemenge
CN103121091A (zh) * 2013-03-12 2013-05-29 西峡龙成冶金材料有限公司 一种季节性连铸结晶器保护渣
RU2555277C1 (ru) * 2014-01-09 2015-07-10 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Шлакообразующая смесь для непрерывной разливки стали
RU2662511C1 (ru) * 2017-09-04 2018-07-26 Публичное акционерное общество "Северсталь" Шлакообразующая смесь для разливки сортовой заготовки из высокоуглеродистых марок стали
CN110000352A (zh) * 2019-05-05 2019-07-12 西峡县西保冶金材料有限公司 一种塑料模具钢专用连铸结晶器功能保护材料
CN115870466A (zh) * 2022-12-13 2023-03-31 西峡龙成冶金材料有限公司 含硬硼钙石的连铸保护渣及其应用

Also Published As

Publication number Publication date
CN115870466A (zh) 2023-03-31
KR20240095220A (ko) 2024-06-25

Similar Documents

Publication Publication Date Title
WO2024124792A1 (zh) 含硬硼钙石的连铸保护渣及其应用
CN102019384B (zh) 解决低碳钢表面夹渣的高粘度连铸保护渣
CN101502871B (zh) 大方坯连铸结晶器保护渣及其制备方法
CN109604548B (zh) 一种薄板坯高拉速专用多功能结晶器保护渣及其制备方法
CN102554162B (zh) 一种板坯连铸结晶器保护渣及其生产方法
CN100563871C (zh) 一种裂纹敏感性钢连铸用结晶器保护渣及其制备方法
CN101885043B (zh) 一种高拉速结晶器保护渣
CN109967707B (zh) 一种csp中碳低合金专用连铸结晶器保护渣及其应用
CN105562641B (zh) 一种高锰高铝钢连铸用结晶器保护渣及其制备方法
CN1954939A (zh) 中碳钢用宽厚板连铸结晶器保护渣及其制造方法
CN102218514A (zh) 中低碳钢连铸结晶器保护渣及其制备方法和连铸方法
CN101406939A (zh) 一种高钠低氟连铸保护渣及其制备方法
CN102764879A (zh) 一种高铝钢模铸保护渣
CN112605356B (zh) 一种奥氏体不锈钢连铸结晶器专用保护渣及其应用
CN108856666B (zh) 不锈钢用连铸保护渣及其制备方法
CN111590039A (zh) 低碳高铝钢用连铸保护渣及其制备方法
CN111360217A (zh) 一种csp薄板坯合金包晶钢专用连铸结晶器保护渣及其应用
CN110039020B (zh) 大方坯易切削钢专用连铸结晶器保护渣及其制备方法及大方坯易切削钢连铸方法
CN109732048B (zh) 用于汽车板钢连铸结晶器的保护渣、其制备方法及应用
CN110918913A (zh) 一种连铸高碳钢小方坯结晶器用保护渣
CN1257764A (zh) 预熔型发热开浇渣
CN111347021B (zh) 一种esp高碳钢专用连铸结晶器功能保护材料
CN102527964A (zh) 390MPa以上屈服强度钢板专用连铸结晶器保护材料
CN112828253B (zh) 一种高锰钢用连铸保护渣
CN102019383B (zh) 合金工具钢专用连铸结晶器功能保护材料