WO2024119836A1 - 一种风冷变频换流器 - Google Patents

一种风冷变频换流器 Download PDF

Info

Publication number
WO2024119836A1
WO2024119836A1 PCT/CN2023/108353 CN2023108353W WO2024119836A1 WO 2024119836 A1 WO2024119836 A1 WO 2024119836A1 CN 2023108353 W CN2023108353 W CN 2023108353W WO 2024119836 A1 WO2024119836 A1 WO 2024119836A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
frequency converter
variable frequency
compartment
cascade module
Prior art date
Application number
PCT/CN2023/108353
Other languages
English (en)
French (fr)
Inventor
刘海彬
孙德林
严伟
吴继平
姚宁
顾志斌
李杨
张中胜
苏雷
Original Assignee
常州博瑞电力自动化设备有限公司
南京南瑞继保工程技术有限公司
南京南瑞继保电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州博瑞电力自动化设备有限公司, 南京南瑞继保工程技术有限公司, 南京南瑞继保电气有限公司 filed Critical 常州博瑞电力自动化设备有限公司
Publication of WO2024119836A1 publication Critical patent/WO2024119836A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/18Construction of rack or frame
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the invention belongs to the technical field of variable frequency converter valves, and in particular relates to an air-cooled variable frequency converter.
  • the frequency converter can convert the traditional industrial frequency voltage into a wide-band and wide-voltage power supply, has the function of AC-AC frequency conversion, and can realize flexible interconnection of supply areas.
  • the converter valve adopts a valve tower structure, which includes multiple valve layers and support insulators installed between adjacent valve layers and below the bottom valve layer, and each valve layer includes multiple valve modules, and each valve module includes multiple power electronic devices connected in series.
  • This type of converter valve is not only complex in structure and occupies a large space, but also difficult to maintain and repair in the later stage, and its stability during use cannot be guaranteed.
  • the object of the present invention is to provide an air-cooled variable frequency converter to solve the problem of complex converter valve structure.
  • An air-cooled variable frequency converter of the present invention is implemented as follows:
  • An air-cooled variable frequency converter comprises a box body whose interior is divided into a left compartment, a middle compartment and a right compartment, wherein the box body is provided with an auxiliary control system installed in the left compartment, a variable frequency converter valve and a multi-winding transformer installed in the middle compartment and distributed front and rear, a station transformer installed in the right compartment, and a heat dissipation system for dissipating heat inside the box body;
  • Each phase of the variable frequency converter valve includes a plurality of cascade module units with a flat design, the input side of each cascade module unit of the same phase is connected to the secondary coil of the same phase of the multi-winding transformer, and the output side is connected in series in sequence through a connecting bar.
  • a mounting frame is provided on the front side of the intermediate compartment, and the cascade module unit is arranged according to The stacked and spaced arrangement is fixed on the mounting frame.
  • the installation frame includes two upper beams and two lower beams, and multiple longitudinal beams are arranged between the upper and lower opposite upper beams and lower beams, and multiple fixed guide rails are installed between the front and rear opposite longitudinal beams.
  • the cascade module unit is fixed on the two fixed guide rails opposite on the left and right.
  • the cascade module unit includes a shell, electrical components installed in the shell, and a power box board compartment installed above the shell, the input side terminal block of the cascade module unit extends from the rear end of the shell, and the output side terminal block of the cascade module unit extends from the front end of the shell.
  • the electrical component includes a reactor and a voltage transformer arranged side by side with the input-side wiring bank, a current transformer located in front of the reactor, and an IGBT module and a DC capacitor located in the front of the housing;
  • the reactor and the current transformer are both connected in series to one of the input-side wiring bars, the voltage transformer is connected in parallel to the two input-side wiring bars, and the IGBT module is connected to the DC capacitor via a stacked busbar.
  • a bypass switch connected in parallel with the inverter side of the cascade module unit is provided on the front side of the shell.
  • a heat sink located below the IGBT module is installed in the housing;
  • An insulating sealing plate is disposed at the rear side of the cascade module unit, and a window opposite to the air outlet of the radiator is opened on the insulating sealing plate, and the air inlet of the radiator is exposed from the front side of the shell.
  • top plate of the power box card compartment is provided with louver heat dissipation holes
  • the louver heat dissipation holes are convex structures.
  • the heat dissipation system includes an air duct connecting the middle cabin and the left cabin, and connecting the middle cabin and the right cabin.
  • a centrifugal fan is installed at the end of the air duct located in the middle cabin, and air conditioners are installed in the left cabin and the right cabin respectively.
  • the fans are respectively located above the rear side of the variable frequency converter valve and above both sides of the multi-winding transformer.
  • the present invention has the following beneficial effects:
  • variable frequency converter valve of the present invention adopts a flattened cascade module unit structure to form a modular design, which makes the overall structure of the converter valve simpler and more compact, reduces the occupied space, improves the convenience of subsequent maintenance and repair, and increases the stability of the converter valve during operation.
  • FIG1 is a front view of an air-cooled variable frequency converter according to a preferred embodiment of the present invention.
  • FIG2 is a front view of an air-cooled variable frequency inverter (without a front door) according to a preferred embodiment of the present invention
  • FIG3 is a rear view of the air-cooled variable frequency inverter (partial rear door not installed) according to the preferred embodiment of the present invention
  • FIG4 is a structural diagram of an air-cooled variable frequency converter (without a top plate of the box body) according to a preferred embodiment of the present invention
  • FIG. 5 is a top view of an air-cooled variable frequency inverter (without a top plate of the box, air duct and fan) according to a preferred embodiment of the present invention
  • FIG. 6 is a front view of a variable frequency converter valve of an air-cooled variable frequency converter according to a preferred embodiment of the present invention
  • variable frequency converter valve of the air-cooled variable frequency converter according to the preferred embodiment of the present invention.
  • variable frequency converter valve (part) of an air-cooled variable frequency converter according to a preferred embodiment of the present invention.
  • FIG. 10 is a structural diagram of a cascade module unit of an air-cooled variable frequency converter according to a preferred embodiment of the present invention.
  • FIG. 12 is a diagram showing the internal structure of the cascaded module unit of the air-cooled variable frequency converter according to the preferred embodiment of the present invention (electrical A top view of the source box board compartment (the level where the interior is located);
  • FIG. 13 is a structural diagram of the top plate of the power box board compartment of the cascade module unit of the air-cooled variable frequency converter according to the preferred embodiment of the present invention.
  • FIG. 14 is a topological diagram of the cascaded module units of the air-cooled variable frequency converter according to the preferred embodiment of the present invention.
  • box 1 left cabin 1-1, middle cabin 1-2, right cabin 1-3, front cabin door 1-4, rear cabin door 1-5, left cabin door 1-6, right cabin door 1-7, multi-winding transformer 2, variable frequency converter valve 3, cascade module unit 3-1, shell 3-11, input side terminal block 3-12, output side terminal block 3-13, fuse 3-14, reactor 3-15, voltage transformer 3-16, current transformer 3-17, IGBT module 3-18, stacked busbar 3-19, DC capacitor 3 -110, bypass switch 3-111, radiator 3-112, power box board compartment 3-113, louver heat dissipation holes 3-114, board 3-115, fiber optic flange 3-116, connecting row 3-2, station transformer 4, auxiliary control system 5, cooling system 6, air duct 6-1, centrifugal fan 6-2, air conditioner indoor unit 6-3, air conditioner outdoor unit 6-4, installation frame 7, upper crossbeam 7-1, lower crossbeam 7-2, longitudinal beam 7-3, fixed guide rail 7-4, insulating sealing plate 8, window 8-1, mounting frame 9.
  • variable frequency converter valve 3 cascade module unit 3-1
  • an air-cooled variable frequency inverter comprises a housing 1 which is internally divided into a left compartment 1-1, a middle compartment 1-2 and a right compartment 1-3.
  • the housing 1 is provided with an auxiliary control system 5 installed in the left compartment 1-1, a variable frequency converter valve 3 and a multi-winding transformer 2 installed in the middle compartment 1-2 and distributed front to back, a station transformer 4 installed in the right compartment 1-3, and a heat dissipation system 6 for dissipating heat from the interior of the housing 1;
  • each phase of the variable frequency converter valve 3 comprises a plurality of cascade module units 3-1 of a flattened design, the input side of each cascade module unit 3-1 of the same phase is connected to the secondary coil of the same phase of the multi-winding transformer 2, and the output side is connected in series end to end through a connecting row 3-2.
  • the variable frequency converter valve 3 includes three phases and is arranged side by side on the front side of the multi-winding transformer 2; the multi-winding transformer 2 includes three phases arranged side by side, which can facilitate the connection of the secondary coil of each phase with the cascade module unit 3-1 of the corresponding phase.
  • the multi-winding transformer 2 is fixed to the rear of the intermediate compartment 1-2 by a mounting frame 9.
  • the cascade module units 3-1 of each phase are divided into two groups, that is, they are arranged in two side-by-side columns for stacking and spacing, and the cascade module units 3-1 in the same column are connected in series head to tail through a Z-shaped connecting row 3-2, and the two columns of cascade module units 3-1 in the same phase are connected in series through a straight-line connecting row 3-2.
  • a front door 1-4 is provided on the front side of the intermediate compartment 1-2 to facilitate the inspection and maintenance of the variable frequency converter valve 3;
  • a rear door 1-5 is provided on the rear side of the intermediate compartment 1-2 to facilitate the inspection and maintenance of the multi-winding transformer 2.
  • a left door 1-6 is provided on the front side of the left cabin 1-1 to facilitate the inspection and maintenance of the auxiliary control system 5 in the left cabin 1-1; right doors 1-7 are provided on the front and rear sides of the right cabin 1-3 to facilitate the inspection and maintenance of the station transformer 4 in the right cabin 1-3.
  • a mounting frame 7 is provided at the front side of the intermediate compartment 1 - 2 , and the cascade module units 3 - 1 are fixed on the mounting frame 7 in a stacked and spaced arrangement.
  • variable frequency converter valve 3 adopts a modular design, which can increase the compactness of its structure and reduce leakage inductance. It has strong scalability and large safety margin, and can meet the needs of high-voltage and large-capacity variable-frequency converters.
  • the mounting frame 7 includes two upper cross beams 7-1 and two lower cross beams 7-2, and a plurality of longitudinal beams 7-3 are arranged between the upper and lower opposite cross beams 7-1 and lower cross beams 7-2, a plurality of fixed guide rails 7-4 are installed between the front and rear opposite longitudinal beams 7-3, and the cascade module unit 3-1 is fixed on the two opposite fixed guide rails 7-4 on the left and right.
  • the existing variable frequency converter valve 3 uses supporting insulators to meet the insulation requirements, which has a high cost.
  • the upper crossbeam 7-1, the lower crossbeam 7-2 and the longitudinal beam 7-3 all use "I"-shaped fully insulating profiles to meet the needs of high-voltage and large-capacity variable frequency converters at a lower cost.
  • only umbrella skirts are provided in the grooves of the upper cross beam 7-1, the lower cross beam 7-2 and the longitudinal beam 7-3 to increase their creepage distance and insulation grade.
  • the cascading module unit 3-1 includes a shell 3-11, electrical components installed in the shell 3-11, and a power box board compartment 3-113 installed above the shell 3-11.
  • the input side terminal block 3-12 of the cascading module unit 3-1 extends from the rear end of the shell 3-11, and the output side terminal block 3-13 of the cascading module unit 3-1 extends from the front end of the shell 3-11.
  • the input side wiring bar 3 - 12 is connected to the secondary coil of the multi-winding transformer 2, and the output side wiring bars 3 - 13 of the same phase are connected in series end to end through the connecting bar 3 - 2.
  • a fuse 3 - 14 is connected in series to the input side wiring bank 3 - 12 to protect the circuit of the cascade module unit 3 - 1 .
  • the valve module of the existing variable frequency converter valve 3 includes electronic components such as thyristors, damping capacitors, equalizing capacitors, damping plating, equalizing resistors, reactors 3-15, and thyristor control units, and the thyristors need to be installed by crimping, which makes the structure of the valve module very complex and difficult to assemble and maintain.
  • the electrical components include a reactor 3-15 and a voltage transformer 3-16 arranged side by side with the input side wiring bar 3-12, a current transformer 3-17 located in front of the reactor 3-15, and a The IGBT module 3-18 and the DC capacitor 3-110 on the front side inside 3-11.
  • the present invention forms a redundant design by setting up multiple cascade module units 3-1, which not only simplifies the structure of the entire cascade module unit 3-1, but also enables other cascade module units 3-1 to work normally when a failure occurs in an individual cascade module unit 3-1, thereby reducing the failure probability of the variable frequency converter valve 3 and improving its reliability.
  • the reactor 3-15 and the current transformer 3-17 are both connected in series on one side of the input side terminal block 3-12, the voltage transformer 3-16 is connected in parallel on the two input side terminal blocks 3-12, the IGBT module 3-18 is connected to the DC capacitor 3-110 through the stacked busbar 3-19, and a fuse 3-14 (fuse) protection circuit is connected in series on each input side terminal block 3-12.
  • the series reactor 3-15 is used to reduce the harmonics of the cascade module unit 3-1, and the IGBT module 3-18 is connected to the DC capacitor 3-110 through the stacked busbar 3-19, which can reduce the inductance, make the circuit connection more compact, and increase the degree of integration of the cascade module unit 3-1.
  • the DC capacitor 3-110 uses a film capacitor, which is an energy storage element with a long service life and greatly reduces maintenance work.
  • the cascade module unit 3-1 includes an active side located at the input side and an inverter side located at the output side.
  • the active side converts AC power into DC power and stores it in a film capacitor
  • the inverter side converts DC power into AC power and sends it to the grid side.
  • the DC capacitor 3-110 is connected in parallel between the active H-bridge and the inverter H-bridge of the IGBT module 3-18.
  • the active H-bridge of the IGBT module 3-18 is installed in front of its inverter H-bridge, and the IGBT module 3-18 and the DC capacitor 3-110 are arranged side by side, and the stacked busbar 3-19 is installed between the two.
  • a bypass switch 3 - 111 connected in parallel with the inverter side of the cascade module unit 3 - 1 is provided on the front side of the housing 3 - 11 .
  • the bypass switch 3-11 can be set to bypass the faulty module unit 3-1 when a single cascade module unit 3-1 fails.
  • the faulty cascade module unit 3-1 is bypassed without affecting the operation of other cascade module units 3-1, thus achieving uninterrupted operation of the system.
  • the bypass switch 3-111 uses a mechanical bypass switch 3-111, which can achieve rapid detection of faults in the cascade module unit 3-1, thereby quickly locating and isolating the faults.
  • the IGBT module 3-18 generates heat when working.
  • a heat sink 3-112 is installed in the shell 3-11 and is located below the IGBT module 3-18.
  • the upper surface of the heat sink 3-112 is a planar structure, which can facilitate the installation and heat dissipation of the IGBT module 3-18.
  • an insulating sealing plate 8 is set on the rear side of the cascade module unit 3-1.
  • a window 8-1 opposite to the air outlet of the radiator 3-112 is opened on the insulating sealing plate 8, and the air inlet of the radiator 3-112 is exposed from the front side of the shell 3-11.
  • the insulating sealing plate 8 is installed on the mounting frame 7 and fixed between two adjacent longitudinal beams 7-3, so that the entire variable frequency converter valve 3 is in a separate cabin.
  • Cold air enters from the air inlet on the front side of the radiator 3-112 and is discharged from its air outlet through the window 8-1 of the insulating sealing plate 8 to form a fast straight heat dissipation channel, thereby ensuring efficient heat dissipation inside the cascade module unit 3-1.
  • louver heat dissipation holes 3-114 are provided on the top plate of the power box board compartment 3-113.
  • the power box board compartment 3-113 is installed with boards 3-115, such as a driving power board and a power supply board, to control the circuit of the entire cascade module unit 3-1.
  • the setting of the louver heat dissipation holes 3-114 can effectively ensure the heat dissipation of the two boards.
  • the top plate of the power box board compartment 3-113 is made of metal, and the louver heat dissipation holes 3-114 are raised structures to prevent smuggled dust from falling into the power box board compartment 3-113, effectively ensuring the heat dissipation, waterproofing and dustproofing of the board while taking into account the electromagnetic shielding performance of the board.
  • a fiber optic flange 3-116 is also installed in the shell 3-11, which not only satisfies the external communication of the cascade module unit 3-1, but also takes into account the equipotential interference prevention between the optical fiber and the shell 3-11, as well as the dust and water proof functions.
  • the existing variable frequency inverter adopts an air-cooled heat dissipation method, that is, shutters are installed around the box 1 to cool the equipment through the air flow inside and outside the box 1.
  • this method not only has a poor heat dissipation effect, but also requires frequent replacement of shutter filter cotton due to the humid, high temperature and high dirtiness of the project site environment.
  • condensation is very easy to occur in the box. Problems such as excessive equipment temperature and water ingress will cause equipment failure and shutdown.
  • the heat dissipation system 6 includes an air duct 6-1 connecting the middle cabin 1-2 and the left cabin 1-1, and connecting the middle cabin 1-2 and the right cabin 1-3.
  • the air duct 6-1 is located at the end of the middle cabin 1-2 and is equipped with a centrifugal fan 6-2.
  • Air conditioners are respectively installed in the left cabin 1-1 and the right cabin 1-3.
  • the air conditioner includes an air conditioner indoor unit 6-3 located inside the left cabin 1-1 and the right cabin 1-3, and an air conditioner outdoor unit 6-4 installed outside the left cabin 1-1 and the right cabin 1-3 and connected to the air conditioner indoor unit 6-3 in the corresponding cabin, so as to achieve heat dissipation for the corresponding cabins, namely the left cabin 1-1 and the right cabin 1-3.
  • the heat generated by the multi-winding transformer 2 and the variable frequency converter valve 3 will be sent into the left cabin 1-1 and the right cabin 1-3 respectively through the centrifugal fan 6-2 and the air duct 6-1, and then the heat will be dissipated to the outside of the box 1 through the air conditioner.
  • the centrifugal fan 6 - 2 is respectively located above the rear side of the variable frequency converter valve 3 and above both sides of the multi-winding transformer 2.
  • the entire variable frequency converter valve 3 is in a closed space, wherein the centrifugal fan 6-2 located at the top of the middle compartment 1-2 behind the insulating sealing plate 8 draws air to form a negative pressure state in the space where the variable frequency converter valve 3 is located, thereby taking away the heat of the cascade module unit 3-1, and at the same time, combined with the centrifugal fans 6-2 located above both sides of the multi-winding transformer 2, the heat generated by the multi-winding transformer 2 is synchronously drawn away to the left compartment 1-1 or the right compartment 1-3, and then the heat is cooled by air conditioning.
  • the amount of air discharged can achieve heat dissipation and cooling of the entire variable frequency converter valve 3.
  • variable frequency inverter not only can the efficient heat dissipation of the variable frequency inverter be ensured, but also dust and condensation will not occur on the equipment in the box 1, thereby effectively ensuring the normal operation of the variable frequency inverter.
  • auxiliary control system 5 includes but is not limited to a manual alarm device, a smoke alarm, a thermostat, a gas fire extinguishing device, a lighting device, an emergency lighting device, an access control, a travel switch, and an infrared video probe capable of measuring temperature and monitoring.
  • Each of the three phases of the winding transformer 2 includes a primary coil and M ⁇ N secondary coils.
  • the input side of each cascade module unit 3-13-1 is connected to a secondary coil.
  • the output sides of each cascade module unit 3-13-1 are connected in series from beginning to end, and then connected in series with the reactor 3-153-15 as the output end of the variable frequency converter.
  • the phases between the secondary coils of the multi-winding transformer 22 are shifted to reduce the harmonic content on the input side.
  • each phase converter valve adopts a redundant design, where M and N are both ⁇ 2, and X is an integer ⁇ 1.
  • variable frequency converter valve 3 adopted in the present invention has a simple and compact overall structure, good stability, and convenient maintenance and repair.
  • the frequency of the output end of the variable frequency converter in which it is located is continuously adjustable from 0-10kHz, and the amplitude is continuously adjustable from 0-M ⁇ Vc.
  • Vc is the output voltage of each cascade module unit 3-13-1. It can provide a low-frequency AC, industrial frequency AC and DC test environment for power equipment of different voltage levels, and has the ability to intervene at different voltage levels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

本发明涉及一种风冷变频换流器,包括其内部被分成左舱室、中间舱室和右舱室的箱体,箱体内设置有安装在左舱室内的辅控系统、安装在中间舱室内的且前后分布的变频换流阀和多绕组变压器、安装在右舱室内的站用变,以及用于对箱体内部散热的散热系统;变频换流阀的每相均包括若干呈扁平化设计的级联模块单元,同相的各个级联模块单元的输入侧与多绕组变压器同相的副边线圈相连,输出侧通过连接排依次首尾串联。本发明采用模块化设计,使换流阀的整体结构更加简单紧凑,缩小了占用空间,提高了后续维护检修的便利性,增加了换流阀运行时的稳定性。

Description

一种风冷变频换流器 技术领域
本发明属于变频换流阀技术领域,具体涉及一种风冷变频换流器。
背景技术
在大容量大功率电力电子变频换流技术领域,变频换流器可将传统工频电压转换成宽频宽压电源,具备交-交变频功能,可实现供区柔性互联。
现有的变频换流器中,换流阀采用阀塔式结构,即包括多层阀层、以及安装于相邻阀层之间以及最底部阀层下方的支撑绝缘子,而每层阀层包括多个阀模块,而每个阀模块则包括多个串联的功率电子器件。此种形式的换流阀不仅结构复杂,占用空间大,后期的维护检修难度稿,而且使用过程中的稳定性得不到保证。
发明内容
本发明的目的是提供一种风冷变频换流器,以解决其换流阀结构复杂的问题。
本发明的一种风冷变频换流器是这样实现的:
一种风冷变频换流器,包括其内部被分成左舱室、中间舱室和右舱室的箱体,所述箱体内设置有安装在所述左舱室内的辅控系统、安装在所述中间舱室内的且前后分布的变频换流阀和多绕组变压器、安装在所述在右舱室内的站用变,以及用于对所述箱体内部散热的散热系统;
所述变频换流阀的每相均包括若干呈扁平化设计的级联模块单元,同相的各个级联模块单元的输入侧与多绕组变压器同相的副边线圈相连,输出侧通过连接排依次首尾串联。
进一步的,所述中间舱室的前侧设置有安装框架,所述级联模块单元按照 层叠间隔布置的方式固定在所述安装框架上。
进一步的,所述安装框架包括两根上横梁和两根下横梁,且上、下相对的上横梁和下横梁之间设置有多根纵梁,前后相对的纵梁之间安装有多个固定导轨,所述级联模块单元固定在左、右相对的两个固定导轨上。
进一步的,所述级联模块单元包括壳体、安装在壳体内的电气组件,以及安装在所述壳体上方的电源盒板卡舱,所述级联模块单元的输入侧接线排从所述壳体的后端伸出,所述级联模块单元的输出侧接线排从所述壳体的前端伸出。
进一步的,所述电气组件包括与所述输入侧接线排并排布置的电抗器和电压互感器、位于所述电抗器前侧的电流互感器,以及位于所述壳体内部前侧的IGBT模块和直流电容;
所述电抗器和电流互感器均串联在其中一侧输入侧接线排上,所述电压互感器并联在两个输入侧接线排上,所述IGBT模块通过层叠母排与所述直流电容相连。
进一步的,所述壳体的前侧设置有与所述级联模块单元的逆变侧并联的旁路开关。
进一步的,所述壳体内安装有位于所述IGBT模块下方的散热器;
所述级联模块单元的后侧设置有绝缘封板,所述绝缘封板上开设有与所述散热器的出风口相对的窗口,所述散热器的进风口从所述壳体的前侧露出。
进一步的,所述电源盒板卡舱的顶板上设置有百叶窗散热孔;
所述百叶窗散热孔为凸起结构。
进一步的,所述散热系统包括连通所述中间舱室与所述左舱室,以及连通所述中间舱室与所述右舱室的风道,所述风道位于所述中间舱室的端部安装有离心风机,所述左舱室和右舱室内分别安装有空调。
进一步的,所述风机分别位于所述变频换流阀后侧上方,以及所述多绕组变压器的两侧上方。
采用了上述技术方案后,本发明具有的有益效果为:
本发明的变频换流阀采用扁平化的级联模块单元结构,以形成模块化设计,使换流阀的整体结构更加简单紧凑,缩小了占用空间,提高了后续维护检修的便利性,增加了换流阀运行时的稳定性。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明优选实施例的风冷变频换流器的主视图;
图2是本发明优选实施例的风冷变频换流器(未装前舱门)的主视图;
图3是本发明优选实施例的风冷变频换流器(未装部分后舱门)的后视图;
图4是本发明优选实施例的风冷变频换流器(未装箱体顶板)的结构图;
图5是本发明优选实施例的风冷变频换流器(未装箱体顶板、风道和风机)的俯视图;
图6是本发明优选实施例的风冷变频换流器的变频换流阀的主视图;
图7是本发明优选实施例的风冷变频换流器的变频换流阀的后视图;
图8是本发明优选实施例的风冷变频换流器的变频换流阀的左视图;
图9是本发明优选实施例的风冷变频换流器的变频换流阀(部分)的结构图;
图10是本发明优选实施例的风冷变频换流器的级联模块单元的结构图;
图11是本发明优选实施例的风冷变频换流器的级联模块单元内部结构(IGBT模块所在层面)的俯视图;
图12是本发明优选实施例的风冷变频换流器的级联模块单元内部结构(电 源盒板卡舱内部所在层面)的俯视图;
图13是本发明优选实施例的风冷变频换流器的级联模块单元的电源盒板卡舱顶板的结构图;
图14是本发明优选实施例的风冷变频换流器的级联模块单元的拓扑图;
图中:箱体1,左舱室1-1,中间舱室1-2,右舱室1-3,前舱门1-4,后舱门1-5,左舱门1-6,右舱门1-7,多绕组变压器2,变频换流阀3,级联模块单元3-1,壳体3-11,输入侧接线排3-12,输出侧接线排3-13,熔丝3-14,电抗器3-15,电压互感器3-16,电流互感器3-17,IGBT模块3-18,层叠母排3-19,直流电容3-110,旁路开关3-111,散热器3-112,电源盒板卡舱3-113,百叶窗散热孔3-114,板卡3-115,光纤法兰3-116,连接排3-2,站用变4,辅控系统5,散热系统6,风道6-1,离心风机6-2,空调内机6-3,空调外机6-4,安装框架7,上横梁7-1,下横梁7-2,纵梁7-3,固定导轨7-4,绝缘封板8,窗口8-1,安装架9。
具体实施方式
为使本发明实施方式的目的、技术方案和优点更加清楚,下面将结合本发明实施方式中的附图,对本发明实施方式中的技术方案进行清楚、完整地描述,显然,所描述的实施方式是本发明一部分实施方式,而不是全部的实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
因此,以下对在附图中提供的本发明的实施方式的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施方式。基于本发明中的实施方式,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施方式,都属于本发明保护的范围。
如图1-14所示,一种风冷变频换流器,包括其内部被分成左舱室1-1、中间舱室1-2和右舱室1-3的箱体1,箱体1内设置有安装在左舱室1-1内的辅控系统5、安装在中间舱室1-2内的且前后分布的变频换流阀3和多绕组变压器2、安装在在右舱室1-3内的站用变4,以及用于对箱体1内部散热的散热系统6;变频换流阀3的每相均包括若干呈扁平化设计的级联模块单元3-1,同相的各个级联模块单元3-1的输入侧与多绕组变压器2同相的副边线圈相连,输出侧通过连接排3-2依次首尾串联。
其中,变频换流阀3包括三相,且并排布置于多绕组变压器2的前侧;多绕组变压器2包括并排布置的三相,可以方便其每相的副边线圈与对应相的级联模块单元3-1连接。优选的,多绕组变压器2通过安装架9固定于中间舱室1-2的后部。
为了适应箱体1的高度,每相的级联模块单元3-1分成两组,即设置呈并排的两列进行层叠间隔排布,并且位于同列的级联模块单元3-1之间通过Z字型的连接排3-2进行首尾串联,而同相的两列级联模块单元3-1之间通过一字型连接排3-2进行串联。
另外,中间舱室1-2的前侧开设有前舱门1-4,可以便于检修维护变频换流阀3;中间舱室1-2的后侧开设后舱门1-5,方便维护检修多绕组变压器2。
左舱室1-1的前侧开设有左舱门1-6,便于对左舱室1-1内的辅控系统5进行检修维护;右舱室1-3的前侧和后侧均开设有右舱门1-7,便于对右舱室1-3内的站用变4进行检修维护。
为了实现对级联模块单元3-1的安装,中间舱室1-2的前侧设置有安装框架7,级联模块单元3-1按照层叠间隔布置的方式固定在安装框架7上。
变频换流阀3采用模块化的设计,能够增加其结构的紧凑性,减低漏感, 可扩展性强,安全裕度大,实现高压大容量变频换流器的需求。
具体的,安装框架7包括两根上横梁7-1和两根下横梁7-2,且上、下相对的上横梁7-1和下横梁7-2之间设置有多根纵梁7-3,前后相对的纵梁7-3之间安装有多个固定导轨7-4,级联模块单元3-1固定在左、右相对的两个固定导轨7-4上。
现有变频换流阀3采用支撑绝缘子以满足绝缘要求,其成本较高,在本法宁中,上横梁7-1、下横梁7-2和纵梁7-3均采用“工”字型全绝缘型材,实现高压大容量变频换流器的需求,且成本较低。
优选的,上横梁7-1、下横梁7-2和纵梁7-3的槽内仅设置有伞裙,以增加其爬电距离和绝缘等级。
为了方便级联模块单元3-1的连接,级联模块单元3-1包括壳体3-11、安装在壳体3-11内的电气组件,以及安装在壳体3-11上方的电源盒板卡舱3-113,级联模块单元3-1的输入侧接线排3-12从壳体3-11的后端伸出,级联模块单元3-1的输出侧接线排3-13从壳体3-11的前端伸出。
输入侧接线排3-12与多绕组变压器2的副边线圈相连,同相的各个输出侧接线排3-13则通过连接排3-2首尾串联。
优选的,输入侧接线排3-12上串联有熔丝3-14,对级联模块单元3-1的电路起到保护作用。
现有的变频换流阀3的阀模块包括晶闸管、阻尼电容、均压电容、阻尼电镀、均压电阻、电抗器3-15、晶闸管控制单元等电子元件,并且晶闸管需采用压接的方式安装,致使阀模块的结构十分复杂,装配、维护难度高。
在本发明中,电气组件包括与输入侧接线排3-12并排布置的电抗器3-15和电压互感器3-16、位于电抗器3-15前侧的电流互感器3-17,以及位于壳体 3-11内部前侧的IGBT模块3-18和直流电容3-110。
本发明通过多个级联模块单元3-1的设置,从而形成冗余化设计,不仅简化了整个级联模块单元3-1的结构,而且能够个别级联模块单元3-1出现故障时,其他级联模块单元3-1能够正常工作,减少变频换流阀3的故障概率,提高其可靠性。
其中,电抗器3-15和电流互感器3-17均串联在其中一侧输入侧接线排3-12上,电压互感器3-16并联在两个输入侧接线排3-12上,IGBT模块3-18通过层叠母排3-19与直流电容3-110相连,输入侧接线排3-12上各串联一个熔丝3-14(保险丝)保护电路。
串联电抗器3-15用于降低级联模块单元3-1的谐波,而IGBT模块3-18通过层叠母排3-19实现与直流电容3-110的连接,能够降低电感,使电路连接更加紧凑,级联模块单元3-1的集成化程度更高。
优选的,直流电容3-110选用薄膜电容,其作为储能元件,其使用寿命长,极大地减少了维护工作。
具体的,级联模块单元3-1包括位于输入侧的有源侧和位于输出侧的逆变侧,有源侧把交流电转换为直流电存储在薄膜电容中,逆变侧再把直流电转化为交流电送入电网侧。
其中,直流电容3-110并联于IGBT模块3-18的有源H桥和逆变H桥之间,在级联模块单元3-1中,IGBT模块3-18的有源H桥安装在其逆变H桥前侧,并且IGBT模块3-18与直流电容3-110并排布置,层叠母排3-19安装在两者之间。
壳体3-11的前侧设置有与级联模块单元3-1的逆变侧并联的旁路开关3-111。
旁路开关3-11的设置可以在单个级联模块单元3-1发生故障时,可将该故 障级联模块单元3-1旁路,不影响其他级联模块单元3-1运行,实现系统不间断运行。
旁路开关3-111选用机械旁路开关3-111,能够实现级联模块单元3-1故障的快速检测,从而对故障进行快速定位、快速隔离。
IGBT模块3-18在工作时会发热,而为了实现对IGBT模块3-18的高效散热,壳体3-11内安装有位于IGBT模块3-18下方的散热器3-112。
散热器3-112的上表面为平面结构,可以便于对IGBT模块3-18安装以及散热。
为了保证散热效果,级联模块单元3-1的后侧设置有绝缘封板8,绝缘封板8上开设有与散热器3-112的出风口相对的窗口8-1,散热器3-112的进风口从壳体3-11的前侧露出。
绝缘封板8安装在安装框架7上,且固定于相邻两个纵梁7-3之间,从而使整个变频换流阀3处于一个单独的舱室内,冷风从散热器3-112前侧的进风口进入,从其出风口经绝缘封板8的窗口8-1处排出,以形成一个快速的直线散热通道,保证对级联模块单元3-1内部的高效散热。
为了保证对电源盒板卡舱3-113内器件的散热,电源盒板卡舱3-113的顶板上设置有百叶窗散热孔3-114。
电源盒板卡舱3-113内安装有板卡3-115,如驱动电源板卡和供电电源板卡,以控制整个级联模块单元3-1的电路,百叶窗散热孔3-114的设置,能够有效地保证两个板卡的散热。
优选的,电源盒板卡舱3-113的顶板为金属材质,百叶窗散热孔3-114为凸起结构,防止水货灰尘落入电源盒板卡舱3-113内,有效地保证了板卡的散热、防水、防尘的同时,兼顾板卡的电磁屏蔽性能。
优选的,壳体3-11内还安装有光纤法兰3-116,既满足级联模块单元3-1对外通讯,又兼顾光纤与壳体3-11等电位防干扰,以及防尘防水功能。
现有的变频换流器所采用的风冷散热方式,即在箱体1的四周安装百叶窗,通过箱体1内外空气流动对设备进行降温处理,但是这种方式不仅散热效果差,而且由于工程现场环境潮湿、高温、污秽大,需要频繁更换百叶窗过滤棉,而且箱内极易产生凝露,设备温度过高、进水等问题均会导致设备故障停运。
在本发明中则采用了不同的散热方式,其中为了实现对多绕组变压器2以及变频换流阀3的高效散热,散热系统6包括连通中间舱室1-2与左舱室1-1,以及连通中间舱室1-2与右舱室1-3的风道6-1,风道6-1位于中间舱室1-2的端部安装有离心风机6-2,左舱室1-1和右舱室1-3内分别安装有空调。
空调包括位于左舱室1-1以及右舱室1-3内部的空调内机6-3,以及安装在左舱室1-1、右舱室1-3外且与对应舱室内空调内机6-3相连的空调外机6-4,以实现对对应舱室即左舱室1-1和右舱室1-3的散热。
变频换流器在工作时,多绕组变压器2和变频换流阀3产生的热量会通过离心风机6-2和风道6-1分别被送入左舱室1-1和右舱室1-3中,继而通过空调将热量散至箱体1外部。
为了保证散热效果,离心风机6-2分别位于变频换流阀3后侧上方,以及多绕组变压器2的两侧上方。
在中间舱室1-2中,由于绝缘封板8的设置,使整个变频换流阀3处于一个封闭的空间内,其中位于绝缘封板8后侧的中间舱室1-2顶部的离心风机6-2,抽风使变频换流阀3所在的空间形成负压状态,从而把级联模块单元3-1的热量带走,同时结合位于多绕组变压器2两侧上方的离心风机6-2,将多绕组变压器2所产生的热量同步抽走至左舱室1-1或右舱室1-3内,继而利用空调将热 量排出,实现整个变频换流阀3器的散热降温。
在此过程中,不仅能够保证变频换流器的高效散热,而且箱体1内的设备上不会出现积尘以及凝露的情况,有效地保证了变频换流器的正常运行。
另外,辅控系统5包括但不仅限于手动报警装置、烟雾报警器,温控器、气体灭火装置、照明装置、紧急照明装置、门禁、行程开关,以及可测温和监控的红外视频探头。
绕组变压器2的三相中,每相包括一原边线圈和M×N个副边线圈,每个级联模块单元3-13-1的输入侧连接一副边线圈,各级联模块单元3-13-1的输出侧首尾依次串联连接,再与电抗器3-153-15串联之后作为变频换流器输出端。多绕组变压器22副边线圈之间移相以降低输入侧谐波含量,为了提高设备运行的可靠性,每相换流阀采用冗余化设计,其中,M、N均≥2,X为≥1的整数。
本发明所采用的变频换流阀3,整体结构简单紧凑,稳定性好,维护检修方便,并且使其所在的变频换流器输出端的频率从0-10kHz连续可调,幅值从0-M×Vc连续可调,Vc为每个级联模块单元3-13-1的输出电压,可为不同电压等级的电力设备提供低频交流、工频交流和直流的测试环境,同时具备不同电压等级的介入能力,可应用于低频变压器、低频断路器、低频海缆、STATCOM、APF、储能PCS、光伏逆变器、风机逆变器、柔直换流器、直流变压器、直流断路器等设备的测试,具有广泛的应用场景。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (10)

  1. 一种风冷变频换流器,其特征在于,包括其内部被分成左舱室(1-1)、中间舱室(1-2)和右舱室(1-3)的箱体(1),所述箱体(1)内设置有安装在所述左舱室(1-1)内的辅控系统(5)、安装在所述中间舱室(1-2)内的且前后分布的变频换流阀(3)和多绕组变压器(2)、安装在所述在右舱室(1-3)内的站用变,以及用于对所述箱体(1)内部散热的散热系统(6);
    所述变频换流阀(3)的每相均包括若干呈扁平化设计的级联模块单元(3-1),同相的各个级联模块单元(3-1)的输入侧与多绕组变压器(2)同相的副边线圈相连,输出侧通过连接排(3-2)依次首尾串联。
  2. 根据权利要求1所述的风冷变频换流器,其特征在于,所述中间舱室(1-2)的前侧设置有安装框架(7),所述级联模块单元(3-1)按照层叠间隔布置的方式固定在所述安装框架(7)上。
  3. 根据权利要求2所述的风冷变频换流器,其特征在于,所述安装框架(7)包括两根上横梁(7-1)和两根下横梁(7-2),且上、下相对的上横梁(7-1)和下横梁(7-2)之间设置有多根纵梁(7-3),前后相对的纵梁(7-3)之间安装有多个固定导轨(7-4),所述级联模块单元(3-1)固定在左、右相对的两个固定导轨(7-4)上。
  4. 根据权利要求1所述的风冷变频换流器,其特征在于,所述级联模块单元(3-1)包括壳体(3-11)、安装在壳体(3-11)内的电气组件,以及安装在所述壳体(3-11)上方的电源盒板卡舱(3-113),所述级联模块单元(3-1)的输入侧接线排(3-12)从所述壳体(3-11)的后端伸出,所述级联模块单元(3-1)的输出侧接线排(3-13)从所述壳体(3-11)的前端伸出。
  5. 根据权利要求4所述的风冷变频换流器,其特征在于,所述电气组件包括与所述输入侧接线排(3-12)并排布置的电抗器(3-15)和电压互感器(3-16)、 位于所述电抗器(3-15)前侧的电流互感器(3-17),以及位于所述壳体(3-11)内部前侧的IGBT模块(3-18)和直流电容(3-110);
    所述电抗器(3-15)和电流互感器(3-17)均串联在其中一侧输入侧接线排(3-12)上,所述电压互感器(3-16)并联在两个输入侧接线排(3-12)上,所述IGBT模块(3-18)通过层叠母排(3-19)与所述直流电容(3-110)相连。
  6. 根据权利要求5所述的风冷变频换流器,其特征在于,所述壳体(3-11)的前侧设置有与所述级联模块单元(3-1)的逆变侧并联的旁路开关(3-11)。
  7. 根据权利要求5所述的风冷变频换流器,其特征在于,所述壳体(3-11)内安装有位于所述IGBT模块(3-18)下方的散热器(3-12);
    所述级联模块单元(3-1)的后侧设置有绝缘封板(8),所述绝缘封板(8)上开设有与所述散热器(3-12)的出风口相对的窗口(8-1),所述散热器(3-12)的进风口从所述壳体(3-11)的前侧露出。
  8. 根据权利要求5所述的风冷变频换流器,其特征在于,所述电源盒板卡舱(3-113)的顶板上设置有百叶窗散热孔(3-114);
    所述百叶窗散热孔(3-114)为凸起结构。
  9. 根据权利要求1所述的风冷变频换流器,其特征在于,所述散热系统(6)包括连通所述中间舱室(1-2)与所述左舱室(1-1),以及连通所述中间舱室(1-2)与所述右舱室(1-3)的风道(6-1),所述风道(6-1)位于所述中间舱室(1-2)的端部安装有离心风机(6-2),所述左舱室(1-1)和右舱室(1-3)内分别安装有空调。
  10. 根据权利要求9所述的风冷变频换流器,其特征在于,所述离心风机(6-2)分别位于所述变频换流阀(3)后侧上方,以及所述多绕组变压器(2)的两侧上方。
PCT/CN2023/108353 2022-12-06 2023-07-20 一种风冷变频换流器 WO2024119836A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211555322.3 2022-12-06
CN202211555322.3A CN117767769A (zh) 2022-12-06 2022-12-06 一种风冷变频换流器

Publications (1)

Publication Number Publication Date
WO2024119836A1 true WO2024119836A1 (zh) 2024-06-13

Family

ID=90313211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108353 WO2024119836A1 (zh) 2022-12-06 2023-07-20 一种风冷变频换流器

Country Status (2)

Country Link
CN (1) CN117767769A (zh)
WO (1) WO2024119836A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201608630U (zh) * 2009-12-24 2010-10-13 卧龙电气集团股份有限公司 一种用于高压变频器的经济型结构模块化功率单元
CN105897003A (zh) * 2016-01-18 2016-08-24 江苏耐维思通科技股份有限公司 岸电用配电集装箱
CN206559215U (zh) * 2017-02-24 2017-10-13 东方日立(成都)电控设备有限公司 一种用于级联式高压大功率变流器的结构装置
CN207720033U (zh) * 2017-11-10 2018-08-10 中冶赛迪电气技术有限公司 一种风冷整流电源装置
US20200240158A1 (en) * 2017-10-05 2020-07-30 Alejandro IZQUIERDO JAEN Carriable and modular cabin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201608630U (zh) * 2009-12-24 2010-10-13 卧龙电气集团股份有限公司 一种用于高压变频器的经济型结构模块化功率单元
CN105897003A (zh) * 2016-01-18 2016-08-24 江苏耐维思通科技股份有限公司 岸电用配电集装箱
CN206559215U (zh) * 2017-02-24 2017-10-13 东方日立(成都)电控设备有限公司 一种用于级联式高压大功率变流器的结构装置
US20200240158A1 (en) * 2017-10-05 2020-07-30 Alejandro IZQUIERDO JAEN Carriable and modular cabin
CN207720033U (zh) * 2017-11-10 2018-08-10 中冶赛迪电气技术有限公司 一种风冷整流电源装置

Also Published As

Publication number Publication date
CN117767769A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
US7567160B2 (en) Supplementary transformer cooling in a reactive power compensation system
US9373995B2 (en) Basic function unit of voltage-source converter based on full-controlled devices
US9089077B2 (en) Energy center
CN201418024Y (zh) 半桥功率模块及其构成的背靠背型变流器
CN103427601A (zh) 矿用中高压变频器循环冷却装置
JP6005995B2 (ja) 変電設備ユニット
CN104795968A (zh) 变频器
CN204231176U (zh) 一种一体化结构紧凑型高压变频器
CN107911009A (zh) 三电平高压大功率水冷变频器系统
WO2024119836A1 (zh) 一种风冷变频换流器
CN207994900U (zh) 三电平高压大功率水冷变频器系统
JPH11220887A (ja) 電力変換装置
JP7511038B2 (ja) プレハブ式変電所
CN203416157U (zh) 矿用中高压变频器循环冷却装置
CN106411143A (zh) 矿用隔爆高压组合变频器机芯以及变频器
CN211183778U (zh) 一体化结构紧凑型高压变频器
CN211183805U (zh) 一体化结构紧凑型高压变频器
Yao et al. Industrial design and application of a railway electric special power supply
CN212366605U (zh) 一种新型的正压除尘散热直流屏
CN109245290B (zh) 一种高压在线ups装置
CN220775010U (zh) 集成式箱式变电站
CN111092540A (zh) 电源装置
CN109474188B (zh) 三电平高压大功率水冷变频器系统
CN215956044U (zh) 一种海上平台高压变频岸电电源系统
Sau-Bassols et al. Technical feasibility of Power Flow Controllers for HVDC grids