WO2024120522A1 - 车窗玻璃及车辆 - Google Patents

车窗玻璃及车辆 Download PDF

Info

Publication number
WO2024120522A1
WO2024120522A1 PCT/CN2023/137431 CN2023137431W WO2024120522A1 WO 2024120522 A1 WO2024120522 A1 WO 2024120522A1 CN 2023137431 W CN2023137431 W CN 2023137431W WO 2024120522 A1 WO2024120522 A1 WO 2024120522A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
vehicle window
thickness
window glass
glass plate
Prior art date
Application number
PCT/CN2023/137431
Other languages
English (en)
French (fr)
Inventor
尚贵才
陈兴昊
陶娟
柯城
Original Assignee
福耀玻璃工业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福耀玻璃工业集团股份有限公司 filed Critical 福耀玻璃工业集团股份有限公司
Publication of WO2024120522A1 publication Critical patent/WO2024120522A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • B32B3/08Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions characterised by added members at particular parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/02Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing

Definitions

  • the present application relates to the technical field of glass products, in particular to vehicle window glass and vehicles.
  • the intelligence and networking of automobiles are the main directions of future development, and autonomous driving has also become the main direction of automobile development.
  • the information collection system installed inside the vehicle is gradually being widely used in the vehicle's autonomous driving mode to improve safety performance and comfort.
  • the information collection system is usually installed on the inside of the car window glass.
  • 905nm LiDAR uses infrared lasers with a wavelength of 905nm to collect information, and realizes functions such as distance measurement and speed measurement by emitting infrared lasers to the target object and receiving infrared lasers reflected from the target object. Therefore, the transmittance of 905nm wavelength infrared light in the car window glass is crucial.
  • the current car window glass will hinder the transmission of infrared light to a certain extent, so that the infrared transmittance of LiDAR cannot meet the needs of autonomous driving for high-precision detection.
  • the purpose of this application is to provide a vehicle window glass and a vehicle.
  • the vehicle window glass of this application is applied to a vehicle, when a 905nm laser radar is installed in the vehicle, the requirements for high-precision detection for autonomous driving of the vehicle can be met.
  • a first aspect of the present application provides a vehicle window glass, comprising a laminated glass and an information collection area, wherein the laminated glass comprises an outer glass plate, an intermediate layer and an inner glass plate, wherein the intermediate layer is sandwiched between the outer glass plate and the inner glass plate, wherein the outer glass plate has a first surface and a second surface opposite to each other, wherein the second surface faces the intermediate layer, and wherein the inner glass plate has a third surface and a fourth surface opposite to each other, wherein the third surface faces the intermediate layer;
  • An anti-reflection film is provided on the fourth surface of the inner glass plate, and along the thickness direction of the laminated glass, the projection of the anti-reflection film on the information collection area covers the information collection area, and the anti-reflection film includes a plurality of high refractive index layers and a plurality of low refractive index layers stacked, one layer of the low refractive index layer is stacked between every two adjacent high refractive index layers, and one layer of the high refractive index layer is stacked between every two adjacent low refractive index layers, wherein the high refractive index layer is in contact with the fourth surface of the inner glass plate, and the number of film layers of the anti-reflection film is an even number and is greater than or equal to 8.
  • an anti-reflection film is set in the information collection area of the laminated glass.
  • the anti-reflection film is formed by alternating high refractive index layers and low refractive index layers. Infrared rays will be reflected at the contact interface from the low refractive index layer to the high refractive index layer, and multiple reflections will achieve surface anti-reflection extinction.
  • the anti-reflection film can greatly reduce the reflection of infrared rays by the information collection area on the laminated glass, so that the information collection area has a high transmittance to infrared rays compared with other parts of the laminated glass, thereby meeting the requirements of the vehicle's automatic driving mode for infrared transmission.
  • the L value of the visible light reflection color of the information collection area is 84-92, the a value is 7-11, and the b value is 33-40, where L is the brightness value, a is the red-green chromaticity value, and b is the yellow-blue chromaticity value.
  • the total thickness of the antireflection film is 400 nm-2500 nm.
  • the thickness of each of the high refractive index layers is 20 nm-100 nm.
  • the thickness of the other low refractive index layers other than the low refractive index layer farthest from the fourth surface of the inner glass plate is 85 nm-150 nm.
  • the total thickness of the plurality of low refractive index layers is 400 nm-1700 nm.
  • the ratio of the total thickness of the plurality of high refractive index layers to the total thickness of the plurality of low refractive index layers is 0.1-0.4.
  • the multiple high refractive index layers include a high refractive index layer with the thickest thickness
  • the multiple low refractive index layers include a low refractive index layer with the thinnest thickness
  • the thickness of the thinnest low refractive index layer is greater than 1.2 times the thickness of the thickest high refractive index layer.
  • the thickness of any one of the low refractive index layers is greater than 1.5 times the thickness of any adjacent one of the high refractive index layers.
  • the refractive index of the high refractive index layer is 1.9-3.5
  • the refractive index of the low refractive index layer is 1.4-1.9
  • the difference between the refractive index of the adjacent high refractive index layer and the refractive index of the low refractive index layer is greater than or equal to 0.3.
  • the material of the high refractive index layer is at least one of Si, FeOx , NbOx , SiNx , ZrOx , TiOx , TiNx , MoOx , and TaOx
  • the material of the low refractive index layer is at least one of SiOx , MgFx , AlOx , and AlSiOx .
  • the material of the low refractive index layer farthest from the fourth surface of the inner glass plate is oxide, and the thickness of the low refractive index layer farthest from the fourth surface of the inner glass plate is greater than 200 nm.
  • the information collection area has a transmittance of ⁇ 75% for infrared light in a wavelength range of 900-1000 nm incident at an incident angle of 60°-70°.
  • At least one of the outer glass plate and the inner glass plate has a transmittance of at least 91% in a wavelength range of 850-1550 nm.
  • the anti-reflection film is directly deposited on the fourth surface of the inner glass plate.
  • the anti-reflection film is adhered to the fourth surface of the inner glass plate via a substrate.
  • the vehicle window glass further includes a heat-insulating film, and the heat-insulating film is arranged on the second surface of the outer glass plate and/or the third surface of the inner glass plate to avoid the information collection area of the vehicle window glass.
  • the vehicle window glass further includes a shielding layer, and the shielding layer is arranged on the periphery of the second surface of the outer glass plate and/or the fourth surface of the inner glass plate, avoiding the information collection area of the vehicle window glass.
  • a second aspect of the present application provides a vehicle, comprising a vehicle body and the vehicle window glass as described above, wherein the vehicle window glass is connected to the vehicle body.
  • the vehicle further includes an information collection system, and the information collection system is disposed inside the vehicle.
  • the signals transmitted and/or received by the information collection system will all pass through the information collection area of the vehicle window glass.
  • the present application provides a vehicle window glass and a vehicle.
  • the vehicle window glass can increase the transmittance of infrared light in the wavelength range of 900-1000nm, thereby achieving high-precision measurement of 905nm laser radar and meeting the actual application requirements of 905nm laser radar in the field of autonomous driving.
  • FIG1 is a schematic diagram of the structure of a vehicle provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of a cross-sectional structure of a window glass of the vehicle shown in FIG1 along a thickness direction;
  • FIG3 is a schematic diagram of a planar structure of the vehicle window glass shown in FIG2 perpendicular to the thickness direction;
  • FIG4 is a schematic structural diagram of a first embodiment of an antireflection film for a vehicle window glass shown in FIG2 ;
  • FIG5 is a schematic structural diagram of a second embodiment of the antireflection film for the vehicle window glass shown in FIG2 ;
  • FIG. 6 is a schematic diagram of the cross-sectional structure of the heat insulation film and the shielding layer of the vehicle window glass shown in FIG. 2 .
  • 905nm laser radar uses infrared laser with a wavelength of 905nm to collect information. It emits a laser beam as a detection signal to the surrounding three-dimensional space, and the laser beam is reflected by the objects in the surrounding space and becomes an echo signal and returns. The laser radar compares the received echo signal with the emitted detection signal to obtain relevant information such as distance and speed of the surrounding objects.
  • the car window glass needs to have a high transmittance to 905nm wavelength infrared to ensure high-quality signal transmission, but the current transmittance of car window glass to infrared is low, which is not enough to meet the working requirements of the information collection system in the fields of intelligent driving.
  • the present application provides a vehicle window glass.
  • the vehicle window glass of the present application can meet the use requirements of the laser radar working in the field of autonomous driving of the vehicle when a 905nm laser radar is installed in the vehicle.
  • a vehicle 1000 includes a vehicle window glass 100 and a vehicle body 200, wherein the vehicle window glass 100 is connected to the vehicle body 200.
  • the vehicle window glass 100 may be, but is not limited to, a front windshield, a side window glass, a rear windshield, and a sunroof glass of the vehicle 1000. In the embodiment of the present application, the vehicle window glass 100 is only illustrated as a front windshield.
  • the vehicle window glass 100 includes a laminated glass 10 and an anti-reflection film 20.
  • the laminated glass 10 includes an outer glass plate 11, an intermediate layer 12 and an inner glass plate 13, wherein the intermediate layer 12 is laminated between the outer glass plate 11 and the inner glass plate 13.
  • the outer glass plate 11 includes a first surface 111 and a second surface 112 arranged opposite to each other, wherein the first surface 111 faces the outside of the vehicle 1000 and belongs to the outer surface of the vehicle window glass 100.
  • the second surface 112 faces the intermediate layer 12.
  • the laminated glass 10 can be in the shape of a flat plate, or in the shape of a curved surface or an arc surface.
  • the shape of the laminated glass 10 is not limited to the shape described above, and it can be any shape that meets the use requirements of the vehicle window glass 100. The present application does not impose strict restrictions on the shape of the laminated glass 10.
  • At least one of the outer glass plate 11 and the inner glass plate 13 has a transmittance of at least 91% in the wavelength range of 850-1550nm, and ultra-clear float glass can be used.
  • the outer glass plate 11 and the inner glass plate 13 are both ultra-clear float glass.
  • the use of ultra-clear float glass is beneficial to improving the transmittance of the window glass 100 to the 905nm wavelength infrared light emitted and received by the laser radar.
  • the thickness of the outer glass plate 11 is w1
  • the thickness of the inner glass plate 13 is w2, wherein w1 is greater than or equal to w2. In one embodiment, w1 is greater than 2 times of w2. In another embodiment, w1 is greater than 2.5 times of w2.
  • the thickness w1 of the outer glass plate 11 is 3.2 mm
  • the thickness w2 of the inner glass plate 13 is 1.2 mm.
  • the outer glass plate 11 is preferably thick glass; and in order to reduce the absorption of infrared rays by the inner glass plate 13, the thickness of the inner glass plate 13 is relatively small.
  • the inner glass plate 13 can be tempered to improve the strength, so that it can reduce the absorption of infrared rays as much as possible on the basis of sufficient strength, and at the same time meet the requirements of lightweight as much as possible, and reduce the total thickness of the inner and outer glass plates.
  • the middle layer 12 is a thermoplastic polymer layer, which is used to bond the outer glass plate 11 and the inner glass plate 13 to form a sandwich structure.
  • the material of the middle layer 12 can be selected from polyvinyl butyral (PVB), polyolefin (POE), ethylene-vinyl acetate copolymer (EVA), polyurethane (PU), etc., preferably polyvinyl butyral (PVB).
  • PVB polyvinyl butyral
  • PVB polyvinyl butyral
  • PVB polyvinyl butyral
  • the use of polyvinyl butyral (PVB) can effectively suppress the propagation of noise, so that the laminated glass 10 has a sound insulation effect.
  • the vehicle window glass 100 further includes an information collection area S1 and a non-information collection area S2 .
  • the information collection area S1 and the non-information collection area S2 do not overlap.
  • the information collection area S1 is used to provide a signal transmission area for the information collection system (not shown) to collect signals.
  • the information collection system is arranged inside the vehicle 1000 , and the signals transmitted and/or received by the information collection system will all pass through the information collection area S1 of the vehicle window glass 100 .
  • the non-information collection area S2 includes a field of view area S21 and a shielding area S22 .
  • the field of view area S21 is a transparent area for light transmission indoors and outdoors, that is, a car window.
  • the shielding area S22 is used to prevent visible light from passing through the laminated glass 10 .
  • the field of view area S21 may also be partially used for a head-up display (HUD), that is, as a HUD field of view area to display information such as driving speed, dynamic navigation, and business district information, and the shielding area S22 may also be used only for aesthetics. This application does not impose strict restrictions on the use of the non-information collection area S2.
  • HUD head-up display
  • the information collection area S1, the field of view area S21 and the shielding area S22 do not overlap.
  • the information collection area S1 is located in the field of view area S21, the field of view area S21 is located outside the information collection area S1, the field of view area S21 is surrounded by the information collection area S1, the field of view area S21 completely surrounds the information collection area S1, and the shape of the field of view area S21 matches the shape of the laminated glass 10.
  • the shielding area S22 is in the shape of an annular frame, and the shielding area S22 surrounds the peripheral side of the field of view area S21; the outer side S221 of the shielding area S22 is the outer edge of the laminated glass 10, and the inner side S222 of the shielding area S22 is connected to the peripheral side of the field of view area S21.
  • the side S11 of the information collection area S1 and the inner side S222 of the shielding area S22 are arranged at intervals.
  • the information collection area S1 can be spaced apart from the shielding area S22.
  • FIG3 is a schematic diagram of a planar structure of a vehicle window glass 100 perpendicular to the thickness direction provided by an embodiment of the present application.
  • the information collection area S1 can be set at the edge of the shielding area S22 close to the middle of the vehicle window glass 100, and the information collection area S1 can extend from the edge of the shielding area S22 close to the roof to the middle of the vehicle window glass 100.
  • the information collection area S1 may also be a triangle, a pentagon, a hexagon, etc.
  • the shielding area S22 may also be other shapes.
  • the viewing area S21 and the information collection area S1 may also be in other positional relationships, and the viewing area S21 may also be other shapes. This application does not impose strict restrictions on the setting positions and shapes of the information collection area S1 and the viewing area S21.
  • the antireflection film 20 is laminated on the fourth surface 132 of the inner glass plate 13. Specifically, the antireflection film 20 is provided at a position corresponding to the information collection area S1 on the laminated glass 10. Along the thickness direction of the laminated glass 10, the projection of the antireflection film 20 on the information collection area S1 covers the information collection area S1. That is, the positive projection of the antireflection film 20 on the laminated glass 10 at least completely overlaps with the information collection area S1 (the width direction and the length direction of the antireflection film 20 are at least equal to the width and length of the information collection area S1).
  • the antireflection film 20 on the fourth surface 132 of the inner glass plate 13
  • the reflection of infrared rays in the wavelength range of 900-1000nm by the window glass 100 can be reduced, and the infrared transmittance of the information collection area S1 on the laminated glass 10 can be improved.
  • the transmittance of the information collection area S1 to infrared rays in the wavelength range of 900-1000nm incident at an incident angle of 60°-70° is greater than or equal to 75%.
  • the transmittance of the information collection area S1 to infrared light within a wavelength range of 900-1000 nm incident at an incident angle of 60°-70° is 77%, or, The transmittance of the information collection area S1 to infrared rays in the wavelength range of 900-1000nm incident at an incident angle of 60°-70° is 79.5%.
  • the anti-reflection film 20 can be directly deposited on the fourth surface 132 of the inner glass plate 13 by magnetron sputtering, or a continuous vertical coating machine or a horizontal coating machine can be used. Specifically, a continuous vertical coating machine is used.
  • the anti-reflection film 20 can also be formed by coating or the like, and the anti-reflection film 20 can also be attached to the fourth surface 132 of the inner glass plate 13 through a substrate.
  • the anti-reflection film 20 includes a plurality of high refractive index layers and a plurality of low refractive index layers stacked in layers, wherein a low refractive index layer is stacked between every two adjacent high refractive index layers, and a high refractive index layer is stacked between every two adjacent low refractive index layers.
  • the number of layers of the anti-reflection film 20 is an even number, and starting from the fourth surface 132 of the inner glass plate 13, along the thickness direction of the laminated glass 10, the odd-numbered layers are high refractive index layers, and the even-numbered layers are low refractive index layers; the layers in contact with the fourth surface 132 of the inner glass plate 13 are high refractive index layers, and the layers farthest from the fourth surface 132 are low refractive index layers.
  • high refractive index layers and low refractive index layers By alternately stacking high refractive index layers and low refractive index layers, light from the low refractive index layer to the high refractive index layer will be reflected at the contact interface, and multiple reflections will achieve surface anti-reflection extinction.
  • the number of film layers of the anti-reflection film 20 is an even number and is greater than or equal to 8.
  • the number of film layers of the anti-reflection film 20 can be 8, 10, 12, 14, 16 and 18.
  • the transmittance of the information collection area S1 to infrared rays in the wavelength range of 900-1000nm reaches a maximum; as the number of film layers continues to increase, the transmittance of the information collection area S1 to infrared rays reaches a maximum or decreases.
  • the number of film layers of the anti-reflection film 20 is preferably 10, 12 and 14.
  • the total thickness of the antireflection film 20 may be 400nm-2500nm. In one embodiment, the total thickness of the antireflection film 20 is 740nm-1750nm. In another embodiment, the total thickness of the antireflection film 20 is 1100nm-1300nm.
  • the thickness of each high refractive index layer is 20nm-100nm.
  • the thickness of the other low refractive index layers other than the low refractive index layer farthest from the fourth surface 132 of the inner glass plate 13 is 85nm-150nm.
  • the total thickness of the plurality of low refractive index layers may be 400nm-1700nm.
  • the total thickness of the plurality of low refractive index layers is 600nm-1380nm.
  • the total thickness of the plurality of said high refractive index layers is 80nm-600nm.
  • the ratio of the total thickness of the plurality of high refractive index layers to the total thickness of the plurality of low refractive index layers is 0.1-0.4, for example, the ratio of the total thickness of the plurality of high refractive index layers to the total thickness of the plurality of low refractive index layers is 0.2-0.3.
  • the plurality of high refractive index layers include a high refractive index layer with the thickest thickness
  • the plurality of low refractive index layers include a low refractive index layer with the thinnest thickness
  • the thickness of the thinnest low refractive index layer is d1
  • the thickness of the thickest high refractive index layer is d2
  • d1 is greater than 1.2 times of d2.
  • d1 is greater than 1.5 times of d2.
  • d1 is greater than 1.8 times of d2.
  • d1 is greater than 2.0 times of d2.
  • d1 is greater than 2.5 times of d2.
  • any low refractive index layer is d3, and the thickness of any high refractive index layer adjacent to it is d4, and d3 is greater than 1.5 times of d4. In one embodiment, d3 is greater than 1.7 times of d4. In one embodiment, d3 is greater than 1.9 times of d4. In one embodiment, d3 is greater than 2.1 times of d4. In one embodiment, d3 is greater than 2.3 times of d4. In one embodiment, d3 is greater than 2.5 times of d4. In one embodiment, d3 is greater than 2.7 times of d4.
  • the anti-reflection film 20 provided in the present application allows light to be refracted more times in the anti-reflection film 20, and the reflectivity of infrared light in the wavelength range of 900-1000nm can be reduced by setting the number of layers and thickness, so that the transmittance of infrared light meets the use requirements.
  • the total thickness of the antireflection film 20 is 660nm-1070nm, the total thickness of the multiple high refractive index layers is 130nm-300nm, and the total thickness of the multiple low refractive index layers is 530nm-770nm; when the number of film layers is 10, the total thickness of the antireflection film 20 is 780nm-1300nm, the total thickness of the multiple high refractive index layers is 160nm-380nm, and the total thickness of the multiple low refractive index layers is 630nm-920nm; when the number of film layers is 1 When the number of film layers is 2, the total thickness of the antireflection film 20 is 920nm-1510nm, the total thickness of the multiple high refractive index layers is 190nm-450nm, and the total thickness of the multiple low refractive index layers is 730nm-1060nm; when the number of film layers is 14, the total thickness of the antireflection film 20 is 1060nm
  • An angle color test is performed on the information collection area S1 provided with the anti-reflection film 20. Visible light (380nm-780nm) is irradiated to the information collection area S1 from the first surface 111 side of the outer glass plate 11, and the incident angle is 60°-70°.
  • the range of L value of the color reflected by visible light in the information collection area S1 is 84-92 (including endpoint values 84 and 92), the range of a value is 7-11 (including endpoint values 7 and 11), and the range of b value is 33-40 (including endpoint values 33 and 40), where L is the brightness value, a is the red-green chromaticity value, and b is the yellow-blue chromaticity value. Therefore, the information collection area S1 observed from outside the car is golden yellow, and the anti-reflection film 20 can shield the information collection area S1 and improve the aesthetics of the car's appearance.
  • the refractive index of the high refractive index layer is 1.9-3.5 (including endpoints 1.9 and 3.5), the refractive index of the low refractive index layer is 1.4-1.9 (including endpoints 1.4 and 1.9), and the difference between the refractive index of the adjacent high refractive index layer and the refractive index of the low refractive index layer is greater than or equal to 0.3. Further, the difference between the refractive index of the adjacent high refractive index layer and the refractive index of the low refractive index layer is greater than or equal to 0.4, or the difference between the refractive index of the adjacent high refractive index layer and the refractive index of the low refractive index layer is greater than or equal to 0.5.
  • the material of the high refractive index layer is at least one of Si, FeO x , NbO x , SiN x , ZrO x , TiO x , TiN x , MoO x , and TaO x ; the material of the low refractive index layer is at least one of SiO x , MgF x , AlO x , and AlSiO x . It should be noted that the multiple high refractive index layers of the anti-reflection film 20 can be made of materials with a higher refractive index, so that the anti-reflection effect can be achieved with fewer film layers.
  • the multiple low refractive index layers can use one or more materials with a refractive index of 1.4-1.9, as long as the anti-reflection film 20 observed from the outside of the vehicle is golden yellow and the anti-reflection effect of the anti-reflection film 20 can meet the needs of the field of autonomous driving.
  • the material of the low refractive index layer farthest from the fourth surface 132 of the inner glass plate 13, that is, the outermost film layer of the anti-reflection film 20, is any one of oxides such as SiO x , AlO x , and AlSiO x .
  • the thickness of the low refractive index layer is greater than 200 nm. In one embodiment, the thickness of the layer is greater than 250 nm. In another embodiment, the thickness of the layer is greater than 300 nm. Since the low refractive index layer farthest from the fourth surface 132 is an oxide material and has a large thickness, the anti-reflection film 20 has good wear resistance and corrosion resistance.
  • FIG. 4 is a schematic structural diagram of the first embodiment of the anti-reflection film 20 of the vehicle window glass 100 of the present application.
  • the number of film layers of the anti-reflection film 20 of the present embodiment is 12, wherein the number of high refractive index layers and the number of low refractive index layers are 6.
  • the high refractive index layers are all made of Si 3 N 4 , and the refractive index of Si 3 N 4 is 1.9, and the low refractive index layers are all made of SiO 2 , and the refractive index of SiO 2 is 1.5.
  • the first layer is the high refractive index layer H1, with a thickness of 47nm; the second layer is the low refractive index layer L1, with a thickness of 128nm; the third layer is the high refractive index layer H2, with a thickness of 74nm; the fourth layer is the low refractive index layer L2, with a thickness of 122nm; the fifth layer is the high refractive index layer H3, with a thickness of 64nm; the sixth layer is the low refractive index layer L3, with a thickness of 146nm; the seventh layer is the high refractive index layer H4, with a thickness of 94nm; the eighth layer is the low refractive index layer L4, with a thickness of 142nm; the ninth layer is the high refractive index layer H5, with a thickness of 66nm; the tenth layer is the low refractive index layer L5, with a thickness of 121nm;
  • the total thickness of the antireflection film 20 is 1384nm
  • the thickness of each high refractive index layer is 47nm-94nm
  • the thickness of each low refractive index layer except the low refractive index layer L6 is 121-146nm.
  • the total thickness of the 6 high refractive index layers is 419nm
  • the total thickness of the 6 low refractive index layers is 965nm
  • the ratio of the total thickness of the high refractive index layers to the total thickness of the low refractive index layers is 0.43.
  • the thickness of the high refractive index layer H4 is the thickest, which is 94nm
  • the thickness of the low refractive index layer L5 is the thinnest, which is 121nm.
  • the thickness of the low refractive index layer L5 is greater than 1.2 times the thickness of the high refractive index layer H4.
  • the thickness of any low refractive index layer is greater than 1.5 times the thickness of the adjacent high refractive index layer.
  • the thickness of the low refractive index layer L4 is 142nm
  • the thickness of the adjacent high refractive index layer H4 is 94nm
  • the thickness of the high refractive index layer H5 is 66nm.
  • the thickness of the low refractive index layer L4 is greater than 1.5 times the thickness of the high refractive index layer H4 and the high refractive index layer H5.
  • the transmittance of the information collection area S1 to infrared rays gradually increases.
  • the transmittance of the information collection area S1 to infrared rays in the wavelength range of 900-1000nm reaches a maximum of 79.5%.
  • the number of film layers of the anti-reflection film 20 exceeds 12 for example, the number of film layers of the anti-reflection film 20 is 14, the transmittance of the information collection area S1 to infrared rays in the wavelength range of 900-1000nm is close to that when the number of film layers is 12, and further increasing the number of film layers of the anti-reflection film 20, the transmittance of the information collection area S1 to infrared rays will not increase significantly, and may even decrease. Therefore, considering the anti-reflection effect and production cost, in this embodiment, the number of film layers of the anti-reflection film 20 is preferably 12.
  • the transmittance of the information collection area S1 of the laminated glass 10 to the 905nm wavelength infrared light incident at an incident angle of 70° is about 67%; after using the anti-reflection film 20 in this embodiment, the transmittance of the information collection area S1 of the laminated glass 10 to the 905nm wavelength infrared light incident at an incident angle of 60°-70° reaches 79.5%.
  • the L value of the reflected color of the information collection area S1 to the visible light incident at an incident angle of 60°-70° is 88.1, the a value is 9.6, and the b value is 36.3.
  • FIG5 is a schematic diagram of the specific structure of the second embodiment of the antireflection film 20.
  • the antireflection film 20 shown in FIG5 has 14 layers, of which there are 7 high refractive index layers and 7 low refractive index layers, and the low refractive index layers are all made of Al 2 O 3 , and the refractive index of Al 2 O 3 is 1.765.
  • the high refractive index layers are all made of Si, and the refractive index of Si is 3.2.
  • the first layer is the high refractive index layer H11, with a thickness of 26nm; the second layer is the low refractive index layer L11, with a thickness of 107nm; the third layer is the high refractive index layer H22, with a thickness of 40nm; the fourth layer is the low refractive index layer L22, with a thickness of 99nm; the fifth layer is the high refractive index layer H33, with a thickness of 39nm; the sixth layer is the low refractive index layer L33, with a thickness of 123nm; the seventh layer is the high refractive index layer H40, with a thickness of 100nm; the eighth layer is the high refractive index layer H50, with a thickness of 100nm; the ninth layer is the high refractive index layer H60, with a thickness of 100nm; the eighth layer is the low refractive index layer L70, with a thickness of 100n
  • the total thickness of the antireflection film 20 is 1156nm
  • the thickness of each high refractive index layer is 26-48nm
  • the thickness of each low refractive index layer except the low refractive index layer L77 is 89nm-123nm.
  • the total thickness of the 7 high refractive index layers is 253nm
  • the total thickness of the 7 low refractive index layers is 903nm
  • the ratio of the total thickness of the high refractive index layers to the total thickness of the low refractive index layers is 0.28.
  • the thickness of the high refractive index layer H77 is the thickest, which is 48nm
  • the thickness of the low refractive index layer L66 is the thinnest, which is 89nm.
  • the thickness of the low refractive index layer L66 is greater than 1.2 times the thickness of the high refractive index layer H77.
  • the thickness of any low refractive index layer is greater than 1.5 times the thickness of the adjacent high refractive index layer.
  • the thickness of the low refractive index layer L66 is 89nm
  • the thickness of the adjacent high refractive index layer H66 is 28nm
  • the thickness of the high refractive index layer H77 is 48nm
  • the thickness of the low refractive index layer L3 is greater than 1.5 times the thickness of the high refractive index layer H3 and the high refractive index layer H4.
  • the transmittance of the information collection area S1 of the laminated glass 10 to the 905nm wavelength infrared light incident at an incident angle of 70° is about 67%; after using the anti-reflection film 20 in this embodiment, the transmittance of the information collection area S1 of the laminated glass 10 to the 905nm wavelength infrared light incident at an incident angle of 60°-70° reaches 79.1%.
  • the L value of the reflected color of the information collection area S1 to the visible light incident at an incident angle of 60°-70° is 86.8, the a value is 9.1, and the b value is 35.5.
  • the vehicle window glass 100 of the present application further includes a heat-insulating film 30.
  • the heat-insulating film 30 is arranged on the third surface 131 of the inner glass plate 13 and/or the second surface 112 of the outer glass plate 11 to avoid the information collection area S1 of the vehicle window glass 100. That is, a heat-insulating film 30 is sandwiched between the outer glass plate 11 and the inner glass plate 13. Specifically, the heat-insulating film 30 is arranged at a position corresponding to the field of view S21 on the laminated glass 10.
  • the orthographic projection of the heat-insulating film 30 on the laminated glass 10 completely overlaps with the field of view S21 (the width and length dimensions of the heat-insulating film 30 are equal to those of the field of view S21 in both the width direction and the length direction).
  • the heat-insulating film 30 can reflect infrared rays to achieve a heat-insulating and sun-protective effect in the field of view S21.
  • the orthographic projection of the thermal insulation film 30 on the laminated glass 10 may also partially overlap with the viewing area S21 (the width and length of the thermal insulation film 30 are smaller than the width and length of the viewing area S21).
  • the thermal insulation film 30 is a functional metal layer, which includes a metal layer and two dielectric layers, and the metal layer is located between the two dielectric layers.
  • the material of the metal layer is Ag
  • the material of the dielectric layer is ZnSnO x .
  • the functional metal layer may also include multiple metal layers, each of which is located between two adjacent dielectric layers. In this application, “multiple" refers to two or more.
  • the dielectric layer has the function of protecting the metal layer to prevent the metal layer from being oxidized, and on the other hand, it can also adjust the optical properties, mechanical properties and reflection color of the thermal insulation film.
  • the material of the metal layer may be a metal or metal alloy of at least one element selected from Ag, Au, Cu, Al, and Pt
  • the material of the dielectric layer may be at least one selected from nitrides, oxides, and oxynitrides of metals such as zinc Zn, Sn, Ti, Si, Al, Ni, Cr, Nb, Mg, Zr, Ga, Y, In, Sb, V, Ta, and their alloys.
  • the heat insulation film 30 can be a functional metal layer, or a transparent conductive oxide coating or an infrared absorption layer.
  • the present application does not impose strict restrictions on the material of the heat insulation film 30.
  • the laminated glass 10 is also provided with a shielding layer 40, which is laminated on the second surface 112 of the outer glass plate 11 and/or the periphery of the fourth surface 132 of the inner glass plate 13.
  • the shielding layer 40 is provided at a position on the laminated glass 10 corresponding to the shielding area S22.
  • the orthographic projection of the shielding layer 40 on the laminated glass 10 completely overlaps with the shielding area S22 (the width and length dimensions of the shielding layer 40 are equal to the width and length dimensions of the shielding area S22).
  • the shielding layer 40 avoids the information collection area S1 and the field of view area S21 on the laminated glass 10.
  • the material of the shielding layer 40 is usually ink, which is used to shield and protect the parts inside the vehicle 1000.
  • the shielding layer 40 can play a role in preventing ultraviolet rays, preventing the internal parts of the vehicle 1000 from being damaged by aging caused by direct sunlight, so as to increase the service life of the internal parts of the vehicle 1000.
  • the shielding layer 40 can also shield the internal parts of the vehicle 1000 to ensure the overall beauty of external observation.
  • the orthographic projection of the shielding layer 40 on the laminated glass 10 can also partially overlap with the shielding area S22 (the width and length of the shielding layer 40 are both smaller than the width and length of the shielding area S22).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种车窗玻璃(100)及车辆(1000),包括夹层玻璃(10)和信息采集区域(S1),夹层玻璃(10)包括外玻璃板(11)、中间层(12)和内玻璃板(13),中间层(12)夹设于外玻璃板(11)和内玻璃板(13)之间,外玻璃板(11)具有相对的第一表面(111)和第二表面(112),第二表面(112)朝向中间层(12),内玻璃板(13)具有相对的第三表面(131)和第四表面(132),第三表面(131)朝向中间层(12)。在内玻璃板(13)的第四表面(132)上设有增透膜(20),沿夹层玻璃(10)的厚度方向,增透膜(20)在信息采集区域(S1)的投影覆盖信息采集区域(S1)。通过在信息采集区域(S1)设置增透膜(20),使车窗玻璃(100)能够增加对900-1000nm波长范围内红外线的透过率,实现了905nm激光雷达的高精度测量,满足905nm激光雷达在自动驾驶领域的实际应用要求。

Description

车窗玻璃及车辆
本申请要求于2022年12月09日提交中国专利局、申请号为202211579812.7、申请名称为“车窗玻璃及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及玻璃产品技术领域,特别是车窗玻璃及车辆。
背景技术
汽车的智能化和网联化是未来发展的主要方向,自动驾驶也成为汽车发展的主要方向,安装在车辆内部的信息采集系统逐渐普遍地用于车辆的自动驾驶模式以改善安全性能和舒适度。信息采集系统通常安装于车窗玻璃的内侧。当前,信息采集系统的主流选择之一是905nm激光雷达。905nm激光雷达是利用波长为905nm的红外线激光进行信息采集,通过向目标物体发射并接收自目标物体反射的红外线激光,实现测距、测速等功能。因此,车窗玻璃对905nm波长红外线透过率至关重要。但目前车窗玻璃均会一定程度上阻碍红外线的透过,使激光雷达的红外线透过率不能满足自动驾驶对高精度探测的需求。
发明内容
本申请的目的是提供一种车窗玻璃及车辆,将本申请的车窗玻璃应用于车辆,可以在905nm激光雷达安装于车内时,满足车辆的自动驾驶对高精度探测的使用要求。
本申请的第一方面提供一种车窗玻璃,包括夹层玻璃和信息采集区域,所述夹层玻璃包括外玻璃板、中间层和内玻璃板,所述中间层夹设于所述外玻璃板和所述内玻璃板之间,所述外玻璃板具有相对的第一表面和第二表面,所述第二表面朝向所述中间层,所述内玻璃板具有相对的第三表面和第四表面,所述第三表面朝向所述中间层;
在所述内玻璃板的第四表面上设有增透膜,沿所述夹层玻璃的厚度方向,所述增透膜在所述信息采集区域的投影覆盖所述信息采集区域,所述增透膜包括层叠设置的多个高折射率层和多个低折射率层,每两层相邻的所述高折射率层之间层叠有一层所述低折射率层,且每两层相邻的所述低折射率层之间层叠有一层所述高折射率层,其中,与所述内玻璃板的第四表面接触的为高折射率层,所述增透膜的膜层数量为偶数且大于或等于8。
可以理解的是,在夹层玻璃的信息采集区域设置增透膜,增透膜由高折射率层和低折射率层交替层叠形成,红外线从低折射率层到高折射率层会在接触界面形成反射,多次反射实现表面减反射消光,因而,在车内侧的信息采集系统发射和/或接收红外线时,增透膜能够大幅度减少夹层玻璃上的信息采集区域对红外线的反射,使信息采集区域相较于夹层玻璃上的其他部分对红外线具有高透过率,从而满足车辆的自动驾驶模式对红外线传输的要求。
一种可能的实施方式中,从所述第一表面的一侧测量,所述信息采集区域的可见光反射颜色的L值为84-92,a值为7-11,b值为33-40,其中L是亮度值,a是红绿色色度值,b是黄蓝色色度值。
一种可能的实施方式中,所述增透膜的总厚度为400nm-2500nm。
一种可能的实施方式中,每一个所述高折射率层的厚度为20nm-100nm。
一种可能的实施方式中,沿所述夹层玻璃厚度方向,距离所述内玻璃板的第四表面最远的所述低折射率层以外的其他所述低折射率层的厚度为85nm-150nm。
一种可能的实施方式中,多个所述低折射率层的总厚度为400nm-1700nm。
一种可能的实施方式中,多个所述高折射率层的总厚度与多个所述低折射率层的总厚度的比值为0.1-0.4。
一种可能的实施方式中,多个所述高折射率层中包括一个厚度最厚的高折射率层,多个所述低折射率层中包括一个厚度最薄的低折射率层,厚度最薄的所述低折射率层的厚度大于厚度最厚的所述高折射率层的厚度的1.2倍。
一种可能的实施方式中,任意一个所述低折射率层的厚度大于相邻的任意一个所述高折射率层的厚度的1.5倍。
一种可能的实施方式中,所述高折射率层的折射率为1.9-3.5,所述低折射率层的折射率为1.4-1.9,且相邻的所述高折射率层的折射率与所述低折射率层的折射率的差值大于等于0.3。
一种可能的实施方式中,所述高折射率层的材料为Si、FeOx、NbOx、SiNx、ZrOx、TiOx、TiNx、MoOx、TaOx中的至少一种,所述低折射率层的材料为SiOx、MgFx、AlOx、AlSiOx中的至少一种。
一种可能的实施方式中,沿所述夹层玻璃厚度方向,距离所述内玻璃板的第四表面最远的所述低折射率层的材料为氧化物,且距离所述内玻璃板的第四表面最远的所述低折射率层的厚度大于200nm。
一种可能的实施方式中,所述信息采集区域对以60°-70°入射角入射的900-1000nm波长范围的红外线的透过率≥75%。
一种可能的实施方式中,所述外玻璃板和所述内玻璃板中的至少一个在850-1550nm波长范围内具有至少91%的透过率。
一种可能的实施方式中,所述增透膜直接沉积在所述内玻璃板的第四表面上。
一种可能的实施方式中,所述增透模通过基片粘贴在所述内玻璃板的第四表面上。
一种可能的实施方式中,所述车窗玻璃还包括隔热膜,所述隔热膜避开所述车窗玻璃的信息采集区域设置于所述外玻璃板的第二表面和/或所述内玻璃板的第三表面。
一种可能的实施方式中,所述车窗玻璃还包括遮蔽层,所述遮蔽层避开所述车窗玻璃的信息采集区域设置于所述外玻璃板的第二表面和/或所述内玻璃板的第四表面的周缘。
本申请的第二方面提供一种车辆,包括车体和如上所述的车窗玻璃,所述车窗玻璃连接至所述车体。
一种可能的实施方式中,所述车辆还包括信息采集系统,所述信息采集系统设于车辆的内部,所述信息采集系统发射和/或接收的信号均会透过所述车窗玻璃的信息采集区域。
本申请提供一种车窗玻璃及车辆,通过在信息采集区域设置增透膜,使车窗玻璃能够增加对900-1000nm波长范围内红外线的透过率,实现了905nm激光雷达的高精度测量,满足905nm激光雷达在自动驾驶领域的实际应用要求。
附图说明
图1为本申请实施例提供的车辆的结构示意图;
图2为图1所示车辆的车窗玻璃沿厚度方向的截面结构示意图;
图3为图2所示的车窗玻璃垂直于厚度方向的平面结构示意图;
图4为图2所示的车窗玻璃的增透膜的第一实施例的结构示意图;
图5为图2所示的车窗玻璃的增透膜的第二实施例的结构示意图;
图6为图2所示的车窗玻璃的隔热膜和遮蔽层的截面结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
车辆的智能驾驶和网联化是未来发展的主要方向,一般在车窗玻璃的车内一侧设置信息采集系统以实现车辆的智能驾驶。当前,信息采集系统的主流选择之一是905nm激光雷达。905nm激光雷达是利用波长为905nm的红外线激光进行信息采集,通过向周围三维空间发射激光束作为探测信号,并使激光束照射到周围空间中的物体后被反射而成为回波信号并返回,激光雷达将接收的回波信号与发射的探测信号进行比较,从而获得周围物体的诸如距离、速度等相关信息。因此,需要车窗玻璃对905nm波长红外线有较高的透过率以保证信号的高质量传输,但目前车窗玻璃对红外线的透过率较低,不足以满足信息采集系统在智能驾驶等领域的工作要求。
基于此,本申请提供一种车窗玻璃,将本申请的车窗玻璃应用于车辆,可以在905nm激光雷达安装于车内时,满足车辆的自动驾驶领域激光雷达工作的使用要求。
请参阅图1,车辆1000包括车窗玻璃100和车体200,车窗玻璃100连接至车体200。其中,车窗玻璃100可以为但不限于为车辆1000的前挡风玻璃、侧窗玻璃、后挡风玻璃和天窗玻璃等,本申请实施例仅以车窗玻璃100为前挡风玻璃进行示意。
请参阅图2,车窗玻璃100包括夹层玻璃10和增透膜20。夹层玻璃10包括外玻璃板11、中间层12和内玻璃板13,中间层12层叠于外玻璃板11和内玻璃板13之间。外玻璃板11包括相对设置的第一表面111和第二表面112,第一表面111朝向车辆1000的外部,属于车窗玻璃100的外表面。第二表面112朝向中间层12。内玻璃板13包括相对设置的第三表面131和第四表面132,第三表面131朝向中间层12,第四表面132朝向车辆1000的内部,属于车窗玻璃100的内表面。本实施例中,中间层12连接第二表面112和第三表面131。增透膜20层叠于内玻璃板13的第四表面132,增透膜20的面积只需要供激光雷达的光信号通过即可。
需要说明的是,夹层玻璃10可以呈平直板状,或者夹层玻璃10也可以呈曲面或弧面状。夹层玻璃10的形状并不局限于前述描述的形状,其可以是满足车窗玻璃100使用要求的任何形状。本申请不对夹层玻璃10的形状做严格限制。
外玻璃板11和内玻璃板13中的至少一个在850-1550nm波长范围内具有至少91%的透过率,可以选用超白浮法玻璃。一种实施例中,外玻璃板11和内玻璃板13均为超白浮法玻璃,选用超白浮法玻璃有利于提高车窗玻璃100对激光雷达发射和接收的905nm波长红外线的透过率。外玻璃板11的厚度为w1,内玻璃板13的厚度为w2,其中,w1大于或等于w2。一种实施方式中,w1大于w2的2倍。又一种实施方式中,w1大于w2的2.5倍。
示例性的,外玻璃板11的厚度w1为3.2mm,内玻璃板13的厚度w2为1.2mm。由于外玻璃板11需要较高的应对来自外部障碍的耐久性和耐冲击性,所以外玻璃板11优选厚玻璃;而为了降低内玻璃板13对红外线的吸收,内玻璃板13的厚度相对较小,为满足玻璃强度的要求,可以对内玻璃板13进行钢化以提高强度,使其在强度足够的基础上尽量减少对红外线的吸收,同时尽量满足轻量化要求,减小内、外玻璃板的合计厚度。
本实施例中,中间层12为热塑性聚合物层,用于粘接外玻璃板11和内玻璃板13以形成夹层结构。中间层12的材料可以选自聚乙烯醇缩丁醛(PVB)、聚烯烃(POE)、乙烯-醋酸乙烯共聚物(EVA)、聚氨酯(PU)等,优选为聚乙烯醇缩丁醛(PVB)。选用聚乙烯醇缩丁醛(PVB),可有效抑制噪音的传播,使夹层玻璃10起到隔音的效果。
请一并参阅图3,本实施例中,车窗玻璃100还包括信息采集区域S1和非信息采集区域S2,信息采集区域S1和非信息采集区域S2不重叠。其中,信息采集区域S1用于为信息采集系统(图未示)采集信号提供信号透过区域。车窗玻璃100安装于车辆1000上时,信息采集系统设置于车辆1000的内部,信息采集系统发射和/或接收的信号均会透过车窗玻璃100的信息采集区域S1。非信息采集区域S2包括视野区域S21和遮蔽区域S22,视野区域S21为透明区域,用于室内和外部的透光,即为汽车视窗。遮蔽区域S22用于防止可见光透过夹层玻璃10。在其他实施例中,视野区域S21也可部分用于抬头显示(HUD,Head Up Display),即作为HUD视野区域以显示行驶速度、动态导航、商圈信息等信息,遮蔽区域S22也可以仅用于美观。本申请不对非信息采集区域S2的用途做严格限制。
本申请实施例中,信息采集区域S1、视野区域S21和遮蔽区域S22均不重叠。一种实施例中,信息采集区域S1位于视野区域S21内,视野区域S21位于信息采集区域S1外侧,视野区域S21围设在信息采集区域S1的周边,视野区域S21完全包围信息采集区域S1,视野区域S21的形状与夹层玻璃10的形状相匹配。遮蔽区域S22为环形框体形状,遮蔽区域S22围绕视野区域S21周侧边;遮蔽区域S22的外侧边S221即为夹层玻璃10的外边缘,遮蔽区域S22的内侧边S222与视野区域S21的周侧边连接。信息采集区域S1的侧边S11与遮蔽区域S22的内侧边S222间隔设置。
信息采集区域S1可以与遮蔽区域S22间隔设置,例如,请参阅图3,图3是本申请实施例提供的一种车窗玻璃100垂直于厚度方向的平面结构示意图。信息采集区域S1可以设于遮蔽区域S22靠近车窗玻璃100中部一侧的边缘,信息采集区域S1可以由遮蔽区域S22靠近车顶一侧的边缘向车窗玻璃100的中部延伸。
信息采集区域S1也可以是三角形、五边形、六边形等。遮蔽区域S22也可以是其他形状。视野区域S21与信息采集区域S1也可以是其他位置关系,并且视野区域S21也可以是其他形状。本申请不对信息采集区域S1和视野区域S21的设置位置和形状做严格限制。
请结合参阅图2和图3,增透膜20层叠于内玻璃板13的第四表面132上。具体的,增透膜20设于夹层玻璃10上对应信息采集区域S1的位置。沿夹层玻璃10的厚度方向,所述增透膜20在所述信息采集区域S1的投影覆盖所述信息采集区域S1。即增透膜20在夹层玻璃10的正投影与信息采集区域S1至少完全重叠(在增透膜20的宽度方向和长度方向均至少等于信息采集区域S1的宽度和长度尺寸)。通过在内玻璃板13的第四表面132设置增透膜20,可以减少车窗玻璃100对900-1000nm波长范围内红外线的反射,提高夹层玻璃10上信息采集区域S1的红外线透过率。本实施例中,信息采集区域S1对以60°-70°入射角入射的900-1000nm波长范围内红外线的透过率大于或等于75%。一种实施方式中,信息采集区域S1对以60°-70°入射角入射的900-1000nm波长范围内红外线的透过率为77%,或者, 信息采集区域S1对以60°-70°入射角入射的900-1000nm波长范围内红外线的透过率为79.5%。本实施例中,增透膜20可以通过磁控溅射直接沉积到内玻璃板13的第四表面132,也可以采用连续式立式镀膜机或卧式镀膜机,具体的,采用连续式立式镀膜机。在其他一些实施例中,增透膜20还可以通过涂布等方式形成,增透膜20也可以通过基片粘贴在内玻璃板13的第四表面132上。
增透膜20包括层叠设置的多个高折射率层和多个低折射率层,每两层相邻的高折射率层之间层叠有一层低折射率层,且每两层相邻的低折射率层之间层叠有一层高折射率层。具体的,增透膜20的层数为偶数,自内玻璃板13的第四表面132起,沿夹层玻璃10的厚度方向,奇数层为高折射率层,偶数层为低折射率层;与内玻璃板13的第四表面132接触的为高折射率层,最远离第四表面132的为低折射率层。通过将高折射率层和低折射率层交替层叠,光从低折射率层到高折射率层会在接触界面形成反射,多次反射实现表面减反射消光。
增透膜20的膜层数量为偶数且大于或等于8,比如,增透膜20的膜层数量可以是8、10、12、14、16和18。为了提高增透膜20的减反效果,需要使增透膜20具有多个膜层;随着增透膜20的膜层数量增加,增透膜20对红外线的固定吸收也会增加。当增透膜20的膜层数量增大到一定数值时,信息采集区域S1对900-1000nm波长范围内红外线的透过率达到最大;随着膜层数量继续增大,信息采集区域S1对红外线的透过率达到最大或有所降低。综合考虑减反效果和生产成本,本实施例中,增透膜20的膜层数量优选为10、12和14。
增透膜20的总厚度可以为400nm-2500nm。一种实施方式中,增透膜20的总厚度为740nm-1750nm。又一种实施方式中,增透膜20的总厚度为1100nm-1300nm。每一个高折射率层的厚度为20nm-100nm。沿夹层玻璃10的厚度方向,距离内玻璃板13的第四表面132最远的低折射率层以外的其他低折射率层的厚度为85nm-150nm。多个低折射率层的总厚度可以为400nm-1700nm。一种实施方式中,多个低折射率层的总厚度为600nm-1380nm。多个所述高折射率层的总厚度为80nm-600nm。具体的,多个高折射率层的总厚度与多个低折射率层的总厚度的比值为0.1-0.4,例如,多个高折射率层的总厚度与多个低折射率层的总厚度的比值为0.2-0.3。多个高折射率层中包括一个厚度最厚的高折射率层,多个低折射率层中包括一个厚度最薄的低折射层,厚度最薄的低折射率层的厚度为d1,厚度最厚的高折射率层的厚度为d2,d1大于d2的1.2倍。一种实施方式中,d1大于d2的1.5倍。一种实施方式中,d1大于d2的1.8倍。一种实施方式中,d1大于d2的2.0倍。一种实施方式中,d1大于d2的2.5倍。任意一个低折射率层的厚度为d3,与其相邻的任意一个高折射率层的厚度为d4,d3大于d4的1.5倍。一种实施方式中,d3大于d4的1.7倍。一种实施方式中,d3大于d4的1.9倍。一种实施方式中,d3大于d4的2.1倍。一种实施方式中,d3大于d4的2.3倍。一种实施方式中,d3大于d4的2.5倍。一种实施方式中,d3大于d4的2.7倍。本申请提供的增透膜20使得光线在增透膜20的折射次数较多,配合层数与厚度的设置,可以降低900-1000nm波长范围内红外线的反射率,使得红外线的透过率满足使用要求。
具体的,当膜层数量为8时,增透膜20的总厚度为660nm-1070nm,多个高折射率层的总厚度为130nm-300nm,多个低折射率层的总厚度为530nm-770nm;当膜层数量为10时,增透膜20的总厚度为780nm-1300nm,多个高折射率层的总厚度为160nm-380nm,多个低折射率层的总厚度为630nm-920nm;当膜层数量为12时,增透膜20的总厚度为920nm-1510nm,多个高折射率层的总厚度为190nm-450nm,多个低折射率层的总厚度为730nm-1060nm;当膜层数量为14时,增透膜20的总厚度为1060nm-1720nm,多个高折射率层的总厚度为230-520nm,多个低折射率层的总厚度为830nm-1200nm;当膜层数量为16时,增透膜20的 总厚度为1190nm-1950nm,多个高折射率层的总厚度为260nm-600nm,多个低折射率层的总厚度为930nm-1350m;当膜层数量为18时,增透膜20的总厚度为1310nm-2180nm,多个高折射率层的总厚度为290nm-680nm,多个低折射率层的总厚度为1020nm-1500nm。
对设有增透膜20的信息采集区域S1进行角度颜色测试,从外玻璃板11的第一表面111一侧向信息采集区域S1照射可见光(380nm-780nm),入射角度为60°-70°,按照CIE Lab颜色模型(国际照明委员会CIE于1976年公布的一种色彩模式),信息采集区域S1对可见光反射颜色的L值的范围是84-92(包括端点值84和92),a值的范围是7-11(包括端点值7和11),b值的范围是33-40(包括端点值33和40),其中,L为亮度值,a为红绿色色度值,b为黄蓝色色度值。因此,从车外观察到的信息采集区域S1为金黄色,增透膜20可以对信息采集区域S1起遮蔽作用,提高汽车外观的美观性。
所述高折射率层的折射率为1.9-3.5(包括端点值1.9和3.5),所述低折射率层的折射率为1.4-1.9(包括端点值1.4和1.9),且相邻的所述高折射率层的折射率与所述低折射率层的折射率的差值大于等于0.3。进一步的,相邻的高折射率层的折射率与低折射率层的折射率的差值大于或者等于0.4,或者,相邻的高折射率层的折射率与低折射率层的折射率的差值大于或者等于0.5。
高折射率层的材料为Si、FeOx、NbOx、SiNx、ZrOx、TiOx、TiNx、MoOx、TaOx中的至少一种;低折射率层的材料为SiOx、MgFx、AlOx、AlSiOx中的至少一种。需要说明的是,增透膜20的多个高折射率层可采用折射率较高的材料,这样使用较少的膜层即可实现减反效果。多个低折射率层可以使用折射率为1.4-1.9的材料中的一种或者多种,只需满足从车外观察到的增透膜20为金黄色、且增透膜20的减反效果能满足自动驾驶领域的需求即可。
沿着夹层玻璃10的厚度方向,距离内玻璃板13的第四表面132最远的低折射率层,也就是增透膜20最外侧的膜层的材料为SiOx、AlOx、AlSiOx等氧化物中的任意一种。该低折射率层的厚度大于200nm。一种实施方式中,该层的厚度大于250nm。又一种实施方式中,该层的厚度大于300nm。由于最远离第四表面132的低折射率层为氧化物材料,且该层具有较大的厚度,因此,增透膜20具有较好的耐磨和抗腐蚀性能。
请参阅图4,并结合表1,图4为本申请车窗玻璃100的增透膜20的第一实施例的结构示意图。本实施例的增透膜20的膜层数量为12,其中,高折射率层和低折射率层各有6个。高折射率层均采用Si3N4,Si3N4的折射率为1.9,低折射率层均采用SiO2,SiO2的折射率为1.5。从内玻璃板13的第四表面132起,沿着增透膜20的厚度方向,第一层为高折射率层H1,厚度为47nm;第二层为低折射率层L1,厚度为128nm;第三层为高折射率层H2,厚度为74nm;第四层为低折射率层L2,厚度为122nm;第五层为高折射率层H3,厚度为64nm;第六层为低折射率层L3,厚度为146nm;第七层为高折射率层H4,厚度为94nm;第八层为低折射率层L4,厚度为142nm;第九层为高折射率层H5,厚度为66nm;第十层为低折射率层L5,厚度为121nm;第十一层为高折射率层H6,厚度为74nm;第十二层为低折射率层L6,厚度为306nm。
表1第一实施例的增透膜的结构参数

本实施例中,增透膜20的总厚度为1384nm,每个高折射率层的厚度为47nm-94nm,除低折射率层L6,其余每个低折射率层的厚度为121-146nm。6个高折射率层的总厚度为419nm,6个低折射率层的总厚度为965nm,高折射率层的总厚度与低折射率层的总厚度的比值为0.43。其中,高折射率层H4的厚度最厚,为94nm,低折射率层L5的厚度最薄,为121nm,低折射率层L5的厚度大于高折射率层H4的厚度的1.2倍。任意一个低折射率层的厚度均大于与其相邻的高折射率层的厚度的1.5倍,例如,低折射率层L4的厚度为142nm,与之相邻的高折射率层H4的厚度为94nm,高折射率层H5的厚度为66nm,低折射率层L4的厚度大于高折射率层H4和高折射率层H5的厚度的1.5倍。
本实施例中,随着增透膜20的膜层数量增加,信息采集区域S1对红外线的透过率逐渐增大。当增透膜的膜层数量达到12时,信息采集区域S1对900-1000nm波长范围内红外线的透过率达到最大,为79.5%。当增透膜20的膜层数量超过12时,例如增透膜20的膜层数量为14,此时信息采集区域S1对900-1000nm波长范围内红外线的透过率与膜层数量为12时接近,且进一步增加增透膜20的膜层数量,信息采集区域S1对红外线的透过率不会明显增加,甚至可能降低。因此,综合考虑减反效果和生产成本,本实施例中,增透膜20的膜层数量优选为12。
在使用本实施例中的增透膜20之前,夹层玻璃10的信息采集区域S1对以70°入射角入射的905nm波长红外线的透过率约为67%;在使用本实施例中的增透膜20之后,夹层玻璃10的信息采集区域S1对以60°-70°入射角入射的905nm波长红外线的透过率达到79.5%。本实施例中,信息采集区域S1对以60°-70°入射角入射的可见光的反射颜色的L值为88.1,a值为9.6,b值为36.3。
请参阅图5,图5为增透膜20的第二实施例的具体结构示意图。与图4中第一实施例不同的是,图5示出的增透膜20的层数为14,其中,高折射率层和低折射率层各有7个,低折射率层均采用Al2O3,Al2O3的折射率为1.765。高折射率层均采用Si,Si的折射率为3.2。从内玻璃板13的第四表面132起,沿着增透膜20的厚度方向,第一层为高折射率层H11,厚度为26nm;第二层为低折射率层L11,厚度为107nm;第三层为高折射率层H22,厚度为40nm;第四层为低折射率层L22,厚度为99nm;第五层为高折射率层H33,厚度为39nm;第六层为低折射率层L33,厚度为123nm;第七层为高折射率层H44,厚度为42nm;第八层为低折射率层L44,厚度为118nm;第九层为高折射率层H55,厚度为30nm;第十层为低折射率层L55,厚度为95nm;第十一层为高折射率层H66,厚度为28nm;第十二层为低折射率层L66,厚度为89nm;第十三层为高折射率层H77,厚度为48nm;第十四层为低折射率层L77,厚度为272nm。
表2第二实施例的增透膜的结构参数
本实施例中,增透膜20的总厚度为1156nm,每个高折射率层的厚度为26-48nm,除低折射率层L77,其余每个低折射率层的厚度为89nm-123nm。7个高折射率层的总厚度为253nm,7个低折射率层的总厚度为903nm,高折射率层的总厚度与低折射率层的总厚度的比值为0.28。其中,高折射率层H77的厚度最厚,为48nm,低折射率层L66的厚度最薄,为89nm,低折射率层L66的厚度大于高折射率层H77的厚度的1.2倍。任意一个低折射率层的厚度均大于与其相邻的高折射率层的厚度的1.5倍,例如,低折射率层L66的厚度为89nm,与之相邻的高折射率层H66的厚度为28nm,高折射率层H77的厚度为48nm,低折射率层L3的厚度大于高折射率层H3和高折射率层H4的厚度的1.5倍。
在使用本实施例中的增透膜20之前,夹层玻璃10的信息采集区域S1对以70°入射角入射的905nm波长红外线的透过率约为67%;在使用本实施例中的增透膜20之后,夹层玻璃10的信息采集区域S1对以60°-70°入射角入射的905nm波长红外线的透过率达到79.1%。本实施例中,信息采集区域S1对以60°-70°入射角入射的可见光的反射颜色的L值为86.8,a值为9.1,b值为35.5。
请参阅图6,本申请的车窗玻璃100还包括隔热膜30,所述隔热膜30避开所述车窗玻璃100的信息采集区域S1设置于所述内玻璃板13的第三表面131和/或所述外玻璃板11的第二表面112,即,外玻璃板11和内玻璃板13之间夹设有隔热膜30。具体的,隔热膜30设于夹层玻璃10上对应视野区域S21的位置。沿夹层玻璃10的厚度方向上,隔热膜30在夹层玻璃10上的正投影与视野区域S21完全重叠(在隔热膜30的宽度方向和长度方向均等于视野区域S21的宽度和长度尺寸)。隔热膜30能够反射红外线,实现视野区域S21的隔热防晒效果。在其他实施例中,沿夹层玻璃10的厚度方向,隔热膜30在夹层玻璃10的正投影也可以与视野区域S21部分重叠(在隔热膜30的宽度方向和长度方向均小于视野区域S21的宽度和长度尺寸)。
本申请中,隔热膜30是功能金属层,功能金属层包括一个金属层和两个介质层,金属层位于两个介质层之间。金属层的材料为Ag,介质层的材料为ZnSnOx。在其他一些实施例中, 功能金属层还可以包含多个金属层,每个金属层位于相邻两个介质层之间。本申请中“多个”指两个及以上。介质层一方面具有保护金属层的作用,防止金属层被氧化,另一方面还能够调节隔热膜的光学性能、机械性能和反射颜色等。金属层的材料可为选自Ag、Au、Cu、Al、Pt中至少一种元素的金属或金属合金,介质层的材料可为选自锌Zn、Sn、Ti、Si、Al、Ni、Cr、Nb、Mg、Zr、Ga、Y、In、Sb、V、Ta等金属及其合金的氮化物、氧化物、氮氧化物中的至少一种。
为了保证视野区域S21具有较高的透过率,只需在外玻璃板11的第二表面112或内玻璃板13的第三表面131中任意一个表面设置隔热膜30即可。隔热膜30可以是功能金属层,也可以是透明导电氧化物涂层或红外线吸收层,本申请不对隔热膜30的材料做严格限制。
夹层玻璃10上还设有遮蔽层40,遮蔽层40层叠于外玻璃板11的第二表面112和/或内玻璃板13的第四表面132的周缘。具体的,遮蔽层40设于夹层玻璃10上对应遮蔽区域S22的位置。沿夹层玻璃10的厚度方向上,遮蔽层40在夹层玻璃10上的正投影与遮蔽区域S22完全重叠(在遮蔽层40的宽度方向和长度方向均等于遮蔽区域S22的宽度和长度尺寸)。遮蔽层40避开夹层玻璃10上的信息采集区域S1和视野区域S21。遮蔽层40的材料通常为油墨,用于遮蔽和保护车辆1000内部的零件。遮蔽层40可以起到防紫外线的作用,防止车辆1000内部的零部件被阳光直射造成老化而损坏,以提高车辆1000内部的零部件的使用寿命,同时遮蔽层40还能够遮挡车辆1000内部的零部件,以保证外部观察的整体美观。在其他实施例中,沿夹层玻璃10的厚度方向,遮蔽层40在夹层玻璃10的正投影也可以与遮蔽区域S22部分重叠(在遮蔽层40的宽度方向和长度方向均小于遮蔽区域S22的宽度和长度尺寸)。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种车窗玻璃,其特征在于,包括夹层玻璃和信息采集区域,所述夹层玻璃包括外玻璃板、中间层和内玻璃板,所述中间层夹设于所述外玻璃板和所述内玻璃板之间,所述外玻璃板具有相对的第一表面和第二表面,所述第二表面朝向所述中间层,所述内玻璃板具有相对的第三表面和第四表面,所述第三表面朝向所述中间层;
    在所述内玻璃板的第四表面上设有增透膜,沿所述夹层玻璃的厚度方向,所述增透膜在所述信息采集区域的投影覆盖所述信息采集区域,所述增透膜包括层叠设置的多个高折射率层和多个低折射率层,每两层相邻的所述高折射率层之间层叠有一层所述低折射率层,且每两层相邻的所述低折射率层之间层叠有一层所述高折射率层,其中,与所述内玻璃板的第四表面接触的为高折射率层,所述增透膜的膜层数量为偶数且大于或等于8。
  2. 根据权利要求1所述的车窗玻璃,其特征在于,从所述第一表面的一侧测量,所述信息采集区域的可见光反射颜色的L值为84-92,a值为7-11,b值为33-40,其中L是亮度值,a是红绿色色度值,b是黄蓝色色度值。
  3. 根据权利要求1所述的车窗玻璃,其特征在于,所述增透膜的总厚度为400nm-2500nm。
  4. 根据权利要求1所述的车窗玻璃,其特征在于,每一个所述高折射率层的厚度为20nm-100nm。
  5. 根据权利要求1所述的车窗玻璃,其特征在于,沿所述夹层玻璃厚度方向,距离所述内玻璃板的第四表面最远的所述低折射率层以外的其他所述低折射率层的厚度为85nm-150nm。
  6. 根据权利要求5所述的车窗玻璃,其特征在于,多个所述低折射率层的总厚度为400nm-1700nm。
  7. 根据权利要求6所述的车窗玻璃,其特征在于,多个所述高折射率层的总厚度与多个所述低折射率层的总厚度的比值为0.1-0.4。
  8. 根据权利要求1-7任一项所述的车窗玻璃,其特征在于,多个所述高折射率层中包括一个厚度最厚的高折射率层,多个所述低折射率层中包括一个厚度最薄的低折射率层,厚度最薄的所述低折射率层的厚度大于厚度最厚的所述高折射率层的厚度的1.2倍。
  9. 根据权利要求1-7任一项所述的车窗玻璃,其特征在于,任意一个所述低折射率层的厚度大于相邻的任意一个所述高折射率层的厚度的1.5倍。
  10. 根据权利要求1所述的车窗玻璃,其特征在于,所述高折射率层的折射率为1.9-3.5,所述低折射率层的折射率为1.4-1.9,且相邻的所述高折射率层的折射率与所述低折射率层的折射率的差值大于等于0.3。
  11. 根据权利要求10所述的车窗玻璃,其特征在于,所述高折射率层的材料为Si、FeOx、NbOx、SiNx、ZrOx、TiOx、TiNx、MoOx、TaOx中的至少一种,所述低折射率层的材料为SiOx、MgFx、AlOx、AlSiOx中的至少一种。
  12. 根据权利要求11所述的车窗玻璃,其特征在于,沿所述夹层玻璃厚度方向,距离所述内玻璃板的第四表面最远的所述低折射率层的材料为氧化物,且距离所述内玻璃板的第四表面最远的所述低折射率层的厚度大于200nm。
  13. 根据权利要求1所述的车窗玻璃,其特征在于,所述信息采集区域对以60°-70°入射 角入射的900-1000nm波长范围的红外线的透过率≥75%。
  14. 根据权利要求1所述的车窗玻璃,其特征在于,所述外玻璃板和所述内玻璃板中的至少一个在850-1550nm波长范围内具有至少91%的透过率。
  15. 根据权利要求1所述的车窗玻璃,其特征在于,所述增透膜直接沉积在所述内玻璃板的第四表面上。
  16. 根据权利要求1所述的车窗玻璃,其特征在于,所述增透模通过基片粘贴在所述内玻璃板的第四表面上。
  17. 根据权利要求1所述的车窗玻璃,其特征在于,所述车窗玻璃还包括隔热膜,所述隔热膜避开所述车窗玻璃的信息采集区域设置于所述外玻璃板的第二表面和/或所述内玻璃板的第三表面。
  18. 根据权利要求1所述的车窗玻璃,其特征在于,所述车窗玻璃还包括遮蔽层,所述遮蔽层避开所述车窗玻璃的信息采集区域设置于所述外玻璃板的第二表面和/或所述内玻璃板的第四表面的周缘。
  19. 一种车辆,其特征在于,包括车体和如权利要求1-18任一项所述的车窗玻璃,所述车窗玻璃连接至所述车体。
  20. 根据权利要求19所述的车辆,其特征在于,所述车辆还包括信息采集系统,所述信息采集系统设于车辆的内部,所述信息采集系统发射和/或接收的信号均会透过所述车窗玻璃的信息采集区域。
PCT/CN2023/137431 2022-12-09 2023-12-08 车窗玻璃及车辆 WO2024120522A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211579812.7 2022-12-09
CN202211579812.7A CN115891298A (zh) 2022-12-09 2022-12-09 车窗玻璃及车辆

Publications (1)

Publication Number Publication Date
WO2024120522A1 true WO2024120522A1 (zh) 2024-06-13

Family

ID=86493711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/137431 WO2024120522A1 (zh) 2022-12-09 2023-12-08 车窗玻璃及车辆

Country Status (2)

Country Link
CN (1) CN115891298A (zh)
WO (1) WO2024120522A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115891298A (zh) * 2022-12-09 2023-04-04 福耀玻璃工业集团股份有限公司 车窗玻璃及车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490993A (zh) * 2017-09-13 2019-03-19 Agc株式会社 带减反射膜的透明基体及使用了该透明基体的显示装置
CN110218006A (zh) * 2019-04-25 2019-09-10 福耀玻璃工业集团股份有限公司 一种车辆用夹层玻璃
CN110228236A (zh) * 2019-04-25 2019-09-13 福耀玻璃工业集团股份有限公司 一种车辆用夹层玻璃
WO2022175635A1 (fr) * 2021-02-19 2022-08-25 Saint-Gobain Glass France Vitrage feuillete de vehicule et dispositif avec systeme de vision proche infrarouge associe
CN115139593A (zh) * 2022-07-13 2022-10-04 福耀玻璃工业集团股份有限公司 车窗玻璃及车辆
CN115742492A (zh) * 2022-11-28 2023-03-07 福耀玻璃工业集团股份有限公司 车窗玻璃及车辆
CN115891298A (zh) * 2022-12-09 2023-04-04 福耀玻璃工业集团股份有限公司 车窗玻璃及车辆
CN116252594A (zh) * 2023-03-10 2023-06-13 福耀玻璃工业集团股份有限公司 车窗玻璃与车辆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101941718B1 (ko) * 2011-03-24 2019-01-23 쌩-고벵 글래스 프랑스 박막 다중층이 구비된 투명 기판
CN202448413U (zh) * 2011-12-29 2012-09-26 中国华能集团清洁能源技术研究院有限公司 一种具有红外反射涂层和增透膜的超白玻璃挡板
CN109130797A (zh) * 2018-08-24 2019-01-04 深圳市速腾聚创科技有限公司 汽车挡风玻璃及汽车
CN209065758U (zh) * 2018-11-14 2019-07-05 四川南玻节能玻璃有限公司 一种多功能型复合膜及其镀膜产品

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109490993A (zh) * 2017-09-13 2019-03-19 Agc株式会社 带减反射膜的透明基体及使用了该透明基体的显示装置
CN110218006A (zh) * 2019-04-25 2019-09-10 福耀玻璃工业集团股份有限公司 一种车辆用夹层玻璃
CN110228236A (zh) * 2019-04-25 2019-09-13 福耀玻璃工业集团股份有限公司 一种车辆用夹层玻璃
WO2022175635A1 (fr) * 2021-02-19 2022-08-25 Saint-Gobain Glass France Vitrage feuillete de vehicule et dispositif avec systeme de vision proche infrarouge associe
CN115139593A (zh) * 2022-07-13 2022-10-04 福耀玻璃工业集团股份有限公司 车窗玻璃及车辆
CN115742492A (zh) * 2022-11-28 2023-03-07 福耀玻璃工业集团股份有限公司 车窗玻璃及车辆
CN115891298A (zh) * 2022-12-09 2023-04-04 福耀玻璃工业集团股份有限公司 车窗玻璃及车辆
CN116252594A (zh) * 2023-03-10 2023-06-13 福耀玻璃工业集团股份有限公司 车窗玻璃与车辆

Also Published As

Publication number Publication date
CN115891298A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
JP7145145B2 (ja) 自動運転車のためのガラス
JP7483677B2 (ja) 光学機器を備えるグレイジング
WO2024120522A1 (zh) 车窗玻璃及车辆
JP7281411B2 (ja) 自動運転車のためのガラス
JP2021507868A (ja) 電気伝導性コーティング及び反射防止コーティングを有するヘッドアップディスプレイ用複合ペイン
US20150274584A1 (en) Laminated glass for use in vehicles or in architecture
JP7281412B2 (ja) 自動運転車のためのガラス
US20230194759A1 (en) Far-infrared ray transmission member and method for manufacturing far-infrared ray transmission member
US20230228925A1 (en) Far-infrared ray transmission member and method for manufacturing far-infrared ray transmission member
WO2023078381A1 (zh) 夹层玻璃组件、信号传输系统及车辆
CN115742492A (zh) 车窗玻璃及车辆
CN115593047B (zh) 车窗玻璃与车辆
CN116252594A (zh) 车窗玻璃与车辆
US20230176374A1 (en) Projection arrangement for a head-up display (hud) with p-polarised radiation
WO2022205909A1 (zh) 车窗总成及车辆
CN217587590U (zh) 复合光学防护片及激光雷达
WO2023130214A1 (zh) 挡风玻璃及挡风玻璃总成
CN218805124U (zh) 挡风窗、显示装置和交通设备
EA041238B1 (ru) Остекление с оптическим устройством
EA036101B1 (ru) Стекло для автономного автомобиля
CN116330767A (zh) 一种局部高红外线透过的夹层隔热玻璃及包含其的车辆
JP2024007005A (ja) 接着層付き機能性フィルムおよびガラス積層体