WO2024122557A1 - Ester compound, and ester compound composition for resin raw material - Google Patents

Ester compound, and ester compound composition for resin raw material Download PDF

Info

Publication number
WO2024122557A1
WO2024122557A1 PCT/JP2023/043565 JP2023043565W WO2024122557A1 WO 2024122557 A1 WO2024122557 A1 WO 2024122557A1 JP 2023043565 W JP2023043565 W JP 2023043565W WO 2024122557 A1 WO2024122557 A1 WO 2024122557A1
Authority
WO
WIPO (PCT)
Prior art keywords
general formula
ester compound
group
carbon atoms
compound represented
Prior art date
Application number
PCT/JP2023/043565
Other languages
French (fr)
Japanese (ja)
Inventor
大地 岡村
嵩浩 浅枝
佑磨 芝崎
Original Assignee
本州化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本州化学工業株式会社 filed Critical 本州化学工業株式会社
Publication of WO2024122557A1 publication Critical patent/WO2024122557A1/en

Links

Images

Definitions

  • the present invention relates to an ester compound and an ester compound composition for use as a resin raw material. More specifically, the present invention relates to an ester compound having a furan ring at both ends of a bonding group, and an ester compound composition for use as a resin raw material that contains the ester compound.
  • Epoxy resins have excellent heat resistance, adhesiveness, water resistance, mechanical strength and electrical properties, and are therefore used in a variety of fields, including adhesives, paints, composite materials, civil engineering and construction materials, insulating materials for electric and electronic parts, etc. In particular, in the electric and electronic field, they are widely used in insulating casting, laminating materials, sealing materials, etc. Important properties required for epoxy resins, which are materials for electric and electronic components, include high heat resistance, low CTE, low dielectric constant, low dielectric loss tangent, low moisture absorption, etc.
  • Patent Document 1 discloses a thermosetting composition that uses a thermoplastic resin obtained by esterifying the secondary hydroxyl groups of an epoxy resin in a post-process and blends a thermosetting resin therein, thereby improving adhesion to a conductor layer while maintaining low moisture absorption and dielectric properties; however, the heat resistance of the composition is insufficient.
  • the present invention aims to provide a curing agent that has good handling properties such as solvent solubility, and gives a cured product with excellent heat resistance and dielectric properties.
  • an ester compound of a bisphenol compound having a specific structure and a carboxylic acid having a furan ring dissolves in a solvent such as methyl ethyl ketone and is easy to handle, that using this as a curing agent causes a chain linkage by reacting with an epoxy resin, and that the chain linkage causes curing, and that the cured product obtained by esterifying the secondary hydroxyl groups has reduced polarization and has excellent dielectric properties and heat resistance, thus completing the present invention.
  • each R2 independently represents a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms
  • each R3 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Y represents a divalent group represented by general formula (3a) or general formula (3b).
  • R 1 's each independently represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • * represents a bonding position.
  • m's each independently represent an integer of 1 to 4.
  • n's each independently represent 0 or an integer of 1 to 4, and Z's each independently represent a cycloalkylidene group having 7 to 20 carbon atoms.
  • each R 1 independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • each R 6 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms
  • each X independently represents a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, or a divalent group represented by general formula (1a), (1b), or (1c)
  • each n independently represents 0 or an integer of 1 to 4.
  • R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • R 4 and R 5 may be bonded to each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole
  • Ar 1 and Ar 2 each represent
  • the ester compound composition for a resin raw material according to 9. which contains 0.1 to 400 parts by weight of the ester compound represented by the general formula (2) based on 100 parts by weight of the ester compound represented by the general formula (3).
  • the ester compound of the present invention represented by general formula (3) in which a specific bisphenol of the present invention is ester-bonded to a carboxylic acid having a furan ring, is soluble in a solvent such as methyl ethyl ketone and therefore has good handleability.
  • a solvent such as methyl ethyl ketone
  • it reacts with an epoxy resin to form a chain linkage and cure.
  • polarization is suppressed, and a cured product having excellent dielectric properties and heat resistance can be provided.
  • ester compound represented by the general formula (3) of the present invention can be applied in various fields such as adhesives, composite materials, paints, civil engineering and building materials, and insulating materials for electric and electronic parts, and can give cured products that are useful as insulating castings, laminating materials, sealing materials, etc. in the electric and electronic fields.
  • FIG. 1 is a diagram showing a differential scanning calorimetry (DSC) curve of the ester compound (1-1) (compound (p-151)) obtained in Example 1.
  • FIG. 2 is a diagram showing a differential scanning calorimetry (DSC) curve of the ester compound (1-2) (compound (p-28)) obtained in Example 2.
  • FIG. 1 shows a differential scanning calorimetry (DSC) curve of the ester compound (1-3) (compound (p-148)) obtained in Example 3.
  • the curable composition of the present invention contains an ester compound represented by general formula (1) and a thermosetting compound and/or a compound having a radically polymerizable substituent.
  • each R 1 independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • each R 2 independently represents a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms
  • each R 3 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • each X independently represents a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, or a divalent group represented by general formula (1a), (1b), or (1c); and each n independently represents 0 or an integer of 1 to 4.
  • R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atom
  • the ester compound represented by the general formula (1) reacts with the epoxy resin as a curing agent, particularly with respect to the secondary hydroxyl group generated by the reaction of the epoxy resin of the thermosetting compound with the curing agent, and by esterifying the secondary hydroxyl group, the resulting cured product has suppressed polarization and excellent dielectric properties. Therefore, the embodiment containing the epoxy resin in the curable composition of the present invention is useful and preferable because the resulting cured product has such characteristics. Also, for this reason, it is preferable to use the ester compound represented by the general formula (1) as a curing agent for the epoxy resin, because the resulting cured product has the above-mentioned characteristics.
  • ester compound represented by the general formula (1) Since the ester compound represented by the general formula (1) has a furan ring, it can also undergo a curing reaction with a compound having a radically polymerizable substituent to give a cured product.
  • the ester compound represented by the general formula (1) has excellent solubility in solvents such as methyl ethyl ketone, cyclohexanone, N-methylpyrrolidone, toluene, propylene glycol monomethyl ether acetate, and ethyl acetate, in particular, in methyl ethyl ketone, which is one of the solvents commonly used in the production of electronic components such as semiconductors, and therefore has excellent handleability.
  • R 1 's each independently represent preferably an alkyl group having 1 to 4 carbon atoms or a phenyl group, more preferably a methyl group or a phenyl group, and particularly preferably a methyl group.
  • R 2 in general formula (1) is independently a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • a divalent hydrocarbon group specific examples include a linear or branched alkylene group having 1 to 10 carbon atoms or an alkylene group containing a cyclic alkane, such as a methylene group, an ethylene group, a propane-1,2-diyl group, a propane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a cyclohexane-1,3-diyl group, or a cyclohexane-1,4-diyl group; an alkylidene group having 1 to 10 carbon atoms, such as an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, a cyclopentylidene group, or a cyclohexylid
  • each R 3 is preferably independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably independently a hydrogen atom or a methyl group, and particularly preferably both are a hydrogen atom.
  • X in general formula (1) is preferably a single bond, a sulfonyl group, a carbonyl group, or a divalent group represented by general formula (1a), (1b), or (1c), more preferably a single bond or a divalent group represented by general formula (1a) or general formula (1b), still more preferably a single bond or a divalent group represented by general formula (1a), and among the divalent groups represented by general formula (1a), R 4 and R 5 are each bonded to each other to form a divalent group having 5 to 20 carbon atoms as a whole, particularly preferably a single bond or a divalent group represented by general formula (1a).
  • R4 and R5 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, further preferably each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a trifluoromethyl group, or an aryl group having 6 to 8 carbon atoms, and particularly preferably each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group.
  • R 4 and R 5 may be bonded to each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole, and this embodiment is more preferable for R 4 and R 5.
  • the cycloalkylidene group having 5 to 20 carbon atoms may contain an alkyl group as a branched chain.
  • the cycloalkylidene group preferably has 5 to 15 carbon atoms, more preferably has 6 to 12 carbon atoms, and particularly preferably has 6 to 9 carbon atoms.
  • cycloalkylidene group examples include a cyclopentylidene group (5 carbon atoms), a cyclohexylidene group (6 carbon atoms), a 3-methylcyclohexylidene group (7 carbon atoms), a 4-methylcyclohexylidene group (7 carbon atoms), a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms), a cycloheptylidene group (7 carbon atoms), and a cyclododecanylidene group (12 carbon atoms).
  • a cyclohexylidene group (number of carbon atoms: 6), a 3-methylcyclohexylidene group (number of carbon atoms: 7), a 4-methylcyclohexylidene group (number of carbon atoms: 7), a 3,3,5-trimethylcyclohexylidene group (number of carbon atoms: 9), and a cyclododecanylidene group (number of carbon atoms: 12), and more preferred are a cyclohexylidene group (number of carbon atoms: 6), a 3,3,5-trimethylcyclohexylidene group (number of carbon atoms: 9), and a cyclododecanylidene group (number of carbon atoms: 12).
  • Ar 1 and Ar 2 are each independently a benzene ring or a naphthalene ring, and more preferably both Ar 1 and Ar 2 are benzene rings.
  • the group represented by formula (1b) is a fluorenylidene group.
  • X in general formula (1) is general formula (1c) it is preferably a divalent group of 1,3-bis(isopropyl-2-yl)benzene or 1,4-bis(isopropyl-2-yl)benzene.
  • the bonding positions of X and the two benzene rings are preferably each independently ortho- or para-positions, more preferably para-positions, with respect to the oxygen atom bonded to the benzene ring.
  • n is preferably each independently 0, 2, or 3.
  • R1 is preferably bonded at the ortho position with respect to the oxygen atom bonded to the benzene ring.
  • ester compound represented by the general formula (1) include compounds (p-1) to (p-171) having the following chemical structures.
  • the reaction method in the esterification step in the above production method can be a conventionally known esterification reaction method.
  • Specific examples of the bisphenol compound represented by the general formula (5) include bisphenol F (bis(2-hydroxyphenyl)methane, 2-hydroxyphenyl-4-hydroxyphenylmethane, bis(4-hydroxyphenyl)methane), bisphenol E (1,1-bis(4-hydroxyphenyl)ethane), bisphenol A (2,2-bis(4-hydroxyphenyl)propane), bisphenol C (2,2-bis(4-hydroxy-3-methylphenyl)propane), 2,2-bis(4-hydroxyphenyl)-4-methylpentane, 4,4'-dihydroxybiphenyl, 4,4'-dihydroxy-3,3'-dimethylbiphenyl, 4,4'-dihydroxy-3,3',5,5'-tetramethylbiphenyl,4,4'-dihydroxy-2,2',3,3',5,5'-hexa
  • the acid anhydride represented by formula (6) include acetic anhydride and benzoic anhydride.
  • the definition and preferred embodiments of R6 in formula (6) are the same as those of formula (2) described below.
  • the amount of the acid anhydride represented by the general formula (6) used is preferably in the range of 2.0 to 10.0 mol, more preferably in the range of 2.0 to 8.0 mol, and even more preferably in the range of 2.0 to 4.0 mol, per 1 mol of the bisphenol compound represented by the general formula (5).
  • the reaction temperature is usually in the range of 50 to 150° C., preferably in the range of 80 to 140° C.
  • the reaction pressure may be either normal pressure or reduced pressure.
  • the ester compound represented by the general formula (2) can be produced by the above esterification step.
  • R 1 , X, and n are defined as in general formula (1), and each R 6 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • R 1 , X and n are the same as those in formula (1), and the preferred embodiments are also the same.
  • R 6 is preferably each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably each independently an alkyl group having 1 to 6 carbon atoms or a phenyl group, further preferably each independently a methyl group or a phenyl group, and particularly preferably a methyl group.
  • the monovalent hydrocarbon group having 1 to 20 carbon atoms for R 6 in general formula (2) include linear monovalent hydrocarbon groups such as a methyl group, an ethyl group, a propyl group, an isobutyl group, a butyl group, a hexyl group, an octyl group, and a decyl group, cyclic monovalent hydrocarbon groups such as a cyclohexyl group, and monovalent aromatic hydrocarbon groups such as a phenyl group and a naphthyl group.
  • the ester compound represented by general formula (2) obtained by the esterification step may be used as it is contained in the reaction solution of the esterification reaction as a raw material for the transesterification reaction step described later, or may be purified by distillation to remove the carboxylic acid represented by general formula (7) produced in the esterification reaction, or may be purified by mixing a solvent with the esterification reaction solution and subjecting it to a crystallization operation for use.
  • the reaction method in the transesterification step in the above production method can be a conventionally known transesterification method.
  • R2 and R3 in the general formula (8) are defined the same as in the general formula (1), and preferred embodiments and specific examples are also the same.
  • Specific examples of the furan-containing carboxylic acid represented by the general formula (8) include 2-furan carboxylic acid, 3-furan carboxylic acid, 2-methyl-3-furan carboxylic acid, and 3-methyl-2-furan carboxylic acid.
  • the amount of the furan-containing carboxylic acid represented by general formula (8) used is preferably in the range of 2.0 to 10.0 mol, more preferably in the range of 2.0 to 8.0 mol, and even more preferably in the range of 2.0 to 4.0 mol, relative to 1 mol of the ester compound represented by general formula (2). It is preferable to use a base as a catalyst in the reaction of the ester compound represented by the general formula (2) with the furan-containing carboxylic acid represented by the general formula (8).
  • Such bases include organic bases such as amine bases, inorganic alkali metal compounds such as alkali metal hydroxides, carbonates, and hydrogen carbonate compounds, and organic alkali metal compounds such as alkali metal alcohols, phenols, and salts with organic carboxylic acids. Mixtures thereof may also be used, but are not limited thereto.
  • the reaction is usually carried out in the presence of a solvent. For reasons such as improved operability and reaction rate during industrial production, it is preferable to use a reaction solvent during the reaction.
  • the solvent that can be used is not particularly limited as long as it does not distill from the reaction vessel at the reaction temperature described below and is inactive in the transesterification reaction.
  • aromatic hydrocarbon ether solvents such as alkylaryl ethers such as phenetole and butylphenyl ether, diaryl ethers such as diphenyl ether and di-p-tolyl ether, aromatic hydrocarbon solvents such as biphenyl and terphenyl, alkyl-substituted naphthalenes such as diisopropylnaphthalene, aliphatic hydrocarbons such as decalin and kerosene, polyalkylene glycol ethers such as tetraethylene glycol dimethyl ether and diethylene glycol dibutyl ether, and organic solvents such as Therm-S series (manufactured by Nippon Steel Chemical Co., Ltd.), KSK-OIL series (manufactured by Soken Chemical Industry Co., Ltd.), or NeoSK-OIL series (manufactured by Soken Chemical Industry Co., Ltd.).
  • aromatic hydrocarbon ether solvents such as alkylaryl ethers such
  • the amount of the solvent used is not particularly limited as long as it does not interfere with the reaction, but is usually used in the range of 0.5 to 20 times by weight, preferably 1 to 10 times by weight, based on the ester compound represented by formula (2).
  • the reaction temperature is usually in the range of 40 to 260°C, preferably in the range of 80 to 255°C, more preferably in the range of 120 to 250°C, further preferably in the range of 160 to 245°C, particularly preferably in the range of 180 to 240°C.
  • the reaction may be carried out under normal pressure, or under increased or reduced pressure.
  • the method may include a procedure for removing the carboxylic acid represented by the general formula (7) produced during the reaction from the reaction system.
  • the procedure for removing the carboxylic acid represented by the general formula (7) produced from the reaction solution is not particularly limited, and the carboxylic acid can be removed by distilling the carboxylic acid represented by the general formula (7) produced together with the solvent system in the reaction solution.
  • the carboxylic acid represented by the general formula (7) produced can be removed from the reaction system by using, for example, a pressure-equalizing dropping funnel equipped with a cock, a Dimroth condenser, a Dean-Stark apparatus, or the like.
  • the ester compound represented by the general formula (1) can be obtained from the reaction mixture by a known method.
  • the reaction mixture can be cooled and crystallized, and filtered to obtain the target product in powder or granular form.
  • the reaction mixture can be added to a poor solvent to obtain the target product by precipitation, or a solvent can be added to the reaction mixture to crystallize, and the product can be filtered to obtain the target product in powder or granular form.
  • the ester compound represented by the general formula (1) extracted by the above method can be made into a high-purity product by ordinary purification means such as washing with a solvent or water, recrystallization, etc.
  • the solvent that can be used for crystallization and reslurry is not particularly limited as long as it is a solvent inert to the ester compound represented by the general formula (1), and specific examples thereof include alcohol-based solvents such as methanol, ethanol, isopropanol, and 1-butanol, carbonyl-based solvents such as acetic anhydride, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone, ether-based solvents such as tetrahydrofuran, methyl isobutyl ether, methyl isopropyl ether, and diphenyl ether, aromatic non-polar solvents such as toluene, xylene, and ethylbenzene, ⁇ -butyrolactone, ⁇ -valerolactone, acetonitrile, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone.
  • 1-butanol, isopropanol, and diphenyl ether are preferable.
  • the crystallization conditions vary depending on the solvent used and cannot be generally stated.
  • the amount of the solvent used is in the range of 1 part by weight to 50 parts by weight, more preferably 2 parts by weight to 30 parts by weight, and particularly preferably 2 to 10 parts by weight, per 1 part by weight of the total amount of the composition containing the ester compound represented by the general formula (1) to be purified and other impurities.
  • the temperature during dissolution is in the range of 50 to 250°C, more preferably 70 to 230°C, even more preferably 80 to 200°C, and particularly preferably 90 to 180°C.
  • the cooling temperature is in the range of 0°C to 50°C, more preferably 10 to 40°C, and even more preferably 15 to 35°C.
  • the pressure during crystallization may be normal pressure conditions, or may be under pressure.
  • various conditions can be appropriately changed taking into consideration the boiling point of the solvent, the solubility of the ester compound represented by general formula (1) to be purified, other impurities, and the composition containing them, etc.
  • the purified product obtained by these purification steps may contain the solvent used, so it is preferable to remove the solvent and dry it.
  • the method for removing the solvent is not particularly limited, but examples include a method in which the solvent is distilled off by heating under normal pressure or reduced pressure.
  • ester compound represented by general formula (3) is preferred because the cured product obtained by using the curable composition of the present invention has better heat resistance.
  • the ester compound represented by the general formula (3) reacts with the epoxy resin as a curing agent, similar to the ester compound represented by the general formula (1), and by esterifying the secondary hydroxyl group, the resulting cured product has suppressed polarization and excellent dielectric properties.
  • ester compound represented by the general formula (3) as a curing agent for the epoxy resin, since the resulting cured product has the above-mentioned characteristics, similar to the ester compound represented by the general formula (1).
  • the ester compound represented by general formula (3) like the ester compound represented by general formula (1), has a furan ring, and can therefore undergo a curing reaction with a compound having a radically polymerizable substituent to give a cured product.
  • the ester compound represented by the general formula (3) has excellent solubility in solvents such as methyl ethyl ketone, cyclohexanone, N-methylpyrrolidone, toluene, propylene glycol monomethyl ether acetate, and ethyl acetate, in particular, in methyl ethyl ketone, which is one of the solvents commonly used in the production of electronic components such as semiconductors, and therefore has excellent handleability.
  • solvents such as methyl ethyl ketone, cyclohexanone, N-methylpyrrolidone, toluene, propylene glycol monomethyl ether acetate, and ethyl acetate, in particular, in methyl ethyl ketone, which is one of the solvents commonly used in the production of electronic components such as semiconductors, and therefore has excellent handleability.
  • each R2 independently represents a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms
  • each R3 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms
  • Y represents a divalent group represented by general formula (3a) or general formula (3b).
  • R 1 's each independently represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • * represents a bonding position.
  • m's each independently represent an integer of 1 to 4.
  • n's each independently represent 0 or an integer of 1 to 4
  • Z's each independently represent a cycloalkylidene group having 7 to 20 carbon atoms.
  • R2 and R3 in general formula (3) are the same as R2 and R3 in general formula (1). That is, R2 in general formula (3) is each independently a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms.
  • divalent hydrocarbon groups include linear or branched alkylene groups having 1 to 10 carbon atoms or alkylene groups containing a cyclic alkane, such as a methylene group, an ethylene group, a propane-1,2-diyl group, a propane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a cyclohexane-1,3-diyl group, or a cyclohexane-1,4-diyl group; alkylidene groups having 1 to 10 carbon atoms, such as an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, a cyclopentylidene group, or a cyclohexylidene group; phenylene groups;
  • each R 3 is preferably independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably independently a hydrogen atom or a methyl group, and particularly preferably both are a hydrogen atom.
  • Y in formula (3) is formula (3a)
  • the preferred embodiment of R1 is the same as R1 in formula (1).
  • R1 in formula (3a) is preferably each independently an alkyl group having 1 to 4 carbon atoms or a phenyl group, more preferably each independently a methyl group or a phenyl group, and particularly preferably a methyl group.
  • m each independently represents an integer of 1 to 4, preferably each independently represents an integer of 1 to 3, more preferably each independently represents 2 or 3, and particularly preferably both represent 3. It is preferable that R1 is preferentially bonded to the ortho position with respect to the oxygen atom bonded to the benzene ring.
  • Y in general formula (3) is general formula (3a) is a structure selected from general formulas (3a-1) to (3a-4), more preferably a structure selected from general formulas (3a-2) to (3a-4), further preferably general formula (3a-3) or (3a-4), and particularly preferably general formula (3a-4).
  • each R 1 independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and * indicates the bonding position.
  • the preferred embodiment of R 1 is the same as the preferred embodiment of R 1 in formula (1).
  • R 1 in formula (3b) is preferably each independently an alkyl group having 1 to 4 carbon atoms or a phenyl group, more preferably each independently a methyl group or a phenyl group, and particularly preferably a methyl group.
  • n is preferably 0, 1 or 2, more preferably 0 or 1, and particularly preferably both are 0.
  • the substitution position of R1 is preferably the ortho position relative to the oxygen atom.
  • Z in general formula (3b) represents a cycloalkylidene group having 7 to 20 carbon atoms, which may have an alkyl group as a branched chain.
  • Such a cycloalkylidene group preferably has 7 to 15 carbon atoms, more preferably has 7 to 12 carbon atoms, and particularly preferably has 7 to 9 carbon atoms.
  • Specific examples of such cycloalkylidene groups include a 3-methylcyclohexylidene group (7 carbon atoms), a 4-methylcyclohexylidene group (7 carbon atoms), a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms), and a cyclododecanylidene group (12 carbon atoms).
  • ester compound represented by the general formula (3) examples include compounds (p-139) to (p-177) having the following chemical structures.
  • the ester compound represented by general formula (3) is preferably one compound selected from the compounds (p-139) to (p-177), and among these, the compound (p-139), (p-142), (p-145), (p-148), (p-151), (p-154) or (p-172) is particularly preferable.
  • the ester compound of the present invention represented by the general formula (3) can be produced in the same manner as in the production of the ester compound represented by the general formula (1). Specifically, there is no particular restriction on the starting material and manufacturing method for the ester compound represented by the general formula (3).
  • a manufacturing method can be mentioned in which a bisphenol compound represented by the general formula (9) and an acid anhydride represented by the general formula (6) are reacted to synthesize an ester compound represented by the general formula (10) in an esterification step, and then the ester compound represented by the general formula (10) is reacted with a furan-containing carboxylic acid represented by the general formula (8) to obtain an ester compound represented by the general formula (3) in a transesterification step.
  • the reaction method in the esterification step in the above production method can be a conventionally known esterification reaction method.
  • the bisphenol compound represented by the general formula (9) specific examples of the compound in which Y is the general formula (3a) include 4,4'-dihydroxy-3,3'-dimethylbiphenyl, 4,4'-dihydroxy-3,3',5,5'-tetramethylbiphenyl, and 4,4'-dihydroxy-2,2',3,3'5,5'-hexamethylbiphenyl.
  • Specific examples of the compound in which Y is the general formula (3b) include bisphenol TMC (1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane), 1,1-bis(4-hydroxyphenyl)-3-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-4-methylcyclohexane, and 1,1-bis(4-hydroxyphenyl)cyclododecane.
  • Specific examples of the acid anhydride represented by the general formula (6) include acetic anhydride and benzoic anhydride.
  • the amount of the acid anhydride represented by the general formula (6) used is preferably in the range of 2.0 to 10.0 mol, more preferably in the range of 2.0 to 8.0 mol, and even more preferably in the range of 2.0 to 4.0 mol, per 1 mol of the bisphenol compound represented by the general formula (9).
  • the reaction temperature is usually in the range of 50 to 150° C., preferably in the range of 80 to 140° C.
  • the reaction pressure may be either normal pressure or reduced pressure.
  • the ester compound represented by the general formula (10) can be produced by the above esterification step.
  • the definition of Y in formula (10) is the same as in formula (3), and the preferred embodiments are also the same.
  • R6 in formula (10) is defined the same as in formula (2), and specific examples and preferred embodiments thereof are also the same.
  • the ester compound represented by general formula (10) obtained by the esterification step may be used as it is contained in the reaction solution of the esterification reaction as a raw material for the transesterification reaction step described later, or may be purified by distillation to remove the carboxylic acid represented by general formula (7) produced in the esterification reaction, or may be purified by mixing a solvent with the esterification reaction solution and subjecting it to a crystallization operation for use.
  • the reaction method in the transesterification step in the above production method can be a conventionally known transesterification method.
  • R2 and R3 in the general formula (8) are defined the same as in the general formula (1), and preferred embodiments and specific examples are also the same.
  • Specific examples of the furan-containing carboxylic acid represented by the general formula (8) include 2-furan carboxylic acid, 3-furan carboxylic acid, 2-methyl-3-furan carboxylic acid, and 3-methyl-2-furan carboxylic acid.
  • the amount of the furan-containing carboxylic acid represented by general formula (8) used is preferably in the range of 2.0 to 10.0 mol, more preferably in the range of 2.0 to 8.0 mol, and even more preferably in the range of 2.0 to 4.0 mol, relative to 1 mol of the ester compound represented by general formula (10). It is preferable to use a base as a catalyst in the reaction of the ester compound represented by the general formula (10) with the furan-containing carboxylic acid represented by the general formula (8).
  • Such bases include organic bases such as amine bases, inorganic alkali metal compounds such as alkali metal hydroxides, carbonates, and hydrogen carbonate compounds, and organic alkali metal compounds such as alkali metal alcohols, phenols, and salts with organic carboxylic acids. Mixtures thereof may also be used, but are not limited thereto.
  • the reaction is usually carried out in the presence of a solvent. For reasons such as improved operability and reaction rate during industrial production, it is preferable to use a reaction solvent during the reaction.
  • the solvent that can be used is not particularly limited as long as it does not distill from the reaction vessel at the reaction temperature described below and is inactive in the transesterification reaction.
  • aromatic hydrocarbon ether solvents such as alkylaryl ethers such as phenetole and butylphenyl ether, diaryl ethers such as diphenyl ether and di-p-tolyl ether, aromatic hydrocarbon solvents such as biphenyl and terphenyl, alkyl-substituted naphthalenes such as diisopropylnaphthalene, aliphatic hydrocarbons such as decalin and kerosene, polyalkylene glycol ethers such as tetraethylene glycol dimethyl ether and diethylene glycol dibutyl ether, and organic solvents such as Therm-S series (manufactured by Nippon Steel Chemical Co., Ltd.), KSK-OIL series (manufactured by Soken Chemical Industry Co., Ltd.), or NeoSK-OIL series (manufactured by Soken Chemical Industry Co., Ltd.).
  • aromatic hydrocarbon ether solvents such as alkylaryl ethers such
  • the amount of the solvent used is not particularly limited as long as it does not interfere with the reaction, but is usually used in the range of 0.5 to 20 times by weight, preferably 1 to 10 times by weight, based on the ester compound represented by formula (10).
  • the reaction temperature is usually in the range of 40 to 260°C, preferably in the range of 80 to 255°C, more preferably in the range of 120 to 250°C, further preferably in the range of 160 to 245°C, particularly preferably in the range of 180 to 240°C.
  • the reaction may be carried out under normal pressure, or under increased or reduced pressure.
  • the method may include a procedure for removing the carboxylic acid represented by the general formula (7) produced during the reaction from the reaction system.
  • the procedure for removing the carboxylic acid represented by the general formula (7) produced from the reaction solution is not particularly limited, and the carboxylic acid can be removed by distilling the carboxylic acid represented by the general formula (7) produced together with the solvent system in the reaction solution.
  • the carboxylic acid represented by the general formula (7) produced can be removed from the reaction system by using, for example, a pressure-equalizing dropping funnel equipped with a cock, a Dimroth condenser, a Dean-Stark apparatus, or the like.
  • the ester compound represented by the general formula (3) can be obtained from the reaction mixture by a known method.
  • the reaction mixture can be cooled and crystallized, and filtered to obtain the target product in powder or granular form.
  • the reaction mixture can be added to a poor solvent to obtain the target product by precipitation, or a solvent can be added to the reaction mixture to cause crystallization, and the product can be filtered to obtain the target product in powder or granular form.
  • the ester compound represented by the general formula (3) extracted by the above method can be made into a high-purity product by ordinary purification means such as washing with a solvent or water, recrystallization, etc.
  • the solvent that can be used for crystallization and reslurry is not particularly limited as long as it is a solvent inert to the ester compound represented by the general formula (3), and specific examples thereof include alcohol-based solvents such as methanol, ethanol, isopropanol, and 1-butanol, carbonyl-based solvents such as acetic anhydride, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone, ether-based solvents such as tetrahydrofuran, methyl isobutyl ether, methyl isopropyl ether, and diphenyl ether, aromatic nonpolar solvents such as toluene, xylene, and ethylbenzene, ⁇ -butyrolactone, ⁇ -valerolactone, acetonitrile, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone.
  • 1-butanol, isopropanol, and diphenyl ether are preferable.
  • the crystallization conditions vary depending on the solvent used and cannot be generally stated.
  • the amount of the solvent used is in the range of 1 part by weight to 50 parts by weight, more preferably 2 parts by weight to 30 parts by weight, and particularly preferably 2 to 10 parts by weight, per 1 part by weight of the total amount of the composition containing the ester compound represented by the general formula (3) to be purified and other impurities.
  • the temperature during dissolution is in the range of 50 to 250°C, more preferably 70 to 230°C, even more preferably 80 to 200°C, and particularly preferably 90 to 180°C.
  • the cooling temperature is in the range of 0°C to 50°C, more preferably 10 to 40°C, and even more preferably 15 to 35°C.
  • the pressure during crystallization may be normal pressure conditions, or may be under pressure.
  • various conditions can be appropriately changed taking into consideration the boiling point of the solvent, the solubility of the ester compound represented by general formula (3) to be purified, other impurities, and the composition containing them, etc.
  • the purified product obtained by these purification steps may contain the solvent used, so it is preferable to remove the solvent and dry it.
  • the method for removing the solvent is not particularly limited, but examples include a method in which the solvent is distilled off by heating under normal pressure or reduced pressure.
  • crystals of compound (p-148) can be handled as a crystalline solid and are therefore very useful since they have excellent handleability.
  • the crystals preferably have a maximum endothermic peak temperature in the range of 234 to 240°C, more preferably 235 to 240°C, and particularly preferably 236 to 239°C, as determined by differential scanning calorimetry.
  • the compound (p-148) produced by the method for producing an ester compound represented by the above general formula (3) can be produced by crystallization from a solvent containing an alcohol solvent such as methanol, ethanol, isopropanol, 1-butanol, etc., particularly an alcohol solvent having 1 to 4 carbon atoms, and an ether solvent such as tetrahydrofuran, methyl isobutyl ether, methyl isopropyl ether, diphenyl ether, etc., particularly an ether solvent having 4 to 12 carbon atoms.
  • an alcohol solvent such as methanol, ethanol, isopropanol, 1-butanol, etc.
  • an ether solvent such as tetrahydrofuran, methyl isobutyl ether, methyl isopropyl ether, diphenyl ether, etc., particularly an ether solvent having 4 to 12 carbon atoms.
  • the crystallization conditions are such that the total amount of the alcohol solvent and the ether solvent is in the range of 1 to 50 parts by weight, more preferably 2 to 30 parts by weight, and particularly preferably 2 to 10 parts by weight, per 1 part by weight of the total amount of the composition containing the compound (p-148) and other post-reaction impurities.
  • the amount of the ether solvent used relative to the amount of the alcohol solvent used is preferably 0.3 to 3.0 times by weight, more preferably 0.5 to 2.5 times by weight, even more preferably 1.0 to 2.2 times by weight, and particularly preferably 1.4 to 2.2 times by weight.
  • the temperature during dissolution is in the range of 50 to 250° C., more preferably in the range of 70 to 230° C., even more preferably in the range of 80 to 200° C., and particularly preferably in the range of 90 to 180° C.
  • the cooling temperature is in the range of 0 to 50° C., more preferably in the range of 10 to 40° C., and even more preferably in the range of 15 to 35° C.
  • the pressure during crystallization may be normal pressure or may be increased. Since the crystals obtained by crystallization may contain the solvent used, it is preferable to remove the solvent and dry the crystals.
  • the method for removing the solvent is not particularly limited, but examples thereof include a method in which the solvent is distilled off by heating under normal pressure or reduced pressure.
  • crystals of compound (p-151) can be handled as a crystalline solid and are therefore very useful since they have excellent handleability.
  • the crystals preferably have a maximum endothermic peak temperature in the range of 180 to 188°C, more preferably 181 to 187°C, and particularly preferably 182 to 186°C, as determined by differential scanning calorimetry.
  • the compound (p-151) produced by the method for producing the ester compound represented by the above general formula (3) can be produced by crystallization from an alcohol solvent such as methanol, ethanol, isopropanol, 1-butanol, etc., particularly a solvent containing an alcohol solvent having 1 to 4 carbon atoms. Of the alcohol solvents having 1 to 4 carbon atoms, 1-butanol and isopropanol are particularly preferred.
  • the amount of the alcohol solvent used is in the range of 1 part by weight to 50 parts by weight, more preferably 2 parts by weight to 30 parts by weight, and particularly preferably 2 parts by weight to 10 parts by weight, per 1 part by weight of the total amount of the composition containing the compound (p-151) and other post-reaction impurities.
  • the temperature during dissolution is in the range of 50 to 250° C., more preferably in the range of 70 to 230° C., even more preferably in the range of 80 to 200° C., and particularly preferably in the range of 90 to 180° C.
  • the cooling temperature is in the range of 0 to 50° C., more preferably in the range of 10 to 40° C., and even more preferably in the range of 15 to 35° C.
  • the pressure during crystallization may be normal pressure or may be increased. Since the crystals obtained by crystallization may contain the solvent used, it is preferable to remove the solvent and dry the crystals.
  • the method for removing the solvent is not particularly limited, but examples thereof include a method in which the solvent is distilled off by heating under normal pressure or reduced pressure.
  • the ester compound represented by the general formula (3) can also be used in the form of a resin raw material composition containing an ester compound represented by the general formula (2).
  • the ester compound represented by general formula (2) further contained in the resin raw material composition may be an ester compound represented by general formula (10), and this is more preferable.
  • This resin raw material composition contains preferably 0.1 to 400 parts by weight, more preferably 0.1 to 200 parts by weight, even more preferably 0.1 to 150 parts by weight, still more preferably 0.1 to 100 parts by weight, and particularly preferably 0.1 to 10 parts by weight of the ester compound represented by general formula (2) relative to 100 parts by weight of the ester compound represented by general formula (3).
  • the resin raw material composition of the present invention can be produced by mixing the ester compound represented by general formula (3) and the ester compound represented by general formula (2) which have been separately produced, so as to obtain a desired amount, or can be produced by using the ester compound represented by general formula (2) as an intermediate for producing the ester compound represented by general formula (3) and adjusting the reaction rate of the transesterification reaction with the furan-containing carboxylic acid represented by general formula (8) so as to obtain a desired amount.
  • the ester compound composition for resin raw material containing the ester compound represented by the general formula (3) and the ester compound represented by the general formula (2) can be used to produce a cured product by reacting it with a thermosetting compound and/or a compound having a radically polymerizable substituent, for example, as in a curable composition described later. Also, in the production of an epoxy resin obtained by reacting an ester compound represented by the general formula (3) described later, an ester compound composition for resin raw material further containing an ester compound represented by the general formula (2) can be used.
  • Examples of epoxy resins obtained by reacting an ester compound represented by general formula (3) include epoxy resins obtained by reacting a mixture containing an aromatic dihydroxy compound and epihalohydrin, and epoxy resins obtained by reacting an aromatic dihydroxy compound with a phenoxy resin having an epoxy group obtained by polymerizing an aromatic dihydroxy compound with epihalohydrin. That is, the epoxy resin obtained by reacting the ester compound represented by the general formula (3) may be an epoxy resin obtained by reacting the ester compound represented by the general formula (3) with any one selected from an aromatic diglycidyl ether compound, a mixture containing an aromatic dihydroxy compound and epihalohydrin, and a phenoxy resin having an epoxy group obtained by polymerizing an aromatic dihydroxy compound and epihalohydrin.
  • a catalyst may be used in the synthesis of an epoxy resin obtained by reacting an ester compound represented by the general formula (3), and the catalyst may be any compound having a catalytic ability to promote the reaction between an epoxy group and an ester group, such as tertiary amines, cyclic amines, imidazoles, organic phosphorus compounds, and quaternary ammonium salts.
  • tertiary amines include triethylamine, tri-n-propylamine, tri-n-butylamine, triethanolamine, benzyldimethylamine, pyridine, and 4-(dimethylamino)pyridine.
  • cyclic amines include 1,4-diazabicyclo[2,2,2]octane, 1,8-diazabicyclo[5,4,0]-7-undecene, and 1,5-diazabicyclo[4,3,0]-5-nonene.
  • imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole.
  • organic phosphorus compound examples include tri-n-propylphosphine, tri-n-butylphosphine, triphenylphosphine, tris(p-tolyl)phosphine, tricyclohexylphosphine, tri(tert-butyl)phosphine, tris(p-methoxyphenyl)phosphine, tetramethylphosphonium bromide, tetramethylphosphonium iodide, tetramethylphosphonium hydroxide, tetrabutylphosphonium hydroxide, trimethylcyclohexylphosphonium chloride, trimethylcyclohexylphosphonium bromide, trimethylbenzylphosphonium chloride, trimethylbenzylphosphonium bromide, tetraphenylphosphonium bromide, triphenylmethylphosphonium bromide, triphenylmethylphosphonium iodide, triphenylethylphosphonium chlor
  • the catalysts may be used alone or in combination of two or more.
  • the amount of the catalyst used is in the range of 0.001 to 3% by weight based on the amount of the reaction substrate used in the reaction to obtain an epoxy resin obtained by reacting an ester compound represented by general formula (3).
  • these compounds are used as catalysts, they remain as catalyst residues in the obtained curable composition, which may deteriorate the insulating properties of the printed wiring board or shorten the pot life of the composition. Therefore, when a nitrogen-containing compound is used as a catalyst, the nitrogen content in the curable composition is preferably 2000 ppm or less, more preferably 1000 ppm or less.
  • the phosphorus content in the curable composition is preferably 2000 ppm or less, more preferably 1000 ppm or less.
  • a reaction solvent may be used, and the solvent may be any solvent that dissolves the epoxy resin.
  • the solvent include aromatic hydrocarbon solvents, ketone solvents, amide solvents, and glycol ether solvents.
  • the solvent may be used alone or in combination of two or more. Specific examples of aromatic hydrocarbon solvents include benzene, toluene, xylene, etc.
  • ketone solvents include acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, 2-heptanone, 4-heptanone, 2-octanone, cyclohexanone, acetylacetone, dioxane, etc.
  • amide solvents include formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, 2-pyrrolidone, and N-methylpyrrolidone.
  • glycol ether solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, propylene glycol mono-n-butyl ether, and propylene glycol monomethyl ether acetate.
  • the solid content in the synthesis reaction during the production of the epoxy resin is preferably 10 to 95% by weight. If a highly viscous product is produced during the reaction, the reaction can be continued by adding additional solvent. After the reaction is completed, the solvent can be removed or further added as necessary.
  • the polymerization reaction is carried out at a reaction temperature at which the catalyst used does not decompose. If the reaction temperature is too high, the catalyst may decompose, causing the reaction to stop, or the epoxy resin produced may deteriorate. Conversely, if the temperature is too low, the reaction may not proceed sufficiently. For these reasons, the reaction temperature is preferably 50 to 250°C, more preferably 120 to 230°C.
  • the reaction time is usually 1 to 12 hours, preferably 3 to 10 hours.
  • a low-boiling point solvent such as acetone or methyl ethyl ketone
  • the reaction temperature can be ensured by carrying out the reaction under high pressure using an autoclave.
  • the ester compound represented by the general formula (3) is included in the ester compound represented by the general formula (1) and can be used in the same manner, so the ester compound represented by the general formula (1) will be described below.
  • an invention in which the ester compound represented by general formula (1) is replaced with an ester compound represented by general formula (3) is also disclosed.
  • the curable composition of the present invention contains an ester compound represented by general formula (1), a thermosetting compound, and/or a compound having a radical polymerizable substituent. That is, the curable composition of the present invention may be embodied in the following manner: an ester compound represented by general formula (1) and a thermosetting compound, an ester compound represented by general formula (1) and a compound having a radical polymerizable substituent, or an ester compound represented by general formula (1), a thermosetting compound, and a compound having a radical polymerizable substituent.
  • the ester compound represented by general formula (1) used in the curable composition of the present invention may be one type of compound falling within the scope of the formula, or two or more types may be used in combination.
  • the ester compound represented by general formula (1) used in the curable composition of the present invention can also be used in the form of a curable composition further containing an ester compound represented by general formula (2).
  • the ester compound represented by the general formula (2) is contained in an amount of preferably 0.1 to 400 parts by weight, more preferably 0.1 to 200 parts by weight, even more preferably 0.1 to 150 parts by weight, still more preferably 0.1 to 100 parts by weight, and particularly preferably 0.1 to 10 parts by weight, relative to 100 parts by weight of the ester compound represented by the general formula (1).
  • the ester compound represented by the general formula (1) and the ester compound represented by the general formula (2) which have been separately produced can be mixed to obtain a desired amount, or the ester compound represented by the general formula (2) can be used as an intermediate for producing the ester compound represented by the general formula (1) and the reaction rate of the transesterification reaction with the furan-containing carboxylic acid represented by the general formula (8) can be adjusted to obtain a desired amount.
  • thermosetting compound used in the curable composition of the present invention may be any conventionally known thermosetting compound.
  • Specific examples include one or more compounds selected from the group consisting of epoxy resins, benzoxazine compounds, benzoxazine resins, phenolic resins, bismaleimide compounds, and maleimide resins.
  • epoxy resin the benzoxazine compound, the benzoxazine resin, the phenolic resin, the bismaleimide compound, and the maleimide resin
  • any compound including conventionally known compounds can be used.
  • the epoxy resin includes phenoxy resins having epoxy groups obtained by polymerizing glycidyl ether compounds, aromatic diglycidyl ether compounds (e.g., compounds obtained by glycidylating hydroxyl groups of hydroquinone, resorcinol, catechol, bisphenol compounds represented by general formula (5) and the like), aromatic dihydroxy compounds (e.g., hydroquinone, resorcinol, catechol, bisphenol compounds represented by general formula (5) and the like) and epihalohydrin with or without the use of an active ester-based curing agent, and any epoxy resin including a conventionally known compound can be used.
  • aromatic diglycidyl ether compounds e.g., compounds obtained by glycidylating hydroxyl groups of hydroquinone, resorcinol, catechol, bisphenol compounds represented by general formula (5) and the like
  • aromatic dihydroxy compounds e.g., hydroquinone, resorcinol, catechol, bisphenol compounds represented by general formula
  • an epoxy resin obtained by reacting an ester compound represented by general formula (1) according to the present invention can also be used, and it is preferable to use this. These can be used alone or as a mixture of two or more kinds.
  • the conventionally known epoxy resin used is preferably one having two or more epoxy groups in the molecule.
  • epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, bisphenol Z type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, phenol aralkyl type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, dicyclopentadiene type epoxy resin, and phenoxy resin can be used.
  • epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, bisphenol Z type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, phenol aralkyl type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, dicyclopentadiene type epoxy resin, and phenoxy resin can be used.
  • the amount of the other epoxy resin in the total epoxy resin component is preferably 1% by weight or more, more preferably 5% by weight or more, and even more preferably 10% by weight or more, while it is preferably 99% by weight or less, more preferably 95% by weight or less, and even more preferably 90% by weight or less.
  • the ratio of the other epoxy resin be equal to or more than the above lower limit, the effect of improving the physical properties by blending the other epoxy resin can be sufficiently obtained.
  • the ratio of the other epoxy resin be equal to or less than the above upper limit, the effect of the epoxy resin of the present invention is sufficiently exhibited, which is preferable from the viewpoint of obtaining film formability.
  • the amount of the epoxy resin obtained by reacting the ester compound represented by the general formula (1) or other epoxy resin used is based on the amount excluding the solvent when the solvent is contained.
  • Epoxy resin obtained by reacting an ester compound represented by general formula (1) The epoxy resin obtained by reacting the ester compound represented by the general formula (1) of the present invention can be obtained, for example, by reacting an aromatic diglycidyl ether compound (e.g., a compound in which a hydroxyl group is glycidylated, such as hydroquinone, resorcinol, catechol, or a bisphenol compound represented by the general formula (5)) with the ester compound represented by the general formula (1).
  • an aromatic diglycidyl ether compound e.g., a compound in which a hydroxyl group is glycidylated, such as hydroquinone, resorcinol, catechol, or a bisphenol compound represented by the general formula (5)
  • Other examples of the method include a method of reacting a mixture containing an aromatic dihydroxy compound and epihalohydrin with an ester compound represented by general formula (1), and a method of reacting a phenoxy resin having an epoxy group obtained by polymerizing an aromatic dihydroxy compound and epihalohydrin with an ester compound represented by general formula (1).
  • the epoxy resin obtained by reacting the ester compound represented by the general formula (1) may be an epoxy resin obtained by reacting the ester compound represented by the general formula (1) with any one selected from an aromatic diglycidyl ether compound, a mixture containing an aromatic dihydroxy compound and epihalohydrin, and a phenoxy resin having an epoxy group obtained by polymerizing an aromatic dihydroxy compound and epihalohydrin.
  • a catalyst may be used in the synthesis of an epoxy resin obtained by reacting an ester compound represented by general formula (1), and the catalyst may be any compound having a catalytic ability to promote the reaction between an epoxy group and an ester group, such as tertiary amines, cyclic amines, imidazoles, organic phosphorus compounds, and quaternary ammonium salts.
  • tertiary amines include triethylamine, tri-n-propylamine, tri-n-butylamine, triethanolamine, benzyldimethylamine, pyridine, and 4-(dimethylamino)pyridine.
  • cyclic amines include 1,4-diazabicyclo[2,2,2]octane, 1,8-diazabicyclo[5,4,0]-7-undecene, and 1,5-diazabicyclo[4,3,0]-5-nonene.
  • imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole.
  • organic phosphorus compound examples include tri-n-propylphosphine, tri-n-butylphosphine, triphenylphosphine, tris(p-tolyl)phosphine, tricyclohexylphosphine, tri(tert-butyl)phosphine, tris(p-methoxyphenyl)phosphine, tetramethylphosphonium bromide, tetramethylphosphonium iodide, tetramethylphosphonium hydroxide, tetrabutylphosphonium hydroxide, trimethylcyclohexylphosphonium chloride, trimethylcyclohexylphosphonium bromide, trimethylbenzylphosphonium chloride, trimethylbenzylphosphonium bromide, tetraphenylphosphonium bromide, triphenylmethylphosphonium bromide, triphenylmethylphosphonium iodide, triphenylethylphosphonium chlor
  • the catalysts may be used alone or in combination of two or more.
  • the amount of the catalyst used is in the range of 0.001 to 3% by weight based on the amount of the reaction substrate used in the reaction to obtain an epoxy resin obtained by reacting an ester compound represented by general formula (1).
  • these compounds are used as catalysts, they remain as catalyst residues in the obtained curable composition, which may deteriorate the insulating properties of the printed wiring board or shorten the pot life of the composition. Therefore, when a compound containing nitrogen is used as a catalyst, the nitrogen content in the curable composition is preferably 2000 ppm or less, more preferably 1000 ppm or less.
  • the phosphorus content in the curable composition is preferably 2000 ppm or less, more preferably 1000 ppm or less.
  • a solvent for the reaction may be used, and the solvent is not limited as long as it dissolves the epoxy resin.
  • aromatic hydrocarbon solvents aromatic hydrocarbon solvents, ketone solvents, amide solvents, glycol ether solvents, etc. may be mentioned. Only one type of solvent may be used, or two or more types may be used in combination. Specific examples of aromatic hydrocarbon solvents include benzene, toluene, xylene, etc.
  • ketone solvents include acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, 2-heptanone, 4-heptanone, 2-octanone, cyclohexanone, acetylacetone, dioxane, etc.
  • amide solvents include formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, 2-pyrrolidone, and N-methylpyrrolidone.
  • glycol ether solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, propylene glycol mono-n-butyl ether, and propylene glycol monomethyl ether acetate.
  • the solid content in the synthesis reaction during the production of the epoxy resin is preferably 10 to 95% by weight. If a highly viscous product is produced during the reaction, the reaction can be continued by adding additional solvent. After the reaction is completed, the solvent can be removed or further added as necessary.
  • the polymerization reaction is carried out at a reaction temperature at which the catalyst used does not decompose. If the reaction temperature is too high, the catalyst may decompose, causing the reaction to stop, or the epoxy resin produced may deteriorate. Conversely, if the temperature is too low, the reaction may not proceed sufficiently. For these reasons, the reaction temperature is preferably 50 to 250°C, more preferably 120 to 230°C.
  • the reaction time is usually 1 to 12 hours, preferably 3 to 10 hours.
  • a low-boiling point solvent such as acetone or methyl ethyl ketone
  • a reaction temperature higher than the boiling point under normal pressure can be ensured by carrying out the reaction under high pressure using an autoclave.
  • the compound having a radically polymerizable substituent used in the curable composition of the present invention may be any conventionally known compound. Specific examples include one or more compounds selected from the group consisting of diallyl phthalate resins, diallyl phthalate compounds, polyphenylene ether resins having a radically polymerizable substituent, and vinyl compounds.
  • the diallyl phthalate resin, the diallyl phthalate compound, the polyphenylene ether resin having a radically polymerizable substituent, and the vinyl compound may be any compound including conventionally known compounds.
  • the content of the thermosetting compound and/or the compound having a radically polymerizable substituent is preferably in the range of 50 to 500 parts by weight, more preferably in the range of 50 to 400 parts by weight, still more preferably in the range of 50 to 300 parts by weight, and particularly preferably in the range of 50 to 200 parts by weight, relative to 100 parts by weight of the ester compound represented by general formula (1).
  • the ester compound represented by general formula (1) contains the thermosetting compound in the above range per 100 parts by weight
  • the ester compound represented by general formula (1) and a compound having a radical polymerizable substituent it means that the ester compound represented by general formula (1) contains the compound having a radical polymerizable substituent in the above range per 100 parts by weight
  • the ester compound represented by general formula (1), a thermosetting compound, and a compound having a radical polymerizable substituent it means that the ester compound represented by general formula (1) contains the thermosetting compound and the compound having a radical polymerizable substituent in the above range as a total amount per 100 parts by weight.
  • the content is read as the content per 100 parts by weight of the total amount of the total amount of the total amount of the
  • the curable composition of the present invention may further contain various additives, as necessary, such as an ultraviolet inhibitor, an antioxidant, a coupling agent, a plasticizer, a flux, a flame retardant, a colorant, a dispersant, an emulsifier, an elasticity reducing agent, a diluent, an antifoaming agent, an ion trapping agent, an inorganic filler, an organic filler, etc.
  • additives such as an ultraviolet inhibitor, an antioxidant, a coupling agent, a plasticizer, a flux, a flame retardant, a colorant, a dispersant, an emulsifier, an elasticity reducing agent, a diluent, an antifoaming agent, an ion trapping agent, an inorganic filler, an organic filler, etc.
  • additives such as an ultraviolet inhibitor, an antioxidant, a coupling agent, a plasticizer, a flux, a flame retardant, a colorant, a dispersant, an
  • the curable composition of the present invention may further comprise a curing agent.
  • a curing agent includes the meaning of a substance that contributes to the crosslinking reaction and/or chain extension reaction between epoxy groups of the epoxy resin.
  • a substance that is usually called a "curing accelerator” is included in the curing agent as long as it contributes to the crosslinking reaction and/or chain extension reaction between epoxy groups of the epoxy resin.
  • the amount of the curing agent used is preferably 0.1 to 100 parts by weight, more preferably 80 parts by weight or less, and even more preferably 60 parts by weight or less, based on 100 parts by weight of the total amount of the ester compound represented by general formula (1) and the thermosetting resin or the compound having a radically polymerizable substituent.
  • the curing agent to be used is not particularly limited, and any agent generally known as a curing agent for a thermosetting resin or a compound having a radically polymerizable substituent can be used.
  • curing agents used in the curable composition of the present invention when an epoxy resin is used include phenol-based curing agents, amide-based curing agents, imidazoles, and active ester-based curing agents, which are preferred from the viewpoint of increasing heat resistance.
  • examples of phenol-based curing agents, amide-based curing agents, imidazoles, active ester-based curing agents, and other usable curing agents are listed below.
  • phenol-based hardener It is preferable to use a phenol-based curing agent as the curing agent from the viewpoints of improving the handleability of the resulting curable composition and the heat resistance of the cured product after curing.
  • phenol-based hardeners include bisphenol A, bisphenol F, 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl ether, 1,4-bis(4-hydroxyphenoxy)benzene, 1,3-bis(4-hydroxyphenoxy)benzene, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, phenol novolac, bisphenol A
  • the phenol-based hardeners listed above may be used alone or in any combination and ratio of two or more.
  • the hardener is a phenol-based hardener, it is preferable to use it so that the equivalent ratio of the functional groups in the hardener to the epoxy groups in the epoxy resin is in the range of 0.8 to 1.5. This range is preferable because it is less likely that unreacted epoxy groups or functional groups of the hardener will remain.
  • amide-based hardener It is preferable to use an amide-based curing agent as the curing agent from the viewpoint of improving heat resistance, etc. It is preferable to use an amide-based curing agent as the curing agent from the viewpoint of improving the heat resistance of the obtained curable composition.
  • the amide-based curing agent include dicyandiamide and its derivatives, polyamide resins, etc. Specific examples of the amide-based curing agent include "LUCKAMIDE" N-153-IM-65, EA-330, and TD-960 (manufactured by DIC Corporation).
  • the amide-based hardeners listed above may be used alone or in any combination and ratio of two or more.
  • the amide-based hardener is preferably used in an amount ranging from 0.1 to 20% by weight based on the total weight of the epoxy resin and amide-based hardener used in the hardenable composition.
  • imidazoles It is preferable to use imidazoles as the curing agent from the viewpoint of sufficiently progressing the curing reaction and improving heat resistance.
  • imidazoles include 2-phenylimidazole, 2-ethyl-4(5)-methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6-[2'-methylimidazolyl-
  • the imidazoles include 2,4-diamino-6-[2'-ethyl-4'-methylimidazolyl-(1')]-ethyl-s-triazine,
  • imidazoles Since imidazoles have catalytic activity, they can generally be classified as curing accelerators, which will be described later, but in the present invention, they are classified as curing agents.
  • the imidazoles listed above may be used alone or in any combination and ratio of two or more.
  • the imidazoles are preferably used in an amount of 0.1 to 20% by weight based on the total weight of the epoxy resin and the imidazoles used in the curable composition.
  • an active ester-based curing agent as a curing agent is preferable from the viewpoint of reducing the water absorption of the obtained cured product.
  • a compound having two or more highly reactive ester groups in one molecule such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds, is preferable, and among them, phenol esters obtained by reacting a carboxylic acid compound with an aromatic compound having a phenolic hydroxyl group are more preferable.
  • carboxylic acid compound examples include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
  • aromatic compounds having a phenolic hydroxyl group include catechol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol, dicyclopentadienyldiphenol, and phenol novolac.
  • an ester compound represented by the general formula (2) according to the present invention can also be used.
  • the active ester curing agents listed above may be used alone or in any combination and ratio of two or more.
  • the active ester curing agent is preferably used so that the equivalent ratio of the active ester group in the curing agent to the epoxy group in the epoxy resin used in the curable composition is in the range of 0.2 to 2.0.
  • Curing agents that can be used in the curable composition of the present invention include, for example, amine-based curing agents (excluding tertiary amines), acid anhydride-based curing agents, tertiary amines, organic phosphines, phosphonium salts, tetraphenylboron salts, organic acid dihydrazides, boron halide amine complexes, polymercaptan-based curing agents, isocyanate-based curing agents, blocked isocyanate-based curing agents, etc.
  • amine-based curing agents excluding tertiary amines
  • acid anhydride-based curing agents tertiary amines
  • organic phosphines organic phosphines
  • phosphonium salts phosphonium salts
  • tetraphenylboron salts organic acid dihydrazides
  • boron halide amine complexes polymercaptan-based curing agents
  • curing agents listed above may be used alone or in any combination and ratio of two or more.
  • examples of the curing agent that can be used when a compound having a radical polymerizable group is used include ionic catalysts such as imidazoles, tertiary amines, quaternary ammonium salts, boron trifluoride amine complexes, organophosphines, and organophosphonium salts; organic peroxides such as di-t-butyl peroxide, dilauroyl peroxide, dibenzoyl peroxide, dicumyl peroxide, and t-butyl peroxybenzoate; and radical polymerization initiators such as hydroperoxides and azoisobutyronitrile.
  • the amount of the other compound in the total epoxy resin component as a solid content is preferably 1% by weight or more, more preferably 5% by weight or more, and even more preferably 10% by weight or more, while it is preferably 99% by weight or less, more preferably 95% by weight or less, and even more preferably 90% by weight or less.
  • the ratio of the other compound be equal to or more than the above lower limit, the effect of improving physical properties by blending the other compound can be sufficiently obtained.
  • the ratio of the other compound be equal to or less than the above upper limit, the effect of the epoxy resin of the present invention is sufficiently exhibited, which is preferable from the viewpoint of obtaining film formability.
  • the curable composition of the present invention may be diluted by further blending a solvent in order to appropriately adjust the viscosity of the curable composition when handling it for forming a coating film.
  • the solvent is used to ensure the handleability and workability in molding the curable composition, and there is no particular limit to the amount of the solvent used.
  • Solvents that may be contained in the curable composition of the present invention include, for example, ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, cyclohexanone, etc., esters such as ethyl acetate, etc., ethers such as ethylene glycol monomethyl ether, amides such as N,N-dimethylformamide, N,N-dimethylacetamide, etc., alcohols such as methanol, ethanol, etc., alkanes such as hexane, cyclohexane, etc., aromatics such as toluene, xylene, etc.
  • ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, cyclohexanone, etc.
  • esters such as ethyl acetate, etc.
  • ethers such as ethylene glycol monomethyl
  • the cured product obtained by curing the curable composition of the present invention has excellent dielectric properties and heat resistance.
  • the term "curing” used here means intentionally curing the epoxy resin composition by heat and/or light, and the degree of curing may be controlled depending on the desired physical properties and applications.
  • the degree of progress may be completely cured or semi-cured, and is not particularly limited, but the reaction rate of the curing reaction is usually 5 to 95%.
  • the curing method of the curable composition of the present invention varies depending on the components and their amounts in the curable composition, but typically includes heating conditions of 80 to 280° C. for 60 to 360 minutes. This heating is preferably performed in two stages, with a primary heating at 80 to 160° C. for 10 to 90 minutes and a secondary heating at 120 to 200° C. for 60 to 150 minutes, and in a compounding system in which the glass transition temperature (Tg) exceeds the temperature of the secondary heating, it is preferable to further perform a tertiary heating at 150 to 280° C. for 60 to 120 minutes. Performing the secondary and tertiary heating in this manner is preferable from the viewpoint of reducing poor curing and residual solvent.
  • the curable composition contains a solvent
  • most of the solvent is usually removed by a technique such as heating, reducing pressure, or air drying, but 5% by mass or less of the solvent may remain in the semi-cured resin product.
  • the epoxy resin obtained by reacting the ester compound represented by the general formula (1) according to the present invention has excellent film-forming properties, and is therefore applicable to various fields such as adhesives, paints, civil engineering and construction materials, and insulating materials for electric and electronic parts, and is particularly useful as insulating casting, laminating materials, sealing materials, etc. in the electric and electronic fields.
  • Examples of applications of the epoxy resin obtained by reacting the ester compound represented by general formula (1) according to the present invention, and the curable composition of the present invention and its cured product include film-like adhesives, liquid adhesives, composite materials, paints, civil engineering and building materials, insulating materials for electric and electronic parts, multilayer printed wiring boards, laminates for electric and electronic circuits such as capacitors, semiconductor encapsulating materials, underfill materials, interchip fills for 3D-LSI, insulating sheets, prepregs, heat dissipation substrates, insulating castings, and the like, but are not limited to these.
  • the curable composition of the present invention can be suitably used for the application of laminates for electric and electronic circuits.
  • laminated plate for electric and electronic circuits refers to a laminate in which a layer containing the curable composition of the present invention and a conductive metal layer are laminated, and is used as a concept including, for example, a capacitor, even if it is not an electric or electronic circuit, as long as the layer containing the curable composition of the present invention and a conductive metal layer are laminated.
  • layers consisting of two or more types of curable compositions may be formed in the laminate for electric and electronic circuits, and it is sufficient that the curable composition of the present invention is used in at least one layer.
  • two or more types of conductive metal layers may be formed.
  • the layer made of the curable composition usually has a thickness of about 10 to 200 ⁇ m, and the conductive metal layer usually has a thickness of about 0.2 to 70 ⁇ m.
  • the conductive metal in the laminate for electric/electronic circuits examples include metals such as copper and aluminum, and alloys containing these metals.
  • the conductive metal layer of the laminate for electric/electronic circuits may be a metal foil of these metals, or a metal layer formed by plating or sputtering.
  • the laminate for electric/electronic circuits of the present invention can be produced, for example, by the following method.
  • a nonwoven fabric, cloth, or the like using inorganic and/or organic fiber materials such as glass fiber, polyester fiber, aramid fiber, cellulose, nanofiber cellulose, etc. is impregnated with the curable composition of the present invention to form a prepreg, and a conductive metal layer is provided by conductive metal foil and/or plating, after which a circuit is formed using a photoresist or the like, and the required number of such layers are stacked to form a laminate.
  • the prepreg of (1) above is used as a core material, and a layer of a curable composition and a conductive metal layer are laminated on one or both sides of the core material.
  • the layer of the curable composition may contain organic and/or inorganic fillers.
  • a laminate for electric/electronic circuits is produced by alternately laminating layers of a curable composition and conductive metal layers without using a core material. According to the present invention, it is possible to provide a cured product having excellent heat resistance and dielectric properties.
  • the curable composition of the present invention can be applied in various fields, such as film-like adhesives, liquid adhesives, composite materials, paints, civil engineering and building materials, insulating materials for electric and electronic components, multilayer printed wiring boards, laminates for electric and electronic circuits such as capacitors, semiconductor encapsulation materials, underfill materials, interchip fills for 3D-LSIs, insulating sheets, prepregs, heat dissipation substrates, and insulating casting, and is particularly useful as insulating casting, laminate materials, encapsulation materials, and the like in the electric and electronic fields.
  • Measurement device High-performance liquid chromatography analyzer Prominence UFLC (manufactured by Shimadzu Corporation) Pump: LC-20AD Column oven: CTO-20A Detector: SPD-20A Column: HALO-C18 (inner diameter 3 mm, length 75 mm) Oven temperature: 50°C Flow rate: 0.7 mL/min.
  • Mobile phase (A) 0.1% by volume acetic acid aqueous solution, (B) acetonitrile Gradient conditions: (A) Volume % (time from start of analysis) 30% (2.0 min.) ⁇ 100% (15.0 min.) ⁇ 100% (18.0 min.) Sample injection volume: 7 ⁇ L Detection wavelength: 254 nm 2.
  • Measurement conditions 3-point bending Measurement temperature: 30 to 310°C Measurement frequency: 1.0 (Hz) Sample dimensions: (60mm x 15mm x 2mm) Heating rate: 1.0° C./min. 4. Evaluation of Dielectric Properties The films (sample size: width 1.5 mm, length 8.0 mm) prepared in the examples and comparative examples were measured for relative dielectric constant and dielectric loss tangent using the following device (sample size: width 1.5 mm, length 8.0 mm).
  • Example 1 Synthesis of ester compound (p-151) represented by the following chemical formula 1-1)
  • a 1000 mL four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a dropping funnel was charged with 465 g (1.50 moles) of bisphenol TMC and 352 g of acetic anhydride, and the inside of the reaction vessel was replaced with nitrogen, and the temperature of the mixed solution was set to 130°C. Then, the mixture was stirred at 130°C for 6 hours.
  • the target compound thus obtained had a solubility of 20 to 40% by weight in each of the solutions in methyl ethyl ketone, cyclohexanone, and N-methylpyrrolidone, and a solubility of 10 to 20% by weight in each of the solutions in toluene, propylene glycol monomethyl ether acetate, and ethyl acetate, confirming that the target compound had excellent solvent solubility.
  • Example 2 Synthesis of ester compound (p-28) represented by the following chemical formula 1-2
  • 70 g (0.26 mol) of diacetyl biphenol, 72 g of furan carboxylic acid, 1.4 g of 4-dimethylaminopyridine, and 431 g of diphenyl ether were charged into a 1000 mL four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a dropping funnel, and the inside of the reaction vessel was replaced with nitrogen, and the temperature of the mixed solution was set to 210°C.
  • the mixture was stirred at 210°C for 4 hours while distilling out of the system a liquid containing acetic acid and the solvent diphenyl ether, etc., which were generated as the reaction proceeded, under reduced pressure conditions.
  • the pressure during distillation was gradually reduced, and finally set to 25.0 kPa.
  • the composition of the reaction solution was analyzed by UFLC using the above analytical method, and the proportion of the target compound present in the reaction solution was 69 area %. After the reaction was completed, the mixture was cooled to 30°C to precipitate crystals.
  • the obtained slurry containing the target compound was subjected to solid-liquid separation by centrifugal filtration, and the obtained crystals containing the solvent were dried at 80°C and 2.0 kPa to obtain 81 g of the target compound (1-2) (purity: 99.7%).
  • DSC differential scanning calorimetry
  • the target compound was a crystal having a maximum endothermic peak temperature of 240.0°C.
  • the DSC data is shown in Figure 2. From the results of 1 H-NMR analysis, it was confirmed that the target compound having the above structure was obtained.
  • Example 3 Synthesis of ester compound (p-148) represented by the following chemical formula 1-3
  • 4,4'-dihydroxy-2,2',3,3',5,5'-hexamethylbiphenyl was acetylated to synthesize 4,4'-diacetoxy-2,2',3,3',5,5'-hexamethylbiphenyl, and then 204 g (0.58 moles) of 4,4'-diacetoxy-2,2',3,3',5,5'-hexamethylbiphenyl was charged into a 2000 mL four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a dropping funnel, and after replacing the atmosphere in the reaction vessel with nitrogen, the temperature of the mixed solution was set to 220°C.
  • the mixture was stirred at 220°C for 14 hours while distilling out of the system a liquid containing acetic acid and the solvent diphenyl ether produced as the reaction proceeded.
  • the ratio of the target compound present in the reaction solution was 70 area %.
  • the produced acetic acid, diphenyl ether, and furan carboxylic acid were removed by vacuum distillation under the condition of 220 ° C. The pressure during distillation was gradually reduced to 5.0 kPa. After cooling the diphenyl ether solution containing the target compound after concentration, 88 g of isopropanol and 149 g of diphenyl ether were added.
  • the obtained slurry containing the target compound was subjected to solid-liquid separation by centrifugal filtration, and the obtained crystals containing the solvent were dried at 60 ° C. and 2.0 kPa to obtain 233 g of the target compound (purity: 99.4%).
  • the target compound was a crystal with a maximum endothermic peak temperature of 237.7 ° C. as a result of differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • Example 4 10.0 g of the compound (1-1) synthesized in Example 1, 10.1 g of a dicyclopentadiene type epoxy resin (XD-1000, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 251 g/eq.), 0.2 g of 4-dimethylaminopyridine, and 16.2 g of methyl ethyl ketone were charged into a 100 mL beaker, heated at 70°C, and dissolved. The solution was cast onto a release film and air-dried at room temperature. After that, the mixture was dried in a vacuum dryer at 80°C and 1.5 kPa, and then crushed to obtain a composition powder containing the compound (1-1) and an epoxy resin.
  • a dicyclopentadiene type epoxy resin (XD-1000, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 251 g/eq.)
  • 4-dimethylaminopyridine 4-dimethylaminopyridine
  • composition powder was packed into a silicone resin mold and cured at 140°C/1 hour, 150°C/1 hour, 160°C/1.5 hours, 180°C/1.5 hours, and 250°C/2 hours.
  • the glass transition point (Tg) of the cured product obtained by the above analysis method was measured and found to be 250.0°C.
  • Example 5 A mixture of 5.1 g of the compound (1-1) synthesized in Example 1 and 5.0 g of 1,1-bis(4-acetoxyphenyl)-3,3,5-trimethylcyclohexane synthesized in Example 1, 11.4 g of dicyclopentadiene type epoxy resin (XD-1000, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 251 g/eq.), 0.2 g of 4-dimethylaminopyridine, and 11.1 g of methyl ethyl ketone were charged in a 100 mL beaker and dissolved by heating at 70°C. The solution was cast on a release film and air-dried at room temperature.
  • dicyclopentadiene type epoxy resin XD-1000, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 251 g/eq.
  • 4-dimethylaminopyridine 4-dimethylaminopyridine
  • composition powder containing the compound (1-1), 1,1-bis(4-acetoxyphenyl)-3,3,5-trimethylcyclohexane, and an epoxy resin.
  • the composition powder was packed into a silicone resin mold and cured at 140° C./1 hour, 150° C./1 hour, 160° C./1.5 hours, and 180° C./1.5 hours.
  • the glass transition temperature (Tg) of the cured product obtained was measured by the above-mentioned analytical method and was found to be 206.3° C. It was clear from Examples 4 and 5 that the heat resistance was higher when the proportion of the compound represented by general formula (1) was higher.
  • Example 6 20.0 g of the compound (1-1) synthesized in Example 1, 16.0 g of orthocresol novolac epoxy resin (manufactured by DIC Corporation: trade name "Epiclon N-673"), and 40.0 g of methyl ethyl ketone were charged into a 100 mL beaker and stirred to dissolve. 0.72 g of 4-dimethylaminopyridine was added to the solution and further stirred to dissolve 4-dimethylaminopyridine. After complete dissolution, the solution was transferred to a tray and dried overnight in a draft, and then dried in a vacuum dryer at 60°C and 1.5 kPa for 5 hours. The obtained composition was then added to a mold ( ⁇ 100 mm press mold) and heated in a heat press tester at 3 MPa under conditions of 160°C/2 hours and 180°C/2 hours to obtain a cured product.
  • orthocresol novolac epoxy resin manufactured by DIC Corporation: trade name "Epiclon N-673”
  • the mixture was dried in a vacuum dryer at 60°C and 1.5 kPa for 5 hours.
  • the resulting composition was then added to a mold ( ⁇ 100 mm press mold) and heated in a heat press tester at 3 MPa under the conditions of 100°C/1 hour and 130°C/2 hours.
  • the cured product was then heated in a hot air circulation oven under the conditions of 140°C/2 hours, 150°C/2 hours, 160°C/2 hours, and 180°C/2 hours to obtain a cured product.
  • Tg glass transition temperature
  • dielectric properties of the cured products obtained in Example 6 and Comparative Example 1 were evaluated by the above-mentioned analytical methods. The results are summarized in Table 1.
  • the epoxy resin cured product using the compound of Example 1, which is the compound of the present invention, as a curing agent has a high glass transition temperature and exhibits high heat resistance. It was also revealed that it exhibits excellent dielectric properties.
  • the ester compound of the present invention is blended with an epoxy resin, and the cured product obtained by curing the epoxy resin has excellent heat resistance and dielectric properties. It is presumed that the ester compound represented by the general formula (1) reacts with the epoxy resin as a curing agent and esterifies the secondary hydroxyl group generated by the reaction of the epoxy resin with the curing agent, thereby suppressing polarization of the cured product and exhibiting excellent dielectric properties.
  • the epoxy resin composition containing the ester compound of the present invention is applicable in various fields such as adhesives, coating materials, civil engineering and construction materials, and insulating materials for electric and electronic parts, and is particularly useful as insulating casting materials, laminating materials, sealing materials, and the like in the electric and electronic fields.
  • Examples of applications of the ester compound of the present invention and the epoxy resin composition containing the same include multilayer printed wiring boards, laminates for electric/electronic circuits such as capacitors, adhesives such as film-like adhesives and liquid adhesives, semiconductor encapsulating materials, underfill materials, interchip fills for 3D-LSIs, insulating sheets, prepregs, and heat dissipation substrates, but are not limited thereto.

Landscapes

  • Epoxy Resins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention addresses the problem of providing a curing agent that exhibits favorable handling properties and that imparts a cured product excelling in heat resistance and dielectric properties. As a solution, an ester compound represented by general formula (3) is provided. [Chemical formula 1] (In general formula (3), each R2 independently indicates a single bond or a C1-10 divalent hydrocarbon group, each R3 independently indicates a hydrogen atom or a C1-6 alkyl group, and Y indicates a divalent group represented by general formula (3a) or general formula (3b).) [Chemical formula 2] (In general formulas (3a) and (3b), each R1 independently indicates a C1-6 alkyl group or a C6-12 aryl group, and each * indicates a bond position. In general formula (3a), each m independently indicates an integer of 1-4. In general formula (3b), each n independently indicates 0 or an integer of 1-4, and Z indicates a C7-20 cycloalkylidene group.)

Description

エステル化合物、樹脂原料用エステル化合物組成物Ester compound, ester compound composition for resin raw material
 本発明は、エステル化合物、並びに樹脂原料用エステル化合物組成物に関する。詳しくは、結合基の両末端にフラン環を有するエステル化合物や、それを含有する樹脂原料用エステル化合物組成物に関する。 The present invention relates to an ester compound and an ester compound composition for use as a resin raw material. More specifically, the present invention relates to an ester compound having a furan ring at both ends of a bonding group, and an ester compound composition for use as a resin raw material that contains the ester compound.
 エポキシ樹脂は、耐熱性、接着性、耐水性、機械的強度及び電気的特性に優れていることから、接着剤、塗料、複合材料、土木建築用材料、電気・電子部品の絶縁材料等、様々な分野で使用されている。特に、電気・電子分野では、絶縁注型、積層材料、封止材料等において幅広く使用されている。
 電気・電子部品の材料となるエポキシ樹脂に要求される重要な性能として高耐熱性、低CTE、低誘電率、低誘電正接、低吸湿性等が挙げられる。また高度に集積化された半導体材料においては、近年、高多層化・絶縁層の薄型化・構造の複雑化が進んでおり、先に挙げた特性のみならず、溶剤溶解性等の様々な特性とのバランスが求められる。最近では、エポキシ基と硬化剤との反応で生成する2級水酸基をエステル化することによって分極を抑え、低吸湿性や誘電特性を改良しようとする技術が報告されている。
 特許文献1には、エポキシ樹脂の2級水酸基を後工程でエステル化することによって得た熱可塑性樹脂を用い、そこへ熱硬化性樹脂を配合することによって、低吸湿性、誘電特性を保ちつつ導体層との密着性を向上できる熱硬化性組成物が開示されているが耐熱性が不十分である。
Epoxy resins have excellent heat resistance, adhesiveness, water resistance, mechanical strength and electrical properties, and are therefore used in a variety of fields, including adhesives, paints, composite materials, civil engineering and construction materials, insulating materials for electric and electronic parts, etc. In particular, in the electric and electronic field, they are widely used in insulating casting, laminating materials, sealing materials, etc.
Important properties required for epoxy resins, which are materials for electric and electronic components, include high heat resistance, low CTE, low dielectric constant, low dielectric loss tangent, low moisture absorption, etc. In addition, in highly integrated semiconductor materials, in recent years, there has been a trend toward high multi-layering, thinner insulating layers, and more complex structures, and a balance is required not only with the above-mentioned properties, but also with various other properties such as solvent solubility. Recently, a technology has been reported that aims to suppress polarization and improve low moisture absorption and dielectric properties by esterifying secondary hydroxyl groups generated by the reaction of epoxy groups with curing agents.
Patent Document 1 discloses a thermosetting composition that uses a thermoplastic resin obtained by esterifying the secondary hydroxyl groups of an epoxy resin in a post-process and blends a thermosetting resin therein, thereby improving adhesion to a conductor layer while maintaining low moisture absorption and dielectric properties; however, the heat resistance of the composition is insufficient.
国際公開第2005/095517号International Publication No. 2005/095517
 本発明は、上記従来技術に鑑み、溶剤溶解性などの良好な取り扱い性を有し、耐熱性及び誘電特性に優れた硬化物を与える硬化剤を提供することを課題とする。 In view of the above-mentioned conventional techniques, the present invention aims to provide a curing agent that has good handling properties such as solvent solubility, and gives a cured product with excellent heat resistance and dielectric properties.
 本発明者は、上述の課題解決のために鋭意検討した結果、特定の構造を有するビスフェノール化合物とフラン環を有するカルボン酸とのエステル化合物は、メチルエチルケトンなどの溶媒に溶解して取り扱い性が良好であること、また、それを硬化剤として用いることにより、エポキシ樹脂と反応をすることにより鎖連結をすること、そして、鎖連結により硬化すること、さらに、2級水酸基をエステル化することにより得られる硬化物が、分極が抑えられ、優れた誘電特性と耐熱性を有することを見出し、本発明を完成した。 As a result of extensive research into solving the above problems, the inventors discovered that an ester compound of a bisphenol compound having a specific structure and a carboxylic acid having a furan ring dissolves in a solvent such as methyl ethyl ketone and is easy to handle, that using this as a curing agent causes a chain linkage by reacting with an epoxy resin, and that the chain linkage causes curing, and that the cured product obtained by esterifying the secondary hydroxyl groups has reduced polarization and has excellent dielectric properties and heat resistance, thus completing the present invention.
 本発明は以下のとおりである。
1.一般式(3)で表されるエステル化合物。
Figure JPOXMLDOC01-appb-C000006
(式中、Rは各々独立して単結合又は炭素原子数1~10の2価の炭化水素基を示し、Rは各々独立して水素原子又は炭素原子数1~6のアルキル基を示し、Yは一般式(3a)又は一般式(3b)で表される2価の基を示す。)
Figure JPOXMLDOC01-appb-C000007
(一般式(3a)及び(3b)中、Rは各々独立して炭素原子数1~6のアルキル基又は炭素原子数6~12のアリール基を示し、*はそれぞれ結合位置を示す。一般式(3a)中、mは各々独立して1~4の整数を示す。一般式(3b)中、nは各々独立して0又は1~4の整数を示し、Zは炭素原子数7~20のシクロアルキリデン基を示す。)
2.前記一般式(3)で表されるエステル化合物のRが共に単結合である、1.に記載のエステル化合物。
3.さらに前記一般式(3)で表されるエステル化合物のRが共に水素原子である、2.に記載のエステル化合物。
4.前記一般式(3)で表されるエステル化合物が、化合物(p-139)、(p-142)、(p-145)、(p-148)、(p-151)、(p-154)又は(p-172)である、3.に記載のエステル化合物。
Figure JPOXMLDOC01-appb-C000008
5.4.に記載の化合物(p-148)のエステル化合物の結晶。
6.示差走査熱量分析による最大吸熱ピーク温度が234~240℃の範囲にある、5.に記載の化合物(p-148)のエステル化合物の結晶。
7.4.に記載の化合物(p-151)のエステル化合物の結晶。
8.示差走査熱量分析による最大吸熱ピーク温度が180~188℃の範囲にある、7.に記載の化合物(p-151)のエステル化合物の結晶。
9.1.に記載の一般式(3)で表されるエステル化合物及び、一般式(2)で表されるエステル化合物を含む、樹脂原料用エステル化合物組成物。
Figure JPOXMLDOC01-appb-C000009
(式中、Rは各々独立して炭素原子数1~6のアルキル基又は炭素原子数6~12のアリール基を示し、Rは各々独立して炭素原子数1~20の1価の炭化水素基を示し、Xは単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基又は一般式(1a)、(1b)若しくは(1c)で表される2価の基を示し、nは各々独立して0又は1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000010
(一般式(1a)、(1b)及び(1c)中、R及びRは各々独立して水素原子、炭素原子数1~10のアルキル基、炭素原子数1~10のハロゲン化アルキル基又は炭素数6~12のアリール基を示し、R及びRはそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、Ar及びArは炭素数6~12のアリール基を示し、*はそれぞれ結合位置を示す。)
10.前記一般式(3)で表されるエステル化合物100重量部に対して、前記一般式(2)で表されるエステル化合物を0.1~400重量部含有する、9.に記載の樹脂原料用エステル化合物組成物。
11.1.に記載の一般式(3)で表されるエステル化合物と、芳香族ジグリシジルエーテル化合物、芳香族ジヒドロキシ化合物とエピハロヒドリンを含む混合物、及び、芳香族ジヒドロキシ化合物とエピハロヒドリンを重合させてなるエポキシ基を有するフェノキシ樹脂、より選択されるいずれか1種を反応させてなるエポキシ樹脂。
The present invention is as follows.
1. An ester compound represented by general formula (3):
Figure JPOXMLDOC01-appb-C000006
(In the formula, each R2 independently represents a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms, each R3 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and Y represents a divalent group represented by general formula (3a) or general formula (3b).
Figure JPOXMLDOC01-appb-C000007
(In general formulas (3a) and (3b), R 1 's each independently represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and * represents a bonding position. In general formula (3a), m's each independently represent an integer of 1 to 4. In general formula (3b), n's each independently represent 0 or an integer of 1 to 4, and Z's each independently represent a cycloalkylidene group having 7 to 20 carbon atoms.)
2. The ester compound according to 1., wherein R 2 in the ester compound represented by the general formula (3) is both a single bond.
3. The ester compound according to 2., wherein both R 3 in the ester compound represented by the general formula (3) are hydrogen atoms.
4. The ester compound according to 3., wherein the ester compound represented by the general formula (3) is compound (p-139), (p-142), (p-145), (p-148), (p-151), (p-154) or (p-172).
Figure JPOXMLDOC01-appb-C000008
5. A crystal of the ester compound of the compound (p-148) described in 4.
6. A crystal of the ester compound of the compound (p-148) described in 5., which has a maximum endothermic peak temperature in the range of 234 to 240° C. as determined by differential scanning calorimetry.
7.4. A crystal of the ester compound of the compound (p-151) described in Item 7.4.
8. A crystal of the ester compound of the compound (p-151) described in 7., which has a maximum endothermic peak temperature in the range of 180 to 188° C. as determined by differential scanning calorimetry.
9. An ester compound composition for a resin raw material, comprising an ester compound represented by the general formula (3) according to 9.1 and an ester compound represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000009
(In the formula, each R 1 independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, each R 6 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, each X independently represents a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, or a divalent group represented by general formula (1a), (1b), or (1c), and each n independently represents 0 or an integer of 1 to 4.)
Figure JPOXMLDOC01-appb-C000010
(In general formulas (1a), (1b) and (1c), R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms; R 4 and R 5 may be bonded to each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole; Ar 1 and Ar 2 each represent an aryl group having 6 to 12 carbon atoms; and * each indicates a bonding position.)
10. The ester compound composition for a resin raw material according to 9., which contains 0.1 to 400 parts by weight of the ester compound represented by the general formula (2) based on 100 parts by weight of the ester compound represented by the general formula (3).
Epoxy resin obtained by reacting an ester compound represented by general formula (3) described in 1. with any one selected from an aromatic diglycidyl ether compound, a mixture containing an aromatic dihydroxy compound and epihalohydrin, and a phenoxy resin having an epoxy group obtained by polymerizing an aromatic dihydroxy compound and epihalohydrin.
 本発明の特定のビスフェノールがフラン環を有するカルボン酸とエステル結合した一般式(3)で表されるエステル化合物は、メチルエチルケトンなどの溶媒に溶解するため取り扱い性が良好であること、また、それを硬化剤として用いることにより、エポキシ樹脂と反応して、鎖連結をして硬化できること、さらに、2級水酸基をエステル化することにより、分極が抑えられ、優れた誘電特性と耐熱性を有する硬化物を提供することができる。
 このため、本発明の一般式(3)で表されるエステル化合物は、接着剤、複合材料、塗料、土木用建築材料、電気・電子部品の絶縁材料等、様々な分野に適用可能であり、特に電気・電子分野における絶縁注型、積層材料、封止材料等として有用な硬化物を得ることができる。
The ester compound of the present invention, represented by general formula (3) in which a specific bisphenol of the present invention is ester-bonded to a carboxylic acid having a furan ring, is soluble in a solvent such as methyl ethyl ketone and therefore has good handleability. In addition, when used as a curing agent, it reacts with an epoxy resin to form a chain linkage and cure. Furthermore, by esterifying the secondary hydroxyl group, polarization is suppressed, and a cured product having excellent dielectric properties and heat resistance can be provided.
For this reason, the ester compound represented by the general formula (3) of the present invention can be applied in various fields such as adhesives, composite materials, paints, civil engineering and building materials, and insulating materials for electric and electronic parts, and can give cured products that are useful as insulating castings, laminating materials, sealing materials, etc. in the electric and electronic fields.
実施例1で得られたエステル化合物(1-1)(化合物(p-151))の示差走査熱量測定(DSC)の曲線を示す図である。FIG. 1 is a diagram showing a differential scanning calorimetry (DSC) curve of the ester compound (1-1) (compound (p-151)) obtained in Example 1. 実施例2で得られたエステル化合物(1-2)(化合物(p-28))の示差走査熱量測定(DSC)の曲線を示す図である。FIG. 2 is a diagram showing a differential scanning calorimetry (DSC) curve of the ester compound (1-2) (compound (p-28)) obtained in Example 2. 実施例3で得られたエステル化合物(1-3)(化合物(p-148))の示差走査熱量測定(DSC)の曲線を示す図である。FIG. 1 shows a differential scanning calorimetry (DSC) curve of the ester compound (1-3) (compound (p-148)) obtained in Example 3.
<硬化性組成物>
 本発明の硬化性組成物は、一般式(1)で表されるエステル化合物と、熱硬化性化合物及び/又はラジカル重合性置換基を有する化合物を含有する。
Figure JPOXMLDOC01-appb-C000011
(式中、Rは各々独立して炭素原子数1~6のアルキル基又は炭素原子数6~12のアリール基を示し、Rは各々独立して単結合又は炭素原子数1~10の2価の炭化水素基を示し、Rは各々独立して水素原子又は炭素原子数1~6のアルキル基を示し、Xは単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基又は一般式(1a)、(1b)若しくは(1c)で表される2価の基を示し、nは各々独立して0又は1~4の整数を示す。)
Figure JPOXMLDOC01-appb-C000012
(一般式(1a)、(1b)及び(1c)中、R及びRは各々独立して水素原子、炭素原子数1~10のアルキル基、炭素原子数1~10のハロゲン化アルキル基又は炭素数6~12のアリール基を示し、R及びRはそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、Ar及びArは炭素数6~12のアリール基を示し、*はそれぞれ結合位置を示す。)
 一般式(1)で表されるエステル化合物を含有することにより、硬化性組成物を硬化して得られる硬化物は優れた耐熱性を有する。
 その中でも、特に熱硬化性化合物のエポキシ樹脂と硬化剤との反応で生成する2級水酸基について、一般式(1)で表されるエステル化合物は硬化剤としてエポキシ樹脂と反応し、かつ2級水酸基をエステル化することによって、得られる硬化物は、分極が抑えられ、優れた誘電特性を有する。そのため、本発明の硬化性組成物においてエポキシ樹脂を含む態様は、得られる硬化物がかかる特徴を有することから有用であり、好ましい。また、このことから、一般式(1)で表されるエステル化合物をエポキシ樹脂の硬化剤として用いることは、得られる硬化物が上記特徴を有するため、好ましい。
 一般式(1)で表されるエステル化合物はフラン環を有するため、ラジカル重合性置換基を有する化合物とも硬化反応をして硬化物を得ることができる。
 一般式(1)で表されるエステル化合物は、メチルエチルケトン、シクロヘキサノン、N-メチルピロリドン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等の溶剤、特に、半導体などの電子部品の製造に汎用される溶剤の1つであるメチルエチルケトンへの溶解性に優れるため、取り扱い性に優れる。
<Curable Composition>
The curable composition of the present invention contains an ester compound represented by general formula (1) and a thermosetting compound and/or a compound having a radically polymerizable substituent.
Figure JPOXMLDOC01-appb-C000011
(In the formula, each R 1 independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms; each R 2 independently represents a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms; each R 3 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; each X independently represents a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, or a divalent group represented by general formula (1a), (1b), or (1c); and each n independently represents 0 or an integer of 1 to 4.)
Figure JPOXMLDOC01-appb-C000012
(In general formulas (1a), (1b) and (1c), R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms; R 4 and R 5 may be bonded to each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole; Ar 1 and Ar 2 each represent an aryl group having 6 to 12 carbon atoms; and * each indicates a bonding position.)
By containing the ester compound represented by general formula (1), the cured product obtained by curing the curable composition has excellent heat resistance.
Among them, the ester compound represented by the general formula (1) reacts with the epoxy resin as a curing agent, particularly with respect to the secondary hydroxyl group generated by the reaction of the epoxy resin of the thermosetting compound with the curing agent, and by esterifying the secondary hydroxyl group, the resulting cured product has suppressed polarization and excellent dielectric properties. Therefore, the embodiment containing the epoxy resin in the curable composition of the present invention is useful and preferable because the resulting cured product has such characteristics. Also, for this reason, it is preferable to use the ester compound represented by the general formula (1) as a curing agent for the epoxy resin, because the resulting cured product has the above-mentioned characteristics.
Since the ester compound represented by the general formula (1) has a furan ring, it can also undergo a curing reaction with a compound having a radically polymerizable substituent to give a cured product.
The ester compound represented by the general formula (1) has excellent solubility in solvents such as methyl ethyl ketone, cyclohexanone, N-methylpyrrolidone, toluene, propylene glycol monomethyl ether acetate, and ethyl acetate, in particular, in methyl ethyl ketone, which is one of the solvents commonly used in the production of electronic components such as semiconductors, and therefore has excellent handleability.
(一般式(1)で表されるエステル化合物)
 一般式(1)中のRは、各々独立して炭素原子数1~4のアルキル基又はフェニル基であることが好ましく、各々独立してメチル基又はフェニル基であることがより好ましく、メチル基であることが特に好ましい。
 一般式(1)中のRは、各々独立して単結合又は炭素原子数1~10の2価の炭化水素基である。2価の炭化水素基である場合、具体的には、例えば、メチレン基、エチレン基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、シクロヘキサン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基などの炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基若しくは環状アルカンを含むアルキレン基、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、シクロペンチリデン基、シクロヘキシリデン基などの炭素原子数1~10のアルキリデン基、フェニレン基や下記式で表される基などのベンゼン環を含む炭素原子数1~10の2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000013
(式中、*は結合位置を示す。)
 これらの中でもRは、各々独立して単結合又は炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基、環状アルカンを含むアルキレン基又は炭素原子数1~10のアルキリデン基であることが好ましく、各々独立して単結合又は炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基若しくは環状アルカンを含むアルキレン基がより好ましく、各々独立して単結合又は炭素原子数1~6の直鎖状又は分岐鎖状のアルキレン基若しくは環状アルカンを含むアルキレン基がさらに好ましく、共に単結合が特に好ましい。R2が共に単結合である一般式(1)で表されるエステル化合物は、バイオマス由来の原料より得られることから、バイオマス率が向上した硬化性組成物が得られる点においても好適である。
 一般式(1)中のRは、各々独立して水素原子又は炭素原子数1~4のアルキル基が好ましく、各々独立して水素原子又はメチル基がより好ましく、共に水素原子が特に好ましい。
(Ester compound represented by general formula (1))
In general formula (1), R 1 's each independently represent preferably an alkyl group having 1 to 4 carbon atoms or a phenyl group, more preferably a methyl group or a phenyl group, and particularly preferably a methyl group.
R 2 in general formula (1) is independently a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms. In the case of a divalent hydrocarbon group, specific examples include a linear or branched alkylene group having 1 to 10 carbon atoms or an alkylene group containing a cyclic alkane, such as a methylene group, an ethylene group, a propane-1,2-diyl group, a propane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a cyclohexane-1,3-diyl group, or a cyclohexane-1,4-diyl group; an alkylidene group having 1 to 10 carbon atoms, such as an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, a cyclopentylidene group, or a cyclohexylidene group; a phenylene group; and a divalent group having 1 to 10 carbon atoms containing a benzene ring, such as a group represented by the following formula:
Figure JPOXMLDOC01-appb-C000013
(In the formula, * indicates the bond position.)
Among these, R 2 are preferably each independently a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms, an alkylene group containing a cyclic alkane, or an alkylidene group having 1 to 10 carbon atoms, more preferably each independently a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms or an alkylene group containing a cyclic alkane, and even more preferably each independently a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms or an alkylene group containing a cyclic alkane, and particularly preferably both are single bonds. The ester compound represented by general formula (1) in which R2 are both single bonds is also suitable in that a curable composition with an improved biomass ratio can be obtained because it is obtained from a raw material derived from biomass.
In formula (1), each R 3 is preferably independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably independently a hydrogen atom or a methyl group, and particularly preferably both are a hydrogen atom.
 一般式(1)におけるXは、単結合、スルホニル基、カルボニル基又は一般式(1a)、(1b)若しくは(1c)で表される2価の基であることが好ましく、単結合又は一般式(1a)若しくは一般式(1b)で表される2価の基であることがより好ましく、単結合又は一般式(1a)で表される2価の基であることが更に好ましく、単結合又は一般式(1a)で表される2価の基のうち、R及びRはそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成している2価の基が特に好ましい。
 一般式(1)におけるXが一般式(1a)である場合のより好ましいR及びRとしては、各々独立して水素原子、炭素原子数1~6のアルキル基、炭素原子数1~6のハロゲン化アルキル基又は炭素数6~12のアリール基であり、さらに好ましくは各々独立して水素原子、炭素原子数1~4のアルキル基、トリフルオロメチル基又は炭素数6~8のアリール基であり、特に好ましくは各々独立して水素原子、炭素原子数1~4のアルキル基又はフェニル基である。
 また、R及びRはそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、R及びRとしては、この態様が更に好ましい。炭素原子数5~20のシクロアルキリデン基は、分岐鎖としてのアルキル基を含んでいてもよい。シクロアルキリデン基は炭素原子数5~15であることが好ましく、炭素原子数6~12であることがより好ましく、炭素原子数6~9であることが特に好ましい。シクロアルキリデン基としては、具体的には、例えば、シクロペンチリデン基(炭素原子数5)、シクロヘキシリデン基(炭素原子数6)、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロヘプチリデン基(炭素原子数7)、シクロドデカニリデン基(炭素原子数12)等が挙げられる。好ましくはシクロヘキシリデン基(炭素原子数6)、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロドデカニリデン基(炭素原子数12)であり、より好ましくはシクロヘキシリデン基(炭素原子数6)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロドデカニリデン基(炭素原子数12)である。
 一般式(1)におけるXが一般式(1b)である場合の好ましいAr及びArとしては、各々独立してベンゼン環、ナフタレン環であり、Ar及びArが共にベンゼン環であることがより好ましい。例えば、Ar及びArが共にベンゼン環である場合、一般式(1b)で表される基はフルオレニリデン基である。
 一般式(1)におけるXが一般式(1c)である場合、1,3-ビス(イソプロピル-2-イル)ベンゼン又は1,4-ビス(イソプロピル-2-イル)ベンゼンの2価の基であることが好ましい。
 一般式(1)におけるXと、2つのベンゼン環との結合位置は、ベンゼン環に結合する酸素原子に対して、各々独立してオルソ位又はパラ位であることが好ましく、パラ位であることがより好ましい。
 一般式(1)中のnは、各々独立して0、2又は3であることが好ましい。なお、nが1~4の整数である場合、Rはベンゼン環に結合する酸素原子に対して優先してオルソ位に結合していることが好ましい。
X in general formula (1) is preferably a single bond, a sulfonyl group, a carbonyl group, or a divalent group represented by general formula (1a), (1b), or (1c), more preferably a single bond or a divalent group represented by general formula (1a) or general formula (1b), still more preferably a single bond or a divalent group represented by general formula (1a), and among the divalent groups represented by general formula (1a), R 4 and R 5 are each bonded to each other to form a divalent group having 5 to 20 carbon atoms as a whole, particularly preferably a single bond or a divalent group represented by general formula (1a).
When X in general formula (1) is general formula (1a), more preferable R4 and R5 are each independently a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 12 carbon atoms, further preferably each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a trifluoromethyl group, or an aryl group having 6 to 8 carbon atoms, and particularly preferably each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group.
R 4 and R 5 may be bonded to each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole, and this embodiment is more preferable for R 4 and R 5. The cycloalkylidene group having 5 to 20 carbon atoms may contain an alkyl group as a branched chain. The cycloalkylidene group preferably has 5 to 15 carbon atoms, more preferably has 6 to 12 carbon atoms, and particularly preferably has 6 to 9 carbon atoms. Specific examples of the cycloalkylidene group include a cyclopentylidene group (5 carbon atoms), a cyclohexylidene group (6 carbon atoms), a 3-methylcyclohexylidene group (7 carbon atoms), a 4-methylcyclohexylidene group (7 carbon atoms), a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms), a cycloheptylidene group (7 carbon atoms), and a cyclododecanylidene group (12 carbon atoms). Preferred are a cyclohexylidene group (number of carbon atoms: 6), a 3-methylcyclohexylidene group (number of carbon atoms: 7), a 4-methylcyclohexylidene group (number of carbon atoms: 7), a 3,3,5-trimethylcyclohexylidene group (number of carbon atoms: 9), and a cyclododecanylidene group (number of carbon atoms: 12), and more preferred are a cyclohexylidene group (number of carbon atoms: 6), a 3,3,5-trimethylcyclohexylidene group (number of carbon atoms: 9), and a cyclododecanylidene group (number of carbon atoms: 12).
When X in formula (1) is formula (1b), preferred Ar 1 and Ar 2 are each independently a benzene ring or a naphthalene ring, and more preferably both Ar 1 and Ar 2 are benzene rings. For example, when both Ar 1 and Ar 2 are benzene rings, the group represented by formula (1b) is a fluorenylidene group.
When X in general formula (1) is general formula (1c), it is preferably a divalent group of 1,3-bis(isopropyl-2-yl)benzene or 1,4-bis(isopropyl-2-yl)benzene.
In general formula (1), the bonding positions of X and the two benzene rings are preferably each independently ortho- or para-positions, more preferably para-positions, with respect to the oxygen atom bonded to the benzene ring.
In the general formula (1), n is preferably each independently 0, 2, or 3. When n is an integer of 1 to 4, R1 is preferably bonded at the ortho position with respect to the oxygen atom bonded to the benzene ring.
 一般式(1)で表されるエステル化合物の具体例として、下記化学構造を有する化合物(p-1)~(p-171)を示す。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Specific examples of the ester compound represented by the general formula (1) include compounds (p-1) to (p-171) having the following chemical structures.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
<一般式(1)で表されるエステル化合物の製造方法>
 一般式(1)で表されるエステル化合物について、その製造における出発原料、製造方法について特に制限はない。例えば、下記反応式で例示するとおり、一般式(5)で表されるビスフェノール化合物、一般式(6)で表される酸無水物を反応させて、一般式(2)で表されるエステル化合物を合成するエステル化工程により一般式(2)で表されるエステル化合物を合成した後に、一般式(2)で表されるエステル化合物と一般式(8)で表されるフラン含有カルボン酸を反応させ、一般式(1)で表されるエステル化合物を得るエステル交換反応工程により一般式(1)で表されるエステル化合物を得る製造方法が挙げられる。
Figure JPOXMLDOC01-appb-C000029
(一般式(5)におけるR、X及びn及び一般式(8)におけるR及びRは、一般式(1)の定義と同じであり、一般式(6)及び一般式(7)におけるRは、後述の一般式(2)の定義と同じである。)
<Method for producing ester compound represented by general formula (1)>
There is no particular restriction on the starting material and the manufacturing method for the ester compound represented by the general formula (1). For example, as illustrated in the following reaction formula, a manufacturing method can be mentioned in which a bisphenol compound represented by the general formula (5) and an acid anhydride represented by the general formula (6) are reacted to synthesize an ester compound represented by the general formula (2) in an esterification step, and then the ester compound represented by the general formula (2) is reacted with a furan-containing carboxylic acid represented by the general formula (8) to obtain an ester compound represented by the general formula (1) in a transesterification step, as shown in the following reaction formula.
Figure JPOXMLDOC01-appb-C000029
(R 1 , X, and n in general formula (5), and R 2 and R 3 in general formula (8) are the same as those in general formula (1), and R 6 in general formulas (6) and (7) is the same as that in general formula (2) described later.)
(エステル化工程)
 上記製造方法におけるエステル化工程の反応方法は、従来公知のエステル化反応の方法を応用できる。
 一般式(5)で表されるビスフェノール化合物としては、具体的には、例えば、ビスフェノールF(ビス(2-ヒドロキシフェニル)メタン、2-ヒドロキシフェニル-4-ヒドロキシフェニルメタン、ビス(4-ヒドロキシフェニル)メタン)、ビスフェノールE(1,1-ビス(4-ヒドロキシフェニル)エタン)、ビスフェノールA(2,2-ビス(4-ヒドロキシフェニル)プロパン)、ビスフェノールC(2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン)、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、4,4’-ジヒドロキシビフェニル、4,4’-ジヒドロキシ-3,3’-ジメチルビフェニル、4,4’-ジヒドロキシ-3,3’ ,5,5’-テトラメチルビフェニル、4,4’-ジヒドロキシ-2,2’,3,3’,5,5’-ヘキサメチルビフェニル、ビス(4-ヒドロキシフェニル)エーテル、4,4’-ジヒドロキシベンゾフェノン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-ヒドロキシフェニル)スルフィド、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-1-ナフチルエタン、2,2-ビス(4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビスフェノールZ(1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン)、ビスフェノールTMC(1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン)、1,1-ビス(4-ヒドロキシフェニル)-3-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンが挙げられる。
 一般式(6)で表される酸無水物としては、具体的には、例えば、無水酢酸、無水安息香酸が挙げられる。一般式(6)におけるRについて、その定義及び好ましい態様については、後述の一般式(2)と同様である。
 上記製造方法において、一般式(6)で表される酸無水物の使用量としては、一般式(5)で表されるビスフェノール化合物1モルに対して2.0~10.0モルの範囲であることが好ましく、2.0~8.0モルの範囲であることがより好ましく、2.0~4.0モルの範囲であることがさらに好ましい。
 反応温度は、通常50~150℃の範囲であり、80~140℃の範囲が好ましい。反応圧力は、常圧下、減圧下の何れでもよい。
 上記エステル化工程により一般式(2)で表されるエステル化合物を製造することができる。
(Esterification step)
The reaction method in the esterification step in the above production method can be a conventionally known esterification reaction method.
Specific examples of the bisphenol compound represented by the general formula (5) include bisphenol F (bis(2-hydroxyphenyl)methane, 2-hydroxyphenyl-4-hydroxyphenylmethane, bis(4-hydroxyphenyl)methane), bisphenol E (1,1-bis(4-hydroxyphenyl)ethane), bisphenol A (2,2-bis(4-hydroxyphenyl)propane), bisphenol C (2,2-bis(4-hydroxy-3-methylphenyl)propane), 2,2-bis(4-hydroxyphenyl)-4-methylpentane, 4,4'-dihydroxybiphenyl, 4,4'-dihydroxy-3,3'-dimethylbiphenyl, 4,4'-dihydroxy-3,3',5,5'-tetramethylbiphenyl,4,4'-dihydroxy-2,2',3,3',5,5'-hexamethylbiphenyl, bis(4-hydroxyphenyl)ether, 4,4'-dihydroxybenzophenone, bis(4-hydroxyphenyl)sulfone, bis(4-hydroxyphenyl)sulfide, 1,1-bis(4-hydroxyphenyl)-1-phenylethane, 1,1-bis(4-hydroxyphenyl)-1-naphthylethan, 2,2-bis(4-hydroxyphenyl)hexafluoro Examples of suitable bisphenols include propane, bisphenol Z (1,1-bis(4-hydroxyphenyl)cyclohexane), bisphenol TMC (1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane), 1,1-bis(4-hydroxyphenyl)-3-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-4-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)cyclododecane, and 9,9-bis(4-hydroxy-3-methylphenyl)fluorene.
Specific examples of the acid anhydride represented by formula (6) include acetic anhydride and benzoic anhydride. The definition and preferred embodiments of R6 in formula (6) are the same as those of formula (2) described below.
In the above production method, the amount of the acid anhydride represented by the general formula (6) used is preferably in the range of 2.0 to 10.0 mol, more preferably in the range of 2.0 to 8.0 mol, and even more preferably in the range of 2.0 to 4.0 mol, per 1 mol of the bisphenol compound represented by the general formula (5).
The reaction temperature is usually in the range of 50 to 150° C., preferably in the range of 80 to 140° C. The reaction pressure may be either normal pressure or reduced pressure.
The ester compound represented by the general formula (2) can be produced by the above esterification step.
(一般式(2)で表されるエステル化合物)
Figure JPOXMLDOC01-appb-C000030
(式中、R、X及びnは一般式(1)の定義と同じであり、Rは各々独立して炭素原子数1~20の1価の炭化水素基を示す。)
 一般式(2)におけるR、X及びnは一般式(1)の定義と同じであり、好ましい態様も同じである。
 一般式(2)におけるRは、各々独立して炭素原子数1~10の1価の炭化水素基であることが好ましく、各々独立して炭素原子数1~6のアルキル基又はフェニル基であることがより好ましく、各々独立してメチル基又はフェニル基であることがさらに好ましく、メチル基であることが特に好ましい。
 一般式(2)におけるRの炭素原子数1~20の1価の炭化水素基として、具体的には、例えば、メチル基、エチル基、プロピル基、イソブチル基、ブチル基、ヘキシル基、オクチル基、デシル基等の鎖状の1価の炭化水素基、シクロヘキシル基等の環状の1価の炭化水素基、フェニル基、ナフチル基等の1価の芳香族炭化水素基が挙げられる。
 エステル化工程により得られた一般式(2)で表されるエステル化合物は、後述するエステル交換反応工程の原料として、エステル化反応の反応液に含まれたそのままを利用しても良いし、蒸留によりエステル化反応で生成した一般式(7)で表されるカルボン酸を除去して精製して利用しても良いし、エステル化反応液に溶媒を混合して晶析操作を行って精製して利用しても良い。
(Ester compound represented by general formula (2))
Figure JPOXMLDOC01-appb-C000030
(In the formula, R 1 , X, and n are defined as in general formula (1), and each R 6 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms.)
In formula (2), R 1 , X and n are the same as those in formula (1), and the preferred embodiments are also the same.
In general formula (2), R 6 is preferably each independently a monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably each independently an alkyl group having 1 to 6 carbon atoms or a phenyl group, further preferably each independently a methyl group or a phenyl group, and particularly preferably a methyl group.
Specific examples of the monovalent hydrocarbon group having 1 to 20 carbon atoms for R 6 in general formula (2) include linear monovalent hydrocarbon groups such as a methyl group, an ethyl group, a propyl group, an isobutyl group, a butyl group, a hexyl group, an octyl group, and a decyl group, cyclic monovalent hydrocarbon groups such as a cyclohexyl group, and monovalent aromatic hydrocarbon groups such as a phenyl group and a naphthyl group.
The ester compound represented by general formula (2) obtained by the esterification step may be used as it is contained in the reaction solution of the esterification reaction as a raw material for the transesterification reaction step described later, or may be purified by distillation to remove the carboxylic acid represented by general formula (7) produced in the esterification reaction, or may be purified by mixing a solvent with the esterification reaction solution and subjecting it to a crystallization operation for use.
(エステル交換反応工程)
 上記製造方法におけるエステル交換反応工程の反応方法は、従来公知のエステル交換反応の方法を応用できる。
 一般式(8)中のR及びRは、一般式(1)の定義と同じであり、好ましい態様や具体例も同じである。
 一般式(8)で表されるフラン含有カルボン酸としては、具体的には、例えば、2-フランカルボン酸、3-フランカルボン酸、2-メチル-3-フランカルボン酸、3-メチル-2-フランカルボン酸が挙げられる。
 一般式(8)で表されるフラン含有カルボン酸の使用量としては、一般式(2)で表されるエステル化合物1モルに対して、2.0~10.0モルの範囲であることが好ましく、2.0~8.0モルの範囲であることがより好ましく、2.0~4.0モルの範囲であることがさらに好ましい。
 一般式(2)で表されるエステル化合物と一般式(8)で表されるフラン含有カルボン酸の反応における触媒として塩基を使用することが好ましい。これらの塩基としては、具体的に、例えば、アミン塩基等の有機塩基、アルカリ金属の水酸化物、炭酸塩、炭酸水素化合物等の無機アルカリ金属化合物、アルカリ金属のアルコール類、フェノール類、有機カルボン酸との塩等の有機アルカリ金属化合物等を挙げることができる。またそれらの混合物等が挙げられるが、これらに限定されるものではない。
 反応は通常、溶媒の存在下に行われる。工業的生産時の操作性や反応速度の向上などの理由で反応に際し反応溶媒を使用することが好ましい。使用できる溶媒としては、下記反応温度において反応容器から留出せず、エステル交換反応に不活性であれば特に制限はない。具体的には、例えば、フェネトール、ブチルフェニルエーテル等のアルキルアリールエーテル類又はジフェニルエーテル、ジ-p-トリルエーテル等のジアリールエーテル類のような芳香族炭化水素エーテル系溶媒、ビフェニル、ターフェニル等の芳香族炭化水素系溶媒、ジイソプロピルナフタレン等のアルキル置換ナフタレン類、デカリン、ケロシン等の脂肪族炭化水素、テトラエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等のポリアルキレングリコールエーテル類、サームエスシリーズ(新日鐵化学社製)、KSK-OILシリーズ(綜研化学社製)、又はNeoSK-OILシリーズ(綜研化学社製)等の有機溶媒が挙げられる。また、溶媒の使用量は反応に支障なければ特に制限はないが、通常、一般式(2)で表されるエステル化合物に対し0.5~20重量倍の範囲、好ましくは1~10重量倍の範囲で用いられる。
 反応温度は、通常40~260℃の範囲で行い、80~255℃の範囲が好ましく、120~250℃の範囲がより好ましく、160~245℃の範囲がさらに好ましく、180~240℃の範囲が特に好ましい。
 反応圧力は常圧条件下で行ってもよく、また、加圧下でも、或は減圧下で行ってもよい。
 別の態様として、反応中に生成した一般式(7)で表されるカルボン酸を系外に除去する手順を含むことができる。反応溶液から生成した一般式(7)で表されるカルボン酸を除去する手順は特に制限されず、生成した一般式(7)で表されるカルボン酸を反応溶液中の溶媒系ともに蒸留することにより行うことができる。生成した一般式(7)で表されるカルボン酸は、例えばコックを備えた等圧滴下漏斗、ジムロート冷却器、ディーンスターク装置等の使用により反応系外に除去することができる。
(Transesterification reaction process)
The reaction method in the transesterification step in the above production method can be a conventionally known transesterification method.
R2 and R3 in the general formula (8) are defined the same as in the general formula (1), and preferred embodiments and specific examples are also the same.
Specific examples of the furan-containing carboxylic acid represented by the general formula (8) include 2-furan carboxylic acid, 3-furan carboxylic acid, 2-methyl-3-furan carboxylic acid, and 3-methyl-2-furan carboxylic acid.
The amount of the furan-containing carboxylic acid represented by general formula (8) used is preferably in the range of 2.0 to 10.0 mol, more preferably in the range of 2.0 to 8.0 mol, and even more preferably in the range of 2.0 to 4.0 mol, relative to 1 mol of the ester compound represented by general formula (2).
It is preferable to use a base as a catalyst in the reaction of the ester compound represented by the general formula (2) with the furan-containing carboxylic acid represented by the general formula (8). Specific examples of such bases include organic bases such as amine bases, inorganic alkali metal compounds such as alkali metal hydroxides, carbonates, and hydrogen carbonate compounds, and organic alkali metal compounds such as alkali metal alcohols, phenols, and salts with organic carboxylic acids. Mixtures thereof may also be used, but are not limited thereto.
The reaction is usually carried out in the presence of a solvent. For reasons such as improved operability and reaction rate during industrial production, it is preferable to use a reaction solvent during the reaction. The solvent that can be used is not particularly limited as long as it does not distill from the reaction vessel at the reaction temperature described below and is inactive in the transesterification reaction. Specific examples include aromatic hydrocarbon ether solvents such as alkylaryl ethers such as phenetole and butylphenyl ether, diaryl ethers such as diphenyl ether and di-p-tolyl ether, aromatic hydrocarbon solvents such as biphenyl and terphenyl, alkyl-substituted naphthalenes such as diisopropylnaphthalene, aliphatic hydrocarbons such as decalin and kerosene, polyalkylene glycol ethers such as tetraethylene glycol dimethyl ether and diethylene glycol dibutyl ether, and organic solvents such as Therm-S series (manufactured by Nippon Steel Chemical Co., Ltd.), KSK-OIL series (manufactured by Soken Chemical Industry Co., Ltd.), or NeoSK-OIL series (manufactured by Soken Chemical Industry Co., Ltd.). The amount of the solvent used is not particularly limited as long as it does not interfere with the reaction, but is usually used in the range of 0.5 to 20 times by weight, preferably 1 to 10 times by weight, based on the ester compound represented by formula (2).
The reaction temperature is usually in the range of 40 to 260°C, preferably in the range of 80 to 255°C, more preferably in the range of 120 to 250°C, further preferably in the range of 160 to 245°C, particularly preferably in the range of 180 to 240°C.
The reaction may be carried out under normal pressure, or under increased or reduced pressure.
In another embodiment, the method may include a procedure for removing the carboxylic acid represented by the general formula (7) produced during the reaction from the reaction system. The procedure for removing the carboxylic acid represented by the general formula (7) produced from the reaction solution is not particularly limited, and the carboxylic acid can be removed by distilling the carboxylic acid represented by the general formula (7) produced together with the solvent system in the reaction solution. The carboxylic acid represented by the general formula (7) produced can be removed from the reaction system by using, for example, a pressure-equalizing dropping funnel equipped with a cock, a Dimroth condenser, a Dean-Stark apparatus, or the like.
 得られた反応終了混合物は、反応終了後、公知の方法によりこの混合物から一般式(1)で表されるエステル化合物を得ることができる。例えば、反応後、反応混合物を冷却晶析し、ろ過することにより粉体若しくは粒状の目的物を得ることも考えられる。また、反応混合物を貧溶媒に添加して沈殿させた目的物を得ることや、反応混合物に溶媒を添加して晶析し、ろ過することにより粉体若しくは粒状の目的物を得ることも考えられる。
 上記方法により、取り出された一般式(1)で表されるエステル化合物は、例えば、溶媒や水での洗浄や再結晶等の通常の精製手段により、高純度品とすることができる。晶析並びにリスラリーに使用できる溶媒としては、一般式(1)で表されるエステル化合物と不活性な溶媒であれば特に制限はないが、具体的には、メタノール、エタノール、イソプロパノール、1-ブタノール等のアルコール系溶媒や無水酢酸、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のカルボニル系溶媒、テトラヒドロフラン、メチルイソブチルエーテル、メチルイソプロピルエーテル、ジフェニルエーテル等のエーテル系溶媒、トルエン、キシレン、エチルベンゼン等の芳香族非極性溶媒、γ-ブチロラクトン、γ-バレロラクトン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。その中でも1-ブタノール、イソプロパノール、ジフェニルエーテル等が好ましい。
 晶析の条件は、使用する溶媒により異なり一概には言えないが、例えば、1-ブタノールを使用する場合、その溶媒の使用量は、精製処理を行う一般式(1)で表されるエステル化合物、及びその他の不純物を含む組成物の総量1重量部に対して、1重量部~50重量部の範囲であり、より好ましくは2重量部~30重量部の範囲であり、特に好ましくは2~10重量部の範囲である。溶解時の温度は50~250℃の範囲であり、より好ましくは70~230℃の範囲であり、さらに好ましくは80~200℃の範囲であり、特に好ましくは90~180℃の範囲である。冷却温度は0℃~50℃の範囲であり、より好ましくは10~40℃の範囲であり、さらに好ましくは15~35℃の範囲である。晶析時の圧力は常圧条件下で行ってもよく、また、加圧下で行ってもよい。
 その他の溶媒を使用する場合には、溶媒の沸点や、精製処理を行う一般式(1)で表されるエステル化合物、その他の不純物、及びそれらを含む組成物の溶解度等を考慮して、各種条件を適宜変更することができる。
 これら精製工程により得られた精製物は、使用した溶媒を含んでいる場合があるため、溶媒を除去して乾燥することが好ましい。溶媒を除去する方法は特に限定されないが、例えば、常圧又は減圧下に加熱を行い、溶媒を留去する方法が挙げられる。
After the reaction is completed, the ester compound represented by the general formula (1) can be obtained from the reaction mixture by a known method. For example, after the reaction, the reaction mixture can be cooled and crystallized, and filtered to obtain the target product in powder or granular form. Alternatively, the reaction mixture can be added to a poor solvent to obtain the target product by precipitation, or a solvent can be added to the reaction mixture to crystallize, and the product can be filtered to obtain the target product in powder or granular form.
The ester compound represented by the general formula (1) extracted by the above method can be made into a high-purity product by ordinary purification means such as washing with a solvent or water, recrystallization, etc. The solvent that can be used for crystallization and reslurry is not particularly limited as long as it is a solvent inert to the ester compound represented by the general formula (1), and specific examples thereof include alcohol-based solvents such as methanol, ethanol, isopropanol, and 1-butanol, carbonyl-based solvents such as acetic anhydride, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone, ether-based solvents such as tetrahydrofuran, methyl isobutyl ether, methyl isopropyl ether, and diphenyl ether, aromatic non-polar solvents such as toluene, xylene, and ethylbenzene, γ-butyrolactone, γ-valerolactone, acetonitrile, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. Among them, 1-butanol, isopropanol, and diphenyl ether are preferable.
The crystallization conditions vary depending on the solvent used and cannot be generally stated. For example, when 1-butanol is used, the amount of the solvent used is in the range of 1 part by weight to 50 parts by weight, more preferably 2 parts by weight to 30 parts by weight, and particularly preferably 2 to 10 parts by weight, per 1 part by weight of the total amount of the composition containing the ester compound represented by the general formula (1) to be purified and other impurities. The temperature during dissolution is in the range of 50 to 250°C, more preferably 70 to 230°C, even more preferably 80 to 200°C, and particularly preferably 90 to 180°C. The cooling temperature is in the range of 0°C to 50°C, more preferably 10 to 40°C, and even more preferably 15 to 35°C. The pressure during crystallization may be normal pressure conditions, or may be under pressure.
When using other solvents, various conditions can be appropriately changed taking into consideration the boiling point of the solvent, the solubility of the ester compound represented by general formula (1) to be purified, other impurities, and the composition containing them, etc.
The purified product obtained by these purification steps may contain the solvent used, so it is preferable to remove the solvent and dry it. The method for removing the solvent is not particularly limited, but examples include a method in which the solvent is distilled off by heating under normal pressure or reduced pressure.
<一般式(3)で表されるエステル化合物>
 本発明の硬化性組成物において用いられる一般式(1)で表されるエステル化合物のうち、一般式(3)で表されるエステル化合物は、本発明の硬化性組成物を用いて得られる硬化物がより優れた耐熱性を有することから好ましい。
 その中でも、特に、熱硬化性化合物のエポキシ樹脂と硬化剤との反応で生成する2級水酸基について、一般式(1)で表されるエステル化合物と同様に、一般式(3)で表されるエステル化合物は硬化剤としてエポキシ樹脂と反応し、かつ2級水酸基をエステル化することによって、得られる硬化物は、分極が抑えられ、優れた誘電特性を有する。また、このことから、一般式(3)で表されるエステル化合物をエポキシ樹脂の硬化剤として用いることも、一般式(1)で表されるエステル化合物と同様に、得られる硬化物が上記特徴を有するため、好ましい。
 一般式(3)で表されるエステル化合物は、一般式(1)で表されるエステル化合物と同様に、フラン環を有するため、ラジカル重合性置換基を有する化合物とも硬化反応をして硬化物を得ることができる。
 一般式(3)で表されるエステル化合物は、メチルエチルケトン、シクロヘキサノン、N-メチルピロリドン、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチル等の溶剤、特に、半導体などの電子部品の製造に汎用される溶剤の1つであるメチルエチルケトンへの溶解性に優れるため、取り扱い性に優れる。
Figure JPOXMLDOC01-appb-C000031
(式中、Rは各々独立して単結合又は炭素原子数1~10の2価の炭化水素基を示し、Rは各々独立して水素原子又は炭素原子数1~6のアルキル基を示し、Yは一般式(3a)又は一般式(3b)で表される2価の基を示す。)
Figure JPOXMLDOC01-appb-C000032
(一般式(3a)及び(3b)中、Rは各々独立して炭素原子数1~6のアルキル基又は炭素原子数6~12のアリール基を示し、*はそれぞれ結合位置を示す。一般式(3a)中、mは各々独立して1~4の整数を示す。一般式(3b)中、nは各々独立して0又は1~4の整数を示し、Zは炭素原子数7~20のシクロアルキリデン基を示す。)
 一般式(3)中のR及びRの具体例や好ましい態様は一般式(1)のR及びRと同じである。すなわち、一般式(3)中のRは、各々独立して単結合又は炭素原子数1~10の2価の炭化水素基である。2価の炭化水素基である場合、具体的には、例えば、メチレン基、エチレン基、プロパン-1,2-ジイル基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、シクロヘキサン-1,3-ジイル基、シクロヘキサン-1,4-ジイル基などの炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基若しくは環状アルカンを含むアルキレン基、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、シクロペンチリデン基、シクロヘキシリデン基などの炭素原子数1~10のアルキリデン基、フェニレン基や下記式で表される基などのベンゼン環を含む炭素原子数1~10の2価の基が挙げられる。
Figure JPOXMLDOC01-appb-C000033
(式中、*は結合位置を示す。)
 これらの中でもRは、各々独立して単結合又は炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基、環状アルカンを含むアルキレン基又は炭素原子数1~10のアルキリデン基であることが好ましく、各々独立して単結合又は炭素原子数1~10の直鎖状又は分岐鎖状のアルキレン基若しくは環状アルカンを含むアルキレン基がより好ましく、各々独立して単結合又は炭素原子数1~6の直鎖状又は分岐鎖状のアルキレン基若しくは環状アルカンを含むアルキレン基がさらに好ましく、共に単結合が特に好ましい。Rが共に単結合である一般式(3)で表されるエステル化合物は、バイオマス由来の原料より得られることから、バイオマス率が向上した硬化性組成物が得られる点においても好適である。
 一般式(3)中のRは、各々独立して水素原子又は炭素原子数1~4のアルキル基が好ましく、各々独立して水素原子又はメチル基がより好ましく、共に水素原子が特に好ましい。
 一般式(3)におけるYが一般式(3a)である場合のRの好ましい態様は一般式(1)のRと同じである。すなわち、一般式(3)におけるYが一般式(3a)中のRは、各々独立して炭素原子数1~4のアルキル基又はフェニル基であることが好ましく、各々独立してメチル基又はフェニル基であることがより好ましく、メチル基であることが特に好ましい。
 一般式(3)におけるYが一般式(3a)である場合のmは、各々独立して1~4の整数を示し、各々独立して1~3が好ましく、各々独立して2又は3であることがより好ましく、共に3であることが特に好ましい。なお、Rはベンゼン環に結合する酸素原子に対してオルソ位に優先して結合していることが好ましい。
 一般式(3)におけるYが一般式(3a)である場合のより好ましい態様としては、一般式(3a-1)~(3a-4)から選択される構造であることが好ましく、一般式(3a-2)~(3a-4)から選択される構造であることがより好ましく、一般式(3a-3)又は(3a-4)がさらに好ましく、一般式(3a-4)が特に好ましい。
Figure JPOXMLDOC01-appb-C000034
(式中、Rは、各々独立して炭素原子数1~6のアルキル基又は炭素原子数6~12のアリール基を示し、*は結合位置を示す。)
 一般式(3)におけるYが一般式(3b)である場合のRの好ましい態様は、一般式(1)のRの好ましい態様と同じである。すなわち、一般式(3)におけるYが一般式(3b)中のRは、各々独立して炭素原子数1~4のアルキル基又はフェニル基であることが好ましく、各々独立してメチル基又はフェニル基であることがより好ましく、メチル基であることが特に好ましい。
 一般式(3)におけるYが一般式(3b)である場合のnは、0、1又は2が好ましく、0又は1がより好ましく、共に0であることが特に好ましい。なお、Rの置換位置は、酸素原子に対してオルソ位が好ましい。
 一般式(3b)におけるZは、炭素原子数7~20のシクロアルキリデン基を示し、分岐鎖としてのアルキル基を有していても良い。かかるシクロアルキリデン基は炭素原子数7~15であることが好ましく、炭素原子数7~12であることがより好ましく、炭素原子数7~9であることが特に好ましい。このようなシクロアルキリデン基としては、具体的には、例えば、3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)、3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)、シクロドデカニリデン基(炭素原子数12)が挙げられる。好ましくは3-メチルシクロヘキシリデン基(炭素原子数7)、4-メチルシクロヘキシリデン基(炭素原子数7)又は3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)であり、より好ましくは3-メチルシクロヘキシリデン基(炭素原子数7)又は3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)であり、特に好ましくは3,3,5-トリメチルシクロヘキシリデン基(炭素原子数9)である。
 一般式(3)で表されるエステル化合物の具体例として、下記化学構造を有する化合物(p-139)~(p-177)を示す。
 一般式(3)で表されるエステル化合物は、化合物(p-139)~(p-177)から選択される1種の化合物が好ましく、これらの中でも、化合物(p-139)、(p-142)、(p-145)、(p-148)、(p-151)、(p-154)又は(p-172)が特に好ましい。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
<Ester compound represented by general formula (3)>
Among the ester compounds represented by general formula (1) used in the curable composition of the present invention, the ester compound represented by general formula (3) is preferred because the cured product obtained by using the curable composition of the present invention has better heat resistance.
Among them, in particular, for the secondary hydroxyl group generated by the reaction of the epoxy resin of the thermosetting compound with the curing agent, the ester compound represented by the general formula (3) reacts with the epoxy resin as a curing agent, similar to the ester compound represented by the general formula (1), and by esterifying the secondary hydroxyl group, the resulting cured product has suppressed polarization and excellent dielectric properties. For this reason, it is also preferable to use the ester compound represented by the general formula (3) as a curing agent for the epoxy resin, since the resulting cured product has the above-mentioned characteristics, similar to the ester compound represented by the general formula (1).
The ester compound represented by general formula (3), like the ester compound represented by general formula (1), has a furan ring, and can therefore undergo a curing reaction with a compound having a radically polymerizable substituent to give a cured product.
The ester compound represented by the general formula (3) has excellent solubility in solvents such as methyl ethyl ketone, cyclohexanone, N-methylpyrrolidone, toluene, propylene glycol monomethyl ether acetate, and ethyl acetate, in particular, in methyl ethyl ketone, which is one of the solvents commonly used in the production of electronic components such as semiconductors, and therefore has excellent handleability.
Figure JPOXMLDOC01-appb-C000031
(In the formula, each R2 independently represents a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms, each R3 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and Y represents a divalent group represented by general formula (3a) or general formula (3b).
Figure JPOXMLDOC01-appb-C000032
(In general formulas (3a) and (3b), R 1 's each independently represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and * represents a bonding position. In general formula (3a), m's each independently represent an integer of 1 to 4. In general formula (3b), n's each independently represent 0 or an integer of 1 to 4, and Z's each independently represent a cycloalkylidene group having 7 to 20 carbon atoms.)
Specific examples and preferred embodiments of R2 and R3 in general formula (3) are the same as R2 and R3 in general formula (1). That is, R2 in general formula (3) is each independently a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms. Specific examples of divalent hydrocarbon groups include linear or branched alkylene groups having 1 to 10 carbon atoms or alkylene groups containing a cyclic alkane, such as a methylene group, an ethylene group, a propane-1,2-diyl group, a propane-1,3-diyl group, a butane-1,4-diyl group, a pentane-1,5-diyl group, a hexane-1,6-diyl group, a cyclohexane-1,3-diyl group, or a cyclohexane-1,4-diyl group; alkylidene groups having 1 to 10 carbon atoms, such as an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, a cyclopentylidene group, or a cyclohexylidene group; phenylene groups; and divalent groups having 1 to 10 carbon atoms containing a benzene ring, such as groups represented by the following formulas:
Figure JPOXMLDOC01-appb-C000033
(In the formula, * indicates the bond position.)
Among these, R 2 are preferably each independently a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms, an alkylene group containing a cyclic alkane, or an alkylidene group having 1 to 10 carbon atoms, more preferably each independently a single bond or a linear or branched alkylene group having 1 to 10 carbon atoms or an alkylene group containing a cyclic alkane, and even more preferably each independently a single bond or a linear or branched alkylene group having 1 to 6 carbon atoms or an alkylene group containing a cyclic alkane, and particularly preferably both are single bonds. The ester compound represented by general formula (3) in which R 2 are both single bonds is also suitable in that a curable composition with an improved biomass ratio can be obtained because it is obtained from a raw material derived from biomass.
In formula (3), each R 3 is preferably independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, more preferably independently a hydrogen atom or a methyl group, and particularly preferably both are a hydrogen atom.
When Y in formula (3) is formula (3a), the preferred embodiment of R1 is the same as R1 in formula (1). That is, when Y in formula (3) is formula (3a), R1 in formula (3a) is preferably each independently an alkyl group having 1 to 4 carbon atoms or a phenyl group, more preferably each independently a methyl group or a phenyl group, and particularly preferably a methyl group.
When Y in general formula (3) is general formula (3a), m each independently represents an integer of 1 to 4, preferably each independently represents an integer of 1 to 3, more preferably each independently represents 2 or 3, and particularly preferably both represent 3. It is preferable that R1 is preferentially bonded to the ortho position with respect to the oxygen atom bonded to the benzene ring.
A more preferred embodiment in which Y in general formula (3) is general formula (3a) is a structure selected from general formulas (3a-1) to (3a-4), more preferably a structure selected from general formulas (3a-2) to (3a-4), further preferably general formula (3a-3) or (3a-4), and particularly preferably general formula (3a-4).
Figure JPOXMLDOC01-appb-C000034
(In the formula, each R 1 independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and * indicates the bonding position.)
When Y in formula (3) is formula (3b), the preferred embodiment of R 1 is the same as the preferred embodiment of R 1 in formula (1). That is, when Y in formula (3) is formula (3b), R 1 in formula (3b) is preferably each independently an alkyl group having 1 to 4 carbon atoms or a phenyl group, more preferably each independently a methyl group or a phenyl group, and particularly preferably a methyl group.
When Y in formula (3) is formula (3b), n is preferably 0, 1 or 2, more preferably 0 or 1, and particularly preferably both are 0. The substitution position of R1 is preferably the ortho position relative to the oxygen atom.
Z in general formula (3b) represents a cycloalkylidene group having 7 to 20 carbon atoms, which may have an alkyl group as a branched chain. Such a cycloalkylidene group preferably has 7 to 15 carbon atoms, more preferably has 7 to 12 carbon atoms, and particularly preferably has 7 to 9 carbon atoms. Specific examples of such cycloalkylidene groups include a 3-methylcyclohexylidene group (7 carbon atoms), a 4-methylcyclohexylidene group (7 carbon atoms), a 3,3,5-trimethylcyclohexylidene group (9 carbon atoms), and a cyclododecanylidene group (12 carbon atoms). Preferred is a 3-methylcyclohexylidene group (number of carbon atoms: 7), a 4-methylcyclohexylidene group (number of carbon atoms: 7) or a 3,3,5-trimethylcyclohexylidene group (number of carbon atoms: 9), more preferred is a 3-methylcyclohexylidene group (number of carbon atoms: 7) or a 3,3,5-trimethylcyclohexylidene group (number of carbon atoms: 9), and particularly preferred is a 3,3,5-trimethylcyclohexylidene group (number of carbon atoms: 9).
Specific examples of the ester compound represented by the general formula (3) include compounds (p-139) to (p-177) having the following chemical structures.
The ester compound represented by general formula (3) is preferably one compound selected from the compounds (p-139) to (p-177), and among these, the compound (p-139), (p-142), (p-145), (p-148), (p-151), (p-154) or (p-172) is particularly preferable.
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
<一般式(3)で表されるエステル化合物の製造方法>
 本発明の一般式(3)で表されるエステル化合物は、一般式(1)で表されるエステル化合物の製造方法と同様にして製造することができる。
 具体的には、一般式(3)で表されるエステル化合物について、その製造における出発原料、製造方法について特に制限はない。例えば、下記反応式で例示するとおり、一般式(9)で表されるビスフェノール化合物、一般式(6)で表される酸無水物を反応させて、一般式(10)で表されるエステル化合物を合成するエステル化工程により一般式(10)で表されるエステル化合物を合成した後に、一般式(10)で表されるエステル化合物と一般式(8)で表されるフラン含有カルボン酸を反応させ、一般式(3)で表されるエステル化合物を得るエステル交換反応工程により一般式(3)で表されるエステル化合物を得る製造方法が挙げられる。
Figure JPOXMLDOC01-appb-C000039
(一般式(9)及び(10)におけるYは、一般式(3)の定義と同じであり、一般式(8)におけるR及びRは、一般式(1)の定義と同じであり、一般式(6)、一般式(7)及び一般式(10)におけるRは、一般式(2)の定義と同じである。)
<Method for producing ester compound represented by formula (3)>
The ester compound of the present invention represented by the general formula (3) can be produced in the same manner as in the production of the ester compound represented by the general formula (1).
Specifically, there is no particular restriction on the starting material and manufacturing method for the ester compound represented by the general formula (3). For example, as illustrated in the following reaction formula, a manufacturing method can be mentioned in which a bisphenol compound represented by the general formula (9) and an acid anhydride represented by the general formula (6) are reacted to synthesize an ester compound represented by the general formula (10) in an esterification step, and then the ester compound represented by the general formula (10) is reacted with a furan-containing carboxylic acid represented by the general formula (8) to obtain an ester compound represented by the general formula (3) in a transesterification step.
Figure JPOXMLDOC01-appb-C000039
(Y in general formulas (9) and (10) is the same as defined in general formula (3), R2 and R3 in general formula (8) are the same as defined in general formula (1), and R6 in general formulas (6), (7) and (10) is the same as defined in general formula (2).)
(エステル化工程)
 上記製造方法におけるエステル化工程の反応方法は、従来公知のエステル化反応の方法を応用できる。
 一般式(9)で表されるビスフェノール化合物として、Yが一般式(3a)である場合の化合物は、具体的には、例えば、4,4’-ジヒドロキシ-3,3’-ジメチルビフェニル、4,4’-ジヒドロキシ-3,3’,5,5’-テトラメチルビフェニル、4,4’-ジヒドロキシ-2,2’,3,3’5,5’-ヘキサメチルビフェニルが挙げられ、Yが一般式(3b)である場合の化合物は、具体的には、例えば、ビスフェノールTMC(1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン)、1,1-ビス(4-ヒドロキシフェニル)-3-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)シクロドデカンが挙げられる。
 一般式(6)で表される酸無水物としては、具体的には、例えば、無水酢酸、無水安息香酸が挙げられる。
 上記製造方法において、一般式(6)で表される酸無水物の使用量としては、一般式(9)で表されるビスフェノール化合物1モルに対して2.0~10.0モルの範囲であることが好ましく、2.0~8.0モルの範囲であることがより好ましく、2.0~4.0モルの範囲であることがさらに好ましい。
 反応温度は、通常50~150℃の範囲であり、80~140℃の範囲が好ましい。反応圧力は、常圧下、減圧下の何れでもよい。
 上記エステル化工程により一般式(10)で表されるエステル化合物を製造することができる。
 一般式(10)におけるYは、一般式(3)の定義と同じであり、好ましい態様も同じである。
 一般式(10)におけるRは、一般式(2)の定義と同じであり、その具体例及び好ましい態様も同じである。
 エステル化工程により得られた一般式(10)で表されるエステル化合物は、後述するエステル交換反応工程の原料として、エステル化反応の反応液に含まれたそのままを利用しても良いし、蒸留によりエステル化反応で生成した一般式(7)で表されるカルボン酸を除去して精製して利用しても良いし、エステル化反応液に溶媒を混合して晶析操作を行って精製して利用しても良い。
(Esterification step)
The reaction method in the esterification step in the above production method can be a conventionally known esterification reaction method.
As the bisphenol compound represented by the general formula (9), specific examples of the compound in which Y is the general formula (3a) include 4,4'-dihydroxy-3,3'-dimethylbiphenyl, 4,4'-dihydroxy-3,3',5,5'-tetramethylbiphenyl, and 4,4'-dihydroxy-2,2',3,3'5,5'-hexamethylbiphenyl. Specific examples of the compound in which Y is the general formula (3b) include bisphenol TMC (1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane), 1,1-bis(4-hydroxyphenyl)-3-methylcyclohexane, 1,1-bis(4-hydroxyphenyl)-4-methylcyclohexane, and 1,1-bis(4-hydroxyphenyl)cyclododecane.
Specific examples of the acid anhydride represented by the general formula (6) include acetic anhydride and benzoic anhydride.
In the above production method, the amount of the acid anhydride represented by the general formula (6) used is preferably in the range of 2.0 to 10.0 mol, more preferably in the range of 2.0 to 8.0 mol, and even more preferably in the range of 2.0 to 4.0 mol, per 1 mol of the bisphenol compound represented by the general formula (9).
The reaction temperature is usually in the range of 50 to 150° C., preferably in the range of 80 to 140° C. The reaction pressure may be either normal pressure or reduced pressure.
The ester compound represented by the general formula (10) can be produced by the above esterification step.
The definition of Y in formula (10) is the same as in formula (3), and the preferred embodiments are also the same.
R6 in formula (10) is defined the same as in formula (2), and specific examples and preferred embodiments thereof are also the same.
The ester compound represented by general formula (10) obtained by the esterification step may be used as it is contained in the reaction solution of the esterification reaction as a raw material for the transesterification reaction step described later, or may be purified by distillation to remove the carboxylic acid represented by general formula (7) produced in the esterification reaction, or may be purified by mixing a solvent with the esterification reaction solution and subjecting it to a crystallization operation for use.
(エステル交換反応工程)
 上記製造方法におけるエステル交換反応工程の反応方法は、従来公知のエステル交換反応の方法を応用できる。
 一般式(8)中のR及びRは、一般式(1)の定義と同じであり、好ましい態様や具体例も同じである。
 一般式(8)で表されるフラン含有カルボン酸としては、具体的には、例えば、2-フランカルボン酸、3-フランカルボン酸、2-メチル-3-フランカルボン酸、3-メチル-2-フランカルボン酸が挙げられる。
 一般式(8)で表されるフラン含有カルボン酸の使用量としては、一般式(10)で表されるエステル化合物1モルに対して、2.0~10.0モルの範囲であることが好ましく、2.0~8.0モルの範囲であることがより好ましく、2.0~4.0モルの範囲であることがさらに好ましい。
 一般式(10)で表されるエステル化合物と、一般式(8)で表されるフラン含有カルボン酸の反応における触媒として、塩基を使用することが好ましい。これらの塩基としては、具体的には、例えば、アミン塩基等の有機塩基、アルカリ金属の水酸化物、炭酸塩、炭酸水素化合物等の無機アルカリ金属化合物、アルカリ金属のアルコール類、フェノール類、有機カルボン酸との塩等の有機アルカリ金属化合物等を挙げることができる。またそれらの混合物等が挙げられるが、これらに限定されるものではない。
 反応は通常、溶媒の存在下に行われる。工業的生産時の操作性や反応速度の向上などの理由で反応に際し反応溶媒を使用することが好ましい。使用できる溶媒としては、下記反応温度において反応容器から留出せず、エステル交換反応に不活性であれば特に制限はない。具体的には、例えば、フェネトール、ブチルフェニルエーテル等のアルキルアリールエーテル類又はジフェニルエーテル、ジ-p-トリルエーテル等のジアリールエーテル類のような芳香族炭化水素エーテル系溶媒、ビフェニル、ターフェニル等の芳香族炭化水素系溶媒、ジイソプロピルナフタレン等のアルキル置換ナフタレン類、デカリン、ケロシン等の脂肪族炭化水素、テトラエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル等のポリアルキレングリコールエーテル類、サームエスシリーズ(新日鐵化学社製)、KSK-OILシリーズ(綜研化学社製)、又はNeoSK-OILシリーズ(綜研化学社製)等の有機溶媒が挙げられる。また、溶媒の使用量は反応に支障なければ特に制限はないが、通常、一般式(10)で表されるエステル化合物に対して0.5~20重量倍の範囲、好ましくは1~10重量倍の範囲で用いられる。
 反応温度は、通常40~260℃の範囲で行い、80~255℃の範囲が好ましく、120~250℃の範囲がより好ましく、160~245℃の範囲がさらに好ましく、180~240℃の範囲が特に好ましい。
 反応圧力は常圧条件下で行ってもよく、また、加圧下でも、或は減圧下で行ってもよい。
 別の態様として、反応中に生成した一般式(7)で表されるカルボン酸を系外に除去する手順を含むことができる。反応溶液から生成した一般式(7)で表されるカルボン酸を除去する手順は特に制限されず、生成した一般式(7)で表されるカルボン酸を反応溶液中の溶媒系ともに蒸留することにより行うことができる。生成した一般式(7)で表されるカルボン酸は、例えばコックを備えた等圧滴下漏斗、ジムロート冷却器、ディーンスターク装置等の使用により反応系外に除去することができる。
(Transesterification reaction process)
The reaction method in the transesterification step in the above production method can be a conventionally known transesterification method.
R2 and R3 in the general formula (8) are defined the same as in the general formula (1), and preferred embodiments and specific examples are also the same.
Specific examples of the furan-containing carboxylic acid represented by the general formula (8) include 2-furan carboxylic acid, 3-furan carboxylic acid, 2-methyl-3-furan carboxylic acid, and 3-methyl-2-furan carboxylic acid.
The amount of the furan-containing carboxylic acid represented by general formula (8) used is preferably in the range of 2.0 to 10.0 mol, more preferably in the range of 2.0 to 8.0 mol, and even more preferably in the range of 2.0 to 4.0 mol, relative to 1 mol of the ester compound represented by general formula (10).
It is preferable to use a base as a catalyst in the reaction of the ester compound represented by the general formula (10) with the furan-containing carboxylic acid represented by the general formula (8). Specific examples of such bases include organic bases such as amine bases, inorganic alkali metal compounds such as alkali metal hydroxides, carbonates, and hydrogen carbonate compounds, and organic alkali metal compounds such as alkali metal alcohols, phenols, and salts with organic carboxylic acids. Mixtures thereof may also be used, but are not limited thereto.
The reaction is usually carried out in the presence of a solvent. For reasons such as improved operability and reaction rate during industrial production, it is preferable to use a reaction solvent during the reaction. The solvent that can be used is not particularly limited as long as it does not distill from the reaction vessel at the reaction temperature described below and is inactive in the transesterification reaction. Specific examples include aromatic hydrocarbon ether solvents such as alkylaryl ethers such as phenetole and butylphenyl ether, diaryl ethers such as diphenyl ether and di-p-tolyl ether, aromatic hydrocarbon solvents such as biphenyl and terphenyl, alkyl-substituted naphthalenes such as diisopropylnaphthalene, aliphatic hydrocarbons such as decalin and kerosene, polyalkylene glycol ethers such as tetraethylene glycol dimethyl ether and diethylene glycol dibutyl ether, and organic solvents such as Therm-S series (manufactured by Nippon Steel Chemical Co., Ltd.), KSK-OIL series (manufactured by Soken Chemical Industry Co., Ltd.), or NeoSK-OIL series (manufactured by Soken Chemical Industry Co., Ltd.). The amount of the solvent used is not particularly limited as long as it does not interfere with the reaction, but is usually used in the range of 0.5 to 20 times by weight, preferably 1 to 10 times by weight, based on the ester compound represented by formula (10).
The reaction temperature is usually in the range of 40 to 260°C, preferably in the range of 80 to 255°C, more preferably in the range of 120 to 250°C, further preferably in the range of 160 to 245°C, particularly preferably in the range of 180 to 240°C.
The reaction may be carried out under normal pressure, or under increased or reduced pressure.
In another embodiment, the method may include a procedure for removing the carboxylic acid represented by the general formula (7) produced during the reaction from the reaction system. The procedure for removing the carboxylic acid represented by the general formula (7) produced from the reaction solution is not particularly limited, and the carboxylic acid can be removed by distilling the carboxylic acid represented by the general formula (7) produced together with the solvent system in the reaction solution. The carboxylic acid represented by the general formula (7) produced can be removed from the reaction system by using, for example, a pressure-equalizing dropping funnel equipped with a cock, a Dimroth condenser, a Dean-Stark apparatus, or the like.
 得られた反応終了混合物は、反応終了後、公知の方法によりこの混合物から一般式(3)で表されるエステル化合物を得ることができる。例えば、反応後、反応混合物を冷却晶析し、ろ過することにより粉体若しくは粒状の目的物を得ることも考えられる。また、反応混合物を貧溶媒に添加して沈殿させた目的物を得ることや、反応混合物に溶媒を添加して晶析し、ろ過することにより粉体若しくは粒状の目的物を得ることも考えられる。
 上記方法により、取り出された一般式(3)で表されるエステル化合物は、例えば、溶媒や水での洗浄や再結晶等の通常の精製手段により、高純度品とすることができる。晶析並びにリスラリーに使用できる溶媒としては、一般式(3)で表されるエステル化合物と不活性な溶媒であれば特に制限はないが、具体的には、メタノール、エタノール、イソプロパノール、1-ブタノール等のアルコール系溶媒や無水酢酸、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のカルボニル系溶媒、テトラヒドロフラン、メチルイソブチルエーテル、メチルイソプロピルエーテル、ジフェニルエーテル等のエーテル系溶媒、トルエン、キシレン、エチルベンゼン等の芳香族非極性溶媒、γ-ブチロラクトン、γ-バレロラクトン、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等が挙げられる。その中でも1-ブタノール、イソプロパノール、ジフェニルエーテル等が好ましい。
 晶析の条件は、使用する溶媒により異なり一概には言えないが、例えば、1-ブタノールを使用する場合、その溶媒の使用量は、精製処理を行う一般式(3)で表されるエステル化合物、及びその他の不純物を含む組成物の総量1重量部に対して、1重量部~50重量部の範囲であり、より好ましくは2重量部~30重量部の範囲であり特に好ましくは2~10重量部の範囲である。溶解時の温度は50~250℃の範囲であり、より好ましくは70~230℃の範囲であり、さらに好ましくは80~200℃の範囲であり、特に好ましくは90~180℃の範囲である。冷却温度は0℃~50℃の範囲であり、より好ましくは10~40℃の範囲であり、さらに好ましくは15~35℃の範囲である。晶析時の圧力は常圧条件下で行ってもよく、また、加圧下で行ってもよい。
 その他の溶媒を使用する場合には、溶媒の沸点や、精製処理を行う一般式(3)で表されるエステル化合物、その他の不純物、及びそれらを含む組成物の溶解度等を考慮して、各種条件を適宜変更することができる。
 これら精製工程により得られた精製物は、使用した溶媒を含んでいる場合があるため、溶媒を除去して乾燥することが好ましい。溶媒を除去する方法は特に限定されないが、例えば、常圧又は減圧下に加熱を行い、溶媒を留去する方法が挙げられる。
After the reaction is completed, the ester compound represented by the general formula (3) can be obtained from the reaction mixture by a known method. For example, after the reaction, the reaction mixture can be cooled and crystallized, and filtered to obtain the target product in powder or granular form. Alternatively, the reaction mixture can be added to a poor solvent to obtain the target product by precipitation, or a solvent can be added to the reaction mixture to cause crystallization, and the product can be filtered to obtain the target product in powder or granular form.
The ester compound represented by the general formula (3) extracted by the above method can be made into a high-purity product by ordinary purification means such as washing with a solvent or water, recrystallization, etc. The solvent that can be used for crystallization and reslurry is not particularly limited as long as it is a solvent inert to the ester compound represented by the general formula (3), and specific examples thereof include alcohol-based solvents such as methanol, ethanol, isopropanol, and 1-butanol, carbonyl-based solvents such as acetic anhydride, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, and cyclohexanone, ether-based solvents such as tetrahydrofuran, methyl isobutyl ether, methyl isopropyl ether, and diphenyl ether, aromatic nonpolar solvents such as toluene, xylene, and ethylbenzene, γ-butyrolactone, γ-valerolactone, acetonitrile, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. Among them, 1-butanol, isopropanol, and diphenyl ether are preferable.
The crystallization conditions vary depending on the solvent used and cannot be generally stated. For example, when 1-butanol is used, the amount of the solvent used is in the range of 1 part by weight to 50 parts by weight, more preferably 2 parts by weight to 30 parts by weight, and particularly preferably 2 to 10 parts by weight, per 1 part by weight of the total amount of the composition containing the ester compound represented by the general formula (3) to be purified and other impurities. The temperature during dissolution is in the range of 50 to 250°C, more preferably 70 to 230°C, even more preferably 80 to 200°C, and particularly preferably 90 to 180°C. The cooling temperature is in the range of 0°C to 50°C, more preferably 10 to 40°C, and even more preferably 15 to 35°C. The pressure during crystallization may be normal pressure conditions, or may be under pressure.
When using other solvents, various conditions can be appropriately changed taking into consideration the boiling point of the solvent, the solubility of the ester compound represented by general formula (3) to be purified, other impurities, and the composition containing them, etc.
The purified product obtained by these purification steps may contain the solvent used, so it is preferable to remove the solvent and dry it. The method for removing the solvent is not particularly limited, but examples include a method in which the solvent is distilled off by heating under normal pressure or reduced pressure.
<化合物(p-148)の結晶>
 本発明のエステル化合物のうち、式(p-148)で表される化合物の結晶は、結晶性を有する固体として取り扱うことができ、取り扱い性に優れるため、非常に有用である。
 この結晶は、示差走査熱量分析による最大吸熱ピーク温度が234~240℃の範囲にあることが好ましく、235~240℃の範囲にあることがより好ましく、236~239℃の範囲にあることが特に好ましい。
<Crystals of compound (p-148)>
Among the ester compounds of the present invention, the crystals of the compound represented by formula (p-148) can be handled as a crystalline solid and are therefore very useful since they have excellent handleability.
The crystals preferably have a maximum endothermic peak temperature in the range of 234 to 240°C, more preferably 235 to 240°C, and particularly preferably 236 to 239°C, as determined by differential scanning calorimetry.
<化合物(p-148)の結晶の製造方法>
 上記一般式(3)で表されるエステル化合物の製造方法により製造された化合物(p-148)は、メタノール、エタノール、イソプロパノール、1-ブタノール等のアルコール系溶媒、中でも炭素原子数1~4のアルコール系溶媒と、テトラヒドロフラン、メチルイソブチルエーテル、メチルイソプロピルエーテル、ジフェニルエーテル等のエーテル系溶媒、中でも炭素原子数4~12のエーテル系溶媒を含む溶媒により晶析することにより、製造することができる。
 炭素原子数1~4のアルコール系溶媒としては、その中でも1-ブタノール、イソプロパノールが、炭素原子数4~12のエーテル系溶媒としては、ジフェニルエーテルが特に好ましい。
 晶析の条件は、アルコール系溶媒とエーテル系溶媒の合計の使用量は、化合物(p-148)及びその他の反応後の不純物を含む組成物の総量1重量部に対して、1重量部~50重量部の範囲であり、より好ましくは2重量部~30重量部の範囲であり、特に好ましくは2~10重量部の範囲である。
 アルコール系溶媒とエーテル系溶媒の使用割合について、アルコール系溶媒の使用量に対しするエーテル系溶媒の使用量は、0.3~3.0重量倍であることが好ましく、0.5~2.5重量倍であることがより好ましく、1.0~2.2重量倍であることがさらに好ましく、1.4~2.2重量倍であることが特に好ましい。
 溶解時の温度は50~250℃の範囲であり、より好ましくは70~230℃の範囲であり、さらに好ましくは80~200℃の範囲であり、特に好ましくは90~180℃の範囲である。冷却温度は0℃~50℃の範囲であり、より好ましくは10~40℃の範囲であり、さらに好ましくは15~35℃の範囲である。晶析時の圧力は常圧条件下で行ってもよく、また、加圧下で行ってもよい。
 晶析により得られた結晶は、使用した溶媒を含んでいる場合があるため、溶媒を除去して乾燥することが好ましい。溶媒を除去する方法は特に限定されないが、例えば、常圧又は減圧下に加熱を行い、溶媒を留去する方法が挙げられる。
<Method for producing crystals of compound (p-148)>
The compound (p-148) produced by the method for producing an ester compound represented by the above general formula (3) can be produced by crystallization from a solvent containing an alcohol solvent such as methanol, ethanol, isopropanol, 1-butanol, etc., particularly an alcohol solvent having 1 to 4 carbon atoms, and an ether solvent such as tetrahydrofuran, methyl isobutyl ether, methyl isopropyl ether, diphenyl ether, etc., particularly an ether solvent having 4 to 12 carbon atoms.
Of the alcohol solvents having 1 to 4 carbon atoms, 1-butanol and isopropanol are particularly preferred, and of the ether solvents having 4 to 12 carbon atoms, diphenyl ether is particularly preferred.
The crystallization conditions are such that the total amount of the alcohol solvent and the ether solvent is in the range of 1 to 50 parts by weight, more preferably 2 to 30 parts by weight, and particularly preferably 2 to 10 parts by weight, per 1 part by weight of the total amount of the composition containing the compound (p-148) and other post-reaction impurities.
Regarding the ratio of the alcohol solvent to the ether solvent, the amount of the ether solvent used relative to the amount of the alcohol solvent used is preferably 0.3 to 3.0 times by weight, more preferably 0.5 to 2.5 times by weight, even more preferably 1.0 to 2.2 times by weight, and particularly preferably 1.4 to 2.2 times by weight.
The temperature during dissolution is in the range of 50 to 250° C., more preferably in the range of 70 to 230° C., even more preferably in the range of 80 to 200° C., and particularly preferably in the range of 90 to 180° C. The cooling temperature is in the range of 0 to 50° C., more preferably in the range of 10 to 40° C., and even more preferably in the range of 15 to 35° C. The pressure during crystallization may be normal pressure or may be increased.
Since the crystals obtained by crystallization may contain the solvent used, it is preferable to remove the solvent and dry the crystals. The method for removing the solvent is not particularly limited, but examples thereof include a method in which the solvent is distilled off by heating under normal pressure or reduced pressure.
<化合物(p-151)の結晶>
 本発明のエステル化合物のうち、式(p-151)で表される化合物の結晶は、結晶性を有する固体として取り扱うことができ、取り扱い性に優れるため、非常に有用である。
 この結晶は、示差走査熱量分析による最大吸熱ピーク温度が180~188℃の範囲にあることが好ましく、181~187℃の範囲にあることがより好ましく、182~186℃の範囲にあることが特に好ましい。
<Crystals of compound (p-151)>
Among the ester compounds of the present invention, the crystals of the compound represented by formula (p-151) can be handled as a crystalline solid and are therefore very useful since they have excellent handleability.
The crystals preferably have a maximum endothermic peak temperature in the range of 180 to 188°C, more preferably 181 to 187°C, and particularly preferably 182 to 186°C, as determined by differential scanning calorimetry.
<化合物(p-151)の結晶の製造方法>
 上記一般式(3)で表されるエステル化合物の製造方法により製造された化合物(p-151)は、メタノール、エタノール、イソプロパノール、1-ブタノール等のアルコール系溶媒、中でも炭素原子数1~4のアルコール系溶媒を含む溶媒により晶析することにより、製造することができる。
 炭素原子数1~4のアルコール系溶媒としては、その中でも1-ブタノール、イソプロパノールが特に好ましい。
 晶析の条件は、アルコール系溶媒の使用量は、化合物(p-151)及びその他の反応後の不純物を含む組成物の総量1重量部に対して、1重量部~50重量部の範囲であり、より好ましくは2重量部~30重量部の範囲であり、特に好ましくは2重量部~10重量部の範囲である。
 溶解時の温度は50~250℃の範囲であり、より好ましくは70~230℃の範囲であり、さらに好ましくは80~200℃の範囲であり、特に好ましくは90~180℃の範囲である。冷却温度は0℃~50℃の範囲であり、より好ましくは10~40℃の範囲であり、さらに好ましくは15~35℃の範囲である。晶析時の圧力は常圧条件下で行ってもよく、また、加圧下で行ってもよい。
 晶析により得られた結晶は、使用した溶媒を含んでいる場合があるため、溶媒を除去して乾燥することが好ましい。溶媒を除去する方法は特に限定されないが、例えば、常圧又は減圧下に加熱を行い、溶媒を留去する方法が挙げられる。
<Method for producing crystals of compound (p-151)>
The compound (p-151) produced by the method for producing the ester compound represented by the above general formula (3) can be produced by crystallization from an alcohol solvent such as methanol, ethanol, isopropanol, 1-butanol, etc., particularly a solvent containing an alcohol solvent having 1 to 4 carbon atoms.
Of the alcohol solvents having 1 to 4 carbon atoms, 1-butanol and isopropanol are particularly preferred.
Regarding the crystallization conditions, the amount of the alcohol solvent used is in the range of 1 part by weight to 50 parts by weight, more preferably 2 parts by weight to 30 parts by weight, and particularly preferably 2 parts by weight to 10 parts by weight, per 1 part by weight of the total amount of the composition containing the compound (p-151) and other post-reaction impurities.
The temperature during dissolution is in the range of 50 to 250° C., more preferably in the range of 70 to 230° C., even more preferably in the range of 80 to 200° C., and particularly preferably in the range of 90 to 180° C. The cooling temperature is in the range of 0 to 50° C., more preferably in the range of 10 to 40° C., and even more preferably in the range of 15 to 35° C. The pressure during crystallization may be normal pressure or may be increased.
Since the crystals obtained by crystallization may contain the solvent used, it is preferable to remove the solvent and dry the crystals. The method for removing the solvent is not particularly limited, but examples thereof include a method in which the solvent is distilled off by heating under normal pressure or reduced pressure.
<樹脂原料用エステル化合物組成物>
 一般式(3)で表されるエステル化合物は、さらに、一般式(2)で表されるエステル化合物を含む樹脂原料用組成物の態様で使用することもできる。
 なお、この樹脂原料用組成物にさらに含まれる一般式(2)で表されるエステル化合物は、その中でも一般式(10)で表されるエステル化合物であってもよく、この場合がより好ましい。
 この樹脂原料用組成物は、一般式(3)で表されるエステル化合物100重量部に対して、前記一般式(2)で表されるエステル化合物を0.1~400重量部含有することが好ましく、0.1~200重量部含むことがより好ましく、0.1~150重量部含有することがさらに好ましく、0.1~100重量部含有することがより好ましく、0.1~10重量部含有することが特に好ましい。
 本発明の樹脂原料用組成物は、別々に製造した一般式(3)で表されるエステル化合物と一般式(2)で表されるエステル化合物を所望の量となるように混合して製造することもできるし、一般式(2)で表されるエステル化合物を一般式(3)で表されるエステル化合物を製造するための中間体として使用して、所望の量となるように、一般式(8)で表されるフラン含有カルボン酸とのエステル交換反応の反応率を調整することによって製造することもできる。
<Ester compound composition for resin raw material>
The ester compound represented by the general formula (3) can also be used in the form of a resin raw material composition containing an ester compound represented by the general formula (2).
The ester compound represented by general formula (2) further contained in the resin raw material composition may be an ester compound represented by general formula (10), and this is more preferable.
This resin raw material composition contains preferably 0.1 to 400 parts by weight, more preferably 0.1 to 200 parts by weight, even more preferably 0.1 to 150 parts by weight, still more preferably 0.1 to 100 parts by weight, and particularly preferably 0.1 to 10 parts by weight of the ester compound represented by general formula (2) relative to 100 parts by weight of the ester compound represented by general formula (3).
The resin raw material composition of the present invention can be produced by mixing the ester compound represented by general formula (3) and the ester compound represented by general formula (2) which have been separately produced, so as to obtain a desired amount, or can be produced by using the ester compound represented by general formula (2) as an intermediate for producing the ester compound represented by general formula (3) and adjusting the reaction rate of the transesterification reaction with the furan-containing carboxylic acid represented by general formula (8) so as to obtain a desired amount.
 かかる一般式(3)で表されるエステル化合物及び一般式(2)で表されるエステル化合物を含む樹脂原料用エステル化合物組成物は、後述する、例えば、硬化性組成物のように、熱硬化性化合物及び/又はラジカル重合性置換基を有する化合物と反応をさせて、硬化物を製造することに用いることができる。また、後述の一般式(3)で表されるエステル化合物を反応させてなるエポキシ樹脂の製造においても、一般式(2)で表されるエステル化合物をさらに含む樹脂原料用エステル化合物組成物を用いることができる。 The ester compound composition for resin raw material containing the ester compound represented by the general formula (3) and the ester compound represented by the general formula (2) can be used to produce a cured product by reacting it with a thermosetting compound and/or a compound having a radically polymerizable substituent, for example, as in a curable composition described later. Also, in the production of an epoxy resin obtained by reacting an ester compound represented by the general formula (3) described later, an ester compound composition for resin raw material further containing an ester compound represented by the general formula (2) can be used.
<一般式(3)で表されるエステル化合物を反応させてなるエポキシ樹脂>
 本発明の一般式(3)で表されるエステル化合物は、芳香族ジグリシジルエーテル化合物(例えば、ハイドロキノン、レゾルシノール、カテコール、一般式(5)で表されるビスフェノール化合物などの水酸基をグリシジル化した化合物)と反応させてエポキシ樹脂を得ることができる。分子末端にエポキシ基を有した状態で高分子量化を進行させやすくするために配合当量比で、(エポキシ基):(エステル基)=1~1.2:1の範囲である使用量を用いて反応することが好ましい。
 一般式(3)で表されるエステル化合物を反応させてなるエポキシ樹脂としては、芳香族ジヒドロキシ化合物とエピハロヒドリンを含む混合物とを反応させたエポキシ樹脂、又は芳香族ジヒドロキシ化合物とエピハロヒドリンを重合させてなるエポキシ基を有するフェノキシ樹脂と反応させたエポキシ樹脂も挙げられる。
 すなわち、一般式(3)で表されるエステル化合物を反応させてなるエポキシ樹脂は、芳香族ジグリシジルエーテル化合物、芳香族ジヒドロキシ化合物とエピハロヒドリンを含む混合物、及び、芳香族ジヒドロキシ化合物とエピハロヒドリンを重合させてなるエポキシ基を有するフェノキシ樹脂より選択されるいずれか1種と、一般式(3)で表されるエステル化合物を反応させてなるエポキシ樹脂が挙げられる。
<Epoxy resin obtained by reaction of an ester compound represented by general formula (3)>
The ester compound of the present invention represented by the general formula (3) can be reacted with an aromatic diglycidyl ether compound (e.g., a compound in which a hydroxyl group of a bisphenol compound represented by the general formula (5) or the like is glycidylated) to obtain an epoxy resin. In order to facilitate the progress of high molecular weight polymerization in a state in which an epoxy group is present at the molecular end, it is preferable to carry out the reaction using an amount in which the compounding equivalent ratio is in the range of (epoxy group):(ester group)=1 to 1.2:1.
Examples of epoxy resins obtained by reacting an ester compound represented by general formula (3) include epoxy resins obtained by reacting a mixture containing an aromatic dihydroxy compound and epihalohydrin, and epoxy resins obtained by reacting an aromatic dihydroxy compound with a phenoxy resin having an epoxy group obtained by polymerizing an aromatic dihydroxy compound with epihalohydrin.
That is, the epoxy resin obtained by reacting the ester compound represented by the general formula (3) may be an epoxy resin obtained by reacting the ester compound represented by the general formula (3) with any one selected from an aromatic diglycidyl ether compound, a mixture containing an aromatic dihydroxy compound and epihalohydrin, and a phenoxy resin having an epoxy group obtained by polymerizing an aromatic dihydroxy compound and epihalohydrin.
(一般式(3)で表されるエステル化合物を反応させてなるエポキシ樹脂の製造方法)
 一般式(3)で表されるエステル化合物を反応させてなるエポキシ樹脂の合成には触媒を用いてもよく、その触媒としては、エポキシ基とエステル基との反応を進めるような触媒能を持つ化合物であればどのようなものでもよい。例えば、第3級アミン、環状アミン類、イミダゾール類、有機リン化合物、第4級アンモニウム塩等が挙げられる。
 第3級アミンの具体例としては、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリエタノールアミン、ベンジルジメチルアミン、ピリジン、4-(ジメチルアミノ)ピリジン等が挙げられる。
 環状アミン類の具体例としては、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノネン等が挙げられる。
 イミダゾール類の具体例としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等が挙げられる。
 有機リン化合物の具体例としては、トリ-n-プロピルホスフィン、トリ-n-ブチルホスフィン、トリフェニルホスフィン、トリス(p-トリル)ホスフィン、トリシクロヘキシルホスフィン、トリ(tert-ブチル)ホスフィン、トリス(p-メトキシフェニル)ホスフィン、テトラメチルホスホニウムブロマイド、テトラメチルホスホニウムアイオダイド、テトラメチルホスホニウムハイドロオキサイド、テトラブチルホスホニウムハイドロオキサイド、トリメチルシクロヘキシルホスホニウムクロライド、トリメチルシクロヘキシルホスホニウムブロマイド、トリメチルベンジルホスホニウムクロライド、トリメチルベンジルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、トリフェニルメチルホスホニウムブロマイド、トリフェニルメチルホスホニウムアイオダイド、トリフェニルエチルホスホニウムクロライド、トリフェニルエチルホスホニウムブロマイド、トリフェニルエチルホスホニウムアイオダイド、トリフェニルベンジルホスホニウムクロライド、トリフェニルベンジルホスホニウムブロマイド等が挙げられる。
 以上に挙げた触媒の中でも4-(ジメチルアミノ)ピリジン、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノネン、2-エチル-4-メチルイミダゾール、トリス(p-トリル)ホスフィン、トリシクロヘキシルホスフィン、トリ(tert-ブチル)ホスフィン、トリス(p-メトキシフェニル)ホスフィンが好ましく、特に4-(ジメチルアミノ)ピリジン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノネン、2-エチル-4-メチルイミダゾールが好ましい。また、触媒は1種のみを使用することも、2種以上を組み合わせて使用することもできる。
 上記触媒の使用量は、一般式(3)で表されるエステル化合物を反応させてなるエポキシ樹脂を得る反応に用いる反応基質の使用量に対して、0.001~3重量%の範囲である。これらの化合物を触媒として使用した場合、得られる硬化性組成物中に触媒残渣として残留し、プリント配線板の絶縁特性を悪化させたり、組成物のポットライフを短縮させたりするおそれがあるので、窒素を含む化合物を触媒として使用した場合、硬化性組成物中の窒素の含有量は好ましくは2000ppm以下であり、更に好ましくは1000ppm以下である。また、リンを含む化合物を触媒として使用した場合、硬化性組成物中のリンの含有量は好ましくは2000ppm以下であり、更に好ましくは1000ppm以下である。
(Method for producing an epoxy resin by reacting an ester compound represented by general formula (3))
A catalyst may be used in the synthesis of an epoxy resin obtained by reacting an ester compound represented by the general formula (3), and the catalyst may be any compound having a catalytic ability to promote the reaction between an epoxy group and an ester group, such as tertiary amines, cyclic amines, imidazoles, organic phosphorus compounds, and quaternary ammonium salts.
Specific examples of tertiary amines include triethylamine, tri-n-propylamine, tri-n-butylamine, triethanolamine, benzyldimethylamine, pyridine, and 4-(dimethylamino)pyridine.
Specific examples of cyclic amines include 1,4-diazabicyclo[2,2,2]octane, 1,8-diazabicyclo[5,4,0]-7-undecene, and 1,5-diazabicyclo[4,3,0]-5-nonene.
Specific examples of the imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole.
Specific examples of the organic phosphorus compound include tri-n-propylphosphine, tri-n-butylphosphine, triphenylphosphine, tris(p-tolyl)phosphine, tricyclohexylphosphine, tri(tert-butyl)phosphine, tris(p-methoxyphenyl)phosphine, tetramethylphosphonium bromide, tetramethylphosphonium iodide, tetramethylphosphonium hydroxide, tetrabutylphosphonium hydroxide, trimethylcyclohexylphosphonium chloride, trimethylcyclohexylphosphonium bromide, trimethylbenzylphosphonium chloride, trimethylbenzylphosphonium bromide, tetraphenylphosphonium bromide, triphenylmethylphosphonium bromide, triphenylmethylphosphonium iodide, triphenylethylphosphonium chloride, triphenylethylphosphonium bromide, triphenylethylphosphonium iodide, triphenylbenzylphosphonium chloride, and triphenylbenzylphosphonium bromide.
Among the catalysts listed above, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2,2,2]octane, 1,8-diazabicyclo[5,4,0]-7-undecene, 1,5-diazabicyclo[4,3,0]-5-nonene, 2-ethyl-4-methylimidazole, tris(p-tolyl)phosphine, tricyclohexylphosphine, tri(tert-butyl)phosphine, and tris(p-methoxyphenyl)phosphine are preferred, and 4-(dimethylamino)pyridine, 1,8-diazabicyclo[5,4,0]-7-undecene, 1,5-diazabicyclo[4,3,0]-5-nonene, and 2-ethyl-4-methylimidazole are particularly preferred. The catalysts may be used alone or in combination of two or more.
The amount of the catalyst used is in the range of 0.001 to 3% by weight based on the amount of the reaction substrate used in the reaction to obtain an epoxy resin obtained by reacting an ester compound represented by general formula (3). When these compounds are used as catalysts, they remain as catalyst residues in the obtained curable composition, which may deteriorate the insulating properties of the printed wiring board or shorten the pot life of the composition. Therefore, when a nitrogen-containing compound is used as a catalyst, the nitrogen content in the curable composition is preferably 2000 ppm or less, more preferably 1000 ppm or less. When a phosphorus-containing compound is used as a catalyst, the phosphorus content in the curable composition is preferably 2000 ppm or less, more preferably 1000 ppm or less.
 本発明にかかる一般式(3)で表されるエステル化合物を反応させてなるエポキシ樹脂の製造時の合成反応の工程において、反応用の溶媒を用いてもよく、その溶媒としては、エポキシ樹脂を溶解するものであればどのようなものでもよい。例えば、芳香族炭化水素系溶媒、ケトン系溶媒、アミド系溶媒、グリコールエーテル系溶媒等が挙げられる。溶媒は1種のみで用いてもよく、2種以上を組み合わせて用いることもできる。
 芳香族炭化水素系溶媒の具体例としては、ベンゼン、トルエン、キシレン等が挙げられる。ケトン系溶媒の具体例としては、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、2-ヘプタノン、4-ヘプタノン、2-オクタノン、シクロヘキサノン、アセチルアセトン、ジオキサン等が挙げられる。
 アミド系溶媒の具体例としては、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチルピロリドン等が挙げられる。
 グリコールエーテル系溶媒の具体例としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。
In the synthesis reaction step of producing an epoxy resin obtained by reacting an ester compound represented by the general formula (3) according to the present invention, a reaction solvent may be used, and the solvent may be any solvent that dissolves the epoxy resin. Examples of the solvent include aromatic hydrocarbon solvents, ketone solvents, amide solvents, and glycol ether solvents. The solvent may be used alone or in combination of two or more.
Specific examples of aromatic hydrocarbon solvents include benzene, toluene, xylene, etc. Specific examples of ketone solvents include acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, 2-heptanone, 4-heptanone, 2-octanone, cyclohexanone, acetylacetone, dioxane, etc.
Specific examples of amide solvents include formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, 2-pyrrolidone, and N-methylpyrrolidone.
Specific examples of glycol ether solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, propylene glycol mono-n-butyl ether, and propylene glycol monomethyl ether acetate.
 エポキシ樹脂の製造時の合成反応における固形分濃度は10~95重量%が好ましい。また、反応中に高粘性生成物が生じたときは溶媒を追加添加して反応を続けることもできる。反応終了後、溶媒は必要に応じて、除去することもできるし、更に追加することもできる。
 エポキシ樹脂の製造における、重合反応は、使用する触媒が分解しない程度の反応温度で実施される。反応温度が高すぎると触媒が分解して反応が停止したり、生成するエポキシ樹脂が劣化したりするおそれがある。逆に温度が低すぎると十分に反応が進まないことがある。これらの理由から反応温度は、好ましくは50~250℃、より好ましくは120~230℃である。また、反応時間は通常1~12時間、好ましくは3~10時間である。アセトンやメチルエチルケトンのような低沸点溶媒を使用する場合には、オートクレーブを使用して高圧下で反応を行うことで反応温度を確保することができる。
The solid content in the synthesis reaction during the production of the epoxy resin is preferably 10 to 95% by weight. If a highly viscous product is produced during the reaction, the reaction can be continued by adding additional solvent. After the reaction is completed, the solvent can be removed or further added as necessary.
In the production of epoxy resins, the polymerization reaction is carried out at a reaction temperature at which the catalyst used does not decompose. If the reaction temperature is too high, the catalyst may decompose, causing the reaction to stop, or the epoxy resin produced may deteriorate. Conversely, if the temperature is too low, the reaction may not proceed sufficiently. For these reasons, the reaction temperature is preferably 50 to 250°C, more preferably 120 to 230°C. The reaction time is usually 1 to 12 hours, preferably 3 to 10 hours. When a low-boiling point solvent such as acetone or methyl ethyl ketone is used, the reaction temperature can be ensured by carrying out the reaction under high pressure using an autoclave.
 一般式(3)で表されるエステル化合物は、一般式(1)で表されるエステル化合物に含まれ、同様に使用することができるため、一般式(1)で表されるエステル化合物に関して以下説明する。
 以下、一般式(1)で表されるエステル化合物を、一般式(3)で表されるエステル化合物に読み替えた発明も開示される。
The ester compound represented by the general formula (3) is included in the ester compound represented by the general formula (1) and can be used in the same manner, so the ester compound represented by the general formula (1) will be described below.
Hereinafter, an invention in which the ester compound represented by general formula (1) is replaced with an ester compound represented by general formula (3) is also disclosed.
 本発明の硬化性組成物は、一般式(1)で表されるエステル化合物と、熱硬化性化合物及び/又はラジカル重合性置換基を有する化合物を含有する。すなわち、本発明の硬化性組成物の態様として、一般式(1)で表されるエステル化合物と熱硬化性化合物を含有する態様、一般式(1)で表されるエステル化合物とラジカル重合性置換基を有する化合物を含有する態様、一般式(1)で表されるエステル化合物と、熱硬化性化合物及びラジカル重合性置換基を有する化合物を含有する態様がある。
 本発明の硬化性組成物及びこれにより得られる硬化物の物性や性状が、不足するために補ったり、より向上させたりするために、本発明に接した当業者であれば、本発明の開示する範囲及び自明な範囲で、適宜、好適に、前記態様を選択したり、使用する化合物を選択又は変更したり、その使用量等を調整したりすることができる。
The curable composition of the present invention contains an ester compound represented by general formula (1), a thermosetting compound, and/or a compound having a radical polymerizable substituent. That is, the curable composition of the present invention may be embodied in the following manner: an ester compound represented by general formula (1) and a thermosetting compound, an ester compound represented by general formula (1) and a compound having a radical polymerizable substituent, or an ester compound represented by general formula (1), a thermosetting compound, and a compound having a radical polymerizable substituent.
In order to compensate for or further improve the deficiencies in the physical properties and characteristics of the curable composition of the present invention and the cured product obtained therefrom, a person skilled in the art who has come into contact with the present invention can appropriately and suitably select the above-mentioned embodiment, select or change the compounds to be used, and adjust the amounts used, etc., within the scope disclosed in the present invention and the scope that is self-evident.
 本発明の硬化性組成物で用いる一般式(1)で表されるエステル化合物は、その範囲に含まれる化合物のうち、1種のみを用いても良いし、2種以上を併用することもできる。 The ester compound represented by general formula (1) used in the curable composition of the present invention may be one type of compound falling within the scope of the formula, or two or more types may be used in combination.
 本発明の硬化性組成物で用いる一般式(1)で表されるエステル化合物は、さらに、一般式(2)で表されるエステル化合物を含む硬化性組成物の態様で使用することもできる。
 この場合、一般式(1)で表されるエステル化合物100重量部に対して、前記一般式(2)で表されるエステル化合物を0.1~400重量部含有することが好ましく、0.1~200重量部含むことがより好ましく、0.1~150重量部含有することがさらに好ましく、0.1~100重量部含有することがより好ましく、0.1~10重量部含有することが特に好ましい。
 別々に製造した一般式(1)で表されるエステル化合物と一般式(2)で表されるエステル化合物を所望の量となるように混合して製造することもできるし、一般式(2)で表されるエステル化合物を一般式(1)で表されるエステル化合物を製造するための中間体として使用して、所望の量となるように、一般式(8)で表されるフラン含有カルボン酸とのエステル交換反応の反応率を調整することによって製造することもできる。
The ester compound represented by general formula (1) used in the curable composition of the present invention can also be used in the form of a curable composition further containing an ester compound represented by general formula (2).
In this case, the ester compound represented by the general formula (2) is contained in an amount of preferably 0.1 to 400 parts by weight, more preferably 0.1 to 200 parts by weight, even more preferably 0.1 to 150 parts by weight, still more preferably 0.1 to 100 parts by weight, and particularly preferably 0.1 to 10 parts by weight, relative to 100 parts by weight of the ester compound represented by the general formula (1).
The ester compound represented by the general formula (1) and the ester compound represented by the general formula (2) which have been separately produced can be mixed to obtain a desired amount, or the ester compound represented by the general formula (2) can be used as an intermediate for producing the ester compound represented by the general formula (1) and the reaction rate of the transesterification reaction with the furan-containing carboxylic acid represented by the general formula (8) can be adjusted to obtain a desired amount.
<熱硬化性化合物>
 本発明の硬化性組成物で用いる熱硬化性化合物は、従来公知の熱硬化性化合物を用いることができるが、具体例を挙げると、エポキシ樹脂、ベンゾオキサジン化合物、ベンゾオキサジン樹脂、フェノール樹脂、ビスマレイミド化合物及びマレイミド樹脂からなる群より選択される1種以上の化合物である。
 エポキシ樹脂、ベンゾオキサジン化合物、ベンゾオキサジン樹脂、フェノール樹脂、ビスマレイミド化合物、マレイミド樹脂は、各々、従来公知の化合物を含むあらゆる化合物を使用することができる。
<Thermosetting Compound>
The thermosetting compound used in the curable composition of the present invention may be any conventionally known thermosetting compound. Specific examples include one or more compounds selected from the group consisting of epoxy resins, benzoxazine compounds, benzoxazine resins, phenolic resins, bismaleimide compounds, and maleimide resins.
As the epoxy resin, the benzoxazine compound, the benzoxazine resin, the phenolic resin, the bismaleimide compound, and the maleimide resin, any compound including conventionally known compounds can be used.
(エポキシ樹脂)
 エポキシ樹脂は、グリシジルエーテル化合物、芳香族ジグリシジルエーテル化合物(例えば、ハイドロキノン、レゾルシノール、カテコール、一般式(5)で表されるビスフェノール化合物などの水酸基をグリシジル化した化合物)や、芳香族ジヒドロキシ化合物(例えば、ハイドロキノン、レゾルシノール、カテコール、一般式(5)で表されるビスフェノール化合物など)とエピハロヒドリンを、活性エステル系硬化剤を使用し、または使用しないで重合させてなるエポキシ基を有するフェノキシ樹脂などもエポキシ樹脂に含み、従来公知の化合物を含むあらゆるエポキシ樹脂を使用することができる。かかる活性エステル系硬化剤として本発明にかかる一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂も使用でき、これを使用することが好ましい。これらは1種のみでも2種以上の混合体としても使用することができる。
 使用する従来公知のエポキシ樹脂としては、分子内に2個以上のエポキシ基を有するものであることが好ましく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビスフェノールZ型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノキシ樹脂等の、各種エポキシ樹脂を使用することができる。
 一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂と他のエポキシ樹脂と併用する場合、全エポキシ樹脂成分中、他のエポキシ樹脂の配合量は、好ましくは1重量%以上であり、より好ましくは5重量%以上であり、更に好ましくは10重量%以上であり、一方、好ましくは99重量%以下であり、より好ましくは95重量%以下であり、更に好ましくは90重量%以下である。他のエポキシ樹脂の割合が上記下限値以上であることにより、他のエポキシ樹脂を配合することによる物性向上効果を十分に得ることができる。一方、他のエポキシ樹脂の割合が前記上限値以下であることにより、本発明のエポキシ樹脂の効果が十分に発揮され、製膜性を得る観点から好ましい。
 一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂や、他のエポキシ樹脂の使用量は、溶媒が含まれる場合には、溶媒を除いた量に基づく。
(Epoxy resin)
The epoxy resin includes phenoxy resins having epoxy groups obtained by polymerizing glycidyl ether compounds, aromatic diglycidyl ether compounds (e.g., compounds obtained by glycidylating hydroxyl groups of hydroquinone, resorcinol, catechol, bisphenol compounds represented by general formula (5) and the like), aromatic dihydroxy compounds (e.g., hydroquinone, resorcinol, catechol, bisphenol compounds represented by general formula (5) and the like) and epihalohydrin with or without the use of an active ester-based curing agent, and any epoxy resin including a conventionally known compound can be used. As such an active ester-based curing agent, an epoxy resin obtained by reacting an ester compound represented by general formula (1) according to the present invention can also be used, and it is preferable to use this. These can be used alone or as a mixture of two or more kinds.
The conventionally known epoxy resin used is preferably one having two or more epoxy groups in the molecule. For example, various epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, bisphenol AF type epoxy resin, bisphenol Z type epoxy resin, naphthalene type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, phenol aralkyl type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, dicyclopentadiene type epoxy resin, and phenoxy resin can be used.
When the epoxy resin obtained by reacting the ester compound represented by the general formula (1) is used in combination with another epoxy resin, the amount of the other epoxy resin in the total epoxy resin component is preferably 1% by weight or more, more preferably 5% by weight or more, and even more preferably 10% by weight or more, while it is preferably 99% by weight or less, more preferably 95% by weight or less, and even more preferably 90% by weight or less. By having the ratio of the other epoxy resin be equal to or more than the above lower limit, the effect of improving the physical properties by blending the other epoxy resin can be sufficiently obtained. On the other hand, by having the ratio of the other epoxy resin be equal to or less than the above upper limit, the effect of the epoxy resin of the present invention is sufficiently exhibited, which is preferable from the viewpoint of obtaining film formability.
The amount of the epoxy resin obtained by reacting the ester compound represented by the general formula (1) or other epoxy resin used is based on the amount excluding the solvent when the solvent is contained.
(一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂)
 本発明の一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂は、例えば、芳香族ジグリシジルエーテル化合物(例えば、ハイドロキノン、レゾルシノール、カテコール、一般式(5)で表されるビスフェノール化合物などの水酸基をグリシジル化した化合物)と一般式(1)で表されるエステル化合物を反応させて得ることができる。分子末端にエポキシ基を有した状態で高分子量化を進行させやすくするために配合当量比で、(エポキシ基):(エステル基)=1~1.2:1の範囲である使用量を用いて反応することが好ましい。
 その他の方法として、芳香族ジヒドロキシ化合物とエピハロヒドリンを含む混合物と一般式(1)で表されるエステル化合物を反応させる方法、芳香族ジヒドロキシ化合物とエピハロヒドリンを重合させてなるエポキシ基を有するフェノキシ樹脂と一般式(1)で表されるエステル化合物を反応させる方法も挙げられる。
 すなわち、一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂は、芳香族ジグリシジルエーテル化合物、芳香族ジヒドロキシ化合物とエピハロヒドリンを含む混合物、及び、芳香族ジヒドロキシ化合物とエピハロヒドリンを重合させてなるエポキシ基を有するフェノキシ樹脂より選択されるいずれか1種と、一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂が挙げられる。
(Epoxy resin obtained by reacting an ester compound represented by general formula (1))
The epoxy resin obtained by reacting the ester compound represented by the general formula (1) of the present invention can be obtained, for example, by reacting an aromatic diglycidyl ether compound (e.g., a compound in which a hydroxyl group is glycidylated, such as hydroquinone, resorcinol, catechol, or a bisphenol compound represented by the general formula (5)) with the ester compound represented by the general formula (1). In order to facilitate the progress of high molecular weight in a state in which the epoxy group is present at the molecular end, it is preferable to carry out the reaction using an amount used in which the compounding equivalent ratio is in the range of (epoxy group):(ester group)=1 to 1.2:1.
Other examples of the method include a method of reacting a mixture containing an aromatic dihydroxy compound and epihalohydrin with an ester compound represented by general formula (1), and a method of reacting a phenoxy resin having an epoxy group obtained by polymerizing an aromatic dihydroxy compound and epihalohydrin with an ester compound represented by general formula (1).
That is, the epoxy resin obtained by reacting the ester compound represented by the general formula (1) may be an epoxy resin obtained by reacting the ester compound represented by the general formula (1) with any one selected from an aromatic diglycidyl ether compound, a mixture containing an aromatic dihydroxy compound and epihalohydrin, and a phenoxy resin having an epoxy group obtained by polymerizing an aromatic dihydroxy compound and epihalohydrin.
 一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂の合成には触媒を用いてもよく、その触媒としては、エポキシ基とエステル基との反応を進めるような触媒能を持つ化合物であればどのようなものでもよい。例えば、第3級アミン、環状アミン類、イミダゾール類、有機リン化合物、第4級アンモニウム塩等が挙げられる。
 第3級アミンの具体例としては、トリエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、トリエタノールアミン、ベンジルジメチルアミン、ピリジン、4-(ジメチルアミノ)ピリジン等が挙げられる。
 環状アミン類の具体例としては、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノネン等が挙げられる。
 イミダゾール類の具体例としては、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール等が挙げられる。
 有機リン化合物の具体例としては、トリ-n-プロピルホスフィン、トリ-n-ブチルホスフィン、トリフェニルホスフィン、トリス(p-トリル)ホスフィン、トリシクロヘキシルホスフィン、トリ(tert-ブチル)ホスフィン、トリス(p-メトキシフェニル)ホスフィン、テトラメチルホスホニウムブロマイド、テトラメチルホスホニウムアイオダイド、テトラメチルホスホニウムハイドロオキサイド、テトラブチルホスホニウムハイドロオキサイド、トリメチルシクロヘキシルホスホニウムクロライド、トリメチルシクロヘキシルホスホニウムブロマイド、トリメチルベンジルホスホニウムクロライド、トリメチルベンジルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド、トリフェニルメチルホスホニウムブロマイド、トリフェニルメチルホスホニウムアイオダイド、トリフェニルエチルホスホニウムクロライド、トリフェニルエチルホスホニウムブロマイド、トリフェニルエチルホスホニウムアイオダイド、トリフェニルベンジルホスホニウムクロライド、トリフェニルベンジルホスホニウムブロマイド等が挙げられる。
 以上に挙げた触媒の中でも4-(ジメチルアミノ)ピリジン、1,4-ジアザビシクロ[2,2,2]オクタン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノネン、2-エチル-4-メチルイミダゾール、トリス(p-トリル)ホスフィン、トリシクロヘキシルホスフィン、トリ(tert-ブチル)ホスフィン、トリス(p-メトキシフェニル)ホスフィンが好ましく、特に4-(ジメチルアミノ)ピリジン、1,8-ジアザビシクロ[5,4,0]-7-ウンデセン、1,5-ジアザビシクロ[4,3,0]-5-ノネン、2-エチル-4-メチルイミダゾールが好ましい。また、触媒は1種のみを使用することも、2種以上を組み合わせて使用することもできる。
 上記触媒の使用量は、一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂を得る反応に用いる反応基質の使用量に対して、0.001~3重量%の範囲である。これらの化合物を触媒として使用した場合、得られる硬化性組成物中に触媒残渣として残留し、プリント配線板の絶縁特性を悪化させたり、組成物のポットライフを短縮させたりするおそれがあるので、窒素を含む化合物を触媒として使用した場合、硬化性組成物中の窒素の含有量は好ましくは2000ppm以下であり、更に好ましくは1000ppm以下である。また、リンを含む化合物を触媒として使用した場合、硬化性組成物中のリンの含有量は好ましくは2000ppm以下であり、更に好ましくは1000ppm以下である。
A catalyst may be used in the synthesis of an epoxy resin obtained by reacting an ester compound represented by general formula (1), and the catalyst may be any compound having a catalytic ability to promote the reaction between an epoxy group and an ester group, such as tertiary amines, cyclic amines, imidazoles, organic phosphorus compounds, and quaternary ammonium salts.
Specific examples of tertiary amines include triethylamine, tri-n-propylamine, tri-n-butylamine, triethanolamine, benzyldimethylamine, pyridine, and 4-(dimethylamino)pyridine.
Specific examples of cyclic amines include 1,4-diazabicyclo[2,2,2]octane, 1,8-diazabicyclo[5,4,0]-7-undecene, and 1,5-diazabicyclo[4,3,0]-5-nonene.
Specific examples of the imidazoles include 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole.
Specific examples of the organic phosphorus compound include tri-n-propylphosphine, tri-n-butylphosphine, triphenylphosphine, tris(p-tolyl)phosphine, tricyclohexylphosphine, tri(tert-butyl)phosphine, tris(p-methoxyphenyl)phosphine, tetramethylphosphonium bromide, tetramethylphosphonium iodide, tetramethylphosphonium hydroxide, tetrabutylphosphonium hydroxide, trimethylcyclohexylphosphonium chloride, trimethylcyclohexylphosphonium bromide, trimethylbenzylphosphonium chloride, trimethylbenzylphosphonium bromide, tetraphenylphosphonium bromide, triphenylmethylphosphonium bromide, triphenylmethylphosphonium iodide, triphenylethylphosphonium chloride, triphenylethylphosphonium bromide, triphenylethylphosphonium iodide, triphenylbenzylphosphonium chloride, and triphenylbenzylphosphonium bromide.
Among the catalysts listed above, 4-(dimethylamino)pyridine, 1,4-diazabicyclo[2,2,2]octane, 1,8-diazabicyclo[5,4,0]-7-undecene, 1,5-diazabicyclo[4,3,0]-5-nonene, 2-ethyl-4-methylimidazole, tris(p-tolyl)phosphine, tricyclohexylphosphine, tri(tert-butyl)phosphine, and tris(p-methoxyphenyl)phosphine are preferred, and 4-(dimethylamino)pyridine, 1,8-diazabicyclo[5,4,0]-7-undecene, 1,5-diazabicyclo[4,3,0]-5-nonene, and 2-ethyl-4-methylimidazole are particularly preferred. The catalysts may be used alone or in combination of two or more.
The amount of the catalyst used is in the range of 0.001 to 3% by weight based on the amount of the reaction substrate used in the reaction to obtain an epoxy resin obtained by reacting an ester compound represented by general formula (1). When these compounds are used as catalysts, they remain as catalyst residues in the obtained curable composition, which may deteriorate the insulating properties of the printed wiring board or shorten the pot life of the composition. Therefore, when a compound containing nitrogen is used as a catalyst, the nitrogen content in the curable composition is preferably 2000 ppm or less, more preferably 1000 ppm or less. When a compound containing phosphorus is used as a catalyst, the phosphorus content in the curable composition is preferably 2000 ppm or less, more preferably 1000 ppm or less.
 本発明にかかる一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂の製造時の合成反応の工程において、反応用の溶媒を用いてもよく、その溶媒としては、エポキシ樹脂を溶解するものであれば制限はない。例えば、芳香族炭化水素系溶媒、ケトン系溶媒、アミド系溶媒、グリコールエーテル系溶媒等が挙げられる。溶媒は1種のみで用いてもよく、2種以上を組み合わせて用いることもできる。
 芳香族炭化水素系溶媒の具体例としては、ベンゼン、トルエン、キシレン等が挙げられる。ケトン系溶媒の具体例としては、アセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、2-ヘプタノン、4-ヘプタノン、2-オクタノン、シクロヘキサノン、アセチルアセトン、ジオキサン等が挙げられる。
 アミド系溶媒の具体例としては、ホルムアミド、N-メチルホルムアミド、N,N-ジメチルホルムアミド、アセトアミド、N-メチルアセトアミド、N,N-ジメチルアセトアミド、2-ピロリドン、N-メチルピロリドン等が挙げられる。
 グリコールエーテル系溶媒の具体例としては、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノ-n-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノ-n-ブチルエーテル、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。
In the synthesis reaction step of producing an epoxy resin obtained by reacting an ester compound represented by the general formula (1) according to the present invention, a solvent for the reaction may be used, and the solvent is not limited as long as it dissolves the epoxy resin. For example, aromatic hydrocarbon solvents, ketone solvents, amide solvents, glycol ether solvents, etc. may be mentioned. Only one type of solvent may be used, or two or more types may be used in combination.
Specific examples of aromatic hydrocarbon solvents include benzene, toluene, xylene, etc. Specific examples of ketone solvents include acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, 2-heptanone, 4-heptanone, 2-octanone, cyclohexanone, acetylacetone, dioxane, etc.
Specific examples of amide solvents include formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide, N,N-dimethylacetamide, 2-pyrrolidone, and N-methylpyrrolidone.
Specific examples of glycol ether solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol dimethyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether, propylene glycol mono-n-butyl ether, and propylene glycol monomethyl ether acetate.
 エポキシ樹脂の製造時の合成反応における固形分濃度は10~95重量%が好ましい。また、反応中に高粘性生成物が生じたときは溶媒を追加添加して反応を続けることもできる。反応終了後、溶媒は必要に応じて、除去することもできるし、更に追加することもできる。
 エポキシ樹脂の製造における、重合反応は、使用する触媒が分解しない程度の反応温度で実施される。反応温度が高すぎると触媒が分解して反応が停止したり、生成するエポキシ樹脂が劣化したりするおそれがある。逆に温度が低すぎると十分に反応が進まないことがある。これらの理由から反応温度は、好ましくは50~250℃、より好ましくは120~230℃である。また、反応時間は通常1~12時間、好ましくは3~10時間である。アセトンやメチルエチルケトンのような低沸点溶媒を使用する場合には、オートクレーブを使用して高圧下で反応を行うことで常圧下における沸点よりも高い反応温度を確保することができる。
The solid content in the synthesis reaction during the production of the epoxy resin is preferably 10 to 95% by weight. If a highly viscous product is produced during the reaction, the reaction can be continued by adding additional solvent. After the reaction is completed, the solvent can be removed or further added as necessary.
In the production of epoxy resins, the polymerization reaction is carried out at a reaction temperature at which the catalyst used does not decompose. If the reaction temperature is too high, the catalyst may decompose, causing the reaction to stop, or the epoxy resin produced may deteriorate. Conversely, if the temperature is too low, the reaction may not proceed sufficiently. For these reasons, the reaction temperature is preferably 50 to 250°C, more preferably 120 to 230°C. The reaction time is usually 1 to 12 hours, preferably 3 to 10 hours. When a low-boiling point solvent such as acetone or methyl ethyl ketone is used, a reaction temperature higher than the boiling point under normal pressure can be ensured by carrying out the reaction under high pressure using an autoclave.
<ラジカル重合性置換基を有する化合物>
 本発明の硬化性組成物で用いるラジカル重合性置換基を有する化合物は、従来公知の化合物を用いることができるが、具体例を挙げると、ジアリルフタレート樹脂、ジアリルフタレート化合物、ラジカル重合性置換基を有するポリフェニレンエーテル樹脂及びビニル化合物からなる群より選択される1種以上の化合物である。
 ジアリルフタレート樹脂、ジアリルフタレート化合物、ラジカル重合性置換基を有するポリフェニレンエーテル樹脂及びビニル化合物は、従来公知の化合物を含むあらゆる化合物を使用することができる。
<Compound Having Radically Polymerizable Substituent>
The compound having a radically polymerizable substituent used in the curable composition of the present invention may be any conventionally known compound. Specific examples include one or more compounds selected from the group consisting of diallyl phthalate resins, diallyl phthalate compounds, polyphenylene ether resins having a radically polymerizable substituent, and vinyl compounds.
The diallyl phthalate resin, the diallyl phthalate compound, the polyphenylene ether resin having a radically polymerizable substituent, and the vinyl compound may be any compound including conventionally known compounds.
<熱硬化性化合物及び/又はラジカル重合性置換基を有する化合物の含有量>
 本発明の硬化性組成物において、熱硬化性化合物及び/又はラジカル重合性置換基を有する化合物の含有量は、一般式(1)で表されるエステル化合物が100重量部に対して、50~500重量部の範囲で含有することが好ましく、50~400重量部の範囲で含有することがより好ましく、50~300重量部の範囲で含有することがさらに好ましく、50~200重量部の範囲で含有することが特に好ましい。
 すなわち、本発明の硬化性組成物の態様として、一般式(1)で表されるエステル化合物と熱硬化性化合物を含有する態様の場合、一般式(1)で表されるエステル化合物が100重量部に対して、熱硬化性化合物を上記範囲で含むことを意味し、一般式(1)で表されるエステル化合物とラジカル重合性置換基を有する化合物を含有する態様の場合、一般式(1)で表されるエステル化合物が100重量部に対して、ラジカル重合性置換基を有する化合物を上記範囲で含むことを意味し、一般式(1)で表されるエステル化合物と、熱硬化性化合物及びラジカル重合性置換基を有する化合物を含有する態様の場合、一般式(1)で表されるエステル化合物が100重量部に対して、熱硬化性化合物及びラジカル重合性置換基を有する化合物の合計量として上記範囲で含むことを意味する。
 なお、一般式(2)で表されるエステル化合物を併用する場合は、一般式(1)で表されるエステル化合物と一般式(2)で表されるエステル化合物の合計量100重量部に対する含有量に読み替える。
<Content of Thermosetting Compound and/or Compound Having Radically Polymerizable Substituent>
In the curable composition of the present invention, the content of the thermosetting compound and/or the compound having a radically polymerizable substituent is preferably in the range of 50 to 500 parts by weight, more preferably in the range of 50 to 400 parts by weight, still more preferably in the range of 50 to 300 parts by weight, and particularly preferably in the range of 50 to 200 parts by weight, relative to 100 parts by weight of the ester compound represented by general formula (1).
That is, as an embodiment of the curable composition of the present invention, in the case of an embodiment containing an ester compound represented by general formula (1) and a thermosetting compound, it means that the ester compound represented by general formula (1) contains the thermosetting compound in the above range per 100 parts by weight, in the case of an embodiment containing an ester compound represented by general formula (1) and a compound having a radical polymerizable substituent, it means that the ester compound represented by general formula (1) contains the compound having a radical polymerizable substituent in the above range per 100 parts by weight, and in the case of an embodiment containing an ester compound represented by general formula (1), a thermosetting compound, and a compound having a radical polymerizable substituent, it means that the ester compound represented by general formula (1) contains the thermosetting compound and the compound having a radical polymerizable substituent in the above range as a total amount per 100 parts by weight.
In addition, when an ester compound represented by general formula (2) is used in combination, the content is read as the content per 100 parts by weight of the total amount of the ester compound represented by general formula (1) and the ester compound represented by general formula (2).
<添加剤>
 本発明の硬化性組成物は、必要に応じて、さらに、紫外線防止剤、酸化防止剤、カップリング剤、可塑剤、フラックス、難燃剤、着色剤、分散剤、乳化剤、低弾性化剤、希釈剤、消泡剤、イオントラップ剤、無機フィラー、有機フィラー、等の各種添加剤を含むことができる。使用する添加剤の種類や、使用する量は、その使用目的に応じて、適宜調整することができる。
<Additives>
The curable composition of the present invention may further contain various additives, as necessary, such as an ultraviolet inhibitor, an antioxidant, a coupling agent, a plasticizer, a flux, a flame retardant, a colorant, a dispersant, an emulsifier, an elasticity reducing agent, a diluent, an antifoaming agent, an ion trapping agent, an inorganic filler, an organic filler, etc. The type and amount of the additives used may be appropriately adjusted depending on the purpose of use.
<硬化剤>
 本発明の硬化性組成物は、さらに、硬化剤を含むことができる。
 本発明の硬化性組成物の成分としてエポキシ樹脂を使用する場合において、硬化剤とは、エポキシ樹脂のエポキシ基間の架橋反応及び/又は鎖長延長反応に寄与する物質を意味することを含む。かかる場合に、通常、「硬化促進剤」と呼ばれるものであってもエポキシ樹脂のエポキシ基間の架橋反応及び/又は鎖長延長反応に寄与する物質であれば、硬化剤に含まれる。
<Curing Agent>
The curable composition of the present invention may further comprise a curing agent.
When an epoxy resin is used as a component of the curable composition of the present invention, the term "curing agent" includes the meaning of a substance that contributes to the crosslinking reaction and/or chain extension reaction between epoxy groups of the epoxy resin. In this case, even a substance that is usually called a "curing accelerator" is included in the curing agent as long as it contributes to the crosslinking reaction and/or chain extension reaction between epoxy groups of the epoxy resin.
 硬化剤の使用量は、使用する一般式(1)で表されるエステル化合物と、熱硬化性樹脂又はラジカル重合性置換基を有する化合物の総量100重量部に対して、好ましくは0.1~100重量部である。また、より好ましくは80重量部以下であり、更に好ましくは60重量部以下である。
 用いる硬化剤には、特に制限はなく、一般的に熱硬化性樹脂又はラジカル重合性置換基を有する化合物の硬化剤として知られているものはすべて使用できる。
The amount of the curing agent used is preferably 0.1 to 100 parts by weight, more preferably 80 parts by weight or less, and even more preferably 60 parts by weight or less, based on 100 parts by weight of the total amount of the ester compound represented by general formula (1) and the thermosetting resin or the compound having a radically polymerizable substituent.
The curing agent to be used is not particularly limited, and any agent generally known as a curing agent for a thermosetting resin or a compound having a radically polymerizable substituent can be used.
 エポキシ樹脂を使用する場合の本発明の硬化性組成物に用いる硬化剤の具体例としては、耐熱性を高める観点から好ましいものとしてフェノール系硬化剤、アミド系硬化剤、イミダゾール類及び活性エステル系硬化剤等が挙げられる。以下、フェノール系硬化剤、アミド系硬化剤、イミダゾール類、活性エステル系硬化剤及びその他の使用可能な硬化剤の例を挙げる。 Specific examples of curing agents used in the curable composition of the present invention when an epoxy resin is used include phenol-based curing agents, amide-based curing agents, imidazoles, and active ester-based curing agents, which are preferred from the viewpoint of increasing heat resistance. Examples of phenol-based curing agents, amide-based curing agents, imidazoles, active ester-based curing agents, and other usable curing agents are listed below.
(フェノール系硬化剤)
 硬化剤としてフェノール系硬化剤を用いることが、得られる硬化性組成物の取り扱い性と、硬化後の硬化物の耐熱性を向上させる観点から好ましい。フェノール系硬化剤の具体例としては、ビスフェノールA、ビスフェノールF、4,4’-ジヒドロキシジフェニルメタン、4,4’-ジヒドロキシジフェニルエーテル、1,4-ビス(4-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン、4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシジフェニルケトン、4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシビフェニル、2,2’-ジヒドロキシビフェニル、10-(2,5-ジヒドロキシフェニル)-10H-9-オキサ-10-ホスファフェナンスレン-10-オキサイド、フェノールノボラック、ビスフェノールAノボラック、o-クレゾールノボラック、m-クレゾールノボラック、p-クレゾールノボラック、キシレノールノボラック、ポリ-p-ヒドロキシスチレン、ハイドロキノン、レゾルシン、カテコール、t-ブチルカテコール、t-ブチルハイドロキノン、フルオログリシノール、ピロガロール、t-ブチルピロガロール、アリル化ピロガロール、ポリアリル化ピロガロール、1,2,4-ベンゼントリオール、2,3,4-トリヒドロキシベンゾフェノン、1,2-ジヒドロキシナフタレン、1,3-ジヒドロキシナフタレン、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、1,8-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,4-ジヒドロキシナフタレン、2,5-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,8-ジヒドロキシナフタレン、上記ジヒドロキシナフタレンのアリル化物又はポリアリル化物、アリル化ビスフェノールA、アリル化ビスフェノールF、アリル化フェノールノボラック、アリル化ピロガロール等が例示される。
(Phenol-based hardener)
It is preferable to use a phenol-based curing agent as the curing agent from the viewpoints of improving the handleability of the resulting curable composition and the heat resistance of the cured product after curing. Specific examples of phenol-based hardeners include bisphenol A, bisphenol F, 4,4'-dihydroxydiphenylmethane, 4,4'-dihydroxydiphenyl ether, 1,4-bis(4-hydroxyphenoxy)benzene, 1,3-bis(4-hydroxyphenoxy)benzene, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 10-(2,5-dihydroxyphenyl)-10H-9-oxa-10-phosphaphenanthrene-10-oxide, phenol novolac, bisphenol A novolac, o-cresol novolac, m-cresol novolac, p-cresol novolac, xylenol novolac, poly-p-hydroxystyrene, hydroquinone, resorcinol, catechol, t-butylcatechol, Examples of the allylated pyrogallol include t-butyl hydroquinone, fluoroglycinol, pyrogallol, t-butyl pyrogallol, allylated pyrogallol, polyallylated pyrogallol, 1,2,4-benzenetriol, 2,3,4-trihydroxybenzophenone, 1,2-dihydroxynaphthalene, 1,3-dihydroxynaphthalene, 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 1,8-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,4-dihydroxynaphthalene, 2,5-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,8-dihydroxynaphthalene, allylated products or polyallylated products of the above dihydroxynaphthalenes, allylated bisphenol A, allylated bisphenol F, allylated phenol novolak, and allylated pyrogallol.
 以上で挙げたフェノール系硬化剤は1種のみで用いても、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。また、硬化剤がフェノール系硬化剤の場合は、エポキシ樹脂中のエポキシ基に対する硬化剤中の官能基の当量比で0.8~1.5の範囲となるように用いることが好ましい。この範囲内であると未反応のエポキシ基や硬化剤の官能基が残留しにくくなるために好ましい。 The phenol-based hardeners listed above may be used alone or in any combination and ratio of two or more. When the hardener is a phenol-based hardener, it is preferable to use it so that the equivalent ratio of the functional groups in the hardener to the epoxy groups in the epoxy resin is in the range of 0.8 to 1.5. This range is preferable because it is less likely that unreacted epoxy groups or functional groups of the hardener will remain.
(アミド系硬化剤)
 硬化剤としてアミド系硬化剤を用いることが、耐熱性等の向上の観点から好ましい。硬化剤としてアミド系硬化剤を用いることにより、得られる硬化性組成物の耐熱性の向上の観点から好ましい。アミド系硬化剤としてはジシアンジアミド及びその誘導体、ポリアミド樹脂等が挙げられる。アミド系硬化剤の具体例としては、「LUCKAMIDE」N-153-IM-65、EA-330、TD-960(DIC株式会社製)などが挙げられる。
(Amide-based hardener)
It is preferable to use an amide-based curing agent as the curing agent from the viewpoint of improving heat resistance, etc. It is preferable to use an amide-based curing agent as the curing agent from the viewpoint of improving the heat resistance of the obtained curable composition. Examples of the amide-based curing agent include dicyandiamide and its derivatives, polyamide resins, etc. Specific examples of the amide-based curing agent include "LUCKAMIDE" N-153-IM-65, EA-330, and TD-960 (manufactured by DIC Corporation).
 以上に挙げたアミド系硬化剤は1種のみで用いても、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。また、アミド系硬化剤は、硬化性組成物に用いるエポキシ樹脂とアミド系硬化剤との合計に対して0.1~20重量%の範囲で用いることが好ましい。 The amide-based hardeners listed above may be used alone or in any combination and ratio of two or more. The amide-based hardener is preferably used in an amount ranging from 0.1 to 20% by weight based on the total weight of the epoxy resin and amide-based hardener used in the hardenable composition.
(イミダゾール類)
 硬化剤としてイミダゾール類を用いることが、硬化反応を十分に進行させ、耐熱性を向上させる観点から好ましい。イミダゾール類としては、2-フェニルイミダゾール、2-エチル-4(5)-メチルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、及びエポキシ樹脂と上記イミダゾール類との付加体等が例示される。なお、イミダゾール類は触媒能を有するため、一般的には後述する硬化促進剤にも分類されうるが、本発明においては硬化剤として分類するものとする。
 以上に挙げたイミダゾール類は1種のみでも、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。また、イミダゾール類は、硬化性組成物に用いるエポキシ樹脂とイミダゾール類との合計に対して0.1~20重量%の範囲で用いることが好ましい。
(Imidazoles)
It is preferable to use imidazoles as the curing agent from the viewpoint of sufficiently progressing the curing reaction and improving heat resistance. Examples of imidazoles include 2-phenylimidazole, 2-ethyl-4(5)-methylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6-[2'-methylimidazolyl- Examples of the imidazoles include 2,4-diamino-6-[2'-ethyl-4'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-ethyl-4'-methylimidazolyl-(1')]-ethyl-s-triazine, 2,4-diamino-6-[2'-methylimidazolyl-(1')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, and adducts of epoxy resins and the above imidazoles. Since imidazoles have catalytic activity, they can generally be classified as curing accelerators, which will be described later, but in the present invention, they are classified as curing agents.
The imidazoles listed above may be used alone or in any combination and ratio of two or more. The imidazoles are preferably used in an amount of 0.1 to 20% by weight based on the total weight of the epoxy resin and the imidazoles used in the curable composition.
(活性エステル系硬化剤)
 硬化剤として活性エステル系硬化剤を用いることは、得られる硬化物の吸水性を低下させる観点から好ましい。活性エステル系硬化剤としては、フェノールエステル類、チオフェノールエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の反応活性の高いエステル基を1分子中に2個以上有する化合物が好ましく、中でも、カルボン酸化合物とフェノール性水酸基を有する芳香族化合物とを反応させたフェノールエステル類がより好ましい。カルボン酸化合物としては、具体的には、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸等が挙げられる。フェノール性水酸基を有する芳香族化合物としては、カテコール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラック等が挙げられる。また、本発明にかかる一般式(2)で表されるエステル化合物も使用することができる。
 以上に挙げた活性エステル系硬化剤は1種のみでも、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。また、活性エステル系硬化剤は、硬化性組成物に用いるエポキシ樹脂中のエポキシ基に対する硬化剤中の活性エステル基の当量比で0.2~2.0の範囲となるように用いることが好ましい。
(Active ester curing agent)
The use of an active ester-based curing agent as a curing agent is preferable from the viewpoint of reducing the water absorption of the obtained cured product. As the active ester-based curing agent, a compound having two or more highly reactive ester groups in one molecule, such as phenol esters, thiophenol esters, N-hydroxyamine esters, and esters of heterocyclic hydroxy compounds, is preferable, and among them, phenol esters obtained by reacting a carboxylic acid compound with an aromatic compound having a phenolic hydroxyl group are more preferable. Specific examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid. Examples of aromatic compounds having a phenolic hydroxyl group include catechol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol, dicyclopentadienyldiphenol, and phenol novolac. In addition, an ester compound represented by the general formula (2) according to the present invention can also be used.
The active ester curing agents listed above may be used alone or in any combination and ratio of two or more. The active ester curing agent is preferably used so that the equivalent ratio of the active ester group in the curing agent to the epoxy group in the epoxy resin used in the curable composition is in the range of 0.2 to 2.0.
(その他の硬化剤)
 本発明の硬化性組成物に用いることのできる硬化剤として、フェノール系硬化剤、アミド系硬化剤及びイミダゾール類以外のものとしては、例えば、アミン系硬化剤(ただし、第3級アミンを除く。)、酸無水物系硬化剤、第3級アミン、有機ホスフィン類、ホスホニウム塩、テトラフェニルボロン塩、有機酸ジヒドラジド、ハロゲン化ホウ素アミン錯体、ポリメルカプタン系硬化剤、イソシアネート系硬化剤、ブロックイソシアネート系硬化剤等が挙げられる。以上で挙げたその他の硬化剤は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。
 また、ラジカル重合性基を有する化合物を使用する場合に用いることができる硬化剤としては、例えば、イミダゾール類、第3級アミン類、第4級アンモニウム塩類、三フッ化ホウ素アミン錯体、オルガノホスフィン類、オルガノホスホニウム塩等のイオン触媒、ジ-t-ブチルパーオキサイド、ジラウロイルパーオキシド、ジベンゾイルパーオキシド、ジクミルパーオキシド、t-ブチルパーオキシベンゾエート等の有機過酸化物、ヒドロペルオキシド、アゾイソブチロニトリル等のラジカル重合開始剤などが挙げられる。
(Other hardeners)
Curing agents that can be used in the curable composition of the present invention, other than phenol-based curing agents, amide-based curing agents, and imidazoles, include, for example, amine-based curing agents (excluding tertiary amines), acid anhydride-based curing agents, tertiary amines, organic phosphines, phosphonium salts, tetraphenylboron salts, organic acid dihydrazides, boron halide amine complexes, polymercaptan-based curing agents, isocyanate-based curing agents, blocked isocyanate-based curing agents, etc. The other curing agents listed above may be used alone or in any combination and ratio of two or more.
Furthermore, examples of the curing agent that can be used when a compound having a radical polymerizable group is used include ionic catalysts such as imidazoles, tertiary amines, quaternary ammonium salts, boron trifluoride amine complexes, organophosphines, and organophosphonium salts; organic peroxides such as di-t-butyl peroxide, dilauroyl peroxide, dibenzoyl peroxide, dicumyl peroxide, and t-butyl peroxybenzoate; and radical polymerization initiators such as hydroperoxides and azoisobutyronitrile.
 本発明の硬化性組成物において、熱硬化性化合物の1成分として、一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂と他の化合物(一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂以外の熱硬化性化合物やラジカル重合性置換基を有する化合物)を用いる場合、固形分としての全エポキシ樹脂成分中、他の化合物の配合量は、好ましくは1重量%以上であり、より好ましくは5重量%以上であり、更に好ましくは10重量%以上であり、一方、好ましくは99重量%以下であり、より好ましくは95重量%以下であり、更に好ましくは90重量%以下である。他の化合物の割合が上記下限値以上であることにより、他の化合物を配合することによる物性向上効果を十分に得ることができる。一方、他の化合物の割合が前記上限値以下であることにより、本発明のエポキシ樹脂の効果が十分に発揮され、製膜性を得る観点から好ましい。 In the curable composition of the present invention, when an epoxy resin obtained by reacting an ester compound represented by general formula (1) and another compound (a thermosetting compound other than an epoxy resin obtained by reacting an ester compound represented by general formula (1) or a compound having a radical polymerizable substituent) are used as one component of the thermosetting compound, the amount of the other compound in the total epoxy resin component as a solid content is preferably 1% by weight or more, more preferably 5% by weight or more, and even more preferably 10% by weight or more, while it is preferably 99% by weight or less, more preferably 95% by weight or less, and even more preferably 90% by weight or less. By having the ratio of the other compound be equal to or more than the above lower limit, the effect of improving physical properties by blending the other compound can be sufficiently obtained. On the other hand, by having the ratio of the other compound be equal to or less than the above upper limit, the effect of the epoxy resin of the present invention is sufficiently exhibited, which is preferable from the viewpoint of obtaining film formability.
<溶剤>
 本発明の硬化性組成物には、塗膜形成時の取り扱い時に、硬化性組成物の粘度を適度に調整するために、さらに、溶剤を配合して、希釈してもよい。本発明の硬化性組成物において、溶剤は、硬化性組成物の成形における取り扱い性、作業性を確保するために用いられ、その使用量には特に制限がない。
<Solvent>
The curable composition of the present invention may be diluted by further blending a solvent in order to appropriately adjust the viscosity of the curable composition when handling it for forming a coating film. In the curable composition of the present invention, the solvent is used to ensure the handleability and workability in molding the curable composition, and there is no particular limit to the amount of the solvent used.
 本発明の硬化性組成物が含み得る溶剤としては、例えばアセトン、メチルエチルケトン(MEK)、メチルイソブチルケトン、シクロヘキサノン等のケトン類、酢酸エチル等のエステル類、エチレングリコールモノメチルエーテル等のエーテル類、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類、メタノール、エタノール等のアルコール類、ヘキサン、シクロヘキサン等のアルカン類、トルエン、キシレン等の芳香族類等が挙げられる。以上に挙げた溶剤は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で混合して用いてもよい。 Solvents that may be contained in the curable composition of the present invention include, for example, ketones such as acetone, methyl ethyl ketone (MEK), methyl isobutyl ketone, cyclohexanone, etc., esters such as ethyl acetate, etc., ethers such as ethylene glycol monomethyl ether, amides such as N,N-dimethylformamide, N,N-dimethylacetamide, etc., alcohols such as methanol, ethanol, etc., alkanes such as hexane, cyclohexane, etc., aromatics such as toluene, xylene, etc. The above-mentioned solvents may be used alone or in any combination and ratio of two or more.
<硬化物>
 本発明の硬化性組成物を硬化した硬化物は、誘電特性及び耐熱性に優れる。ここでいう「硬化」とは熱及び/又は光等によりエポキシ樹脂組成物を意図的に硬化させることを意味するものであり、その硬化の程度は所望の物性、用途により制御すればよい。進行の程度は完全硬化であっても、半硬化の状態であってもよく、特に制限されないが、硬化反応の反応率として通常5~95%である。
<Cured Product>
The cured product obtained by curing the curable composition of the present invention has excellent dielectric properties and heat resistance. The term "curing" used here means intentionally curing the epoxy resin composition by heat and/or light, and the degree of curing may be controlled depending on the desired physical properties and applications. The degree of progress may be completely cured or semi-cured, and is not particularly limited, but the reaction rate of the curing reaction is usually 5 to 95%.
<硬化方法>
 本発明の硬化性組成物の硬化方法は、硬化性組成物中の配合成分や配合量によっても異なるが、通常、80~280℃で60~360分の加熱条件が挙げられる。この加熱は80~160℃で10~90分の1次加熱と、120~200℃で60~150分の2次加熱との2段処理を行うことが好ましく、また、ガラス転移温度(Tg)が2次加熱の温度を超える配合系においては更に150~280℃で60~120分の3次加熱を行うことが好ましい。このように2次加熱、3次加熱を行うことは硬化不良や溶剤の残留を低減する観点から好ましい。
 樹脂半硬化物を作製する際には、加熱等により形状が保てる程度に硬化性組成物の硬化反応を進行させることが好ましい。硬化性組成物が溶剤を含んでいる場合には、通常、加熱、減圧、風乾等の手法で大部分の溶剤を除去するが、樹脂半硬化物中に5質量%以下の溶剤を残留させてもよい。
<Curing method>
The curing method of the curable composition of the present invention varies depending on the components and their amounts in the curable composition, but typically includes heating conditions of 80 to 280° C. for 60 to 360 minutes. This heating is preferably performed in two stages, with a primary heating at 80 to 160° C. for 10 to 90 minutes and a secondary heating at 120 to 200° C. for 60 to 150 minutes, and in a compounding system in which the glass transition temperature (Tg) exceeds the temperature of the secondary heating, it is preferable to further perform a tertiary heating at 150 to 280° C. for 60 to 120 minutes. Performing the secondary and tertiary heating in this manner is preferable from the viewpoint of reducing poor curing and residual solvent.
When preparing a semi-cured resin product, it is preferable to proceed with the curing reaction of the curable composition to such an extent that the shape can be maintained by heating, etc. When the curable composition contains a solvent, most of the solvent is usually removed by a technique such as heating, reducing pressure, or air drying, but 5% by mass or less of the solvent may remain in the semi-cured resin product.
<用途>
 本発明にかかる一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂は、製膜性に優れる。このため、接着剤、塗料、土木建築用材料、電気・電子部品の絶縁材料等、様々な分野に適用可能であり、特に、電気・電子分野における絶縁注型、積層材料、封止材料等として有用である。
 本発明にかかる一般式(1)で表されるエステル化合物を反応させてなるエポキシ樹脂及び本発明の硬化性組成物とその硬化物の用途の一例としては、フィルム状接着剤、液状接着剤、複合材料、塗料、土木用建築材料、電気・電子部品の絶縁材料、多層プリント配線基板、キャパシタ等の電気・電子回路用積層板、半導体封止材料、アンダーフィル材料、3D-LSI用インターチップフィル、絶縁シート、プリプレグ、放熱基板、絶縁注型等が挙げられるが、何らこれらに限定されるものではない。
<Applications>
The epoxy resin obtained by reacting the ester compound represented by the general formula (1) according to the present invention has excellent film-forming properties, and is therefore applicable to various fields such as adhesives, paints, civil engineering and construction materials, and insulating materials for electric and electronic parts, and is particularly useful as insulating casting, laminating materials, sealing materials, etc. in the electric and electronic fields.
Examples of applications of the epoxy resin obtained by reacting the ester compound represented by general formula (1) according to the present invention, and the curable composition of the present invention and its cured product include film-like adhesives, liquid adhesives, composite materials, paints, civil engineering and building materials, insulating materials for electric and electronic parts, multilayer printed wiring boards, laminates for electric and electronic circuits such as capacitors, semiconductor encapsulating materials, underfill materials, interchip fills for 3D-LSI, insulating sheets, prepregs, heat dissipation substrates, insulating castings, and the like, but are not limited to these.
(電気・電子回路用積層板)
 本発明の硬化性組成物は前述したように電気・電子回路用積層板の用途に好適に用いることができる。本発明において「電気・電子回路用積層板」とは、本発明の硬化性組成物を含む層と導電性金属層とを積層したものであり、本発明の硬化性組成物を含む層と導電性金属層とを積層したものであれば、電気・電子回路ではなくとも、例えばキャパシタも含む概念として用いられる。なお、電気・電子回路用積層板中には2種以上の硬化性組成物からなる層が形成されていてもよく、少なくとも1つの層において本発明の硬化性組成物が用いられていればよい。また、2種以上の導電性金属層が形成されていてもよい。
 電気・電子回路用積層板における硬化性組成物からなる層の厚みは通常10~200μm程度である。また、導電性金属層の厚みは通常0.2~70μm程度である。
(Laminates for electrical and electronic circuits)
As described above, the curable composition of the present invention can be suitably used for the application of laminates for electric and electronic circuits. In the present invention, the term "laminated plate for electric and electronic circuits" refers to a laminate in which a layer containing the curable composition of the present invention and a conductive metal layer are laminated, and is used as a concept including, for example, a capacitor, even if it is not an electric or electronic circuit, as long as the layer containing the curable composition of the present invention and a conductive metal layer are laminated. In addition, layers consisting of two or more types of curable compositions may be formed in the laminate for electric and electronic circuits, and it is sufficient that the curable composition of the present invention is used in at least one layer. In addition, two or more types of conductive metal layers may be formed.
In the laminate for electric/electronic circuits, the layer made of the curable composition usually has a thickness of about 10 to 200 μm, and the conductive metal layer usually has a thickness of about 0.2 to 70 μm.
(導電性金属)
 電気・電子回路用積層板における導電性金属としては、銅、アルミニウム等の金属や、これらの金属を含む合金が挙げられる。本発明において電気・電子回路用積層板の導電性金属層においては、これらの金属の金属箔、あるいはメッキやスパッタリングで形成された金属層を用いることができる。
(Conductive metal)
Examples of the conductive metal in the laminate for electric/electronic circuits include metals such as copper and aluminum, and alloys containing these metals. In the present invention, the conductive metal layer of the laminate for electric/electronic circuits may be a metal foil of these metals, or a metal layer formed by plating or sputtering.
(電気・電子回路用積層板の製造方法)
 本発明における電気・電子回路用積層板の製造方法としては、例えば次のような方法が挙げられる。
(1)ガラス繊維、ポリエステル繊維、アラミド繊維、セルロース、ナノファイバーセルロース等の無機及び/又は有機の繊維材料を用いた不織布やクロス等に、本発明の硬化性組成物を含浸させてプリプレグとし、導電性金属箔及び/又はメッキにより導電性金属層を設けた後、フォトレジスト等を用いて回路を形成し、こうした層を必要数重ねて積層板とする。
(2)上記(1)のプリプレグを心材とし、その上(片面又は両面)に、硬化性組成物からなる層と導電性金属層を積層する。この硬化性組成物からなる層は有機及び/又は無機のフィラーを含んでいてもよい。
(3)心材を用いず、硬化性組成物からなる層と導電性金属層のみを交互に積層して電気・電子回路用積層板とする。
 本発明によれば、耐熱性及び誘電特性に優れた硬化物を提供することができる。
 このため、本発明の硬化性組成物は、フィルム状接着剤、液状接着剤、複合材料、塗料、土木用建築材料、電気・電子部品の絶縁材料等、多層プリント配線基板、キャパシタ等の電気・電子回路用積層板、半導体封止材料、アンダーフィル材料、3D-LSI用インターチップフィル、絶縁シート、プリプレグ、放熱基板、絶縁注型等、様々な分野に適用可能であり、特に電気・電子分野における絶縁注型、積層材料、封止材料等として有用である。
(Method of manufacturing laminates for electrical and electronic circuits)
The laminate for electric/electronic circuits of the present invention can be produced, for example, by the following method.
(1) A nonwoven fabric, cloth, or the like using inorganic and/or organic fiber materials such as glass fiber, polyester fiber, aramid fiber, cellulose, nanofiber cellulose, etc. is impregnated with the curable composition of the present invention to form a prepreg, and a conductive metal layer is provided by conductive metal foil and/or plating, after which a circuit is formed using a photoresist or the like, and the required number of such layers are stacked to form a laminate.
(2) The prepreg of (1) above is used as a core material, and a layer of a curable composition and a conductive metal layer are laminated on one or both sides of the core material. The layer of the curable composition may contain organic and/or inorganic fillers.
(3) A laminate for electric/electronic circuits is produced by alternately laminating layers of a curable composition and conductive metal layers without using a core material.
According to the present invention, it is possible to provide a cured product having excellent heat resistance and dielectric properties.
For this reason, the curable composition of the present invention can be applied in various fields, such as film-like adhesives, liquid adhesives, composite materials, paints, civil engineering and building materials, insulating materials for electric and electronic components, multilayer printed wiring boards, laminates for electric and electronic circuits such as capacitors, semiconductor encapsulation materials, underfill materials, interchip fills for 3D-LSIs, insulating sheets, prepregs, heat dissipation substrates, and insulating casting, and is particularly useful as insulating casting, laminate materials, encapsulation materials, and the like in the electric and electronic fields.
 以下、実施例により、本発明をさらに具体的に説明する。
<分析方法>
1.反応溶液組成及び純度分析(超高速液体クロマトグラフィー:UFLC)
 実施例で合成したエステル化合物0.01gを50mLメスフラスコに秤量し、アセトニトリルで希釈した。
 調製した試料の下記の高速液体クロマトグラフィーによる純度分析を行った。
純度分析(分析値は面積百分率)
 測定装置    :高速液体クロマトグラフィー分析装置Prominence UFLC((株)島津製作所製)
 ポンプ     :LC-20AD
 カラムオーブン :CTO-20A
 検出器     :SPD-20A
 カラム     :HALO-C18(内径3mm、長さ75mm)
 オーブン温度  :50℃
 流量      :0.7mL/min.
 移動相     :(A)0.1体積%酢酸水溶液、(B)アセトニトリル
 グラジエント条件:(A)体積%(分析開始からの時間)30%(2.0min.)→100%(15.0min.)→100%(18.0min.)
 試料注入量   :7μL
 検出波長    :254nm
2.硬化特性評価
 合成したエポキシ樹脂組成物の硬化特性評価は、以下の操作条件の示差走査熱量測定(DSC)により行った。発熱ピーク温度を硬化温度とした。
[測定条件]
 装置    :DSC7020/(株)日立ハイテクサイエンス製
 昇温速度  :10℃/min.
 測定温度範囲:30~350℃
 測定雰囲気 :窒素50mL/min.
 測定試料  :合成したエポキシ樹脂組成物3mg
3.ガラス転移温度(Tg)の測定(動的粘弾性測定(DMA))
 装置:DMA850/ティー・エイ・インスツルメント・ジャパン(株)製
 測定条件:3点曲げ
 測定温度:30~310℃
 測定周波数:1.0(Hz)
 サンプルの寸法:(60mm×15mm×2mm)
 昇温速度:1.0℃/min.
4.誘電特性評価
 実施例及び比較例で作成したフィルム(サンプルサイズ:幅1.5mm、長さ8.0mm)を、下記装置を用いて(サンプルサイズ:幅1.5mm、長さ8.0mm)、比誘電率及び誘電正接を測定した。
 測定装置:PNAネットワークアナライザ N522B(キーサイト・テクノロジー(株)製)
 空洞共振器:10GHz用 CP531((株)関東電子応用開発製)
[測定条件]
 試験方法:IEC 62180準拠(空洞共振器摂動法)
 試験条件:周波数;10GHz
 測定数:n=2
The present invention will now be described more specifically with reference to examples.
<Analysis method>
1. Reaction solution composition and purity analysis (ultra-performance liquid chromatography: UFLC)
0.01 g of the ester compound synthesized in the Examples was weighed into a 50 mL measuring flask and diluted with acetonitrile.
The prepared sample was subjected to purity analysis by high performance liquid chromatography as described below.
Purity analysis (analysis value is area percentage)
Measurement device: High-performance liquid chromatography analyzer Prominence UFLC (manufactured by Shimadzu Corporation)
Pump: LC-20AD
Column oven: CTO-20A
Detector: SPD-20A
Column: HALO-C18 (inner diameter 3 mm, length 75 mm)
Oven temperature: 50°C
Flow rate: 0.7 mL/min.
Mobile phase: (A) 0.1% by volume acetic acid aqueous solution, (B) acetonitrile Gradient conditions: (A) Volume % (time from start of analysis) 30% (2.0 min.) → 100% (15.0 min.) → 100% (18.0 min.)
Sample injection volume: 7 μL
Detection wavelength: 254 nm
2. Evaluation of Curing Characteristics The curing characteristics of the synthesized epoxy resin compositions were evaluated by differential scanning calorimetry (DSC) under the following operating conditions: The exothermic peak temperature was taken as the curing temperature.
[Measurement condition]
Apparatus: DSC7020/Hitachi High-Tech Science Co., Ltd. Heating rate: 10° C./min.
Measurement temperature range: 30 to 350°C
Measurement atmosphere: Nitrogen 50 mL/min.
Measurement sample: 3 mg of synthesized epoxy resin composition
3. Measurement of glass transition temperature (Tg) (dynamic mechanical analysis (DMA))
Apparatus: DMA850/manufactured by TA Instruments Japan, Inc. Measurement conditions: 3-point bending Measurement temperature: 30 to 310°C
Measurement frequency: 1.0 (Hz)
Sample dimensions: (60mm x 15mm x 2mm)
Heating rate: 1.0° C./min.
4. Evaluation of Dielectric Properties The films (sample size: width 1.5 mm, length 8.0 mm) prepared in the examples and comparative examples were measured for relative dielectric constant and dielectric loss tangent using the following device (sample size: width 1.5 mm, length 8.0 mm).
Measurement device: PNA network analyzer N522B (manufactured by Keysight Technologies, Inc.)
Cavity resonator: CP531 for 10 GHz (manufactured by Kanto Electronics Application Development Co., Ltd.)
[Measurement condition]
Test method: Compliant with IEC 62180 (cavity resonator perturbation method)
Test conditions: Frequency: 10 GHz
Number of measurements: n = 2
<実施例1>(下記化学式1-1で表されるエステル化合物(p-151)の合成)
Figure JPOXMLDOC01-appb-C000040
 温度計、撹拌機、冷却管、滴下ロートを備えた1000mLの4つ口フラスコにビスフェノールTMC465g(1.50モル)、無水酢酸352gを仕込み、反応容器内を窒素置換した後、混合溶液の温度を130℃とした。その後、130℃で6時間撹拌した。上記分析方法によりUFLCで反応溶液の組成を分析した結果、反応溶液中に存在する1,1-ビス(4-アセトキシフェニル)-3,3,5-トリメチルシクロヘキサンの割合は、96面積%であった。反応終了後、無水酢酸と生成した酢酸を130℃の条件下、減圧蒸留によって除去した。蒸留時の圧力は徐々に減圧し、最終的に1.5kPaとした。1,1-ビス(4-アセトキシフェニル)-3,3,5-トリメチルシクロヘキサンを含む組成物を560g(純度:99.9%)得た。
 H-NMRの分析結果から、1,1-ビス(4-アセトキシフェニル)-3,3,5-トリメチルシクロヘキサンが得られたことを確認した。
 H-NMR分析(400MHz、溶媒:CDCl、基準物質:テトラメチルシラン)
 0.40(3H,s),0.85-0.89(1H,t),0.96-0.97(6H,d),1.14-1.20(1H,t),1.37-1.40(1H,d),1.56(2H,s),1.92-2.10(2H,m),2.25-2.27(6H,d),2.42-2.45(1H,d),2.64-2.68(1H,d),6.90-6.92(2H,d),6.98-7.00(2H,d),7.18-7.20(2H,d),7.31-7.34(2H,d).
 温度計、撹拌機、冷却管、滴下ロートを備えた3000mLの4つ口フラスコに1,1-ビス(4-アセトキシフェニル)-3,3,5-トリメチルシクロヘキサン300g(0.76モル)、フランカルボン酸213g、4-ジメチルアミノピリジン4.0g及びジフェニルエーテル1500gを仕込み、反応容器内を窒素置換した後、混合溶液の温度を230℃とした。その後、反応進行に伴い生成する酢酸と溶媒のジフェニルエーテル等を含む液を系外に留出させながら230℃で8時間撹拌した。上記分析方法によりUFLCで反応溶液の組成を分析した結果、反応溶液中に存在する目的化合物の割合は、52面積%であった。反応終了後、生成した酢酸とジフェニルエーテル、フランカルボン酸を210℃の条件下、減圧蒸留によって除去した。蒸留時の圧力は徐々に減圧し、最終的に5.0kPaとした。濃縮後の目的化合物を含むジフェニルエーテル溶液を冷却後、1-ブタノール845gを添加した。その後、70℃まで冷却し、結晶を析出させた。1-ブタノールを229g添加し、30℃まで冷却した。得られた目的化合物を含むスラリー液を遠心ろ過により、固液分離し、得られた溶剤を含む結晶を80℃、2.0kPaで乾燥させ、337gの目的化合物(1-1)(純度:99.8%)を得た。また、目的化合物は、その示差走査熱量分析(DSC)の結果、最大吸熱ピーク温度は183.5℃である結晶であることが、明らかになった。DSCデータを図1に示す。
 H-NMRの分析結果から、上記構造の目的化合物が得られたことを確認した。
 H-NMR分析(400MHz、溶媒:CDCl、基準物質:テトラメチルシラン)
 0.39(3H,s),0.81-0.92(1H,t),0.98-1.00(6H,d),1.18-1.24(1H,t),1.39-1.42(1H,d),1.56(4H,s),1.96-2.10(2H,m),2.46-2.49(1H,d),2.68-2.72(1H,d),6.57-6.59(2H,m),7.04-7.06(2H,d),7.13-7.15(2H,d),7.24-7.33(1H,m),7.34-7.40(4H,m),7.65-7.67(2H,m).
 得られた目的化合物の溶剤溶解性は、メチルエチルケトン、シクロヘキサノン、N-メチルピロリドンの各々の溶液の重量に対しては、20~40重量%の溶解性を、トルエン、プロピレングリコールモノメチルエーテルアセテート、酢酸エチルの各々の溶液の重量に対しては、10~20重量%の溶解性を示すことから、溶剤溶解性に優れることが確認された。
Example 1 (Synthesis of ester compound (p-151) represented by the following chemical formula 1-1)
Figure JPOXMLDOC01-appb-C000040
A 1000 mL four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a dropping funnel was charged with 465 g (1.50 moles) of bisphenol TMC and 352 g of acetic anhydride, and the inside of the reaction vessel was replaced with nitrogen, and the temperature of the mixed solution was set to 130°C. Then, the mixture was stirred at 130°C for 6 hours. As a result of analyzing the composition of the reaction solution by UFLC according to the above analytical method, the proportion of 1,1-bis(4-acetoxyphenyl)-3,3,5-trimethylcyclohexane present in the reaction solution was 96 area %. After the reaction was completed, acetic anhydride and the produced acetic acid were removed by distillation under reduced pressure at 130°C. The pressure during distillation was gradually reduced to 1.5 kPa. 560 g of a composition containing 1,1-bis(4-acetoxyphenyl)-3,3,5-trimethylcyclohexane (purity: 99.9%) was obtained.
From the results of 1 H-NMR analysis, it was confirmed that 1,1-bis(4-acetoxyphenyl)-3,3,5-trimethylcyclohexane was obtained.
1 H-NMR analysis (400 MHz, solvent: CDCl 3 , standard substance: tetramethylsilane)
0.40 (3H,s), 0.85-0.89 (1H,t), 0.96-0.97 (6H,d), 1.14-1.20 (1H,t), 1.37-1.40 (1H,d), 1.56 (2H,s), 1.92-2.10 (2H,m), 2.25-2.27 (6H,d), 2.42-2.45 (1H,d), 2.64-2.68 (1H,d), 6.90-6.92 (2H,d), 6.98-7.00 (2H,d), 7.18-7.20 (2H,d), 7.31-7.34 (2H,d).
In a 3000 mL four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a dropping funnel, 300 g (0.76 mol) of 1,1-bis(4-acetoxyphenyl)-3,3,5-trimethylcyclohexane, 213 g of furan carboxylic acid, 4.0 g of 4-dimethylaminopyridine, and 1500 g of diphenyl ether were charged, and the inside of the reaction vessel was replaced with nitrogen, and the temperature of the mixed solution was set to 230° C. Thereafter, the mixture was stirred at 230° C. for 8 hours while a liquid containing acetic acid and the solvent diphenyl ether, etc., which was generated as the reaction proceeded, was distilled out of the system. As a result of analyzing the composition of the reaction solution by UFLC using the above analytical method, the proportion of the target compound present in the reaction solution was 52 area %. After the reaction was completed, the generated acetic acid, diphenyl ether, and furan carboxylic acid were removed by reduced pressure distillation under the condition of 210° C. The pressure during distillation was gradually reduced to 5.0 kPa. After cooling the concentrated diphenyl ether solution containing the target compound, 845 g of 1-butanol was added. Thereafter, the mixture was cooled to 70°C to precipitate crystals. 229 g of 1-butanol was added, and the mixture was cooled to 30°C. The obtained slurry containing the target compound was subjected to solid-liquid separation by centrifugal filtration, and the obtained crystals containing the solvent were dried at 80°C and 2.0 kPa to obtain 337 g of the target compound (1-1) (purity: 99.8%). In addition, as a result of differential scanning calorimetry (DSC), it was revealed that the target compound was a crystal having a maximum endothermic peak temperature of 183.5°C. The DSC data is shown in FIG. 1.
From the results of 1 H-NMR analysis, it was confirmed that the target compound having the above structure was obtained.
1 H-NMR analysis (400 MHz, solvent: CDCl 3 , standard substance: tetramethylsilane)
0.39 (3H,s), 0.81-0.92 (1H,t), 0.98-1.00 (6H,d), 1.18-1.24 (1H,t), 1.39-1.42 (1H,d), 1.56 (4H,s), 1.96-2.10 (2H,m), 2.46-2.49 (1H,d), 2.68-2.72 (1H,d), 6.57-6.59 (2H,m), 7.04-7.06 (2H,d), 7.13-7.15 (2H,d), 7.24-7.33 (1H,m), 7.34-7.40 (4H,m), 7.65-7.67 (2H,m).
The target compound thus obtained had a solubility of 20 to 40% by weight in each of the solutions in methyl ethyl ketone, cyclohexanone, and N-methylpyrrolidone, and a solubility of 10 to 20% by weight in each of the solutions in toluene, propylene glycol monomethyl ether acetate, and ethyl acetate, confirming that the target compound had excellent solvent solubility.
<実施例2>(下記化学式1-2で表されるエステル化合物(p-28)の合成)
Figure JPOXMLDOC01-appb-C000041
 実施例1と同様にビフェノールをアセチル化して、ジアセチルビフェノールを合成した後に、温度計、撹拌機、冷却管、滴下ロートを備えた1000mLの4つ口フラスコにジアセチルビフェノール70g(0.26モル)、フランカルボン酸72g、4-ジメチルアミノピリジン1.4g及びジフェニルエーテル431gを仕込み、反応容器内を窒素置換した後、混合溶液の温度を210℃とした。その後、反応進行に伴い生成する酢酸と溶媒のジフェニルエーテル等を含む液を減圧条件で系外に留出させながら210℃で4時間撹拌した。蒸留時の圧力は徐々に減圧し、最終的に25.0kPaとした。上記分析方法によりUFLCで反応溶液の組成を分析した結果、反応溶液中に存在する目的化合物の割合は、69面積%であった。反応終了後、30℃まで冷却し、結晶を析出させた。得られた目的化合物を含むスラリー液を遠心ろ過により、固液分離し、得られた溶剤を含む結晶を80℃、2.0kPaで乾燥させ、81gの目的化合物(1-2)(純度:99.7%)を得た。また、目的化合物は、その示差走査熱量分析(DSC)の結果、最大吸熱ピーク温度は240.0℃である結晶であることが、明らかになった。DSCデータを図2に示す。
 H-NMRの分析結果から、上記構造の目的化合物が得られたことを確認した。
 H-NMR分析(400MHz、溶媒:CDCl、基準物質:テトラメチルシラン)
 6.82-6.83(2H,dd),7.37-7.40(4H,dt),7.60-7.61(2H,dd),7.76-7.80(4H,dt),8.13(2H,s).
Example 2 (Synthesis of ester compound (p-28) represented by the following chemical formula 1-2)
Figure JPOXMLDOC01-appb-C000041
After synthesizing diacetyl biphenol by acetylating biphenol in the same manner as in Example 1, 70 g (0.26 mol) of diacetyl biphenol, 72 g of furan carboxylic acid, 1.4 g of 4-dimethylaminopyridine, and 431 g of diphenyl ether were charged into a 1000 mL four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a dropping funnel, and the inside of the reaction vessel was replaced with nitrogen, and the temperature of the mixed solution was set to 210°C. Thereafter, the mixture was stirred at 210°C for 4 hours while distilling out of the system a liquid containing acetic acid and the solvent diphenyl ether, etc., which were generated as the reaction proceeded, under reduced pressure conditions. The pressure during distillation was gradually reduced, and finally set to 25.0 kPa. The composition of the reaction solution was analyzed by UFLC using the above analytical method, and the proportion of the target compound present in the reaction solution was 69 area %. After the reaction was completed, the mixture was cooled to 30°C to precipitate crystals. The obtained slurry containing the target compound was subjected to solid-liquid separation by centrifugal filtration, and the obtained crystals containing the solvent were dried at 80°C and 2.0 kPa to obtain 81 g of the target compound (1-2) (purity: 99.7%). In addition, as a result of differential scanning calorimetry (DSC), it was revealed that the target compound was a crystal having a maximum endothermic peak temperature of 240.0°C. The DSC data is shown in Figure 2.
From the results of 1 H-NMR analysis, it was confirmed that the target compound having the above structure was obtained.
1 H-NMR analysis (400 MHz, solvent: CDCl 3 , standard substance: tetramethylsilane)
6.82-6.83 (2H,dd), 7.37-7.40 (4H,dt), 7.60-7.61 (2H,dd), 7.76-7.80 (4H,dt), 8.13 (2H,s).
<実施例3>(下記化学式1-3で表されるエステル化合物(p-148)の合成)
Figure JPOXMLDOC01-appb-C000042
 実施例1と同様に4,4’-ジヒドロキシ-2,2’,3,3’,5,5’-ヘキサメチルビフェニルをアセチル化して、4,4’-ジアセトキシ-2,2’,3,3’,5,5’-ヘキサメチルビフェニルを合成した後に、温度計、撹拌機、冷却管、滴下ロートを備えた2000mLの4つ口フラスコに4,4’-ジアセトキシ-2,2’,3,3’,5,5’-ヘキサメチルビフェニル204g(0.58モル)、フランカルボン酸162g、4-ジメチルアミノピリジン3.8g及びジフェニルエーテル1267gを仕込み、反応容器内を窒素置換した後、混合溶液の温度を220℃とした。その後、反応進行に伴い生成する酢酸と溶媒のジフェニルエーテル等を含む液を系外に留出させながら220℃で14時間撹拌した。上記分析方法によりUFLCで反応溶液の組成を分析した結果、反応溶液中に存在する目的化合物の割合は、70面積%であった。反応終了後、生成した酢酸とジフェニルエーテル、フランカルボン酸を220℃の条件下、減圧蒸留によって除去した。蒸留時の圧力は徐々に減圧し、最終的に5.0kPaとした。濃縮後の目的化合物を含むジフェニルエーテル溶液を冷却後、イソプロパノール88gとジフェニルエーテル149gを添加した。その後、30℃まで冷却し、結晶を析出させた。得られた目的化合物を含むスラリー液を遠心ろ過により、固液分離し、得られた溶剤を含む結晶を60℃、2.0kPaで乾燥させ、233gの目的化合物(純度:99.4%)を得た。また、目的化合物は、その示差走査熱量分析(DSC)の結果、最大吸熱ピーク温度は237.7℃である結晶であることが、明らかになった。DSCデータを図3に示す。
 H-NMRの分析結果から、上記構造の目的化合物が得られたことを確認した。
 H-NMR分析(400MHz、溶媒:COS、基準物質:テトラメチルシラン)
 1.94(3H,s),2.09(6H,s),2.11(6H,s),6.84-6.85(2H,dd),6.93(2H,s),7.67-7.68(2H,dd),8.15-8.15(2H,d).
Example 3 (Synthesis of ester compound (p-148) represented by the following chemical formula 1-3)
Figure JPOXMLDOC01-appb-C000042
In the same manner as in Example 1, 4,4'-dihydroxy-2,2',3,3',5,5'-hexamethylbiphenyl was acetylated to synthesize 4,4'-diacetoxy-2,2',3,3',5,5'-hexamethylbiphenyl, and then 204 g (0.58 moles) of 4,4'-diacetoxy-2,2',3,3',5,5'-hexamethylbiphenyl was charged into a 2000 mL four-neck flask equipped with a thermometer, a stirrer, a cooling tube, and a dropping funnel, and after replacing the atmosphere in the reaction vessel with nitrogen, the temperature of the mixed solution was set to 220°C. Thereafter, the mixture was stirred at 220°C for 14 hours while distilling out of the system a liquid containing acetic acid and the solvent diphenyl ether produced as the reaction proceeded. As a result of analyzing the composition of the reaction solution by UFLC using the above analytical method, the ratio of the target compound present in the reaction solution was 70 area %. After the reaction was completed, the produced acetic acid, diphenyl ether, and furan carboxylic acid were removed by vacuum distillation under the condition of 220 ° C. The pressure during distillation was gradually reduced to 5.0 kPa. After cooling the diphenyl ether solution containing the target compound after concentration, 88 g of isopropanol and 149 g of diphenyl ether were added. Then, it was cooled to 30 ° C. to precipitate crystals. The obtained slurry containing the target compound was subjected to solid-liquid separation by centrifugal filtration, and the obtained crystals containing the solvent were dried at 60 ° C. and 2.0 kPa to obtain 233 g of the target compound (purity: 99.4%). In addition, it was revealed that the target compound was a crystal with a maximum endothermic peak temperature of 237.7 ° C. as a result of differential scanning calorimetry (DSC). The DSC data is shown in FIG. 3.
From the results of 1 H-NMR analysis, it was confirmed that the target compound having the above structure was obtained.
1 H-NMR analysis (400 MHz, solvent: C 2 D 6 OS, standard substance: tetramethylsilane)
1.94 (3H,s), 2.09 (6H,s), 2.11 (6H,s), 6.84-6.85 (2H,dd), 6.93 (2H,s), 7.67-7.68 (2H,dd), 8.15-8.15 (2H,d).
<実施例4>
 実施例1で合成した化合物(1-1)10.0g、ジシクロペンタジエン型エポキシ樹脂(XD-1000、日本化薬社製、エポキシ当量251g/eq.)10.1g、4-ジメチルアミノピリジン0.2g及びメチルエチルケトン16.2gを100mLビーカーに仕込み、70℃で加熱し、溶解した。溶解液を離型フィルムの上にキャストし、室温下で風乾した。その後、真空乾燥機で80℃、1.5kPaで乾燥後、解砕し、化合物(1-1)とエポキシ樹脂を含む組成物粉末を得た。該組成物粉末をシリコン樹脂製の型に詰め込み、140℃/1時間、150℃/1時間、160℃/1.5時間、180℃/1.5時間、250℃/2時間で硬化させた。上記分析方法により得られた硬化物のガラス転移点(Tg)を測定したところ、250.0℃であった。
Example 4
10.0 g of the compound (1-1) synthesized in Example 1, 10.1 g of a dicyclopentadiene type epoxy resin (XD-1000, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 251 g/eq.), 0.2 g of 4-dimethylaminopyridine, and 16.2 g of methyl ethyl ketone were charged into a 100 mL beaker, heated at 70°C, and dissolved. The solution was cast onto a release film and air-dried at room temperature. After that, the mixture was dried in a vacuum dryer at 80°C and 1.5 kPa, and then crushed to obtain a composition powder containing the compound (1-1) and an epoxy resin. The composition powder was packed into a silicone resin mold and cured at 140°C/1 hour, 150°C/1 hour, 160°C/1.5 hours, 180°C/1.5 hours, and 250°C/2 hours. The glass transition point (Tg) of the cured product obtained by the above analysis method was measured and found to be 250.0°C.
<実施例5>
 実施例1で合成した化合物(1-1)5.1gと実施例1で合成した1,1-ビス(4-アセトキシフェニル)-3,3,5-トリメチルシクロヘキサン5.0gの混合物、ジシクロペンタジエン型エポキシ樹脂(XD-1000、日本化薬社製、エポキシ当量251g/eq.)11.4g、4-ジメチルアミノピリジン0.2g及びメチルエチルケトン11.1gを100mLビーカーに仕込み、70℃で加熱し、溶解した。溶解液を離型フィルムの上にキャストし、室温下で風乾した。その後、真空乾燥機で80℃、1.5kPaで乾燥後、解砕し、化合物(1-1)と1,1-ビス(4-アセトキシフェニル)-3,3,5-トリメチルシクロヘキサンとエポキシ樹脂を含む組成物粉末を得た。該組成物粉末をシリコン樹脂製の型に詰め込み、140℃/1時間、150℃/1時間、160℃/1.5時間、180℃/1.5時間で硬化させた。上記分析方法により得られた硬化物のガラス転移点(Tg)を測定したところ、206.3℃であった。
 実施例4、5から一般式(1)で表される化合物の割合が多いとより耐熱性が高いことが明らかになった。
Example 5
A mixture of 5.1 g of the compound (1-1) synthesized in Example 1 and 5.0 g of 1,1-bis(4-acetoxyphenyl)-3,3,5-trimethylcyclohexane synthesized in Example 1, 11.4 g of dicyclopentadiene type epoxy resin (XD-1000, manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 251 g/eq.), 0.2 g of 4-dimethylaminopyridine, and 11.1 g of methyl ethyl ketone were charged in a 100 mL beaker and dissolved by heating at 70°C. The solution was cast on a release film and air-dried at room temperature. Thereafter, the mixture was dried in a vacuum dryer at 80°C and 1.5 kPa, and then crushed to obtain a composition powder containing the compound (1-1), 1,1-bis(4-acetoxyphenyl)-3,3,5-trimethylcyclohexane, and an epoxy resin. The composition powder was packed into a silicone resin mold and cured at 140° C./1 hour, 150° C./1 hour, 160° C./1.5 hours, and 180° C./1.5 hours. The glass transition temperature (Tg) of the cured product obtained was measured by the above-mentioned analytical method and was found to be 206.3° C.
It was clear from Examples 4 and 5 that the heat resistance was higher when the proportion of the compound represented by general formula (1) was higher.
<実施例6>
 実施例1で合成した化合物(1-1)20.0gとオルトクレゾールノボラック型エポキシ樹脂(DIC株式会社製:商品名「エピクロンN-673」)16.0g及びメチルエチルケトン40.0gを100mLビーカーに仕込み、攪拌し溶解させた。溶解液に4-ジメチルアミノピリジン0.72gを添加し更に攪拌し4-ジメチルアミノピリジンを溶解させた。完溶後、溶液をバットに移してドラフト内にて終夜乾燥させた後、その後、真空乾燥機で60℃、1.5kPaで、5時間乾燥を行った。その後、得られた組成物を金型(φ100mm押し込み型)に加え、熱プレス試験機にて3MPaで160℃/2時間、180℃/2時間の条件で加熱を行い、硬化物を得た。
Example 6
20.0 g of the compound (1-1) synthesized in Example 1, 16.0 g of orthocresol novolac epoxy resin (manufactured by DIC Corporation: trade name "Epiclon N-673"), and 40.0 g of methyl ethyl ketone were charged into a 100 mL beaker and stirred to dissolve. 0.72 g of 4-dimethylaminopyridine was added to the solution and further stirred to dissolve 4-dimethylaminopyridine. After complete dissolution, the solution was transferred to a tray and dried overnight in a draft, and then dried in a vacuum dryer at 60°C and 1.5 kPa for 5 hours. The obtained composition was then added to a mold (φ100 mm press mold) and heated in a heat press tester at 3 MPa under conditions of 160°C/2 hours and 180°C/2 hours to obtain a cured product.
<比較例1>
 10.0gのノボラック型硬化剤(アイカ工業株式会社製:商品名「BRG-555」)と、オルトクレゾールノボラック型エポキシ樹脂((DIC株式会社製:商品名「エピクロンN-673」)20.0g及びメチルエチルケトン40.0gを100mLビーカーに仕込み、攪拌し溶解させた。溶解液にトリフェニルホスフィン0.60gを添加し更に攪拌しトリフェニルホスフィンを溶解させた。完溶後、溶液をバットに移してドラフト内にて終夜乾燥させた後、その後、真空乾燥機で60℃、1.5kPaで、5時間乾燥を行った。その後、得られた組成物を金型(φ100mm押し込み型)に加え、熱プレス試験機にて3MPaで100℃/1時間、130℃/2時間の条件で加熱を行った。その後、硬化物を熱風循環式オーブンにて140℃/2時間、150℃/2時間、160℃/2時間、180℃/2時間の条件で加熱を行い、硬化物を得た。
<Comparative Example 1>
10.0 g of a novolac type curing agent (manufactured by AICA Corporation, product name "BRG-555"), 20.0 g of an orthocresol novolac type epoxy resin (manufactured by DIC Corporation, product name "Epiclon N-673"), and 40.0 g of methyl ethyl ketone were charged into a 100 mL beaker and stirred to dissolve. 0.60 g of triphenylphosphine was added to the solution and further stirred to dissolve the triphenylphosphine. After complete dissolution, the solution was transferred to a tray. After drying overnight in a draft, the mixture was dried in a vacuum dryer at 60°C and 1.5 kPa for 5 hours. The resulting composition was then added to a mold (φ100 mm press mold) and heated in a heat press tester at 3 MPa under the conditions of 100°C/1 hour and 130°C/2 hours. The cured product was then heated in a hot air circulation oven under the conditions of 140°C/2 hours, 150°C/2 hours, 160°C/2 hours, and 180°C/2 hours to obtain a cured product.
 実施例6及び比較例1で得られた硬化物の上記分析方法による、ガラス転移温度(Tg)と誘電特性評価を行った。その結果を表1にまとめて示す。
Figure JPOXMLDOC01-appb-T000043
The glass transition temperature (Tg) and dielectric properties of the cured products obtained in Example 6 and Comparative Example 1 were evaluated by the above-mentioned analytical methods. The results are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000043
 上に示すとおり、本発明化合物である実施例1の化合物を硬化剤に用いたエポキシ樹脂硬化物は高いガラス転移温度を有し、高い耐熱性を示すことが明らかとなった。また、優れた誘電特性を示すことが明らかとなった。
 本発明のエステル化合物は、エポキシ樹脂に配合し、硬化させることで得られた硬化物は優れた耐熱性と、誘電特性を有する。エポキシ樹脂と硬化剤との反応で生成する2級水酸基について、一般式(1)で表されるエステル化合物は硬化剤としてエポキシ樹脂と反応し、かつ2級水酸基をエステル化することによって、得られる硬化物は、分極が抑えられ、優れた誘電特性を示していると推察している。
 このため、本発明のエステル化合物を含むエポキシ樹脂組成物は、接着剤、塗料、土木建築用材料、電気・電子部品の絶縁材料等、様々な分野に適用可能であり、特に、電気・電子分野における絶縁注型、積層材料、封止材料等として有用である。
 本発明のエステル化合物及びそれを含むエポキシ樹脂組成物の用途の一例としては、多層プリント配線基板、キャパシタ等の電気・電子回路用積層板、フィルム状接着剤、液状接着剤等の接着剤、半導体封止材料、アンダーフィル材料、3D-LSI用インターチップフィル、絶縁シート、プリプレグ、放熱基板等が挙げられるが、何らこれらに限定されるものではない。
As shown above, it was revealed that the epoxy resin cured product using the compound of Example 1, which is the compound of the present invention, as a curing agent has a high glass transition temperature and exhibits high heat resistance. It was also revealed that it exhibits excellent dielectric properties.
The ester compound of the present invention is blended with an epoxy resin, and the cured product obtained by curing the epoxy resin has excellent heat resistance and dielectric properties. It is presumed that the ester compound represented by the general formula (1) reacts with the epoxy resin as a curing agent and esterifies the secondary hydroxyl group generated by the reaction of the epoxy resin with the curing agent, thereby suppressing polarization of the cured product and exhibiting excellent dielectric properties.
Therefore, the epoxy resin composition containing the ester compound of the present invention is applicable in various fields such as adhesives, coating materials, civil engineering and construction materials, and insulating materials for electric and electronic parts, and is particularly useful as insulating casting materials, laminating materials, sealing materials, and the like in the electric and electronic fields.
Examples of applications of the ester compound of the present invention and the epoxy resin composition containing the same include multilayer printed wiring boards, laminates for electric/electronic circuits such as capacitors, adhesives such as film-like adhesives and liquid adhesives, semiconductor encapsulating materials, underfill materials, interchip fills for 3D-LSIs, insulating sheets, prepregs, and heat dissipation substrates, but are not limited thereto.

Claims (11)

  1.  一般式(3)で表されるエステル化合物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは各々独立して単結合又は炭素原子数1~10の2価の炭化水素基を示し、Rは各々独立して水素原子又は炭素原子数1~6のアルキル基を示し、Yは一般式(3a)又は一般式(3b)で表される2価の基を示す。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(3a)及び(3b)中、Rは各々独立して炭素原子数1~6のアルキル基又は炭素原子数6~12のアリール基を示し、*はそれぞれ結合位置を示す。一般式(3a)中、mは各々独立して1~4の整数を示す。一般式(3b)中、nは各々独立して0又は1~4の整数を示し、Zは炭素原子数7~20のシクロアルキリデン基を示す。)
    An ester compound represented by general formula (3):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, each R2 independently represents a single bond or a divalent hydrocarbon group having 1 to 10 carbon atoms, each R3 independently represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and Y represents a divalent group represented by general formula (3a) or general formula (3b).
    Figure JPOXMLDOC01-appb-C000002
    (In general formulas (3a) and (3b), R 1 's each independently represent an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, and * represents a bonding position. In general formula (3a), m's each independently represent an integer of 1 to 4. In general formula (3b), n's each independently represent 0 or an integer of 1 to 4, and Z's each independently represent a cycloalkylidene group having 7 to 20 carbon atoms.)
  2.  前記一般式(3)で表されるエステル化合物のRが共に単結合である、請求項1に記載のエステル化合物。 The ester compound according to claim 1 , wherein both R 2s in the ester compound represented by the general formula (3) are single bonds.
  3.  さらに前記一般式(3)で表されるエステル化合物のRが共に水素原子である、請求項2に記載のエステル化合物。 The ester compound according to claim 2, wherein both R 3 of the ester compound represented by the general formula (3) are hydrogen atoms.
  4.  前記一般式(3)で表されるエステル化合物が、化合物(p-139)、(p-142)、(p-145)、(p-148)、(p-151)、(p-154)又は(p-172)である、請求項3に記載のエステル化合物。
    Figure JPOXMLDOC01-appb-C000003
    The ester compound according to claim 3, wherein the ester compound represented by the general formula (3) is compound (p-139), (p-142), (p-145), (p-148), (p-151), (p-154) or (p-172).
    Figure JPOXMLDOC01-appb-C000003
  5.  請求項4に記載の化合物(p-148)のエステル化合物の結晶。 A crystal of an ester compound of the compound (p-148) described in claim 4.
  6.  示差走査熱量分析による最大吸熱ピーク温度が234~240℃の範囲にある、請求項5に記載の化合物(p-148)のエステル化合物の結晶。 A crystal of the ester compound of compound (p-148) according to claim 5, the maximum endothermic peak temperature of which is in the range of 234 to 240°C as determined by differential scanning calorimetry.
  7.  請求項4に記載の化合物(p-151)のエステル化合物の結晶。 A crystal of an ester compound of the compound (p-151) described in claim 4.
  8.  示差走査熱量分析による最大吸熱ピーク温度が180~188℃の範囲にある、請求項7に記載の化合物(p-151)のエステル化合物の結晶。 A crystal of the ester compound of compound (p-151) according to claim 7, which has a maximum endothermic peak temperature in the range of 180 to 188°C as determined by differential scanning calorimetry.
  9.  請求項1に記載の一般式(3)で表されるエステル化合物及び、一般式(2)で表されるエステル化合物を含む、樹脂原料用エステル化合物組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式中、Rは各々独立して炭素原子数1~6のアルキル基又は炭素原子数6~12のアリール基を示し、Rは各々独立して炭素原子数1~20の1価の炭化水素基を示し、Xは単結合、酸素原子、硫黄原子、スルホニル基、カルボニル基又は一般式(1a)、(1b)若しくは(1c)で表される2価の基を示し、nは各々独立して0又は1~4の整数を示す。)
    Figure JPOXMLDOC01-appb-C000005
    (一般式(1a)、(1b)及び(1c)中、R及びRは各々独立して水素原子、炭素原子数1~10のアルキル基、炭素原子数1~10のハロゲン化アルキル基又は炭素数6~12のアリール基を示し、R及びRはそれぞれ互いに結合して、全体として炭素原子数5~20のシクロアルキリデン基を形成してもよく、Ar及びArは炭素数6~12のアリール基を示し、*はそれぞれ結合位置を示す。)
    An ester compound composition for use as a resin raw material, comprising an ester compound represented by the general formula (3) according to claim 1 and an ester compound represented by the general formula (2).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, each R 1 independently represents an alkyl group having 1 to 6 carbon atoms or an aryl group having 6 to 12 carbon atoms, each R 6 independently represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, each X independently represents a single bond, an oxygen atom, a sulfur atom, a sulfonyl group, a carbonyl group, or a divalent group represented by general formula (1a), (1b), or (1c), and each n independently represents 0 or an integer of 1 to 4.)
    Figure JPOXMLDOC01-appb-C000005
    (In general formulas (1a), (1b) and (1c), R 4 and R 5 each independently represent a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a halogenated alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms; R 4 and R 5 may be bonded to each other to form a cycloalkylidene group having 5 to 20 carbon atoms as a whole; Ar 1 and Ar 2 each represent an aryl group having 6 to 12 carbon atoms; and * each indicates a bonding position.)
  10.  前記一般式(3)で表されるエステル化合物100重量部に対して、前記一般式(2)で表されるエステル化合物を0.1~400重量部含有する、請求項9に記載の樹脂原料用エステル化合物組成物。 The ester compound composition for resin raw material according to claim 9, which contains 0.1 to 400 parts by weight of the ester compound represented by the general formula (2) per 100 parts by weight of the ester compound represented by the general formula (3).
  11.  請求項1に記載の一般式(3)で表されるエステル化合物と、芳香族ジグリシジルエーテル化合物、芳香族ジヒドロキシ化合物とエピハロヒドリンを含む混合物、及び、芳香族ジヒドロキシ化合物とエピハロヒドリンを重合させてなるエポキシ基を有するフェノキシ樹脂、より選択されるいずれか1種を反応させてなるエポキシ樹脂。
     
    An epoxy resin obtained by reacting an ester compound represented by general formula (3) according to claim 1 with any one selected from an aromatic diglycidyl ether compound, a mixture containing an aromatic dihydroxy compound and epihalohydrin, and a phenoxy resin having an epoxy group obtained by polymerizing an aromatic dihydroxy compound and epihalohydrin.
PCT/JP2023/043565 2022-12-06 2023-12-06 Ester compound, and ester compound composition for resin raw material WO2024122557A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022194763 2022-12-06
JP2022-194763 2022-12-06

Publications (1)

Publication Number Publication Date
WO2024122557A1 true WO2024122557A1 (en) 2024-06-13

Family

ID=91379240

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2023/043565 WO2024122557A1 (en) 2022-12-06 2023-12-06 Ester compound, and ester compound composition for resin raw material
PCT/JP2023/043563 WO2024122556A1 (en) 2022-12-06 2023-12-06 Chain-linking agent, curable resin composition and cured product thereof, chain linking method, and epoxy resin

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043563 WO2024122556A1 (en) 2022-12-06 2023-12-06 Chain-linking agent, curable resin composition and cured product thereof, chain linking method, and epoxy resin

Country Status (1)

Country Link
WO (2) WO2024122557A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008091011A1 (en) * 2007-01-26 2008-07-31 Honshu Chemical Industry Co., Ltd. Novel ester group-containing tetracarboxylic acid dianhydride, novel polyesterimide precursor derived therefrom, and polyesterimide
KR20130132036A (en) * 2012-05-25 2013-12-04 한국화학연구원 Photo-initiator free polymerizable mesogens and polymerizable liquid crystal compositions containing the same
WO2021033655A1 (en) * 2019-08-21 2021-02-25 本州化学工業株式会社 Starting-material composition for resin
JP2021161161A (en) * 2020-03-31 2021-10-11 本州化学工業株式会社 Resin ingredient composition
JP2024009776A (en) * 2022-07-11 2024-01-23 三菱ケミカル株式会社 Polymer, epoxy resin composition, cured product, insulating layer, electrical and electronic component, and printed circuit board

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415202A (en) * 1990-05-09 1992-01-20 Toyo Ink Mfg Co Ltd Visible ray-sensitive resin composition and method for image formation using the same
JP2006265239A (en) * 2005-02-28 2006-10-05 Wakayama Prefecture New multibranched compound, negative-type photosensitive composition and method for forming resist pattern using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008091011A1 (en) * 2007-01-26 2008-07-31 Honshu Chemical Industry Co., Ltd. Novel ester group-containing tetracarboxylic acid dianhydride, novel polyesterimide precursor derived therefrom, and polyesterimide
KR20130132036A (en) * 2012-05-25 2013-12-04 한국화학연구원 Photo-initiator free polymerizable mesogens and polymerizable liquid crystal compositions containing the same
WO2021033655A1 (en) * 2019-08-21 2021-02-25 本州化学工業株式会社 Starting-material composition for resin
JP2021161161A (en) * 2020-03-31 2021-10-11 本州化学工業株式会社 Resin ingredient composition
JP2024009776A (en) * 2022-07-11 2024-01-23 三菱ケミカル株式会社 Polymer, epoxy resin composition, cured product, insulating layer, electrical and electronic component, and printed circuit board

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE Registry 2 November 2000 (2000-11-02), ANONYMOUS: "2-Furancarboxylic acid, cyclopentylidenedi-4,1-phenylene ester (9CI) (CA INDEX NAME)", XP093179040, retrieved from STNext Database accession no. 300801-22-3 *

Also Published As

Publication number Publication date
WO2024122556A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
JP5199669B2 (en) Epoxy resin, curable resin composition, and cured product thereof
TWI466911B (en) A soluble imide skeleton resin, a soluble imide skeleton resin solution composition, a hardened resin composition and a hardened product thereof
JP6022230B2 (en) High molecular weight epoxy resin, resin composition and cured product using the same
JP7338479B2 (en) Modified epoxy resin, epoxy resin composition, cured product, and laminate for electric/electronic circuit
JP7069613B2 (en) Epoxy resin, epoxy resin composition, cured product, and laminated board for electric / electronic circuits
JP6515255B1 (en) Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate
KR101143131B1 (en) Epoxy compound, preparation method thereof, and use thereof
WO2022244728A1 (en) Resin composition, prepreg using same, film with resin, metal foil with resin, metal-clad laminate, and wiring board
JP5127164B2 (en) Modified epoxy resin, epoxy resin composition, and cured product thereof
JP6963565B2 (en) Alkenyl group-containing resin, curable resin composition and cured product thereof
WO2021172319A1 (en) Curable resin, curable resin composition, cured product, electronic device, laminated board material, electronic component encapsulant, and method for producing curable resin
WO2024122557A1 (en) Ester compound, and ester compound composition for resin raw material
JP6183918B2 (en) Polyhydroxy polyether resin, method for producing polyhydroxy polyether resin, resin composition containing polyhydroxy polyether resin, and cured product obtained therefrom
JP7487326B2 (en) Modified phenoxy resin, its manufacturing method, resin composition, cured product, and laminate for electric/electronic circuits
JP2004256717A (en) Oligomer-modified epoxy resin, its composition, and printed wiring board using the composition
JP7198419B2 (en) Curable resin composition
JP4363048B2 (en) Epoxy resin composition and cured product thereof
JPH07228580A (en) Modified polyvalent epoxy compound, production of the compound and epoxy resin composition
JP2021130744A (en) Curable resin composition and cured product
JP7469747B1 (en) Cyanate ester compound, its production method, resin composition, and cured product
JP7469748B1 (en) Cyanate ester compound, its production method, resin composition, and cured product
JP2010209150A (en) Epoxy resin composition
WO2024106523A1 (en) Benzoxazine compound, resin material composition containing same, curable resin composition, and cured product of same
JP2010018765A (en) Phosphorus-containing epoxy resin using phosphorus-containing phenol compound obtained by specific method of manufacturing, phosphorus-containing epoxy resin composition using the resin, and cured product
WO2015060306A1 (en) Epoxy resin mixture, epoxy resin composition, prepreg, and cured article thereof