WO2024093918A1 - Ssb测量方法、装置、用户设备及存储介质 - Google Patents

Ssb测量方法、装置、用户设备及存储介质 Download PDF

Info

Publication number
WO2024093918A1
WO2024093918A1 PCT/CN2023/127778 CN2023127778W WO2024093918A1 WO 2024093918 A1 WO2024093918 A1 WO 2024093918A1 CN 2023127778 W CN2023127778 W CN 2023127778W WO 2024093918 A1 WO2024093918 A1 WO 2024093918A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
ssb
sub
energy
signal
Prior art date
Application number
PCT/CN2023/127778
Other languages
English (en)
French (fr)
Inventor
洪琪
李�根
姜炜
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024093918A1 publication Critical patent/WO2024093918A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a SSB measurement method, device, user equipment and storage medium.
  • a user equipment For a user equipment (UE) in a connected state, it will measure the surrounding cells to estimate the signal quality of the cell. During this process, the protocol stipulates that the UE needs to report the measured cell identity and synchronization signal block (SSB) index to the serving cell to better manage mobility.
  • SSB synchronization signal block
  • the SSB index is obtained in the Physical Broadcast Channel (PBCH) and the PBCH-Demodulation Reference Signal (DMRS), and the base station in energy-saving mode (hereinafter referred to as energy-saving base station) does not include PBCH, in this case, for the energy-saving base station (excluding PBCH) that sends light SSB, how the UE obtains the SSB index of the cell is an urgent problem to be solved.
  • PBCH Physical Broadcast Channel
  • DMRS PBCH-Demodulation Reference Signal
  • the embodiments of the present application provide an SSB measurement method, device, user equipment and storage medium, which can solve the problem of how the UE obtains the SSB index of the cell for an energy-saving base station that sends light SSB.
  • a SSB measurement method comprising: a UE detecting first information sent by an energy-saving base station; and the UE performing SSB measurement of an energy-saving cell according to the first information, the energy-saving cell being a service cell of the energy-saving base station.
  • the first information comprises at least one of the following:
  • a first signal comprising a second signal and a payload, the first signal explicitly carrying SSB index information, and the second signal comprising at least one of the following: a primary synchronization signal (PSS) and a secondary synchronization signal (SSS);
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • a third signal, the third signal is composed of a PSS and an SSS, and the third signal implicitly carries SSB index information;
  • a fourth signal, the fourth signal includes at least one of the following: PSS and SSS; wherein the PSS and/or SSS are at different frequency domain positions.
  • a SSB measurement device which is applied to a UE.
  • the SSB measurement device includes: a detection module and an execution module.
  • the detection module is used to detect the first information sent by the energy-saving base station.
  • the execution module is used to According to the first information detected by the detection module, the SSB measurement of the energy-saving cell is performed, and the energy-saving cell is a service cell of the energy-saving base station.
  • the first information includes at least one of the following:
  • a first signal wherein the first signal is composed of a second signal and a payload, the first signal explicitly carries SSB index information, and the second signal includes at least one of the following: a PSS and an SSS;
  • a third signal, the third signal is composed of a PSS and an SSS, and the third signal implicitly carries SSB index information;
  • a fourth signal, the fourth signal includes at least one of the following: PSS and SSS; wherein the PSS and/or SSS are at different frequency domain positions.
  • a UE which includes a processor and a memory, wherein the memory stores a program or instruction that can be executed on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect are implemented.
  • a UE including a processor and a communication interface, wherein the processor is used to detect first information sent by an energy-saving base station; and according to the first information, perform SSB measurement of an energy-saving cell, where the energy-saving cell is a service cell of the energy-saving base station.
  • the first information includes at least one of the following:
  • a first signal wherein the first signal is composed of a second signal and a payload, the first signal explicitly carries SSB index information, and the second signal includes at least one of the following: a PSS and an SSS;
  • a third signal, the third signal is composed of a PSS and an SSS, and the third signal implicitly carries SSB index information;
  • a fourth signal, the fourth signal includes at least one of the following: PSS and SSS; wherein the PSS and/or SSS are at different frequency domain positions.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method described in the first aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium and is executed by at least one processor to implement the steps of the SSB measurement method as described in the first aspect.
  • the UE can detect the first information sent by the energy-saving base station to perform SSB measurement of the energy-saving cell, and the first information includes at least one of the following: a first signal, the first signal is composed of a second signal and a payload, and the first signal explicitly carries SSB index information, and the second signal includes at least one of the following: PSS and SSS; a third signal, the third signal is composed of PSS and SSS, and the third signal implicitly carries SSB index information; a fourth signal, the fourth signal includes at least one of the following: PSS and SSS, and PSS and/or SSS are at different frequency domain positions.
  • the UE when the UE detects the SSB information sent by the energy-saving base station, it can detect the first information sent by the energy-saving base station, and the first information explicitly or implicitly carries the SSB index information, that is, the UE can obtain the SSB index information from the detected first information to perform SSB measurement of the energy-saving cell, so this scheme is implemented.
  • the UE In light SSB, the UE is enabled to obtain the required SSB index information in an explicit or implicit manner, thereby facilitating the UE to perform SSB measurement and reporting.
  • FIG1 is a schematic diagram of the architecture of a wireless communication system provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the structure of SSB provided by the related art
  • FIG3 is a schematic diagram of an example of bits included in a PBCH provided by the related art
  • FIG4 is a flow chart of a SSB measurement method provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of an example of adding a payload to an SSB symbol provided by an embodiment of the present application
  • FIG6 is a second flowchart of an SSB measurement method provided in an embodiment of the present application.
  • FIG7 is a third flowchart of an SSB measurement method provided in an embodiment of the present application.
  • FIG8 is a schematic structural diagram of an SSB measurement device provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of the hardware structure of a communication device provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the hardware structure of a UE provided in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR New Radio
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) equipment, a robot, a wearable device (Wearable Device), a vehicle-mounted device (VUE), a pedestrian terminal (PUE), a smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (personal computer, PC), an ATM or a self-service machine and other terminal side devices, and the wear
  • the network side device 12 may include an access network device or a core network device, wherein the access network device 12 may also be referred to as a radio access network device, a radio access network (RAN), a radio access network function or a radio access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home B node, a home evolved B node, a transmitting and receiving point (TRP) or other appropriate terms in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary, it should be noted that in the embodiment of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • SSB consists of PSS, SSS, PBCH, and DMRS in 4 consecutive Orthogonal Frequency Division Multiplexing (OFDM) symbols and can be used for downlink synchronization.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the structure of SSB includes: PSS (NR-PSS), SSS (NR-SSS), PBCH (NR-PBCH), PBCH-DMRS.
  • PSS and SSS are to achieve symbol-level synchronization and complete the physical layer cell identity (PCI).
  • PBCH contains the cell's Master Information Block (MIB) and some other information.
  • MIB Master Information Block
  • PBCH-DMRS contains some SSB-index information (lower three bits).
  • SSB When searching for a cell after the UE is powered on, SSB can only be detected based on the operator and the frequency bands supported by the UE. signal, and perform downlink time-frequency synchronization. Due to the small granularity of the global frequency grid, the value range of NR-ARFCN is large. If blind detection is performed directly based on the global frequency grid, the synchronization delay will be relatively large. In order to effectively reduce the synchronization delay of this process, the concept of synchronization grid is defined, and the search range is limited by the global synchronization channel number (Global Synchronization Channel Number, GSCN).
  • GSCN Global Synchronization Channel Number
  • the range of the synchronization grid is defined: in the range of 0-3000MHz, the synchronization grid is 1200kHz; in the range of 3000-24250MHz, the synchronization grid is 1.44MHz; in the range of 24250-100000MHz, the synchronization grid is 17.28MHz.
  • GSCN Similar to the NR Absolute Radio Frequency Channel Number (NR-ARFCN), GSCN also defines the frequency band in the range of 0-100GHz, and each GSCN corresponds to a SSB detection frequency point.
  • the MIB contains:
  • the complete frame number requires 10 bits, but the frame number in the MIB payload only has the high-order 6 bits, and the low-order 4 bits are transmitted in the non-MIB bits in the PBCH transmission block;
  • Sub-Carrier Spacing Common of downlink signals in the initial access process indicates the sub-carrier spacing of SIB1/OSI/Msg2/Msg4/paging messages of initial access;
  • SSB sub-carrier offset (Ssb-Sub Carrier Offset): The number of sub-carrier intervals between the lowest sub-carrier of SSB and the PRB closest to it;
  • DMRS-Type A-Position Configuration of PDSCH DMRS reference signal
  • PDCCH-ConfigSIB1 Configuration of SIB1_PDCCH, including control resource set (CORESET) and search space configuration;
  • Cell barring information RRC access control parameter, indicating whether the cell is barred
  • Intra-FreqReselection RRC access control parameter that indicates whether intra-frequency reselection is allowed in the cell.
  • PBCH In addition to MIB information, PBCH also contains some other information, as shown in Figure 3.
  • the bits contained in PBCH are:
  • A+1 ⁇ A+4 4 bits of frame number information are added. After obtaining the lower 4 bits of the system frame number, combined with the 6 bits of the system frame number in the previous MIB, the entire 10 bits of frame number information can be obtained;
  • A+5 Add a half-frame information bit, which indicates whether it is the first half-frame or the second half-frame;
  • the UE needs to use initial search when it is turned on or when switching cells. Its purpose is to obtain downlink synchronization of the cell:
  • Time synchronization detection (detecting the synchronization signal position, cyclic prefix (CP) type, cell ID number, etc.);
  • Frequency synchronization detection using PSS, SSS and other signals to estimate the frequency offset and then correct the frequency offset.
  • the UE Only when the UE enters the coverage area of a cell can it search for the cell.
  • the UE not only needs to search for cells when it is turned on, but also continuously searches for cells (measures SSB) to synchronize and estimate the reception quality of the cell in order to support mobility, so as to decide whether to perform handover (when the UE is in RRC_connected state) or cell reselection (when the UE is in RRC_IDLE state or RRC_INACTIVE state).
  • NR defines a total of 1008 different PCI Among them, PSS corresponds to There are three candidate m sequences, carrying some cell ID information. SSS corresponds to There are 336 candidate m-sequences, carrying some cell ID information.
  • a UE In a mobile communication network, when a UE wants to switch to a cell with a stronger signal or add a new carrier (CC) in carrier aggregation, it needs to measure the signal strength or quality (matrix, i.e., Reference Signal Received Power (RSRP) or Reference Signal Receiving Quality (RSRQ)) of the serving cell and the neighboring cell. This requires the UE to make timely and accurate measurements to maintain the quality of the wireless link.
  • matrix i.e., Reference Signal Received Power (RSRP) or Reference Signal Receiving Quality (RSRQ)
  • the NR network introduces SS/PBCH blocks (SSBs) composed of synchronization signals (SS) and physical broadcast channels (PBCH) as cell (signal) measurement objects.
  • SSBs SS/PBCH blocks
  • PBCH physical broadcast channels
  • the period of the cell SSB can be configured to 5, 10, 20, 40, 80 or 160ms; the UE does not need to perform periodic measurements on the cell signal because the SSB can configure the appropriate measurement period according to the channel conditions. This can help avoid unnecessary measurements and reduce UE energy consumption.
  • the protocol introduces an SSB-based RRM measurement time configuration window (called the SMTC window), and the UE obtains the measurement period and time of SSBs through the SMTC.
  • the common information of the serving cell (ServingCellConfigCommon) is used to configure the SSB for the UE.
  • the SSBs to be measured within an SSB burst, the period of the SSB and the transmit power are configured for the UE through a bitmap.
  • the SSB RRC configures the measurement time configuration of the synchronization signal block (SSB-Measurement Timing Configuration, SSB-MTC).
  • SSB-MTC synchronization signal block
  • the UE should measure the SSB.
  • the period and offset of the SSB measurement are configured here. The period ranges from 5 subframes to 160 subframes, and the measurement time length in each period ranges from 1 subframe to 5 subframes.
  • SMTC is configured for each frequency point, that is, if the frequency band of two adjacent cells is the same, then their SMTC configurations are the same. If a cell wants to modify the SMTC configuration, the configuration of the SMTC in the same frequency band will also be changed.
  • SMTC2 In order to match different synchronization signal block periods of different cells, two sets of SMTC parameters are allowed to be configured for a given cell measurement during connected state co-frequency measurement, namely SMTC2.
  • SMTC2 In addition to the basic SMTC configuration, a more dense measurement window can be configured for use by the serving cell and the cells indicated in the specific cell list.
  • the frequency bands of SMTC2 and SMTC1 are the same. If SMTC2 is configured, only a small number of cells are measured according to SMTC2. The reason for introducing SMTC2 is based on the coverage issues of different cells (such as small cells). Moreover, the period of SMTC1 must be a multiple of the period of SMTC2.
  • the reporting configuration includes:
  • Trigger reporting principle penalty rules for periodic reporting or a series of events
  • Reference Signal (RS) type SSB or Channel State Information-Reference Signal (CSI-RS);
  • RS Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • Measurement report format for example, the maximum number of cells and beams reported.
  • the network can configure the UE to report the following information based on SSB:
  • DRS dedicated reference signal
  • the UE will measure the surrounding cells to estimate the signal quality of the cell.
  • the protocol stipulates that the UE needs to report the measured cell ID, SSB index and other information to the serving cell to better manage mobility. Since the SSB index information is obtained in PBCH and PBCH-DMRS. Therefore, in this case, for energy-saving base stations (excluding PBCH) that send light SSB, how to obtain the SSB index information of the cell needs to be solved.
  • the embodiment of the present application provides an SSB measurement method, in which a UE can detect first information sent by an energy-saving base station to perform SSB measurement of an energy-saving cell, wherein the first information includes at least one of the following: a first signal, wherein the first signal is composed of a second signal and a payload, wherein the first signal explicitly carries SSB index information, and wherein the second signal includes at least one of the following: PSS and SSS; a third signal, wherein the third signal is composed of PSS and SSS, wherein the third signal implicitly carries SSB index information; and a fourth signal, wherein the fourth signal includes at least one of the following: PSS and SSS, wherein PSS and/or SSS are at different frequency domain positions.
  • this solution when the UE detects the SSB sent by the energy-saving base station, the UE can detect the first information sent by the energy-saving base station, wherein the first information explicitly or implicitly carries SSB index information, that is, the UE can obtain the SSB index information from the detected first information to perform SSB measurement of the energy-saving cell. Therefore, this solution enables the UE to obtain the required SSB index information in an explicit or implicit manner under light SSB, thereby facilitating the UE to perform SSB measurement and reporting.
  • the present application embodiment provides an SSB measurement method
  • Figure 4 shows a flow chart of an SSB measurement method provided by the present application embodiment.
  • the SSB measurement method provided by the present application embodiment may include the following steps 201 and 202.
  • Step 201 UE detects first information sent by an energy-saving base station.
  • the first information may include at least one of the following:
  • a first signal wherein the first signal is composed of a second signal and a payload, the first signal explicitly carries SSB index information, and the second signal includes at least one of the following: a PSS and an SSS;
  • a third signal, the third signal is composed of a PSS and an SSS, and the third signal implicitly carries SSB index information;
  • a fourth signal, the fourth signal includes at least one of the following: PSS and SSS; wherein the PSS and/or SSS are at different frequency domain positions.
  • the UE can detect the first information sent by the energy-saving base station based on the SSB information (ie, SSB configuration) configured for the UE by the serving cell where the UE is located.
  • SSB information ie, SSB configuration
  • the energy-saving base station (the base station in the energy-saving mode) will send SSB information (light SSB), and the UE can detect the SSB information sent by the energy-saving base station (such as the neighboring energy-saving base station).
  • the SSB index information is obtained explicitly, implicitly or indirectly from the first information by detecting the SSB information configured for the UE according to the serving cell where the UE is located, that is, by adding a payload to the symbol of the light SSB (second signal) to explicitly carry the SSB index information, and/or, implicitly carrying the SSB index information through a third signal, and/or, indirectly obtaining the SSB index information through the frequency domain position of the PSS and/or SSS.
  • the above-mentioned SSB configuration may include at least one of the following: SSB identifier, SSB period, SSB time domain position, SSB frequency domain position, SMTC configuration, index configuration of actual SSB transmission, etc.
  • the SSB sent by the energy-saving base station is a light SSB.
  • the light SSB may include at least one of the following: PSS and SSS.
  • PSS and/or SSS at different frequency domain positions means that PSS and/or SSS are at completely different or partially different frequency domain positions.
  • PSS at different frequency domain positions means that PSS can occupy at least one different frequency domain position.
  • SSS at different frequency domain positions means that SSS can occupy at least one different frequency domain position.
  • the above payload may include DMRS.
  • the above-mentioned payload is on the same symbol as PSS and/or SSS.
  • the above-mentioned payload may be on two symbols, and the two symbols include a symbol where the PSS is located and a symbol where the SSS is located.
  • the above-mentioned SSB index information can be carried by the payload alone, and the payload does not include DMRS.
  • the above-mentioned SSB index information can be carried by DMRS alone.
  • the above-mentioned SSB index information can be carried by a payload, and the payload includes DMRS.
  • a payload is added to the symbol of the light SSB (PSS and/or SSS), and the payload may be separate data or data + DMRS.
  • the SSB index information may be carried by the data alone, by the DMRS alone, or by the data + DMRS.
  • the PSS and/or SSS at different frequency domain positions are: the energy-saving base station pre-configures the PSS and/or SSS at different frequency domain positions of the energy-saving cell, and the PSS and/or SSS at different frequency domain positions have different index information or index group information.
  • the corresponding relationship between the frequency domain position of the energy-saving cell and the PSS and/or SSS is obtained by the UE through Radio Resource Control (RRC) signaling or downlink signal.
  • RRC Radio Resource Control
  • the above-mentioned RRC signaling or downlink signal is sent to the UE by the serving cell where the UE is located.
  • PSS and/or SSS have the following three schemes at different frequency domain positions:
  • the energy-saving base station pre-configures the PSS at different frequency domain positions of the energy-saving cell, and the PSS at different frequency domain positions have different index information or index group information;
  • the energy-saving base station pre-configures SSS at different frequency domain locations in the energy-saving cell, and
  • the SSS has different index information or index group information
  • the energy-saving base station pre-configures the PSS and SSS at different frequency domain positions of the energy-saving cell, and the PSS and SSS at different frequency domain positions have different index information or index group information.
  • the above-mentioned PSS and/or SSS may be on different synchronization grids (sync rasters) at different frequency domain positions.
  • the solution here is to indirectly obtain the SSB index information by associating the SSB index information with the frequency domain position (for example, the position of the synchronization grid).
  • the energy-saving base station can pre-configure PSS and/or SSS at different frequency domain positions, and the PSS and/or SSS at different frequency domain positions have different indexes or index groups.
  • the serving base station informs the UE of the correspondence between the frequency domain position of the energy-saving cell and the PSS and/or SSS through RRC signaling or downlink signals.
  • the UE performs blind detection at different frequency domain positions, and obtains the SSB index information based on the correspondence between the frequency domain position of the energy-saving base station informed by the serving base station and the PSS and/or SSS.
  • the energy-saving base station can configure the SSB index corresponding to the synchronization grid 100 to be 0; the energy-saving base station can configure the SSB index corresponding to the synchronization grid 101 to be 1; the energy-saving base station can configure the SSB index corresponding to the synchronization grid 102 to be 2; the energy-saving base station can configure the SSB index corresponding to the synchronization grid 103 to be 3.
  • the serving cell informs the UE of these corresponding relationships so that the UE detects the SSB of the energy-saving base station on different synchronization grids. If the SSB is detected on the synchronization grid 101, it means that the index of the SSB is 1, and if the SSB is detected on the synchronization grid 102, it means that the index of the SSB is 2.
  • the SSB index information is explicitly carried by adding a payload to the symbol of the light SSB. And/or, the SSB index information is implicitly determined by the correspondence between the sub-cell identifier and the SSB index information, and multiple sub-cell identifiers correspond to the same main cell identifier. And/or, the SSB index information is indirectly obtained by associating the SSB index information with the frequency domain position.
  • Step 202 The UE performs SSB measurement of the energy-saving cell according to the first information.
  • the energy-saving cell mentioned above is a service cell of an energy-saving base station.
  • the energy-saving cell corresponds to at least one sub-cell ID (e.g., sub-PCI).
  • the rule that the third signal implicitly carries SSB index information includes: each sub-cell ID in part or all of the at least one sub-cell ID corresponds to one SSB index information.
  • all sub-cell identifiers among the above-mentioned at least one sub-cell identifier correspond to the same main cell identifier (Pcell ID).
  • the energy-saving cell corresponds to at least one sub-cell identifier, which can be understood as: the energy-saving cell includes at least one sub-cell, the identifier of the at least one sub-cell is called at least one sub-cell identifier, and each sub-cell corresponds to a sub-cell identifier.
  • the at least one sub-cell identifier is identified by different PSS and/or SSS. Obtained. That is, through different as well as Different sub-cell identifiers are obtained.
  • the at least one sub-cell identifier is predefined by a protocol or preconfigured by a base station.
  • the at least one sub-cell identifier is configured by a serving cell where the UE is located and notified to the UE.
  • the light SSB includes PSS and SSS. That is, the UE can obtain the sub-cell identifier by decoding the PSS and SSS.
  • the sub-cell identity can be obtained through different PSS and/or SSS sequences. as well as Different sub-cell identifiers are obtained. All sub-cell identifiers in a cell correspond to the same primary cell identifier. At the same time, different sub-cell identifiers in a cell correspond to different SSB indexes.
  • At least one sub-cell identifier includes sub-cell identifiers 0, 1, 2, and 3, which correspond to SSB index 0, 1, 2, and 3 of cell 1, and the corresponding PCI of cell 1 is 100.
  • sub-cell identifiers 0, 1, 2, and 3 correspond to SSB index 0, 1, 2, and 3 of cell 1 one by one, that is, sub-cell identifier 0 corresponds to SSB index 0 of cell 1
  • sub-cell identifier 1 corresponds to SSB index 1 of cell
  • sub-cell identifier 2 corresponds to SSB index 2 of cell 1
  • sub-cell identifier 3 corresponds to SSB index 3 of cell 1.
  • At least one sub-cell identifier includes sub-cell identifiers 4, 5, 6, and 7, and these sub-cell identifiers 4, 5, 6, and 7 correspond to SSB indexes 0, 1, 2, and 3 of cell 2, and the PCI of the corresponding cell 2 is 101.
  • the sub-cell identifiers 4, 5, 6, and 7 correspond to SSB indexes 0, 1, 2, and 3 of cell 2 one by one.
  • At least one sub-cell identifier includes sub-cell identifiers 0, 1, 2, 3, and 4.
  • Sub-cell identifiers 0, 1, 2, and 3 correspond to SSBs 0, 1, 2, and 3 of cell 1.
  • Sub-cell identifier 4 does not correspond to an SSB, but only to a main cell identifier.
  • each SSB index information corresponds to a sub-cell identifier, or a sub-cell identifier group.
  • sub-cell identifiers 0, 1, 2, 3 correspond to SSB 0, 1, 2, 3, respectively; or, sub-cell identifiers 0, 1 correspond to SSB 0, sub-cell identifiers 2, 3 correspond to SSB 1, and sub-cell identifiers 4, 5 correspond to SSB 2.
  • each sub-cell identifier in the above-mentioned part or all of the sub-cell identifiers corresponds to an SSB index information, including any of the following:
  • the serving cell where the UE is located directly indicates that each sub-cell identifier in some or all sub-cell identifiers corresponds to one SSB index information respectively; that is, the serving cell where the UE is located directly indicates which sub-cell identifiers of the energy-saving cell correspond to the SSB index information of the energy-saving cell;
  • the UE adopts the rules configured by the serving cell where the UE is located, determines at least one beam index of the energy-saving cell based on at least one sub-cell identifier, and obtains each sub-cell identifier in some or all of the sub-cell identifiers corresponding to an SSB index information based on the at least one beam index.
  • a correspondence between each sub-cell identifier in the above-mentioned part or all of the sub-cell identifiers and an SSB index information is predefined by a protocol or preconfigured by a base station.
  • the serving cell where the UE is located directly indicates: sub-cell identifiers 0, 1, 2, 3 correspond to SSB index 0, 1, 2, 3 of cell 1 respectively; sub-cell identifiers 4, 5, 6, 7 correspond to SSB index 0, 1, 2, 3 of cell 2 respectively.
  • the UE determines at least one beam index of the energy-saving cell by using the sub-cell ID mod N method according to the number of beams N of the energy-saving cell.
  • sub-cell identifiers 4 5, 6, and 7.
  • sub-cell ID mod N(4) 0, 1, 2, 3. Therefore, sub-cell identifiers 4, 5, 6, and 7 correspond to SSB index 0, 1, 2, and 3, respectively.
  • the UE after detecting the sub-cell identifier, the UE can obtain the corresponding cell PCI and SSB index.
  • all sub-cell identifiers in the at least one sub-cell identifier correspond to the same primary cell identifier, including any of the following:
  • the serving cell where the UE is located directly indicates that all sub-cell identifiers correspond to the same main cell identifier; that is, the serving cell where the UE is located directly indicates the sub-cell identifier of the energy-saving cell and the main cell identifier of the energy-saving cell;
  • a sub-cell identifier with a fixed value among all sub-cell identifiers is used as the main cell identifier by default;
  • the UE adopts the rule configured by the serving cell where the UE is located, and the value determined based on all sub-cell identifiers as the primary cell identifier.
  • the correspondence between all sub-cell identifiers in the at least one sub-cell identifier and the same primary cell identifier is predefined by a protocol or preconfigured by a base station.
  • the serving cell where the UE is located directly indicates that: the PCI of cell 1 corresponding to sub-cell identifiers 0, 1, 2, and 3 is 100; the PCI of cell 1 corresponding to sub-cell identifiers 4, 5, 6, and 7 is 110.
  • the sub-cell identifier with a fixed value may be the first or last sub-cell identifier among all the sub-cell identifiers.
  • the sub-cell identifier 4 is defaulted to be the cell PCI (ie, the primary cell identifier).
  • sub-cell ID 4 is the cell PCI.
  • step 202 may be specifically implemented through the following step 202a.
  • Step 202a When the UE obtains the SSB index information directly or indirectly according to the first information, the UE performs SSB measurement of the energy-saving cell according to the SSB index information.
  • the UE can detect the SSB indicated by the SSB index information in the energy-saving cell based on the SSB index information, and perform measurements on these SSBs, obtain and report the measurement results to the service cell where the UE is located, so that the service cell can perform related operations based on the measurement results, such as triggering the UE to perform cell switching, signal interference processing, etc.
  • step 202 may be specifically implemented through the following step 202b.
  • Step 202b When the UE cannot directly or indirectly obtain the SSB index information based on the first information, the UE adopts the first rule to perform SSB measurement of the energy-saving cell.
  • the first rule is that the UE measures the RSRP of the SSB at at least one time and reports the measurement result.
  • UE adopts the first rule to perform SSB measurement of the energy-saving cell in the above step 202b can be specifically implemented through the following step 202b1 or step 202b2.
  • Step 202b1 The UE measures the RSRP of the SSB of the energy-saving cell at multiple times to obtain a first measurement result.
  • the first measurement result is obtained based on the maximum RSRP among the RSRPs obtained in each measurement.
  • the UE may measure the RSRP of the light SSB at multiple times, and take the maximum RSRP measured each time for processing.
  • the processing may be: summing and averaging multiple maximum RSRPs to obtain a first measurement result; or performing signal stability evaluation on multiple maximum RSRPs to take the RSRP with the best signal stability as the first measurement result.
  • Step 202b2 The UE measures the RSRP of the SSB of the energy-saving cell at the first moment, and performs SSB measurement of the energy-saving cell at the position in the SSB period corresponding to the SSB with the maximum RSRP.
  • the UE can measure the RSRS of the light SSB at the first moment, find the SSB with the maximum RSRP, and then detect the SSB at the position corresponding to the SSB with the maximum RSRP.
  • the UE receives 4 light SSBs at the first moment and measures that the RSRP of the second SSB (SSB 2) is the best. If the SSB period is 20ms, the UE continues to measure the RSRP of SSB2 20ms after SSB 2, processes the results of multiple measurements at layer 3, and reports the processing results to the serving cell where the UE is located.
  • SSB 2 the second SSB
  • the UE when the UE cannot obtain the SSB index information directly or indirectly, the UE can measure the RSRP of the SSB at multiple times or the first time according to the first rule, and report the measurement results to the service cell where the UE is located, so that the service cell performs related operations based on the measurement results.
  • An embodiment of the present application provides an SSB measurement method, in which a UE can detect first information sent by an energy-saving base station to perform SSB measurement of an energy-saving cell, the first information including at least one of the following: a first signal, the first signal consisting of a second signal and a payload, the first signal explicitly carrying SSB index information, the second signal including at least one of the following: PSS and SSS; a third signal, the third signal consisting of PSS and SSS, the third signal implicitly carrying SSB index information; a fourth signal, the fourth signal including at least one of the following: PSS and SSS, PSS and/or SSS at different frequency domain positions.
  • the UE when detecting the SSB information sent by an energy-saving base station, the UE can detect the first information sent by the energy-saving base station, the first information explicitly or implicitly carrying SSB index information, that is, the UE can obtain the SSB index information from the detected first information to perform SSB measurement of the energy-saving cell. Therefore, this solution enables the UE to obtain the required SSB index information in an explicit or implicit manner under light SSB, thereby facilitating the UE to perform SSB measurement and reporting.
  • the SSB measurement method provided in the embodiment of the present application may be performed by an SSB measurement device.
  • the SSB measurement device provided in the embodiment of the present application is described by taking the UE performing the SSB measurement method as an example.
  • FIG8 is a schematic diagram of a possible structure of an SSB measurement device involved in an embodiment of the present application, and the SSB measurement device is applied to a UE.
  • an SSB measurement device 70 may include: a detection module 71 and an execution module 72 .
  • the detection module 71 is used to detect the first information sent by the energy-saving base station.
  • the execution module 72 is used to perform SSB measurement of the energy-saving cell according to the first information detected by the detection module 71, and the energy-saving cell is the service cell of the energy-saving base station.
  • the first information includes at least one of the following:
  • a first signal wherein the first signal is composed of a second signal and a payload, the first signal explicitly carries SSB index information, and the second signal includes at least one of the following: a PSS and an SSS;
  • a third signal, the third signal is composed of a PSS and an SSS, and the third signal implicitly carries SSB index information;
  • a fourth signal, the fourth signal includes at least one of the following: PSS and SSS; wherein the PSS and/or SSS are at different frequency domain positions.
  • An embodiment of the present application provides an SSB measurement device.
  • the SSB measurement device can detect according to first information configured in a serving cell, and the first information explicitly or implicitly carries SSB index information, that is, the UE can obtain the SSB index information from the detected first information to perform SSB measurement of the energy-saving cell. Therefore, this solution enables the SSB measurement device to obtain the required SSB index information in an explicit or implicit manner under light SSB, thereby facilitating the SSB measurement device to perform SSB measurement and reporting.
  • the above payload includes DMRS.
  • the above-mentioned payload and the PSS and/or SSS are on the same symbol; or, the above-mentioned payload is on two symbols, and the two symbols include the symbol where the PSS is located and the symbol where the SSS is located.
  • the above-mentioned SSB index information is carried by a payload alone, and the payload does not include DMRS; or, the above-mentioned SSB index information is carried by a payload alone; or, the above-mentioned SSB index information is carried by a payload, and the payload includes DMRS.
  • the energy-saving cell corresponds to at least one sub-cell identifier.
  • the rule that the third signal implicitly carries the SSB index information includes: each sub-cell identifier in part or all of the at least one sub-cell identifier corresponds to an SSB index information; wherein all the sub-cell identifiers in the at least one sub-cell identifier correspond to the same main cell identifier.
  • the at least one sub-cell identifier is obtained through different PSSs and/or SSSs.
  • each sub-cell identifier in the above-mentioned part or all of the sub-cell identifiers is respectively Corresponds to an SSB index information, including any of the following:
  • Each sub-cell identifier in some or all sub-cell identifiers directly indicated by the serving cell where the UE is located corresponds to one SSB index information
  • the UE adopts the rules configured by the serving cell where the UE is located, determines at least one beam index of the energy-saving cell based on at least one sub-cell identifier, and obtains each sub-cell identifier in some or all of the sub-cell identifiers corresponding to an SSB index information based on the at least one beam index.
  • all the sub-cell identifiers correspond to the same primary cell identifier, including any of the following:
  • the serving cell where the UE is located directly indicates that all sub-cell identifiers correspond to the same primary cell identifier
  • a sub-cell identifier with a fixed value among all sub-cell identifiers is used as the main cell identifier by default;
  • the UE adopts the rule configured by the serving cell where the UE is located, and the value determined based on all sub-cell identifiers as the primary cell identifier.
  • the above-mentioned PSS and/or SSS at different frequency domain positions are: the energy-saving base station pre-configures PSS and/or SSS at different frequency domain positions of the energy-saving cell, and the PSS and/or SSS at different frequency domain positions have different index information or index group information; wherein, the correspondence between the frequency domain position of the energy-saving cell and the PSS and/or SSS is obtained by the UE through RRC signaling or downlink signal.
  • the execution module is specifically used to:
  • the UE When the UE obtains the SSB index information directly or indirectly according to the first information, performing SSB measurement of the energy-saving cell according to the SSB index information;
  • the first rule is adopted to perform SSB measurement of the energy-saving cell.
  • the first rule is that the UE measures the RSRP of the SSB at at least one time and reports the measurement result.
  • the execution module is specifically used for any of the following:
  • the RSRP of the SSB of the energy-saving cell is measured at the first moment, and the SSB measurement of the energy-saving cell is performed at a position in the SSB period corresponding to the SSB of the maximum RSRP.
  • the SSB measurement device provided in the embodiment of the present application can implement each process implemented by the UE in the above method embodiment and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the SSB measurement device in the embodiment of the present application may be a UE, such as a UE with an operating system, or a component in the UE, such as an integrated circuit or a chip.
  • the UE may be a terminal, or may be other devices other than a terminal.
  • the UE may include but is not limited to the types of UE 11 listed above, and other devices may be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the embodiment of the present application further provides a communication device 5000, including a processor 5001 and a memory 5002, the memory 5002 stores programs or instructions that can be executed on the processor 5001.
  • the communication device 5000 is a UE
  • the program or instruction is executed by the processor 5001 to implement the various steps of the above-mentioned UE side method embodiment, and can achieve the same technical effect. To avoid repetition, it is not repeated here.
  • the embodiment of the present application also provides a UE, including a processor and a communication interface, the processor is used to detect the first information sent by the energy-saving base station; and according to the first information, perform SSB measurement of the energy-saving cell, which is the service cell of the energy-saving base station.
  • the first information includes at least one of the following: a first signal, the first signal is composed of a second signal and a payload, the first signal explicitly carries SSB index information, the second signal includes at least one of the following: PSS and SSS; a third signal, the third signal is composed of PSS and SSS, and the third signal implicitly carries SSB index information; a fourth signal, the fourth signal includes at least one of the following: PSS and SSS, PSS and/or SSS are at different frequency domain positions.
  • This UE embodiment corresponds to the above-mentioned UE side method embodiment, and each implementation process and implementation method of the above-mentioned method embodiment can be applied to this UE embodiment, and can achieve the same technical effect.
  • FIG10 is a schematic diagram of the hardware structure of a UE implementing an embodiment of the present application.
  • the UE 7000 includes but is not limited to: a radio frequency unit 7001, a network module 7002, an audio output unit 7003, an input unit 7004, a sensor 7005, a display unit 7006, a user input unit 7007, an interface unit 7008, a memory 7009 and at least some of the components of the processor 7010.
  • UE 7000 may also include a power source (such as a battery) for supplying power to various components, and the power source may be logically connected to processor 7010 through a power management system, so as to manage charging, discharging, and power consumption through the power management system.
  • a power source such as a battery
  • the UE structure shown in FIG10 does not constitute a limitation on the UE, and the UE may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 7004 may include a graphics processing unit (GPU) 70041 and a microphone 70042, and the graphics processor 70041 processes the image data of the static picture or video obtained by the image capture device (such as a camera) in the video capture mode or the image capture mode.
  • the display unit 7006 may include a display panel 70061, and the display panel 70061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 7007 includes a touch panel 70071 and at least one of other input devices 70072.
  • the touch panel 70071 is also called a touch screen.
  • the touch panel 70071 may include two parts: a touch detection device and a touch controller.
  • Other input devices 70072 may include, but are not limited to, a physical keyboard, function keys (such as a volume control key, a switch key, etc.), a trackball, a mouse, and a joystick, which will not be repeated here.
  • the RF unit 7001 can transmit the data to the processor 7010 for processing; in addition, the RF unit 7001 can send uplink data to the network side device.
  • the RF unit 7001 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 7009 can be used to store software programs or instructions and various data.
  • the memory 7009 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 7009 may include a volatile memory or a non-volatile memory, or the memory 7009 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 7009 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 7010 may include one or more processing units; optionally, the processor 7010 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 7010.
  • the processor 7010 is configured to detect first information sent by the energy-saving base station and perform SSB measurement of the energy-saving cell according to the first information, where the energy-saving cell is a service cell of the energy-saving base station.
  • the first information includes at least one of the following:
  • a first signal wherein the first signal is composed of a second signal and a payload, the first signal explicitly carries SSB index information, and the second signal includes at least one of the following: a PSS and an SSS;
  • a third signal, the third signal is composed of a PSS and an SSS, and the third signal implicitly carries SSB index information;
  • a fourth signal, the fourth signal includes at least one of the following: PSS and SSS; wherein the PSS and/or SSS are at different frequency domain positions.
  • An embodiment of the present application provides a UE.
  • the UE detects SSB information sent by an energy-saving base station
  • the UE can detect first information sent by the energy-saving base station.
  • the first information explicitly or implicitly carries SSB index information, that is, the UE can obtain the SSB index information from the detected first information to perform SSB measurement of the energy-saving cell. Therefore, this solution enables the UE to obtain the required SSB index information in an explicit or implicit manner under light SSB, thereby facilitating the UE to perform SSB measurement and reporting.
  • the UE provided in the embodiment of the present application can implement each process implemented by the UE in the above method embodiment and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned SSB measurement method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the communication device described in the above embodiment.
  • the readable storage medium includes a computer readable storage medium, such as a computer read-only memory ROM, a random access memory RAM, a magnetic disk or an optical disk.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiments of the present application further provide a computer program/program product, which is stored in a storage medium and is executed by at least one processor to implement the various processes of the above-mentioned method embodiments and can achieve the same technical effect. To avoid repetition, it will not be described here.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种SSB测量方法、装置、用户设备及存储介质,属于通信技术领域,本申请实施例的SSB测量方法包括:UE检测节能基站发送的第一信息;UE根据第一信息,执行节能小区的SSB测量,该节能小区为节能基站的服务小区。其中,第一信息包括以下至少一项:第一信号,第一信号由第二信号和有效载荷组成,第一信号中显式携带有SSB索引信息,第二信号包括以下至少一项:PSS和SSS;第三信号,第三信号由PSS和SSS组成,第三信号中隐式携带有SSB索引信息;第四信号,第四信号包括以下至少一项:PSS和SSS;其中,PSS和/或SSS在不同的频域位置上。

Description

SSB测量方法、装置、用户设备及存储介质
相关申请的交叉引用
本申请主张在2022年11月03日在中国提交的申请号为202211371982.6的中国专利的优先权,其全部内容通过引用包含于此。
技术领域
本申请属于通信技术领域,具体涉及一种SSB测量方法、装置、用户设备及存储介质。
背景技术
对于处于连接态的用户设备(User Equipment,UE),会对周边的小区进行测量,从而估计该小区的信号质量。在此过程中,协议规定UE需要将测量的小区标识以及同步信号块(Synchronization Signal Block,SSB)索引(index)等信息上报给服务小区,从而更好地进行移动性的管理。
然而,由于SSB索引是在物理广播信道(Physical Broadcast Channel,PBCH)以及PBCH-解调参考信号(Demodulation Reference Signal,DMRS)中获得的,而处于节能模式的基站(以下简称节能基站)不包含PBCH,因此在这种情况下,对于发送light SSB的节能基站(不包含PBCH),UE如何获得小区的SSB index是亟待解决的问题。
发明内容
本申请实施例提供一种SSB测量方法、装置、用户设备及存储介质,能够解决对于发送light SSB的节能基站,UE如何获得小区的SSB index的问题。
第一方面,提供了一种SSB测量方法,该方法包括:UE检测节能基站发送的第一信息;UE根据第一信息,执行节能小区的SSB测量,该节能小区为节能基站的服务小区。其中,第一信息包括以下至少一项:
第一信号,第一信号由第二信号和有效载荷组成,第一信号中显式携带有SSB索引信息,第二信号包括以下至少一项:主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS);
第三信号,第三信号由PSS和SSS组成,第三信号中隐式携带有SSB索引信息;
第四信号,第四信号包括以下至少一项:PSS和SSS;其中,PSS和/或SSS在不同的频域位置上。
第二方面,提供了一种SSB测量装置,应用于UE,该SSB测量装置包括:检测模块和执行模块。检测模块,用于检测节能基站发送的第一信息。执行模块,用于根 据检测模块检测的第一信息,执行节能小区的SSB测量,该节能小区为节能基站的服务小区。其中,第一信息包括以下至少一项:
第一信号,第一信号由第二信号和有效载荷组成,第一信号中显式携带有SSB索引信息,第二信号包括以下至少一项:PSS和SSS;
第三信号,第三信号由PSS和SSS组成,第三信号中隐式携带有SSB索引信息;
第四信号,第四信号包括以下至少一项:PSS和SSS;其中,PSS和/或SSS在不同的频域位置上。
第三方面,提供了一种UE,该UE包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种UE,包括处理器及通信接口,其中,所述处理器用于检测节能基站发送的第一信息;并根据第一信息,执行节能小区的SSB测量,该节能小区为节能基站的服务小区。其中,第一信息包括以下至少一项:
第一信号,第一信号由第二信号和有效载荷组成,第一信号中显式携带有SSB索引信息,第二信号包括以下至少一项:PSS和SSS;
第三信号,第三信号由PSS和SSS组成,第三信号中隐式携带有SSB索引信息;
第四信号,第四信号包括以下至少一项:PSS和SSS;其中,PSS和/或SSS在不同的频域位置上。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的SSB测量方法的步骤。
在本申请实施例中,UE可以检测节能基站发送的第一信息,以执行节能小区的SSB测量,该第一信息包括以下至少一项:第一信号,第一信号由第二信号和有效载荷组成,第一信号中显式携带有SSB索引信息,第二信号包括以下至少一项:PSS和SSS;第三信号,第三信号由PSS和SSS组成,第三信号中隐式携带有SSB索引信息;第四信号,第四信号包括以下至少一项:PSS和SSS,PSS和/或SSS在不同的频域位置上。本方案中,UE在检测节能基站发送的SSB信息时,可以检测节能基站发送的第一信息,该第一信息中显式或隐式携带了SSB索引信息,即UE可以从检测的第一信息中获得SSB索引信息,以执行节能小区的SSB测量,因此本方案实现 了在light SSB下通过显式或隐式的方式使得UE获得所需要的SSB索引信息,从而便于UE进行SSB测量及上报。
附图说明
图1是本申请实施例提供的一种无线通信系统的架构示意图;
图2是相关技术提供的SSB的结构示意图;
图3是相关技术提供的PBCH中包含的比特的实例示意图;
图4是本申请实施例提供的一种SSB测量方法的流程图之一;
图5是本申请实施例提供的一种SSB的符号上添加有效载荷的实例示意图;
图6是本申请实施例提供的一种SSB测量方法的流程图之二;
图7是本申请实施例提供的一种SSB测量方法的流程图之三;
图8是本申请实施例提供的一种SSB测量装置的结构示意图;
图9是本申请实施例提供的一种通信设备的硬件结构示意图;
图10是本申请实施例提供的一种UE的硬件结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如 第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面对本申请实施例提供的一种SSB测量方法、装置、用户设备及存储介质中涉及的一些概念和/或术语做一下解释说明。
1、SSB结构
初始搜索的过程由SSB完成。SSB由PSS、SSS、PBCH、DMRS在4个连续的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号内组成,可以用于下行同步。
如图2所示,SSB的结构包括:PSS(NR-PSS)、SSS(NR-SSS)、PBCH(NR-PBCH)、PBCH-DMRS。其中,PSS以及SSS的功能是实现符号(symbol)级别的同步,以及完成物理层小区标识(Physical Cell Identity,PCI)的确定。PBCH包含小区的主信息块(Master Information Block,MIB)以及部分其余信息。PBCH-DMRS包含了部分SSB-index信息(低三位bits)。
2、同步栅格(Synchronization Raster)
在UE刚开机后进行小区搜索时,只能根据运营商以及UE支持的频段检测SSB 信号,进行下行时频同步。由于全局频率栅格的粒度较小导致NR-ARFCN的取值范围较大,如果直接根据全局频率栅格进行盲检,则同步时延会比较大。为了有效的降低此过程的同步时延,定义了同步栅格的概念,并通过全局同步信道号(Global Synchronization Channel Number,GSCN)来限定搜索范围。如表1所示,定义了同步栅格的范围:在0-3000MHz范围内,同步栅格为1200kHz;在3000-24250MHz范围内,同步栅格为1.44MHz;在24250-100000MHz范围内,同步栅格为17.28MHz。与NR绝对无线频率信道号(NR Absolute Radio Frequency Channel Number,NR-ARFCN)类似,GSCN同样对0-100GHz范围的频段做了定义,每个GSCN对应一个SSB的检测频点。
表1
需要说明的是,仅支持子载波间隔(Sub-Carrier Space,SCS)间隔信道栅格的工作频带的默认值为M=3。
3、PBCH
因为SSB的内部结构是协议标准化的,因此,当UE在特定的同步频点搜到同步信号后,就可以尝试对SSB进行解码。其中,SSB里面包含的最重要的信息就是MIB。其中,MIB包含:
系统帧号(System Frame Number):完整的帧号需要10bit,而MIB的有效载荷(Payload)中帧号只有高位6bit,低位的4bit在PBCH传输块中的非MIB比特中传送;
初始接入流程中下行信号的子载波间隔(Sub-Carrier Spacing Common):指示SIB1/OSI/初始接入的Msg2/Msg4/寻呼消息的子载波间隔;
SSB子载波偏移量(Ssb-Sub Carrier Offset):SSB的最低子载波和与其最近的PRB之间的子载波间隔数;
DMRS-Type A-Position:PDSCH DMRS参考信号的配置;
PDCCH-ConfigSIB1:SIB1_PDCCH的配置,包括控制资源集(CORESET)和搜索空间配置;
小区禁止信息:RRC的接入控制参数,标识该小区是否被禁止;
频内小区的小区重选信息(intra FreqReselection):RRC接入控制参数,标识小区是否允许同频重选;
spare:保留bit位。
并且,PBCH除了MIB信息还包含了一些其他信息,如图3所示,PBCH中包含的bits:
A+1~A+4:增加的是4bit帧号信息,获得系统帧号的低位4bit后,结合前MIB中系统帧号的6bit信息,就会得到整个10bit的帧号信息;
A+5:增加半帧信息bit,该bit指示是前半帧还是后半帧;
A+6~A+8:如果最大的SSB Index L=64(即F>6GHz),A+6~A+8标识SSB Index的高3位,否则,A+6:Kssb的高1位,A+7/A+8:保留bit。
4、小区搜索
UE在开机或进行小区切换时需要用到初始搜索,其目的是获得小区的下行同步:
(1)时间同步检测(检测出同步信号位置,循环前缀(Cyclic Prefix,CP)类型,小区ID号等);
(2)频率同步检测(利用PSS、SSS等信号进行频偏估计,进而对频偏进行纠正)。当然,初始搜索的一个最主要的功能是找到可以使用的网络,即UE根据其所支持的工作频段以及协议规定的同步信号快编号(GSCN)进行全网频段的盲搜。
只有进入到一个小区的覆盖范围内,UE才能搜索到该小区。UE不仅需要在开机时进行小区搜索,为了支持移动性,UE会不停的搜索小区(测量SSB),取得同步并估计该小区的接收质量,从而决定是否进行切换(handover,当UE处于RRC_connected态)或者小区重选(cell re_selection,当UE处于RRC_IDLE态或RRC_INACTIVE态)。
NR一共定义了1008个不同的PCI 其中,PSS对应为3个候选m序列,携带部分小区标识(cell ID)信息。SSS对应为336个候选m序列,携带部分cell ID信息。
5、小区测量与上报
移动通信网络中当UE要切换至信号更强的小区、在载波聚合中要添加新载波(CC)时需要测量服务小区和邻小区的信号强度或质量(矩阵,即参考信号接收功率(Reference Signal Received Power,RSRP)或参考信号接收质量(Reference Signal Receiving Quality,RSRQ)。这就要求UE的测量及时和准确,以保持无线链路质量。
NR网络中引入了利用同步信号(SS)和物理广播信道(PBCH)构成的SS/PBCH块(SSB)做为小区(信号)测量对象。一个Brust中SSB的数量取决于工作频率。例如工作频率(fc)<3GHz(FR1)时SSB为4;工作频率(fc)=3GHz(FR1)<6 GHz(FR1)时SSB为8;而当工作频率(fc)>6GHz(FR2)时SSB为64。
小区SSB的周期可配置为5,10,20,40,80或160ms;UE不需要对小区信号进行周期性测量因为SSB可以根据信道条件配置适当的测量周期。这可以帮助避免不必要的测量和减少UE的能源消耗。协议引入了基于SSB的RRM测量时间配置窗口(称为SMTC窗口),UE通过SMTC获得SSBs的测量周期和时间。
a)对于服务小区,其在服务小区的公共信息(ServingCellConfigCommon)来为UE配置SSB,首先通过比特位图(bitmap)的方式为UE配置了在一个SSB burst内需要测量的SSBs,SSB的周期和发送功率。
从时间域的角度来看SSB的RRC配置同步信号块的测量时间配置(SSB-Measurement Timing Configuration,SSB-MTC),在这些时刻UE应该去测量SSB,这里配置了SSB测量的周期和偏移量,其中周期从5subframe到160subframe,在每一个周期测量的时间长度为1subframe到5subframe不等。
b)SMTC(SSB-MTC)测量
SMTC为针对每一个频点配置的,即如果两个邻区的频段是一样的,那么他们的SMTC的配置就是一样的。如果一个小区希望修改SMTC的配置,那么与它相同频段的SMTC的配置也同样会更改。
为了匹配不同小区的不同同步信号块周期,允许连接态同频测量时配置两套SMTC参数用于给定小区测量,即SMTC2。例如,出了基本的SMTC配置外,还可以再配置一套较为密集的测量窗口供服务小区以及特定小区列表内所指示的小区利用。
SMTC2与SMTC1的频段还是一样的。如果配置了SMTC2,只有极少一部分小区是根据SMTC2来测量,引入SMTC2的原因是基于不同小区覆盖问题(比如small cell)。而且,SMTC1的周期一定要是SMTC2的周期的倍数。
c)测量上报
UE对邻区的SSB进行测量后,需要将测量后的结果发送给服务小区。其中,上报配置包括:
触发上报原则:周期性上报或一系列事件的处罚规则;
参考信号(Reference Signal,RS)类型:SSB或信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS);
测量报告形式:例如上报的小区最大数和波束数量。
其中,网络可以配置UE基于SSB上报的信息有:
每个SSB的测量结果;
每个小区的测量结果;
基于SSB Index的测量结果。
6、Light SSB
为了实现基站端的节能,提出使用处于节能模式的基站只发送专用参考信号(Dedicated Reference Signal,DRS)信息。DRS可以是现有SSB的一部分。即,可以只发送PSS以及SSS,或者,只发送PSS或SSS。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的SSB测量方法进行详细地说明。
UE会对周边的小区进行测量,从而估计该小区的信号质量。在此过程中,协议规定UE需要将测量的小区ID,以及SSB index等信息上报给服务小区,从而更好地进行移动性的管理。由于SSB index信息是在PBCH,以及PBCH-DMRS中获得的。因此,在这种情况下,对于发送light SSB的节能基站(不包含PBCH),如何获得该小区SSB index的信息是需要被解决的。
本申请实施例提供一种SSB测量方法,UE可以检测节能基站发送的第一信息,以执行节能小区的SSB测量,该第一信息包括以下至少一项:第一信号,第一信号由第二信号和有效载荷组成,第一信号中显式携带有SSB索引信息,第二信号包括以下至少一项:PSS和SSS;第三信号,第三信号由PSS和SSS组成,第三信号中隐式携带有SSB索引信息;第四信号,第四信号包括以下至少一项:PSS和SSS,PSS和/或SSS在不同的频域位置上。本方案中,UE在检测节能基站发送的SSB时,可以检测节能基站发送的第一信息,该第一信息中显式或隐式携带了SSB索引信息,即UE可以从检测的第一信息中获得SSB索引信息,以执行节能小区的SSB测量,因此本方案实现了在light SSB下通过显式或隐式的方式使得UE获得所需要的SSB索引信息,从而便于UE进行SSB测量及上报。
本申请实施例提供一种SSB测量方法,图4示出了本申请实施例提供的一种SSB测量方法的流程图。如图4所示,本申请实施例提供的SSB测量方法可以包括下述的步骤201和步骤202。
步骤201、UE检测节能基站发送的第一信息。
本申请实施例中,上述第一信息可以包括以下至少一项:
第一信号,第一信号由第二信号和有效载荷组成,第一信号中显式携带有SSB索引信息,第二信号包括以下至少一项:PSS和SSS;
第三信号,第三信号由PSS和SSS组成,第三信号中隐式携带有SSB索引信息;
第四信号,第四信号包括以下至少一项:PSS和SSS;其中,PSS和/或SSS在不同的频域位置上。
本申请实施例中,UE可以根据UE所在服务小区为UE配置的SSB信息(即SSB配置),检测节能基站发送的第一信息。
可以理解,本申请实施例中,节能基站(处于节能模式的基站)会发送SSB信息(light SSB),UE在检测节能基站(例如邻区节能基站)发送的SSB信息时,可 以根据UE所在服务小区为UE配置的SSB信息进行检测,以从第一信息中显式、隐式或间接获得SSB索引信息,即:通过在light SSB(第二信号)的符号上添加有效载荷以显式携带SSB索引信息,和/或,通过第三信号隐式携带SSB索引信息,和/或,通过PSS和/或SSS的频域位置间接获得SSB索引信息。
可选地,本申请实施例中,上述SSB配置可以包括以下至少一项:SSB的标识、SSB周期、SSB时域位置、SSB频域位置、SMTC配置、SSB实际发送的索引配置等。
需要说明的是,本申请实施例中,节能基站发送的SSB为light SSB。可选地,本申请实施例中,light SSB可以包括以下至少一项:PSS和SSS。
需要说明的是,PSS和/或SSS在不同的频域位置上是指PSS和/或SSS在完全不同或部分不同的频域位置上。PSS在不同的频域位置是指PSS可以占用至少一个不同的频域位置。SSS在不同的频域位置是指SSS可以占用至少一个不同的频域位置。
可选地,本申请实施例中,上述有效载荷中可以包括DMRS。
可选地,本申请实施例中,上述有效载荷与PSS和/或SSS在同一个符号上。
可选地,本申请实施例中,上述有效载荷可以在两个符号上,两个符号包括PSS所在符号和SSS所在符号。
可选地,本申请实施例中,上述SSB索引信息可以由有效载荷单独携带,有效载荷中不包括DMRS。
可选地,本申请实施例中,上述SSB索引信息可以由DMRS单独携带。
可选地,本申请实施例中,上述SSB索引信息可以由有效载荷携带,有效载荷中包括DMRS。
示例性地,如图5所示,在light SSB(PSS和/或SSS)的符号上添加有效载荷(payload),该有效载荷可以为单独的数据,或者由数据+DMRS构成。其中,SSB索引信息可以由数据单独携带,或者由DMRS单独携带,或者由数据+DMRS携带。
可选地,本申请实施例中,上述PSS和/或SSS在不同的频域位置上为:节能基站预先在节能小区的不同频域位置上配置PSS和/或SSS,且不同频域位置上的PSS和/或SSS具有不同的索引信息或索引组信息。其中,节能小区的频域位置与PSS和/或SSS的对应关系,由UE通过无线资源控制(Radio Resource Control,RRC)信令或下行信号获得。
可选地,本申请实施例中,上述RRC信令或下行信号由UE所在服务小区通发送给UE。
需要说明的是,上述PSS和/或SSS在不同的频域位置有以下三种方案:
(1)节能基站预先在节能小区的不同频域位置上配置PSS,且不同频域位置上的PSS具有不同的索引信息或索引组信息;
(2)节能基站预先在节能小区的不同频域位置上配置SSS,且不同频域位置上 的SSS具有不同的索引信息或索引组信息;
(3)节能基站预先在节能小区的不同频域位置上配置PSS和SSS,且不同频域位置上的PSS和SSS具有不同的索引信息或索引组信息。
可选地,本申请实施例中,上述PSS和/或SSS在不同的频域位置可以为在不同的同步栅格(sync raster)上。
可以理解,此处方案是通过SSB索引信息与频域位置(例如可以为同步栅格的位置)相关联,从而间接获得SSB索引信息。
其中,对于基站而言,节能基站可以预先在不同的频域位置上配置PSS和/或SSS,且不同频域位置上的PSS和/或SSS具有不同的索引或者索引组。服务基站通过RRC信令或者下行信号将节能小区的频域位置与PSS和/或SSS的对应关系告知给UE。
对于UE而言,UE在不同的频域位置上进行盲检,并根据服务基站告知的节能基站的频域位置与PSS和/或SSS的对应关系,得到SSB索引信息。
示例性地,节能基站可以配置同步栅格100对应的SSB index为0;节能基站可以配置同步栅格101对应的SSB index为1;节能基站可以配置同步栅格102对应的SSB index为2;节能基站可以配置同步栅格103对应的SSB index为3。服务小区将这些对应关系告知给UE,以使得UE在不同的同步栅格上对节能基站的SSB进行检测。如果在同步栅格101上检测到了SSB,则说明该SSB的index为1,如果在同步栅格102上检测到了SSB,则说明该SSB的index为2。
可以理解,通过在light SSB的符号上添加有效载荷,以显式携带SSB索引信息。和/或,通过子小区标识与SSB索引信息相对应,且多个子小区标识对应同一个主小区标识的方式隐式确定SSB索引信息。和/或,通过SSB索引信息与频域位置相关联,从而间接获得SSB索引信息。
步骤202、UE根据第一信息,执行节能小区的SSB测量。
本申请实施例中,上述该节能小区为节能基站的服务小区。
可选地,本申请实施例中,上述节能小区对应至少一个子小区标识(sub-cell ID,例如sub-PCI)。上述第三信号中隐式携带有SSB索引信息的规则包括:至少一个子小区标识中部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应。
其中,上述至少一个子小区标识中的所有子小区标识对应同一个主小区标识(Pcell ID)。
需要说明的是,节能小区对应至少一个子小区标识可以理解为:节能小区包括至少一个子小区,该至少一个子小区的标识称为至少一个子小区标识,每个子小区分别对应一个子小区标识。
可选地,本申请实施例中,上述至少一个子小区标识通过不同的PSS和/或SSS 获得。即通过不同的以及得到不同的子小区标识。
可选地,本申请实施例中,上述至少一个子小区标识由协议预定义或基站预配置。
可选地,本申请实施例中,上述上述至少一个子小区标识由UE所在服务小区配置并告知给UE。
可选地,一种实施方式,light SSB包括PSS以及SSS。即UE通过解到PSS以及SSS可以得到子小区标识。
其中,子小区标识可以通过不同的PSS和/或SSS序列获得。即通过不同的以及得到不同的子小区标识。而一个小区内的所有子小区标识对应同一个主小区标识。同时,一个小区内不同的子小区标识对应不同的SSB index。
示例性地,至少一个子小区标识包括子小区标识0,1,2,3,这些子小区标识0,1,2,3对应小区1的SSB index 0,1,2,3,对应小区1的PCI为100。其中,子小区标识0,1,2,3与小区1的SSB index 0,1,2,3一一对应,即子小区标识0对应小区1的SSBindex 0,子小区标识1对应小区1的SSB index 1,子小区标识2对应小区1的SSB index 2,子小区标识3对应小区1的SSB index 3。
又示例性地,至少一个子小区标识包括子小区标识4,5,6,7,这些子小区标识4,5,6,7对应小区2的SSB index 0,1,2,3,对应小区2的PCI为101。其中,子小区标识4,5,6,7与小区2的SSB index 0,1,2,3一一对应。具体的可以参考上述示例中的描述,此处不再赘述。
又示例性地,至少一个子小区标识包括子小区标识0,1,2,3,4。其中子小区标识0,1,2,3,对应小区1的SSB 0,1,2,3。而子小区标识4对应并未对应SSB,只是对应了主小区标识。
可选地,本申请实施例中,每个SSB索引信息分别对应一个子小区标识,或者一个子小区标识组。示例性地,子小区标识0,1,2,3分别对应SSB 0,1,2,3;或者,子小区标识0,1对应SSB 0,子小区标识2,3对应SSB 1,子小区标识4,5对应SSB 2。
可选地,本申请实施例中,上述部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应,包括以下任一项:
由UE所在服务小区直接指示部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应;即,UE所在服务小区直接指示节能小区的哪些子小区标识与该节能小区的SSB索引信息相对应;
UE采用由UE所在服务小区配置的规则,基于至少一个子小区标识确定节能小区的至少一个波束索引,并基于至少一个波束索引得到部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应。
可选地,本申请实施例中,上述部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应的对应关系由协议预定义或基站预配置。
示例性地,UE所在服务小区直接指示:子小区标识0,1,2,3分别对应小区1的SSB index0,1,2,3;子小区标识4,5,6,7分别对应小区2的SSB index 0,1,2,3。
可选地,本申请实施例中,UE根据节能小区的波束个数N,采用sub-cell ID mod N的方式确定节能小区的至少一个波束索引。
示例性地,假设小区1有4个波束,且该小区的子小区标识为4,5,6,7。则sub-cell ID mod N(4)=0,1,2,3。因此,子小区标识4,5,6,7分别对应SSB index 0,1,2,3。
可以理解,UE根据上述的规则,在检测到子小区标识后,可以得到相应的小区PCI以及SSB index。
可选地,本申请实施例中,上述至少一个子小区标识中的所有子小区标识对应同一个主小区标识,包括以下任一项:
由UE所在服务小区直接指示所有子小区标识对应同一个主小区标识;即,UE所在服务小区直接指示节能小区的子小区标识与该节能小区的主小区标识;
默认所有子小区标识中的一个固定值的子小区标识为主小区标识;
UE采用由UE所在服务小区配置的规则,基于所有子小区标识确定的值,作为主小区标识。
可选地,本申请实施例中,上述至少一个子小区标识中的所有子小区标识对应同一个主小区标识的对应关系由协议预定义或基站预配置。
示例性地,UE所在服务小区直接指示:子小区标识0,1,2,3对应的小区1的PCI为100;子小区标识4,5,6,7对应的小区1的PCI为110。
可选地,本申请实施例中,上述一个固定值的子小区标识可以为上述所有子小区标识中的第一个或最后一个子小区标识。
示例性地,若某个小区的子小区标识为4,5,6,7,则默认子小区标识4为小区PCI(即主小区标识)。
可选地,本申请实施例中,UE根据节能小区的波束个数N,采用sub-cell ID mod N=M的值作为主小区标识。其中,N和M为协议预定义的值。
示例性地,若某个小区的子小区标识为4,5,6,7,N=4,M=0,则sub-cell ID 4为小区PCI。
可选地,本申请实施例中,结合图4,如图6所示,上述步骤202具体可以通过下述的步骤202a实现。
步骤202a、在UE根据第一信息直接或间接得到SSB索引信息的情况下,UE根据SSB索引信息,执行节能小区的SSB测量。
本申请实施例中,UE可以根据SSB索引信息,检测节能小区中该SSB索引信息指示的SSB,并对这些SSB执行测量,得到并将测量结果上报至UE所在服务小区,以便于该服务小区根据该测量结果执行相关操作,例如触发UE执行小区切换、信号干扰处理等。
可选地,本申请实施例中,结合图4,如图7所示,上述步骤202具体可以通过下述的步骤202b实现。
步骤202b、在UE根据第一信息无法直接或间接得到SSB索引信息的情况下,UE采用第一规则,执行节能小区的SSB测量。
本申请实施例中,上述第一规则为UE在至少一个时刻测量SSB的RSRP并上报测量结果。
可选地,本申请实施例中,上述步骤202b中的“UE采用第一规则,执行节能小区的SSB测量”具体可以通过下述的步骤202b1或步骤202b2实现。
步骤202b1、UE在多个时刻测量节能小区的SSB的RSRP,得到第一测量结果。
本申请实施例中,上述第一测量结果为基于每次测量得到的RSRP中的最大RSRP获得。
可选地,本申请实施例中,UE可以在多个时刻测量light SSB的RSRP,并取每次测得的最大的RSRP进行处理。其中,该处理可以为:将多个最大的RSRP进行求和平均,得到第一测量结果;或者,对多个最大的RSRP进行信号稳定性评估,以将信号稳定性最好的RSRP作为第一测量结果。
步骤202b2、UE在第一时刻测量节能小区的SSB的RSRP,并在最大RSRP的SSB对应的SSB周期中的位置,执行节能小区的SSB测量。
可以理解,UE可以在第一时刻测量light SSB的RSRS,并找到最大RSRP的SSB,然后在最大RSRP的SSB对应的位置检测SSB。
示例性地,UE在第一时刻接收到4的light SSB。并测得第二个SSB(SSB 2)的RSRP最好,若SSB周期为20ms,则UE在SSB 2后20ms的位置继续测量SSB2的RSRP,并根据多次测量的结果在层3进行处理,并将处理结果上报给UE所在服务小区。
本申请实施例中,在UE无法直接或间接得到SSB索引信息时,UE可以通过第一规则,即在多个时刻或第一时刻测量SSB的RSRP,并向UE所在服务小区上报测量结果,以便于该服务小区根据该测量结果执行相关操作。
本申请实施例提供一种SSB测量方法,UE可以检测节能基站发送的第一信息,以执行节能小区的SSB测量,该第一信息包括以下至少一项:第一信号,第一信号由第二信号和有效载荷组成,第一信号中显式携带有SSB索引信息,第二信号包括以下至少一项:PSS和SSS;第三信号,第三信号由PSS和SSS组成,第三信号中隐式携带有SSB索引信息;第四信号,第四信号包括以下至少一项:PSS和SSS,PSS和/或SSS在不同的频域位置上。本方案中,UE在检测节能基站发送的SSB信息时,可以检测节能基站发送的第一信息,该第一信息中显式或隐式携带了SSB索引信息,即UE可以从检测的第一信息中获得SSB索引信息,以执行节能小区的SSB 测量,因此本方案实现了在light SSB下通过显式或隐式的方式使得UE获得所需要的SSB索引信息,从而便于UE进行SSB测量及上报。
本申请实施例提供的SSB测量方法,执行主体可以为SSB测量装置。本申请实施例中以UE执行SSB测量方法为例,说明本申请实施例提供的SSB测量装置。
图8出了本申请实施例中涉及的SSB测量装置的一种可能的结构示意图,该SSB测量装置应用于UE。如图8所示,SSB测量装置70可以包括:检测模块71和执行模块72。
其中,检测模块71,用于检测节能基站发送的第一信息。执行模块72,用于根据检测模块71检测的第一信息,执行节能小区的SSB测量,该节能小区为节能基站的服务小区。其中,第一信息包括以下至少一项:
第一信号,第一信号由第二信号和有效载荷组成,第一信号中显式携带有SSB索引信息,第二信号包括以下至少一项:PSS和SSS;
第三信号,第三信号由PSS和SSS组成,第三信号中隐式携带有SSB索引信息;
第四信号,第四信号包括以下至少一项:PSS和SSS;其中,PSS和/或SSS在不同的频域位置上。
本申请实施例提供一种SSB测量装置,SSB测量装置在检测节能基站发送的SSB信息时,可以根据服务小区配置的第一信息去检测,并且该第一信息中显式或隐式携带了SSB索引信息,即UE可以从检测的第一信息中获得SSB索引信息,以执行节能小区的SSB测量,因此本方案实现了在light SSB下通过显式或隐式的方式,使得SSB测量装置获得所需要的SSB索引信息,从而便于SSB测量装置进行SSB测量及上报。
在一种可能的实现方式中,上述有效载荷中包括DMRS。
在一种可能的实现方式中,上述有效载荷与PSS和/或SSS在同一个符号上;或者,上述有效载荷在两个符号上,两个符号包括PSS所在符号和SSS所在符号。
在一种可能的实现方式中,上述SSB索引信息由有效载荷单独携带,有效载荷中不包括DMRS;或者,上述SSB索引信息由DMRS单独携带;或者,上述SSB索引信息由有效载荷携带,有效载荷中包括DMRS。
在一种可能的实现方式中,上述节能小区对应至少一个子小区标识。上述第三信号中隐式携带有SSB索引信息的规则包括:至少一个子小区标识中部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应;其中,至少一个子小区标识中的所有子小区标识对应同一个主小区标识。
在一种可能的实现方式中,上述至少一个子小区标识通过不同的PSS和/或SSS获得。
在一种可能的实现方式中,上述部分或全部子小区标识中的每个子小区标识分别 与一个SSB索引信息对应,包括以下任一项:
由UE所在服务小区直接指示部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应;
UE采用由UE所在服务小区配置的规则,基于至少一个子小区标识确定节能小区的至少一个波束索引,并基于至少一个波束索引得到部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应。
在一种可能的实现方式中,上述所有子小区标识对应同一个主小区标识,包括以下任一项:
由UE所在服务小区直接指示所有子小区标识对应同一个主小区标识;
默认所有子小区标识中的一个固定值的子小区标识为主小区标识;
UE采用由UE所在服务小区配置的规则,基于所有子小区标识确定的值,作为主小区标识。
在一种可能的实现方式中,上述PSS和/或SSS在不同的频域位置上为:节能基站预先在节能小区的不同频域位置上配置PSS和/或SSS,且不同频域位置上的PSS和/或SSS具有不同的索引信息或索引组信息;其中,节能小区的频域位置与PSS和/或SSS的对应关系,由UE通过RRC信令或下行信号获得。
在一种可能的实现方式中,上述执行模块,具体用于:
在UE根据第一信息直接或间接得到SSB索引信息的情况下,根据SSB索引信息,执行节能小区的SSB测量;
或者,在UE根据第一信息无法直接或间接得到SSB索引信息的情况下,采用第一规则,执行节能小区的SSB测量,第一规则为UE在至少一个时刻测量SSB的RSRP并上报测量结果。
在一种可能的实现方式中,上述执行模块,具体用于以下任一项:
在多个时刻测量节能小区的SSB的RSRP,得到第一测量结果,该第一测量结果为基于每次测量得到的RSRP中的最大RSRP获得;
在第一时刻测量节能小区的SSB的RSRP,并在最大RSRP的SSB对应的SSB周期中的位置,执行节能小区的SSB测量。
本申请实施例提供的SSB测量装置能够实现上述方法实施例中UE实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例中的SSB测量装置可以是UE,例如具有操作系统的UE,也可以是UE中的部件,例如集成电路或芯片。该UE可以是终端,也可以为除终端之外的其他设备。示例性的,UE可以包括但不限于上述所列举的UE 11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
可选地,如图9所示,本申请实施例还提供一种通信设备5000,包括处理器 5001和存储器5002,存储器5002上存储有可在所述处理器5001上运行的程序或指令,例如,该通信设备5000为UE时,该程序或指令被处理器5001执行时实现上述UE侧方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种UE,包括处理器和通信接口,处理器用于检测节能基站发送的第一信息;并根据第一信息,执行节能小区的SSB测量,该节能小区为节能基站的服务小区。其中,第一信息包括以下至少一项:第一信号,第一信号由第二信号和有效载荷组成,第一信号中显式携带有SSB索引信息,第二信号包括以下至少一项:PSS和SSS;第三信号,第三信号由PSS和SSS组成,第三信号中隐式携带有SSB索引信息;第四信号,第四信号包括以下至少一项:PSS和SSS,PSS和/或SSS在不同的频域位置上。该UE实施例与上述UE侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该UE实施例中,且能达到相同的技术效果。
具体地,图10为实现本申请实施例的一种UE的硬件结构示意图。
该UE 7000包括但不限于:射频单元7001、网络模块7002、音频输出单元7003、输入单元7004、传感器7005、显示单元7006、用户输入单元7007、接口单元7008、存储器7009以及处理器7010等中的至少部分部件。
本领域技术人员可以理解,UE 7000还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器7010逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图10中示出的UE结构并不构成对UE的限定,UE可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元7004可以包括图形处理单元(Graphics Processing Unit,GPU)70041和麦克风70042,图形处理器70041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元7006可包括显示面板70061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板70061。用户输入单元7007包括触控面板70071以及其他输入设备70072中的至少一种。触控面板70071,也称为触摸屏。触控面板70071可包括触摸检测装置和触摸控制器两个部分。其他输入设备70072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元7001接收来自网络侧设备的下行数据后,可以传输给处理器7010进行处理;另外,射频单元7001可以向网络侧设备发送上行数据。通常,射频单元7001包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器7009可用于存储软件程序或指令以及各种数据。存储器7009可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器7009可以包括易失性存储器或非易失性存储器,或者,存储器7009可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器7009包括但不限于这些和任意其它适合类型的存储器。
处理器7010可包括一个或多个处理单元;可选的,处理器7010集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器7010中。
其中,处理器7010,用于检测节能基站发送的第一信息;并根据第一信息,执行节能小区的SSB测量,该节能小区为节能基站的服务小区。其中,第一信息包括以下至少一项:
第一信号,第一信号由第二信号和有效载荷组成,第一信号中显式携带有SSB索引信息,第二信号包括以下至少一项:PSS和SSS;
第三信号,第三信号由PSS和SSS组成,第三信号中隐式携带有SSB索引信息;
第四信号,第四信号包括以下至少一项:PSS和SSS;其中,PSS和/或SSS在不同的频域位置上。
本申请实施例提供一种UE,UE在检测节能基站发送的SSB信息时,可以检测节能基站发送的第一信息,该第一信息中显式或隐式携带了SSB索引信息,即UE可以从检测的第一信息中获得SSB索引信息,以执行节能小区的SSB测量,因此本方案实现了在light SSB下通过显式或隐式的方式使得UE获得所需要的SSB索引信息,从而便于UE进行SSB测量及上报。
本申请实施例提供的UE能够实现上述方法实施例中UE实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述SSB测量方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的通信设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (24)

  1. 一种同步信号块SSB测量方法,包括:
    用户设备UE检测节能基站发送的第一信息;
    所述UE根据所述第一信息,执行节能小区的SSB测量,所述节能小区为所述节能基站的服务小区;
    其中,所述第一信息包括以下至少一项:
    第一信号,所述第一信号由第二信号和有效载荷组成,所述第一信号中显式携带有SSB索引信息,所述第二信号包括以下至少一项:主同步信号PSS和辅同步信号SSS;
    第三信号,所述第三信号由PSS和SSS组成,所述第三信号中隐式携带有SSB索引信息;
    第四信号,所述第四信号包括以下至少一项:PSS和SSS;其中,所述PSS和/或所述SSS在不同的频域位置上。
  2. 根据权利要求1所述的方法,其中,所述有效载荷中包括解调参考信号DMRS。
  3. 根据权利要求1所述的方法,其中,所述有效载荷与所述PSS和/或所述SSS在同一个符号上;
    或者,
    所述有效载荷在两个符号上,所述两个符号包括所述PSS所在符号和所述SSS所在符号。
  4. 根据权利要求1至3中任一项所述的方法,其中,所述SSB索引信息由所述有效载荷单独携带,所述有效载荷中不包括DMRS;
    或者,
    所述SSB索引信息由DMRS单独携带;
    或者,
    所述SSB索引信息由所述有效载荷携带,所述有效载荷中包括DMRS。
  5. 根据权利要求1所述的方法,其中,所述节能小区对应至少一个子小区标识;
    所述第三信号中隐式携带有SSB索引信息的规则包括:所述至少一个子小区标识中部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应;
    其中,所述至少一个子小区标识中的所有子小区标识对应同一个主小区标识。
  6. 根据权利要求5所述的方法,其中,所述至少一个子小区标识通过不同的PSS和/或SSS获得。
  7. 根据权利要求5所述的方法,其中,所述部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应,包括以下任一项:
    由所述UE所在服务小区直接指示所述部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应;
    所述UE采用由所述UE所在服务小区配置的规则,基于所述至少一个子小区标识确定所述节能小区的至少一个波束索引,并基于所述至少一个波束索引得到所述部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应。
  8. 根据权利要求5所述的方法,其中,所述所有子小区标识对应同一个主小区标识,包括以下任一项:
    由所述UE所在服务小区直接指示所述所有子小区标识对应同一个主小区标识;
    默认所述所有子小区标识中的一个固定值的子小区标识为所述主小区标识;
    所述UE采用由所述UE所在服务小区配置的规则,基于所述所有子小区标识确定的值,作为所述主小区标识。
  9. 根据权利要求1所述的方法,其中,所述PSS和/或所述SSS在不同的频域位置上为:所述节能基站预先在所述节能小区的不同频域位置上配置所述PSS和/或所述SSS,且不同频域位置上的所述PSS和/或所述SSS具有不同的索引信息或索引组信息;
    其中,所述节能小区的频域位置与所述PSS和/或所述SSS的对应关系,由所述UE通过无线资源控制RRC信令或下行信号获得。
  10. 根据权利要求1所述的方法,其中,所述UE根据所述第一信息,执行节能小区的SSB测量,包括:
    在所述UE根据所述第一信息直接或间接得到SSB索引信息的情况下,所述UE根据所述SSB索引信息,执行所述节能小区的SSB测量;
    或者,
    在所述UE根据所述第一信息无法直接或间接得到SSB索引信息的情况下,所述UE采用第一规则,执行所述节能小区的SSB测量,所述第一规则为所述UE在至少一个时刻测量SSB的参考信号接收强度RSRP并上报测量结果。
  11. 根据权利要求10所述的方法,其中,所述UE采用第一规则,执行所述节能小区的SSB测量,包括以下任一项:
    所述UE在多个时刻测量所述节能小区的SSB的RSRP,得到第一测量结果,所述第一测量结果为基于每次测量得到的RSRP中的最大RSRP获得;
    所述UE在第一时刻测量所述节能小区的SSB的RSRP,并在最大RSRP的SSB对应的SSB周期中的位置,执行所述节能小区的SSB测量。
  12. 一种同步信号块SSB测量装置,包括:检测模块和执行模块;
    所述检测模块,用于检测节能基站发送的第一信息;
    所述执行模块,用于根据所述检测模块检测的所述第一信息,执行节能小区的SSB测量,所述节能小区为所述节能基站的服务小区;
    其中,所述第一信息包括以下至少一项:
    第一信号,所述第一信号由第二信号和有效载荷组成,所述第一信号中显式携带有SSB索引信息,所述第二信号包括以下至少一项:主同步信号PSS和辅同步信号SSS;
    第三信号,所述第三信号由PSS和SSS组成,所述第三信号中隐式携带有SSB索引信息;
    第四信号,所述第四信号包括以下至少一项:PSS和SSS;其中,所述PSS和/或所述SSS在不同的频域位置上。
  13. 根据权利要求12所述的装置,其中,所述有效载荷中包括解调参考信号DMRS。
  14. 根据权利要求12所述的装置,其中,所述有效载荷与所述PSS和/或所述SSS在同一个符号上;
    或者,
    所述有效载荷在两个符号上,所述两个符号包括所述PSS所在符号和所述SSS所在符号。
  15. 根据权利要求12至14中任一项所述的装置,其中,所述SSB索引信息由所述有效载荷单独携带,所述有效载荷中不包括DMRS;
    或者,
    所述SSB索引信息由DMRS单独携带;
    或者,
    所述SSB索引信息由所述有效载荷携带,所述有效载荷中包括DMRS。
  16. 根据权利要求12所述的装置,其中,所述节能小区对应至少一个子小区标识;
    所述第三信号中隐式携带有SSB索引信息的规则包括:所述至少一个子小区标识中部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应;
    其中,所述至少一个子小区标识中的所有子小区标识对应同一个主小区标识。
  17. 根据权利要求16所述的装置,其中,所述至少一个子小区标识通过不同的PSS和/或SSS获得。
  18. 根据权利要求16所述的装置,其中,所述部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应,包括以下任一项:
    由所述UE所在服务小区直接指示所述部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应;
    所述UE采用由所述UE所在服务小区配置的规则,基于所述至少一个子小区标识确定所述节能小区的至少一个波束索引,并基于所述至少一个波束索引得到所述部分或全部子小区标识中的每个子小区标识分别与一个SSB索引信息对应。
  19. 根据权利要求16所述的装置,其中,所述所有子小区标识对应同一个主小区标识,包括以下任一项:
    由所述UE所在服务小区直接指示所述所有子小区标识对应同一个主小区标识;
    默认所述所有子小区标识中的一个固定值的子小区标识为所述主小区标识;
    所述UE采用由所述UE所在服务小区配置的规则,基于所述所有子小区标识确定的值,作为所述主小区标识。
  20. 根据权利要求12所述的装置,其中,所述PSS和/或所述SSS在不同的频域位置上为:所述节能基站预先在所述节能小区的不同频域位置上配置所述PSS和/或所述SSS,且不同频域位置上的所述PSS和/或所述SSS具有不同的索引信息或索引组信息;
    其中,所述节能小区的频域位置与所述PSS和/或所述SSS的对应关系,由所述UE通过无线资源控制RRC信令或下行信号获得。
  21. 根据权利要求12所述的装置,其中,所述执行模块,具体用于:
    在所述UE根据所述第一信息直接或间接得到SSB索引信息的情况下,根据所述SSB索引信息,执行所述节能小区的SSB测量;
    或者,在所述UE根据所述第一信息无法直接或间接得到SSB索引信息的情况下,采用第一规则,执行所述节能小区的SSB测量,所述第一规则为所述UE在至少一个时刻测量SSB的参考信号接收强度RSRP并上报测量结果。
  22. 根据权利要求21所述的装置,其中,所述执行模块,具体用于以下任一项:
    在多个时刻测量所述节能小区的SSB的RSRP,得到第一测量结果,所述第一测量结果为基于每次测量得到的RSRP中的最大RSRP获得;
    在第一时刻测量所述节能小区的SSB的RSRP,并在最大RSRP的SSB对应的SSB周期中的位置,执行所述节能小区的SSB测量。
  23. 一种用户设备UE,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至11中任一项所述的同步信号块SSB测量方法的步骤。
  24. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至11中任一项所述的同步信号块SSB测量方法的步骤。
PCT/CN2023/127778 2022-11-03 2023-10-30 Ssb测量方法、装置、用户设备及存储介质 WO2024093918A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211371982.6A CN117998391A (zh) 2022-11-03 2022-11-03 Ssb测量方法、装置、用户设备及存储介质
CN202211371982.6 2022-11-03

Publications (1)

Publication Number Publication Date
WO2024093918A1 true WO2024093918A1 (zh) 2024-05-10

Family

ID=90894110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/127778 WO2024093918A1 (zh) 2022-11-03 2023-10-30 Ssb测量方法、装置、用户设备及存储介质

Country Status (2)

Country Link
CN (1) CN117998391A (zh)
WO (1) WO2024093918A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110800346A (zh) * 2017-06-27 2020-02-14 高通股份有限公司 邻居蜂窝小区同步信号块索引确定
US20200314673A1 (en) * 2019-03-28 2020-10-01 Qualcomm Incorporated Techniques for measuring synchronization signal blocks in wireless communications
CN113630861A (zh) * 2020-05-09 2021-11-09 维沃移动通信有限公司 同步信号块的处理方法及装置、通信设备和可读存储介质
CN114830737A (zh) * 2019-12-09 2022-07-29 瑞典爱立信有限公司 用于使减少带宽的无线设备能够接入小区的方法
CN115066922A (zh) * 2020-12-31 2022-09-16 华为技术有限公司 一种信息上报方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110800346A (zh) * 2017-06-27 2020-02-14 高通股份有限公司 邻居蜂窝小区同步信号块索引确定
US20200314673A1 (en) * 2019-03-28 2020-10-01 Qualcomm Incorporated Techniques for measuring synchronization signal blocks in wireless communications
CN114830737A (zh) * 2019-12-09 2022-07-29 瑞典爱立信有限公司 用于使减少带宽的无线设备能够接入小区的方法
CN113630861A (zh) * 2020-05-09 2021-11-09 维沃移动通信有限公司 同步信号块的处理方法及装置、通信设备和可读存储介质
CN115066922A (zh) * 2020-12-31 2022-09-16 华为技术有限公司 一种信息上报方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Network energy saving techniques", 3GPP TSG RAN WG1 #109-E E-MEETING R1-2205046, 29 April 2022 (2022-04-29), XP052191708 *

Also Published As

Publication number Publication date
CN117998391A (zh) 2024-05-07

Similar Documents

Publication Publication Date Title
CN109474400B (zh) 一种通信方法、网络设备及终端设备
US10492168B2 (en) Paging detection utilizing a discovery reference signal (DRS) within a subframe time window
US20160337101A1 (en) Signal transmission method and signal transmission apparatus
US20210159961A1 (en) Method for transmitting signal, terminal device, and network device
KR20170040329A (ko) 통신 시스템에서의 측정 향상을 위한 방법들 및 장치들
US20230188281A1 (en) Method for measuring reference signal, terminal, and network side device
EP4213546A1 (en) Network access method, network access apparatus, terminal, and network side device
JP2022531078A (ja) Ssbに基づく測定方法及び装置
US20230318784A1 (en) Wireless communication method and device
WO2024093918A1 (zh) Ssb测量方法、装置、用户设备及存储介质
CN115150957A (zh) Bwp切换方法、装置、终端、存储介质及产品
EP4195739A1 (en) Information transmission method, terminal, and network side device
WO2022028460A1 (zh) Css监测方法和终端
WO2024093913A1 (zh) Wus传输方法、装置、用户设备及存储介质
WO2023011535A1 (zh) 低移动性状态的确定方法、装置、终端及网络侧设备
WO2023078251A1 (zh) 信息获取方法、装置及终端
WO2023011536A1 (zh) 测量放松方法、装置、终端及网络侧设备
WO2024078611A1 (zh) 信息配置方法、装置、终端及网络侧设备
EP4325758A1 (en) Method and apparatus for configuring measurement gap pattern, and terminal and network-side device
WO2024099141A1 (zh) Gap信息上报方法、装置、通信设备、系统及存储介质
WO2024032490A1 (zh) 测量处理方法、装置、终端及网络侧设备
WO2023280275A1 (zh) 传输方法、终端及网络侧设备
WO2023143413A1 (zh) 同步信号块接收方法、同步信号块发送方法及相关设备
WO2023116905A1 (zh) 定位参考信号的处理方法、设备及可读存储介质
WO2023198183A1 (zh) 信息获取方法、信息发送方法、装置、终端及网络侧设备