WO2024121953A1 - Inspection system, inspection device, inspection method and inspection program - Google Patents

Inspection system, inspection device, inspection method and inspection program Download PDF

Info

Publication number
WO2024121953A1
WO2024121953A1 PCT/JP2022/044986 JP2022044986W WO2024121953A1 WO 2024121953 A1 WO2024121953 A1 WO 2024121953A1 JP 2022044986 W JP2022044986 W JP 2022044986W WO 2024121953 A1 WO2024121953 A1 WO 2024121953A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
electrical equipment
voltage electrical
received
electromagnetic wave
Prior art date
Application number
PCT/JP2022/044986
Other languages
French (fr)
Japanese (ja)
Inventor
文昭 永瀬
崇将 吉田
達也 中谷
利文 宮城
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/044986 priority Critical patent/WO2024121953A1/en
Publication of WO2024121953A1 publication Critical patent/WO2024121953A1/en

Links

Images

Definitions

  • the present invention relates to an inspection system, inspection device, inspection method, and inspection program for inspecting high-voltage electrical equipment.
  • known technologies include measuring and diagnosing the timing of discharge radio waves (discharge electromagnetic waves) emitted from the generator, as well as receiving the discharge radio waves using multiple antennas and receivers to estimate the location of the source of the discharge radio waves.
  • discharge radio waves discharge electromagnetic waves
  • Non-Patent Document 1 a technology is known that uses drones to perform partial discharge (PD) diagnosis of power equipment using the UHF method (see, for example, Non-Patent Document 1).
  • the present invention has been made in consideration of the above-mentioned problems, and aims to provide an inspection system, inspection device, inspection method, and inspection program that can accurately inspect high-voltage electrical equipment for abnormalities or abnormal conditions, even when external noise may be present.
  • An inspection system includes a plurality of electromagnetic wave receiving units that move toward high-voltage electrical equipment and receive electromagnetic waves as reception signals at different positions, and an inspection device that inspects the high-voltage electrical equipment for abnormalities based on the reception signals received by each of the electromagnetic wave receiving units.
  • the inspection device includes a phase calculation unit that calculates the phase and amplitude of each reception signal received by each of the electromagnetic wave receiving units, a delay unit that delays one of the reception signals calculated by the phase calculation unit based on the distance between the high-voltage electrical equipment and each of the electromagnetic wave receiving units so that the amplitude of each reception signal calculated by the phase calculation unit can be compared for each period, and a delay unit that calculates an amplitude ratio of each of the reception signals with one delayed by the delay unit, and when the calculated amplitude ratio exceeds a predetermined threshold, detects the position of each reception signal.
  • the system is characterized by having a phase correction unit that corrects the phase of each received signal to identify the phase of a period without adding or subtracting a signal whose phase is an integer multiple of the period; a residual calculation unit that calculates the phase residual of each received signal for the period whose phase has been corrected by the phase correction unit; a position estimation unit that estimates the position of the source of the electromagnetic waves received by the multiple electromagnetic wave receiving units based on the variance of the phase residual of each received signal calculated by the residual calculation unit; a source determination unit that determines whether the source of the electromagnetic waves is the high-voltage electrical equipment based on the position of the source of the electromagnetic waves estimated by the position estimation unit; and a determination unit that determines the presence or absence of an abnormality in the high-voltage electrical equipment or an abnormal state based on the received signals received by each of the electromagnetic wave receiving units when the source determination unit determines that the source of the electromagnetic waves is the high-voltage electrical equipment.
  • an inspection device that inspects high-voltage electrical equipment for abnormalities based on received signals received by multiple electromagnetic wave receiving units that move toward the high-voltage electrical equipment and receive electromagnetic waves as received signals at different positions, the inspection device comprising: a phase calculation unit that calculates the phase and amplitude of each received signal received by each of the electromagnetic wave receiving units; a delay unit that delays one of the received signals calculated by the phase calculation unit based on the distance between the high-voltage electrical equipment and each of the electromagnetic wave receiving units so that the amplitude of each received signal calculated by the phase calculation unit can be compared for each period; and a delay unit that calculates an amplitude ratio of each of the received signals with one delayed, and when the calculated amplitude ratio exceeds a predetermined threshold, outputs a signal whose phase in each received signal is an integer multiple of the period.
  • the system is characterized by having a phase correction unit that corrects the phase of each received signal to identify the phase of a period without adding or subtracting, a residual calculation unit that calculates the phase residual of each received signal for the period whose phase has been corrected by the phase correction unit, a position estimation unit that estimates the position of the source of the electromagnetic waves received by the multiple electromagnetic wave receiving units based on the variance of the phase residual of each received signal calculated by the residual calculation unit, a source determination unit that determines whether the source of the electromagnetic waves is the high-voltage electrical equipment based on the position of the source of the electromagnetic waves estimated by the position estimation unit, and a determination unit that determines the presence or absence of an abnormality in the high-voltage electrical equipment or an abnormal state based on the received signals received by each of the electromagnetic wave receiving units when the source determination unit determines that the source of the electromagnetic waves is the high-voltage electrical equipment.
  • an inspection method is an inspection method for inspecting high-voltage electrical equipment for abnormalities based on received signals received by multiple electromagnetic wave receiving units that move toward the high-voltage electrical equipment and receive electromagnetic waves as received signals at different positions, the inspection method comprising a phase calculation step of calculating the phase and amplitude of each received signal received by each of the electromagnetic wave receiving units, a delay step of delaying one of the received signals based on the distance between the high-voltage electrical equipment and each of the electromagnetic wave receiving units so that the amplitude of each received signal calculated by the phase calculation step can be compared for each period, and an amplitude ratio of each received signal one of which is delayed by the delay step is calculated, and when the calculated amplitude ratio exceeds a predetermined threshold, a signal whose phase in each received signal is an integer multiple of the period is added or subtracted.
  • the method includes a phase correction process for correcting the phase of each received signal so as to identify the phase of the period, without using the phase correction process; a residual calculation process for calculating the phase residual of each received signal for the period whose phase has been corrected by the phase correction process; a position estimation process for estimating the position of the source of the electromagnetic waves received by the multiple electromagnetic wave receiving units based on the variance of the phase residual of each received signal calculated by the residual calculation process; a source determination process for determining whether the source of the electromagnetic waves is the high-voltage electrical equipment based on the position of the source of the electromagnetic waves estimated by the position estimation process; and a determination process for determining the presence or absence of an abnormality in the high-voltage electrical equipment or an abnormal state based on the received signals received by each of the electromagnetic wave receiving units when it is determined by the source determination process that the source of the electromagnetic waves is the high-voltage electrical equipment.
  • the present invention makes it possible to accurately check for the presence or absence of abnormalities in high-voltage electrical equipment, even when external noise may be present.
  • FIG. 1A is a diagram showing an overview of an inspection system according to an embodiment, and FIG. 1B is a graph showing an example of an operation of the inspection system according to an embodiment to inspect whether or not there is an abnormality in high-voltage electrical equipment;
  • 1A is a diagram showing an overview of another configuration example of an inspection system according to an embodiment, and
  • FIG. 1B is a graph showing an example of an operation of the inspection system according to an embodiment to identify a source of discharge radio waves in order to inspect high-voltage electrical equipment for abnormalities.
  • FIG. 1 is a diagram illustrating a specific configuration example of an inspection system according to an embodiment.
  • FIG. 1 is a diagram illustrating an example of the configuration of a drone control device.
  • FIG. 1 is a diagram illustrating an example of the configuration of a drone.
  • 1 is a diagram illustrating a configuration example of an inspection device according to an embodiment.
  • 11 is a graph illustrating an example of a change over time in amplitude of each of the received signals calculated by each of the phase calculation units.
  • 11 is a graph illustrating a result of a delay unit delaying one of the amplitude changes over time of a received signal.
  • 1 is a graph illustrating an amplitude ratio of each of the electromagnetic waves.
  • 11 is a graph illustrating a process in which a phase correcting unit corrects the phase of an electromagnetic wave.
  • 11 is a graph showing a result of phase correction performed by a phase correcting unit.
  • FIG. 12(a) is a graph showing the time change ⁇ 31(t- ⁇ ) of the corrected phase at drone 3-1 with delay difference ⁇ , and the time change ⁇ 32(t) of the corrected phase received at drone 3-2.
  • FIG. 12(b) is a graph showing the time change of the residual ⁇ 31(t+ ⁇ )- ⁇ 32(t).
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of an inspection device according to an embodiment.
  • 1 is a flowchart illustrating an example of an operation of an inspection system according to an embodiment.
  • (a) is a diagram showing the positional relationship between high-voltage electrical equipment and each drone.
  • (b) is a graph showing the frequency characteristics of a filter used when the drone receives electromagnetic waves.
  • (c) is a graph showing the residual phase variance when the S/N ratio of the drone is 10 dB.
  • FIG. 1 is a diagram showing an example of the operation of an inspection system according to one embodiment for inspecting high-voltage electrical equipment.
  • FIG. 1(a) is a diagram showing an overview of an inspection system according to one embodiment.
  • FIG. 1(b) is a graph illustrating the operation of an inspection system according to one embodiment for inspecting high-voltage electrical equipment for abnormalities.
  • the high-voltage electrical equipment 100 to be inspected such as a wind power generation facility, is stored behind switch gear or the like to prevent radio wave interference to the surrounding area, and the strength of radio waves to the surrounding area is weakened. Therefore, the inspection is carried out by approaching the high-voltage electrical equipment 100 to be inspected, receiving the discharge radio waves, and then carrying out the inspection.
  • the high-voltage electrical equipment 100 is a wind power generation facility, it is difficult for humans to approach the high-voltage electrical equipment 100 directly.
  • a drone A1 equipped with an electromagnetic wave receiving unit flies near the high-voltage electrical equipment 100, and the electromagnetic waves received by the drone A1 are relayed to the inspection device B1 via a wireless line between the drone and the inspection device, such as a telemeter, and are received by the inspection device B1.
  • the inspection device B1 detects that the high-voltage electrical equipment 100 is emitting partial discharge electromagnetic waves, and inspects (diagnoses) the signal characteristics to determine whether the high-voltage electrical equipment 100 is normal or abnormal.
  • the inspection device B1 determines whether the frequency characteristics, occurrence frequency, duration, power, etc. are outliers compared to normal values (e.g., being more than three times the standard deviation from the average) or the magnitude of the difference from previously obtained values, and inspects (diagnoses) whether the high-voltage electrical equipment 100 is normal or abnormal.
  • FIG. 2 is a diagram showing an overview of an inspection method using another configuration of an inspection system according to an embodiment.
  • FIG. 2(a) is a diagram showing an overview of another configuration example of an inspection system according to an embodiment.
  • FIG. 2(b) is a graph showing an example of an operation of an inspection system according to an embodiment to identify the source of discharge radio waves in order to inspect high-voltage electrical equipment for abnormalities.
  • drones A1 and A2 equipped with an electromagnetic wave receiving unit and a drone-to-inspection device wireless line communication unit are flown at distances D1 and D2 , respectively, from the high-voltage electrical equipment 100, and the electromagnetic waves received by the drones A1 and A2 are received by the inspection device B2 via the drone-to-inspection device wireless line.
  • the inspection device B2 only needs to know the distance between each drone and the high-voltage power supply equipment to be inspected by a rangefinder or the like, and may be configured to use electromagnetic waves of different levels received at different positions by moving one drone.
  • the inspection device B2 may also be configured to measure the amplitude and phase of the electromagnetic waves received by the drones A1 and A2, and based on the amplitude ratio of the received electromagnetic waves, correct the phase by setting it to zero if the amplitude ratio is large. In this case, if the phase time difference matches the reception time difference due to distance, the inspection device B2 determines that the radio waves are emitted by the high-voltage electrical equipment 100 that is the subject of inspection. The inspection device B2 may then inspect (diagnose) whether the high-voltage electrical equipment 100 is normal or abnormal based on the frequency characteristics, occurrence frequency, power, etc. of the discharge radio waves.
  • the frequency characteristics of the electromagnetic waves emitted by the high-voltage electrical equipment 100 due to partial discharge are broadband.
  • the receiving frequency may be determined arbitrarily, or the receiving frequency (wavelength ⁇ ) may be assumed to be known in advance.
  • the electromagnetic waves emitted by the partial discharge from the high-voltage electrical equipment 100 propagate uniformly in space.
  • the amplitude of the electromagnetic waves received by the drone is inversely proportional to the distance from the radiation source. Furthermore, there is an uncertainty of 2 ⁇ x n in the measurement of the phase difference of the electromagnetic waves.
  • the inspection system of one embodiment corrects the phase of the electromagnetic waves, if the amplitude ratio of the electromagnetic waves received between drones A1 and A2 is N times or more or less than M times the distance ratio, it is considered that the level of external noise is high, and it is considered that the phase cannot be measured correctly due to the influence of the external noise. This value is used as a threshold value, and the uncertainty when the phase difference of the electromagnetic waves becomes an integer multiple of the period is set to zero.
  • FIG. 3 is a diagram showing a specific configuration example of the inspection system 1 according to one embodiment.
  • the inspection system 1 has, for example, a drone control device 2, drones 3-1 and 3-2, and an inspection device 4 to inspect high-voltage electrical equipment 100 such as wind power generation equipment.
  • the drone control device 2 controls the flight of the drones 3-1 and 3-2.
  • the drones 3-1 and 3-2 each have an electromagnetic wave receiving unit 34 that receives electromagnetic waves radiated by discharges, which will be described later. They fly close to the high-voltage electrical equipment 100 to receive the electromagnetic waves as received signals, and each received signal is relayed to the inspection device 4 via a wireless line between the drone and the inspection device.
  • an electromagnetic wave receiving unit 34 that receives electromagnetic waves radiated by discharges, which will be described later. They fly close to the high-voltage electrical equipment 100 to receive the electromagnetic waves as received signals, and each received signal is relayed to the inspection device 4 via a wireless line between the drone and the inspection device.
  • drone 3-1 and 3-2 when there is no need to specify which of the multiple configurations, such as drones 3-1 and 3-2, they will simply be abbreviated as drone 3, etc.
  • the inspection device 4 has a control unit 40, an antenna 41, a wireless line communication unit 42, a data separation unit 43, a correlator 44, an analyzer 45, and a distance measurement unit 46, and analyzes the received signals transferred by the drones 3-1 and 3-2 to check for the presence or absence of anomalies in the high-voltage electrical equipment 100 or the state of the anomaly. Details of the inspection device 4 will be described later using FIG. 6 etc.
  • FIG. 4 is a diagram showing an example configuration of the drone control device 2.
  • the drone control device 2 has, for example, an antenna 20, a drone control communication unit 22, and a command unit 24.
  • the command unit 24 transmits commands to control the drones 3-1 and 3-2 via the drone control communication unit 22 and the antenna 20.
  • FIG. 5 is a diagram showing an example of the configuration of the drone 3.
  • the drone 3 has, for example, a drone body 30, a wireless line communication unit 32, and an electromagnetic wave receiving unit (discharge radio wave receiver) 34, and performs flying and communication, etc. according to the control of the drone control device 2.
  • an electromagnetic wave receiving unit discharge radio wave receiver
  • the drone body 30 has, for example, an antenna 301, a drone control communication unit 302, a flight control unit 303, for example, four motor units 304, and for example, four rotors 305.
  • the drone control communication unit 302 wirelessly communicates with the drone control device 2 via the antenna 301.
  • the flight control unit 303 controls the flight of the drone 3 by controlling the four motor units 304 to rotate the four rotors 305.
  • the wireless line communication unit 32 has, for example, an antenna 320, a MOD (modulator) 321, an amplifier 322, an amplifier 323, and a DEM (demodulator) 324, and performs wireless communication with the inspection device 4.
  • the wireless line communication unit 32 transmits a signal input from the electromagnetic wave receiving unit 34 to the inspection device 4, and performs settings for the electromagnetic wave receiving unit 34.
  • the electromagnetic wave receiving unit 34 has an antenna 340, a reference signal source 341, a frequency setting unit 342, a multiplier unit 343, a filter 344, an amplifier 345, a mixer 346, and a filter 347, and receives electromagnetic waves and the like emitted due to partial discharge in the high-voltage electrical equipment 100, etc., and outputs them to the wireless line communication unit 32.
  • the electromagnetic wave receiving unit 34 receives electromagnetic waves from the high-voltage electrical equipment 100 or the like via the antenna 340 and inputs them to the mixer 346 via the filter 344 and the amplifier 345.
  • the electromagnetic wave receiving unit 34 also multiplies the reference signal oscillated by the reference signal source 341 to a frequency set by the frequency setting unit 342 using the multiplication unit 343 to generate a local signal, which is input to the mixer 346.
  • the mixer 346 multiplies and mixes the input signals, and for the signal with the frequency that has passed through the filter 344, which is the sum and difference of the local signal frequencies, removes unnecessary frequency component signals via the filter 347, extracts the desired frequency component signal, and outputs the signal to the wireless line communication unit 32 after frequency conversion while leaving the phase information of the received signal.
  • the wireless line communication unit 32 relays the signal input from the filter 347 to the inspection device. At that time, the signal is modulated by the modulator 321, for example by making the transmission frequency different between the drones, so that the inspection device can have multiple access from drones 3-1 and 3-2.
  • FIG. 6 is a diagram showing an example of the configuration of the inspection device 4 according to one embodiment.
  • the inspection device 4 has a control unit 40, an antenna 41, a wireless line communication unit 42, a data separation unit 43, a correlator 44, an analyzer 45, and a distance measurement unit 46, and inspects the high-voltage electrical equipment 100 for abnormalities based on signals received from the drones 3-1 and 3-2.
  • the distance measurement unit 46 measures the distance between each of the drones 3-1 and 3-2 and the high-voltage electrical equipment 100, and outputs the measurement results to the analyzer 45, but the distance between each of the drones 3-1 and 3-2 and the high-voltage electrical equipment 100 may be determined in advance.
  • the control unit 40 controls the radio line communication device, the frequency setting unit 342 that sets the frequency of the receiver for the discharge electromagnetic waves in the drone, and each unit that constitutes the inspection device 4.
  • the control unit 40 also executes control to perform two-way wireless communication with the drones 3-1 and 3-2 via the radio line communication unit 42 and the antenna 41.
  • the antenna 41 receives the signals received and transferred by the drones 3-1 and 3-2, and outputs them to the wireless line communication unit 42. It also transmits signals to the drones 3-1 and 3-2.
  • the wireless line communication unit 42 has a filter 421, an amplifier 422, a DEM 423, a MOD 424, and an amplifier 425, and performs two-way wireless communication with the drones 3-1 and 3-2.
  • the data separation unit 43 separates the signals received by the inspection device 4 from the drones 3-1 and 3-2 to enable multiple access, and outputs each to the inspection device 4.
  • the correlator 44 has, for example, an oscillator 440, a 90-degree phase shifter 441, phase processors 442-1 and 442-2, a delay unit 443, a phase correction unit 444, and a residual calculator 445, and performs correlation processing to adjust and integrate the delay time and phase of the signal from drone 3-1 and the signal from drone 3-2.
  • the oscillator 440 outputs the oscillated signal to the 90 degree phase shifter 441, the phase processor 442-1, and the phase processor 442-2.
  • the 90 degree phase shifter 441 shifts the phase of the signal input from the oscillator 440 by 90 degrees and outputs it to the phase processors 442-1 and 442-2.
  • the phase processing unit 442-1 has two multiplication units 446, two integration units 447, and a phase calculation unit 448, processes the signal input from the data separation unit 43, calculates the phase, and outputs the calculated phase to the correlator 44.
  • the phase processing unit 442-2 like the phase processing unit 442-1, has two multiplication units 446, two integration units 447, and a phase calculation unit 448, and processes the signal input from the data separation unit 43 to calculate the phase and output it to the delay unit 443.
  • the amplitude of the received signal can be calculated as 2Ic/ ⁇ Bcos( ⁇ ) ⁇ or 2Is/ ⁇ Bsin( ⁇ ) ⁇ , or by using the following formula (1). In this way, the phase and amplitude are calculated at regular intervals ( ⁇ t).
  • FIG 7 is a graph illustrating the change over time in the amplitude of each discharge radio wave reception signal for each drone calculated by each phase calculation unit 448.
  • phase processing units 442-1 and 442-2 may be configured as an integrated unit and are not limited to the configuration shown in FIG. 6.
  • the delay unit 443 delays one of the amplitude time fluctuations of the received signals calculated by the phase calculation unit 448 so as to obtain an amplitude ratio (Ar) due to the delay difference in the reception time of each of the received signals calculated by the phase calculation unit 448 based on the distance between the high-voltage electrical equipment 100 and each of the electromagnetic wave receiving units 34, and outputs the delayed amplitude time fluctuation to the correlator 44.
  • the delay unit 443 delays one of the received signals calculated by the phase calculation unit 448 so that the amplitudes of each of the received signals calculated by the phase calculation unit 448 can be compared for each period.
  • Figure 8 is a graph illustrating the results when the delay unit 443 delays one of the changes in amplitude over time of the received signal of radio waves emitted by the drone. As shown in Figure 8, even when the delay unit 443 processes the amplitudes of the two received signals so that they can be compared, there is a residual.
  • the phase correction unit 444 calculates the amplitude ratio (Ar) of each of the received signals, one of which has been delayed by the delay unit 443, and when the calculated amplitude ratio exceeds a predetermined threshold, corrects the phase of each of the received signals to identify the phase of the period without adding or subtracting a signal whose phase is an integer multiple of the period in each of the received signals, and outputs the result to the residual calculation unit 445.
  • the phase correction unit 444 calculates the amplitude ratio (Ar) of the two received signals shown in FIG. 8, and when the amplitude ratio falls outside a predetermined threshold range as shown in FIG. 9, it sets the uncertainty of the integer multiple of the electromagnetic wave to zero, and sets the phase at that point in time to the phase found in the range of 0 to 2 ⁇ radians as described above.
  • FIG. 10 is a graph illustrating the process of correcting the phase of the electromagnetic wave by the phase correction unit 444.
  • the phase correction unit 444 corrects the uncertainty of an integer multiple of 2 ⁇ for the phase of the electromagnetic wave so that the fluctuation of the electromagnetic wave becomes continuous.
  • the phase correction unit 444 sets the uncertainty of the integer multiple to zero, finds the phase in the range of 0 to 2 ⁇ radians as described above, and corrects the phase again every ⁇ t.
  • Figure 11 is a graph showing the result of phase correction by the phase correction unit 444 for the signal received by the drone 3-1.
  • the inspection device 4 performs delay processing to compensate for the reception time difference between the drones 3-1 and 3-2 for signals received by drones close to the high-voltage electrical equipment 100 that may be a source of electromagnetic waves, obtains the amplitude ratio of each of the received signals by comparing the amplitudes, and when the amplitude ratio (Ar) is outside the range of a predetermined threshold, determines that the external noise is large, sets the uncertainty of the integer multiple described above to zero, and sets the phase found in the range of 0 to 2 ⁇ radians as described above as the phase at that time.
  • the residual calculation unit 445 (FIG. 6) outputs the residual ⁇ 31 (t+ ⁇ )- ⁇ 32 (t), which is the time change in phase corrected by the phase correction unit 444 when the delay difference is ⁇ (time changes in the phase of the signals received by drone 3-1 and drone 3-2 are ⁇ 31 ( t) and ⁇ 32 (t), respectively), to the analyzer 45.
  • the residual calculation unit 445 calculates the phase residual of each of the received signals for the period in which the phase has been corrected by the phase correction unit 444.
  • the analyzer 45 has a variance calculation unit 451, a position estimation unit 452, a source determination unit 453, and a determination unit 454.
  • Figure 12 is a graph showing the time change in phase and the time change in residual.
  • Figure 12(a) is a graph showing the time change ⁇ 31(t- ⁇ ) of the above-mentioned corrected phase in drone 3-1 with delay difference ⁇ , and the time change ⁇ 32(t) of the above-mentioned corrected phase received by drone 3-2.
  • Figure 12(b) is a graph showing the time change in the residual ⁇ 31(t+ ⁇ )- ⁇ 32(t).
  • the position estimation unit 452 estimates the position of the source of the electromagnetic waves received by the electromagnetic wave receiving unit 34 of each of the drones 3-1 and 3-2 based on the variance of the phase residual of each received signal calculated by the residual calculation unit 445, and outputs the estimation result to the source determination unit 453.
  • the source determination unit 453 determines whether the source of the electromagnetic waves is the high-voltage electrical equipment 100 based on the position of the source of the electromagnetic waves estimated by the position estimation unit 452, and outputs the determination result to the determination unit 454.
  • the source determination unit 453 determines that the source of the electromagnetic waves is the high-voltage electrical equipment 100 when the level difference of the received signals received by each of the electromagnetic wave receiving units 34 matches the level difference due to the distance difference between the high-voltage electrical equipment 100 and each of the electromagnetic wave receiving units 34, or when the phase time difference of the received signals received by each of the electromagnetic wave receiving units 34 matches the reception time difference due to the distance difference between the high-voltage electrical equipment 100 and each of the electromagnetic wave receiving units 34.
  • the determination unit 454 determines whether there is an abnormality or an abnormal state of the high-voltage electrical equipment 100 based on the reception signals received by the electromagnetic wave receiving units 34 of the drones 3-1 and 3-2.
  • the determination unit 454 determines that there is an abnormality in the high-voltage electrical equipment 100 when the received signal received by each electromagnetic wave receiving unit 34 is at a level stronger than a predetermined threshold.
  • the determination unit 454 may also determine an abnormal state of the high-voltage electrical equipment 100 based on the frequency characteristics, occurrence frequency, power, etc. of the electromagnetic waves received by the electromagnetic wave receiving unit 34.
  • each function possessed by the inspection device 4 may be configured in part or in whole by hardware such as a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or may be configured as a program executed by a processor such as a CPU.
  • the inspection device 4 can be realized using a computer and a program, and the program can be recorded on a storage medium or provided via a network.
  • FIG. 13 is a diagram showing an example of the hardware configuration of an inspection device 4 according to one embodiment.
  • the inspection device 4 has an input unit 90, an output unit 91, a communication unit 92, a CPU 93, a memory 94, and a HDD 95 connected via a bus 96, and has the functions of a computer.
  • the inspection device 4 is also capable of inputting and outputting data to and from a computer-readable storage medium 97.
  • the input unit 90 is, for example, a keyboard and a mouse.
  • the output unit 91 is, for example, a display device such as a display.
  • the communication unit 92 is a communication interface that performs wireless communication.
  • the CPU 93 controls each component of the inspection device 4 and performs predetermined processing.
  • the memory 94 and HDD 95 store data, etc.
  • the storage medium 97 is capable of storing programs and the like that execute the functions of the inspection device 4. Note that the architecture that constitutes the inspection device 4 is not limited to the example shown in FIG. 12.
  • FIG. 14 is a flowchart showing an example of the operation of the inspection system 1 according to one embodiment.
  • step 100 the drones 3-1 and 3-2 determine whether the level of the signal received by the electromagnetic wave receiving unit 34 is greater than a predetermined threshold. If the drones 3-1 and 3-2 determine that the level of the signal received by the electromagnetic wave receiving unit 34 is greater than the predetermined threshold (S100: Yes), they proceed to processing of S102, and if they determine that the level of the signal received by the electromagnetic wave receiving unit 34 is equal to or less than the predetermined threshold (S100: No), they continue processing.
  • step 102 the electromagnetic wave receiving unit 34 continues receiving electromagnetic waves (data) for a predetermined time.
  • step 104 the analyzer 45 calculates the variance of the residual for the phase difference ⁇ .
  • step 108 the inspection device 4 measures the positions (distances) of the drones 3-1 and 3-2 and the high-voltage electrical equipment 100.
  • step 110 the inspection device 4 sets the coordinates of the drones 3-1 and 3-2 and the high-voltage electrical equipment 100 to their respective positions. For example, the inspection device 4 sets (0,0,0) for the drone 3-1, (D,0,0) for the drone 3-2, and (Sx,Sy,Sz) for the high-voltage electrical equipment 100.
  • step 112 the inspection device 4 performs the calculation of the equation shown in S112. Note that c is the speed of light.
  • step 114 the inspection device 4 determines whether or not the equations shown in S112 are satisfied for each of the received electromagnetic waves and the positions of the drones 3-1, 3-2 and the high-voltage electrical equipment 100. If the inspection device 4 determines that the equations shown in S112 are not satisfied (S114: No), it proceeds to processing of S116, and if it determines that the equations shown in S112 are satisfied (S114: Yes), it proceeds to processing of S118.
  • step 116 the inspection device 4 determines that the electromagnetic waves received by the drone 3 are from a source other than the high-voltage electrical equipment 100 (other), and returns to the processing of S100.
  • step 118 the inspection device 4 determines that the electromagnetic waves received by the drone 3 are radio waves from the high-voltage electrical equipment 100, which is the equipment to be inspected.
  • step 120 the inspection device 4 stores the time when the drones 3-1 and 3-2 received the electromagnetic waves and the level of the electromagnetic waves.
  • step 122 the inspection device 4 calculates the generation interval of the stored electromagnetic waves.
  • step 124 the inspection device 4 determines whether the calculated occurrence interval and level of the electromagnetic waves deviate from the normal values, and if they deviate (S126: Yes), proceeds to processing of S126, and if they do not deviate (S126: No), proceeds to processing of S128.
  • step 126 the inspection device 4 determines that there is an abnormality in the high-voltage electrical equipment 100 (equipment abnormality) and returns to the processing of S100.
  • step 128 the inspection device 4 determines that there is no abnormality in the high-voltage electrical equipment 100 (equipment is normal), and returns to processing in S100.
  • Figure 15 is a diagram showing an example in which the inspection system 1 inspects the high-voltage electrical equipment 100.
  • Figure 15(a) is a diagram showing the positional relationship between the high-voltage electrical equipment 100 and the drones 3-1 and 3-2.
  • Figure 15(b) is a graph showing the frequency characteristics of a filter used by the drone 3 when receiving electromagnetic waves.
  • Figure 15(c) is a graph showing the residual phase variance when the signal-to-noise ratio in the drone 3-1 is 10 dB.
  • Drones 3-1 and 3-2 receive electromagnetic waves through a receiving filter with the frequency characteristics shown in Figure 14(b) (centered at 1 MHz, 3 dB bandwidth is 100 kHz).
  • the inspection device 4 of the inspection system 1 changes the intensity of the external wave noise based on the intensity of the partial discharge radio waves received by the drone 3-1, and uses this as a parameter in the signal-to-noise ratio.
  • the inspection device 4 changed the delay time of the radio waves received by the drone 3-1 and analyzed by the analyzer 45 using 10,000 sampling data (400 ⁇ s) with a sampling interval of 0.04 ⁇ s, and calculated the residual variance of the phase with respect to the delay time.
  • the inspection system 1 can improve the accuracy of estimating the source position of the discharge radio waves, thereby improving the accuracy of inspecting the high-voltage electrical equipment 100 being inspected for abnormalities.
  • the delay unit 443 calculates the amplitude ratio of each of the phase-matched received signals, and when the calculated amplitude ratio exceeds a predetermined threshold, the phase of each received signal is corrected to identify the phase of the period without adding a signal whose phase difference in each received signal is an integer multiple of the period. Therefore, even when external noise may be present, the presence or absence of an abnormality in the high-voltage electrical equipment 100 or the state of the abnormality can be inspected with high accuracy.

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

In an inspection system according to one embodiment, one of the received signals calculated by a phase calculation unit is delayed so that time fluctuations of the received signals calculated by the phase calculation unit on the basis of the distances between high-voltage electrical equipment and electromagnetic wave receivers match each other as much as possible upon comparison, the amplitude ratio of each received signal for which the reception time has been shifted by the delay difference is calculated, when the calculated amplitude ratio exceeds a predetermined threshold, the phase of each received signal is corrected to specify the phase of the period, without adding or subtracting the signals for which the phase of each received signal is an integer multiple of the period, the position of the source of electromagnetic waves received by the plurality of electromagnetic wave receivers is estimated on the basis of the variance of the corrected phase residual of each received signal, and where a source determination unit determines that the source of electromagnetic waves is high-voltage electrical equipment, the presence or absence of an abnormality or state of the abnormality in the high-voltage electrical equipment is determined on the basis of signal characteristics such as the frequency, level fluctuations, and duration of occurrence of the received signals received by each electromagnetic wave receiver.

Description

点検システム、点検装置、点検方法及び点検プログラムInspection system, inspection device, inspection method and inspection program
 本発明は、高圧電気設備を点検する点検システム、点検装置、点検方法及び点検プログラムに関する。 The present invention relates to an inspection system, inspection device, inspection method, and inspection program for inspecting high-voltage electrical equipment.
 風力発電設備などの高圧電気設備は、稼働をさせながら異常の有無や異常の状態を点検できることが望ましい。例えば、風力発電設備などに備えられている発電機のステータ(固定子)では、電極間の誘電体において、長期にわたる運転を経て機械的なストレスが加わり、多くの小さなボイド(不純物)が発生する。そして、電極内の誘電体において、空隙放電やボイド放電などの部分放電が生じやすくなり、それに伴う電磁波が放射される。 It is desirable to be able to inspect high-voltage electrical equipment, such as wind power generation equipment, for abnormalities and their state while the equipment is in operation. For example, in the stators of generators found in wind power generation equipment, mechanical stress is applied to the dielectric between the electrodes after long periods of operation, causing many small voids (impurities) to form. This makes it easier for partial discharges, such as air gap discharges and void discharges, to occur in the dielectric between the electrodes, resulting in the emission of electromagnetic waves.
 例えば発電機などの高圧電気設備を稼働させながら当該設備の異常を点検するために、発電機から放射される放電電波(放電電磁波)の発生タイミングなどを測定して診断する技術や、複数のアンテナ及び受信機を用いて放電電波を受信し、放電電波の発生源の位置を推定する技術が知られている。 For example, in order to check for abnormalities in high-voltage electrical equipment such as generators while the equipment is in operation, known technologies include measuring and diagnosing the timing of discharge radio waves (discharge electromagnetic waves) emitted from the generator, as well as receiving the discharge radio waves using multiple antennas and receivers to estimate the location of the source of the discharge radio waves.
 さらに、ドローンを用いて、UHF法による電力機器の部分放電(PD)診断を行う技術が知られている(例えば、非特許文献1参照)。 Furthermore, a technology is known that uses drones to perform partial discharge (PD) diagnosis of power equipment using the UHF method (see, for example, Non-Patent Document 1).
 しかしながら、放電電波の発生源の位置を推定して高圧電気設備の異常の有無を点検する場合、放電電波の発生源位置を推定する精度が雷放電による空電雑音などの外来ノイズなどにより低下すると、点検対象の高圧電気設備の異常の有無を点検する精度が低下してしまうという問題があった。 However, when estimating the location of the source of radio discharges to check for abnormalities in high-voltage electrical equipment, if the accuracy of estimating the location of the source of radio discharges is reduced by external noise such as atmospheric noise caused by lightning discharges, there is a problem in that the accuracy of checking for abnormalities in the high-voltage electrical equipment being inspected is also reduced.
 本発明は、上述した課題を鑑みてなされたものであり、外来ノイズが存在し得る場合にも、高圧電気設備の異常の有無又は異常の状態を精度よく点検することができる点検システム、点検装置、点検方法及び点検プログラムを提供することを目的とする。 The present invention has been made in consideration of the above-mentioned problems, and aims to provide an inspection system, inspection device, inspection method, and inspection program that can accurately inspect high-voltage electrical equipment for abnormalities or abnormal conditions, even when external noise may be present.
 本発明の一実施形態にかかる点検システムは、高圧電気設備へ近づくように移動して異なる位置で電磁波を受信信号として受信する複数の電磁波受信部と、前記電磁波受信部それぞれが受信した受信信号に基づいて、前記高圧電気設備の異常を点検する点検装置とを備えた点検システムにおいて、前記点検装置は、前記電磁波受信部それぞれが受信した受信信号それぞれの位相及び振幅を計算する位相計算部と、前記高圧電気設備と前記電磁波受信部それぞれとの距離に基づいて、前記位相計算部が計算した受信信号それぞれを周期ごとに振幅を比較できるように、前記位相計算部が計算した受信信号の一方を遅延させる遅延部と、前記遅延部が一方を遅延させた受信信号それぞれの振幅比を算出し、算出した振幅比が所定の閾値を超えた場合に、受信信号それぞれにおける位相が周期の整数倍となる信号を加算又は減算することなく、周期分の位相を特定するように受信信号それぞれの位相を修正する位相修正部と、前記位相修正部が位相を修正した周期分の受信信号それぞれの位相残差を計算する残差計算部と、前記残差計算部が計算した受信信号それぞれの位相残差の分散に基づいて、複数の前記電磁波受信部が受信した電磁波の発生源の位置を推定する位置推定部と、前記位置推定部が推定した電磁波の発生源の位置に基づいて、電磁波の発生源が前記高圧電気設備であるか否かを判定する発生源判定部と、電磁波の発生源が前記高圧電気設備であると前記発生源判定部が判定した場合に、前記電磁波受信部それぞれが受信した受信信号に基づいて、前記高圧電気設備の異常の有無又は異常の状態を判定する判定部とを有することを特徴とする。 An inspection system according to one embodiment of the present invention includes a plurality of electromagnetic wave receiving units that move toward high-voltage electrical equipment and receive electromagnetic waves as reception signals at different positions, and an inspection device that inspects the high-voltage electrical equipment for abnormalities based on the reception signals received by each of the electromagnetic wave receiving units. The inspection device includes a phase calculation unit that calculates the phase and amplitude of each reception signal received by each of the electromagnetic wave receiving units, a delay unit that delays one of the reception signals calculated by the phase calculation unit based on the distance between the high-voltage electrical equipment and each of the electromagnetic wave receiving units so that the amplitude of each reception signal calculated by the phase calculation unit can be compared for each period, and a delay unit that calculates an amplitude ratio of each of the reception signals with one delayed by the delay unit, and when the calculated amplitude ratio exceeds a predetermined threshold, detects the position of each reception signal. The system is characterized by having a phase correction unit that corrects the phase of each received signal to identify the phase of a period without adding or subtracting a signal whose phase is an integer multiple of the period; a residual calculation unit that calculates the phase residual of each received signal for the period whose phase has been corrected by the phase correction unit; a position estimation unit that estimates the position of the source of the electromagnetic waves received by the multiple electromagnetic wave receiving units based on the variance of the phase residual of each received signal calculated by the residual calculation unit; a source determination unit that determines whether the source of the electromagnetic waves is the high-voltage electrical equipment based on the position of the source of the electromagnetic waves estimated by the position estimation unit; and a determination unit that determines the presence or absence of an abnormality in the high-voltage electrical equipment or an abnormal state based on the received signals received by each of the electromagnetic wave receiving units when the source determination unit determines that the source of the electromagnetic waves is the high-voltage electrical equipment.
 また、本発明の一実施形態にかかる点検装置は、高圧電気設備へ近づくように移動して異なる位置で電磁波を受信信号として受信する複数の電磁波受信部それぞれが受信した受信信号に基づいて、前記高圧電気設備の異常を点検する点検装置において、前記電磁波受信部それぞれが受信した受信信号それぞれの位相及び振幅を計算する位相計算部と、前記高圧電気設備と前記電磁波受信部それぞれとの距離に基づいて、前記位相計算部が計算した受信信号それぞれを周期ごとに振幅を比較できるように、前記位相計算部が計算した受信信号の一方を遅延させる遅延部と、前記遅延部が一方を遅延させた受信信号それぞれの振幅比を算出し、算出した振幅比が所定の閾値を超えた場合に、受信信号それぞれにおける位相が周期の整数倍となる信号を加算又は減算することなく、周期分の位相を特定するように受信信号それぞれの位相を修正する位相修正部と、前記位相修正部が位相を修正した周期分の受信信号それぞれの位相残差を計算する残差計算部と、前記残差計算部が計算した受信信号それぞれの位相残差の分散に基づいて、複数の前記電磁波受信部が受信した電磁波の発生源の位置を推定する位置推定部と、前記位置推定部が推定した電磁波の発生源の位置に基づいて、電磁波の発生源が前記高圧電気設備であるか否かを判定する発生源判定部と、電磁波の発生源が前記高圧電気設備であると前記発生源判定部が判定した場合に、前記電磁波受信部それぞれが受信した受信信号に基づいて、前記高圧電気設備の異常の有無又は異常の状態を判定する判定部とを有することを特徴とする。 In addition, an inspection device according to one embodiment of the present invention is an inspection device that inspects high-voltage electrical equipment for abnormalities based on received signals received by multiple electromagnetic wave receiving units that move toward the high-voltage electrical equipment and receive electromagnetic waves as received signals at different positions, the inspection device comprising: a phase calculation unit that calculates the phase and amplitude of each received signal received by each of the electromagnetic wave receiving units; a delay unit that delays one of the received signals calculated by the phase calculation unit based on the distance between the high-voltage electrical equipment and each of the electromagnetic wave receiving units so that the amplitude of each received signal calculated by the phase calculation unit can be compared for each period; and a delay unit that calculates an amplitude ratio of each of the received signals with one delayed, and when the calculated amplitude ratio exceeds a predetermined threshold, outputs a signal whose phase in each received signal is an integer multiple of the period. The system is characterized by having a phase correction unit that corrects the phase of each received signal to identify the phase of a period without adding or subtracting, a residual calculation unit that calculates the phase residual of each received signal for the period whose phase has been corrected by the phase correction unit, a position estimation unit that estimates the position of the source of the electromagnetic waves received by the multiple electromagnetic wave receiving units based on the variance of the phase residual of each received signal calculated by the residual calculation unit, a source determination unit that determines whether the source of the electromagnetic waves is the high-voltage electrical equipment based on the position of the source of the electromagnetic waves estimated by the position estimation unit, and a determination unit that determines the presence or absence of an abnormality in the high-voltage electrical equipment or an abnormal state based on the received signals received by each of the electromagnetic wave receiving units when the source determination unit determines that the source of the electromagnetic waves is the high-voltage electrical equipment.
 また、本発明の一実施形態にかかる点検方法は、高圧電気設備へ近づくように移動して異なる位置で電磁波を受信信号として受信する複数の電磁波受信部それぞれが受信した受信信号に基づいて、前記高圧電気設備の異常を点検する点検方法において、前記電磁波受信部それぞれが受信した受信信号それぞれの位相及び振幅を計算する位相計算工程と、前記高圧電気設備と前記電磁波受信部それぞれとの距離に基づいて、前記位相計算工程により計算した受信信号それぞれを周期ごとに振幅を比較できるように、受信信号の一方を遅延させる遅延工程と、前記遅延工程により一方を遅延させた受信信号それぞれの振幅比を算出し、算出した振幅比が所定の閾値を超えた場合に、受信信号それぞれにおける位相が周期の整数倍となる信号を加算又は減算することなく、周期分の位相を特定するように受信信号それぞれの位相を修正する位相修正工程と、前記位相修正工程により位相を修正した周期分の受信信号それぞれの位相残差を計算する残差計算工程と、前記残差計算工程により計算した受信信号それぞれの位相残差の分散に基づいて、複数の前記電磁波受信部が受信した電磁波の発生源の位置を推定する位置推定工程と、前記位置推定工程により推定した電磁波の発生源の位置に基づいて、電磁波の発生源が前記高圧電気設備であるか否かを判定する発生源判定工程と、電磁波の発生源が前記高圧電気設備であると前記発生源判定工程により判定した場合に、前記電磁波受信部それぞれが受信した受信信号に基づいて、前記高圧電気設備の異常の有無又は異常の状態を判定する判定工程とを含むことを特徴とする。 Furthermore, an inspection method according to one embodiment of the present invention is an inspection method for inspecting high-voltage electrical equipment for abnormalities based on received signals received by multiple electromagnetic wave receiving units that move toward the high-voltage electrical equipment and receive electromagnetic waves as received signals at different positions, the inspection method comprising a phase calculation step of calculating the phase and amplitude of each received signal received by each of the electromagnetic wave receiving units, a delay step of delaying one of the received signals based on the distance between the high-voltage electrical equipment and each of the electromagnetic wave receiving units so that the amplitude of each received signal calculated by the phase calculation step can be compared for each period, and an amplitude ratio of each received signal one of which is delayed by the delay step is calculated, and when the calculated amplitude ratio exceeds a predetermined threshold, a signal whose phase in each received signal is an integer multiple of the period is added or subtracted. The method includes a phase correction process for correcting the phase of each received signal so as to identify the phase of the period, without using the phase correction process; a residual calculation process for calculating the phase residual of each received signal for the period whose phase has been corrected by the phase correction process; a position estimation process for estimating the position of the source of the electromagnetic waves received by the multiple electromagnetic wave receiving units based on the variance of the phase residual of each received signal calculated by the residual calculation process; a source determination process for determining whether the source of the electromagnetic waves is the high-voltage electrical equipment based on the position of the source of the electromagnetic waves estimated by the position estimation process; and a determination process for determining the presence or absence of an abnormality in the high-voltage electrical equipment or an abnormal state based on the received signals received by each of the electromagnetic wave receiving units when it is determined by the source determination process that the source of the electromagnetic waves is the high-voltage electrical equipment.
 本発明によれば、外来ノイズが存在し得る場合にも、高圧電気設備の異常の有無又は異常の状態を精度よく点検することができる。 The present invention makes it possible to accurately check for the presence or absence of abnormalities in high-voltage electrical equipment, even when external noise may be present.
(a)は、一実施形態に係る点検システムの概要を示す図である。(b)は、一実施形態に係る点検システムが高圧電気設備の異常の有無を点検する動作を例示するグラフである。1A is a diagram showing an overview of an inspection system according to an embodiment, and FIG. 1B is a graph showing an example of an operation of the inspection system according to an embodiment to inspect whether or not there is an abnormality in high-voltage electrical equipment; (a)は、一実施形態に係る点検システムの他の構成例の概要を示す図である。(b)は、一実施形態に係る点検システムが高圧電気設備の異常の有無を点検するために放電電波の発生源を特定する動作を例示するグラフである。1A is a diagram showing an overview of another configuration example of an inspection system according to an embodiment, and FIG. 1B is a graph showing an example of an operation of the inspection system according to an embodiment to identify a source of discharge radio waves in order to inspect high-voltage electrical equipment for abnormalities. 一実施形態に係る点検システムの具体的な構成例を示す図である。FIG. 1 is a diagram illustrating a specific configuration example of an inspection system according to an embodiment. ドローン制御装置の構成例を示す図である。FIG. 1 is a diagram illustrating an example of the configuration of a drone control device. ドローンの構成例を示す図である。FIG. 1 is a diagram illustrating an example of the configuration of a drone. 一実施形態に係る点検装置の構成例を示す図である。FIG. 1 is a diagram illustrating a configuration example of an inspection device according to an embodiment. 位相計算部それぞれが算出した受信信号それぞれの振幅の時間変化を例示するグラフである。11 is a graph illustrating an example of a change over time in amplitude of each of the received signals calculated by each of the phase calculation units. 遅延部が受信信号の振幅の時間変化の一方を遅延させた結果を例示するグラフである。11 is a graph illustrating a result of a delay unit delaying one of the amplitude changes over time of a received signal. 電磁波それぞれの振幅比を例示するグラフである。1 is a graph illustrating an amplitude ratio of each of the electromagnetic waves. 位相修正部が電磁波の位相を修正する処理を例示するグラフである。11 is a graph illustrating a process in which a phase correcting unit corrects the phase of an electromagnetic wave. 位相修正部が位相を修正した結果を示すグラフである。11 is a graph showing a result of phase correction performed by a phase correcting unit. (a)は、遅延差τでのドローン3-1における修正された位相の時間変化φ31(t―τ)、及びドローン3-2において受信され修正された位相の時間変化φ32(t)を示すグラフである。図12(b)は、残差φ31(t+τ)-φ32(t)の時間変化を示すグラフである。12(a) is a graph showing the time change φ31(t-τ) of the corrected phase at drone 3-1 with delay difference τ, and the time change φ32(t) of the corrected phase received at drone 3-2. FIG. 12(b) is a graph showing the time change of the residual φ31(t+τ)-φ32(t). 一実施形態にかかる点検装置が有するハードウェア構成例を示す図である。FIG. 2 is a diagram illustrating an example of a hardware configuration of an inspection device according to an embodiment. 一実施形態に係る点検システムの動作例を示すフローチャートである。1 is a flowchart illustrating an example of an operation of an inspection system according to an embodiment. (a)は、高圧電気設備とドローンそれぞれとの位置関係を示す図である。(b)は、ドローンが電磁波を受信するときに用いるフィルタの周波数特性を示すグラフである。(c)は、ドローンにおけるSN比が10dBの場合の位相の残差分散を示すグラフである。(a) is a diagram showing the positional relationship between high-voltage electrical equipment and each drone. (b) is a graph showing the frequency characteristics of a filter used when the drone receives electromagnetic waves. (c) is a graph showing the residual phase variance when the S/N ratio of the drone is 10 dB.
 まず、一実施形態に係る点検システムが高圧電気設備の点検を行う動作の概要について説明する。図1は、一実施形態に係る点検システムが高圧電気設備の点検を行う動作の一例を示す図である。図1(a)は、一実施形態に係る点検システムの概要を示す図である。図1(b)は、一実施形態に係る点検システムが高圧電気設備の異常の有無を点検する動作を例示するグラフである。 First, an overview of the operation of an inspection system according to one embodiment for inspecting high-voltage electrical equipment will be described. FIG. 1 is a diagram showing an example of the operation of an inspection system according to one embodiment for inspecting high-voltage electrical equipment. FIG. 1(a) is a diagram showing an overview of an inspection system according to one embodiment. FIG. 1(b) is a graph illustrating the operation of an inspection system according to one embodiment for inspecting high-voltage electrical equipment for abnormalities.
 点検の対象となる風力発電設備などの高圧電気設備100は、周囲への電波障害の防止のために、スイッチギアなどによって格納されており、周囲への電波強度が弱められている。そこで、点検対象の高圧電気設備100へ近づいて放電電波を受信し、点検を行うこととなる。高圧電気設備100が風力発電設備である場合、人間は高圧電気設備100へ直接近づくことが困難である。 The high-voltage electrical equipment 100 to be inspected, such as a wind power generation facility, is stored behind switch gear or the like to prevent radio wave interference to the surrounding area, and the strength of radio waves to the surrounding area is weakened. Therefore, the inspection is carried out by approaching the high-voltage electrical equipment 100 to be inspected, receiving the discharge radio waves, and then carrying out the inspection. When the high-voltage electrical equipment 100 is a wind power generation facility, it is difficult for humans to approach the high-voltage electrical equipment 100 directly.
 よって、一実施形態に係る点検システムは、高圧電気設備100の近くへ電磁波受信部を備えたドローンA1を飛行させ、ドローンA1が受信した電磁波をテレメータなどのドローン・点検装置間無線回線により点検装置B1へ中継伝送し、点検装置B1が受信する。 Therefore, in one embodiment of the inspection system, a drone A1 equipped with an electromagnetic wave receiving unit flies near the high-voltage electrical equipment 100, and the electromagnetic waves received by the drone A1 are relayed to the inspection device B1 via a wireless line between the drone and the inspection device, such as a telemeter, and are received by the inspection device B1.
 点検装置B1は、例えば図1(b)に示したように、受信した電磁波のレベルが所定の閾値よりも強いレベルで所定時間継続した場合、又は、過去の受信レベルの取得値との差が所定値よりも大きい場合に、高圧電気設備100が部分放電電磁波を発しており、その信号特性から高圧電気設備100が正常であるか異常であるかを点検(診断)判定する。 As shown in FIG. 1(b), for example, when the level of the received electromagnetic waves continues for a predetermined time at a level stronger than a predetermined threshold, or when the difference with the previously acquired reception level is greater than a predetermined value, the inspection device B1 detects that the high-voltage electrical equipment 100 is emitting partial discharge electromagnetic waves, and inspects (diagnoses) the signal characteristics to determine whether the high-voltage electrical equipment 100 is normal or abnormal.
 より具体的には、点検装置B1は、例えば閾値よりも強いレベルの電磁波について、周波数特性、発生頻度、継続時間、パワーなどが通常値に対する外れ値(例えば、平均から標準偏差の値の3倍以上離れていること)、又は、過去に取得した値との差分の大小を判断し、高圧電気設備100が正常であるか異常であるかを点検(診断)する。 More specifically, for example, for electromagnetic waves with a level stronger than a threshold, the inspection device B1 determines whether the frequency characteristics, occurrence frequency, duration, power, etc. are outliers compared to normal values (e.g., being more than three times the standard deviation from the average) or the magnitude of the difference from previously obtained values, and inspects (diagnoses) whether the high-voltage electrical equipment 100 is normal or abnormal.
 図2は、一実施形態に係る点検システムの他の構成による点検方法の概要を示す図である。図2(a)は、一実施形態に係る点検システムの他の構成例の概要を示す図である。図2(b)は、一実施形態に係る点検システムが高圧電気設備の異常の有無を点検するために放電電波の発生源を特定する動作を例示するグラフである。 FIG. 2 is a diagram showing an overview of an inspection method using another configuration of an inspection system according to an embodiment. FIG. 2(a) is a diagram showing an overview of another configuration example of an inspection system according to an embodiment. FIG. 2(b) is a graph showing an example of an operation of an inspection system according to an embodiment to identify the source of discharge radio waves in order to inspect high-voltage electrical equipment for abnormalities.
 図2(a)に示すように、一実施形態に係る点検システムの他の構成例では、電磁波受信部及びドローン・点検装置間無線回線通信部を備えたドローンA1,A2を高圧電気設備100からそれぞれD及びDの距離で飛行させ、ドローンA1,A2が受信した電磁波を点検装置B2がドローン・点検装置間無線回線を介して受信する。点検装置B2は、それぞれのドローンと点検対象となる高圧電源設備との距離が測距計などで分かればよく、1台のドローンが移動して異なる位置で受信した異なるレベルの電磁波を用いるように構成されてもよい。 As shown in Fig. 2(a), in another configuration example of the inspection system according to an embodiment, drones A1 and A2 equipped with an electromagnetic wave receiving unit and a drone-to-inspection device wireless line communication unit are flown at distances D1 and D2 , respectively, from the high-voltage electrical equipment 100, and the electromagnetic waves received by the drones A1 and A2 are received by the inspection device B2 via the drone-to-inspection device wireless line. The inspection device B2 only needs to know the distance between each drone and the high-voltage power supply equipment to be inspected by a rangefinder or the like, and may be configured to use electromagnetic waves of different levels received at different positions by moving one drone.
 点検装置B2は、例えば図2(b)に示したように、高圧電気設備100からの距離により異なる2つの受信レベルについて、計算値(例えば自由空間損であれば、ドローンA1の受信レベルの(Dの二乗)倍がドローンA2の受信レベルの(Dの二乗)倍と等しい)と測定値が一致すれば、点検の対象とする高圧電気設備100が放射した電波であると判定する。具体的には、点検装置B2は、P1A1×D =P1A2×D 、及び、P2A1×D =P2A2×D であるか否かを判定する。そして、点検装置B2は、放電電波の周波数特性、発生頻度、パワーなどから高圧電気設備100が正常であるか異常であるかを点検(診断)する。 For example, as shown in FIG. 2B, if the measured value matches the calculated value (for example, in the case of free space loss, the reception level of drone A1 multiplied by ( D1 squared) is equal to the reception level of drone A2 multiplied by ( D2 squared)) for two reception levels that differ depending on the distance from the high-voltage electrical equipment 100, the inspection device B2 determines that the radio waves are emitted from the high-voltage electrical equipment 100 to be inspected. Specifically, the inspection device B2 determines whether P1A1 × D12 = P1A2 × D22 and P2A1 × D12 = P2A2 × D22 . Then, the inspection device B2 inspects ( diagnoses ) whether the high-voltage electrical equipment 100 is normal or abnormal based on the frequency characteristics, occurrence frequency, power, etc. of the discharge radio waves.
 また、点検装置B2は、ドローンA1,A2が受信した電磁波の振幅、位相を計測し、受信した電磁波のそれぞれの振幅比に基づいて、当該振幅比が大きければ位相をゼロにして計測するなど修正するように構成されてもよい。このとき、点検装置B2は、位相の時間差が距離による受信時間差と一致すれば、点検の対象となる高圧電気設備100が放射した電波であると判定する。そして、点検装置B2は、放電電波の周波数特性、発生頻度、パワーなどから高圧電気設備100が正常であるか異常であるかを点検(診断)してもよい。 The inspection device B2 may also be configured to measure the amplitude and phase of the electromagnetic waves received by the drones A1 and A2, and based on the amplitude ratio of the received electromagnetic waves, correct the phase by setting it to zero if the amplitude ratio is large. In this case, if the phase time difference matches the reception time difference due to distance, the inspection device B2 determines that the radio waves are emitted by the high-voltage electrical equipment 100 that is the subject of inspection. The inspection device B2 may then inspect (diagnose) whether the high-voltage electrical equipment 100 is normal or abnormal based on the frequency characteristics, occurrence frequency, power, etc. of the discharge radio waves.
 なお、高圧電気設備100から放射される部分放電による電磁波の周波数特性は、広帯域である。一実施形態に係る点検システムは、受信周波数を任意に決定されていてもよく、予め受信する周波数(波長λ)が既知であると仮定されてもよい。 The frequency characteristics of the electromagnetic waves emitted by the high-voltage electrical equipment 100 due to partial discharge are broadband. In one embodiment of the inspection system, the receiving frequency may be determined arbitrarily, or the receiving frequency (wavelength λ) may be assumed to be known in advance.
 高圧電気設備100から放射される部分放電による電磁波の伝搬特性は、空間で一律に伝搬する。ドローンで受信される電磁波の位相(φ)は、放射源からの距離のみに依存し(φ=D/λ×(2π))、位相差(φ12)は距離差と波長のみに依存(φ12=(D-D)/λ×(2π))する。 The electromagnetic waves emitted by the partial discharge from the high-voltage electrical equipment 100 propagate uniformly in space. The phase ( φr ) of the electromagnetic waves received by the drone depends only on the distance from the radiation source ( φr = D/λ × (2π)), and the phase difference ( φ12 ) depends only on the distance difference and the wavelength ( φ12 = ( D1 - D2 )/λ × (2π)).
 また、ドローンで受信される電磁波の振幅は、放射源からの距離に反比例する。また、電磁波の位相差の計測には、2π×nの不定性がある。一実施形態に係る点検システムが電磁波の位相を修正する場合、ドローンA1,A2間で受信される電磁波の振幅比が距離比に対してN倍以上又はM倍未満である場合は外来ノイズのレベルが大きいと考えられ、外来ノイズの影響で位相を正しく計測できないと考え、その値を閾値として、電磁波の位相差が周期の整数倍となるときの不定性を零にする。 In addition, the amplitude of the electromagnetic waves received by the drone is inversely proportional to the distance from the radiation source. Furthermore, there is an uncertainty of 2π x n in the measurement of the phase difference of the electromagnetic waves. When the inspection system of one embodiment corrects the phase of the electromagnetic waves, if the amplitude ratio of the electromagnetic waves received between drones A1 and A2 is N times or more or less than M times the distance ratio, it is considered that the level of external noise is high, and it is considered that the phase cannot be measured correctly due to the influence of the external noise. This value is used as a threshold value, and the uncertainty when the phase difference of the electromagnetic waves becomes an integer multiple of the period is set to zero.
 次に、一実施形態に係る点検システムについて、より詳細に説明する。図3は、一実施形態に係る点検システム1の具体的な構成例を示す図である。図3に示すように、一実施形態に係る点検システム1は、例えば風力発電設備などの高圧電気設備100を点検するために、例えばドローン制御装置2、ドローン3-1,3-2、及び点検装置4を有する。 Next, the inspection system according to one embodiment will be described in more detail. FIG. 3 is a diagram showing a specific configuration example of the inspection system 1 according to one embodiment. As shown in FIG. 3, the inspection system 1 according to one embodiment has, for example, a drone control device 2, drones 3-1 and 3-2, and an inspection device 4 to inspect high-voltage electrical equipment 100 such as wind power generation equipment.
 ドローン制御装置2は、ドローン3-1,3-2の飛行を制御する。ドローン3-1,3-2は、それぞれ後述する放電に伴う放射電磁波を受信する電磁波受信部34を備え、高圧電気設備100へ近づくように飛行して電磁波を受信信号として受信し、それぞれ受信信号を点検装置4へドローン・点検装置間無線回線を介して中継転送する。以下、ドローン3-1,3-2のように複数ある構成のいずれかを特定しない場合には、単にドローン3などと略記する。 The drone control device 2 controls the flight of the drones 3-1 and 3-2. The drones 3-1 and 3-2 each have an electromagnetic wave receiving unit 34 that receives electromagnetic waves radiated by discharges, which will be described later. They fly close to the high-voltage electrical equipment 100 to receive the electromagnetic waves as received signals, and each received signal is relayed to the inspection device 4 via a wireless line between the drone and the inspection device. Hereinafter, when there is no need to specify which of the multiple configurations, such as drones 3-1 and 3-2, they will simply be abbreviated as drone 3, etc.
 点検装置4は、制御部40、アンテナ41、無線回線通信部42、データ分離部43、相関器44、解析器45、及び測距部46を有し、ドローン3-1,3-2がそれぞれ転送した受信信号を解析して高圧電気設備100の異常の有無又は異常の状態を点検する。なお、点検装置4の詳細については、図6等を用いて後述する。 The inspection device 4 has a control unit 40, an antenna 41, a wireless line communication unit 42, a data separation unit 43, a correlator 44, an analyzer 45, and a distance measurement unit 46, and analyzes the received signals transferred by the drones 3-1 and 3-2 to check for the presence or absence of anomalies in the high-voltage electrical equipment 100 or the state of the anomaly. Details of the inspection device 4 will be described later using FIG. 6 etc.
 図4は、ドローン制御装置2の構成例を示す図である。図4に示すように、ドローン制御装置2は、例えばアンテナ20、ドローン制御通信部22、及び命令部24を有する。命令部24は、ドローン制御通信部22及びアンテナ20を介してドローン3-1,3-2を制御する命令を送信する。 FIG. 4 is a diagram showing an example configuration of the drone control device 2. As shown in FIG. 4, the drone control device 2 has, for example, an antenna 20, a drone control communication unit 22, and a command unit 24. The command unit 24 transmits commands to control the drones 3-1 and 3-2 via the drone control communication unit 22 and the antenna 20.
 図5は、ドローン3の構成例を示す図である。図5に示すように、ドローン3は、例えばドローン本体30、無線回線通信部32、及び電磁波受信部(放電電波受信機)34を有し、ドローン制御装置2の制御に応じて飛行及び通信等を行う。 FIG. 5 is a diagram showing an example of the configuration of the drone 3. As shown in FIG. 5, the drone 3 has, for example, a drone body 30, a wireless line communication unit 32, and an electromagnetic wave receiving unit (discharge radio wave receiver) 34, and performs flying and communication, etc. according to the control of the drone control device 2.
 ドローン本体30は、例えばアンテナ301、ドローン制御通信部302、飛行制御部303、例えば4つのモータ部304、及び例えば4つの回転翼305を有する。 The drone body 30 has, for example, an antenna 301, a drone control communication unit 302, a flight control unit 303, for example, four motor units 304, and for example, four rotors 305.
 ドローン制御通信部302は、アンテナ301を介してドローン制御装置2と無線通信を行う。飛行制御部303は、4つのモータ部304を制御して4つの回転翼305を回転させ、ドローン3の飛行を制御する。 The drone control communication unit 302 wirelessly communicates with the drone control device 2 via the antenna 301. The flight control unit 303 controls the flight of the drone 3 by controlling the four motor units 304 to rotate the four rotors 305.
 無線回線通信部32は、例えばアンテナ320、MOD(変調器)321、増幅器322、増幅器323、及びDEM(復調器)324を有し、点検装置4との間で無線通信を行う。例えば、無線回線通信部32は、電磁波受信部34から入力される信号を点検装置4へ送信するとともに、電磁波受信部34に対する設定を行う。 The wireless line communication unit 32 has, for example, an antenna 320, a MOD (modulator) 321, an amplifier 322, an amplifier 323, and a DEM (demodulator) 324, and performs wireless communication with the inspection device 4. For example, the wireless line communication unit 32 transmits a signal input from the electromagnetic wave receiving unit 34 to the inspection device 4, and performs settings for the electromagnetic wave receiving unit 34.
 電磁波受信部34は、アンテナ340、基準信号源341、周波数設定部342、逓倍部343、フィルタ344、増幅器345、ミキサ346、及びフィルタ347を有し、高圧電気設備100などでの部分放電により放出する電磁波等を受信し、無線回線通信部32に対して出力する。 The electromagnetic wave receiving unit 34 has an antenna 340, a reference signal source 341, a frequency setting unit 342, a multiplier unit 343, a filter 344, an amplifier 345, a mixer 346, and a filter 347, and receives electromagnetic waves and the like emitted due to partial discharge in the high-voltage electrical equipment 100, etc., and outputs them to the wireless line communication unit 32.
 電磁波受信部34は、アンテナ340を介して高圧電気設備100などから受信した電磁波をフィルタ344及び増幅器345を介してミキサ346へ入力する。また、電磁波受信部34は、基準信号源341が発振する基準信号を周波数設定部342が設定する周波数に逓倍部343により逓倍して局部信号を生成し、ミキサ346へ入力する。 The electromagnetic wave receiving unit 34 receives electromagnetic waves from the high-voltage electrical equipment 100 or the like via the antenna 340 and inputs them to the mixer 346 via the filter 344 and the amplifier 345. The electromagnetic wave receiving unit 34 also multiplies the reference signal oscillated by the reference signal source 341 to a frequency set by the frequency setting unit 342 using the multiplication unit 343 to generate a local signal, which is input to the mixer 346.
 ミキサ346は、入力された信号それぞれを乗算して混合し、フィルタ344を通過した周波数の信号を局部信号の周波数分の和及び差分の信号について、フィルタ347を介して不要の周波数成分信号を除外し所望の周波数成分の信号を取り出し、受信信号の位相情報を残して周波数変換して無線回線通信部32へ出力する。無線回線通信部32は、フィルタ347から入力した信号を点検装置へ中継転送する。そのとき、点検装置にてドローン3-1及びドローン3-2からのマルチプルアクセスが可能になるように変調器321にて互いのドローン間で送信周波数を違えるなどして信号を変調する。 The mixer 346 multiplies and mixes the input signals, and for the signal with the frequency that has passed through the filter 344, which is the sum and difference of the local signal frequencies, removes unnecessary frequency component signals via the filter 347, extracts the desired frequency component signal, and outputs the signal to the wireless line communication unit 32 after frequency conversion while leaving the phase information of the received signal. The wireless line communication unit 32 relays the signal input from the filter 347 to the inspection device. At that time, the signal is modulated by the modulator 321, for example by making the transmission frequency different between the drones, so that the inspection device can have multiple access from drones 3-1 and 3-2.
 図6は、一実施形態に係る点検装置4の構成例を示す図である。図6に示すように、点検装置4は、制御部40、アンテナ41、無線回線通信部42、データ分離部43、相関器44、解析器45、及び測距部46を有し、ドローン3-1,3-2から受信した信号に基づいて、高圧電気設備100の異常を点検する。測距部46は、ドローン3-1,3-2それぞれと高圧電気設備100との距離を測定し、測定結果を解析器45に対して出力するが、ドローン3-1,3-2それぞれと高圧電気設備100との距離は予め定められていてもよい。 FIG. 6 is a diagram showing an example of the configuration of the inspection device 4 according to one embodiment. As shown in FIG. 6, the inspection device 4 has a control unit 40, an antenna 41, a wireless line communication unit 42, a data separation unit 43, a correlator 44, an analyzer 45, and a distance measurement unit 46, and inspects the high-voltage electrical equipment 100 for abnormalities based on signals received from the drones 3-1 and 3-2. The distance measurement unit 46 measures the distance between each of the drones 3-1 and 3-2 and the high-voltage electrical equipment 100, and outputs the measurement results to the analyzer 45, but the distance between each of the drones 3-1 and 3-2 and the high-voltage electrical equipment 100 may be determined in advance.
 制御部40は、無線回線通信機、ドローンにて放電電磁波の受信機の周波数を設定する周波数設定部342及び点検装置4を構成する各部を制御する。また、制御部40は、無線回線通信部42及びアンテナ41を介してドローン3-1,3-2との間で双方向の無線通信を行うための制御を実行する。 The control unit 40 controls the radio line communication device, the frequency setting unit 342 that sets the frequency of the receiver for the discharge electromagnetic waves in the drone, and each unit that constitutes the inspection device 4. The control unit 40 also executes control to perform two-way wireless communication with the drones 3-1 and 3-2 via the radio line communication unit 42 and the antenna 41.
 アンテナ41は、ドローン3-1,3-2が受信して転送する受信信号を受信し、無線回線通信部42に対して出力する。また、ドローン3-1,3-2への信号を送信する。 The antenna 41 receives the signals received and transferred by the drones 3-1 and 3-2, and outputs them to the wireless line communication unit 42. It also transmits signals to the drones 3-1 and 3-2.
 無線回線通信部42は、フィルタ421、増幅器422、DEM423、MOD424、及び増幅器425を有し、ドローン3-1,3-2との間で双方向の無線通信を行う。 The wireless line communication unit 42 has a filter 421, an amplifier 422, a DEM 423, a MOD 424, and an amplifier 425, and performs two-way wireless communication with the drones 3-1 and 3-2.
 データ分離部43は、マルチプルアクセスを可能とするために点検装置4がドローン3-1,3-2から受信した信号をそれぞれ分離させ、点検装置4へそれぞれ出力する。 The data separation unit 43 separates the signals received by the inspection device 4 from the drones 3-1 and 3-2 to enable multiple access, and outputs each to the inspection device 4.
 相関器44は、例えば発振器440、90度位相変更部441、位相処理部442-1,442-2、遅延部443、位相修正部444、及び残差計算部445を有し、ドローン3-1からの信号とドローン3-2からの信号の遅延時間量、位相量を調整して積分する相関処理を実施する。 The correlator 44 has, for example, an oscillator 440, a 90-degree phase shifter 441, phase processors 442-1 and 442-2, a delay unit 443, a phase correction unit 444, and a residual calculator 445, and performs correlation processing to adjust and integrate the delay time and phase of the signal from drone 3-1 and the signal from drone 3-2.
 発振器440は、発振させた信号を90度位相変更部441、位相処理部442-1、及び位相処理部442-2に対して出力する。 The oscillator 440 outputs the oscillated signal to the 90 degree phase shifter 441, the phase processor 442-1, and the phase processor 442-2.
 90度位相変更部441は、発振器440から入力された信号の位相を90度変更し、位相処理部442-1及び位相処理部442-2に対してそれぞれ出力する。 The 90 degree phase shifter 441 shifts the phase of the signal input from the oscillator 440 by 90 degrees and outputs it to the phase processors 442-1 and 442-2.
 位相処理部442-1は、2つの乗算部446、2つの積分部447、及び位相計算部448を有し、データ分離部43から入力された信号を処理して位相を計算し、計算した位相を相関器44に対して出力する。 The phase processing unit 442-1 has two multiplication units 446, two integration units 447, and a phase calculation unit 448, processes the signal input from the data separation unit 43, calculates the phase, and outputs the calculated phase to the correlator 44.
 位相処理部442-2は、位相処理部442-1と同様に2つの乗算部446、2つの積分部447、及び位相計算部448を有し、データ分離部43から入力された信号を処理して位相を計算し、遅延部443に対して出力する。 The phase processing unit 442-2, like the phase processing unit 442-1, has two multiplication units 446, two integration units 447, and a phase calculation unit 448, and processes the signal input from the data separation unit 43 to calculate the phase and output it to the delay unit 443.
 例えば、位相計算部448それぞれは、ドローン3の電磁波受信部34それぞれが受信した受信信号それぞれの位相及び振幅を直交検波の原理により計算して出力する。すなわち、例えば入力信号SとしてS=A・cos(ωt-φ)が、周波数ω/(2π)の局部発信信号Lc=B・cos(ωt)とミキサに入力されると、ミキサの出力Mcは両信号の積として表すことができ、Mc=A・cos(ωt-φ)×B・cos(ωt)となる。これを計算するとMc=AB/2・cos(2ωt-φ)+AB/2・cos(φ)となる。この信号の交流分を除去及び直流分を取出す動作を行うため、例えば積分部447は周期がπ/ωごとに積分し、当該値を周期π/ωで除算する。よって、積分部447はIc=ω/π∫[0→π/ω]Mc dt=ω/π∫[0→π/ω]{AB/2cos(2ωt-φ)+AB/2cos(φ)} dt=AB/2・cos(φ)を得る。一方、局部発信信号として90度移相のずれた信号Ls=B・sin(ωt)とのミキサ出力Msは上記と同様にMs=1/2sin(2ωt+φ)+1/2sin(φ)となり、積分部447の出力IsはIs=AB/2・sin(φ)を得る。2つの積分部からの出力値から、φ=arctan(Is/Ic)として求めることができる。そして、Is及びIcの符号により位相φを一意に求めることができ、(Is,Ic)=(+,+)の時は0<φ<π/2(第1象限)、(Is,Ic)=(+,‐)であればπ/2<φ<π(第2象限)、(Is,Ic)=(‐,‐)であればπ<φ<3π/2(第3象限)、そして、(Is,Ic)=(‐,+)であれば3π/2<φ<2π(第4象限)で求めることができる。また、上記から受信信号の振幅については、2Ic/{Bcos(φ)}又は2Is/{Bsin(φ)}、若しくは下式(1)により計算することで求めることができる。このように、位相及び振幅を一定の時間(Δt)ごとに算出する。 For example, each phase calculation unit 448 calculates and outputs the phase and amplitude of each received signal received by each electromagnetic wave receiving unit 34 of the drone 3 using the principle of quadrature detection. That is, for example, when an input signal S = A cos(ωt-φ) is input to the mixer together with a local oscillator signal Lc = B cos(ωt) of frequency ω/(2π), the output Mc of the mixer can be expressed as the product of both signals, Mc = A cos(ωt-φ) × B cos(ωt). This is calculated as Mc = AB/2 cos(2ωt-φ) + AB/2 cos(φ). To remove the AC component of this signal and extract the DC component, for example, the integrator unit 447 integrates for every period of π/ω and divides the value by the period π/ω. Therefore, integrator 447 obtains Ic=ω/π∫[0→π/ω]Mc dt=ω/π∫[0→π/ω]{AB/2cos(2ωt-φ)+AB/2cos(φ)} dt=AB/2・cos(φ). Meanwhile, the mixer output Ms with the local oscillation signal Ls=B・sin(ωt) which is phase shifted by 90 degrees is Ms=1/2sin(2ωt+φ)+1/2sin(φ) as above, and integrator 447 obtains output Is as Is=AB/2・sin(φ). From the output values from the two integrators, φ can be calculated as φ=arctan(Is/Ic). The phase φ can be uniquely determined from the signs of Is and Ic. When (Is,Ic)=(+,+), 0<φ<π/2 (first quadrant); when (Is,Ic)=(+,-), π/2<φ<π (second quadrant); when (Is,Ic)=(-,-), π<φ<3π/2 (third quadrant); and when (Is,Ic)=(-,+), 3π/2<φ<2π (fourth quadrant). From the above, the amplitude of the received signal can be calculated as 2Ic/{Bcos(φ)} or 2Is/{Bsin(φ)}, or by using the following formula (1). In this way, the phase and amplitude are calculated at regular intervals (Δt).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 図7は、位相計算部448それぞれが算出した各々のドローンでの放電電波受信信号それぞれの振幅の時間変化を例示するグラフである。図7に示すように、位相計算部448それぞれは、ドローン3-1,3-2それぞれが受信した電磁波の振幅を上記の通りに算出する。時刻tにおける振幅をそれぞれS31(t)及びS32(t)とすると、このとき、ドローン3-1が受信した電磁波の振幅の時間変化(受信時間)は、ドローン3-2が受信した電磁波の振幅の時間変化とは電波放射源からの距離による受信時間差(遅延差τ)及び振幅比(Ar)が発生し、S32(t)= Ar・S32(t-τ)となる。 Figure 7 is a graph illustrating the change over time in the amplitude of each discharge radio wave reception signal for each drone calculated by each phase calculation unit 448. As shown in Figure 7, each phase calculation unit 448 calculates the amplitude of the electromagnetic wave received by each drone 3-1, 3-2 as described above. If the amplitudes at time t are S31(t) and S32(t), respectively, then the change over time in the amplitude (reception time) of the electromagnetic wave received by drone 3-1 differs from the change over time in the amplitude of the electromagnetic wave received by drone 3-2 in the reception time difference (delay difference τ) and amplitude ratio (Ar) due to the distance from the radio wave emission source, resulting in S32(t) = Ar · S32(t - τ).
 なお、位相処理部442-1及び位相処理部442-2は、一体に構成されてもよく、図6に示した構成に限定されない。 Note that the phase processing units 442-1 and 442-2 may be configured as an integrated unit and are not limited to the configuration shown in FIG. 6.
 遅延部443(図6)は、高圧電気設備100と電磁波受信部34それぞれとの距離に基づいて、位相計算部448が計算した受信信号それぞれの受信時間の遅延差による振幅比(Ar)を求めるように、位相計算部448が計算した受信信号の振幅の時間変動の一方を遅延させ、遅延させた振幅の時間変動を相関器44に対して出力する。つまり、遅延部443は、位相計算部448が計算した受信信号それぞれを周期ごとに振幅を比較できるように、位相計算部448が計算した受信信号の一方を遅延させる。 The delay unit 443 (FIG. 6) delays one of the amplitude time fluctuations of the received signals calculated by the phase calculation unit 448 so as to obtain an amplitude ratio (Ar) due to the delay difference in the reception time of each of the received signals calculated by the phase calculation unit 448 based on the distance between the high-voltage electrical equipment 100 and each of the electromagnetic wave receiving units 34, and outputs the delayed amplitude time fluctuation to the correlator 44. In other words, the delay unit 443 delays one of the received signals calculated by the phase calculation unit 448 so that the amplitudes of each of the received signals calculated by the phase calculation unit 448 can be compared for each period.
 図8は、遅延部443がそれぞれドローンによる放射電波の受信信号の振幅の時間変化の一方を遅延させた結果を例示するグラフである。図8に示したように、遅延部443が2つの受信信号の振幅を比較可能なように処理を行っても残差がある。 Figure 8 is a graph illustrating the results when the delay unit 443 delays one of the changes in amplitude over time of the received signal of radio waves emitted by the drone. As shown in Figure 8, even when the delay unit 443 processes the amplitudes of the two received signals so that they can be compared, there is a residual.
 位相修正部444は、遅延部443が一方を遅延させた受信信号それぞれの振幅比(Ar)を算出し、算出した振幅比が所定の閾値を超えた場合に、受信信号それぞれにおける位相が周期の整数倍となる信号を加算又は減算することなく、周期分の位相を特定するように受信信号それぞれの位相を修正し、残差計算部445に対して出力する。 The phase correction unit 444 calculates the amplitude ratio (Ar) of each of the received signals, one of which has been delayed by the delay unit 443, and when the calculated amplitude ratio exceeds a predetermined threshold, corrects the phase of each of the received signals to identify the phase of the period without adding or subtracting a signal whose phase is an integer multiple of the period in each of the received signals, and outputs the result to the residual calculation unit 445.
 例えば、位相修正部444は、図8に示した2つの受信信号の振幅比(Ar)を算出し、図9に示したように振幅比が所定の閾値の範囲外となったときに、電磁波の整数倍の不定性を零にして、上述したように0~2πラジアンの範囲で求めた位相をその時点での位相とする。 For example, the phase correction unit 444 calculates the amplitude ratio (Ar) of the two received signals shown in FIG. 8, and when the amplitude ratio falls outside a predetermined threshold range as shown in FIG. 9, it sets the uncertainty of the integer multiple of the electromagnetic wave to zero, and sets the phase at that point in time to the phase found in the range of 0 to 2π radians as described above.
 図10は、位相修正部444が電磁波の位相を修正する処理を例示するグラフである。位相修正部444は、電磁波の変動が連続になるように電磁波の位相について、2πの整数倍の不定性を修正する。 FIG. 10 is a graph illustrating the process of correcting the phase of the electromagnetic wave by the phase correction unit 444. The phase correction unit 444 corrects the uncertainty of an integer multiple of 2π for the phase of the electromagnetic wave so that the fluctuation of the electromagnetic wave becomes continuous.
 具体的には、位相修正部444は、Δtごとの算出する位相(時間tにおける位相をφ(t)とする)のΔtでの変化について、(A)φ(t)が第3象限で、φ(t+Δt)が第1象限に変化し、その変化量(φ(t+Δt)-φ(t))が-πラジアン以下、同じく(B)4象限から第1象限に変化、同じく(C)第4象限から第2象限に変化し、その変化量(φ(t+Δt)-φ(t))が-πラジアン以下のときには2πラジアンを加え、φ(t+Δt)= φ(t+Δt)+2πと修正する。 Specifically, the phase correction unit 444 adds 2π radians to the change in Δt of the phase (φ(t) is the phase at time t) calculated every Δt when: (A) φ(t) is in the third quadrant and φ(t + Δt) changes to the first quadrant and the amount of change (φ(t + Δt) - φ(t)) is -π radians or less; (B) there is a change from the fourth quadrant to the first quadrant; or (C) there is a change from the fourth quadrant to the second quadrant and the amount of change (φ(t + Δt) - φ(t)) is -π radians or less, correcting the change to φ(t + Δt) = φ(t + Δt) + 2π.
 また、位相修正部444は、(D)φ(t)が第1象限、φ(t+Δt)が第4象限に変化、同じく(E)第2象限から第4象限に変化し、その変化量(φ(t+Δt)-φ(t))がπラジアン以上、同じく(F)第1象限から第3象限に変化し、その変化量(φ(t+Δt)-φ(t))がπラジアン以上であれば、2πラジアンを減じ、φ(t+Δt)=φ(t+Δt)‐2πと修正する。 In addition, if (D) φ(t) changes to the first quadrant and φ(t + Δt) changes to the fourth quadrant, (E) it changes from the second quadrant to the fourth quadrant and the amount of change (φ(t + Δt) - φ(t)) is π radians or more, or (F) it changes from the first quadrant to the third quadrant and the amount of change (φ(t + Δt) - φ(t)) is π radians or more, the phase correction unit 444 subtracts 2π radians and corrects it to φ(t + Δt) = φ(t + Δt) - 2π.
 さらに、外来ノイズが大きい場合には、受信信号の品質が劣化し、上述した整数倍の不定性による2π以上の位相誤差が発生する。そこで、位相修正部444は、整数倍の不定性を零にして、上述したように0~2πラジアンの範囲で位相を求め、再びΔtごとに位相を修正する。 Furthermore, when external noise is large, the quality of the received signal deteriorates, and a phase error of 2π or more occurs due to the uncertainty of the integer multiple described above. Therefore, the phase correction unit 444 sets the uncertainty of the integer multiple to zero, finds the phase in the range of 0 to 2π radians as described above, and corrects the phase again every Δt.
 図11は、ドローン3-1で受信した信号を位相修正部444が位相を修正した結果を示すグラフである。図11に示したように、点検装置4は、電磁波の発生源となり得る高圧電気設備100に近いドローンが受信した信号について、ドローン3-1,3-2それぞれの受信時間差を補う遅延処理を行い、振幅を比較した受信信号それぞれの振幅比を求め、振幅比(Ar)が所定の閾値の範囲外のときに、外来ノイズが大きいと判断して、上述の整数倍の不定性を零にして、上述したように0~2πラジアンの範囲で求めた位相をその時点での位相とする。 Figure 11 is a graph showing the result of phase correction by the phase correction unit 444 for the signal received by the drone 3-1. As shown in Figure 11, the inspection device 4 performs delay processing to compensate for the reception time difference between the drones 3-1 and 3-2 for signals received by drones close to the high-voltage electrical equipment 100 that may be a source of electromagnetic waves, obtains the amplitude ratio of each of the received signals by comparing the amplitudes, and when the amplitude ratio (Ar) is outside the range of a predetermined threshold, determines that the external noise is large, sets the uncertainty of the integer multiple described above to zero, and sets the phase found in the range of 0 to 2π radians as described above as the phase at that time.
 残差計算部445(図6)は、遅延差τとした場合において位相修正部444が修正した位相の時間変化(ドローン3-1及びドローン3-2で受信した信号の位相の時間変化をそれぞれφ31(t)及びφ32(t)とする)残差φ31(t+τ)-φ32(t)を解析器45に対して出力する。つまり、残差計算部445は、位相修正部444が位相を修正した周期分の受信信号それぞれの位相残差を計算する。 The residual calculation unit 445 (FIG. 6) outputs the residual φ 31 (t+τ)-φ 32 (t), which is the time change in phase corrected by the phase correction unit 444 when the delay difference is τ (time changes in the phase of the signals received by drone 3-1 and drone 3-2 are φ 31 ( t) and φ 32 (t), respectively), to the analyzer 45. In other words, the residual calculation unit 445 calculates the phase residual of each of the received signals for the period in which the phase has been corrected by the phase correction unit 444.
 解析器45は、分散計算部451、位置推定部452、発生源判定部453、及び判定部454を有する。 The analyzer 45 has a variance calculation unit 451, a position estimation unit 452, a source determination unit 453, and a determination unit 454.
 分散計算部451は、残差計算部445が計算した遅延差τにおける受信信号それぞれの位相残差{φ31(n△t+τ)-φ32(n△t)}の測定時間における分散(=(φ31(t+τ)-φ32(t))2/T:ここでTは測定時間、又は、下式(2)を計算し、測距部46から入力される距離を示す情報とともに位置推定部452に対して計算した分散の値を結果として出力する。 The variance calculation unit 451 calculates the variance (=(φ 31 (t+τ)-φ 32 (t)) 2 /T, where T is the measurement time, of the phase residual {φ 31 (n△t+τ)-φ 32 (n△t)} of each received signal at the delay difference τ calculated by the residual calculation unit 445, or the following equation (2), and outputs the calculated variance value as a result to the position estimation unit 452 together with information indicating the distance input from the ranging unit 46.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 図12は、位相の時間変化及び残差の時間変化を示すグラフである。図12(a)は、遅延差τでのドローン3-1における上述の修正された位相の時間変化φ31(t―τ)、及びドローン3-2において受信された上述の修正された位相の時間変化φ32(t)を示すグラフである。図12(b)は、残差φ31(t+τ)-φ32(t)の時間変化を示すグラフである。 Figure 12 is a graph showing the time change in phase and the time change in residual. Figure 12(a) is a graph showing the time change φ31(t-τ) of the above-mentioned corrected phase in drone 3-1 with delay difference τ, and the time change φ32(t) of the above-mentioned corrected phase received by drone 3-2. Figure 12(b) is a graph showing the time change in the residual φ31(t+τ)-φ32(t).
 位置推定部452は、残差計算部445が計算した受信信号それぞれの位相残差の分散に基づいて、ドローン3-1,3-2それぞれの電磁波受信部34が受信した電磁波の発生源の位置を推定し、推定結果を発生源判定部453に対して出力する。 The position estimation unit 452 estimates the position of the source of the electromagnetic waves received by the electromagnetic wave receiving unit 34 of each of the drones 3-1 and 3-2 based on the variance of the phase residual of each received signal calculated by the residual calculation unit 445, and outputs the estimation result to the source determination unit 453.
 発生源判定部453は、位置推定部452が推定した電磁波の発生源の位置に基づいて、電磁波の発生源が高圧電気設備100であるか否かを判定し、判定結果を判定部454に対して出力する。 The source determination unit 453 determines whether the source of the electromagnetic waves is the high-voltage electrical equipment 100 based on the position of the source of the electromagnetic waves estimated by the position estimation unit 452, and outputs the determination result to the determination unit 454.
 例えば、発生源判定部453は、電磁波受信部34それぞれが受信した受信信号のレベル差が高圧電気設備100と電磁波受信部34それぞれとの距離差によるレベル差と一致した場合、又は、電磁波受信部34それぞれが受信した受信信号の位相時間差が高圧電気設備100と電磁波受信部34それぞれとの距離差による受信時間差と一致した場合に、電磁波の発生源が高圧電気設備100であると判定する。 For example, the source determination unit 453 determines that the source of the electromagnetic waves is the high-voltage electrical equipment 100 when the level difference of the received signals received by each of the electromagnetic wave receiving units 34 matches the level difference due to the distance difference between the high-voltage electrical equipment 100 and each of the electromagnetic wave receiving units 34, or when the phase time difference of the received signals received by each of the electromagnetic wave receiving units 34 matches the reception time difference due to the distance difference between the high-voltage electrical equipment 100 and each of the electromagnetic wave receiving units 34.
 判定部454は、電磁波の発生源が高圧電気設備100であると発生源判定部453が判定した場合に、ドローン3-1,3-2それぞれの電磁波受信部34が受信した受信信号に基づいて、高圧電気設備100の異常の有無又は異常の状態を判定する。 When the source determination unit 453 determines that the source of the electromagnetic waves is the high-voltage electrical equipment 100, the determination unit 454 determines whether there is an abnormality or an abnormal state of the high-voltage electrical equipment 100 based on the reception signals received by the electromagnetic wave receiving units 34 of the drones 3-1 and 3-2.
 例えば、判定部454は、電磁波受信部34それぞれが受信した受信信号が所定の閾値よりも強いレベルである場合に、高圧電気設備100に異常があると判定する。 For example, the determination unit 454 determines that there is an abnormality in the high-voltage electrical equipment 100 when the received signal received by each electromagnetic wave receiving unit 34 is at a level stronger than a predetermined threshold.
 また、判定部454は、電磁波受信部34が受信した電磁波の周波数特性、発生頻度、パワーなどから高圧電気設備100の異常の状態を判定してもよい。 The determination unit 454 may also determine an abnormal state of the high-voltage electrical equipment 100 based on the frequency characteristics, occurrence frequency, power, etc. of the electromagnetic waves received by the electromagnetic wave receiving unit 34.
 なお、点検装置4がそれぞれ有する各機能は、それぞれ一部又は全部がPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアによって構成されてもよいし、CPU等のプロセッサが実行するプログラムとして構成されてもよい。 In addition, each function possessed by the inspection device 4 may be configured in part or in whole by hardware such as a PLD (Programmable Logic Device) or FPGA (Field Programmable Gate Array), or may be configured as a program executed by a processor such as a CPU.
 例えば、点検装置4は、コンピュータとプログラムを用いて実現することができ、プログラムを記憶媒体に記録することも、ネットワークを通して提供することも可能である。 For example, the inspection device 4 can be realized using a computer and a program, and the program can be recorded on a storage medium or provided via a network.
 図13は、一実施形態にかかる点検装置4が有するハードウェア構成例を示す図である。図12に示すように、点検装置4は、入力部90、出力部91、通信部92、CPU93、メモリ94及びHDD95がバス96を介して接続され、コンピュータとしての機能を備える。また、点検装置4は、コンピュータ読み取り可能な記憶媒体97との間でデータを入出力することができるようにされている。 FIG. 13 is a diagram showing an example of the hardware configuration of an inspection device 4 according to one embodiment. As shown in FIG. 12, the inspection device 4 has an input unit 90, an output unit 91, a communication unit 92, a CPU 93, a memory 94, and a HDD 95 connected via a bus 96, and has the functions of a computer. The inspection device 4 is also capable of inputting and outputting data to and from a computer-readable storage medium 97.
 入力部90は、例えばキーボード及びマウス等である。出力部91は、例えばディスプレイなどの表示装置である。 The input unit 90 is, for example, a keyboard and a mouse. The output unit 91 is, for example, a display device such as a display.
 通信部92は、無線通信を行う通信インターフェースである。 The communication unit 92 is a communication interface that performs wireless communication.
 CPU93は、点検装置4を構成する各部を制御し、所定の処理等を行う。メモリ94及びHDD95は、データ等を記憶する。 The CPU 93 controls each component of the inspection device 4 and performs predetermined processing. The memory 94 and HDD 95 store data, etc.
 記憶媒体97は、点検装置4が有する機能を実行させるプログラム等を記憶可能にされている。なお、点検装置4を構成するアーキテクチャは図12に示した例に限定されない。 The storage medium 97 is capable of storing programs and the like that execute the functions of the inspection device 4. Note that the architecture that constitutes the inspection device 4 is not limited to the example shown in FIG. 12.
 次に、点検システム1の動作例について説明する。図14は、一実施形態に係る点検システム1の動作例を示すフローチャートである。図14に示すように、ステップ100(S100)において、ドローン3-1,3-2は、電磁波受信部34が受信する信号のレベルが所定の閾値よりも大きいか否かを判定する。ドローン3-1,3-2は、電磁波受信部34が受信する信号のレベルが所定の閾値よりも大きいと判定した場合(S100:Yes)にはS102の処理に進み、電磁波受信部34が受信する信号のレベルが所定の閾値以下と判定した場合(S100:No)には処理を継続する。 Next, an example of the operation of the inspection system 1 will be described. FIG. 14 is a flowchart showing an example of the operation of the inspection system 1 according to one embodiment. As shown in FIG. 14, in step 100 (S100), the drones 3-1 and 3-2 determine whether the level of the signal received by the electromagnetic wave receiving unit 34 is greater than a predetermined threshold. If the drones 3-1 and 3-2 determine that the level of the signal received by the electromagnetic wave receiving unit 34 is greater than the predetermined threshold (S100: Yes), they proceed to processing of S102, and if they determine that the level of the signal received by the electromagnetic wave receiving unit 34 is equal to or less than the predetermined threshold (S100: No), they continue processing.
 ステップ102(S102)において、電磁波受信部34は、電磁波(データ)の受信を所定時間継続する。 In step 102 (S102), the electromagnetic wave receiving unit 34 continues receiving electromagnetic waves (data) for a predetermined time.
 ステップ104(S104)において、解析器45は、位相差△τに対する残差の分散を算出する。 In step 104 (S104), the analyzer 45 calculates the variance of the residual for the phase difference Δτ.
 ステップ106(S106)において、解析器45は、残差の分散が最小になる遅延時間=tを特定する。 In step 106 (S106), the analyzer 45 identifies the delay time= tL at which the variance of the residual becomes minimum.
 ステップ108(S108)において、点検装置4は、ドローン3-1,3-2及び高圧電気設備100の位置(距離)を計測する。 In step 108 (S108), the inspection device 4 measures the positions (distances) of the drones 3-1 and 3-2 and the high-voltage electrical equipment 100.
 ステップ110(S110)において、点検装置4は、ドローン3-1,3-2及び高圧電気設備100の座標をそれぞれの位置に対して設定する。例えば、点検装置4は、ドローン3-1に対して(0,0,0)、ドローン3-2に対して(D,0,0)、高圧電気設備100に対して(Sx,Sy,Sz)を設定する。 In step 110 (S110), the inspection device 4 sets the coordinates of the drones 3-1 and 3-2 and the high-voltage electrical equipment 100 to their respective positions. For example, the inspection device 4 sets (0,0,0) for the drone 3-1, (D,0,0) for the drone 3-2, and (Sx,Sy,Sz) for the high-voltage electrical equipment 100.
 ステップ112(S112)において、点検装置4は、S112に示した方程式の演算を行う。なお、cは、光速度である。 In step 112 (S112), the inspection device 4 performs the calculation of the equation shown in S112. Note that c is the speed of light.
 ステップ114(S114)において、点検装置4は、受信した電磁波それぞれ、及びドローン3-1,3-2及び高圧電気設備100の位置について、S112に示した方程式を満たすか否かを判定する。そして、点検装置4は、S112に示した方程式を満たさないと判定した場合(S114:No)にはS116の処理に進み、S112に示した方程式を満たすと判定した場合(S114:Yes)にはS118の処理に進む。 In step 114 (S114), the inspection device 4 determines whether or not the equations shown in S112 are satisfied for each of the received electromagnetic waves and the positions of the drones 3-1, 3-2 and the high-voltage electrical equipment 100. If the inspection device 4 determines that the equations shown in S112 are not satisfied (S114: No), it proceeds to processing of S116, and if it determines that the equations shown in S112 are satisfied (S114: Yes), it proceeds to processing of S118.
 ステップ116(S116)において、点検装置4は、ドローン3が受信した電磁波が高圧電気設備100以外(その他)からの電波であると判定し、S100の処理に戻る。 In step 116 (S116), the inspection device 4 determines that the electromagnetic waves received by the drone 3 are from a source other than the high-voltage electrical equipment 100 (other), and returns to the processing of S100.
 ステップ118(S118)において、点検装置4は、ドローン3が受信した電磁波が点検の対象設備である高圧電気設備100からの電波であると判定する。 In step 118 (S118), the inspection device 4 determines that the electromagnetic waves received by the drone 3 are radio waves from the high-voltage electrical equipment 100, which is the equipment to be inspected.
 ステップ120(S120)において、点検装置4は、ドローン3-1,3-2が電磁波を受信した時刻、及び電磁波のレベルを記憶する。 In step 120 (S120), the inspection device 4 stores the time when the drones 3-1 and 3-2 received the electromagnetic waves and the level of the electromagnetic waves.
 ステップ122(S122)において、点検装置4は、記憶した電磁波の発生間隔を算出する。 In step 122 (S122), the inspection device 4 calculates the generation interval of the stored electromagnetic waves.
 ステップ124(S124)において、点検装置4は、算出した電磁波の発生間隔及びレベルが通常値から外れているか否かを判定し、外れている場合(S126:Yes)にはS126の処理に進み、外れていない場合(S126:No)にはS128の処理に進む。 In step 124 (S124), the inspection device 4 determines whether the calculated occurrence interval and level of the electromagnetic waves deviate from the normal values, and if they deviate (S126: Yes), proceeds to processing of S126, and if they do not deviate (S126: No), proceeds to processing of S128.
 ステップ126(S126)において、点検装置4は、高圧電気設備100に異常がある(設備異常)と判定し、S100の処理に戻る。 In step 126 (S126), the inspection device 4 determines that there is an abnormality in the high-voltage electrical equipment 100 (equipment abnormality) and returns to the processing of S100.
 ステップ128(S128)において、点検装置4は高圧電気設備100に異常がない(設備正常)と判定し、S100の処理に戻る。 In step 128 (S128), the inspection device 4 determines that there is no abnormality in the high-voltage electrical equipment 100 (equipment is normal), and returns to processing in S100.
 次に、点検システム1が高圧電気設備100の点検を行う実施例について説明する。図15は、点検システム1が高圧電気設備100の点検を行う実施例を示す図である。図15(a)は、高圧電気設備100とドローン3-1,3-2との位置関係を示す図である。図15(b)は、ドローン3が電磁波を受信するときに用いるフィルタの周波数特性を示すグラフである。図15(c)は、ドローン3-1におけるSN比が10dBの場合の位相の残差分散を示すグラフである。 Next, an example in which the inspection system 1 inspects the high-voltage electrical equipment 100 will be described. Figure 15 is a diagram showing an example in which the inspection system 1 inspects the high-voltage electrical equipment 100. Figure 15(a) is a diagram showing the positional relationship between the high-voltage electrical equipment 100 and the drones 3-1 and 3-2. Figure 15(b) is a graph showing the frequency characteristics of a filter used by the drone 3 when receiving electromagnetic waves. Figure 15(c) is a graph showing the residual phase variance when the signal-to-noise ratio in the drone 3-1 is 10 dB.
 ここでは、Box-Muller法により標準正規分布のノイズを発生させて数値実験を実施している。図14(a)に示すように、電波発信源となり得る高圧電気設備100からドローン3-1までの距離が1000mであり、高圧電気設備100からドローン3-2までの距離が1300mであるとする。つまり、ドローン3-1,3-2の距離差は300mであるとする。 Here, a numerical experiment is carried out by generating noise with a standard normal distribution using the Box-Muller method. As shown in Figure 14(a), the distance from high-voltage electrical equipment 100, which can be a radio wave source, to drone 3-1 is 1000 m, and the distance from high-voltage electrical equipment 100 to drone 3-2 is 1300 m. In other words, the distance difference between drones 3-1 and 3-2 is 300 m.
 電界強度(パワー又はレベルの平方根)は距離に反比例し、外来ノイズの強度はドローン3-1,3-2のいずれでも同じであるとする。ドローン3-1,3-2は、図14(b)に示す周波数特性(1MHzを中心として3dB帯域幅が100kHz)の受信フィルタを通して電磁波を受信する。 The electric field strength (square root of power or level) is inversely proportional to the distance, and the strength of external noise is assumed to be the same for both drones 3-1 and 3-2. Drones 3-1 and 3-2 receive electromagnetic waves through a receiving filter with the frequency characteristics shown in Figure 14(b) (centered at 1 MHz, 3 dB bandwidth is 100 kHz).
 点検システム1の点検装置4は、ドローン3-1が受信した部分放電電波の強度を基準として、外来波ノイズの強度を変化させ、それをSN比としてパラメータとする。 The inspection device 4 of the inspection system 1 changes the intensity of the external wave noise based on the intensity of the partial discharge radio waves received by the drone 3-1, and uses this as a parameter in the signal-to-noise ratio.
 また、点検装置4は、サンプリング間隔が0.04μsである10000個のサンプリングデータ(400μs分)を用いて解析器45が解析するドローン3-1で受信した電波の遅延時間を変化させ、遅延時間に対する位相の残差分散を計算した。 In addition, the inspection device 4 changed the delay time of the radio waves received by the drone 3-1 and analyzed by the analyzer 45 using 10,000 sampling data (400 μs) with a sampling interval of 0.04 μs, and calculated the residual variance of the phase with respect to the delay time.
 ここでは、遅延時間(遅延差)が1μsのときに分散が一番小さくなり、ドローン3-1,3-2において受信した放電電波の距離差が300m(=1μs)であることを導くことができ、計算モデルと一致した。このように、一実施形態に係る点検システム1は、例えば位相修正部444を備えていない比較例に比べて正確に部分放電電波の発信源の位置を推定することができることを示すことができた。 Here, the variance was smallest when the delay time (delay difference) was 1 μs, and it was possible to derive that the distance difference between the discharge radio waves received by drones 3-1 and 3-2 was 300 m (= 1 μs), which was consistent with the calculation model. In this way, it was demonstrated that the inspection system 1 according to one embodiment can estimate the position of the source of partial discharge radio waves more accurately than, for example, a comparative example that does not have a phase correction unit 444.
 つまり、点検システム1は、放電電波の発生源位置を推定する精度を高めることができるので、点検対象の高圧電気設備100の異常の有無を点検する精度を高めることができる。 In other words, the inspection system 1 can improve the accuracy of estimating the source position of the discharge radio waves, thereby improving the accuracy of inspecting the high-voltage electrical equipment 100 being inspected for abnormalities.
 このように、一実施形態にかかる点検システム1は、遅延部443が位相を合わせた受信信号それぞれの振幅比を算出し、算出した振幅比が所定の閾値を超えた場合に、受信信号それぞれにおける位相差が周期の整数倍となる信号を加算することなく、周期分の位相を特定するように受信信号それぞれの位相を修正するので、外来ノイズが存在し得る場合にも、高圧電気設備100の異常の有無又は異常の状態を精度よく点検することができる。 In this way, in one embodiment of the inspection system 1, the delay unit 443 calculates the amplitude ratio of each of the phase-matched received signals, and when the calculated amplitude ratio exceeds a predetermined threshold, the phase of each received signal is corrected to identify the phase of the period without adding a signal whose phase difference in each received signal is an integer multiple of the period. Therefore, even when external noise may be present, the presence or absence of an abnormality in the high-voltage electrical equipment 100 or the state of the abnormality can be inspected with high accuracy.
 1・・・点検システム、2・・・ドローン制御装置、3-1,3-2,A1,A2・・・ドローン、4,B1,B2・・・点検装置、20・・・アンテナ、22・・・ドローン制御通信部、24・・・命令部、30・・・ドローン本体、32・・・無線回線通信部、34・・・電磁波受信部、40・・・制御部、41・・・アンテナ、42・・・無線回線通信部、43・・・データ分離部、44・・・相関器、45・・・解析器、46・・・測距部、90・・・入力部、91・・・出力部、92・・・通信部、93・・・CPU、94・・・メモリ、95・・・HDD、96・・・バス、97・・・記憶媒体、100・・・高圧電気設備、301・・・アンテナ、302・・・ドローン制御通信部、303・・・飛行制御部、304・・・モータ部、305・・・回転翼、442-1,442-2・・・位相処理部、443・・・遅延部、444・・・位相修正部、445・・・残差計算部、446・・・乗算部、447・・・積分部、448・・・位相計算部、451・・・分散計算部、452・・・位置推定部、453・・・発生源判定部、454・・・判定部 1: inspection system, 2: drone control device, 3-1, 3-2, A1, A2: drone, 4, B1, B2: inspection device, 20: antenna, 22: drone control communication unit, 24: command unit, 30: drone body, 32: wireless line communication unit, 34: electromagnetic wave receiving unit, 40: control unit, 41: antenna, 42: wireless line communication unit, 43: data separation unit, 44: correlator, 45: analyzer, 46: ranging unit, 90: input unit, 91: output unit, 92: communication unit, 93: CPU, 9 4...Memory, 95...HDD, 96...Bus, 97...Storage medium, 100...High-voltage electrical equipment, 301...Antenna, 302...Drone control communication unit, 303...Flight control unit, 304...Motor unit, 305...Rotor, 442-1, 442-2...Phase processing unit, 443...Delay unit, 444...Phase correction unit, 445...Residual calculation unit, 446...Multiplication unit, 447...Integration unit, 448...Phase calculation unit, 451...Variance calculation unit, 452...Position estimation unit, 453...Source determination unit, 454...Determination unit

Claims (8)

  1.  高圧電気設備へ近づくように移動して異なる位置で電磁波を受信信号として受信する複数の電磁波受信部と、前記電磁波受信部それぞれが受信した受信信号に基づいて、前記高圧電気設備の異常を点検する点検装置とを備えた点検システムにおいて、
     前記点検装置は、
     前記電磁波受信部それぞれが受信した受信信号それぞれの位相及び振幅を計算する位相計算部と、
     前記高圧電気設備と前記電磁波受信部それぞれとの距離に基づいて、前記位相計算部が計算した受信信号それぞれを周期ごとに振幅を比較できるように、前記位相計算部が計算した受信信号の一方を遅延させる遅延部と、
     前記遅延部が一方を遅延させた受信信号それぞれの振幅比を算出し、算出した振幅比が所定の閾値を超えた場合に、受信信号それぞれにおける位相が周期の整数倍となる信号を加算又は減算することなく、周期分の位相を特定するように受信信号それぞれの位相を修正する位相修正部と、
     前記位相修正部が位相を修正した周期分の受信信号それぞれの位相残差を計算する残差計算部と、
     前記残差計算部が計算した受信信号それぞれの位相残差の分散に基づいて、複数の前記電磁波受信部が受信した電磁波の発生源の位置を推定する位置推定部と、
     前記位置推定部が推定した電磁波の発生源の位置に基づいて、電磁波の発生源が前記高圧電気設備であるか否かを判定する発生源判定部と、
     電磁波の発生源が前記高圧電気設備であると前記発生源判定部が判定した場合に、前記電磁波受信部それぞれが受信した受信信号に基づいて、前記高圧電気設備の異常の有無又は異常の状態を判定する判定部と
     を有することを特徴とする点検システム。
    An inspection system including a plurality of electromagnetic wave receiving units that move toward high-voltage electrical equipment and receive electromagnetic waves as reception signals at different positions, and an inspection device that inspects the high-voltage electrical equipment for abnormalities based on the reception signals received by each of the electromagnetic wave receiving units,
    The inspection device includes:
    a phase calculation unit that calculates a phase and an amplitude of each of the received signals received by each of the electromagnetic wave receiving units;
    a delay unit that delays one of the reception signals calculated by the phase calculation unit based on the distance between the high voltage electrical equipment and each of the electromagnetic wave reception units so that the amplitudes of the reception signals calculated by the phase calculation unit can be compared for each period;
    a phase correction unit that calculates an amplitude ratio of each of the received signals, one of which is delayed by the delay unit, and corrects the phase of each of the received signals so as to specify a phase of the period without adding or subtracting a signal whose phase in each of the received signals is an integer multiple of the period when the calculated amplitude ratio exceeds a predetermined threshold value;
    a residual calculation unit that calculates a phase residual of each of the received signals for a period whose phase has been corrected by the phase correction unit;
    a position estimation unit that estimates a position of a source of the electromagnetic waves received by the electromagnetic wave receiving units based on a variance of the phase residual of each of the received signals calculated by the residual calculation unit;
    a source determination unit that determines whether or not the source of the electromagnetic waves is the high-voltage electrical equipment based on the position of the source of the electromagnetic waves estimated by the position estimation unit;
    and a determination unit that, when the source determination unit determines that the source of the electromagnetic waves is the high-voltage electrical equipment, determines whether or not there is an abnormality in the high-voltage electrical equipment or whether the equipment is in an abnormal state based on the reception signals received by each of the electromagnetic wave receiving units.
  2.  前記判定部は、
     前記電磁波受信部それぞれが受信した受信信号が所定の閾値よりも強いレベルである場合に、前記高圧電気設備に異常があると判定すること
     を特徴とする請求項1に記載の点検システム。
    The determination unit is
    2. The inspection system according to claim 1, wherein when the received signals received by the respective electromagnetic wave receiving units have a level stronger than a predetermined threshold, it is determined that there is an abnormality in the high voltage electrical equipment.
  3.  前記発生源判定部は、
     前記電磁波受信部それぞれが受信した受信信号のレベル差が前記高圧電気設備と前記電磁波受信部それぞれとの距離差によるレベル差と一致した場合、又は、前記電磁波受信部それぞれが受信した受信信号の位相時間差が前記高圧電気設備と前記電磁波受信部それぞれとの距離差による受信時間差と一致した場合に、電磁波の発生源が前記高圧電気設備であると判定すること
     を特徴とする請求項1又は2に記載の点検システム。
    The generation source determination unit is
    3. The inspection system according to claim 1 or 2, characterized in that when a level difference of the received signals received by each of the electromagnetic wave receiving units matches a level difference due to a distance difference between the high-voltage electrical equipment and each of the electromagnetic wave receiving units, or when a phase time difference of the received signals received by each of the electromagnetic wave receiving units matches a reception time difference due to a distance difference between the high-voltage electrical equipment and each of the electromagnetic wave receiving units, the inspection system determines that the source of the electromagnetic waves is the high-voltage electrical equipment.
  4.  高圧電気設備へ近づくように移動して異なる位置で電磁波を受信信号として受信する複数の電磁波受信部それぞれが受信した受信信号に基づいて、前記高圧電気設備の異常を点検する点検装置において、
     前記電磁波受信部それぞれが受信した受信信号それぞれの位相及び振幅を計算する位相計算部と、
     前記高圧電気設備と前記電磁波受信部それぞれとの距離に基づいて、前記位相計算部が計算した受信信号それぞれを周期ごとに振幅を比較できるように、前記位相計算部が計算した受信信号の一方を遅延させる遅延部と、
     前記遅延部が一方を遅延させた受信信号それぞれの振幅比を算出し、算出した振幅比が所定の閾値を超えた場合に、受信信号それぞれにおける位相が周期の整数倍となる信号を加算又は減算することなく、周期分の位相を特定するように受信信号それぞれの位相を修正する位相修正部と、
     前記位相修正部が位相を修正した周期分の受信信号それぞれの位相残差を計算する残差計算部と、
     前記残差計算部が計算した受信信号それぞれの位相残差の分散に基づいて、複数の前記電磁波受信部が受信した電磁波の発生源の位置を推定する位置推定部と、
     前記位置推定部が推定した電磁波の発生源の位置に基づいて、電磁波の発生源が前記高圧電気設備であるか否かを判定する発生源判定部と、
     電磁波の発生源が前記高圧電気設備であると前記発生源判定部が判定した場合に、前記電磁波受信部それぞれが受信した受信信号に基づいて、前記高圧電気設備の異常の有無又は異常の状態を判定する判定部と
     を有することを特徴とする点検装置。
    1. An inspection device that inspects high-voltage electrical equipment for abnormalities based on reception signals received by a plurality of electromagnetic wave receiving units that move toward the high-voltage electrical equipment and receive electromagnetic waves as reception signals at different positions, comprising:
    a phase calculation unit that calculates a phase and an amplitude of each of the received signals received by each of the electromagnetic wave receiving units;
    a delay unit that delays one of the reception signals calculated by the phase calculation unit based on the distance between the high voltage electrical equipment and each of the electromagnetic wave reception units so that the amplitudes of the reception signals calculated by the phase calculation unit can be compared for each period;
    a phase correction unit that calculates an amplitude ratio of each of the received signals, one of which is delayed by the delay unit, and corrects the phase of each of the received signals so as to specify a phase of the period without adding or subtracting a signal whose phase in each of the received signals is an integer multiple of the period when the calculated amplitude ratio exceeds a predetermined threshold value;
    a residual calculation unit that calculates a phase residual of each of the received signals for a period whose phase has been corrected by the phase correction unit;
    a position estimation unit that estimates a position of a source of the electromagnetic waves received by the electromagnetic wave receiving units based on a variance of the phase residual of each of the received signals calculated by the residual calculation unit;
    a source determination unit that determines whether or not the source of the electromagnetic waves is the high-voltage electrical equipment based on the location of the source of the electromagnetic waves estimated by the location estimation unit;
    and a determination unit that, when the source determination unit determines that the source of the electromagnetic waves is the high-voltage electrical equipment, determines whether or not there is an abnormality in the high-voltage electrical equipment or an abnormal state based on the reception signals received by each of the electromagnetic wave receiving units.
  5.  前記判定部は、
     前記電磁波受信部それぞれが受信した受信信号が所定の閾値よりも強いレベルである場合に、前記高圧電気設備に異常があると判定すること
     を特徴とする請求項4に記載の点検装置。
    The determination unit is
    5. The inspection device according to claim 4, wherein when the received signals received by the respective electromagnetic wave receiving units have a level stronger than a predetermined threshold, it is determined that there is an abnormality in the high voltage electrical equipment.
  6.  前記発生源判定部は、
     前記電磁波受信部それぞれが受信した受信信号のレベル差が前記高圧電気設備と前記電磁波受信部それぞれとの距離差によるレベル差と一致した場合、又は、前記電磁波受信部それぞれが受信した受信信号の位相時間差が前記高圧電気設備と前記電磁波受信部それぞれとの距離差による受信時間差と一致した場合に、電磁波の発生源が前記高圧電気設備であると判定すること
     を特徴とする請求項4又は5に記載の点検装置。
    The generation source determination unit is
    6. The inspection device according to claim 4 or 5, characterized in that when a level difference of the received signals received by each of the electromagnetic wave receiving units matches a level difference due to a distance difference between the high-voltage electrical equipment and each of the electromagnetic wave receiving units, or when a phase time difference of the received signals received by each of the electromagnetic wave receiving units matches a reception time difference due to a distance difference between the high-voltage electrical equipment and each of the electromagnetic wave receiving units, the inspection device determines that the source of the electromagnetic waves is the high-voltage electrical equipment.
  7.  高圧電気設備へ近づくように移動して異なる位置で電磁波を受信信号として受信する複数の電磁波受信部それぞれが受信した受信信号に基づいて、前記高圧電気設備の異常を点検する点検方法において、
     前記電磁波受信部それぞれが受信した受信信号それぞれの位相及び振幅を計算する位相計算工程と、
     前記高圧電気設備と前記電磁波受信部それぞれとの距離に基づいて、前記位相計算工程により計算した受信信号それぞれを周期ごとに振幅を比較できるように、受信信号の一方を遅延させる遅延工程と、
     前記遅延工程により一方を遅延させた受信信号それぞれの振幅比を算出し、算出した振幅比が所定の閾値を超えた場合に、受信信号それぞれにおける位相が周期の整数倍となる信号を加算又は減算することなく、周期分の位相を特定するように受信信号それぞれの位相を修正する位相修正工程と、
     前記位相修正工程により位相を修正した周期分の受信信号それぞれの位相残差を計算する残差計算工程と、
     前記残差計算工程により計算した受信信号それぞれの位相残差の分散に基づいて、複数の前記電磁波受信部が受信した電磁波の発生源の位置を推定する位置推定工程と、
     前記位置推定工程により推定した電磁波の発生源の位置に基づいて、電磁波の発生源が前記高圧電気設備であるか否かを判定する発生源判定工程と、
     電磁波の発生源が前記高圧電気設備であると前記発生源判定工程により判定した場合に、前記電磁波受信部それぞれが受信した受信信号に基づいて、前記高圧電気設備の異常の有無又は異常の状態を判定する判定工程と
     を含むことを特徴とする点検方法。
    1. An inspection method for inspecting high-voltage electrical equipment for abnormalities based on reception signals received by a plurality of electromagnetic wave receiving units which move close to the high-voltage electrical equipment and receive electromagnetic waves as reception signals at different positions, comprising:
    a phase calculation step of calculating a phase and an amplitude of each of the received signals received by each of the electromagnetic wave receiving units;
    a delay step of delaying one of the received signals so that the amplitudes of the received signals calculated in the phase calculation step can be compared for each period based on the distances between the high voltage electrical equipment and each of the electromagnetic wave receiving units;
    a phase correction step of calculating an amplitude ratio of each of the received signals, one of which has been delayed by the delay step, and correcting the phase of each of the received signals so as to specify a phase of the period without adding or subtracting a signal whose phase is an integer multiple of the period in each of the received signals when the calculated amplitude ratio exceeds a predetermined threshold value;
    a residual calculation step of calculating a phase residual of each of the received signals for the period whose phases have been corrected by the phase correction step;
    a position estimating step of estimating positions of sources of electromagnetic waves received by the electromagnetic wave receiving units based on the variance of the phase residuals of the respective received signals calculated in the residual calculating step;
    a source determination step of determining whether or not the source of the electromagnetic waves is the high-voltage electrical equipment based on the location of the source of the electromagnetic waves estimated by the location estimation step;
    and a determination step of determining, when it is determined by the source determination step that the source of the electromagnetic waves is the high-voltage electrical equipment, whether or not there is an abnormality in the high-voltage electrical equipment or an abnormal state based on the reception signals received by each of the electromagnetic wave receiving units.
  8.  請求項4に記載の点検装置の各部としてコンピュータを機能させるための点検プログラム。 An inspection program for causing a computer to function as each part of the inspection device described in claim 4.
PCT/JP2022/044986 2022-12-06 2022-12-06 Inspection system, inspection device, inspection method and inspection program WO2024121953A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044986 WO2024121953A1 (en) 2022-12-06 2022-12-06 Inspection system, inspection device, inspection method and inspection program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044986 WO2024121953A1 (en) 2022-12-06 2022-12-06 Inspection system, inspection device, inspection method and inspection program

Publications (1)

Publication Number Publication Date
WO2024121953A1 true WO2024121953A1 (en) 2024-06-13

Family

ID=91378920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044986 WO2024121953A1 (en) 2022-12-06 2022-12-06 Inspection system, inspection device, inspection method and inspection program

Country Status (1)

Country Link
WO (1) WO2024121953A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364483A (en) * 1991-06-11 1992-12-16 Asahi Koyo Kk Detecting method of faulty or stained insulator
JP2001033510A (en) * 1999-07-23 2001-02-09 Kansai Electric Power Co Inc:The Method and equipment for searching generation position of distribution line partial discharge
JP2003043094A (en) * 2001-07-26 2003-02-13 Japan Science & Technology Corp Electromagnetic wave source detecting method, and method and apparatus for diagnosing insulation deterioration
JP2006250870A (en) * 2005-03-14 2006-09-21 Mitsubishi Electric Corp Partial discharge position locating device
US20060271312A1 (en) * 2005-05-27 2006-11-30 American Electric Power Company, Inc. System and method for detecting impaired electric power equipment
CN109521336A (en) * 2018-11-23 2019-03-26 重庆大学 The automatic monitoring and positioning method of substation's shelf depreciation and system based on crusing robot
JP2020187110A (en) * 2019-05-13 2020-11-19 ザ・ボーイング・カンパニーThe Boeing Company In-service maintenance process using unmanned aerial vehicles
JP2021051767A (en) * 2017-03-30 2021-04-01 株式会社スカイマティクス System and method for supporting operation using drone

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04364483A (en) * 1991-06-11 1992-12-16 Asahi Koyo Kk Detecting method of faulty or stained insulator
JP2001033510A (en) * 1999-07-23 2001-02-09 Kansai Electric Power Co Inc:The Method and equipment for searching generation position of distribution line partial discharge
JP2003043094A (en) * 2001-07-26 2003-02-13 Japan Science & Technology Corp Electromagnetic wave source detecting method, and method and apparatus for diagnosing insulation deterioration
JP2006250870A (en) * 2005-03-14 2006-09-21 Mitsubishi Electric Corp Partial discharge position locating device
US20060271312A1 (en) * 2005-05-27 2006-11-30 American Electric Power Company, Inc. System and method for detecting impaired electric power equipment
JP2021051767A (en) * 2017-03-30 2021-04-01 株式会社スカイマティクス System and method for supporting operation using drone
CN109521336A (en) * 2018-11-23 2019-03-26 重庆大学 The automatic monitoring and positioning method of substation's shelf depreciation and system based on crusing robot
JP2020187110A (en) * 2019-05-13 2020-11-19 ザ・ボーイング・カンパニーThe Boeing Company In-service maintenance process using unmanned aerial vehicles

Similar Documents

Publication Publication Date Title
JP4407769B2 (en) Radar equipment
RU2419813C2 (en) Method and device for measuring distance
JP5009282B2 (en) System and method for coherently combining multiple radars
JP2020509386A (en) Method and apparatus for capturing surroundings
US20240094371A1 (en) Radar device, method of detecting failure of radar device, and method of operating radar device
JP2007024671A (en) Distance measuring device, method, and program
JP6778336B2 (en) RF signal arrival angle determination method and system
JP5202844B2 (en) Improved process for phase-derived range measurement
US11740314B2 (en) Method, device, arrangement and software for determining the angle of arrival (AOA) for locating objects
EP2525238B1 (en) Velocity/distance detection system, velocity/distance detection apparatus, and velocity/distance detection method
KR20150091975A (en) Doppler radar test system
US10509106B2 (en) Method for calibrating a radar system
US10732273B2 (en) Radar device for vehicle and method for estimating angle of target using same
JP6324327B2 (en) Passive radar equipment
US11099051B2 (en) Method and fill level measuring device for determining the fill level of a medium by means of continuous wave radar measurement
KR102063468B1 (en) Active Radar Target Simulating Apparatus
JP2016045176A (en) Received signal processing device, radar device, and target detection method
WO2024121953A1 (en) Inspection system, inspection device, inspection method and inspection program
RU2271019C1 (en) Method of compensation of signal phase incursions in onboard radar system and onboard radar system with synthesized aperture of antenna for flying vehicles
US10908258B2 (en) Method for calibrating an active sensor system
JP2010066069A (en) Secondary surveillance radar system
KR20060037777A (en) Apparatus for removing leakage signal of fmcw radar
JP2009122045A (en) Positioning device
KR101494390B1 (en) Near-Field Measurement Data Compensation Method and Radar and Sensor Using thereof
JP2009014508A (en) Secondary monitoring radar device and control method