WO2024120293A1 - 同步信号传输方法、装置、终端及网络侧设备 - Google Patents

同步信号传输方法、装置、终端及网络侧设备 Download PDF

Info

Publication number
WO2024120293A1
WO2024120293A1 PCT/CN2023/135396 CN2023135396W WO2024120293A1 WO 2024120293 A1 WO2024120293 A1 WO 2024120293A1 CN 2023135396 W CN2023135396 W CN 2023135396W WO 2024120293 A1 WO2024120293 A1 WO 2024120293A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronization signal
level synchronization
level
signal
terminal
Prior art date
Application number
PCT/CN2023/135396
Other languages
English (en)
French (fr)
Inventor
王鹏飞
杨坤
姜大洁
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024120293A1 publication Critical patent/WO2024120293A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a synchronization signal transmission method, device, terminal and network side equipment.
  • TRPs transmission and reception points
  • the embodiments of the present application provide a synchronization signal transmission method, apparatus, terminal and network-side equipment to solve the problem of mutual interference of synchronization signals of neighboring cells caused by multiplexing the same synchronization signal resources in different cells and the complexity of network deployment.
  • a synchronization signal transmission method comprising:
  • the terminal receives a first-level synchronization signal sent by a network-side device, and obtains a signal quality of the first-level synchronization signal;
  • the terminal determines whether to detect a second-level synchronization signal according to the signal quality
  • the signal quality includes at least one of the following:
  • RSRP Reference Signal Received Power
  • SINR Signal-to-noise and interference ratio
  • a synchronization signal transmission device which is applied to a terminal, including:
  • a first receiving module used to receive a first-level synchronization signal sent by a network-side device, and obtain a signal quality of the first-level synchronization signal
  • a first determination module used to determine whether to detect a second-level synchronization signal according to the signal quality
  • the signal quality includes at least one of the following:
  • a synchronization signal transmission method comprising:
  • the network side device sends a first-level synchronization signal and a second-level synchronization signal.
  • a synchronization signal transmission device which is applied to a network side device, including:
  • the first sending module is used to send a first-level synchronization signal and a second-level synchronization signal.
  • a terminal comprising a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented.
  • a terminal comprising a processor and a communication interface, wherein the communication interface is used to receive a first-level synchronization signal sent by a network side device and obtain a signal quality of the first-level synchronization signal; the processor is used to determine whether to detect a second-level synchronization signal according to the signal quality;
  • the signal quality includes at least one of the following:
  • a network side device comprising a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the third aspect are implemented.
  • a network side device including a processor and a communication interface, wherein the communication interface is used to send a first-level synchronization signal and a second-level synchronization signal.
  • a synchronization signal transmission system comprising: a terminal and a network side device, wherein the terminal can be used to execute the steps of the method described in the first aspect, and the network side device can be used to execute the steps of the method described in the third aspect.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect or the third aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the steps of the method described in the first aspect or the third aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium and is executed by at least one processor to implement the steps of the method described in the first aspect or the third aspect.
  • whether to detect the second-level synchronization signal is determined based on the signal quality of the first-level synchronization signal.
  • FIG1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • Figure 2 is a schematic diagram of the NR SSB structure
  • FIG3 is a schematic diagram of the PBCH structure
  • FIG4 is a schematic diagram of a flow chart of a synchronization signal transmission method according to an embodiment of the present application.
  • FIG5 is a schematic diagram of the time domain relationship of two-level synchronization signals
  • FIG6 is a schematic diagram of frequency division of the second-level synchronization signal
  • FIG7 is a time division diagram of the second-level synchronization signal
  • FIG8 is a schematic diagram of the structure of a second-level synchronization signal
  • FIG9 is a second flow chart of the synchronization signal transmission method according to an embodiment of the present application.
  • FIG10 is a schematic diagram of a module of a synchronization signal transmission device according to an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of a terminal according to an embodiment of the present application.
  • FIG12 is a second schematic diagram of a module of a synchronization signal transmission device according to an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a network side device according to an embodiment of the present application.
  • FIG. 14 is a schematic diagram of the structure of a communication device according to an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), an augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) device, a robot, a wearable Device (Wearable Device), vehicle-mounted equipment (Vehicle User Equipment, VUE), pedestrian terminal (Pedestrian User Equipment, PUE), smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), game consoles, personal computers (personal computers, PCs), ATMs or self-service machines, perception service terminals,
  • the network-side device 12 may include access network equipment or core network equipment, wherein the access network equipment may also be called wireless access network equipment, wireless access network (Radio Access Network, RAN), wireless access network function or wireless access network unit.
  • Access network equipment may include base stations, wireless local area network (WLAN) access points, wireless fidelity (WiFi) nodes, etc.
  • the base station may be called node B, evolved node B (eNB), access point, base transceiver station (BTS), radio base station, radio transceiver, basic service set (BSS), extended service set (ESS), home B node, home evolved B node, transmission and reception point (TRP), perception signal sending device, perception information receiving device or other suitable terms in the field.
  • eNB evolved node B
  • BTS base transceiver station
  • ESS basic service set
  • home B node home evolved B node
  • TRP transmission and reception point
  • perception signal sending device perception information receiving device or other suitable terms in the field.
  • the base station is not limited to specific technical vocabulary. It should be noted that in the embodiments of the present application, only the base station in the NR system is taken as an example for introduction, and the specific type of the base station is not limited.
  • the core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entity (Mobility Management Entity, MME), access mobility management function (Access and Mobility Management Function, AMF), session management function (Session Management Function, SMF), user plane function (User Plane Function, UPF), policy control function (Policy Control Function, PCF), policy and charging rules function unit (Policy and Charging Rules Function, PCRF), edge application service discovery function (Edge Application Server Discovery ...
  • MME mobility management entity
  • AMF Access and Mobility Management Function
  • SMF Session Management Function
  • SMF Session Management Function
  • UPF User Plane Function
  • Policy Control Function Policy Control Function
  • PCRF Policy and Charging Rules Function
  • edge application service discovery function Edge Application Server Discovery ...
  • UPF User Plane Function
  • UPF user plane function
  • UPF user plane function
  • UPF user plane function
  • UPF user plane function
  • UPF user plane function
  • UPF user plane function
  • UPF user plane function
  • UPF user plane function
  • UPF user plane function
  • UPF user plane function
  • UPF user plane function
  • UPF user plane function
  • UPF user plane function
  • UPF user plane function
  • UPF user plane function
  • UPF User Plane Function
  • UPF user plane function (User Plane Function, UPF)
  • user plane function User Plane Function
  • UPF user plane function (User Plane Function, UPF)
  • user ion, EASDF Unified Data Management
  • UDM Unified Data Repository
  • HSS Home Subscriber Server
  • CNC Centralized network configuration
  • CNC Centralized network configuration
  • NRF Network Repository Function
  • NEF Network Exposure Function
  • L-NEF Local NEF
  • BEF Binding Support Function
  • AF Application Function
  • the cell-free massive MIMO system can be considered as a deconstruction of the traditional massive MIMO system.
  • the antennas of the traditional massive MIMO system are concentrated in one site (base station), and the user equipment (UE) is distributed around the base station in the form of cells.
  • each base station deploys a large number of antennas. Therefore, a higher array gain and spatial resolution are provided.
  • Multiple UEs can be served simultaneously on the same time and frequency resources, providing high throughput, high reliability and high energy efficiency.
  • the cell-free massive MIMO system breaks the concept of cells, and a large number of antennas are distributed over a wide area, and UEs are also distributed over this wide area. These antennas are called transmit and receive points TRP or access points (AP).
  • each UE can communicate with each AP.
  • the fronthaul network and the central processing unit CPU
  • a large number of geographically dispersed TRPs can serve a smaller number of UEs together.
  • the CPU uses channel statistics for joint detection.
  • Cell Free Massive MIMO networks are expected to be applied to the next generation of indoor and hotspot coverage scenarios, such as smart factories, train stations, shopping malls, stadiums, subways, hospitals, community centers or university campuses.
  • the UE in order to achieve downlink synchronization, the UE needs to obtain the frequency of the access carrier by searching the Synchronization Signals Physical Broadcast Channel Block (SS/PBCH Block or SSB). Since the spectrum range of NR is very wide, in order to reduce the complexity of the search, the UE performs SSB search according to a certain frequency interval specified by the protocol. This frequency interval is called the Synchronization Raster.
  • SS/PBCH Block or SSB Synchronization Signals Physical Broadcast Channel Block
  • the UE detects the reference signal received power (SS-RSRP) of the synchronization signal on the corresponding frequency point according to the synchronization grid, and selects the appropriate SSB according to the threshold value (rsrp-ThresholdSSB) configured by the network, that is, if there is an SSB whose signal quality SS-RSRP is higher than the threshold value, then the SSB that meets the conditions is selected; if there are multiple SSBs that meet the conditions, then one of the SSBs is selected (the selection scheme is determined by the terminal implementation); if no SSB meets the conditions, then one SSB is selected from the entire SSB set (the selection scheme is determined by the terminal implementation).
  • SS-RSRP reference signal received power
  • the UE determines the RO resource set and preamble resource set associated with the SSB based on the association between the SSB and the random access channel occasion (RO); the UE randomly selects an RO resource and a preamble resource in the resource set, sends message 1 (Msg1), and initiates the random access process.
  • RO random access channel occasion
  • SSB consists of the primary synchronization signal (PSS), the secondary synchronization signal (SSS), the physical broadcast channel (PBCH), and the demodulation reference signal (DMRS) in four consecutive orthogonal frequency division multiplexing (OFDM) symbols, and is mainly used for downlink synchronization. Its structure is shown in Figure 2.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • DMRS demodulation reference signal
  • OFDM orthogonal frequency division multiplexing
  • SSB includes: PSS, SSS, PBCH, physical broadcast channel demodulation reference signal PBCH-DMRS; the main functions of PSS and SSS are to achieve symbol-level synchronization and complete the determination of physical-layer cell identity (PCI).
  • PCI physical-layer cell identity
  • PBCH contains the master information block (master PBCH-DMRS is used as a PBCH demodulation reference signal and contains some SSB index (SSB-index) information (the upper three bits).
  • an embodiment of the present application provides a synchronization signal transmission method, including:
  • Step 401 The terminal receives a first-level synchronization signal sent by a network-side device and obtains a signal quality of the first-level synchronization signal;
  • Step 402 the terminal determines whether to detect a second-level synchronization signal according to the signal quality
  • the signal quality includes at least one of the following:
  • the deployment complexity of the network can be simplified, the interference between synchronization signals can be reduced, and the reliability of random access of the terminal can be enhanced.
  • the terminal determines whether to detect the second-level synchronization signal according to the signal quality, including:
  • the terminal detects the second-level synchronization signal when the signal quality of the first-level synchronization signal is less than a first threshold.
  • the terminal detects the second-level synchronization signal only when the signal quality of the first-level synchronization signal is less than the first threshold.
  • the second-level synchronization signal is not detected. In this way, the power consumption caused by the second synchronization signal detection can be further reduced without affecting the data transmission of the terminal.
  • the detecting the second-level synchronization signal includes:
  • the terminal acquires a resource position of a second-level synchronization signal according to the resource associated with the first-level synchronization signal, where the resource position of the second-level synchronization signal includes: a time domain position and/or a frequency domain position;
  • the terminal detects the second-level synchronization signal according to the resource location of the second-level synchronization signal.
  • the resources associated with the first-level synchronization signal may carry the master information block MIB and/or system information block (SIB) in the system message.
  • the resources associated with the first-level synchronization signal may also carry messages carried by other radio resource control (RRC) signaling (it should be noted that the quasi co-location (QCL) of the messages carried by other RRC signaling should be consistent with the first-level synchronization signal).
  • RRC radio resource control
  • the terminal acquires the resource location of the second-level synchronization signal according to the resource associated with the first-level synchronization signal, including:
  • the terminal obtains indication information on the resource associated with the first-level synchronization signal, and the indication information includes: indicating explicit information and/or implicit information of a resource location of the second-level synchronization signal;
  • the terminal determines, based on the indication information, a resource location of the second-level synchronization signal
  • the explicit information includes at least one of the following:
  • A11 a synchronization raster of the second-level synchronization signal
  • the specific position of the synchronization grid sync raster of the second-level synchronization signal can be obtained by the network side device according to the sync raster position of the first-level synchronization signal and preset rules and then notified to the terminal.
  • the explicit information is direct indication information of the resource location of the second-level synchronization signal.
  • the implicit information is indirect indication information of the resource location of the second-level synchronization signal, that is, the terminal needs to further obtain the resource location of the second synchronization signal based on the relevant information of the first-level synchronization signal.
  • the implicit information includes at least one of the following:
  • A21 a time domain offset and/or a frequency domain offset of the second-level synchronization signal relative to the first-level synchronization signal
  • the time domain offset and/or frequency domain offset of the second-level synchronization signal is indicated.
  • the terminal can obtain the time domain position and/or frequency domain position of the second-level synchronization signal based on the time domain and/or frequency domain position of the first-level synchronization signal and the corresponding offset; that is, the time domain position and/or frequency domain position of the second-level synchronization signal can be determined according to the time domain position and/or frequency domain position of the first-level synchronization signal, which can be achieved by introducing a fixed time domain offset and/or frequency domain offset between the two-level synchronization signals.
  • the time domain position of each second-level synchronization signal can be indicated by the time domain offset ⁇ t with the first-level synchronization signal.
  • the frequency domain position of each second-level synchronization signal can be indicated by the frequency domain offset ⁇ f with the first-level synchronization signal.
  • the time domain and frequency domain offsets can also be given at the same time, that is, the frequency domain position of each second-level synchronization signal is indicated by the frequency domain offset with the first-level synchronization signal, and the time domain position is indicated by the time domain offset with the first-level synchronization signal.
  • the time/frequency domain intervals between the second-level synchronization signals may be different from those between the first-level synchronization signals, wherein the second-level synchronization signals may be time-division or frequency-division.
  • A22 a mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal
  • mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal can be given by Table 1.
  • the terminal determines the resource location of the second-level synchronization signal based on the indication information, including:
  • the terminal determines the resource location of the second-level synchronization signal according to the indication information and the time domain location and/or frequency domain location of the first-level synchronization signal.
  • the terminal when the network side device only provides implicit information about the resource location of the second-level synchronization signal, the terminal also needs to determine the resource location of the second-level synchronization signal with the help of the time domain location and/or frequency domain location of the first-level synchronization signal.
  • the indication information further includes: configuration information
  • the configuration information includes at least one of the following:
  • time domain interval refers to the time domain interval between the second-level synchronization signals.
  • the frequency domain interval refers to the frequency domain interval between the second-level synchronization signals.
  • each second-level synchronization signal can be better determined through the indication of the configuration information, thereby ensuring the accuracy of second-level synchronization signal detection.
  • the first-level synchronization signal is jointly sent through a sending and receiving point TRP cluster, and the second-level synchronization signal is sent through at least one TRP in the TRP cluster.
  • the TRP in each TRP cluster can support data transmission in the coherent joint transmission (CJT) mode, which can increase the coverage of the synchronization signal; conversely, a lower synchronization signal transmission power is required under the same coverage; in this case, compared with the first-level synchronization signal, the second-level synchronization signal can use a narrower beam than the first-level synchronization signal; allocating the first-level synchronization signal resources according to the TRP cluster can achieve synchronization signal expansion in a dense TRP network without adding new cells, reducing the complexity of network deployment. And it can better support the coherent transmission of TRP and the establishment of terminal cooperation clusters.
  • the second-level synchronization signal can use a narrower beam width, and the terminal side can detect a higher RSRP and a more accurate beam direction, which is conducive to enhancing the reliability of transmission.
  • the second-level synchronization signal is multiplexed between different TRP clusters; it should be noted that this situation can be understood as: different first-level synchronization signals can be associated with the same second-level synchronization signal; this method can further reduce the search time of the second-level synchronization signal.
  • the first-level synchronization signal and the second-level synchronization signal satisfy at least one of the following:
  • the number of candidate positions of the synchronization grid of the first-level synchronization signal is less than the number of candidate positions of the synchronization grid of the second-level synchronization signal;
  • the second-level synchronization signal can use a synchronization raster different from that of the first-level synchronization signal.
  • This setting method enables the terminal to search for the first-level synchronization signal more quickly and reduce the search time of the synchronization signal.
  • the first-level synchronization signal may be deployed at a lower frequency
  • the second-level synchronization signal may be deployed at a higher frequency
  • this setting method can support layered cell-free networks.
  • the first-level synchronization signal is sent through the first-level network of the single frequency network (SFN) mode
  • the second-level synchronization signal is sent through the second-level network of the non-SFN mode; for example, the first-level synchronization signal is sent through the first-level network with a relatively low frequency
  • the second-level synchronization signal is sent through the second-level network with a relatively high frequency.
  • the first-level synchronization signal and the second-level synchronization signal use different synchronization signal resources
  • the total number of synchronization signals the number of first-level synchronization signals+the number of second-level synchronization signals.
  • the first level synchronization signal and the second level synchronization signal jointly indicate cell identification information
  • the cell ID can be jointly indicated by two-level synchronization signals, for example, PSS is indicated in the first-level synchronization signal and SSS is indicated in the second-level synchronization signal.
  • the terminal needs to detect the two-level synchronization signals before determining the Cell-ID.
  • the first level synchronization signal and the second level synchronization signal respectively indicate cell identification information
  • the Cell-ID may also be indicated in each level of synchronization signal, for example, PSS and SSS may be indicated in both the first level synchronization signal and the second level synchronization signal.
  • the terminal may determine the Cell-ID by detecting any level of synchronization signal.
  • the method further includes:
  • the terminal determines a preamble sequence corresponding to the second-level synchronization signal
  • the method of determining the preamble sequence corresponding to the second-level synchronization signal includes at least one of the following:
  • the number of cyclic shift bits used by the terminal when determining the preamble sequence corresponding to the second-level synchronization signal may be determined by protocol agreement, pre-configuration, or configuration of a network-side device.
  • the network can indicate the mapping relationship between the preamble of the second-level synchronization signal and the preamble of the associated first-level synchronization signal, that is, the terminal can determine which preamble to use for the second-level synchronization signal based on the mapping relationship; the specific relationship and rules can be configured by the network or protocol, for example, a mapping relationship is shown in Table 2.
  • the preamble code sequence of the second-level synchronization signal is randomly determined in the preamble code sequence set of the second-level synchronization signal.
  • the first resource associated with the first-level synchronization signal and the second resource associated with the second-level synchronization signal jointly carry a system message;
  • the first resource associated with the first-level synchronization signal carries a system message
  • the first resources include: time domain resources and/or frequency domain resources, such as MIB and/or SIB; the second resources include: time domain resources and/or frequency domain resources, such as MIB and/or SIB.
  • the system message can be carried jointly or separately through the two-level synchronization signal, so as to perform more flexible information configuration.
  • the terminal detects both synchronization signals and merges the system messages of the two synchronization signals before obtaining the complete system message and performing random access.
  • the terminal can obtain the complete system message required for access only through the first synchronization signal, that is, the terminal can perform random access through the first synchronization signal after detecting the first synchronization signal, or can perform random access after detecting the first and second synchronization signals in sequence.
  • all system messages of the first-level and second-level synchronization signals can be carried in the first-level synchronization signal, that is, the first-level synchronization signal is a conventional synchronization signal, and all system messages of the two-level synchronization signals can be included in the first-level synchronization signal and/or its corresponding resources;
  • the second-level synchronization signal includes at least one of PSS and SSS;
  • the second-level synchronization signal is used for downlink measurement of the terminal;
  • the second resource associated with the second-level synchronization signal includes the index of the second-level synchronization signal, as shown in Figure 8, the index of the synchronization signal can be carried on both sides or one side of the PSS and/or SSS.
  • the terminal can directly access after detecting the first-level synchronization signal, supporting some low-speed data transmission scenarios; it can also access after detecting the first-level synchronization signal and the second-level synchronization signal.
  • the second-level synchronization signal only contains partial information of PSS and/or SSS.
  • the resources required for the second-level synchronization signal are reduced from occupying 4 symbols to occupying only 2 symbols. Under the same synchronization signal resource conditions, more second-level synchronization signals can be supported, and the number of synchronization signals can be expanded.
  • the second-level synchronization signal is associated with the first-level synchronization signal, and the system message obtained by the terminal can be scattered in synchronization signals of different levels, or all included in the first-level synchronization signal. Therefore, the second-level synchronization signal may not contain the system message, occupy less OFDM symbol resources, and realize the expansion of the number of synchronization signals.
  • the method further includes:
  • the terminal selects, according to the signal quality of the first-level synchronization signal, a target first-level synchronization signal whose signal quality is greater than or equal to a second threshold;
  • the terminal accesses the physical random access channel (Physical Random Access Channel) associated with the target first-level synchronization signal Access Channel (PRACH) resources are used to send random access MSG A or MSG 1.
  • Physical Random Access Channel Physical Random Access Channel
  • PRACH target first-level synchronization signal Access Channel
  • the method further includes:
  • the terminal selects, according to the signal quality of the second-level synchronization signal, a target second-level synchronization signal whose signal quality is greater than or equal to a third threshold;
  • the terminal sends random access MSG A or MSG 1 through the PRACH resource associated with the target second-level synchronization signal.
  • the terminal can independently decide which level of synchronization signal to access, or, when the signal quality of the first-level synchronization signal is low, measure and perform random access based on the second-level synchronization signal to obtain a more accurate beam direction and a synchronization signal with stronger signal quality, thereby improving the reliability of random access. This reduces the random access and uplink and downlink signaling interaction processes with low success rates.
  • first threshold, second threshold and third threshold can be agreed upon by protocol, pre-configured or configured on the network side; the values of the first threshold, second threshold and third threshold can be the same or different.
  • At least one embodiment of the present application through the design of two-level synchronization signals, can support the expansion of synchronization signals in a CF network with dense TRP deployment, including the expansion of service range and the number of synchronization signals.
  • Benefits to the network side Compared with the synchronization signal design of the same level, it simplifies the deployment complexity of the network and can support denser TRP deployment by increasing the number of first-level synchronization signals without adding new cells.
  • Benefits to the terminal side Reduced interference between synchronization signals, on-demand measurement of the second-level synchronization signal, acquisition of higher-quality synchronization signals and more accurate beam directions, and enhanced success rate and reliability of random access and data transmission by the terminal.
  • more accurate beam measurement is completed during the access process, rather than entering the connected state and then measuring through CSI-RS, which is conducive to rapid high-speed data transmission, especially for users who only transmit a small amount of data after access.
  • an embodiment of the present application provides a synchronization signal transmission method, including:
  • Step 901 A network-side device sends a first-level synchronization signal and a second-level synchronization signal.
  • the method further includes:
  • the network side device sends indication information on the resources associated with the first level synchronization signal, where the indication information includes: explicit information and/or implicit information for indicating the resource location of the second level synchronization signal:
  • the explicit information includes at least one of the following:
  • the implicit information includes at least one of the following:
  • a mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal is a mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal.
  • the indication information further includes: configuration information;
  • the configuration information includes at least one of the following:
  • the frequency domain interval of the second-level synchronization signal is the frequency domain interval of the second-level synchronization signal.
  • the first-level synchronization signal and the second-level synchronization signal satisfy at least one of the following:
  • the number of candidate positions of the synchronization grid of the first-level synchronization signal is less than the number of candidate positions of the synchronization grid of the second-level synchronization signal;
  • the frequency points of the first-level synchronization signal and the second-level synchronization signal are different;
  • the first-level synchronization signal and the second-level synchronization signal use different synchronization signal resources
  • the first-level synchronization signal and the second-level synchronization signal jointly indicate cell identification information
  • the first-level synchronization signal and the second-level synchronization signal respectively indicate cell identification information.
  • the first-level synchronization signal is jointly sent through a sending and receiving point TRP cluster, and the second-level synchronization signal is sent through at least one TRP in the TRP cluster.
  • the second-level synchronization signal is multiplexed between different TRP clusters.
  • the first resource associated with the first-level synchronization signal and the second resource associated with the second-level synchronization signal jointly carry a system message;
  • the first resource associated with the first-level synchronization signal carries a system message
  • the first resources include: time domain resources and/or frequency domain resources
  • the second resources include: time domain resources and/or frequency domain resources.
  • the second resource associated with the second-level synchronization signal includes an index of the second-level synchronization signal
  • the second-level synchronization signal includes at least one of the following:
  • the method further includes:
  • the network side device receives MSG A or MSG 1 using a physical random access channel PRACH resource associated with the first level synchronization signal or the second level synchronization signal.
  • the method further includes:
  • the network side device sends MSG B or MSG 2 to the terminal.
  • the synchronization signal transmission method provided in the embodiment of the present application can be executed by a synchronization signal transmission device.
  • the synchronization signal transmission device provided in the embodiment of the present application is described by taking the synchronization signal transmission method executed by the synchronization signal transmission device as an example.
  • a synchronization signal transmission device 1000 As shown in FIG. 10 , a synchronization signal transmission device 1000 according to an embodiment of the present application is applied to a terminal, and includes:
  • the first receiving module 1001 receives a first-level synchronization signal sent by a network-side device, and obtains a signal quality of the first-level synchronization signal;
  • a first determination module 1002 configured to determine whether to detect a second-level synchronization signal according to the signal quality
  • the signal quality includes at least one of the following:
  • the first determining module 1002 is configured to:
  • the second-level synchronization signal is detected.
  • the first determining module 1002 includes:
  • An acquisition unit configured to acquire a resource position of a second-level synchronization signal according to the resource associated with the first-level synchronization signal, wherein the resource position of the second-level synchronization signal includes: a time domain position and/or a frequency domain position;
  • a detection unit is used to detect the second-level synchronization signal according to the resource position of the second-level synchronization signal.
  • the acquiring unit is used to:
  • Acquire indication information on a resource associated with the first-level synchronization signal comprising: explicit information and/or implicit information indicating a resource location of the second-level synchronization signal;
  • the explicit information includes at least one of the following:
  • the implicit information includes at least one of the following:
  • a mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal is a mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal.
  • the indication information further includes: configuration information;
  • the configuration information includes at least one of the following:
  • the frequency domain interval of the second-level synchronization signal is the frequency domain interval of the second-level synchronization signal.
  • the implementation manner in which the terminal determines the resource location of the second-level synchronization signal based on the indication information includes:
  • the resource location of the second-level synchronization signal is determined according to the indication information and the time domain location and/or frequency domain location of the first-level synchronization signal.
  • the first-level synchronization signal and the second-level synchronization signal satisfy at least one of the following:
  • the number of candidate positions of the synchronization grid of the first-level synchronization signal is less than the number of candidate positions of the synchronization grid of the second-level synchronization signal;
  • the frequency points of the first-level synchronization signal and the second-level synchronization signal are different;
  • the first-level synchronization signal and the second-level synchronization signal use different synchronization signal resources
  • the first-level synchronization signal and the second-level synchronization signal jointly indicate cell identification information
  • the first-level synchronization signal and the second-level synchronization signal respectively indicate cell identification information.
  • the first-level synchronization signal is jointly sent through a sending and receiving point TRP cluster, and the second-level synchronization signal is sent through at least one TRP in the TRP cluster.
  • the second-level synchronization signal is multiplexed between different TRP clusters.
  • the device further includes:
  • a second determination module used to determine a preamble sequence corresponding to the second-level synchronization signal
  • the method of determining the preamble sequence corresponding to the second-level synchronization signal includes at least one of the following:
  • the second-level synchronization signal preamble code sequence set is determined based on the network side device configuration.
  • the first resource associated with the first-level synchronization signal and the second resource associated with the second-level synchronization signal jointly carry a system message;
  • the first resource associated with the first-level synchronization signal carries a system message
  • the first resources include: time domain resources and/or frequency domain resources
  • the second resources include: time domain resources and/or frequency domain resources.
  • the second resource associated with the second-level synchronization signal includes an index of the second-level synchronization signal
  • the second-level synchronization signal includes at least one of the following:
  • the first determining module 1002 is configured to:
  • the second-level synchronization signal is not detected.
  • the device further includes:
  • a first selection module configured to select, according to the signal quality of the first-level synchronization signal, a target first-level synchronization signal whose signal quality is greater than or equal to a second threshold;
  • the second sending module is used to send random access MSG A or MSG 1 through the physical random access channel PRACH resource associated with the target first-level synchronization signal.
  • the device further includes:
  • a second selection module configured to select, according to the signal quality of the second-level synchronization signal, a signal quality greater than or equal to A target second-level synchronization signal equal to a third threshold;
  • the third sending module is used to send random access MSG A or MSG 1 through the PRACH resource associated with the target second-level synchronization signal.
  • the device embodiment corresponds to the above method, and all implementation methods in the above method embodiment are applicable to the device embodiment and can achieve the same technical effect.
  • the synchronization signal transmission device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminal 11 listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the synchronization signal transmission device provided in the embodiment of the present application can implement each process implemented by the method embodiment of Figure 4 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application further provides a terminal, including a processor and a communication interface, wherein the communication interface is used to receive a first-level synchronization signal sent by a network side device and obtain a signal quality of the first-level synchronization signal;
  • the processor is used to determine whether to detect a second-level synchronization signal according to the signal quality
  • the signal quality includes at least one of the following:
  • the processor is configured to:
  • the second-level synchronization signal is detected.
  • the processor is configured to:
  • the second-level synchronization signal is detected according to the resource position of the second-level synchronization signal.
  • the processor is configured to:
  • Acquire indication information on a resource associated with the first-level synchronization signal comprising: explicit information and/or implicit information indicating a resource location of the second-level synchronization signal;
  • the explicit information includes at least one of the following:
  • the implicit information includes at least one of the following:
  • a mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal is a mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal.
  • the indication information further includes: configuration information;
  • the configuration information includes at least one of the following:
  • the frequency domain interval of the second-level synchronization signal is the frequency domain interval of the second-level synchronization signal.
  • the processor is configured to:
  • the resource location of the second-level synchronization signal is determined according to the indication information and the time domain location and/or frequency domain location of the first-level synchronization signal.
  • the first-level synchronization signal and the second-level synchronization signal satisfy at least one of the following:
  • the number of candidate positions of the synchronization grid of the first-level synchronization signal is less than the number of candidate positions of the synchronization grid of the second-level synchronization signal;
  • the first-level synchronization signal and the second-level synchronization signal have different frequencies
  • the first-level synchronization signal and the second-level synchronization signal use different synchronization signal resources
  • the first-level synchronization signal and the second-level synchronization signal jointly indicate cell identification information
  • the first-level synchronization signal and the second-level synchronization signal respectively indicate cell identification information.
  • the first-level synchronization signal is jointly sent through a sending and receiving point TRP cluster, and the second-level synchronization signal is sent through at least one TRP in the TRP cluster.
  • the second-level synchronization signal is multiplexed between different TRP clusters.
  • the processor is further configured to:
  • the method of determining the preamble sequence corresponding to the second-level synchronization signal includes at least one of the following:
  • the second-level synchronization signal preamble code sequence set is determined based on the network side device configuration.
  • the first resource associated with the first-level synchronization signal and the second resource associated with the second-level synchronization signal jointly carry a system message;
  • the first resource associated with the first-level synchronization signal carries a system message
  • the first resources include: time domain resources and/or frequency domain resources
  • the second resources include: time domain resources and/or frequency domain resources.
  • the second resource associated with the second-level synchronization signal includes an index of the second-level synchronization signal
  • the second-level synchronization signal includes at least one of the following:
  • the processor is further configured to:
  • the second-level synchronization signal is not detected.
  • the processor is further configured to:
  • the signal quality of the first-level synchronization signal selecting a target first-level synchronization signal whose signal quality is greater than or equal to a second threshold;
  • the communication interface is also used to send random access MSG A or MSG 1 through the physical random access channel PRACH resources associated with the target first-level synchronization signal.
  • the processor is further configured to:
  • the signal quality of the second-level synchronization signal selecting a target second-level synchronization signal whose signal quality is greater than or equal to a third threshold
  • the communication interface is also used to send random access MSG A or MSG 1 through the PRACH resources associated with the target second-level synchronization signal.
  • the terminal embodiment corresponds to the above-mentioned terminal side method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to the terminal embodiment and can achieve the same technical effect.
  • Figure 11 is a schematic diagram of the hardware structure of a terminal implementing the embodiment of the present application.
  • the terminal 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109 and at least some of the components of a processor 1110.
  • the terminal 1100 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1110 through a power management system, so as to implement functions such as charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG11 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1104 may include a graphics processing unit (GPU) 11041 and a microphone 11042, and the graphics processor 11041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 1106 may include a display panel 11061, and the display panel 11061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1107 includes a touch panel 11071 and at least one of other input devices 11072.
  • the touch panel 11071 is also called a touch screen.
  • the touch panel 11071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 11072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the radio frequency unit 1101 can transmit the data to the processor 1110 for processing; in addition, the radio frequency unit 1101 can send uplink data to the network side device.
  • the radio frequency unit 1101 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1109 can be used to store software programs or instructions and various data.
  • the memory 1109 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1109 may include a volatile memory or a non-volatile memory, or the memory 1109 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1109 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1110.
  • radio frequency unit 1101 is used for:
  • the processor 1110 is configured to determine whether to detect a second-level synchronization signal according to the signal quality
  • the signal quality includes at least one of the following:
  • the processor 1110 is configured to:
  • the second-level synchronization signal is detected.
  • the processor 1110 is configured to:
  • the second-level synchronization signal is detected according to the resource position of the second-level synchronization signal.
  • the processor 1110 is configured to:
  • Acquire indication information on a resource associated with the first-level synchronization signal comprising: explicit information and/or implicit information indicating a resource location of the second-level synchronization signal;
  • the explicit information includes at least one of the following:
  • the implicit information includes at least one of the following:
  • a mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal is a mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal.
  • the indication information further includes: configuration information;
  • the configuration information includes at least one of the following:
  • the frequency domain interval of the second-level synchronization signal is the frequency domain interval of the second-level synchronization signal.
  • the processor is configured to:
  • the resource location of the second-level synchronization signal is determined according to the indication information and the time domain location and/or frequency domain location of the first-level synchronization signal.
  • the first-level synchronization signal and the second-level synchronization signal satisfy at least one of the following:
  • the number of candidate positions of the synchronization grid of the first-level synchronization signal is less than the number of candidate positions of the synchronization grid of the second-level synchronization signal;
  • the frequencies of the first-level synchronization signal and the second-level synchronization signal are different;
  • the first-level synchronization signal and the second-level synchronization signal use different synchronization signal resources
  • the first-level synchronization signal and the second-level synchronization signal jointly indicate cell identification information
  • the first-level synchronization signal and the second-level synchronization signal respectively indicate cell identification information.
  • the first-level synchronization signal is jointly sent through a sending and receiving point TRP cluster, and the second-level synchronization signal is sent through at least one TRP in the TRP cluster.
  • the second-level synchronization signal is multiplexed between different TRP clusters.
  • processor 1110 is further configured to:
  • the method of determining the preamble sequence corresponding to the second-level synchronization signal includes at least one of the following:
  • the second-level synchronization signal preamble code sequence set is determined based on the network side device configuration.
  • the first resource associated with the first-level synchronization signal and the second resource associated with the second-level synchronization signal jointly carry a system message;
  • the first resource associated with the first-level synchronization signal carries a system message
  • the first resource includes: time domain resources and/or frequency domain resources
  • the second resource includes: time domain resources and/or frequency domain resources. Domain resources.
  • the second resource associated with the second-level synchronization signal includes an index of the second-level synchronization signal
  • the second-level synchronization signal includes at least one of the following:
  • processor 1110 is further configured to:
  • the second-level synchronization signal is not detected.
  • processor 1110 is further configured to:
  • the signal quality of the first-level synchronization signal selecting a target first-level synchronization signal whose signal quality is greater than or equal to a second threshold;
  • the radio frequency unit 1101 is also used to send random access MSG A or MSG 1 through the physical random access channel PRACH resources associated with the target first-level synchronization signal.
  • processor 1110 is further configured to:
  • the signal quality of the second-level synchronization signal selecting a target second-level synchronization signal whose signal quality is greater than or equal to a third threshold
  • the radio frequency unit 1101 is also used to send random access MSG A or MSG 1 through the PRACH resources associated with the target second-level synchronization signal.
  • an embodiment of the present application also provides a terminal, including a processor, a memory, and a program or instruction stored in the memory and executable on the processor.
  • a terminal including a processor, a memory, and a program or instruction stored in the memory and executable on the processor.
  • the program or instruction is executed by the processor, the various processes of the above-mentioned synchronization signal transmission method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a computer-readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned synchronization signal transmission method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the computer-readable storage medium is, for example, a read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • the embodiment of the present application further provides a synchronization signal transmission device 1200, which is applied to a network side device, including:
  • the first sending module 1201 is configured to send a first-level synchronization signal and a second-level synchronization signal.
  • the device further includes:
  • a fourth sending module configured to send indication information on the resources associated with the first-level synchronization signal, wherein the indication information includes: explicit information and/or implicit information for indicating the resource location of the second-level synchronization signal:
  • the explicit information includes at least one of the following:
  • the implicit information includes at least one of the following:
  • a mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal is a mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal.
  • the indication information further includes: configuration information;
  • the configuration information includes at least one of the following:
  • the frequency domain interval of the second-level synchronization signal is the frequency domain interval of the second-level synchronization signal.
  • the first-level synchronization signal and the second-level synchronization signal satisfy at least one of the following:
  • the number of candidate positions of the synchronization grid of the first-level synchronization signal is less than the number of candidate positions of the synchronization grid of the second-level synchronization signal;
  • the frequency points of the first-level synchronization signal and the second-level synchronization signal are different;
  • the first-level synchronization signal and the second-level synchronization signal use different synchronization signal resources
  • the first-level synchronization signal and the second-level synchronization signal jointly indicate cell identification information
  • the first-level synchronization signal and the second-level synchronization signal respectively indicate cell identification information.
  • the first-level synchronization signal is jointly sent through a sending and receiving point TRP cluster, and the second-level synchronization signal is sent through at least one TRP in the TRP cluster.
  • the second-level synchronization signal is multiplexed between different TRP clusters.
  • the first resource associated with the first-level synchronization signal and the second resource associated with the second-level synchronization signal jointly carry a system message;
  • the first resource associated with the first-level synchronization signal carries a system message
  • the first resources include: time domain resources and/or frequency domain resources
  • the second resources include: time domain resources and/or frequency domain resources.
  • the second resource associated with the second-level synchronization signal includes an index of the second-level synchronization signal
  • the second-level synchronization signal includes at least one of the following:
  • the device further includes:
  • the second receiving module is used to receive MSG A or MSG 1 using the physical random access channel PRACH resources associated with the first level synchronization signal or the second level synchronization signal.
  • the device further comprises:
  • the fifth sending module is used to send MSG B or MSG 2 to the terminal.
  • the device embodiment is a device corresponding to the above-mentioned method. All implementation methods in the above-mentioned method embodiment are applicable to the device embodiment and can achieve the same technical effect, which will not be repeated here.
  • An embodiment of the present application further provides a network side device, including a processor and a communication interface, wherein the communication interface is used to send a first-level synchronization signal and a second-level synchronization signal.
  • the communication interface is further used for:
  • the indication information comprising: explicit information and/or implicit information for indicating the resource location of the second-level synchronization signal:
  • the explicit information includes at least one of the following:
  • the implicit information includes at least one of the following:
  • a mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal is a mapping relationship between the first-level synchronization signal and the index set of the second-level synchronization signal.
  • the indication information further includes: configuration information;
  • the configuration information includes at least one of the following:
  • the frequency domain interval of the second-level synchronization signal is the frequency domain interval of the second-level synchronization signal.
  • the first-level synchronization signal and the second-level synchronization signal satisfy at least one of the following:
  • the number of candidate positions of the synchronization grid of the first-level synchronization signal is less than the number of candidate positions of the synchronization grid of the second-level synchronization signal;
  • the frequency points of the first-level synchronization signal and the second-level synchronization signal are different;
  • the first-level synchronization signal and the second-level synchronization signal use different synchronization signal resources
  • the first-level synchronization signal and the second-level synchronization signal jointly indicate cell identification information
  • the first-level synchronization signal and the second-level synchronization signal respectively indicate cell identification information.
  • the first-level synchronization signal is jointly sent through a sending and receiving point TRP cluster, and the second-level synchronization signal is sent through at least one TRP in the TRP cluster.
  • the second-level synchronization signal is multiplexed between different TRP clusters.
  • the first resource associated with the first-level synchronization signal and the second resource associated with the second-level synchronization signal jointly carry a system message;
  • the first resource associated with the first-level synchronization signal carries a system message
  • the first resources include: time domain resources and/or frequency domain resources
  • the second resources include: time domain resources and/or frequency domain resources.
  • the first resource associated with the first-level synchronization signal carries the system message
  • the first The second resource associated with the secondary synchronization signal includes an index of the second-level synchronization signal
  • the second-level synchronization signal includes at least one of the following:
  • the communication interface is further used for:
  • MSG A or MSG 1 is received using a physical random access channel PRACH resource associated with the first level synchronization signal or the second level synchronization signal.
  • the communication interface is further configured to:
  • an embodiment of the present application also provides a network side device, including a processor, a memory, and a program or instruction stored in the memory and executable on the processor.
  • a network side device including a processor, a memory, and a program or instruction stored in the memory and executable on the processor.
  • the program or instruction is executed by the processor, the various processes of the above-mentioned synchronization signal transmission method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1300 includes: an antenna 1301, a radio frequency device 1302, a baseband device 1303, a processor 1304 and a memory 1305.
  • the antenna 1301 is connected to the radio frequency device 1302.
  • the radio frequency device 1302 receives information through the antenna 1301 and sends the received information to the baseband device 1303 for processing.
  • the baseband device 1303 processes the information to be sent and sends it to the radio frequency device 1302.
  • the radio frequency device 1302 processes the received information and sends it out through the antenna 1301.
  • the method executed by the access network device in the above embodiment may be implemented in the baseband device 1303, which includes a baseband processor.
  • the baseband device 1303 may include, for example, at least one baseband board, on which multiple chips are arranged, as shown in Figure 13, one of which is, for example, a baseband processor, which is connected to the memory 1305 through a bus interface to call the program in the memory 1305 and execute the network device operations shown in the above method embodiment.
  • the access network device may also include a network interface 1306, which is, for example, a common public radio interface (CPRI).
  • a network interface 1306, which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1300 of the embodiment of the present application also includes: instructions or programs stored in the memory 1305 and executable on the processor 1304.
  • the processor 1304 calls the instructions or programs in the memory 1305 to execute the method executed by each module shown in Figure 12 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned synchronization signal transmission method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the access network device described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • an embodiment of the present application further provides a communication device 1400, including a processor 1401 and a memory 1402, wherein the memory 1402 stores a program or instruction that can be run on the processor 1401.
  • the communication device 1400 is a terminal
  • the program or instruction is executed by the processor 1401 to implement the various steps of the above-mentioned synchronization signal transmission method embodiment, and can achieve the same technical effect.
  • the communication device 1400 is a network side device
  • the program or instruction is executed by the processor 1401 to implement the various steps of the above-mentioned synchronization signal transmission method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned synchronization signal transmission method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • An embodiment of the present application further provides a computer program/program product, which is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the various processes of the above-mentioned synchronization signal transmission method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a synchronization signal transmission system, including: a terminal and a network side device, wherein the terminal can be used to execute the steps of the above-mentioned synchronization signal transmission method, and the network side device can be used to execute the steps of the above-mentioned synchronization signal transmission method.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, magnetic disk, optical disk), and includes a number of instructions for a terminal (which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, magnetic disk, optical disk
  • a terminal which can be a mobile phone, computer, server, air conditioner, or network equipment, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种同步信号传输方法、装置、终端及网络侧设备,属于通信技术领域,本申请实施例的同步信号传输方法,包括:终端接收网络侧设备发送的第一级同步信号,获取所述第一级同步信号的信号质量;所述终端根据所述信号质量确定是否检测第二级同步信号;其中,所述信号质量包括以下至少一项:参考信号接收功率RSRP;参考信号接收质量RSRQ;信干噪比SINR。

Description

同步信号传输方法、装置、终端及网络侧设备
相关申请的交叉引用
本申请主张在2022年12月06日在中国提交的中国专利申请No.202211559195.4的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种同步信号传输方法、装置、终端及网络侧设备。
背景技术
在无小区(Cell Free)网络中发送接收点(Transmission and Reception Point,TRP)的密度可以非常大,但同步信号资源有限,因此随着TRP数量的增加,小区规模会进一步缩小,以实现在不同小区中复用相同的同步信号资源,然而这会带来以下问题:
小区进一步密集化会增大邻区同步信号的相互干扰;随着TRP数量的增加需要不断部署新的小区会增加网络部署的复杂度。
发明内容
本申请实施例提供一种同步信号传输方法、装置、终端及网络侧设备,以解决不同小区复用相同的同步信号资源造成邻区同步信号的相互干扰以及网络部署复杂度的问题。
第一方面,提供了一种同步信号传输方法,该方法包括:
终端接收网络侧设备发送的第一级同步信号,获取所述第一级同步信号的信号质量;
所述终端根据所述信号质量确定是否检测第二级同步信号;
其中,所述信号质量包括以下至少一项:
参考信号接收功率(Reference Signal Received Power,RSRP);
参考信号接收质量(Reference Signal Received Quality,RSRQ);
信干噪比(signal-to-noise and interference ratio,SINR)。
第二方面,提供了一种同步信号传输装置,应用于终端,包括:
第一接收模块,用于接收网络侧设备发送的第一级同步信号,获取所述第一级同步信号的信号质量;
第一确定模块,用于根据所述信号质量确定是否检测第二级同步信号;
其中,所述信号质量包括以下至少一项:
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信干噪比SINR。
第三方面,提供了一种同步信号传输方法,该方法包括:
网络侧设备发送第一级同步信号和第二级同步信号。
第四方面,提供了一种同步信号传输装置,应用于网络侧设备,包括:
第一发送模块,用于发送第一级同步信号和第二级同步信号。
第五方面,提供了一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于接收网络侧设备发送的第一级同步信号,获取所述第一级同步信号的信号质量;所述处理器用于根据所述信号质量确定是否检测第二级同步信号;
其中,所述信号质量包括以下至少一项:
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信干噪比SINR。
第七方面,提供了一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第八方面,提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于发送第一级同步信号和第二级同步信号。
第九方面,提供了一种同步信号传输系统,包括:终端、网络侧设备,所述终端可用于执行如第一方面所述的方法的步骤,所述网络侧设备可用于执行如第三方面所述的方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面或第三方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第三方面所述的方法的步骤。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或第三方面所述的方法的步骤。
在本申请实施例中,通过基于第一级同步信号的信号质量来确定是否检测第二级同步信号,通过引入两级同步信号,能够降低不同小区复用相同的同步信号资源造成邻区同步信号的相互干扰,还能降低网络部署复杂度。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是NR SSB结构示意图;
图3是PBCH构成示意图;
图4是本申请实施例的同步信号传输方法的流程示意图之一;
图5是两级同步信号的时域关系示意图;
图6是第二级同步信号的频分示意图;
图7是第二级同步信号的时分示意图;
图8是第二级同步信号的结构示意图;
图9是本申请实施例的同步信号传输方法的流程示意图之二;
图10是本申请实施例的同步信号传输装置的模块示意图之一;
图11是本申请实施例的终端的结构示意图;
图12是本申请实施例的同步信号传输装置的模块示意图之二;
图13是本申请实施例的网络侧设备的结构示意图;
图14是本申请实施例的通信设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统, 并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机、感知业务终端、各种传感器、智能相机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备可以包括基站、无线局域网(Wireless Local Area Network,WLAN)接入点、无线保真(Wireless Fidelity,WiFi)节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmission and Reception Point,TRP)、感知信号发送设备、感知信息接收设备或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。
下面先对与本申请实施例相关的技术进行说明如下。
一、无小区大规模(Cell Free Massive)多输入多输出(multiple-in multiple-out,MIMO)系统
无小区大规模MIMO系统可以认为是对传统大规模MIMO系统的解构。传统大规模MIMO系统的天线集中的分布在一个站点(基站),用户设备(User Equipment,UE)以小区的形式分布在基站周围。在大规模MIMO系统中,每一个基站都部署了较大数目的天线。因此,提供了较高的阵列增益以及空间分辨率。在相同的时间频率资源上可以同时服务于多个UE,提供了高吞吐量、高可靠性和高能效。无小区大规模MIMO系统破除了小区的概念,大量天线分散分布在一个广域上,UE同样分散分布在这个广域上。这些天线被称为发送接收点TRP或接入点(Access Point,AP),理论上每个UE可以与每一个AP通信,借助前传网络和中央处理单元(Central Processing Unit,CPU),地理上分散的大量TRP可以共同为较少数量的UE服务,CPU利用信道统计信息来进行联合检测。Cell Free Massive MIMO网络有望应用于下一代室内和热点覆盖场景,如智能工厂,火车站,购物中心,体育场,地铁,医院,社区中心或大学校园等。
二、第五代(5th Generation,5G)NR技术中小区搜索与同步流程:
现有5G NR技术中,UE为了实现下行同步,需要通过搜索同步信号/物理广播信道块(Synchronization Signals Physical Broadcast Channel Block,SS/PBCH Block或SSB)获得接入载波的频点。由于NR的频谱范围很广,为降低搜索的复杂度,UE按照协议规定的一定频率间隔进行SSB搜索,这个频率间隔称为同步栅格(Synchronization Raster)。UE按照同步栅格检测相应频点上的同步信号的参考信号接收功率(Synchronization Signals Reference Signal Received Power,SS-RSRP),根据网络配置的门限值(rsrp-ThresholdSSB)来选择合适的SSB,即,如果存在一个SSB信号质量SS-RSRP高于门限值,则选择满足条件的SSB,如果存在多个SSB满足条件,则选择其中一个SSB(选择方案由终端实现决定),如果没有SSB满足条件,则从SSB全集中选择一个SSB(选择方案由终端实现决定)。UE根据SSB与随机接入信道时机(Random Access Channel occasion,RO)的关联关系,确定SSB关联的RO资源集合和前导码(preamble)资源集合;UE在资源集合中随机选择一个RO资源和一个preamble资源,发送消息一(Msg1),发起随机接入过程。
三、5G NR技术中SSB的结构:
初始搜索的过程由SSB完成。SSB由主同步信号(Primary Synchronization Signal,PSS),辅同步信号(Secondary Synchronization Signal,SSS),物理广播信道(Physical broadcast channel,PBCH),解调参考信号(Demodulation Reference Signal,DMRS)在四个连续的正交频分复用(Orthogonal frequency division multiplex,OFDM)符号内组成,主要用于下行同步。其结构如图2所示。
SSB包括:PSS,SSS,PBCH,物理广播信道解调参考信号PBCH-DMRS;其中,PSS以及SSS的主要功能是实现符号(symbol)级别的同步,以及完成物理小区标识(Physical-layer cell identity,PCI)的确定。如图3所示,PBCH包含小区的主信息块(master  information block,MIB),以及部分其余信息。PBCH-DMRS作为PBCH解调参考信号,以及包含了部分SSB索引(SSB-index)信息(高三位bits)。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的同步信号传输方法、装置及设备进行详细地说明。
如图4所示,本申请实施例提供一种同步信号传输方法,包括:
步骤401,终端接收网络侧设备发送的第一级同步信号,获取所述第一级同步信号的信号质量;
步骤402,所述终端根据所述信号质量确定是否检测第二级同步信号;
其中,所述信号质量包括以下至少一项:
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信干噪比SINR。
需要说明的是,通过进行两级同步信号的设置,并根据第一级同步信号的信号质量来确定是否检测第二级同步信号,能够简化网络的部署复杂度,并减小同步信号间的干扰,增强终端随机接入的可靠性。
可选地,本申请的另一实施例中,所述终端根据所述信号质量确定是否检测第二级同步信号,包括:
所述终端在所述第一级同步信号的信号质量小于第一门限的情况下,检测所述第二级同步信号。
需要说明的是,终端只有在第一级同步信号的信号质量小于第一门限的情况下才进行第二级同步信号的检测,在所述第一级同步信号的信号质量大于或等于第一门限的情况下,不检测所述第二级同步信号,以此能够在不影响终端的数据传输的情况下,还能进一步降低第二同步信号检测所带来的功耗。
可选地,本申请的另一实施例中,所述检测所述第二级同步信号,包括:
所述终端根据所述第一级同步信号关联的资源,获取第二级同步信号的资源位置,所述第二级同步信号的资源位置包括:时域位置和/或频域位置;
所述终端根据所述第二级同步信号的资源位置,检测所述第二级同步信号。
需要说明的是,所述第一级同步信号关联的资源上承载的可以为系统消息中的主信息块MIB和/或系统信息块(System Information Block,SIB),可选地,该第一级同步信号关联的资源上承载的还可以为其他无线资源控制(Radio Resource Control,RRC)信令承载的消息(需要说明的是,该其他RRC信令承载的消息的准共址(Quasi co-location,QCL)应当与第一级同步信号一致)。
可选地,本申请的另一实施例中,所述终端根据所述第一级同步信号关联的资源,获取第二级同步信号的资源位置,包括:
所述终端在所述第一级同步信号关联的资源上获取指示信息,所述指示信息包括:指 示所述第二级同步信号的资源位置的显式信息和/或隐式信息;
所述终端基于所述指示信息,确定所述第二级同步信号的资源位置;
具体地,所述显式信息包括以下至少一项:
A11、所述第二级同步信号的同步栅格(Sync raster);
需要说明的是,第二级同步信号的同步栅格sync raster的具体位置可以由网络侧设备根据第一级同步信号的sync raster位置和预设规则得到然后通知终端。
A12、第二级同步信号的频域位置;
A13、第二级同步信号的时域位置;
可以理解的是,该显式信息为第二级同步信号的资源位置的直接指示信息。该隐式信息为第二级同步信号的资源位置的间接指示信息,即终端需要基于第一级同步信号的相关信息进一步得到第二同步信号的资源位置。
具体地,所述隐式信息包括以下至少一项:
A21、所述第二级同步信号相对于所述第一级同步信号的时域偏移量和/或频域偏移量;
需要说明的是,此种情况下,指示的是第二级同步信号的时域偏移量和/或频域偏移量,终端基于第一级同步信号的时域和/或频域位置以及相对应的偏移量,便能够得到第二级同步信号的时域位置和/或频域位置;也就是说,第二级同步信号的时域位置和/或频域位置可以根据第一级同步信号的时域位置和/或频域位置确定,可以通过引入两级同步信号间的固定时域偏移量和/或频域偏移量来实现。如图5所示,各个第二级同步信号时域位置可以通过与第一级同步信号的时域偏移量Δt指示。如图6和7所示,各个第二级同步信号频域位置可以通过与第一级同步信号的频域偏移量Δf指示。可选地,也可以同时给出时域和频域偏移量,即各个第二级同步信号频域位置通过与第一级同步信号的频域偏移量指示,时域位置通过与第一级同步信号的时域偏移量指示。还需要说明的是,第二级同步信号之间的时/频域间隔可以与第一级同步信号不同。其中第二级同步信号可以是时分或频分。
A22、所述第一级同步信号与所述第二级同步信号的索引集合的映射关系;
例如,第一级同步信号与所述第二级同步信号的索引集合的映射关系可以通过表1来给出。
表1第一级同步信号与第二级同步信号的映射关系表

进一步地,还需要说明的是,本申请的另一实施例中,在所述指示信息包括隐式信息的情况下,所述终端基于所述指示信息,确定第二级同步信号的资源位置,包括:
所述终端根据所述指示信息以及所述第一级同步信号的时域位置和/或频域位置,确定所述第二级同步信号的资源位置。
也就是说,在网络侧设备仅给出了第二级同步信号的资源位置的隐式信息的情况下,终端还需要借助第一级同步信号的时域位置和/或频域位置共同进行第二级同步信号的资源位置的确定。
可选地,本申请的另一实施例中,所述指示信息,还包括:配置信息;
其中,所述配置信息包括以下至少一项:
A31、所述第二级同步信号的数量;
A32、所述第二级同步信号的时域间隔;
需要说明的是,该时域间隔指的是第二级同步信号之间的时域间隔。
A33、所述第二级同步信号的频域间隔;
需要说明的是,该频域间隔指的是第二级同步信号之间的频域间隔。
需要说明的是,通过配置信息的指示可以更好的确定每一个第二级同步信号的资源位置的确定,从而保证第二级同步信号检测准确性。
可选地,本申请的另一实施例中,所述第一级同步信号通过发送接收点TRP簇联合发送,所述第二级同步信号通过所述TRP簇中的至少一个TRP发送。
需要说明的是,其中每个TRP簇内的TRP可以支持采用相干联合传输(Coherent Joint Transmission,CJT)模式进行数据传输,可以增大同步信号的覆盖范围;反之,相同的覆盖范围下需要更低的同步信号发射功率;此种情况下,相比于第一级同步信号来说,第二级同步信号可以采用比第一级同步信号更窄的波束;根据TRP簇来分配第一级同步信号资源,可以实现密集TRP网络中的同步信号扩展,而不需要增加新的小区,降低了网络部署的复杂度。并且可以更好地支持TRP的相干传输和终端协作簇的建立。第二级同步信号可以采用更窄的波束宽度,终端侧可以检测到更高的RSRP和更精确的波束方向,有利于增强传输的可靠性。
可选地,本申请的另一实施例中,所述第二级同步信号在不同的TRP簇之间复用;需要说明的是,此种情况可以理解为:不同的第一级同步信号可以关联到相同的第二级同步信号;此种方式能够进一步减少第二级同步信号的搜索时间。
可选地,本申请的另一实施例中,所述第一级同步信号和所述第二级同步信号满足以下至少一项:
B11、所述第一级同步信号的同步栅格的候选位置的个数小于所述第二级同步信号的同步栅格的候选位置的个数;
也就是说,第二级同步信号可以采用与第一级同步信号不同的同步栅格Sync raster。此种设置方式使得终端可以更快地搜到第一级同步信号,减少同步信号的搜索时间。
B12、所述第一级同步信号和所述第二级同步信号的频点不相同;
例如可以通过较低的频率部署第一级同步信号,通过较高的频率部署第二级同步信号。
需要说明的是,此种设置方式可以支持分层的无小区网络。例如第一级同步信号通过单频网(Single Frequency Network,SFN)方式组网的第一层网络发送,第二级同步信号通过非SFN方式组网的第二级网络发送;例如第一级同步信号通过相对低频的第一层网络发送,第二级同步信号通过相对高频的第二级网络发送。
B13、所述第一级同步信号和所述第二级同步信号使用不同的同步信号资源;
例如,同步信号总数=第一级同步信号的数量+第二级同步信号的数量。
B14、所述第一级同步信号和所述第二级同步信号联合指示小区标识信息;
也就是说,小区ID(Cell-ID)可以通过两级同步信号联合指示,例如在第一级同步信号中指示PSS,第二级同步信号中指示SSS,这种情况下终端需要检测完两级同步信号后才能确定Cell-ID。
B15、所述第一级同步信号和所述第二级同步信号分别指示小区标识信息;
也就是说,Cell-ID也可以在每一级同步信号中都给出指示,例如,在第一级同步信号和第二级同步信号中都指示PSS和SSS,这种情况下终端可以通过检测任意一级同步信号确定Cell-ID。
可选地,本申请的另一实施例中,所述方法,还包括:
所述终端确定所述第二级同步信号对应的前导码序列;
其中,所述确定所述第二级同步信号对应的前导码序列的方式包括以下至少一项:
C11、通过所述第一级同步信号的前导码序列循环移位确定;
需要说明的是,终端在确定第二级同步信号对应的前导码序列时所采用的循环移位的位数可以是协议约定、预配置或网络侧设备配置的。
C12、基于与所述第一级同步信号的前导码的映射关系确定;
需要说明的是,网络可以指示第二级同步信号的前导码(preamble)与所关联的第一级同步信号的preamble的映射关系,即终端基于映射关系,终端就能基于映射关系确定第二级同步信号具体使用哪一个前导码;具体关系和规则可以由网络或协议配置,例如,一种映射关系如表2所示。
表2第一级同步信号的preamble与第二级同步信号的preamble的映射关系表

C13、基于网络侧设备配置的第二级同步信号前导码序列集合确定;
需要说明的是,此种情况下,第二级同步信号的前导码序列在第二级同步信号前导码序列集合中随机确定。
可选地,本申请的另一实施例中,所述第一级同步信号关联的第一资源和所述第二级同步信号关联的第二资源共同承载系统消息;或者
所述第一级同步信号关联的第一资源承载系统消息;
所述第一资源包括:时域资源和/或频域资源,例如MIB和/或SIB;所述第二资源包括:时域资源和/或频域资源,例如MIB和/或SIB。
也就是说,系统消息可以通过两级同步信号共同承载或分别承载,进行更灵活的信息配置。
具体地,共同承载时,例如可以在两级同步信号中各承载部分系统消息,终端将两级同步信号都检测完,合并两级同步信号的系统消息后才能获得完整的系统消息,进行随机接入。分别承载时,终端可以仅通过第一级同步信号获取接入所需的完整系统消息,即终端可以在检测完第一级同步信号后就通过第一级同步信号进行随机接入,也可以在依次检测完第一级和第二级同步信号后再进行随机接入。
例如可以在第一级同步信号中承载第一级和第二级同步信号的所有系统消息,即第一级同步信号为常规同步信号,可以在第一级同步信号和/或其对应的资源中包含两级同步信号的所有系统消息;在第二级同步信号包括PSS、SSS中的至少一项;该第二级同步信号用于终端的下行测量;所述第二级同步信号关联的第二资源上包括第二级同步信号的索引,如图8所示,同步信号的索引可以承载在PSS和/或SSS的两侧或一侧。
终端可以检测完第一级同步信号后直接接入,支持一些低速率数据传输场景;也可以在检测完第一级同步信号和第二级同步信号后再进行接入。
需要说明的是,第二级同步信号中只包含PSS和/或SSS部分信息,第二级同步信号所需资源减少,从占用4个符号变为只占用2个符号,在相同的同步信号资源条件下,可以支持更多的第二级同步信号数量,能够实现同步信号数量的扩展。
本申请实施例中的两级同步信号结构中,第二级同步信号与第一级同步信号相关联,终端获取的系统消息可以分散在不同级的同步信号中、或全部包括在第一级同步信号中,因此第二级同步信号可以不包含系统消息,占用更少的OFDM符号资源,实现同步信号数量的扩展。
可选地,本申请的另一实施例中,所述方法,还包括:
所述终端根据所述第一级同步信号的信号质量,选择所述信号质量大于或等于第二门限的目标第一级同步信号;
所述终端通过所述目标第一级同步信号关联的物理随机接入信道(Physical Random  Access Channel,PRACH)资源,发送随机接入的MSG A或MSG 1。
可选地,本申请的另一实施例中,所述方法,还包括:
所述终端根据所述第二级同步信号的信号质量,选择所述信号质量大于或等于第三门限的目标第二级同步信号;
所述终端通过所述目标第二级同步信号关联的PRACH资源,发送随机接入的MSG A或MSG 1。
需要说明的是,根据配置好的信号质量的门限,可以由终端自主决定接入哪一级同步信号,也可以在第一级同步信号的信号质量较低的情况下,测量并根据第二级同步信号进行随机接入,获取更精准的波束方向和信号质量更强的同步信号,提高随机接入的可靠性。以此减少成功率较低的随机接入和上下行信令交互过程。
还需要说明的是,上述的第一门限、第二门限、第三门限可以由协议约定、预配置或网络侧配置;第一门限、第二门限、第三门限的取值可以相同也可以不同。
需要说明的是,在实际应用中,上述的各个实施例可以单独使用,也可以相互组合使用。
需要说明的是,本申请的至少一个实施例,通过两级同步信号的设计,能够支持密集TRP部署的CF网络中同步信号的扩展,包括服务范围和同步信号数量的扩展。
对网络侧的好处:对比同级的同步信号设计,简化了网络的部署复杂度,可以通过增加第一级同步信号数量支持更密集的TRP部署,而不需要增加新的小区。
对终端侧的好处:减小了同步信号间的干扰,按需测量第二级同步信号,获取信号质量更高的同步信号和更精准的波束方向,增强了终端随机接入和数据传输的成功率和可靠性。另外,在接入过程完成更精准的波束测量,而不是进入连接态再通过CSI-RS测量,有利于快速进行较高速率数据传输,尤其适用于接入后只有少量数据传输的用户。
对应于终端侧的实现,如图9所示,本申请实施例提供一种同步信号传输方法,包括:
步骤901,网络侧设备发送第一级同步信号和第二级同步信号。
可选地,所述方法,还包括:
所述网络侧设备在所述第一级同步信号关联的资源上发送指示信息,所述指示信息包括:用于指示所述第二级同步信号的资源位置的显式信息和/或隐式信息:
其中,所述显式信息包括以下至少一项:
所述第二级同步信号的同步栅格;
所述第二级同步信号的频域位置;
所述第二级同步信号的时域位置;
所述隐式信息包括以下至少一项:
所述第二级同步信号相对于所述第一级同步信号的时域偏移量和/或频域偏移量;
所述第一级同步信号与所述第二级同步信号的索引集合的映射关系。
可选地,所述指示信息,还包括:配置信息;
其中,所述配置信息包括以下至少一项:
所述第二级同步信号的数量;
所述第二级同步信号的时域间隔;
所述第二级同步信号的频域间隔。
可选地,所述第一级同步信号和所述第二级同步信号满足以下至少一项:
所述第一级同步信号的同步栅格的候选位置的个数小于所述第二级同步信号的同步栅格的候选位置的个数;
所述第一级同步信号和所述第二级同步信号的频点不相同;
所述第一级同步信号和所述第二级同步信号使用不同的同步信号资源;
所述第一级同步信号和所述第二级同步信号联合指示小区标识信息;
所述第一级同步信号和所述第二级同步信号分别指示小区标识信息。
可选地,所述第一级同步信号通过发送接收点TRP簇联合发送,所述第二级同步信号通过所述TRP簇中的至少一个TRP发送。
可选地,所述第二级同步信号在不同的TRP簇之间复用。
可选地,所述第一级同步信号关联的第一资源和所述第二级同步信号关联的第二资源共同承载系统消息;或者
所述第一级同步信号关联的第一资源承载系统消息;
所述第一资源包括:时域资源和/或频域资源,所述第二资源包括:时域资源和/或频域资源。
可选地,在所述第一级同步信号关联的第一资源承载所述系统消息的情况下,所述第二级同步信号关联的第二资源上包括第二级同步信号的索引;
所述第二级同步信号包括以下至少一项:
主同步信号PSS;
辅同步信号SSS。
可选地,所述方法,还包括:
所述网络侧设备使用与所述第一级同步信号或所述第二级同步信号关联的物理随机接入信道PRACH资源接收MSG A或MSG 1。
可选地,所述网络侧设备使用与所述第一级同步信号或所述第二级同步信号关联的物理随机接入信道PRACH资源接收MSG A或MSG 1之后,所述方法还包括:
所述网络侧设备向终端发送MSG B或MSG 2。
需要说明的是,上述实施例中所有关于网络侧设备的描述均适用于应用于网络侧设备的该同步信号传输方法的实施例中,也能达到与之相同的技术效果,在此不再赘述。
本申请实施例提供的同步信号传输方法,执行主体可以为同步信号传输装置。本申请实施例中以同步信号传输装置执行同步信号传输方法为例,说明本申请实施例提供的同步信号传输装置。
如图10所示,本申请实施例的同步信号传输装置1000,应用于终端,包括:
第一接收模块1001,接收网络侧设备发送的第一级同步信号,获取所述第一级同步信号的信号质量;
第一确定模块1002,用于根据所述信号质量确定是否检测第二级同步信号;
其中,所述信号质量包括以下至少一项:
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信干噪比SINR。
可选地,所述第一确定模块1002,用于:
在所述第一级同步信号的信号质量小于第一门限的情况下,检测所述第二级同步信号。
可选地,所述第一确定模块1002,包括:
获取单元,用于根据所述第一级同步信号关联的资源,获取第二级同步信号的资源位置,所述第二级同步信号的资源位置包括:时域位置和/或频域位置;
检测单元,用于根据所述第二级同步信号的资源位置,检测所述第二级同步信号。
可选地,所述获取单元,用于:
在所述第一级同步信号关联的资源上获取指示信息,所述指示信息包括:指示所述第二级同步信号的资源位置的显式信息和/或隐式信息;
基于所述指示信息,确定所述第二级同步信号的资源位置;
其中,所述显式信息包括以下至少一项:
所述第二级同步信号的同步栅格;
所述第二级同步信号的频域位置;
所述第二级同步信号的时域位置;
所述隐式信息包括以下至少一项:
所述第二级同步信号相对于所述第一级同步信号的时域偏移量和/或频域偏移量;
所述第一级同步信号与所述第二级同步信号的索引集合的映射关系。
可选地,所述指示信息,还包括:配置信息;
其中,所述配置信息包括以下至少一项:
所述第二级同步信号的数量;
所述第二级同步信号的时域间隔;
所述第二级同步信号的频域间隔。
可选地,在所述指示信息包括隐式信息的情况下,所述终端基于所述指示信息,确定第二级同步信号的资源位置的实现方式,包括:
根据所述指示信息以及所述第一级同步信号的时域位置和/或频域位置,确定所述第二级同步信号的资源位置。
可选地,所述第一级同步信号和所述第二级同步信号满足以下至少一项:
所述第一级同步信号的同步栅格的候选位置的个数小于所述第二级同步信号的同步栅格的候选位置的个数;
所述第一级同步信号和所述第二级同步信号的频点不相同;
所述第一级同步信号和所述第二级同步信号使用不同的同步信号资源;
所述第一级同步信号和所述第二级同步信号联合指示小区标识信息;
所述第一级同步信号和所述第二级同步信号分别指示小区标识信息。
可选地,所述第一级同步信号通过发送接收点TRP簇联合发送,所述第二级同步信号通过所述TRP簇中的至少一个TRP发送。
可选地,所述第二级同步信号在不同的TRP簇之间复用。
可选地,所述装置,还包括:
第二确定模块,用于确定所述第二级同步信号对应的前导码序列;
其中,所述确定所述第二级同步信号对应的前导码序列的方式包括以下至少一项:
通过所述第一级同步信号的前导码序列循环移位确定;
基于与所述第一级同步信号的前导码的映射关系确定;
基于网络侧设备配置的第二级同步信号前导码序列集合确定。
可选地,所述第一级同步信号关联的第一资源和所述第二级同步信号关联的第二资源共同承载系统消息;或者
所述第一级同步信号关联的第一资源承载系统消息;
所述第一资源包括:时域资源和/或频域资源,所述第二资源包括:时域资源和/或频域资源。
可选地,在所述第一级同步信号关联的第一资源承载所述系统消息的情况下,所述第二级同步信号关联的第二资源上包括第二级同步信号的索引;
所述第二级同步信号包括以下至少一项:
主同步信号PSS;
辅同步信号SSS。
可选地,所述第一确定模块1002,用于:
在所述第一级同步信号的信号质量大于或等于第一门限的情况下,不检测所述第二级同步信号。
可选地,所述装置,还包括:
第一选择模块,用于根据所述第一级同步信号的信号质量,选择所述信号质量大于或等于第二门限的目标第一级同步信号;
第二发送模块,用于通过所述目标第一级同步信号关联的物理随机接入信道PRACH资源,发送随机接入的MSG A或MSG 1。
可选地,所述装置,还包括:
第二选择模块,用于根据所述第二级同步信号的信号质量,选择所述信号质量大于或 等于第三门限的目标第二级同步信号;
第三发送模块,用于通过所述目标第二级同步信号关联的PRACH资源,发送随机接入的MSG A或MSG 1。
需要说明的是,该装置实施例是与上述方法对应的,上述方法实施例中的所有实现方式均适用于该装置实施例中,也能达到相同的技术效果。
本申请实施例中的同步信号传输装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的同步信号传输装置能够实现图4的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,所述通信接口用于接收网络侧设备发送的第一级同步信号,获取所述第一级同步信号的信号质量;
所述处理器,用于根据所述信号质量确定是否检测第二级同步信号;
其中,所述信号质量包括以下至少一项:
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信干噪比SINR。
可选地,所述处理器,用于:
在所述第一级同步信号的信号质量小于第一门限的情况下,检测所述第二级同步信号。
可选地,所述处理器,用于:
根据所述第一级同步信号关联的资源,获取第二级同步信号的资源位置,所述第二级同步信号的资源位置包括:时域位置和/或频域位置;
根据所述第二级同步信号的资源位置,检测所述第二级同步信号。
可选地,所述处理器,用于:
在所述第一级同步信号关联的资源上获取指示信息,所述指示信息包括:指示所述第二级同步信号的资源位置的显式信息和/或隐式信息;
基于所述指示信息,确定所述第二级同步信号的资源位置;
其中,所述显式信息包括以下至少一项:
所述第二级同步信号的同步栅格;
所述第二级同步信号的频域位置;
所述第二级同步信号的时域位置;
所述隐式信息包括以下至少一项:
所述第二级同步信号相对于所述第一级同步信号的时域偏移量和/或频域偏移量;
所述第一级同步信号与所述第二级同步信号的索引集合的映射关系。
可选地,所述指示信息,还包括:配置信息;
其中,所述配置信息包括以下至少一项:
所述第二级同步信号的数量;
所述第二级同步信号的时域间隔;
所述第二级同步信号的频域间隔。
可选地,在所述指示信息包括隐式信息的情况下,所述处理器,用于:
根据所述指示信息以及所述第一级同步信号的时域位置和/或频域位置,确定所述第二级同步信号的资源位置。
可选地,所述第一级同步信号和所述第二级同步信号满足以下至少一项:
所述第一级同步信号的同步栅格的候选位置的个数小于所述第二级同步信号的同步栅格的候选位置的个数;
所述第一级同步信号和所述第二级同步信号的频点不相同;
所述第一级同步信号和所述第二级同步信号使用不同的同步信号资源;
所述第一级同步信号和所述第二级同步信号联合指示小区标识信息;
所述第一级同步信号和所述第二级同步信号分别指示小区标识信息。
可选地,所述第一级同步信号通过发送接收点TRP簇联合发送,所述第二级同步信号通过所述TRP簇中的至少一个TRP发送。
可选地,所述第二级同步信号在不同的TRP簇之间复用。
可选地,所述处理器,还用于:
确定所述第二级同步信号对应的前导码序列;
其中,所述确定所述第二级同步信号对应的前导码序列的方式包括以下至少一项:
通过所述第一级同步信号的前导码序列循环移位确定;
基于与所述第一级同步信号的前导码的映射关系确定;
基于网络侧设备配置的第二级同步信号前导码序列集合确定。
可选地,所述第一级同步信号关联的第一资源和所述第二级同步信号关联的第二资源共同承载系统消息;或者
所述第一级同步信号关联的第一资源承载系统消息;
所述第一资源包括:时域资源和/或频域资源,所述第二资源包括:时域资源和/或频域资源。
可选地,在所述第一级同步信号关联的第一资源承载所述系统消息的情况下,所述第二级同步信号关联的第二资源上包括第二级同步信号的索引;
所述第二级同步信号包括以下至少一项:
主同步信号PSS;
辅同步信号SSS。
可选地,所述处理器,还用于:
在所述第一级同步信号的信号质量大于或等于第一门限的情况下,不检测所述第二级同步信号。
可选地,所述处理器,还用于:
根据所述第一级同步信号的信号质量,选择所述信号质量大于或等于第二门限的目标第一级同步信号;
所述通信接口,还用于通过所述目标第一级同步信号关联的物理随机接入信道PRACH资源,发送随机接入的MSG A或MSG 1。
可选地,所述处理器,还用于:
根据所述第二级同步信号的信号质量,选择所述信号质量大于或等于第三门限的目标第二级同步信号;
所述通信接口,还用于通过所述目标第二级同步信号关联的PRACH资源,发送随机接入的MSG A或MSG 1。
该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图11为实现本申请实施例的一种终端的硬件结构示意图。
该终端1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109以及处理器1110等中的至少部分部件。
本领域技术人员可以理解,终端1100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图11中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理单元(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072中的至少一种。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101接收来自接入网设备的下行数据后,可以传输给处理器1110进行处理;另外,射频单元1101可以向网络侧设备发送上行数据。通常,射频单元1101包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括易失性存储器或非易失性存储器,或者,存储器1109可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1109包括但不限于这些和任意其它适合类型的存储器。
处理器1110可包括一个或多个处理单元;可选地,处理器1110集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
其中,所述射频单元1101,用于:
接收网络侧设备发送的第一级同步信号,获取所述第一级同步信号的信号质量;
所述处理器1110,用于根据所述信号质量确定是否检测第二级同步信号;
其中,所述信号质量包括以下至少一项:
参考信号接收功率RSRP;
参考信号接收质量RSRQ;
信干噪比SINR。
可选地,所述处理器1110,用于:
在所述第一级同步信号的信号质量小于第一门限的情况下,检测所述第二级同步信号。
可选地,所述处理器1110,用于:
根据所述第一级同步信号关联的资源,获取第二级同步信号的资源位置,所述第二级同步信号的资源位置包括:时域位置和/或频域位置;
根据所述第二级同步信号的资源位置,检测所述第二级同步信号。
可选地,所述处理器1110,用于:
在所述第一级同步信号关联的资源上获取指示信息,所述指示信息包括:指示所述第二级同步信号的资源位置的显式信息和/或隐式信息;
基于所述指示信息,确定所述第二级同步信号的资源位置;
其中,所述显式信息包括以下至少一项:
所述第二级同步信号的同步栅格;
所述第二级同步信号的频域位置;
所述第二级同步信号的时域位置;
所述隐式信息包括以下至少一项:
所述第二级同步信号相对于所述第一级同步信号的时域偏移量和/或频域偏移量;
所述第一级同步信号与所述第二级同步信号的索引集合的映射关系。
可选地,所述指示信息,还包括:配置信息;
其中,所述配置信息包括以下至少一项:
所述第二级同步信号的数量;
所述第二级同步信号的时域间隔;
所述第二级同步信号的频域间隔。
可选地,在所述指示信息包括隐式信息的情况下,所述处理器,用于:
根据所述指示信息以及所述第一级同步信号的时域位置和/或频域位置,确定所述第二级同步信号的资源位置。
可选地,所述第一级同步信号和所述第二级同步信号满足以下至少一项:
所述第一级同步信号的同步栅格的候选位置的个数小于所述第二级同步信号的同步栅格的候选位置的个数;
所述第一级同步信号和所述第二级同步信号的频点不相同;
所述第一级同步信号和所述第二级同步信号使用不同的同步信号资源;
所述第一级同步信号和所述第二级同步信号联合指示小区标识信息;
所述第一级同步信号和所述第二级同步信号分别指示小区标识信息。
可选地,所述第一级同步信号通过发送接收点TRP簇联合发送,所述第二级同步信号通过所述TRP簇中的至少一个TRP发送。
可选地,所述第二级同步信号在不同的TRP簇之间复用。
可选地,所述处理器1110,还用于:
确定所述第二级同步信号对应的前导码序列;
其中,所述确定所述第二级同步信号对应的前导码序列的方式包括以下至少一项:
通过所述第一级同步信号的前导码序列循环移位确定;
基于与所述第一级同步信号的前导码的映射关系确定;
基于网络侧设备配置的第二级同步信号前导码序列集合确定。
可选地,所述第一级同步信号关联的第一资源和所述第二级同步信号关联的第二资源共同承载系统消息;或者
所述第一级同步信号关联的第一资源承载系统消息;
所述第一资源包括:时域资源和/或频域资源,所述第二资源包括:时域资源和/或频 域资源。
可选地,在所述第一级同步信号关联的第一资源承载所述系统消息的情况下,所述第二级同步信号关联的第二资源上包括第二级同步信号的索引;
所述第二级同步信号包括以下至少一项:
主同步信号PSS;
辅同步信号SSS。
可选地,所述处理器1110,还用于:
在所述第一级同步信号的信号质量大于或等于第一门限的情况下,不检测所述第二级同步信号。
可选地,所述处理器1110,还用于:
根据所述第一级同步信号的信号质量,选择所述信号质量大于或等于第二门限的目标第一级同步信号;
所述射频单元1101,还用于通过所述目标第一级同步信号关联的物理随机接入信道PRACH资源,发送随机接入的MSG A或MSG 1。
可选地,所述处理器1110,还用于:
根据所述第二级同步信号的信号质量,选择所述信号质量大于或等于第三门限的目标第二级同步信号;
所述射频单元1101,还用于通过所述目标第二级同步信号关联的PRACH资源,发送随机接入的MSG A或MSG 1。
可选地,本申请实施例还提供一种终端,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现上述的同步信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,计算机可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述的同步信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述的计算机可读存储介质,如只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
如图12所示,本申请实施例还提供一种同步信号传输装置1200,应用于网络侧设备,包括:
第一发送模块1201,用于发送第一级同步信号和第二级同步信号。
可选地,所述装置,还包括:
第四发送模块,用于在所述第一级同步信号关联的资源上发送指示信息,所述指示信息包括:用于指示所述第二级同步信号的资源位置的显式信息和/或隐式信息:
其中,所述显式信息包括以下至少一项:
所述第二级同步信号的同步栅格;
所述第二级同步信号的频域位置;
所述第二级同步信号的时域位置;
所述隐式信息包括以下至少一项:
所述第二级同步信号相对于所述第一级同步信号的时域偏移量和/或频域偏移量;
所述第一级同步信号与所述第二级同步信号的索引集合的映射关系。
可选地,所述指示信息,还包括:配置信息;
其中,所述配置信息包括以下至少一项:
所述第二级同步信号的数量;
所述第二级同步信号的时域间隔;
所述第二级同步信号的频域间隔。
可选地,所述第一级同步信号和所述第二级同步信号满足以下至少一项:
所述第一级同步信号的同步栅格的候选位置的个数小于所述第二级同步信号的同步栅格的候选位置的个数;
所述第一级同步信号和所述第二级同步信号的频点不相同;
所述第一级同步信号和所述第二级同步信号使用不同的同步信号资源;
所述第一级同步信号和所述第二级同步信号联合指示小区标识信息;
所述第一级同步信号和所述第二级同步信号分别指示小区标识信息。
可选地,所述第一级同步信号通过发送接收点TRP簇联合发送,所述第二级同步信号通过所述TRP簇中的至少一个TRP发送。
可选地,所述第二级同步信号在不同的TRP簇之间复用。
可选地,所述第一级同步信号关联的第一资源和所述第二级同步信号关联的第二资源共同承载系统消息;或者
所述第一级同步信号关联的第一资源承载系统消息;
所述第一资源包括:时域资源和/或频域资源,所述第二资源包括:时域资源和/或频域资源。
可选地,在所述第一级同步信号关联的第一资源承载所述系统消息的情况下,所述第二级同步信号关联的第二资源上包括第二级同步信号的索引;
所述第二级同步信号包括以下至少一项:
主同步信号PSS;
辅同步信号SSS。
可选地,所述装置,还包括:
第二接收模块,用于使用与所述第一级同步信号或所述第二级同步信号关联的物理随机接入信道PRACH资源接收MSG A或MSG 1。
可选地,所述装置还包括:
第五发送模块,用于向终端发送MSG B或MSG 2。
需要说明的是,该装置实施例是与上述方法对应的装置,上述方法实施例中的所有实现方式均适用于该装置实施例中,也能达到相同的技术效果,在此不再赘述。
本申请实施例还提供了一种网络侧设备,包括处理器及通信接口,其中,所述通信接口用于发送第一级同步信号和第二级同步信号。
可选地,所述通信接口,还用于:
在所述第一级同步信号关联的资源上发送指示信息,所述指示信息包括:用于指示所述第二级同步信号的资源位置的显式信息和/或隐式信息:
其中,所述显式信息包括以下至少一项:
所述第二级同步信号的同步栅格;
第二级同步信号的频域位置;
第二级同步信号的时域位置;
所述隐式信息包括以下至少一项:
所述第二级同步信号相对于所述第一级同步信号的时域偏移量和/或频域偏移量;
所述第一级同步信号与所述第二级同步信号的索引集合的映射关系。
可选地,所述指示信息,还包括:配置信息;
其中,所述配置信息包括以下至少一项:
所述第二级同步信号的数量;
所述第二级同步信号的时域间隔;
所述第二级同步信号的频域间隔。
可选地,所述第一级同步信号和所述第二级同步信号满足以下至少一项:
所述第一级同步信号的同步栅格的候选位置的个数小于所述第二级同步信号的同步栅格的候选位置的个数;
所述第一级同步信号和所述第二级同步信号的频点不相同;
所述第一级同步信号和所述第二级同步信号使用不同的同步信号资源;
所述第一级同步信号和所述第二级同步信号联合指示小区标识信息;
所述第一级同步信号和所述第二级同步信号分别指示小区标识信息。
可选地,所述第一级同步信号通过发送接收点TRP簇联合发送,所述第二级同步信号通过所述TRP簇中的至少一个TRP发送。
可选地,所述第二级同步信号在不同的TRP簇之间复用。
可选地,所述第一级同步信号关联的第一资源和所述第二级同步信号关联的第二资源共同承载系统消息;或者
所述第一级同步信号关联的第一资源承载系统消息;
所述第一资源包括:时域资源和/或频域资源,所述第二资源包括:时域资源和/或频域资源。
可选地,在所述第一级同步信号关联的第一资源承载所述系统消息的情况下,所述第 二级同步信号关联的第二资源上包括第二级同步信号的索引;
所述第二级同步信号包括以下至少一项:
主同步信号PSS;
辅同步信号SSS。
可选地,所述通信接口,还用于:
使用与所述第一级同步信号或所述第二级同步信号关联的物理随机接入信道PRACH资源接收MSG A或MSG 1。
可选地,所述通信接口使用与所述第一级同步信号或所述第二级同步信号关联的物理随机接入信道PRACH资源接收MSG A或MSG 1之后,所述通信接口,还用于:
向终端发送MSG B或MSG 2。
可选地,本申请实施例还提供一种网络侧设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现上述的同步信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络侧设备。如图13所示,该网络侧设备1300包括:天线1301、射频装置1302、基带装置1303、处理器1304和存储器1305。天线1301与射频装置1302连接。在上行方向上,射频装置1302通过天线1301接收信息,将接收的信息发送给基带装置1303进行处理。在下行方向上,基带装置1303对要发送的信息进行处理,并发送给射频装置1302,射频装置1302对收到的信息进行处理后经过天线1301发送出去。
以上实施例中接入网设备执行的方法可以在基带装置1303中实现,该基带装置1303包括基带处理器。
基带装置1303例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图13所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1305连接,以调用存储器1305中的程序,执行以上方法实施例中所示的网络设备操作。
该接入网设备还可以包括网络接口1306,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本申请实施例的网络侧设备1300还包括:存储在存储器1305上并可在处理器1304上运行的指令或程序,处理器1304调用存储器1305中的指令或程序执行图12所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述同步信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的接入网设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
可选地,如图14所示,本申请实施例还提供一种通信设备1400,包括处理器1401和存储器1402,存储器1402上存储有可在所述处理器1401上运行的程序或指令,例如,该通信设备1400为终端时,该程序或指令被处理器1401执行时实现上述同步信号传输方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1400为网络侧设备时,该程序或指令被处理器1401执行时实现上述同步信号传输方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述同步信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述同步信号传输方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种同步信号传输系统,包括:终端及网络侧设备,所述终端可用于执行上述的同步信号传输方法的步骤,所述网络侧设备可用于执行上述的同步信号传输方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (30)

  1. 一种同步信号传输方法,包括:
    终端接收网络侧设备发送的第一级同步信号,获取所述第一级同步信号的信号质量;
    所述终端根据所述信号质量确定是否检测第二级同步信号;
    其中,所述信号质量包括以下至少一项:
    参考信号接收功率RSRP;
    参考信号接收质量RSRQ;
    信干噪比SINR。
  2. 根据权利要求1所述的方法,其中,所述终端根据所述信号质量确定是否检测第二级同步信号,包括:
    所述终端在所述第一级同步信号的信号质量小于第一门限的情况下,检测所述第二级同步信号。
  3. 根据权利要求2所述的方法,其中,所述检测所述第二级同步信号,包括:
    所述终端根据所述第一级同步信号关联的资源,获取第二级同步信号的资源位置,所述第二级同步信号的资源位置包括:时域位置和/或频域位置;
    根据所述第二级同步信号的资源位置,检测所述第二级同步信号。
  4. 根据权利要求3所述的方法,其中,所述终端根据所述第一级同步信号关联的资源,获取第二级同步信号的资源位置,包括:
    所述终端在所述第一级同步信号关联的资源上获取指示信息,所述指示信息包括:指示所述第二级同步信号的资源位置的显式信息和/或隐式信息;
    所述终端基于所述指示信息,确定所述第二级同步信号的资源位置;
    其中,所述显式信息包括以下至少一项:
    所述第二级同步信号的同步栅格;
    所述第二级同步信号的频域位置;
    所述第二级同步信号的时域位置;
    所述隐式信息包括以下至少一项:
    所述第二级同步信号相对于所述第一级同步信号的时域偏移量和/或频域偏移量;
    所述第一级同步信号与所述第二级同步信号的索引集合的映射关系。
  5. 根据权利要求4所述的方法,其中,所述指示信息,还包括:配置信息;
    其中,所述配置信息包括以下至少一项:
    所述第二级同步信号的数量;
    所述第二级同步信号的时域间隔;
    所述第二级同步信号的频域间隔。
  6. 根据权利要求4或5所述的方法,其中,在所述指示信息包括隐式信息的情况下, 所述终端基于所述指示信息,确定第二级同步信号的资源位置,包括:
    所述终端根据所述指示信息以及所述第一级同步信号的时域位置和/或频域位置,确定所述第二级同步信号的资源位置。
  7. 根据权利要求1-6任一项所述的方法,其中,所述第一级同步信号和所述第二级同步信号满足以下至少一项:
    所述第一级同步信号的同步栅格的候选位置的个数小于所述第二级同步信号的同步栅格的候选位置的个数;
    所述第一级同步信号和所述第二级同步信号的频点不相同;
    所述第一级同步信号和所述第二级同步信号使用不同的同步信号资源;
    所述第一级同步信号和所述第二级同步信号联合指示小区标识信息;
    所述第一级同步信号和所述第二级同步信号分别指示小区标识信息。
  8. 根据权利要求1所述的方法,其中,所述第一级同步信号通过发送接收点TRP簇联合发送,所述第二级同步信号通过所述TRP簇中的至少一个TRP发送。
  9. 根据权利要求1或8所述的方法,其中,所述第二级同步信号在不同的TRP簇之间复用。
  10. 根据权利要求1-6任一项所述的方法,还包括:
    所述终端确定所述第二级同步信号对应的前导码序列;
    其中,所述确定所述第二级同步信号对应的前导码序列的方式包括以下至少一项:
    通过所述第一级同步信号的前导码序列循环移位确定;
    基于与所述第一级同步信号的前导码的映射关系确定;
    基于网络侧设备配置的第二级同步信号前导码序列集合确定。
  11. 根据权利要求1-6任一项所述的方法,其中,所述第一级同步信号关联的第一资源和所述第二级同步信号关联的第二资源共同承载系统消息;或者,
    所述第一级同步信号关联的第一资源承载系统消息;
    所述第一资源包括:时域资源和/或频域资源,所述第二资源包括:时域资源和/或频域资源。
  12. 根据权利要求11所述的方法,其中,在所述第一级同步信号关联的第一资源承载所述系统消息的情况下,所述第二级同步信号关联的第二资源上包括第二级同步信号的索引;
    所述第二级同步信号包括以下至少一项:
    主同步信号PSS;
    辅同步信号SSS。
  13. 根据权利要求1、7-9中任一项所述的方法,其中,所述终端根据所述信号质量确定是否检测第二级同步信号,包括:
    所述终端在所述第一级同步信号的信号质量大于或等于第一门限的情况下,不检测所 述第二级同步信号。
  14. 根据权利要求1-13中任一项所述的方法,还包括:
    所述终端根据所述第一级同步信号的信号质量,选择所述信号质量大于或等于第二门限的目标第一级同步信号;
    所述终端通过所述目标第一级同步信号关联的物理随机接入信道PRACH资源,发送随机接入的MSG A或MSG 1。
  15. 根据权利要求2-12任一项所述的方法,还包括:
    所述终端根据所述第二级同步信号的信号质量,选择所述信号质量大于或等于第三门限的目标第二级同步信号;
    所述终端通过所述目标第二级同步信号关联的PRACH资源,发送随机接入的MSG A或MSG 1。
  16. 一种同步信号传输方法,包括:
    网络侧设备发送第一级同步信号和第二级同步信号。
  17. 根据权利要求16所述的方法,还包括:
    所述网络侧设备在所述第一级同步信号关联的资源上发送指示信息,所述指示信息包括:用于指示所述第二级同步信号的资源位置的显式信息和/或隐式信息:
    其中,所述显式信息包括以下至少一项:
    所述第二级同步信号的同步栅格;
    所述第二级同步信号的频域位置;
    所述第二级同步信号的时域位置;
    所述隐式信息包括以下至少一项:
    所述第二级同步信号相对于所述第一级同步信号的时域偏移量和/或频域偏移量;
    所述第一级同步信号与所述第二级同步信号的索引集合的映射关系。
  18. 根据权利要求17所述的方法,其中,所述指示信息,还包括:配置信息;
    其中,所述配置信息包括以下至少一项:
    所述第二级同步信号的数量;
    所述第二级同步信号的时域间隔;
    所述第二级同步信号的频域间隔。
  19. 根据权利要求16所述的方法,其中,所述第一级同步信号和所述第二级同步信号满足以下至少一项:
    所述第一级同步信号的同步栅格的候选位置的个数小于所述第二级同步信号的同步栅格的候选位置的个数;
    所述第一级同步信号和所述第二级同步信号的频点不相同;
    所述第一级同步信号和所述第二级同步信号使用不同的同步信号资源;
    所述第一级同步信号和所述第二级同步信号联合指示小区标识信息;
    所述第一级同步信号和所述第二级同步信号分别指示小区标识信息。
  20. 根据权利要求16所述的方法,其中,所述第一级同步信号通过发送接收点TRP簇联合发送,所述第二级同步信号通过所述TRP簇中的至少一个TRP发送。
  21. 根据权利要求16或20所述的方法,其中,所述第二级同步信号在不同的TRP簇之间复用。
  22. 根据权利要求16所述的方法,其中,所述第一级同步信号关联的第一资源和所述第二级同步信号关联的第二资源共同承载系统消息;或者
    所述第一级同步信号关联的第一资源承载系统消息;
    所述第一资源包括:时域资源和/或频域资源,所述第二资源包括:时域资源和/或频域资源。
  23. 根据权利要求22所述的方法,其中,在所述第一级同步信号关联的第一资源承载所述系统消息的情况下,所述第二级同步信号关联的第二资源上包括第二级同步信号的索引;
    所述第二级同步信号包括以下至少一项:
    主同步信号PSS;
    辅同步信号SSS。
  24. 根据权利要求16-23任一项所述的方法,还包括:
    所述网络侧设备使用与所述第一级同步信号或所述第二级同步信号关联的物理随机接入信道PRACH资源接收MSG A或MSG 1。
  25. 根据权利要求24所述的方法,其中,所述网络侧设备使用与所述第一级同步信号或所述第二级同步信号关联的物理随机接入信道PRACH资源接收MSG A或MSG 1之后,所述方法还包括:
    所述网络侧设备向终端发送MSG B或MSG 2。
  26. 一种同步信号传输装置,应用于终端,包括:
    第一接收模块,用于接收网络侧设备发送的第一级同步信号,获取所述第一级同步信号的信号质量;
    第一确定模块,用于根据所述信号质量确定是否检测第二级同步信号;
    其中,所述信号质量包括以下至少一项:
    参考信号接收功率RSRP;
    参考信号接收质量RSRQ;
    信干噪比SINR。
  27. 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至15任一项所述的同步信号传输方法的步骤。
  28. 一种同步信号传输装置,应用于网络侧设备,包括:
    第一发送模块,用于发送第一级同步信号和第二级同步信号。
  29. 一种网络侧设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求16至25任一项所述的同步信号传输方法的步骤。
  30. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-25任一项所述的同步信号传输方法的步骤。
PCT/CN2023/135396 2022-12-06 2023-11-30 同步信号传输方法、装置、终端及网络侧设备 WO2024120293A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211559195.4A CN118158698A (zh) 2022-12-06 2022-12-06 同步信号传输方法、装置、终端及网络侧设备
CN202211559195.4 2022-12-06

Publications (1)

Publication Number Publication Date
WO2024120293A1 true WO2024120293A1 (zh) 2024-06-13

Family

ID=91289240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/135396 WO2024120293A1 (zh) 2022-12-06 2023-11-30 同步信号传输方法、装置、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN118158698A (zh)
WO (1) WO2024120293A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105379377A (zh) * 2013-07-15 2016-03-02 三星电子株式会社 用于无线通信系统中的设备到设备通信的同步方法和装置
KR20180055662A (ko) * 2016-11-17 2018-05-25 삼성전자주식회사 무선통신 시스템에서 복수개의 전송시간단위를 갖는 셀 병합 시 셀 활성화 및 비활성화 방법 및 장치
US20190394012A1 (en) * 2016-11-17 2019-12-26 Samsung Electronics Co., Ltd. Method and apparatus for performing radio link monitoring in wireless communication system
CN112534894A (zh) * 2018-08-10 2021-03-19 苹果公司 基于同步信号的优先化的侧链路同步
CN113316955A (zh) * 2018-12-05 2021-08-27 高通股份有限公司 用于波束检测的同步信号测量

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105379377A (zh) * 2013-07-15 2016-03-02 三星电子株式会社 用于无线通信系统中的设备到设备通信的同步方法和装置
KR20180055662A (ko) * 2016-11-17 2018-05-25 삼성전자주식회사 무선통신 시스템에서 복수개의 전송시간단위를 갖는 셀 병합 시 셀 활성화 및 비활성화 방법 및 장치
US20190394012A1 (en) * 2016-11-17 2019-12-26 Samsung Electronics Co., Ltd. Method and apparatus for performing radio link monitoring in wireless communication system
CN112534894A (zh) * 2018-08-10 2021-03-19 苹果公司 基于同步信号的优先化的侧链路同步
CN113316955A (zh) * 2018-12-05 2021-08-27 高通股份有限公司 用于波束检测的同步信号测量

Also Published As

Publication number Publication date
CN118158698A (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
US10903926B2 (en) Terminal side and base station side device, terminal device, base station, and wireless communication method
US9603111B2 (en) Radio communication system and communication control method
JP7179160B2 (ja) 情報伝送方法、ネットワークデバイス、及び端末
US12041004B2 (en) Electronic device, wireless communication method and computer readable medium
US20230319894A1 (en) Random access method and apparatus, terminal, and network side device
EP4184991A1 (en) Communication method and apparatus
WO2020203823A1 (ja) 無線測定システム、及び、電波可視化方法
WO2019064603A1 (ja) ユーザ装置及び基地局装置
WO2024120293A1 (zh) 同步信号传输方法、装置、终端及网络侧设备
JP6992743B2 (ja) 通信制御装置、端末装置、方法及びプログラム
WO2024120284A1 (zh) 信息传输方法、装置、终端及网络侧设备
CN118804393A (zh) 一种随机接入方法及终端设备
WO2024099185A1 (zh) 随机接入方法、装置、终端、网络侧设备及介质
WO2024093918A1 (zh) Ssb测量方法、装置、用户设备及存储介质
WO2023125786A1 (zh) 定位参考信号端口区分方法、装置及通信设备
WO2024169820A1 (zh) 小数据传输方法、装置、终端及网络侧设备
WO2024169823A1 (zh) 测量资源的确定方法、装置及通信设备
WO2023078251A1 (zh) 信息获取方法、装置及终端
WO2023186157A1 (zh) 随机接入资源配置方法、装置、终端及网络侧设备
WO2023045680A1 (zh) 小区负载率估计、通信业务调整方法及相应的电子设备
WO2019187157A1 (ja) ユーザ装置及び基地局装置
KR20240078392A (ko) 통신 시스템에서 빔 관리 방법 및 장치
CN114501664A (zh) 随机接入的方法、终端设备和网络设备
JP2015223005A (ja) 無線通信システムおよび通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23899872

Country of ref document: EP

Kind code of ref document: A1