WO2024122494A1 - 3次元形状計測装置 - Google Patents

3次元形状計測装置 Download PDF

Info

Publication number
WO2024122494A1
WO2024122494A1 PCT/JP2023/043283 JP2023043283W WO2024122494A1 WO 2024122494 A1 WO2024122494 A1 WO 2024122494A1 JP 2023043283 W JP2023043283 W JP 2023043283W WO 2024122494 A1 WO2024122494 A1 WO 2024122494A1
Authority
WO
WIPO (PCT)
Prior art keywords
light sources
dimensional shape
light
unit
stripe pattern
Prior art date
Application number
PCT/JP2023/043283
Other languages
English (en)
French (fr)
Inventor
真也 畑辺
弘之 永谷
真基 上杉
昭平 橋本
淳 光藤
Original Assignee
株式会社 レイマック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 レイマック filed Critical 株式会社 レイマック
Publication of WO2024122494A1 publication Critical patent/WO2024122494A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object

Definitions

  • the present invention relates to a three-dimensional shape measurement device that uses a phase shift method.
  • a three-dimensional shape measuring device using a phase shift method is known as a device for measuring the three-dimensional shape of an object without contact.
  • a sinusoidally varying stripe pattern is projected onto the surface of the object by a projection unit and then photographed by an imaging unit, and the phase of the stripe pattern is sequentially shifted by a predetermined angle (e.g., ⁇ /2 or 2 ⁇ /3) to obtain a set of photographed images (e.g., four or three).
  • the set of photographed images is then processed to measure the three-dimensional shape of the object.
  • the projection unit may be, for example, one that uses a projector as described in Patent Document 1, or one that uses a number of light sources arranged in a row and a stripe pattern forming optical element that passes the light from those light sources in a stripe pattern as described in Patent Document 2.
  • the latter is capable of high-speed projection of a phase-shifted stripe pattern, and also allows for lower power consumption and miniaturization.
  • the present invention was made in consideration of the above circumstances, and its purpose is to provide a three-dimensional shape measurement device that uses multiple light sources arranged in a row on a projection device and a stripe pattern forming optical element that passes the light from the light sources in a stripe pattern, which prevents large errors in the measurement of three-dimensional shapes even if differences occur between the light sources in changes in the characteristics of the light sources due to changes in the usage environment.
  • a three-dimensional shape measuring device includes a projection control unit, a projection unit having a plurality of light sources arranged in a row, each of which has its lighting and light radiation intensity controlled by the projection control unit, and a stripe pattern forming optical element that passes the light from the light sources in a stripe pattern, and which projects a stripe pattern onto an object in which the phase is shifted by a predetermined angle by sequentially lighting each of the plurality of light sources, a photographing unit that photographs the object onto which each of the stripe patterns is projected to obtain a set of photographed images, and a three-dimensional shape measurement processing unit that performs image processing on the set of photographed images and detects changes in the light radiation intensity of each of the plurality of light sources to adjust the light radiation intensity of each of the plurality of light sources, or adjusts the exposure time, aperture value, or gain in the photographing unit, or adjusts the brightness of the set of photographed images, thereby measuring the three-dimensional shape of the object.
  • the three-dimensional shape measurement processing unit can detect changes in the radiation intensity of the light from each of the plurality of light sources from the brightness of a predetermined position of each of the set of captured images.
  • the three-dimensional shape measurement processing unit has an illuminance sensor and can detect changes in the radiation intensity of the light from each of the multiple light sources from the illuminance detected by the illuminance sensor.
  • the three-dimensional shape measuring device of the present invention makes it possible to prevent errors in the measurement of three-dimensional shapes from becoming large even if differences in the changes in the characteristics of the light sources occur between the light sources due to changes in the usage environment.
  • FIG. 1 is a plan view showing an outline of a three-dimensional shape measuring apparatus according to an embodiment of the present invention.
  • 4 is a waveform diagram showing a simplified timing of projection and photography of the three-dimensional shape measuring device of the above.
  • FIG. 1A shows the components that make up the projection unit in the above-mentioned three-dimensional shape measuring device, where (a) is a front view of multiple light sources, and (b) is a front view of a projection unit case that houses multiple light sources and a stripe pattern forming optical element.
  • 4 is a circuit diagram of a plurality of light sources of a projection unit in the three-dimensional shape measuring device of the same embodiment.
  • 11A and 11B are planar cross-sectional views taken horizontally near the vertical center of a stripe pattern forming optical element in the above-mentioned three-dimensional shape measuring device, in which (a) is an example in which a plurality of transparent parts are formed in a regular stripe pattern, and (b) is an example in which a plurality of cylindrical lenses are formed in a regular pattern.
  • 4 is a photograph showing an example of a set of images captured by the three-dimensional shape measuring device of the same embodiment
  • FIG. 13 is a plan view showing an outline of a modified example of the three-dimensional shape measuring device of the above.
  • FIG. 13 is a front view of a projection unit case that houses a plurality of light sources and a stripe pattern forming optical element in a modified example of the three-dimensional shape measuring device of the above embodiment.
  • 2 is a block diagram showing a three-dimensional shape measurement processing unit of the three-dimensional shape measurement device implemented by a computer.
  • a three-dimensional shape measuring device 1 comprises a projection control unit 2, a projection unit 3, an image capturing unit 4, and a three-dimensional shape measurement processing unit 5.
  • the three-dimensional shape measuring device 1 measures the three-dimensional shape of an object M using a phase shift method. Note that the solid lines (and dashed lines) with arrows between each unit in FIG. 1 (and FIG. 7) are schematic representations of each control signal, etc.
  • the projection control unit 2 controls the illumination and light emission intensity of each of the multiple light sources 31A, 31B, 31C, and 31D of the projection unit 3, which will be described later.
  • the number of light sources is not particularly limited, but can be four or three, for example. In this embodiment, the number of light sources is four unless otherwise specified.
  • a projection period Ta synchronized with a synchronization signal SY
  • currents I A , I B , I C , and I D are sequentially supplied to each of the light sources 31A, 31B, 31C, and 31D to emit light.
  • the projection period Ta has a preset length.
  • a PWM pulse current can be used to supply the current.
  • the PWM period Tb has a preset length.
  • the PWM pulse widths Tc A , Tc B , Tc C , and Tc D can be controlled for each of the light sources 31A, 31B, 31C, and 31D, and the wider the width, the higher the light emission intensity, and the narrower the width, the lower the light emission intensity.
  • the projection period Ta is synchronized with an exposure period Td (signal EX in FIG. 2 indicates the timing of exposure) in the image capture unit 4.
  • the period Tb and the pulse widths TcA , TcB , TcC , and TcD are shown enlarged for ease of understanding.
  • the projection unit 3 has multiple (four in this embodiment) light sources 31A, 31B, 31C, and 31D and a stripe pattern forming optical element 32.
  • the multiple light sources 31A, 31B, 31C, and 31D and the stripe pattern forming optical element 32 can be housed in a projection unit case 33.
  • the multiple light sources 31A, 31B, 31C, and 31D are arranged in a row (horizontally).
  • Each of the multiple light sources 31A, 31B, 31C, and 31D can be composed of multiple (six in this embodiment) light-emitting elements 310 arranged in a row vertically, as shown in FIG. 3(a).
  • the multiple light-emitting elements 310 are connected in parallel or series, or a combination of these, in terms of the circuit. For example, as shown in FIG. 4, all of the light sources 31A, 31B, 31C, and 31D can be connected in series.
  • reference numeral 311 denotes a resistor for limiting current.
  • Reference numerals 31Aa, 31Ba, 31Ca, and 31Da denote current inflow terminals
  • reference numerals 31Ab, 31Bb, 31Cb, and 31Db denote current outflow terminals. It is possible to combine multiple current inflow terminals 31Aa, 31Ba, 31Ca, and 31Da and current outflow terminals 31Ab, 31Bb, 31Cb, and 31Db into one common terminal.
  • the stripe pattern forming optical element 32 passes light from the multiple light sources 31A, 31B, 31C, and 31D in a stripe pattern.
  • the stripe pattern forming optical element 32 has multiple transparent portions 32a formed in a regular striped (grid) pattern.
  • the multiple transparent portions 32a pass light from the multiple light sources 31A, 31B, 31C, and 31D.
  • the areas other than the multiple transparent portions 32a are shielding portions 32b that do not transmit light.
  • the stripe pattern forming optical element 32 is disposed close to the rear of the front surface of the projection unit case 33, and an opening 33a is formed in the front surface of the projection unit case 33.
  • the light that passes through the multiple transparent portions 32a of the stripe pattern forming optical element 32 is radiated to the outside of the projection unit 3 through the opening 33a.
  • the shielded portion 32b of the stripe pattern forming optical element 32 is painted black to make it easier to understand.
  • each of the plurality of cylindrical lenses 32c is a convex lens that refracts and focuses light, and radiates it to the outside. As a result, the light that passes through this stripe pattern forming optical element 32 becomes a stripe pattern. In a stripe pattern forming optical element 32 having such cylindrical lenses 32c formed therein, all light is transmitted, so the amount of light radiated can be increased.
  • multiple light sources 31A, 31B, 31C, 31D are sequentially lit to project stripe patterns P1, P2, P3, P4 onto the object M, the phase of which is sequentially shifted by a predetermined angle.
  • the stripe patterns P1, P2, P3, P4 emitted from the projection unit 3 have light radiation intensity that changes in a sinusoidal manner.
  • the predetermined angle of the phase shift is ⁇ /2. If there are three light sources, the angle becomes 2 ⁇ /3.
  • the projection unit 3 operates by simply sequentially lighting up multiple light sources 31A, 31B, 31C, and 31D, allowing for high-speed projection of a phase-shifted stripe pattern and enabling low power consumption and compact size.
  • This compact size allows the projection unit 3, together with the photographing unit 4 (described below), to be easily housed within a single housing 1a, as shown in Figure 1.
  • the projection control unit 2 and 3D shape measurement processing unit 5, which are not housed within the housing 1a are shown in block diagram form.
  • the photographing unit 4 photographs the object M onto which each of the stripe patterns P1, P2, P3, and P4 is projected, to obtain a set of photographed images as shown in Figures 6(a) to (d). If the background of the object M (for example, the platform M' on which the object M is placed) is flat, each of the stripe patterns P1, P2, P3, and P4 projected onto that background will have a certain regularity. Each of the stripe patterns P1, P2, P3, and P4 projected onto the object M (a gable-shaped object in Figures 6(a) to (d)) will be distorted. In this embodiment, there are four photographed images in one set. If there are three light sources, there will be three photographed images.
  • the three-dimensional shape measurement processing unit 5 performs image processing on the set of captured images.
  • the three-dimensional shape measurement processing unit 5 performs phase analysis on the distortion of each of the stripe patterns P1, P2, P3, and P4 projected onto the item M, thereby measuring the three-dimensional shape of the item M.
  • the three-dimensional shape measurement processing unit 5 also detects changes in the radiation intensity of the light from each of the multiple light sources 31A, 31B, 31C, and 31D.
  • the three-dimensional shape measurement processing unit 5 can detect changes in the light emission intensity of each of the multiple light sources 31A, 31B, 31C, and 31D from the brightness of a predetermined position in each of the set of captured images.
  • the predetermined position can be a part of the background of the item M (e.g., the platform M' on which the item M is placed) that is not affected by the item M (i.e., regardless of the presence or absence of the item M) (e.g., the parts surrounded by squares indicated by symbols p1, p2, p3, and p4 in FIG. 6).
  • the three-dimensional shape measurement processing unit 5 has an illuminance sensor 51, and can detect changes in the light radiation intensity of each of the multiple light sources 31A, 31B, 31C, and 31D from the illuminance detected by the illuminance sensor 51.
  • the illuminance sensor 51 can be attached to the light source side in a peripheral portion (part of the shielding portion 32b) such as the upper or lower portion of the stripe pattern forming optical element 32, although this is not particularly limited (see Figures 7 and 8).
  • the three-dimensional shape measurement processing unit 5 detects a change in the radiation intensity of each of the multiple light sources 31A, 31B, 31C, and 31D, it prevents large errors in the measurement of the three-dimensional shape of the item M in the following manner.
  • the three-dimensional shape measurement processing unit 5 adjusts the light radiation intensity of each of the multiple light sources 31A, 31B, 31C, and 31D via the projection control unit 2 (see the dashed line with an arrow from the three-dimensional shape measurement processing unit 5 to the projection control unit 2 in Figures 1 and 7).
  • the light radiation intensity of the light sources 31A, 31B, 31C, and 31D decreases during sequential measurement of a large number of objects M and the degree of decrease differs between the light sources
  • the light radiation intensity of each of the multiple light sources 31A, 31B, 31C, and 31D can be adjusted to fall within a reference range.
  • the reference range is a range that is determined in advance at the time of calibration or the like, and may be the same for the multiple light sources 31A, 31B, 31C, and 31D, or may be a different range if brightness correction is performed during image processing in the three-dimensional shape measurement processing unit 5.
  • the reference range may be determined by absolute values or by relative values between the light sources.
  • the three-dimensional shape measurement processing unit 5 can adjust the exposure time (length of exposure period Td in FIG. 2), aperture value, or gain in the imaging unit 4 (see the dashed line with an arrow pointing from the three-dimensional shape measurement processing unit 5 to the imaging unit 4 in FIG. 1 and FIG. 7).
  • the three-dimensional shape measurement processing unit 5 can also adjust (correct) the brightness of a set of captured images.
  • the three-dimensional shape measurement processing unit 5 can be realized by a computer that is composed of a CPU 5a, a program memory 5b, a work memory 5c, an input/output interface 5d (input/output terminals are omitted in FIG. 9), etc., as shown in FIG. 9.
  • the program memory 5b can store an image processing program 5ba that performs image processing, and a detection adjustment program 5bb that detects changes in the radiation intensity of each of the multiple light sources 31A, 31B, 31C, and 31D and adjusts them as described above.
  • the three-dimensional shape measuring device 1 can prevent large errors in the measurement of the three-dimensional shape of the object M even if differences occur in the changes in the characteristics of the light sources 31A, 31B, 31C, and 31D due to changes in the usage environment (for example, temperature changes during sequential measurement of multiple objects M).
  • Three-dimensional shape measuring device 1a Housing 2 Projection control unit 3 Projection unit 31A, 31B, 31C, 31D Light source 31Aa, 31Ba, 31Ca, 31Da Current inflow terminal 31Ab, 31Bb, 31Cb, 31Db Current outflow terminal 310 Light emitting element 311 Resistor 32 Stripe pattern forming optical element 32a Transmitting portion 32b Shielding portion 32c Cylindrical lens 33 Projection unit case 4 Imaging unit 5 Three-dimensional shape measurement processing unit 5a CPU 5b Program memory 5ba Image processing program 5bb Detection adjustment program 5c Work memory 5d Input/output interface 51 Illuminance sensor EX Signal indicating exposure timing I A , I B , I C , I D Current flowing through light source M Article M' Stand P1, P2, P3, P4 Stripe pattern p1, p2, p3, p4 Part of captured image showing stripe pattern SY Synchronization signal Ta Projection period Tb PWM cycle Tc A , Tc

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

投影装置に一列に並んだ複数個の光源及びそれらからの光を縞パターンにして通過させる縞パターン形成光学素子を用いる3次元形状計測装置において、使用環境の変化によって光源の特性変化に光源間で差異が生じても、3次元形状の計測の誤差が大きくならないようにできるものを提供する。この3次元形状計測装置1は、投影制御部2と投影部3と撮影部4と3次元形状計測処理部5を備え、3次元形状計測処理部5は、複数個の光源31A、31B、31C、31Dの各々の光の放射強度の変化を検知して複数個の光源31A、31B、31C、31Dの各々の光の放射強度を調整する、又は、撮影部4における露光時間、絞り値又はゲインを調整する、又は、1組の撮影画像の明るさを調整する。

Description

3次元形状計測装置
  本発明は、位相シフト法を用いた3次元形状計測装置に関する。
 物品の3次元形状を非接触で計測するものとして、位相シフト法を用いた3次元形状計測装置が知られている。この3次元形状計測装置では、正弦波状に変化する縞パターンを物品の表面に投影部で投影しそれを撮影部で撮影するプロセスを、順次縞パターンの位相を所定角度(例えば、π/2或いは2π/3など)ずつシフトさせて1組(例えば、4枚或いは3枚など)の撮影画像を得る。そして、1組の撮影画像の画像処理を行うことにより、物品の3次元形状の計測が行われる。
 ここで、上記投影部には、例えば特許文献1に記載されているようなプロジェクタを用いるものや、例えば特許文献2に記載されているような一列に並んだ複数個の光源及びそれらからの光を縞パターンにして通過させる縞パターン形成光学素子を用いるものが知られている。後者は、前者に比べて、位相をシフトさせた縞パターンの高速な投影が可能であり低消費電力化や小型化も可能である。
特開2008-281491号公報 特開2011-242178号公報
 しかしながら、特許文献2に記載されているような複数個の光源を用いるものは、使用環境の変化(例えば、多数の物品の順次計測中の温度変化など)によって、光源の特性変化に光源間で差異が生じる場合が少なくない。そのために光源の光の放射強度の変化に光源間で差異が生じると、3次元形状の計測の誤差が大きくなる。
 本発明は、係る事由に鑑みてなされたものであり、その目的は、投影装置に一列に並んだ複数個の光源及びそれらからの光を縞パターンにして通過させる縞パターン形成光学素子を用いる3次元形状計測装置において、使用環境の変化によって光源の特性変化に光源間で差異が生じても、3次元形状の計測の誤差が大きくならないようにできるものを提供することにある。
 上記目的を達成するために、本発明の実施形態に係る3次元形状計測装置は、投影制御部と、該投影制御部により各々の点灯及び光の放射強度が制御され一列に並んだ複数個の光源及びそれらからの光を縞パターンにして通過させる縞パターン形成光学素子を有し、前記複数個の光源の各々が順次点灯することにより順次所定角度ずつ位相がシフトした縞パターンを物品に投影する投影部と、前記縞パターンの各々が投影された前記物品を撮影して1組の撮影画像を得る撮影部と、前記1組の撮影画像の画像処理を行い、かつ、前記複数個の光源の各々の光の放射強度の変化を検知して該複数個の光源の各々の光の放射強度を調整する、又は、前記撮影部における露光時間、絞り値又はゲインを調整する、又は、前記1組の撮影画像の明るさを調整する3次元形状計測処理部と、を備えて前記物品の3次元形状を計測する。
 前記3次元形状計測処理部は、前記1組の撮影画像のうちの各々の撮影画像の予め決められた位置部分の輝度から前記複数個の光源の各々の光の放射強度の変化を検知するようにすることができる。
 前記3次元形状計測処理部は、照度センサを有し、該照度センサが検出した照度から前記複数個の光源の各々の光の放射強度の変化を検知するようにすることができる。
 本発明の3次元形状計測装置によれば、使用環境の変化によって光源の特性変化に光源間で差異が生じても、3次元形状の計測の誤差が大きくならないようにすることが可能になる。
本発明の実施形態に係る3次元形状計測装置の概略を示す平面図である。 同上の3次元形状計測装置の投影及び撮影のタイミングを簡略化して示す波形図である。 同上の3次元形状計測装置における投影部を構成する各部を示すものであって、(a)が複数個の光源の正面図、(b)が複数個の光源及び縞パターン形成光学素子を収容した投影部ケースの正面図である。 同上の3次元形状計測装置における投影部の複数個の光源の回路図である。 同上の3次元形状計測装置における縞パターン形成光学素子の縦方向中央近傍を横方向に切断した平面視断面図であって、(a)が縞状に規則正しく複数個の透過部分が形成された例のもの、(b)が規則正しく複数個のシリンドリカルレンズが形成された例のものである。 同上の3次元形状計測装置における1組の撮影画像の例の写真である。 同上の3次元形状計測装置の変形例の概略を示す平面図である。 同上の3次元形状計測装置の変形例における複数個の光源及び縞パターン形成光学素子を収容した投影部ケースの正面図である。 同上の3次元形状計測装置の3次元形状計測処理部をコンピュータによって実現したときのブロック図である。
 以下、本発明を実施するための形態を説明する。本発明の実施形態に係る3次元形状計測装置1は、図1に示すように、投影制御部2と投影部3と撮影部4と3次元形状計測処理部5を備えている。3次元形状計測装置1は、位相シフト法を用いて物品Mの3次元形状を計測する。なお、図1(及び図7)における各部間などの矢印付き実線(及び破線)は、各制御信号等を模式的に示したものである。
 投影制御部2は、投影部3の後述する複数個の光源31A、31B、31C、31Dの各々の点灯及び光の放射強度を制御するものである。なお、光源の個数は、特に限定されるものではないが、4個或いは3個などが可能である。本実施形態では、光源の個数は、特に言及しなければ4個としている。
 詳細には、図2に示すように、同期信号SYに同期した投影期間Taに、複数個の光源31A、31B、31C、31Dの1個ずつに順次電流I、I、I、I(図4参照)を供給して光を放射させる。投影期間Taは、予め設定された長さである。電流の供給は、PWMのパルス電流を用いることができる。PWMの周期Tbは、予め設定された長さである。PWMのパルス幅Tc、Tc、Tc、Tcは、光源31A、31B、31C、31Dの各々について制御され得、その幅を広くすると光の放射強度が高くなり、狭くすると光の放射強度が低くなる。なお、投影期間Taは、撮影部4における露光期間Td(図2において信号EXは露光のタイミングを示すものである)と同期している。また、図2においては、上記の周期Tb及びパルス幅Tc、Tc、Tc、Tcは、理解し易いように、拡大して示している。
 投影部3は、複数個(本実施形態では4個)の光源31A、31B、31C、31Dと縞パターン形成光学素子32を有している。複数個の光源31A、31B、31C、31Dと縞パターン形成光学素子32は、投影部ケース33に収容することができる。
 複数個の光源31A、31B、31C、31Dは、一列(横方向に一列)に並んでいる。複数個の光源31A、31B、31C、31Dの各々は、図3(a)に示すように、縦方向に一列に並んだ複数個(本実施形態では6個)の発光素子310で構成することができる。複数個の発光素子310は、回路的には、並列又は直列或いはそれらが組み合わせられて接続されており、例えば、図4に示すように、光源31A、31B、31C、31Dの各々について全てが直列に接続されるようにすることができる。
 なお、図4において、符号311で示すものは電流制限用の抵抗である。また、符号31Aa、31Ba、31Ca、31Daで示すものは電流流入端子であり、符号31Ab、31Bb、31Cb、31Dbで示すものは電流流出端子である。電流流入端子31Aa、31Ba、31Ca、31Daと電流流出端子31Ab、31Bb、31Cb、31Dbのどちらか一方は、複数個をまとめて共通に(1個に)することも可能である。
 縞パターン形成光学素子32は、複数個の光源31A、31B、31C、31Dからの光を縞パターンにして通過させる。縞パターン形成光学素子32は、図3(b)及び図5(a)に示すように、縞状(格子状)に規則正しく複数個の透過部分32aが形成されている。複数個の透過部分32aにおいて、複数個の光源31A、31B、31C、31Dからの光を通過させる。複数個の透過部分32a以外は、光を透過させない遮蔽部分32bである。本実施形態では、縞パターン形成光学素子32は、投影部ケース33の前面の後方に接近して配置されており、また、投影部ケース33の前面には、開口部33aが形成されている。縞パターン形成光学素子32の複数個の透過部分32aを透過した光は、開口部33aを通って投影部3の外部に放射される。なお、図3(b)及び図5(a)(及び図8)においては、縞パターン形成光学素子32の遮蔽部分32bは、理解を容易にするために黒で塗りつぶしている。
 縞パターン形成光学素子32は、縞状に規則正しく複数個の透過部分32aが形成されているものの他に、図5(b)に示すように、規則正しく複数個のシリンドリカルレンズ32cが形成されているものを用いることも可能である。複数個のシリンドリカルレンズ32cの各々は、凸レンズになっており、光を屈折させ集光して外部に放射する。それにより、この縞パターン形成光学素子32を通過した光は、縞パターンになる。このようなシリンドリカルレンズ32cが形成されている縞パターン形成光学素子32では、光が全て透過するので放射される光の量を多くすることができる。
 このような投影部3では、複数個の光源31A、31B、31C、31Dが順次点灯することにより、順次所定角度ずつ位相がシフトした縞パターンP1、P2、P3、P4を物品Mに投影する。投影部3から放射される縞パターンP1、P2、P3、P4は、光の放射強度が正弦波状に変化するものとなる。シフトする位相の所定角度は、本実施形態ではπ/2である。なお、光源の個数を3個とした場合は、2π/3となる。 
 投影部3は、動作としては複数個の光源31A、31B、31C、31Dが順次点灯するだけなので、位相をシフトさせた縞パターンの高速な投影が可能であり低消費電力化や小型化も可能である。この小型化により、投影部3は、次に述べる撮影部4とともに、図1に示すように、1個の筐体1a内に容易に収容することができる。なお、図1では、筐体1a内に収容しない投影制御部2と3次元形状計測処理部5は、ブロック図で示している。
 撮影部4は、縞パターンP1、P2、P3、P4の各々が投影された物品Mを撮影して、図6(a)~(d)に示すような1組の撮影画像を得る。物品Mの背景(例えば、物品Mが置かれている台M’)が平坦であると、その背景に投影された縞パターンP1、P2、P3、P4の各々は一定の規則正しいものとなる。物品M(図6(a)~(d)では切妻形状の物品)に投影された縞パターンP1、P2、P3、P4の各々は、歪みが生じる。1組の撮影画像は、本実施形態では4枚である。なお、光源の個数を3個とした場合は、3枚となる。
 3次元形状計測処理部5は、前記1組の撮影画像の画像処理を行う。3次元形状計測処理部5では、物品Mに投影された縞パターンP1、P2、P3、P4の各々の歪みが位相解析され、それにより、物品Mの3次元形状の計測が行われることになる。
 また、3次元形状計測処理部5は、複数個の光源31A、31B、31C、31Dの各々の光の放射強度の変化を検知する。
 詳細には、3次元形状計測処理部5は、1組の撮影画像のうちの各々の撮影画像の予め決められた位置部分の輝度から複数個の光源31A、31B、31C、31Dの各々の光の放射強度の変化を検知することができる。例えば、予め決められた位置部分は、物品Mの背景(例えば、物品Mが置かれている台M’)において物品Mの影響を受けない(つまり、物品Mの有無によらない)一部(例えば、図6中、符号p1、p2、p3、p4で示す□で囲った部分)とすることができる。
 或いは、3次元形状計測処理部5は、図7及び図8に示すように、照度センサ51を有し、照度センサ51が検出した照度から複数個の光源31A、31B、31C、31Dの各々の光の放射強度の変化を検知することができる。例えば、照度センサ51は、特に限定されるものではないが、縞パターン形成光学素子32の上部又は下部などの周辺部分(遮蔽部分32bの一部)における光源側に取り付けられるようにすることができる(図7及び図8参照)。
 3次元形状計測処理部5は、複数個の光源31A、31B、31C、31Dの各々の放射強度の変化を検知すると、以下のようにして、物品Mの3次元形状の計測の誤差が大きくならないようにする。
 すなわち、3次元形状計測処理部5は、投影制御部2を介して、複数個の光源31A、31B、31C、31Dの各々の光の放射強度を調整する(図1及び図7においては、3次元形状計測処理部5から投影制御部2に向かう矢印付き破線を参照)。例えば、多数の物品Mの順次計測中に光源31A、31B、31C、31Dの光の放射強度が低下し、その低下の度合が光源間で差異が生じたとき、複数個の光源31A、31B、31C、31Dの各々の光の放射強度を基準範囲に入るように調整することができる。基準範囲は、キャリブレーション時などで予め決められた範囲であり、複数個の光源31A、31B、31C、31Dについて同じであってもよいし、3次元形状計測処理部5での画像処理時に明るさの補正を行えば、違う範囲であってもよい。また、基準範囲は、絶対値で決めてもよいし光源間の相対値で決めてもよい。
 又は、3次元形状計測処理部5は、撮影部4における露光時間(図2の露光期間Tdの長さ)、絞り値又はゲインを調整するようにすることも可能である(図1及び図7においては、3次元形状計測処理部5から撮影部4に向かう矢印付き破線を参照)。
 又は、3次元形状計測処理部5は、1組の撮影画像の明るさを調整(補正)するようにすることも可能である。
 3次元形状計測処理部5は、具体的には、例えば、図9に示すように、CPU5a、プログラムメモリ5b、ワークメモリ5c、入出力インターフェイス5d(図9では入出力端子を省略)などから構成されるコンピュータによって実現することができる。プログラムメモリ5bの中に、画像処理を行う画像処理プログラム5baと複数個の光源31A、31B、31C、31Dの各々の放射強度の変化を検知し上記のように調整する検知調整プログラム5bbが記憶されているようにすることができる。
 このように、3次元形状計測装置1は、使用環境の変化(例えば、多数の物品Mの順次計測中の温度変化など)によって、光源31A、31B、31C、31Dの特性変化に光源間で差異が生じても、物品Mの3次元形状の計測の誤差が大きくならないようにできる。
 以上、本発明の実施形態に係る3次元形状計測装置について説明したが、本発明は、実施形態に記載したものに限られることなく、請求の範囲に記載した事項の範囲内でのさまざまな設計変更が可能である。
 1  3次元形状計測装置
 1a 筐体
 2  投影制御部
 3  投影部
 31A、31B、31C、31D 光源
 31Aa、31Ba、31Ca、31Da 電流流入端子
 31Ab、31Bb、31Cb、31Db 電流流出端子
 310 発光素子
 311 抵抗
 32 縞パターン形成光学素子
 32a 透過部分
 32b 遮蔽部分
 32c シリンドリカルレンズ
 33 投影部ケース
 4  撮影部
 5  3次元形状計測処理部
 5a CPU
 5b プログラムメモリ
 5ba 画像処理プログラム
 5bb 検知調整プログラム
 5c ワークメモリ
 5d 入出力インターフェイス
 51 照度センサ
 EX 露光のタイミングを示す信号
 I、I、I、I 光源に流れる電流
 M  物品
 M’ 台
 P1、P2、P3、P4 縞パターン
 p1、p2、p3、p4 縞パターンが写った撮影画像の一部
 SY 同期信号
 Ta 投影期間
 Tb PWMの周期
 Tc、Tc、Tc、Tc PWMのパルス幅
 Td 露光期間

Claims (3)

  1.  投影制御部と、
     該投影制御部により各々の点灯及び光の放射強度が制御され一列に並んだ複数個の光源及びそれらからの光を縞パターンにして通過させる縞パターン形成光学素子を有し、前記複数個の光源の各々が順次点灯することにより順次所定角度ずつ位相がシフトした縞パターンを物品に投影する投影部と、
     前記縞パターンの各々が投影された前記物品を撮影して1組の撮影画像を得る撮影部と、
     前記1組の撮影画像の画像処理を行い、かつ、前記複数個の光源の各々の光の放射強度の変化を検知して該複数個の光源の各々の光の放射強度を調整する、又は、前記撮影部における露光時間、絞り値又はゲインを調整する、又は、前記1組の撮影画像の明るさを調整する3次元形状計測処理部と、
    を備えて前記物品の3次元形状を計測する3次元計測装置。
  2.  請求項1に記載の3次元形状計測装置において、
     前記3次元形状計測処理部は、前記1組の撮影画像のうちの各々の撮影画像の予め決められた位置部分の輝度から前記複数個の光源の各々の光の放射強度の変化を検知する3次元計測装置。
  3.  請求項1に記載の3次元形状計測装置において、
     前記3次元形状計測処理部は、照度センサを有し、該照度センサが検出した照度から前記複数個の光源の各々の光の放射強度の変化を検知する3次元計測装置。
PCT/JP2023/043283 2022-12-06 2023-12-04 3次元形状計測装置 WO2024122494A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-194894 2022-12-06
JP2022194894 2022-12-06

Publications (1)

Publication Number Publication Date
WO2024122494A1 true WO2024122494A1 (ja) 2024-06-13

Family

ID=91379221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043283 WO2024122494A1 (ja) 2022-12-06 2023-12-04 3次元形状計測装置

Country Status (1)

Country Link
WO (1) WO2024122494A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062141A (ja) * 1996-08-23 1998-03-06 Nikon Corp 光学測定機
JP2018159603A (ja) * 2017-03-22 2018-10-11 キヤノン株式会社 投影装置、計測装置、システム、および物品の製造方法
JP2019120642A (ja) * 2018-01-10 2019-07-22 オムロン株式会社 画像検査装置および照明装置
JP2022131710A (ja) * 2021-02-26 2022-09-07 国立大学法人福井大学 集光する特性を持つ光学素子を複数個配置した集光手段を備えた格子投影装置及び前記格子投影装置を用いた計測装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062141A (ja) * 1996-08-23 1998-03-06 Nikon Corp 光学測定機
JP2018159603A (ja) * 2017-03-22 2018-10-11 キヤノン株式会社 投影装置、計測装置、システム、および物品の製造方法
JP2019120642A (ja) * 2018-01-10 2019-07-22 オムロン株式会社 画像検査装置および照明装置
JP2022131710A (ja) * 2021-02-26 2022-09-07 国立大学法人福井大学 集光する特性を持つ光学素子を複数個配置した集光手段を備えた格子投影装置及び前記格子投影装置を用いた計測装置

Similar Documents

Publication Publication Date Title
JP5966467B2 (ja) 測距装置
CN113155845A (zh) 一种光源及其设置方法、光学检测方法及系统
JP7187782B2 (ja) 画像検査装置
US20160182903A1 (en) Camera calibration
JP2006313116A (ja) 距離傾斜角度検出装置および該検出装置を備えたプロジェクタ
TWI338771B (en) Position detecting device, position detecting method, test device and manufacturing device of camera module
JP6420506B2 (ja) 測定デバイス、システム、方法、及びプログラム
JP2017020874A (ja) 被計測物の形状を計測する計測装置
JP2014219404A (ja) 数波長で同時に面の三次元測定を行う装置及び方法
KR102472217B1 (ko) 광 송출장치 및 이를 이용한 ToF(Time of Flight)모듈
US20190213748A1 (en) Image processing system
CN104977155A (zh) 一种led配光曲线快速测量方法
US20210131798A1 (en) Structured light projection optical system for obtaining 3d data of object surface
JP2005070025A (ja) 光源テストシステム及び光源のテスト方法
WO2024122494A1 (ja) 3次元形状計測装置
JP2019200140A (ja) 撮像装置、アクセサリ、処理装置、処理方法、および、プログラム
US10346959B2 (en) Processing apparatus, processing system, image pickup apparatus, processing method, and non-transitory computer-readable storage medium
JPH09210653A (ja) 面方向検出装置
JP2021127998A (ja) 距離情報取得装置および距離情報取得方法
JP7118776B2 (ja) 撮像装置、画像処理方法、画像処理プログラムおよび記録媒体
JPWO2024122494A5 (ja)
EP2646769B1 (en) System and method for creating a three-dimensional image file
JP2021004762A (ja) 計測装置、撮像装置、計測システム、制御方法、プログラム及び記録媒体
KR101155213B1 (ko) 이차원 광학 검측의 플랫필드 교정방법
JP2021018081A (ja) 撮像装置、計測装置、及び、計測方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23900609

Country of ref document: EP

Kind code of ref document: A1