WO2024119835A1 - 第一水伺服组件、进水阀总成、热水器及其控制方法 - Google Patents

第一水伺服组件、进水阀总成、热水器及其控制方法 Download PDF

Info

Publication number
WO2024119835A1
WO2024119835A1 PCT/CN2023/108246 CN2023108246W WO2024119835A1 WO 2024119835 A1 WO2024119835 A1 WO 2024119835A1 CN 2023108246 W CN2023108246 W CN 2023108246W WO 2024119835 A1 WO2024119835 A1 WO 2024119835A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
water inlet
valve
servo
interface
Prior art date
Application number
PCT/CN2023/108246
Other languages
English (en)
French (fr)
Inventor
卢鹏程
江永杰
梁国荣
蒋涛
王作伟
刘建
Original Assignee
芜湖美的智能厨电制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 芜湖美的智能厨电制造有限公司 filed Critical 芜湖美的智能厨电制造有限公司
Publication of WO2024119835A1 publication Critical patent/WO2024119835A1/zh

Links

Definitions

  • the present application relates to the field of gas water heaters, and in particular to a first water servo component, a water inlet valve assembly, a water heater and a control method thereof.
  • water servo technology can solve this problem by controlling the water inlet flow of the water heater, but the water servo is installed independently, and each water servo requires two copper pipes, which takes up a large space, has high manufacturing cost, and is complicated to install and has many risk points of water leakage.
  • the main purpose of the present application is to propose a water inlet valve assembly and a water heater integrated with a water servo function, which occupies a small space, has a low production cost, is easy to install, and has a reduced risk of water leakage.
  • a water inlet valve assembly comprising:
  • the first valve body is formed with a water inlet cavity, and a water inlet interface and a first water outlet interface connected to the water inlet cavity.
  • the water inlet interface is used to connect to the first water servo component
  • the first water outlet interface is used to connect to the domestic water board exchange interface, so that the water flow in the water inlet pipeline flows into the water inlet interface through the first water servo component and flows out from the first water outlet interface.
  • the water inlet interface and the first water outlet interface are both located on the front side of the first valve body, and the water inlet interface is located below the first water outlet interface.
  • the first water servo component is further included, and the first water servo component includes:
  • a first connecting member formed with a first water inlet channel, and a first water inlet and a first water outlet communicated with the first water inlet channel, wherein the first water inlet is provided at the lower side of the first connecting member and is used to communicate with the water inlet pipeline, and the first water outlet is communicated with the water inlet interface;
  • a first valve core movably disposed in the first water inlet channel to adjust the water flow rate of the first water inlet channel
  • a first motor which is disposed at an end of the first connecting member opposite to the first water outlet and is drivingly connected to the first valve core;
  • the first water servo assembly includes a solenoid valve, the water inlet end of the solenoid valve is used to connect to the water inlet pipeline, and the water outlet end of the solenoid valve is connected to the water inlet interface; or,
  • the first water servo assembly includes a proportional valve, the water inlet end of the proportional valve is used to connect to the water inlet pipeline, and the water outlet end of the proportional valve is connected to the water inlet interface; or,
  • the first water servo assembly includes a temperature sensing valve, a water inlet end of the temperature sensing valve is used to connect to the water inlet pipeline, and a water outlet end of the temperature sensing valve is connected to the water inlet interface.
  • the first valve body is further formed with a second water outlet interface connected to the water inlet chamber, and the second water outlet interface is used to connect to a second water servo component so that the water flow in the water inlet chamber flows to the domestic hot water outlet through the second water servo component.
  • the second water outlet port is located on one side of the first valve body in the lateral direction.
  • the second water servo assembly is further included, and the second water servo assembly includes:
  • a second connecting member is formed with a second water inlet channel, and a second water inlet and a second water outlet communicated with the second water inlet channel, the second water inlet is communicated with the second water outlet interface, and the second water outlet is arranged at the lower side of the second connecting member and is used to communicate with the domestic hot water outlet;
  • a second valve core movably disposed in the second water inlet passage to adjust the water flow rate of the second water inlet passage
  • the second motor is arranged at an end of the second connecting member opposite to the second water inlet and is drivingly connected to the second valve core.
  • it further includes a second valve body arranged on one side of the first valve body in the lateral direction, the second valve body forms a return water chamber, and a return water interface and a heating water plate exchange interface communicated with the return water chamber.
  • a water replenishment valve interface is formed at the lower end of the first valve body, and the water replenishment valve interface is used to connect a water replenishment valve so that the water inlet chamber and the water return chamber can be communicated through the water replenishment valve.
  • the water supply valve comprises:
  • the shell is formed with a water replenishment cavity, and the upper end of the shell is formed with a water replenishment port communicating with the water replenishment cavity and the water return cavity;
  • a water supply pipe is inserted into the upper end of the shell and is provided with a water supply channel in the up-down direction.
  • the upper end of the water supply channel is connected to the water inlet cavity.
  • the lower end of the water replenishment channel is connected to the water replenishment chamber;
  • a water replenishment valve core movably disposed in the water replenishment chamber along the up-down direction, so as to have a first valve position for moving upward to block the lower end of the water replenishment channel, and a second valve position for opening the lower end of the water replenishment channel;
  • the operating part is movably arranged at the lower end of the shell and is drivingly connected to the water replenishment valve core, and is used to drive the water replenishment valve core to switch between the first valve position and the second valve position.
  • the domestic water board change interface is also formed on the second valve body, and the domestic water board change interface and the heating water board change interface are both located on the rear side of the second valve body, and the domestic water board change interface is located above the heating water board change interface.
  • a heating water pump is further included, wherein the water inlet end of the heating water pump is used to connect to a heating return water pipeline, and the water outlet end of the heating water pump is connected to the return water interface, and the return water interface is arranged on the side of the second valve body opposite to the first valve body.
  • a zero-cooling water pump is further included, wherein the water inlet end of the zero-cooling water pump is connected to the first water outlet interface, and the water outlet end of the zero-cooling water pump is connected to the domestic water board exchange interface.
  • a flow sensor interface and/or a temperature sensor interface communicating with the water inlet chamber is provided on the first valve body.
  • the present application also provides a water heater, comprising the water inlet valve assembly as described above.
  • the present application also provides a water inlet valve assembly, which is used to be arranged on the water inlet pipe of the water heater, and the water inlet valve assembly includes:
  • a first valve body has a water inlet cavity, and a water inlet interface and a first water outlet interface communicating with the water inlet cavity;
  • the first water servo component is arranged at the water inlet interface to adjust the water inlet flow rate.
  • the first valve body extends in an up-down direction
  • a water supply valve is provided at the lower end of the first valve body, and the water supply valve is used to control the communication between the water inlet chamber and the gas heat exchange flow path;
  • the water inlet interface is arranged at the front side of the first valve body, one end of the first water servo component is connected to the water inlet interface, and the other end is extended forward.
  • the first water outlet port is disposed on the front side of the first valve body.
  • the water inlet valve assembly further includes a zero-cooling water pump connected to the first water outlet interface.
  • one end of the zero-cooling water pump is connected to the first water outlet interface, and the other end extends forward, so that the zero-cooling water pump and the first water servo assembly are arranged in parallel.
  • the front end of the zero-cooling water pump is arranged flush with the front end of the first water servo assembly.
  • the first water servo assembly includes a servo body and a servo controller disposed at an end of the servo body facing away from the first valve body.
  • the first water servo assembly comprises:
  • a first connecting member having a first water inlet channel, and a first water inlet and a first water outlet communicated with the first water inlet channel, wherein the first water outlet is provided at one end of the first connecting member and connected to the water inlet interface;
  • a first valve core movably arranged along the length direction of the first water inlet channel to adjust the water flow of the first water inlet channel
  • a driving device drives the first valve core to move.
  • the driving device comprises a stepper motor.
  • a bracket is provided in the first water inlet channel on a side of the first valve core facing the first water outlet;
  • the first valve core is slidably mounted on the bracket via a movable column;
  • At least one section of the first valve core forms a flow portion, and the flow portion is located between the first water outlet and the first water inlet.
  • a flow gap is formed between the flow portion and the first water inlet channel. The distance between the flow portion and the bracket is d, and d ⁇ 10mm.
  • an end portion of the first valve core facing the first water outlet forms the flow portion.
  • the present application also provides a first water servo assembly, comprising:
  • a first connecting member having a first water inlet channel, and a first water inlet and a first water outlet communicated with the first water inlet channel, wherein the first water outlet is provided at one end of the first connecting member and connected to the water inlet interface;
  • a first valve core is movably arranged along the length direction of the first water inlet channel, at least one section of the first valve core forms a flow-through portion, the flow-through portion is located between the first water outlet and the first water inlet, a flow-through gap is formed between the flow-through portion and the first water inlet channel during the movable stroke of the first valve core, and a distance d between the flow-through portion and the bracket is d, d ⁇ 10 mm;
  • a driving device drives the first valve core to move.
  • an end portion of the first valve core facing the first water outlet forms the flow portion.
  • the present application also provides a control method for a water heater, the water heater comprising a gas heat exchange flow path, a hot water heat exchanger, a water inlet valve assembly and a control device, the gas heat exchange flow path is provided with a gas heat exchange component, the two ends of the gas heat exchange flow path are used to be connected to the two ends of the heating flow path, the hot water heat exchanger is formed with a heat exchange flow path and a hot water flow path capable of heat exchange with the heat exchange flow path, the two ends of the heat exchange flow path are connected to the two ends of the gas heat exchange flow path, the water inlet valve assembly is connected to the water inlet end of the hot water flow path, the water inlet valve assembly comprises a first water servo assembly for controlling the water inlet flow rate, and the control method of the water heater comprises the following steps:
  • the gas heat exchange component is controlled to work to heat the water in the heat exchange flow path, and the first water servo component is controlled to adjust the water inlet flow rate to Q1, Q1 ⁇ Q, Q is the current achievable flow rate;
  • the gas heat exchange component when the water outlet of the hot water flow path is opened for water use, the gas heat exchange component is controlled to work to heat the water in the heat exchange flow path, and the first water servo component is controlled to adjust the water inlet flow rate to Q1, Q1 ⁇ Q, Q is the current achievable flow rate.
  • the work of controlling the gas heat exchange component includes:
  • the firepower of the gas heat exchange component is controlled according to a first temperature difference between the outlet water temperature and the target temperature.
  • the step of controlling the firepower of the gas heat exchange component according to a first temperature difference between the outlet water temperature and the target temperature includes:
  • the firepower of the gas heat exchange component is controlled to decrease.
  • the first water servo assembly includes a first connecting member, a first valve core and a driving device;
  • the gas heat exchange component is controlled to work to heat the water in the heat exchange flow path
  • the first water servo component is controlled to adjust the water inlet flow to Q1, Q1 ⁇ Q, Q is the current achievable flow rate.
  • the first water servo component is controlled to work including:
  • the driving device When the opening degree of the first water servo assembly is reduced to a set opening degree, the driving device is controlled to decelerate.
  • the step of controlling the first water servo component to increase the water inlet flow rate includes:
  • the first water servo component is controlled to gradually increase the water inlet flow rate in the form of a set gradient.
  • the step of controlling the first water servo component to increase the water inlet flow rate includes:
  • the first water servo assembly is adjusted according to the time interval.
  • the first water servo component increases the water inlet flow rate, and controls the gas heat exchange component to increase the firepower
  • the first water servo assembly is controlled to stop adjusting the water inlet flow rate, and H1 is less than the rated firepower.
  • the set firepower H1 ⁇ 92% of the rated firepower In one embodiment, the set firepower H1 ⁇ 92% of the rated firepower.
  • the method when the firepower increases to the set firepower H1, after the step of controlling the first water servo assembly to stop adjusting the water inlet flow, the method further includes:
  • Q is corrected according to the difference between Q2 and the current temperature.
  • the gas heat exchange component when the water outlet of the hot water flow path is opened for water use, the gas heat exchange component is controlled to work to heat the water in the heat exchange flow path, and the first water servo component is controlled to adjust the water inlet flow rate to Q1, Q1 ⁇ Q, Q is the currently achievable flow rate, and the step of controlling the gas heat exchange component to work includes:
  • the gas heat exchange component is controlled to operate according to the matching firepower.
  • the step of controlling the first water servo component to increase the water inlet flow rate includes:
  • the opening degree of the first water servo component is controlled to reach 100%.
  • the present application further provides a water heater, comprising:
  • a gas heat exchange flow path on which a gas heat exchange component is arranged, and two ends of the gas heat exchange flow path are used to be connected to the two ends of the heating flow path;
  • a hot water heat exchanger wherein a heat exchange flow path and a hot water flow path capable of heat exchange with the heat exchange flow path are formed inside the hot water heat exchange flow path, and two ends of the heat exchange flow path are correspondingly connected to two ends of the gas heat exchange flow path;
  • the water inlet valve assembly includes a first water servo component for controlling the water inlet flow rate
  • a control device is electrically connected to the gas heat exchange component and the first water servo component.
  • control device includes a memory, a processor, and a water heater control program stored in the memory and executable on the processor, wherein the water heater control program is configured to implement the steps of the water heater control method as described in any one of the above items.
  • the water inlet valve assembly includes any one of the water inlet valve assemblies described above.
  • the water inlet valve assembly provided by the present application includes a first valve body, the first valve body is formed with a water inlet cavity, and a water inlet interface and a first water outlet interface connected to the water inlet cavity, the water inlet interface is used to connect to the first water servo component, and the first water outlet interface is used to connect to the domestic water board change interface, so that the water flow in the water inlet pipeline flows into the water inlet interface through the first water servo component and flows out from the first water outlet interface.
  • the water inlet valve assembly is integrated with a water inlet interface that can be used to connect to the first water servo component, and the water servo can be directly connected to the water inlet valve to control the water inlet flow of the water heater as needed, reduce the use of copper pipes, reduce production costs, and occupy a small space, simple installation, reduce the leakage points generated during assembly, thereby reducing the risk of leakage.
  • FIG1 is a partial three-dimensional structural schematic diagram of an embodiment of a water heater provided by the present application.
  • FIG2 is a schematic diagram of the three-dimensional structure of the first embodiment of the water inlet valve assembly in FIG1 ;
  • FIG3 is a rear elevational view of the water inlet valve assembly in FIG2 ;
  • Fig. 4 is a cross-sectional view of the A-A position in Fig. 3;
  • FIG5 is a schematic diagram of the three-dimensional structure of a second embodiment of the water inlet valve assembly in FIG1 ;
  • FIG6 is a front elevational view of the water inlet valve assembly in FIG5 ;
  • Fig. 7 is a cross-sectional view of the B-B portion in Fig. 6;
  • FIG8 is a schematic diagram of the three-dimensional structure of the third embodiment of the water inlet valve assembly in FIG1 ;
  • FIG9 is a schematic diagram of the three-dimensional structure of the water supply valve in FIG2 ;
  • FIG10 is a schematic diagram showing the principle of another embodiment of the water heater provided by the present application when in use;
  • FIG11 is a schematic diagram of the three-dimensional structure of the water heater in FIG10 with the front side portion removed;
  • FIG12 is a perspective schematic diagram of the water inlet valve assembly and the hot water heat exchanger in FIG11;
  • FIG13 is a schematic cross-sectional view of the water inlet valve assembly in FIG12;
  • FIG. 14 is a flow chart of an embodiment of a method for controlling a water heater provided in the present application.
  • the directional indication is only used to explain the relative position relationship, movement status, etc. between the components in a certain specific posture. If the specific posture changes, the directional indication will also change accordingly.
  • the present application provides a water heater, which may be a gas water heater dedicated to providing domestic hot water, or a wall-mounted boiler for providing domestic hot water and hot water for heating. Please refer to FIGS. 2 to 7 .
  • the present application also provides a water inlet valve assembly 100 for the water heater, which is used to introduce cold water in the water inlet pipeline into the water heater, so that the water heater provides heated domestic hot water and/or hot water for heating.
  • the water heater includes a water heater housing 200, which is used to accommodate water heater components such as the water inlet valve assembly 100, a heat exchanger, a combustion chamber, and connecting pipelines.
  • water heaters with water servo functions solve the defects of traditional gas water heaters such as slow constant temperature speed, large start-stop constant temperature fluctuations, and large impact of water temperature fluctuations or water flow fluctuations on water outlet temperature by controlling the water inlet flow of the water heater.
  • its water servo module is installed independently, and each water servo module requires two copper pipes, which occupies a large space, has high manufacturing costs, is complex to install, and has many risk points of water leakage.
  • the water inlet valve assembly 100 provided in the present application includes a first valve body 10, wherein the first valve body 10 is formed with a water inlet cavity 11, and a water inlet interface 12 and a first water outlet interface 13 connected to the water inlet cavity 11.
  • the water inlet interface 12 is used to connect the first water servo assembly 30, and the first water outlet interface 13 is used to connect the domestic water board exchange interface 22, so that the water flow in the water inlet pipeline flows into the water inlet interface 12 through the first water servo assembly 30, and flows out from the first water outlet interface 13.
  • the water inlet pipeline points to the pipeline that provides tap water to the water heater, so that the water heater can provide domestic hot water and/or hot water for heating after heating.
  • the domestic water board exchange interface 22 is connected to the water inlet end of the heat exchange pipeline, so that the water flow introduced from the water inlet valve assembly 100 flows through the heat exchange pipeline through the heat exchanger of the water heater, and flows out from the domestic water end after being heated for use by users.
  • the first water inlet servo assembly refers to a functional component with a water servo function, which can adjust the water inlet flow rate as needed.
  • the flow direction of the water flow is as follows: the tap water flow flowing into the water inlet pipeline is adjusted by the first water servo assembly 30, and flows into the water inlet cavity 11 from the water inlet interface 12, and then flows out from the first water outlet interface 13, and flows to the domestic water board exchange interface 22, and then flows through the heat exchanger of the water heater through the heat exchange pipeline, and flows out from the domestic water end after being heated for user use.
  • the domestic water board exchange interface 22 is provided with a flow limiting ring, and the flow limiting ring controls the water flow rate flowing to the heat exchanger within a specific threshold range, and the specific threshold range can be set according to the power of the water heater, for example, 20L is set for a 32kw whole machine, 18L is set for a 26kw whole machine, etc. In this way, the water supply does not exceed the maximum value that the heat exchanger can load, avoiding the situation where the water outlet end temperature is too low or the water heater is overloaded, and improving the user experience and the service life of the water heater.
  • the water inlet valve assembly 100 integrates the water inlet interface 12 that can be used to connect the first water servo component 30.
  • the first water servo component 30 can be directly connected to the water inlet valve to control the water inlet flow of the water heater as needed, reduce the use of copper pipes, make the internal structure of the water heater more simple and beautiful, reduce production costs, and occupy less space, simple installation, reduce leakage points generated during assembly, thereby reducing the risk of leakage.
  • the water inlet interface 12 and the first water outlet interface 13 are both located on the front side of the first valve body 10, and the water inlet interface 12 is located below the first water outlet interface 13. It should be noted that in the present application, the description of directions such as up and down, horizontal, front and back, etc., is only for the state of the water heater after installation, and does not include the state of the water heater during production, assembly, transportation or debugging.
  • the water heater is installed on a mounting surface such as a wall, and the side facing the mounting surface is the rear side, and the side away from the mounting surface is the front side.
  • the up and down direction refers to a direction roughly parallel to the gravity, or a direction that is at a certain angle to the gravity direction, and the angle is not greater than 45 degrees.
  • the horizontal direction refers to a direction roughly perpendicular to the up and down direction.
  • the water inlet interface 12 and the water outlet interface are both located on the front side of the first valve body 10.
  • the water inlet valve assembly 100 is located at the rear position in the water heater shell 51, and the front is empty for accommodating the first water inlet servo assembly and the zero-cold water pump 70 or the diversion pipeline and other components, making the installation operation more convenient.
  • the water heater may be a gas water heater dedicated to providing domestic hot water. It provides hot water for heating and is a wall-mounted boiler that integrates domestic hot water supply and heating water supply.
  • the water inlet valve assembly 100 also includes a second valve body 20 arranged on one side of the first valve body 10 in the lateral direction.
  • the second valve body 20 forms a return water chamber 21, and a return water interface 24 and a heating water plate exchange interface 23 that are connected to the return water chamber 21.
  • the first valve body 10 and the second valve body 20 can be arranged as a whole, or they can be arranged separately and then assembled.
  • the first valve body 10 and the second valve body 20 are arranged as a whole, so that it is easy to produce and install, and the water heater assembly is simpler, reducing production costs.
  • the return water interface 24 is used for the return water flowing into the heating water
  • the heating water plate exchange interface 23 is used to connect the heat exchange pipeline, so that the heating water flows through the heat exchange pipeline through the heat exchanger of the water heater and is heated.
  • the water flow of the heating water is as follows: the return water of the heating is driven by the heating water pump 60 to flow into the return water interface 24, flows through the return water chamber 21, and flows from the heating plate exchange interface to the heat exchange pipeline, and after being heated by the heat exchanger of the water heater, it flows to the indoor heating terminal such as the radiator or the floor heating pipeline, and after dissipating the heat at the heating terminal, it flows back to the return water interface 24 to enter the next cycle.
  • the water heater is a zero-cold water water heater
  • the water inlet valve assembly 100 also includes a zero-cold water pump 70.
  • the water inlet end of the zero-cold water pump 70 is connected to the first water outlet interface 13, and the water outlet end of the zero-cold water pump 70 is connected to the domestic water board exchange interface 22.
  • the specific structure of the zero-cold water pump 70 belongs to the prior art and will not be repeated. It can be understood that the zero-cold water pump 70 usually also has a return water end, which is used to communicate with the zero-cold water return pipe and is used to introduce the water flow in the zero-cold water return pipe into the domestic water board exchange interface 22.
  • the cold water in the domestic water pipeline first flows back to the zero cold water pump 70 through the zero cold water return pipe, and is drawn into the domestic water plate exchange interface 22 together with the water flow in the water inlet chamber 11, flows into the heat exchange pipeline, and is heated by the heat exchanger of the water heater before flowing to the end of the domestic water, so that the user can basically have no cold water flowing out every time he uses hot water, thereby improving the user's experience.
  • the first water outlet interface 13 is located on the front side of the first valve body 10, so the zero cold water pump 70 is also arranged at the front position of the water heater, which is convenient for assembly, and the water inlet valve assembly 100 is compact in structure, which is conducive to controlling the external dimensions of the water heater.
  • the first water outlet interface 13 can be set as a common plug-in or card-connected interface.
  • the water inlet end of the zero cold water pump 70 is card-connected to the first water outlet interface 13 by means of a pin, so that the zero cold water pump can be easily replaced and replaced and repaired.
  • a diversion pipeline is used to replace the zero cold water pump 70 to improve the expansion performance of the water heater.
  • a water replenishment valve 50 interface 15 is formed at the lower end of the first valve body 10.
  • the water replenishment valve 50 interface 15 is used to connect the water replenishment valve 50, so that the water inlet chamber 11 and the water return chamber 21 can be communicated through the water replenishment valve 50.
  • the heating water may have excessive water volume during the circulation process, requiring pressure relief, or insufficient water volume requiring water replenishment. Therefore, it is necessary to set the water replenishment valve 50 so that the water return chamber 21 and the water inlet chamber 11 can be communicated, thereby realizing the function of pressure relief or water replenishment for the heating water circulation water circuit.
  • the specific structure of the water replenishment valve 50 is not limited, as long as it can achieve the connection between the return water chamber 21 and the water inlet chamber 11 as needed.
  • the water replenishment valve 50 is inserted into the water inlet valve assembly 100 from the lower end of the water inlet valve assembly 100. Compared with the traditional oblique insertion water replenishment valve 50 and the water replenishment valve 50 inserted from the front and then bent at a right angle, the space occupied by the water replenishment valve 50 on the front is reduced. In this way, on the one hand, there is more free space in the front area inside the water heater housing 200, which is convenient for placing the first water servo assembly 30 and the zero-cold water pump 70 and other components.
  • the water inlet interface 12 is arranged on the front side of the first valve body 10, when the water heater is installed, the operation of connecting the water inlet pipeline to the water inlet valve assembly 100 will not be blocked by the water replenishment valve 50, which reduces the difficulty of installation and improves the installation efficiency.
  • the water replenishment valve 50 includes a housing 51, a water replenishment pipe 54, a water replenishment valve core 56 and an operating part 57.
  • the housing 51 is formed with a water replenishment chamber 52
  • the upper end of the housing 51 is formed with a water replenishment port 53 connecting the water replenishment chamber 52 and the return water chamber 21.
  • the water replenishment pipe 54 is inserted at the upper end of the housing 51, and the water replenishment pipe 54 is penetrated with a water replenishment channel 55 in the up-down direction.
  • the upper end of the water replenishment channel 55 is connected to the water inlet chamber 11, and the lower end of the water replenishment channel 55 is connected to the water replenishment chamber 52.
  • the water replenishment valve core 56 is movably arranged in the water replenishment chamber 52 in the up-down direction, so as to have a first valve position of moving up to block the lower end of the water replenishment channel 55, and a second valve position of opening the lower end of the water replenishment channel 55.
  • the operating part 57 is movably disposed at the lower end of the housing 51 and is drivingly connected to the water supply valve core 56, and is used to drive the water supply valve core 56 to switch between the first valve position and the second valve position.
  • the specific form of the operating part 57 can be multiple, for example, it can be a handle that can be pushed up or pulled down, or it can be a knob, the knob is screwed to the lower end of the housing 51, and is connected to the lower end of the water supply valve core 56, so that when the user operates the knob to rotate upward, the knob moves up relative to the housing 51, and drives the water supply valve core 56 to move up to the first valve position, and when the user operates the knob to rotate downward, the knob moves down relative to the housing 51, and drives the water supply valve core 56 to move down to the second valve position, so that the valve position switching of the water supply valve core 56 is realized, and the knob is easy and reliable to operate, not easy to fall off, and reduces the possibility of misoperation.
  • the operation of water replenishment using the water replenishment valve 50 provided in the present embodiment is as follows: close the water outlet at the end of the domestic water supply so that the water pressure in the water inlet chamber 11 is greater than that in the water return chamber 21; operate the operating part 57 so that the water replenishment valve core 56 moves from the first valve position to the second valve position; the water flow in the water inlet chamber 11 automatically flows into the water return chamber 21 under the action of the pressure difference, thereby completing the water replenishment operation for the heating circulation water circuit. Then, operate the operating part 57 so that the water replenishment valve core 56 returns from the second valve position to the first valve position.
  • the operation of pressure relief using the water replenishment valve 50 provided in the present embodiment is as follows: open the water outlet at the end of the domestic water supply so that the water pressure in the water inlet chamber 11 is less than that in the water return chamber 21; operate the operating part 57 so that the water replenishment valve core 56 moves from the first valve position to the second valve position; the water flow in the water return chamber 21 Under the action of the pressure difference, the water automatically flows to the water inlet chamber 11 and flows out from the domestic water end until the water pressure in the heating circulation water circuit reaches the preset value, completing the pressure relief operation of the heating circulation water circuit. Then, the operating part 57 is operated to make the water supply valve core 56 return from the second valve position to the first valve position.
  • the water replenishment valve 50 provided in this embodiment is in a vertical shape extending in the vertical direction as a whole, and is inserted into the first valve body 10 and the second valve body 20 from the bottom. Compared with the traditional oblique insertion water replenishment valve 50 and the water replenishment valve 50 inserted from the front and then bent at a right angle, the space occupied by the water replenishment valve 50 on the front is reduced. In this way, on the one hand, there is more free space in the front area inside the water heater housing 200, which is convenient for placing the first water servo assembly 30 and the zero-cold water pump 70 and other components.
  • the water inlet interface 12 is arranged on the front side of the first valve body 10, when the water heater is installed, the operation of connecting the water inlet pipeline to the water inlet valve assembly 100 will not be blocked by the water replenishment valve 50, which reduces the difficulty of installation and improves the installation efficiency.
  • the second valve body 20 is also formed with the domestic water board exchange port 22, the domestic water board exchange port 22 and the heating water board exchange port 23 are both located at the rear side of the second valve body 20, and the domestic water board exchange port 22 is located above the heating water board exchange port 23.
  • the heat exchange pipeline is connected to the water inlet valve assembly 100 from the rear side of the water inlet valve assembly 100, so that the internal components of the water heater are arranged compactly and reasonably, the length of the heat exchange pipeline is reduced, and the heat exchange pipeline will not block the operation of the first water inlet servo or zero cooling water pump 70 installed on the front side, the assembly operation is simpler, and the assembly efficiency and quality are improved.
  • the water inlet valve assembly 100 further includes a heating water pump 60, the water inlet end of the heating water pump 60 is used to connect to the heating water return pipeline, and the water outlet end of the heating water pump 60 is connected to the water return interface 24, and the water return interface 24 is arranged on the side of the second valve body 20 that is opposite to the first valve body 10.
  • the heating water pump 60 is arranged on one side of the water inlet valve assembly 100 in the lateral direction, so that the internal structure of the water heater is more compact, ensuring that enough functional components can be arranged within the size range of the water heater, improving the performance of the water heater, and controlling the size of the water heater at the same time, improving the user experience.
  • the water inlet interface 12 can be set as a common plug-in or card-connected interface.
  • the first water inlet servo is card-connected to the water inlet interface 12 by means of a pin, so that the first water servo assembly 30 can be easily replaced and replaced and repaired.
  • a diversion pipeline is used to replace the first water inlet servo to improve the expansion performance of the water heater.
  • the water inlet interface 12 is also provided with a flow limiting ring, which controls the total flow flowing into the first water servo component 30 within a first preset value, and the zero position of the first water servo component 30 is set to the middle value of the first preset value. In this way, the flow of the first water servo component 30 changes most obviously with the position of the first valve core 35, and the first water servo component 30 has the best regulating effect on the water flow.
  • the specific type or structure of the first water servo component 30 there is no limitation on the specific type or structure of the first water servo component 30, as long as it can realize the water inlet servo of the water heater, control the water flow rate according to the inlet water temperature, inlet water pressure and/or gas supply conditions, and realize fast and accurate temperature control and start-up control of domestic water, so as to improve the user's water use experience.
  • the water inlet valve assembly 100 also includes the first water servo assembly 30, which includes a first connector 31, a first valve core 35 and a first motor 36.
  • the first connector 31 is formed with a first water inlet channel 32, and a first water inlet 33 and a first water outlet 34 connected to the first water inlet channel 32.
  • the first water inlet 33 is arranged at the lower side of the first connector 31 for connecting the water inlet pipeline, and the first water outlet 34 is connected to the water inlet interface 12.
  • the first connector 31 has an assembly structure that is mutually compatible with the water inlet interface 12 at one end of the first water outlet 34, so as to realize the convenient installation and disassembly of the first water inlet servo assembly shown.
  • the first water inlet 33 is located at the lower side of the first connector 31, so that the water inlet pipeline can be connected to the water inlet valve assembly 100 from below, which conforms to the general installation habits of the water heater, facilitates hiding the water heater pipe, and makes the water heater more beautiful after installation.
  • the water replenishment valve 50 is inserted into the water inlet valve assembly 100 from below and is located behind the first water inlet 33. In this way, on the one hand, there is more free space in the front area inside the water heater housing 200, which is convenient for placing the first water servo assembly 30 and the zero-cold water pump 70 and other components.
  • the water inlet interface 12 is arranged on the front side of the first valve body 10, when the water heater is installed, the operation of connecting the water inlet pipeline to the water inlet valve assembly 100 will not be blocked by the water replenishment valve 50, which reduces the difficulty of installation and improves the installation efficiency.
  • the first valve core 35 is movably arranged in the first water inlet channel 32 to adjust the water flow of the first water inlet channel 32.
  • the specific structure and activity mode of the first valve core 35 are not limited, as long as the water volume of the first water inlet servo assembly can be adjusted by controlling the activity of the first valve core 35.
  • the first valve core 35 is movably arranged in the first water inlet channel 32 along the front-to-back direction, so that the first connecting member 31 is arranged in an elongated shape extending along the front-to-back direction as a whole, so that there is enough space to arrange the first water inlet 33.
  • the first motor 36 is arranged at the end of the first connecting member 31 opposite to the first water outlet 34, and is driven and connected to the first valve core 35.
  • the transmission structure between the first motor 36 and the first valve core 35 can be set according to the activity mode of the first valve core 35.
  • the first motor 36 can be controlled to adjust the water inlet flow rate of the first water servo assembly 30 according to the inlet water temperature, inlet water pressure and/or gas supply conditions, thereby improving the performance of the water heater.
  • the water The flow direction is as follows: water flows from the water inlet pipe into the first water inlet channel 32 through the first water inlet 33, the activity of the first valve core 35 controls the water flow of the first water servo assembly 30, thereby controlling the total flow of domestic water of the water heater, and the water with controlled flow flows from the first water outlet 34 to the water inlet interface 12 and then flows into the water inlet chamber 11, realizing hot water supply for domestic water.
  • the first water servo assembly 30 can also be replaced with other forms to improve the expansion of the water heater.
  • the first water servo assembly 30 includes a solenoid valve, the water inlet end of the solenoid valve is used to connect to the water inlet pipeline, and the water outlet end of the solenoid valve is connected to the water inlet interface 12.
  • the solenoid valve can be controlled to adjust the water flow rate of the first water servo assembly 30 according to the water temperature, water pressure and/or gas supply conditions, thereby improving the constant temperature and other performance of the water heater.
  • the first water servo assembly 30 includes a proportional valve, the water inlet end of the proportional valve is used to connect to the water inlet pipeline, and the water outlet end of the proportional valve is connected to the water inlet interface 12.
  • the proportional valve can be controlled to adjust the water flow rate of the first water servo assembly 30 according to the water temperature, water pressure and/or gas supply conditions, thereby improving the thermostatic performance of the water heater.
  • the first water servo assembly 30 includes a temperature-sensitive valve, in which a temperature-sensitive spring or a memory alloy may be provided, and the water inlet end of the temperature-sensitive valve is used to connect to the water inlet pipeline, and the water outlet end of the temperature-sensitive valve is connected to the water inlet interface 12.
  • the water flow of the first water servo assembly 30 changes according to the inlet water temperature.
  • the water temperature is cold in winter, the water heater has a large workload and a small water flow.
  • the water temperature is high in summer, the water heater has a small workload and a large water flow, thereby improving the constant temperature performance of the water heater.
  • the first valve body 10 is further formed with a second water outlet interface 14 connected to the water inlet chamber 11, and the second water outlet interface 14 is used to connect the second water servo component 40, so that the water flow in the water inlet chamber 11 flows to the domestic hot water outlet through the second water servo component 40.
  • the second water outlet interface 14 is connected to the domestic hot water outlet.
  • the second water servo component 40 is connected to the outlet of the hot water exchange circuit through a bypass water channel, so that according to the water temperature requirement, the second water servo component 40 can be used to mix low-temperature water flow into the domestic water end, so that the water heater can achieve a constant temperature water outlet function.
  • the second water outlet interface 14 is located on one side of the first valve body 10 in the lateral direction.
  • the second water servo component 40 is arranged on one side of the water inlet valve assembly 100 in the lateral direction.
  • the internal structure of the water heater is more compact, ensuring that enough functional components can be arranged within the size range of the water heater to improve the performance of the water heater, while controlling the size of the water heater to improve the user experience.
  • the second water servo component 40 and the heating water pump 60 are arranged on both sides of the water inlet valve assembly 100 in the lateral direction.
  • the internal structure of the water heater is reasonably arranged, which is convenient for pipe arrangement.
  • the assembly of the two components will not hinder each other, which is convenient for assembly, improves assembly efficiency, and reduces production costs.
  • the second water outlet interface 14 can be set as a common plug-in or card-connected interface.
  • the second water inlet servo is card-connected to the second water outlet interface 14 by means of a pin, so that the second water servo assembly 40 can be easily replaced and replaced and repaired.
  • a baffle is used to replace the second water inlet servo to improve the expansion performance of the water heater.
  • the second water outlet interface 14 is further provided with a flow limiting ring, which controls the total flow flowing into the second water servo component 40 within a second preset value, and the zero position of the second water servo component 40 is set to the middle value of the second preset value. In this way, the flow of the second water servo component 40 changes most obviously with the position of the second valve core, and the second water servo component 40 has the best regulating effect on the water flow.
  • the second water servo component 40 there is no limitation on the specific type or structure of the second water servo component 40, as long as it can be connected to the bypass water circuit to achieve constant temperature water outlet of the water heater, control the water flow rate according to the outlet water temperature, mix an appropriate amount of low-temperature water into the hot water outlet of domestic water, achieve constant temperature water outlet for domestic water, and enhance the user's water use experience.
  • the water inlet valve assembly 100 further includes a second water servo assembly 40.
  • the structure of the second water servo assembly 40 is similar to that of the first water servo assembly 30 , and the second water servo assembly 40 includes a second connector, a second valve core, and a second motor.
  • the second connector is formed with a second water inlet channel, and a second water inlet and a second water outlet connected to the second water inlet channel.
  • the second water inlet is connected to the second water outlet interface 14
  • the second water outlet is arranged at the lower side of the second connector, and is used to connect the bypass pipeline, so as to introduce the low-temperature water flow into the hot water outlet of domestic water.
  • the second water servo component 40 and the heating water pump 60 are separately arranged on both sides of the water inlet valve assembly 100 in the horizontal direction. On the one hand, this makes the internal structure of the water heater reasonably arranged, which is convenient for the arrangement of the bypass pipeline and the heating return pipeline. On the other hand, the assembly of the two components will not hinder each other, which is convenient for assembly, improves assembly efficiency, and reduces production costs.
  • the specific structure and activity mode of the second valve core are not limited, as long as the water volume adjustment of the second water inlet servo assembly can be achieved by controlling the activity of the second valve core.
  • the second valve core is movably arranged in the second water inlet channel along the front-to-back direction, so that the second connecting member is arranged in an elongated shape extending in the transverse direction as a whole, so that there is enough space to arrange the second water outlet.
  • the second motor is arranged at the end of the second connecting member opposite to the second water inlet, and is drivingly connected to the second valve core. It can be understood that the transmission structure between the second motor and the second valve core can be set according to the activity mode of the second valve core.
  • the second The motor can be controlled to adjust the water flow rate of the second water servo component 40 according to the water outlet temperature of the domestic water end, so as to mix an appropriate amount of low-temperature water flow into the domestic water hot water outlet end to achieve constant temperature water outlet of the water heater.
  • the direction of water flow is as follows: water flows from the water inlet pipe through the first water inlet port 33 into the first water inlet channel 32, the activity of the first valve core 35 controls the water flow of the first water servo assembly 30, thereby controlling the total flow of domestic water of the water heater, and the water flow with controlled flow flows from the first water outlet port 34 to the water inlet interface 12 and then flows into the water inlet chamber 11, and then part of the water flow in the water inlet chamber 11 flows through the first water outlet interface 13 to the domestic water plate exchange interface 22 and flows to the heat exchange pipe for heat exchange, and becomes a high-temperature water flow at the domestic water hot water outlet end, and the other part of the water flow flows from the second water outlet interface 14 into the second water inlet channel of the second water servo assembly 40, and flows out from the second water outlet after the water flow is adjusted by the second water servo assembly 40, flows into the bypass waterway, becomes a low-temperature water flow and merges with the high-temperature water flow, forming a constant
  • the second water servo assembly 40 can also be replaced with other forms to enhance the expansion of the water heater.
  • the second water servo assembly 40 includes a solenoid valve, the water inlet end of the solenoid valve is used to connect to the second water outlet interface 14, and the water outlet end of the solenoid valve is connected to the bypass pipeline.
  • the solenoid valve can be controlled to adjust the water volume according to the water temperature of the domestic water hot water outlet, and mix a suitable amount of low-temperature water flow into the domestic water end, forming a constant temperature water flow of suitable temperature flowing out of the domestic water hot water outlet, thereby improving the user experience.
  • the second water servo assembly 40 includes a proportional valve, the water inlet end of the proportional valve is used to connect to the second water outlet interface 14, and the water outlet end of the proportional valve is connected to the bypass pipeline.
  • the proportional valve can be controlled to adjust the water volume according to the water temperature of the domestic water hot water outlet, and mix a suitable amount of low-temperature water flow into the domestic water end to form a constant temperature water flow of suitable temperature flowing out of the domestic water hot water outlet, thereby improving the user experience.
  • the first valve body 10 is provided with a flow sensor 16 interface and/or a temperature sensor 17 interface connected to the water inlet chamber 11.
  • the water inlet valve assembly 100 may also include the flow sensor 16 and the temperature sensor 17.
  • the water inlet valve assembly 100 can provide water volume and water temperature information of the inlet water, so that the first water inlet servo, the second water inlet servo and the gas proportional valve in the water heater can be adjusted in real time according to the corresponding water volume and water temperature information, further improving the performance of the water heater and improving the user experience.
  • the present application provides a water inlet valve assembly 100 for being arranged on the water inlet pipeline of the water heater 1000, specifically, for being arranged at the water inlet end on the hot water flow path 401 of the water heater 1000.
  • the water inlet valve assembly 100 includes a first valve body 10 and a first water servo component 30.
  • the first valve body 10 has a water inlet chamber 11, and a water inlet interface 12 and a first water outlet interface 13 connected to the water inlet chamber 11.
  • the first water servo component 30 is arranged at the water inlet interface 12 to adjust the water inlet flow rate. In this way, the water inlet flow rate is adjusted by the first water servo component 30.
  • the water inlet valve assembly 100 integrates a first water servo component 30, which can directly control the water inlet flow of the water heater 1000 as needed, reduce the use of copper pipes, make the internal structure of the water heater 1000 more simple and beautiful, reduce production costs, occupy less space, and is easy to install, reducing leakage points generated during assembly, thereby reducing the risk of leakage.
  • the first valve body 10 extends in the vertical direction, that is, it is installed in the shell of the water heater 1000 in the vertical direction.
  • the lower end of the first valve body 10 is provided with a water replenishment valve 50, and the water replenishment valve 50 is used to control the communication between the water inlet chamber 11 and the gas heat exchange flow path 300;
  • the water inlet interface 12 is arranged at the front side of the first valve body 10, that is, it is arranged toward the front side of the shell of the water heater 1000, and one end of the first water servo assembly 30 is connected to the water inlet interface 12, and the other end is extended forward.
  • the water replenishment valve 50 is arranged at the lower end of the first valve body 10, it does not occupy the front side space of the first valve body 10, and the water inlet valve assembly 100 can be installed at the rear position in the shell of the water heater 1000, while the front is vacant for arranging the first water inlet servo assembly, and the installation operation is more convenient, thereby making the structure of the water heater 1000 more compact.
  • the first water outlet interface 13 is arranged at the front side of the first valve body 10, so as to facilitate the connection of related components, such as pipelines or pump bodies, etc., at the first water outlet interface 13.
  • the water inlet valve assembly 100 also includes a zero-cold water pump 70 connected to the first water outlet interface 13, so as to facilitate the arrangement of the zero-cold water pump 70. In this way, the space size in the front-to-back direction of the water heater can be fully utilized. Under the condition that the thickness of the water heater in the front-to-back direction is not increased, the water inlet valve assembly 100 and the zero-cold water pump 70 are both arranged inside the water heater, and the size in the up-down direction is not squeezed to make the water heater longer.
  • one end of the zero-cold water pump 70 is connected to the first water outlet interface 13, and the other end extends forward, so that the zero-cold water pump 70 is arranged in parallel with the first water servo assembly 30, so that the water inlet valve assembly 100 can be installed at a rear position in the shell of the water heater 1000, and the front is vacant for accommodating the first water inlet servo assembly and the zero-cold water pump 70, and the installation operation is more convenient, thereby making the structure of the water heater 1000 more compact.
  • the front end of the zero-cold water pump 70 is arranged flush with the front end of the first water servo assembly 30, so that the front end of the zero-cold water pump 70 and the front end of the first water servo assembly 30 will not generate an empty space due to non-flush, so as to further facilitate the use of the front and rear space of the shell of the water heater 1000.
  • the first water servo assembly 30 includes a servo body (including the first connecting member 31, the first valve core 35 and the driving device 36a described later), and a servo controller provided at one end of the servo body facing away from the first valve body 10.
  • the servo controller is directly arranged at the end of the servo body facing away from the first valve body 10, and the space in front of the servo body can be utilized.
  • the zero-cooling water pump 70 and the first water servo assembly 30 are simultaneously provided and both are arranged on the front side of the first valve body 10, it is easier to arrange the front end of the zero-cooling water pump 70 flush with the front end of the first water servo assembly 30.
  • the first water servo assembly 30 includes a first connecting member 31, a first valve core 35 and a driving device 36a, the first connecting member 31 has a first water inlet channel 32, and a first water inlet 33 and a first water outlet 34 connected to the first water inlet channel 32, the first water outlet 34 is arranged at one end of the first connecting member 31, and is connected to the water inlet interface 12, the first valve core 35 is movably arranged along the length direction of the first water inlet channel 32 to adjust the water flow of the first water inlet channel 32, and the driving device 36a drives the first valve core 35 to move, so as to drive the first valve core 35 to move along the length direction of the first water inlet channel 32 through the driving device 36a to adjust the water flow of the first water inlet channel 32.
  • the driving device 36a includes a stepping motor to accurately control the opening of the first water inlet channel 32 through the number of steps of the stepping motor, and a transmission mechanism for converting rotation into linear motion is usually arranged between the stepping motor and the first valve core 35, such as a ball screw mechanism, a thread transmission mechanism, etc.
  • the driving device 36a can also be directly a linear driving device 36a, such as a linear motor.
  • a bracket 37 is provided on the side of the first valve core 35 facing the first water outlet 34, and the first valve core 35 is slidably mounted on the bracket 37 through a movable column 38. At least one section of the first valve core 35 forms a flow portion 351, and the flow portion 351 is located between the first water outlet 34 and the first water inlet 33.
  • a flow gap is formed between the flow portion 351 and the first water inlet channel 32, and the size of the flow gap changes to adjust the flow of the first water inlet channel 32.
  • the distance d between the flow portion 351 and the bracket 37 is d, and d ⁇ 10mm.
  • the distance d between the flow portion 351 and the bracket 37 is set to be large enough, that is, d ⁇ 10mm, so that the water flowing from the periphery of the flow portion 351 to the bracket 37 has a sufficiently long path, so that the flow of water can be slowed down, and the noise can be reduced.
  • the end of the first valve core 35 facing the first water outlet 34 forms the flow portion 351. More specifically, a section of the first water inlet channel 32 corresponding to the flow portion 351 is gradually contracted in the direction close to the first water outlet 34, so that when the flow portion 351 approaches the first water outlet 34, the flow gap gradually decreases until it is closed.
  • the design is not limited to this, and the flow portion 351 can also be formed by the middle section of the first valve core 35.
  • the present application also provides a first water servo assembly 30, which includes a first connecting member 31, a first valve core 35 and a driving device 36a.
  • the first connecting member 31 has a first water inlet channel 32, and a first water inlet 33 and a first water outlet 34 connected to the first water inlet channel 32.
  • the first water outlet 34 is arranged at one end of the first connecting member 31 and is connected to the water inlet interface 12.
  • the first valve core 35 is movably arranged along the length direction of the first water inlet channel 32. At least one section of the first valve core 35 forms a flow portion 351, and the flow portion 351 is located between the first water outlet 34 and the first water inlet 33.
  • a flow gap is formed between the flow portion 351 and the first water inlet channel 32, and the size of the flow gap will change to adjust the flow of the first water inlet channel 32.
  • the distance between the flow portion 351 and the bracket 37 is d, d ⁇ 10mm; the driving device 36a drives the first valve core 35 to move.
  • d ⁇ 10mm that is, the distance d between the flow portion 351 and the bracket 37 is set to be large enough, that is, d ⁇ 10mm, so that the water flowing from the periphery of the flow portion 351 to the bracket 37 has a sufficiently long path, thereby slowing down the flow of water and reducing noise.
  • the end of the first valve core 35 facing the first water outlet 34 forms the flow portion 351. More specifically, a section of the first water inlet channel 32 corresponding to the flow portion 351 is gradually contracted in the direction close to the first water outlet 34, so that when the flow portion 351 approaches the first water outlet 34, the flow gap gradually decreases until it is closed.
  • the design is not limited to this, and the flow portion 351 can also be formed by the middle section of the first valve core 35.
  • the water heater 1000 includes a gas heat exchange flow path 300, a hot water heat exchanger 400, a water inlet valve assembly 100 and a control device
  • the gas heat exchange flow path 300 is provided with a gas heat exchange component 301 (in this embodiment, the gas heat exchange flow path 300 is also provided with a water pump 302, obviously, the water pump is not necessarily provided on the gas heat exchange flow path 300)
  • the two ends of the gas heat exchange flow path 300 are used to correspond to the two ends of the heating flow path 2000 (usually the heating flow path 2000 is provided with heating fins), so as to Together they constitute a heating circulation loop
  • the hot water heat exchanger 400 has a heat exchange flow path 402 and a hot water flow path 401 capable of heat exchange with the heat exchange flow path 402 (the two ends of the hot water flow path 401 are correspondingly connected to the cold water inlet 401a and the hot water outlet 401b), the two ends of the
  • Step S10 when the water outlet of the hot water flow path 401 is opened for water use, the gas heat exchange component 301 is controlled to work to heat the water in the hot water flow path 401, and the first water servo component 30 is controlled to adjust the water inlet flow rate to Q1, Q1 ⁇ Q, Q is the current achievable flow rate;
  • step S10 whether water is used is generally determined by detecting a water flow signal. Generally, when the water flow signal is greater than 2.5L/min, it is determined to be water used. Obviously, the present design is not limited to this, and it can be directly detected whether the water outlet end of the hot water flow path 401 is open.
  • the water temperature needs to be raised quickly to reduce the heating time. Therefore, in this step, because the water flow rate It can be controlled by the first water servo component 30. Therefore, in this step, the water temperature can be quickly increased by reducing the water inlet flow rate.
  • the gas heat exchange component 301 There is no restriction on the operation of the gas heat exchange component 301, and a known method can be used.
  • Q1 only needs to be smaller than Q. Specifically, in one embodiment, 0.4Q ⁇ Q1 ⁇ 0.9Q. If Q1 is too small, the impact on the water flow rate will be too obvious, and the user experience will be poor. If Q1 is too large, the effect of speeding up the heating speed by reducing the flow rate will be relatively weak.
  • the water inlet flow rate is first reduced by controlling the first water servo component 30 to quickly heat the water in the hot water flow path 401, and when the outlet water temperature approaches the target temperature, the water inlet flow rate can be increased by controlling the first water servo component 30 to gradually meet the user's demand for water flow.
  • the work of controlling the gas heat exchange component 301 includes: controlling the firepower of the gas heat exchange component 301 according to the first temperature difference between the outlet water temperature and the target temperature.
  • the gas heat exchange component 301 is correspondingly controlled to sample a relatively large firepower
  • the gas heat exchange component 301 is correspondingly controlled to sample a relatively small firepower.
  • the first temperature difference reaches 9°C or more, the maximum firepower is used for combustion; when the first temperature difference is 3°C, 30% firepower is used, and so on. In this way, the water temperature can quickly reach the target range of ⁇ 2°C.
  • the step of controlling the firepower of the gas heat exchange component 301 according to the first temperature difference between the outlet water temperature and the target temperature includes: when the first temperature difference decreases, controlling the firepower of the gas heat exchange component 301 to decrease. That is, as the first temperature difference decreases, the firepower of the gas heat exchange component 301 is gradually reduced.
  • the method of controlling the firepower of the gas heat exchange component 301 is usually achieved by controlling the opening of the gas valve.
  • the first water servo assembly 30 includes a first connection member 31, a first valve core 35 and a driving device 36a; in step S10, controlling the operation of the first water servo assembly 30 includes: when the opening of the first water servo assembly 30 is reduced to a set opening, controlling the driving device 36a to decelerate.
  • the first valve core 35 is movably arranged in the first connection member 31.
  • the first valve core 35 is controlled to first adopt a larger movement speed and then adopt a smaller movement speed, so that the flow rate change is relatively stable, rather than a sudden and sharp change.
  • the speed of the driving device 36a such as a stepping motor
  • the lower limit of the water flow rate is 4L/min.
  • controlling the first water servo assembly 30 to increase the water inlet flow rate includes: controlling the first water servo assembly 30 to gradually increase the water inlet flow rate in the form of a set gradient.
  • the water inlet flow rate is gradually increased with a set gradient, and the gradient may be a fixed value or may not be a fixed value. For example, when the outlet water temperature approaches the target temperature of -0.5°C, the water flow rate is gradually increased with a gradient of 1%Q flow rate.
  • controlling the first water servo assembly 30 to increase the water inlet flow rate includes:
  • the first water servo assembly 30 is adjusted.
  • the time interval for adjusting the first water servo component 30 is selected according to the second temperature difference.
  • the corresponding adjustment time interval can be selected to be large, that is, the first water servo component 30 is adjusted after a relatively long time, because when the second temperature difference is large, the flow rate needs to be kept at a small time for a long time in order to heat the water in the hot water flow path 401 well, and when the second temperature difference is small, the corresponding adjustment time interval can be selected to be small.
  • the first water servo component 30 (specifically, the stepper motor of the first water servo component 30) operates once every 2S according to the real-time result, and when the second temperature difference is between 29 and 39, it operates once every 1S, and so on, until it returns to the original speed of the stepper motor of 0.2S.
  • step S20 includes:
  • Step S20a when the first water servo component 30 increases the water inlet flow rate, controlling the gas heat exchange component 301 to increase the firepower;
  • Step S20b when the firepower increases to the set firepower H1, the first water servo assembly 30 is controlled to stop adjusting the water inlet flow rate, and H1 is less than the rated firepower.
  • the gas heat exchange component 301 will be controlled to increase the firepower, but a certain firepower needs to be reserved to avoid the situation where the water in the hot water flow path 401 cannot be heated to the target temperature even if the firepower is increased when the water inlet flow rate continues to increase. Therefore, when the firepower increases to the set firepower H1, H1 is less than the rated firepower, and the first water servo component 30 is controlled to stop adjusting the water inlet flow rate.
  • the set firepower H1 ⁇ 92% of the rated firepower, which may be 92%, 93%, etc.
  • the specific value of H1 is related to the firepower size and flow rate, etc., so it is not limited.
  • step S20b the method further includes:
  • Step S20c When the gas heat exchange component 301 increases the firepower to reach the rated firepower, the flow rate Q2 of the hot water flow path 401 is obtained. and the current temperature difference between the outlet water temperature and the target temperature at this time;
  • Step S20d correct Q according to Q2 and the current temperature difference.
  • controlling the operation of the gas heat exchange component 301 includes:
  • the matching firepower of the gas heat exchange assembly 301 is selected;
  • the gas heat exchange component 301 is controlled to operate.
  • the water pressure of the water source (tap water) can be reflected by the opening and closing degree of the first water servo component 30. Therefore, if the opening is smaller, the corresponding water pressure of the water source is greater. Therefore, when adjusting, the firepower of the gas heat exchange component 301 is set large enough to ensure that when the opening is adjusted later (the corresponding flow rate changes are relatively large), the water temperature of the hot water flow path 401 is greatly affected. For example, when the outlet water temperature is close to the target temperature of -2°C, according to Y (Y is the closing degree, for example
  • the first water servo assembly 30 includes a stepper motor.
  • Y is the percentage of the number of steps from 0 step to the total number of steps.
  • the stepper motor can move in the direction of 0 step to obtain a flow increase of more than 30%.
  • Y>90% the firepower is adjusted to 100%, and when 80 ⁇ Y ⁇ 90, the firepower is adjusted to 60%, and so on, until Y is less than 60%. This value can be adjusted according to different models.
  • controlling the first water servo assembly 30 to increase the water inlet flow rate includes: controlling the opening of the first water servo assembly 30 to 100% within a set time. For example, after the outlet water temperature approaches the target temperature of -0.5°C, Y is operated from the current percentage to 0% within 5S.
  • a water heater 1000 including:
  • the gas heat exchange flow path 300 is provided with a gas heat exchange assembly 301, and the two ends of the gas heat exchange flow path 300 are used to be connected to the two ends of the heating flow path 2000 to form a heating circulation loop;
  • the hot water heat exchanger 400 has a heat exchange flow path 402 and a hot water flow path 401 capable of heat exchange with the heat exchange flow path 402 (the two ends of the hot water flow path 401 are correspondingly connected to the cold water inlet 401a and the hot water outlet 401b), and the two ends of the heat exchange flow path 402 are correspondingly connected to the two ends of the gas heat exchange flow path 300 to form a heat exchange circulation loop;
  • the water inlet valve assembly 100 includes a first water servo assembly 30 for controlling the water inlet flow rate
  • the control device is electrically connected to the gas heat exchange component 301 and the first water servo component 30 .
  • the water inlet valve assembly 100 is provided with a first water servo component 30 , and the first water servo component 30 can directly control the water inlet flow of the water heater 1000 as required.
  • the control device includes a memory, a processor, and a control program of the water heater 1000 stored in the memory and capable of running on the processor.
  • the control program of the water heater 1000 is configured to implement the steps of the control method of the water heater 1000 as described in any of the above items. Therefore, the water heater 1000 provided in this embodiment has the embodiments of the control methods of the water heater 1000 described above, and therefore has the corresponding technical effects of such embodiments, which will not be repeated here.
  • the water inlet valve assembly 100 includes any one of the water inlet valve assemblies 100 described above. Therefore, the water heater 1000 provided in this embodiment has the embodiments of the above-mentioned water inlet valve assemblies 100, and thus has the corresponding technical effects of the embodiments, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Multiple-Way Valves (AREA)

Abstract

一种第一水伺服组件、进水阀总成,第一水伺服组件(30)包括:第一连接件(31),形成有第一进水通道(32),及与该第一进水通道(32)连通的第一进水口(33)和第一出水口(34);第一进水口(33)用于连通进水管路,该第一出水口(34)连通进水接口(12);第一阀芯(35)活动地设于该第一进水通道(32),驱动装置(36a),驱动该第一阀芯(35)活动;进水阀总成(100)包括第一阀体(10),该第一阀体(10)形成有进水腔(11)、及连通该进水腔(11)的进水接口(12)和第一出水接口(13),进水接口(12)用于连接第一水伺服组件(30),第一出水接口(13)用于连通生活用水板换接口(22),以使得进水管路中的水流通过第一水伺服组件(30)流入进水接口(12),并从第一出水接口(13)流出。此外,一种包括该进水阀总成的热水器及其控制方法被公开。

Description

第一水伺服组件、进水阀总成、热水器及其控制方法
相关申请
本申请要求于2022年12月6日申请的、申请号为202223270370.6的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及燃气热水器领域,特别涉及一种第一水伺服组件、进水阀总成、热水器及其控制方法。
背景技术
目前传统燃气热水器性能存在恒温速度慢,启停恒温波动大,水温波动或水流量波动对出水温度影响大的缺陷,目前已有水伺服技术通过控制热水器的进水流量解决该问题,但水伺服独立安装,每个水伺服都需要两根铜管,占用空间大、制造成本高,并且安装复杂,漏水风险点多。
发明内容
本申请的主要目的是提出一种集成有水伺服功能的进水阀总成和热水器,占用空间小、生产成本低、安装简单,漏水风险减小。
为实现上述目的,本申请提出一种进水阀总成,包括:
第一阀体,所述第一阀体形成有进水腔、及连通所述进水腔的进水接口和第一出水接口,所述进水接口用于连接第一水伺服组件,所述第一出水接口用于连通生活用水板换接口,以使得进水管路中的水流通过所述第一水伺服组件流入所述进水接口,并从所述第一出水接口流出。
在一实施例中,所述进水接口和所述第一出水接口均位于所述第一阀体前侧,所述进水接口位于所述第一出水接口下方。
在一实施例中,还包括所述第一水伺服组件,所述第一水伺服组件包括:
第一连接件,形成有第一进水通道、及与所述第一进水通道连通的第一进水口和第一出水口,所述第一进水口设于所述第一连接件下侧,用于连通所述进水管路,所述第一出水口连通所述进水接口;
第一阀芯,可活动地设于所述第一进水通道,以调节所述第一进水通道的水流量;以及,
第一电机,设于所述第一连接件与所述第一出水口相对的一端,且与所述第一阀芯驱动连接;或者,
所述第一水伺服组件包括电磁阀,所述电磁阀的进水端用于连通所述进水管路,所述电磁阀的出水端连通所述进水接口;或者,
所述第一水伺服组件包括比例阀,所述比例阀的进水端用于连通所述进水管路,所述比例阀的出水端连通所述进水接口;或者,
所述第一水伺服组件包括感温阀,所述感温阀的进水端用于连通所述进水管路,所述感温阀的出水端连通所述进水接口。
在一实施例中,所述第一阀体还形成有连通所述进水腔的第二出水接口,所述第二出水接口用于连接第二水伺服组件,以使得所述进水腔内的水流通过所述第二水伺服组件流向生活热水出水端。
在一实施例中,所述第二出水接口位于所述第一阀体在横向上的一侧。
在一实施例中,还包括所述第二水伺服组件,所述第二水伺服组件包括:
第二连接件,形成有第二进水通道、及与所述第二进水通道连通的第二进水口和第二出水口,所述第二进水口连通所述第二出水接口,所述第二出水口设于所述第二连接件下侧,用于连通所述生活热水出水端;
第二阀芯,可活动地设于所述第二进水通道,以调节所述第二进水通道的水流量;以及,
第二电机,设于所述第二连接件与所述第二进水口相对的一端,且与所述第二阀芯驱动连接。
在一实施例中,还包括设于所述第一阀体在横向上一侧的第二阀体,所述第二阀体形成回水腔、及与所述回水腔连通的回水接口和采暖用水板换接口。
在一实施例中,所述第一阀体下端形成补水阀接口,所述补水阀接口用于连接补水阀,以使得所述进水腔与所述回水腔能够通过所述补水阀连通。
在一实施例中,所述补水阀包括:
壳体,形成有补水腔,所述壳体上端形成有连通所述补水腔和所述回水腔的补水口;
补水管,插设于所述壳体上端,且沿上下向贯设有补水通道,所述补水通道上端连通所述进水腔, 所述补水通道下端连通所述补水腔;
补水阀芯,沿上下方向可活动地设于所述补水腔,以具有上移封堵所述补水通道下端的第一阀位、以及打开所述补水通道下端的第二阀位;以及、
操作部,可活动地设于所述壳体下端,且与所述补水阀芯驱动连接,用于驱动所述补水阀芯在所述第一阀位和所述第二阀位之间切换。
在一实施例中,所述第二阀体上还形成有所述生活用水板换接口,所述生活用水板换接口和所述采暖用水板换接口均位于所述第二阀体后侧,且所述生活用水板换接口位于所述采暖用水板换接口上方。
在一实施例中,还包括采暖水泵,所述采暖水泵的进水端用于连通采暖回水管路,所述采暖水泵的出水端连通所述回水接口,所述回水接口设于所述第二阀体与所述第一阀体相对的一侧。
在一实施例中,还包括零冷水泵,所述零冷水泵的进水端连通所述第一出水接口,所述零冷水泵的出水端连通所述生活用水板换接口。
在一实施例中,所述第一阀体上设有连通所述进水腔的流量传感器接口和/或温度传感器接口。
为实现上述目的,本申请还提供一种热水器,包括如上所述的进水阀总成。
此外,本申请还提供一种进水阀总成,用以设置在热水器的进水管路上,所述进水阀总成包括:
第一阀体,具有进水腔、及连通所述进水腔的进水接口和第一出水接口;以及,
第一水伺服组件,设置在所述进水接口处,用以调节进水流量大小。
在一实施例中,所述第一阀体沿上下向延伸;
所述第一阀体的下端设置有补水阀,所述补水阀用以与控制所述进水腔与燃气换热流路连通;
所述进水接口设置在所述第一阀体的前侧部,所述第一水伺服组件的一端与所述进水接口连接,另一端朝前延伸设置。
在一实施例中,所述第一出水接口设置在所述第一阀体的前侧部。
在一实施例中,所述进水阀总成还包括连接所述第一出水接口设置的零冷水泵。
在一实施例中,所述零冷水泵的一端与所述第一出水接口连接,另一端朝前延伸,以使得所述零冷水泵与所述第一水伺服组件并行设置。
在一实施例中,所述零冷水泵的前端与所述第一水伺服组件的前端齐平设置。
在一实施例中,所述第一水伺服组件包括伺服主体、以及设于所述伺服主体背对所述第一阀体的一端的伺服控制器。
在一实施例中,所述第一水伺服组件包括:
第一连接件,具有第一进水通道、及与所述第一进水通道连通的第一进水口和第一出水口,所述第一出水口设于所述第一连接件的一端,且与所述进水接口连接;
第一阀芯,沿着所述第一进水通道的长度方向活动设置,以调节所述第一进水通道的水流量;以及,
驱动装置,驱动所述第一阀芯活动。
在一实施例中,所述驱动装置包括步进电机。
在一实施例中,所述第一进水通道中,在所述第一阀芯朝向所述第一出水口的一侧设置有支架;
所述第一阀芯通过一活动柱滑动安装于所述支架;
所述第一阀芯至少一段形成过流部,所述过流部位于所述第一出水口与所述第一进水口之间,在所述第一阀芯活动行程中,所述过流部与所述第一进水通道之间形成过流缝隙,所述过流部与所述支架之间的距离为d,d≥10mm。
在一实施例中,所述第一阀芯朝向所述第一出水口的一端部形成所述过流部。
本申请还提供一种第一水伺服组件,包括:
第一连接件,具有第一进水通道、及与所述第一进水通道连通的第一进水口和第一出水口,所述第一出水口设于所述第一连接件的一端,且与所述进水接口连接;
第一阀芯,沿着所述第一进水通道的长度方向活动设置,所述第一阀芯至少一段形成过流部,所述过流部位于所述第一出水口与所述第一进水口之间,在所述第一阀芯活动行程中,所述过流部与所述第一进水通道之间形成过流缝隙,所述过流部与所述支架之间的距离为d,d≥10mm;以及,
驱动装置,驱动所述第一阀芯活动。
在一实施例中,所述第一阀芯朝向所述第一出水口的一端部形成所述过流部。
本申请还提供一种热水器的控制方法,所述热水器包括燃气换热流路、热水换热器、进水阀总成以及控制装置,所述燃气换热流路上设置有燃气换热组件,所述燃气换热流路的两端用以对应与采暖流路的两端连接,所述热水换热器内部形成有换热流路以及与所述换热流路能够热交换的热水流路,所述换热流路的两端与所述燃气换热流路的两端对应连接,所述进水阀总成与所述热水流路的进水端连接,所述进水阀总成包括用以控制进水流量的第一水伺服组件,所述热水器的控制方法包括以下步骤:
在热水流路的出水端被打开用水时,控制燃气换热组件工作,以对换热流路中的水进行加热,且控制第一水伺服组件调节进水流量至Q1,Q1<Q,Q为当前可达流量;
在热水流路的出水端的出水温度达到预设温度T1,控制所述燃气换热组件继续工作,且控制所述第一水伺服组件增大进水流量,T1=T+△T,T为目标温度。
在一实施例中,0.4Q≤Q1≤0.9Q。
在一实施例中,在热水流路的出水端被打开用水时,控制燃气换热组件工作,以对换热流路中的水进行加热,且控制第一水伺服组件调节进水流量至Q1,Q1<Q,Q为当前可达流量步骤中,控制燃气换热组件的工作包括:
根据出水温度与目标温度之间的第一温度差,控制所述燃气换热组件的火力。
在一实施例中,根据出水温度与目标温度之间的第一温度差,控制所述燃气换热组件的火力的步骤,包括:
当所述第一温度差减小时,控制所述燃气换热组件的火力减小。
在一实施例中,所述第一水伺服组件包括第一连接件、第一阀芯和驱动装置;
在热水流路的出水端被打开用水时,控制燃气换热组件工作,以对换热流路中的水进行加热,且控制第一水伺服组件调节进水流量至Q1,Q1<Q,Q为当前可达流量步骤中,控制第一水伺服组件工作包括:
在第一水伺服组件的开度降低至设定开度时,控制驱动装置减速。
在一实施例中,在热水流路的出水端的出水温度达到预设温度T1,控制所述燃气换热组件继续工作,且控制所述第一水伺服组件增大进水流量,T1=T+△T,T为目标温度的步骤中,控制所述第一水伺服组件增大进水流量包括:
控制所述第一水伺服组件以设定梯度的形式逐渐增大进水流量。
在一实施例中,在在热水流路的出水端的出水温度达到预设温度T1,控制所述燃气换热组件继续工作,且控制所述第一水伺服组件增大进水流量,T1=T+△T,T为目标温度的步骤中,控制所述第一水伺服组件增大进水流量包括:
获取进水温度与目标温度之间的第二温度差;
根据所述第二温度差,选择对所述第一水伺服组件调节的时间间隔;
根据所述时间间隔,调节所述第一水伺服组件。
在一实施例中,在热水流路的出水端的出水温度达到预设温度T1,控制所述燃气换热组件继续工作,且控制所述第一水伺服组件增大进水流量,T1=T+△T,T为目标温度的步骤,包括:
在所述第一水伺服组件增大进水流量,控制所述燃气换热组件增大火力;
当火力增大至设定火力H1时,控制所述第一水伺服组件停止调节进水流量,H1小于额定火力。
在一实施例中,所述设定火力H1≥92%额定火力。
在一实施例中,当火力增大至设定火力H1时,控制所述第一水伺服组件停止调节进水流量的步骤之后,还包括:
当所述燃气换热组件增大火力达到额定火力时,获取此时热水流路的流量Q2以及此时的出水温度和目标温度之间的当前温度差值;
根据Q2和当前温度差值,对Q进行修正。
在一实施例中,在热水流路的出水端被打开用水时,控制燃气换热组件工作,以对换热流路中的水进行加热,且控制第一水伺服组件调节进水流量至Q1,Q1<Q,Q为当前可达流量的步骤中,控制燃气换热组件工作包括:
在水流量达到设定流量时,获取第一水伺服组件的开合度;
根据所述第一水伺服组件的开合度,选择所述燃气换热组件的匹配火力;
根据所述匹配火力,控制所述燃气换热组件工作。
在一实施例中,在热水流路的出水端的出水温度达到预设温度T1,控制所述燃气换热组件继续工作,且控制所述第一水伺服组件增大进水流量,T1=T+△T,T为目标温度的步骤中,控制所述第一水伺服组件增大进水流量包括:
在设定时间内,控制所述第一水伺服组件的开度达到100%。
本申请又提供一种热水器,包括:
燃气换热流路,其上设置有燃气换热组件,所述燃气换热流路的两端用以对应与采暖流路的两端连接;
热水换热器,其内部形成有换热流路以及与所述换热流路能够热交换的热水流路,所述换热流路的两端与所述燃气换热流路的两端对应连接;
进水阀总成,包括用以控制进水流量的第一水伺服组件;以及,
控制装置,与所述燃气换热组件和所述第一水伺服组件电性连接。
在一实施例中,所述控制装置包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行热水器的控制程序,所述热水器的控制程序配置为实现如上述任一项所述的热水器的控制方法的步骤。
在一实施例中,所述进水阀总成包括上述任意一项的进水阀总成。
本申请提供的进水阀总成包括第一阀体,所述第一阀体形成有进水腔、及连通所述进水腔的进水接口和第一出水接口,所述进水接口用于连接第一水伺服组件,所述第一出水接口用于连通生活用水板换接口,以使得进水管路中的水流通过所述第一水伺服组件流入所述进水接口,并从所述第一出水接口流出。本申请提供的实施例中,进水阀总成集成了可用于连接第一水伺服组件的进水接口,水伺服器可以直接连接进水阀实现根据需要控制热水器进水流量,减少铜管的使用,降低生产成本,并且占用空间小、安装简单、减少了装配中产生的漏水点,从而降低漏水风险。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请提供的热水器一实施例的局部立体结构示意图;
图2为图1中进水阀总成第一实施例的立体结构示意图;
图3为图2中进水阀总成的后侧正视图;
图4为图3中A-A处的剖视图;
图5为图1中进水阀总成第二实施例的立体结构示意图;
图6为图5中进水阀总成的前侧正视图;
图7为图6中B-B处的剖视图;
图8为图1中进水阀总成第三实施例的立体结构示意图;
图9为图2中补水阀的立体结构示意图;
图10为本申请提供的热水器另一实施例使用时的原理示意图;
图11为图10中的热水器在移除前侧部时的立体结构示意图;
图12为图11中的进水阀总成和热水换热器的立体示意图;
图13为图12中的进水阀总成剖视示意图;
图14为本申请提供的热水器的控制方法的一实施例的流程示意图。
附图标号说明:

本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
需要说明,若本申请实施例中有涉及方向性指示,则该方向性指示仅用于解释在某一特定姿态下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。
请参阅图1,本申请提供一种热水器,所述热水器可以是专用于提供生活用热水的燃气热水器,还可以是用于提供生活用热水及采暖用热水的壁挂炉。请参阅图2至图7,本申请还提供一种用于所述热水器的进水阀总成100,所述进水阀总成100用于将进水管路中的冷水引入所述热水器,使得所述热水器提供加热后的生活用热水和/或采暖用热水。所述热水器包括热水器外壳200,所述热水器外壳200中用于容纳进水阀总成100、换热器、燃烧室、和连接管路等热水器部件。
现有技术中,带有水伺服功能的热水器,通过控制热水器的进水流量解决传统的燃气热水器恒温速度慢、启停恒温波动大、水温波动或水流量波动对出水温度影响大等缺陷,但其水伺服模块独立安装,每个水伺服模块都需要两根铜管,占用空间大、制造成本高,并且安装复杂,漏水风险点多。
为解决上述技术问题,请参阅图1和图2,本申请提供的进水阀总成100包括第一阀体10,所述第一阀体10形成有进水腔11、及连通所述进水腔11的进水接口12和第一出水接口13,所述进水接口12用于连接第一水伺服组件30,所述第一出水接口13用于连通生活用水板换接口22,以使得进水管路中的水流通过所述第一水伺服组件30流入所述进水接口12,并从所述第一出水接口13流出。在本实施例中,所述进水管路指向所述热水器提供自来水,以便于热水器加热后提供生活用热水和/或采暖用热水的管路,所述生活用水板换接口22连通换热管路的进水端,以使得从所述进水阀总成100引入的水流通过所述换热管路流经所述热水器的换热器,被加热后从生活用水末端流出,供用户使用。所述第一进水伺服组件指具有水伺服功能,能够根据需要调节流经的进水流量的功能部件。在本申请提供的实施例中,水流的流向如下:从所述进水管路中流入的自来水水流通过所述第一水伺服组件30调节水流量,并从所述进水接口12流入所述进水腔11,而后从所述第一出水接口13流出,并流向所述生活用水板换接口22,之后通过所述换热管路流经所述热水器的换热器,被加热后从生活用水末端流出,供用户使用。在一些实施例中,所述生活用水板换接口22设有限流环,所述限流环将流向换热器的水流量控制在特定的阈值范围内,所述特定的阈值范围可根据热水器功率进行设置,例如32kw整机设置20L、26kw设置18L等。如此,使得水量的供应不超过换热器所能负荷的最大值,避免出水末端温度过低,或者热水器过载的情况,提升用户体验和热水器整机的使用寿命。
在本实施例中,所述进水阀总成100集成了可用于连接所述第一水伺服组件30的所述进水接口12,所述第一水伺服组件30可以直接连接进水阀实现根据需要控制热水器进水流量,减少铜管的使用,热水器内部结构更加简洁美观,降低生产成本,并且占用空间小、安装简单、减少了装配中产生的漏水点,从而降低漏水风险。
请继续参阅图1至3,所述进水接口12和所述第一出水接口13均位于所述第一阀体10前侧,所述进水接口12位于所述第一出水接口13下方。需要说明的是,在本申请中,对于如上下、横向、前后等方向性的描述,仅针对热水器在安装完毕后的状态,而不包括热水器在生产、装配、运输或调试等状态。在本实施例中,热水器安装在一安装面例如墙面上,其朝向所述安装面的一侧为后侧,背离所述安装面的一侧为前侧。上下方向指大致平行于重力的方向,或与重力方向呈一定夹角,且夹角不大于45度的方向。横向指大致与上下方向垂直的方向。
进一步地,请继续参阅图1和图2,所述进水接口12和所述出水接口均位于所述第一阀体10前侧,如此,所述进水阀总成100位于热水器壳体51内靠后的位置,而前方则空出来便于安置第一进水伺服组件和零冷水泵70或导流管路等部件,安装操作更加方便。
在本实施例中,所述热水器可以是专供生活用热水的燃气热水器。在另一实施例中,所述热水器还 提供采暖用热水,是集成有生活热水供水和采暖供水热水的壁挂炉。具体地,请继续参阅图1至图3,所述进水阀总成100还包括设于所述第一阀体10在横向上一侧的第二阀体20,所述第二阀体20形成回水腔21、及与所述回水腔21连通的回水接口24和采暖用水板换接口23。在本实施例中,所述第一阀体10和所述第二阀体20可以一体设置,也可以分体设置后组装。在一些实施例中,所述第一阀体10与所述第二阀体20一体设置,如此,便于生产安装,并使得热水器组装更加简便,降低生产成本。所述回水接口24用于流入采暖用水的回流水,所述采暖用水板换接口23用于连接换热管路,使得采暖用水通过所述换热管路流经所述热水器的换热器被加热。所述采暖用水的水路流向如下:采暖的回水通过采暖水泵60驱动流入所述回水接口24,流经所述回水腔21,并从所述采暖用板换接口流向换热管路,经过所述热水器的换热器加热后流向室内采暖末端如暖气片或地暖管路,在采暖末端散热后又回流至所述回水接口24,进入下一次循环。
在一实施例中,请继续参阅图1和图8,所述热水器为零冷水热水器,所述进水阀总成100还包括零冷水泵70,所述零冷水泵70的进水端连通所述第一出水接口13,所述零冷水泵70的出水端连通所述生活用水板换接口22。所述零冷水泵70的具体结构属于现有技术,不再赘述。可以理解,所述零冷水泵70通常还具有回水端,所述回水端用于与零冷水回水管连通,用于将所述零冷水回水管中的水流引入所述生活用水板换接口22。如此,在用户使用生活用水时,生活用水管路中的冷水通过所述零冷水回水管先回流至所述零冷水泵70,和所述进水腔11中的水流一起被抽入所述生活用水板换接口22,流入换热管路,通过所述热水器的换热器加热后在流向所述生活用水末端,从而使得用户每次使用热水都可以基本没有冷水流出,提升用户的使用体验。在本实施例中,所述第一出水接口13位于所述第一阀体10前侧,因而所述零冷水泵70也被布设于所述热水器靠前的位置,组装方便,且进水阀总成100结构紧凑,有利于控制所述热水器的外形尺寸。可以理解,所述第一出水接口13可被设置为常见的插接或卡接接口,在一些实施例中,所述零冷水泵70的进水端采用插针的方式卡接于所述第一出水接口13,以使得可以方便的对所述零冷水水泵实现快换,方便对所述零冷水泵70进行更换检修。或者在热水器不需要零冷水功能时,采用导流管路替代所述零冷水泵70,提升所述热水器的拓展性能。
在上述实施例的基础上,请继续参阅图2和图3,所述第一阀体10下端形成补水阀50接口15,所述补水阀50接口15用于连接补水阀50,以使得所述进水腔11与所述回水腔21能够通过所述补水阀50连通。可以理解,所述采暖用水在循环过程中可能出现水量过度,需要泄压的情况,也可能出现水量不足需要补水的情况,因此,需要设置补水阀50,使得所述回水腔21和所述进水腔11能够连通,从而实现对采暖水循环水路泄压或补水的功能。
所述补水阀50的具体结构不作限制,只要能够实现根据需要连通所述回水腔21和所述进水腔11即可。在一些实施例中,所述补水阀50从所述进水阀总成100的下端插入所述进水阀总成100。相较于传统的斜插式补水阀50和正面插入再弯折直角的补水阀50,减少了补水阀50在正面的占用空间,如此,一方面使得热水器外壳200内部的靠前区域有更多的空余空间,便于安放所述第一水伺服组件30和零冷水泵70等部件。另一方面,由于所述进水接口12设于所述第一阀体10前侧,使得所述热水器安装时,连接进水管路至所述进水阀总成100的操作不会受到所述补水阀50的遮挡,降低安装难度,提升安装效率。
在一些实施例中,请结合参阅图4和图9,所述补水阀50包括壳体51、补水管54、补水阀芯56和操作部57,具体的,所述壳体51形成有补水腔52,所述壳体51上端形成有连通所述补水腔52和所述回水腔21的补水口53。所述补水管54插设于所述壳体51上端,所述补水管54沿上下向贯设有补水通道55,所述补水通道55上端连通所述进水腔11,所述补水通道55下端连通所述补水腔52。所述补水阀芯56沿上下方向可活动地设于所述补水腔52,以具有上移封堵所述补水通道55下端的第一阀位、以及打开所述补水通道55,下端的第二阀位。所述操作部57可活动地设于所述壳体51下端,且与所述补水阀芯56驱动连接,用于驱动所述补水阀芯56在所述第一阀位和所述第二阀位之间切换。所述操作部57的具体形式可以有多重,例如可以是可上压或下拉的拉手,也可以是旋钮,所述旋钮与所述壳体51下端螺接,并且连接于所述补水阀芯56下端,如此当用户操作所述旋钮向上转动时,所述旋钮相对所述壳体51上移,并带动所述补水阀芯56上移至所述第一阀位,当用户操作所述旋钮向下转动时,所述旋钮相对所述壳体51下移,并带动所述补水阀芯56下移至所述第二阀位,如此,实现所述补水阀芯56的阀位切换,并且旋钮操作简便可靠,不易脱落,且减少误操作的可能。
采用本实施例提供的补水阀50进行补水的操作如下,关闭生活用水末端出水,使得所述进水腔11的水压大于所述回水腔21,操作所述操作部57,使得所述补水阀芯56从所述第一阀位移动至所述第二阀位,所述进水腔11中的水流便在压差的作用下自动流入所述回水腔21,完成对采暖循环水路的补水操作。而后,操作所述操作部57使得所述补水阀芯56从所述第二阀位回到所述第一阀位。采用本实施例提供的补水阀50进行泄压的操作如下,打开生活用水末端出水,使得所述进水腔11的水压小于所述回水腔21,操作所述操作部57,使得所述补水阀芯56从所述第一阀位移动至所述第二阀位,所述回水腔21中的水流 便在压差的作用下自动流向所述进水腔11,从生活用水末端流出,直至所述采暖循环水路中的水压达到预设值,完成对采暖循环水路的泄压操作。而后,操作所述操作部57使得所述补水阀芯56从所述第二阀位回到所述第一阀位。
本实施例提供的补水阀50整体呈上下方向延伸的竖直状,且从下方插入所述第一阀体10和所述第二阀体20,相较于传统的斜插式补水阀50和正面插入再弯折直角的补水阀50,减少了补水阀50在正面的占用空间,如此,一方面使得热水器外壳200内部的靠前区域有更多的空余空间,便于安放所述第一水伺服组件30和零冷水泵70等部件。另一方面,由于所述进水接口12设于所述第一阀体10前侧,使得所述热水器安装时,连接进水管路至所述进水阀总成100的操作不会受到所述补水阀50的遮挡,降低安装难度,提升安装效率。
为了进一步地提升所述进水阀总成100的紧凑程度,便于安排管路布设,在一些实施例中,请继续参阅图3和图6,所述第二阀体20上还形成有所述生活用水板换接口22,所述生活用水板换接口22和所述采暖用水板换接口23均位于所述第二阀体20后侧,且所述生活用水板换接口22位于所述采暖用水板换接口23上方。如此,换热管路从所述进水阀总成100的后侧连接所述进水阀总成100,使得所述热水器内部部件排布紧凑合理,减少换热管路的长度,且换热管路不会对前侧安设第一进水伺服或零冷水泵70的操作造成遮挡,组装操作更加简单,提升组装效率和质量。
在一些实施例中,请参阅图1,所述进水阀总成100还包括采暖水泵60,所述采暖水泵60的进水端用于连通采暖回水管路,所述采暖水泵60的出水端连通所述回水接口24,所述回水接口24设于所述第二阀体20与所述第一阀体10背对的一侧。如此,采暖水泵60布设于所述进水阀总成100在横向上的一侧,使得所述热水器内部结构更加紧凑,保障在热水器尺寸范围内,能布设足够多的功能部件,提升热水器的性能,同时控制所述热水器的尺寸,提升用户的使用体验。
所述进水接口12可被设置为常见的插接或卡接接口,在一些实施例中,所述第一进水伺服采用插针的方式卡接于所述进水接口12,以使得可以方便的对所述第一水伺服组件30实现快换,方便对所所述第一水伺服组件30进行更换检修。或者在热水器不需要进水伺服功能时,采用导流管路替代所述第一进水伺服,提升所述热水器的拓展性能。
在一实施例中,所述进水接口12还设有限流环,所述限流环将流入所述第一水伺服组件30的总流量控制在第一预设值内,所述第一水伺服组件30的归零位置设为所述第一预设值的中间值,如此,所述第一水伺服组件30流量随所述第一阀芯35位置改变最为明显,所述第一水伺服组件30对水流量的调节效果最佳。
所述第一水伺服组件30的具体类型或结构不做限制,只要能够实现热水器进水伺服,控制水流量根据进水水温、进水水压和/或燃气供应状况对应调节,实现对生活用水的快速、精准温度控制和启动控制,以提升用户的用水体验即可。
在一实施例中,请继续参阅图5至图8,所述进水阀总成100还包括所述第一水伺服组件30,所述第一水伺服组件30包括第一连接件31、第一阀芯35和第一电机36,所述第一连接件31形成有第一进水通道32、及与所述第一进水通道32连通的第一进水口33和第一出水口34,所述第一进水口33设于所述第一连接件31下侧,用于连通所述进水管路,所述第一出水口34连通所述进水接口12。可以理解,所述第一连接件31在所述第一出水口34一端具有与所述进水接口12具有相互适配的组装结构,以实现对所示第一进水伺服组件的便利安装和拆卸。所述第一进水口33位于所述第一连接件31下侧,使得进水管路可以从下方连接所述进水阀总成100,符合热水器的一般安装习惯,便于隐藏所述热水器的接管,使得所述热水器安装后更加美观。
可以理解,在一实施例中,所述补水阀50从下方插入所述进水阀总成100,位于所述第一进水口33后方,如此,一方面使得热水器外壳200内部的靠前区域有更多的空余空间,便于安放所述第一水伺服组件30和零冷水泵70等部件。另一方面,由于所述进水接口12设于所述第一阀体10前侧,使得所述热水器安装时,连接进水管路至所述进水阀总成100的操作不会受到所述补水阀50的遮挡,降低安装难度,提升安装效率。所述第一阀芯35,可活动地设于所述第一进水通道32,以调节所述第一进水通道32的水流量。
所述第一阀芯35的具体结构和活动方式不作限制,只要可以通过控制所述第一阀芯35活动实现对所述第一进水伺服组件的水量调节即可。在一实施例中,所述第一阀芯35沿前后方向可活动地设于所述第一进水通道32,如此所述第一连接件31整体呈沿所述前后方向延伸的长形设置,以便于有足够的空间布设所述第一进水口33。所述第一电机36设于所述第一连接件31与所述第一出水口34相对的一端,且与所述第一阀芯35驱动连接。可以理解,所述第一电机36与所述第一阀芯35之间的传动结构可根据所述第一阀芯35的活动方式进行设置。所述第一电机36可被控制调节所述第一水伺服组件30的进水水流量根据进水水温、进水水压和/或燃气供应状况对应调节,从而提升所述热水器的使用性能。在本实施例中,水 流的流向如下:水流从进水管路通过所述第一进水口33流入所述第一进水通道32,所述第一阀芯35的活动控制所述第一水伺服组件30的水流量,从而控制所述热水器的生活用水总流量,被控制流量的水流从所述第一出水口34流向所述进水接口12从而流入所述进水腔11,实现对生活用水的热水供水。
所述第一水伺服组件30也可以被替换为其他形式,以提升所述热水器的拓展形成。在一实施例中,所述第一水伺服组件30包括电磁阀,所述电磁阀的进水端用于连通所述进水管路,所述电磁阀的出水端连通所述进水接口12。所述电磁阀可被控制调节所述第一水伺服组件30的进水水流量根据进水水温、进水水压和/或燃气供应状况对应调节,从而提升所述热水器的恒温等使用性能。
在另一实施例中,所述第一水伺服组件30包括比例阀,所述比例阀的进水端用于连通所述进水管路,所述比例阀的出水端连通所述进水接口12。所述比例阀可被控制调节所述第一水伺服组件30的进水水流量根据进水水温、进水水压和/或燃气供应状况对应调节,从而提升所述热水器的恒温等使用性能。
在又一实施例中,所述第一水伺服组件30包括感温阀,所述感温阀内可设置温感弹簧或记忆合金等,所述感温阀的进水端用于连通所述进水管路,所述感温阀的出水端连通所述进水接口12。使得所述第一水伺服组件30的水流量根据进水温度发生变化,冬天水温较冷时,热水器工作负荷大,水流量较小,夏天水温较高时,热水器工作负荷小,水流量大,从而提升所述热水器的恒温性能。
在上述实施例的基础上,请继续参阅1和图8,所述第一阀体10还形成有连通所述进水腔11的第二出水接口14,所述第二出水接口14用于连接第二水伺服组件40,以使得所述进水腔11内的水流通过所述第二水伺服组件40流向生活热水出水端。在本实施例中,所述第二出水接口14连通生活热水出水端,在一些实施例中,所述第二水伺服组件40通过旁通水路连接换热水路的出水端,从而根据水温需求可以利用所述第二水伺服组件40向所述生活用水末端混入低温水流,从而使得所述热水器实现恒温出水功能。
在一实施例中,所述第二出水接口14位于所述第一阀体10在横向上的一侧。使得所述第二水伺服组件40被布设于所述进水阀总成100在横向上的一侧。所述热水器内部结构更加紧凑,保障在热水器尺寸范围内,能布设足够多的功能部件,提升热水器的性能,同时控制所述热水器的尺寸,提升用户的使用体验。在一些实施例中,请继续参阅图1和图8,所述第二水伺服组件40和所述采暖水泵60分设于所述进水阀总成100在横向上的两侧,如此一方面使得所述热水器内部结构布设合理,便于管路排布,另一方面两个部件的组装不会互相阻碍,便于组装,提升组装效率,降低生产成本。
所述第二出水接口14可被设置为常见的插接或卡接接口,在一些实施例中,所述第二进水伺服采用插针的方式卡接于所述第二出水接口14,以使得可以方便的对所述第二水伺服组件40实现快换,方便对所所述第二水伺服组件40进行更换检修。或者在热水器不需要恒温出水功能时,采用挡板替代所述第二进水伺服,提升所述热水器的拓展性能。
在一实施例中,所述第二出水接口14还设有限流环,所述限流环将流入所述第二水伺服组件40的总流量控制在第二预设值内,所述第二水伺服组件40的归零位置设为所述第二预设值的中间值,如此,所述第二水伺服组件40流量随所述第二阀芯位置改变最为明显,所述第二水伺服组件40对水流量的调节效果最佳。
所述第二水伺服组件40的具体类型或结构不做限制,只要能够连接旁通水路,实现热水器的恒温出水,控制水流量根据出水水温对应调节,将合适量的低温水混入生活用水热水出水端,实现对生活用水的恒温出水,以提升用户的用水体验即可。
在一实施例中,请继续参阅图8,所述进水阀总成100还包括所述第二水伺服组件40。所述第二水伺服组件40的结构与所述第一水伺服组件30类似,所述第二水伺服组件40包括第二连接件、第二阀芯和第二电机,所述第二连接件形成有第二进水通道、及与所述第二进水通道连通的第二进水口和第二出水口,所述第二进水口连接所述第二出水接口14,所述第二出水口设于所述第二连接件下侧,用于连通所述旁通管路,从而将低温水流引入生活用水热水出水端。可以理解,所述第二连接件在所述第二进水口一端具有与所述第二出水接口14具有相互适配的组装结构,以实现对所示第二进水伺服组件的便利安装和拆卸。所述第二出水口位于所述第二连接件下侧,使得旁通管路可以从下方连接所述第二连接件,便于所述旁通管路的布设和组装。
在一些实施例中,请继续参阅图1和图8,所述第二水伺服组件40和所述采暖水泵60分设于所述进水阀总成100在横向上的两侧,如此一方面使得所述热水器内部结构布设合理,便于所述旁通管路和采暖回水管路的排布,另一方面两个部件的组装不会互相阻碍,便于组装,提升组装效率,降低生产成本。
所述第二阀芯的具体结构和活动方式不作限制,只要可以通过控制所述第二阀芯活动实现对所述第二进水伺服组件的水量调节即可。在一实施例中,所述第二阀芯沿前后方向可活动地设于所述第二进水通道,如此所述第二连接件整体呈沿横向延伸的长形设置,以便于有足够的空间布设所述第二出水口。所述第二电机设于所述第二连接件与所述第二进水口相对的一端,且与所述第二阀芯驱动连接。可以理解,所述第二电机与所述第二阀芯之间的传动结构可根据所述第二阀芯的活动方式进行设置。所述第二 电机可被控制调节所述第二水伺服组件40的进水水流量根据生活用水末端出水温度对应调节,从而向生活用水热水出水端混入合适量的低温水流,实现所述热水器的恒温出水。在本实施例中,水流的流向如下:水流从进水管路通过所述第一进水口33流入所述第一进水通道32,所述第一阀芯35的活动控制所述第一水伺服组件30的水流量,从而控制所述热水器的生活用水总流量,被控制流量的水流从所述第一出水口34流向所述进水接口12从而流入所述进水腔11,而后所述进水腔11中的部分水流通过所述第一出水接口13流向所述生活用水板换接口22流向换热管路换热,在所述生活用水热水出水端变成高温水流,另一部分水流则从所述第二出水接口14流入所述第二水伺服组件40的第二进水通道,并通过所述第二水伺服组件40调节水流后从所述第二出水口流出,流入旁通水路,变成低温水流与所述高温水流汇合,形成合适温度的恒温水流从所述生活用水热水出水端流出,提升用户的使用体验。
所述第二水伺服组件40也可以被替换为其他形式,以提升所述热水器的拓展形成。在一实施例中,所述第二水伺服组件40包括电磁阀,所述电磁阀的进水端用于连通所述第二出水接口14,所述电磁阀的出水端连通所述旁通管路。所述电磁阀可被控制根据所述生活用水热水出水端的水温进行水量调节,向所述生活用水末端混入合适量的低温水流,形成合适温度的恒温水流从所述生活用水热水出水端流出,提升用户的使用体验。
在另一实施例中,所述第二水伺服组件40包括比例阀,所述比例阀进水端用于连通所述第二出水接口14,所述比例阀的出水端连通所述旁通管路。所述比例阀可被控制根据所述生活用水热水出水端的水温进行水量调节,向所述生活用水末端混入合适量的低温水流,形成合适温度的恒温水流从所述生活用水热水出水端流出,提升用户的使用体验。
在上述实施例的基础上,所述第一阀体10上设有连通所述进水腔11的流量传感器16接口和/或温度传感器17接口。如此,进一步提升所述进水阀总成100的拓展性能,所述进水阀总成100也可以包括所述流量传感器16和所述温度传感器17,如此说所述进水阀总成100能够提供进水的水量和水温信息,使得所述热水器中的所述第一进水伺服,所述第二进水伺服和燃气比例阀等可以根据对应的水量和水温信息进行实时调节,进一步地提升所述热水器的性能,提升用户的使用体验。
请参阅图10至图13,本申请一种进水阀总成100,用以设置在热水器1000的进水管路上,具体地,用以设置在热水器1000的热水流路401上的进水端,所述进水阀总成100包括第一阀体10和第一水伺服组件30,所述第一阀体10具有进水腔11、及连通所述进水腔11的进水接口12和第一出水接口13,所述第一水伺服组件30设置在所述进水接口12处,用以调节进水流量大小,如此,通过所述第一水伺服组件30调节进水流量大小。
所述进水阀总成100集成了第一水伺服组件30,所述第一水伺服组件30可以直接实现根据需要控制热水器1000进水流量,减少铜管的使用,热水器1000内部结构更加简洁美观,降低生产成本,并且占用空间小、安装简单、减少了装配中产生的漏水点,从而降低漏水风险。
在本申请的一实施例中,所述第一阀体10沿上下向延伸,也即沿上下向安装在热水器1000壳体内,所述第一阀体10的下端设置有补水阀50,所述补水阀50用以与控制所述进水腔11与燃气换热流路300连通;所述进水接口12设置在所述第一阀体10的前侧部,也即朝向热水器1000壳体的前侧部设置,所述第一水伺服组件30的一端与所述进水接口12连接,另一端朝前延伸设置。如此,因为补水阀50设置在第一阀体10的下端,而不用占据所述第一阀体10的前侧空间,可以将所述进水阀总成100安装至热水器1000壳体内靠后的位置,而前方则空出来便于安置第一进水伺服组件,安装操作更加方便,从而使得所述热水器1000的结构更为紧凑。
在一实施例中,所述第一出水接口13设置在所述第一阀体10的前侧部,以同样方便在所述第一出水接口13处连接相关部件,如管路或者泵体等等。进一步地,在一实施例中,所述进水阀总成100还包括连接所述第一出水接口13设置的零冷水泵70,如此方便所述零冷水泵70的布置。如此,可以充分利用热水器内部前后方向的空间尺寸,在保证热水器前后方向厚度不增加的情况下,将进水阀总成100、零冷水泵70均设置在热水器的内部,并且不不挤占上下方向的尺寸使得热水器变长。
在一实施例中,所述零冷水泵70的一端与所述第一出水接口13连接,另一端朝前延伸,以使得所述零冷水泵70与所述第一水伺服组件30并行设置,如此可以将所述进水阀总成100安装至热水器1000壳体内靠后的位置,而前方则空出来便于安置第一进水伺服组件和所述零冷水泵70,安装操作更加方便,从而使得所述热水器1000的结构更为紧凑。进一步地,在一实施例中,所述零冷水泵70的前端与所述第一水伺服组件30的前端齐平设置,如此,使得所述零冷水泵70的前端与所述第一水伺服组件30的前端不会因为不齐平,而产生空余空间,以进一步有利于利用热水器1000壳体的前后向的空间。
在一实施例中,所述第一水伺服组件30包括伺服主体(包括后续说的第一连接件31、第一阀芯35和驱动装置36a)、以及设于所述伺服主体背对所述第一阀体10的一端的伺服控制器,也即,在该实施 例中,将伺服控制器直接设置在所述伺服主体背对所述第一阀体10的一端,而能够利用所述伺服主体的前方的空间,并且,对于同时设置有所述零冷水泵70和所述第一水伺服组件30,且均设置在所述第一阀体10前侧的方案中,以更容易将所述零冷水泵70的前端与所述第一水伺服组件30的前端齐平设置。
在一实施例中,所述第一水伺服组件30包括第一连接件31、第一阀芯35以及驱动装置36a,所述第一连接件31具有第一进水通道32、及与所述第一进水通道32连通的第一进水口33和第一出水口34,所述第一出水口34设于所述第一连接件31的一端,且与所述进水接口12连接,所述第一阀芯35沿着所述第一进水通道32的长度方向活动设置,以调节所述第一进水通道32的水流量,所述驱动装置36a驱动所述第一阀芯35活动,以通过所述驱动装置36a驱动所述第一阀芯35沿着所述第一进水通道32的长度方向活动,以调节所述第一进水通道32的水流量大小。
进一步地,在一实施例中,所述驱动装置36a包括步进电机,以通过所述步进电机的步数准确地控制所述第一进水通道32的开度,所述步进电机与所述第一阀芯35之间通常设置将转动转化为直线运动的传动机构,例如滚珠丝杆机构,又例如是螺纹传动机构等等。显然,所述驱动装置36a也可以直接为直线驱动装置36a,例如直线电机。
在一实施例中,所述第一进水通道32中,在所述第一阀芯35朝向所述第一出水口34的一侧设置有支架37,所述第一阀芯35通过一活动柱38滑动安装于所述支架37,所述第一阀芯35至少一段形成过流部351,所述过流部351位于所述第一出水口34与所述第一进水口33之间,在所述第一阀芯35活动行程中,所述过流部351与所述第一进水通道32之间形成过流缝隙,并且所述过流缝隙尺寸会发生变化,以调节所述第一进水通道32的流量,所述过流部351与所述支架37之间的距离为d,d≥10mm。在该实施例中,以将所述过流部351与所述支架37之间的距离d设置得足够大,即d≥10mm,以使得自所述过流部351外围通过的水流至所述支架37之间具有足够长的路径,从而可以减缓水流的流动,进而可以降低噪声。
具体地,在一实施例中,所述第一阀芯35朝向所述第一出水口34的一端部形成所述过流部351,更具体地,所述第一进水通道32中对应所述过流部351的一段,在靠近所述第一出水口34的方向上呈渐缩设置,以使得所述过流部351在靠近所述第一出水口34时,所述过流缝隙逐渐减小直至关闭。显然,本设计不限于此,也可以是所述第一阀芯35的中间段形成所述过流部351。
本申请还提供一种第一水伺服组件30,所述第一水伺服组件30包括第一连接件31、第一阀芯35和驱动装置36a,所述第一连接件31具有第一进水通道32、及与所述第一进水通道32连通的第一进水口33和第一出水口34,所述第一出水口34设于所述第一连接件31的一端,且与所述进水接口12连接,所述第一阀芯35沿着所述第一进水通道32的长度方向活动设置,所述第一阀芯35至少一段形成过流部351,所述过流部351位于所述第一出水口34与所述第一进水口33之间,在所述第一阀芯35活动行程中,所述过流部351与所述第一进水通道32之间形成过流缝隙,并且所述过流缝隙尺寸会发生变化,以调节所述第一进水通道32的流量,所述过流部351与所述支架37之间的距离为d,d≥10mm;所述驱动装置36a驱动所述第一阀芯35活动。在该实施例中,d≥10mm,也即将所述过流部351与所述支架37之间的距离d设置得足够大,即d≥10mm,以使得自所述过流部351外围通过的水流至所述支架37之间具有足够长的路径,从而可以减缓水流的流动,进而可以降低噪声。
具体地,在一实施例中,所述第一阀芯35朝向所述第一出水口34的一端部形成所述过流部351,更具体地,所述第一进水通道32中对应所述过流部351的一段,在靠近所述第一出水口34的方向上呈渐缩设置,以使得所述过流部351在靠近所述第一出水口34时,所述过流缝隙逐渐减小直至关闭。显然,本设计不限于此,也可以是所述第一阀芯35的中间段形成所述过流部351。
本申请还提供一种热水器的控制方法,请参阅图14,并一并参阅图10至图13,所述热水器1000包括燃气换热流路300、热水换热器400、进水阀总成100以及控制装置,所述燃气换热流路300上设置有燃气换热组件301(在该实施例中,所述燃气换热流路300上还设置有水泵302,显然,水泵不一定设置在所述燃气换热流路300上),所述燃气换热流路300的两端用以对应与采暖流路2000(通常该采暖流路2000上设置有取暖翅片)的两端连接,以共同构成采暖循环回路,所述热水换热器400内部形成有换热流路402以及与所述换热流路402能够热交换的热水流路401(所述热水流路401的两端对应连接冷水入口401a和热水出口401b),所述换热流路402的两端与所述燃气换热流路300的两端对应连接,以形成由换热循环回路,所述进水阀总成100与所述热水流路401的进水端连接,所述进水阀总成100包括用以控制进水流量的第一水伺服组件30,所述热水器1000的控制方法包括以下步骤:
步骤S10、在热水流路401的出水端被打开用水时,控制燃气换热组件301工作,以对热水流路401中的水进行加热,且控制第一水伺服组件30调节进水流量至Q1,Q1<Q,Q为当前可达流量;
在步骤S10中,一般是通过检测水流量信号来判断是否用水,一般当水流量信号大于2.5L/min则被判定为在用水,显然本设计不限于此,可以是直接检测热水流路401的出水端是否打开即可。
在检测到在用水时,需要迅速将水温上升,以减少加热时间,故而,在该步骤中,因为进水流量 是可以通过第一水伺服组件30来进行控制,故而,在该步骤中,通过降低进水流量,以实现快速将水温升高的效果,而对于所述燃气换热组件301的工作可以不做限制,可以是采用已知的方式。
Q1只要小于Q即可,具体地,在一实施例中,0.4Q≤Q1≤0.9Q,因为若Q1过小,则对水流量影响过于明显,用户体验比较差,而若Q1过大,则通过减小流量,加快加热速度的效果就比较弱。
步骤S20、在热水流路401的出水端的出水温度达到预设温度T1,控制所述燃气换热组件301继续工作,且控制所述第一水伺服组件30增大进水流量,T1=T+△T,T为目标温度。
在步骤S20中,当热水流路401的出水端的出水温度接近目标温度时,即T1=T+△T,△T例如为0.5℃,则此时,可以控制第一水伺服组件30增大进水流量,以让水流量逐渐增大,以满足用户的需要。
也即,在该实施例中,在用户用水的初始阶段,先通过控制第一水伺服组件30减小进水流量,以达到快速使得热水流路401中的水被加热,而当出水温度接近目标温度时,可以通过控制第一水伺服组件30增大进水流量,以逐渐满足用户对水流量的需求。
在一实施例中,在步骤S10中,控制燃气换热组件301的工作包括:根据出水温度与目标温度之间的第一温度差,控制所述燃气换热组件301的火力。当第一温度差较大时,对应控制所述燃气换热组件301采样比较大的火力,当第一温度差较小时,对应控制所述燃气换热组件301采样比较小的火力,例如,当第一温度差达到9℃以上,则使用最大火力燃烧;当第一温度差为3℃时使用30%火力,依此类推,通过这样的方式使水温快速达到目标的±2℃范围内。
进一步地,在一实施例中,根据出水温度与目标温度之间的第一温度差,控制所述燃气换热组件301的火力的步骤,包括:当所述第一温度差减小时,控制所述燃气换热组件301的火力减小。也即,随着第一温度差减小,以逐渐减小所述燃气换热组件301的火力。
对于控制所述燃气换热组件301的火力的方式,通常是通过控制燃气阀的开度来实现的。
在一实施例中,所述第一水伺服组件30包括第一连接件31、第一阀芯35和驱动装置36a;在步骤S10中,控制第一水伺服组件30工作包括:在第一水伺服组件30的开度降低至设定开度时,控制驱动装置36a减速。所述第一阀芯35活动设置在第一连接件31中,在由最大的开度到小的开度时,前期比较大的活动行程,对应比较小的开度,而在后期,小的活动行程,对应的开度变化比较大,故而,在该实施例中,对于第一水伺服组件30控制流量下降的过程中,控制所述第一阀芯35先采用较大的活动速度,而后采用较小的活动速度,以使得流量变化比较稳定,而不是突然急剧的改变。例如,当热水流路401中的流量低于9L/min时步,驱动装置36a(如步进电机)速度降低至原来的一半,水流量下限为4L/min。
在一实施例中,在步骤S20中,控制所述第一水伺服组件30增大进水流量包括:控制所述第一水伺服组件30以设定梯度的形式逐渐增大进水流量。在该实施例中,以设定梯度去逐渐增大进水流量,该梯度可以是定值,也可以不是定值,例如,当出水温度接近目标温度-0.5℃以后,以1%Q流量为梯度,逐渐增加水流量。
在一实施例中,在步骤S20中,控制所述第一水伺服组件30增大进水流量包括:
获取进水温度与目标温度之间的第二温度差;
根据所述第二温度差,选择对所述第一水伺服组件30调节的时间间隔;
根据所述时间间隔,调节所述第一水伺服组件30。
也即,在该实施例中,根据第二温度差选择对所述第一水伺服组件30调节的时间间隔,当第二温度差较大时,对应的调节的时间间隔可以选择大的,也即,第一水伺服组件30在经过比较长的时间之后再调整,因为第二温度差比较大时,需要保持在小的流量的时间比较长,才能很好地对热水流路401中的水进行加热,而当第二温度差较小时,对应的调节的时间间隔可以选择小的,例如,第二温度差大于39时,第一水伺服组件30(具体为第一水伺服组件30的步进电机)每2S根据实时结果动作一次,第二温度差在29至39之间时每1S动作一次,依此类推,直至恢复至步进电机原本速度0.2S动作一次。
在一实施例中,步骤S20包括:
步骤S20a、在所述第一水伺服组件30增大进水流量时,控制所述燃气换热组件301增大火力;
步骤S20b、当火力增大至设定火力H1时,控制所述第一水伺服组件30停止调节进水流量,H1小于额定火力。
也即,在第一水伺服组件30增大进水流量时,会控制燃气换热组件301增大火力,但是需要预留一定的火力,以避免在进水流量不断增加时,即使增大火力也无法将热水流路401中的水加热至目标温度,故而,当火力增大至设定火力H1时,H1小于额定火力,控制所述第一水伺服组件30停止调节进水流量。
在一实施例中,所述设定火力H1≥92%额定火力,可以是92%、93%等。显然,H1的具体值与火力大小以及流量等有关系,故而不做限制。
在一实施例中,步骤S20b之后,还包括:
步骤S20c、当所述燃气换热组件301增大火力达到额定火力时,获取此时热水流路401的流量Q2以 及此时的出水温度和目标温度之间的当前温度差值;
步骤S20d、根据Q2和当前温度差值,对Q进行修正。
在该实施例中,当所述燃气换热组件301增大火力达到额定火力时,获取此时热水流路401的流量Q2以及此时的出水温度和目标温度之间的当前温度差值,进而可以根据公式:Q2*当前温度差值=Q*Q对应的温度差值,以可以计算出Q,以对初始的Q进行修正。
在一实施例中,在步骤S20中,控制燃气换热组件301工作包括:
在水流量达到设定流量时,获取第一水伺服组件30的开合度;
根据所述第一水伺服组件30的开合度,选择所述燃气换热组件301的匹配火力;
根据所述匹配火力,控制所述燃气换热组件301工作。
在该实施例中,在热水流路401的流量一定的情况下,可以通过第一水伺服组件30的开合度来反映出水源(自来水)的水压,故而,若开度越小,则对应的水源的水压越大,故而,在调节时,先把燃气换热组件301的火力设置得足够大,以确保在后续调节开度时(对应的流量变化比较大),而对热水流路401的水温影响较大,例如,出水温度接近目标温度-2℃时,根据Y(Y为关闭度,例如,第一水伺服组件30包括步进电机,根据步进电机开启位置和达到的水流量,可以大体判断还有多少流量是可调的,Y为距离0步的步数与总步数的百分比,设定60%至100%步数时步进电机可以向0步方向动作以获得超过30%以上的流量提升)的值,Y>90%时,火力调整至100%,80<Y≤90时火力调整至60%,依此类推,直至Y小于60%,此数值可以根据不同机型调整。
在一实施例中,在步骤S10中,控制所述第一水伺服组件30增大进水流量包括:在设定时间内,控制所述第一水伺服组件30的开度达到100%。例如,出水温度接近目标温度-0.5℃以后,将Y从当前百分比在5S内运行至0%
请参阅图10至图13,本申请又提供一种热水器1000,包括:
燃气换热流路300,其上设置有燃气换热组件301,所述燃气换热流路300的两端用以对应与采暖流路2000的两端连接,以形成采暖循环回路;
热水换热器400,其内部形成有换热流路402以及与所述换热流路402能够热交换的热水流路401(所述热水流路401的两端对应连接冷水入口401a和热水出口401b),所述换热流路402的两端与所述燃气换热流路300的两端对应连接,以形成换热循环回路;
进水阀总成100,包括用以控制进水流量的第一水伺服组件30;以及,
控制装置,与所述燃气换热组件301和所述第一水伺服组件30电性连接。
在所述热水器1000中,所述进水阀总成100设置有第一水伺服组件30,所述第一水伺服组件30可以直接实现根据需要控制热水器1000进水流量。
在一实施例中,所述控制装置包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行热水器1000的控制程序,所述热水器1000的控制程序配置为实现如上述任一项所述的热水器1000的控制方法的步骤,所以,本实施例提供的所述热水器1000具有上述各热水器1000的控制方法的实施例,故而对应具备该等实施例所对应的技术效果,在此不再赘述。
在一实施例中,所述进水阀总成100包括上述任意一项的进水阀总成100,所以,本实施例提供的所述热水器1000具有上述各进水阀总成100的实施例,故而对应具备该等实施例所对应的技术效果,在此不再赘述。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的发明构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (42)

  1. 一种进水阀总成,包括:
    第一阀体,所述第一阀体形成有进水腔、及连通所述进水腔的进水接口和第一出水接口,所述进水接口用于连接第一水伺服组件,所述第一出水接口用于连通生活用水板换接口,以使得进水管路中的水流通过所述第一水伺服组件流入所述进水接口,并从所述第一出水接口流出。
  2. 如权利要求1所述的进水阀总成,其中,所述进水接口和所述第一出水接口均位于所述第一阀体前侧,所述进水接口位于所述第一出水接口下方。
  3. 如权利要求2所述的进水阀总成,其中,还包括所述第一水伺服组件,所述第一水伺服组件包括:
    第一连接件,形成有第一进水通道、及与所述第一进水通道连通的第一进水口和第一出水口,所述第一进水口设于所述第一连接件下侧,用于连通所述进水管路,所述第一出水口连通所述进水接口;
    第一阀芯,可活动地设于所述第一进水通道,以调节所述第一进水通道的水流量;以及,
    第一电机,设于所述第一连接件与所述第一出水口相对的一端,且与所述第一阀芯驱动连接;或者,
    所述第一水伺服组件包括电磁阀,所述电磁阀的进水端用于连通所述进水管路,所述电磁阀的出水端连通所述进水接口;或者,
    所述第一水伺服组件包括比例阀,所述比例阀的进水端用于连通所述进水管路,所述比例阀的出水端连通所述进水接口;或者,
    所述第一水伺服组件包括感温阀,所述感温阀的进水端用于连通所述进水管路,所述感温阀的出水端连通所述进水接口。
  4. 如权利要求2或3所述的进水阀总成,其中,所述第一阀体还形成有连通所述进水腔的第二出水接口,所述第二出水接口用于连接第二水伺服组件,以使得所述进水腔内的水流通过所述第二水伺服组件流向生活热水出水端。
  5. 如权利要求4所述的进水阀总成,其中,所述第二出水接口位于所述第一阀体在横向上的一侧。
  6. 如权利要求4所述的进水阀总成,其中,还包括所述第二水伺服组件,所述第二水伺服组件包括:
    第二连接件,形成有第二进水通道、及与所述第二进水通道连通的第二进水口和第二出水口,所述第二进水口连通所述第二出水接口,所述第二出水口设于所述第二连接件下侧,用于连通所述生活热水出水端;
    第二阀芯,可活动地设于所述第二进水通道,以调节所述第二进水通道的水流量;以及,
    第二电机,设于所述第二连接件与所述第二进水口相对的一端,且与所述第二阀芯驱动连接。
  7. 如权利要求2至6中任一项所述的进水阀总成,其中,还包括设于所述第一阀体在横向上一侧的第二阀体,所述第二阀体形成回水腔、及与所述回水腔连通的回水接口和采暖用水板换接口。
  8. 如权利要求7所述的进水阀总成,其中,所述第一阀体下端形成补水阀接口,所述补水阀接口用于连接补水阀,以使得所述进水腔与所述回水腔能够通过所述补水阀连通。
  9. 如权利要求8所述的进水阀总成,其中,所述补水阀包括:
    壳体,形成有补水腔,所述壳体上端形成有连通所述补水腔和所述回水腔的补水口;
    补水管,插设于所述壳体上端,且沿上下向贯设有补水通道,所述补水通道上端连通所述进水腔,所述补水通道下端连通所述补水腔;
    补水阀芯,沿上下方向可活动地设于所述补水腔,以具有上移封堵所述补水通道下端的第一阀位、以及打开所述补水通道下端的第二阀位;以及、
    操作部,可活动地设于所述壳体下端,且与所述补水阀芯驱动连接,用于驱动所述补水阀芯在所述第一阀位和所述第二阀位之间切换。
  10. 如权利要求7至9任意一项所述的进水阀总成,其中,所述第二阀体上还形成有所述生活用水板换接口,所述生活用水板换接口和所述采暖用水板换接口均位于所述第二阀体后侧,且所述生活用水板换接口位于所述采暖用水板换接口上方。
  11. 如权利要求10所述的进水阀总成,其中,还包括采暖水泵,所述采暖水泵的进水端用于连通采暖回水管路,所述采暖水泵的出水端连通所述回水接口,所述回水接口设于所述第二阀体与所述第一阀体相对的一侧。
  12. 如权利要求10或11所述的进水阀总成,其中,还包括零冷水泵,所述零冷水泵的进水端连通所述第一出水接口,所述零冷水泵的出水端连通所述生活用水板换接口。
  13. 如权利要求1至12中任一项所述的进水阀总成,其中,所述第一阀体上设有连通所述进水腔的流量传感器接口和/或温度传感器接口。
  14. 一种热水器,其中,包括如权利要求1至13中任一项所述的进水阀总成。
  15. 一种进水阀总成,用以设置在热水器的进水管路上,其中,所述进水阀总成包括:
    第一阀体,具有进水腔、及连通所述进水腔的进水接口和第一出水接口;以及,
    第一水伺服组件,设置在所述进水接口处,用以调节进水流量大小。
  16. 如权利要求15所述的进水阀总成,其中,所述第一阀体沿上下向延伸;
    所述第一阀体的下端设置有补水阀,所述补水阀用以与控制所述进水腔与燃气换热流路连通;
    所述进水接口设置在所述第一阀体的前侧部,所述第一水伺服组件的一端与所述进水接口连接,另一端朝前延伸设置。
  17. 如权利要求16所述的进水阀总成,其中,所述第一出水接口设置在所述第一阀体的前侧部。
  18. 如权利要求17所述的进水阀总成,其中,所述进水阀总成还包括连接所述第一出水接口设置的零冷水泵。
  19. 如权利要求18所述的进水阀总成,其中,所述零冷水泵的一端与所述第一出水接口连接,另一端朝前延伸,以使得所述零冷水泵与所述第一水伺服组件并行设置。
  20. 如权利要求19所述的进水阀总成,其中,所述零冷水泵的前端与所述第一水伺服组件的前端齐平设置。
  21. 如权利要求16至20任意一项所述的进水阀总成,其中,所述第一水伺服组件包括伺服主体、以及设于所述伺服主体背对所述第一阀体的一端的伺服控制器。
  22. 如权利要求15至21任意一项所述的进水阀总成,其中,所述第一水伺服组件包括:
    第一连接件,具有第一进水通道、及与所述第一进水通道连通的第一进水口和第一出水口,所述第一出水口设于所述第一连接件的一端,且与所述进水接口连接;
    第一阀芯,沿着所述第一进水通道的长度方向活动设置,以调节所述第一进水通道的水流量;以及,
    驱动装置,驱动所述第一阀芯活动。
  23. 如权利要求22所述的进水阀总成,其中,所述驱动装置包括步进电机。
  24. 如权利要求23所述的进水阀总成,其中,所述第一进水通道中,在所述第一阀芯朝向所述第一出水口的一侧设置有支架;
    所述第一阀芯通过一活动柱滑动安装于所述支架;
    所述第一阀芯至少一段形成过流部,所述过流部位于所述第一出水口与所述第一进水口之间,在所述第一阀芯活动行程中,所述过流部与所述第一进水通道之间形成过流缝隙,所述过流部与所述支架之间的距离为d,d≥10mm。
  25. 如权利要求24所述的进水阀总成,其中,所述第一阀芯朝向所述第一出水口的一端部形成所述过流部。
  26. 一种第一水伺服组件,包括:
    第一连接件,具有第一进水通道、及与所述第一进水通道连通的第一进水口和第一出水口,所述第一出水口设于所述第一连接件的一端,且与所述进水接口连接;
    第一阀芯,沿着所述第一进水通道的长度方向活动设置,所述第一阀芯至少一段形成过流部,所述过流部位于所述第一出水口与所述第一进水口之间,在所述第一阀芯活动行程中,所述过流部与所述第一进水通道之间形成过流缝隙,所述过流部与所述支架之间的距离为d,d≥10mm;以及,
    驱动装置,驱动所述第一阀芯活动。
  27. 如权利要求26所述的进水阀总成,其中,所述第一阀芯朝向所述第一出水口的一端部形成所述过流部。
  28. 一种热水器的控制方法,其中,所述热水器包括燃气换热流路、热水换热器、进水阀总成以及控制装置,所述燃气换热流路上设置有燃气换热组件,所述燃气换热流路的两端用以对应与采暖流路的两端连接,所述热水换热器内部形成有换热流路以及与所述换热流路能够热交换的热水流路,所述换热流路的两端与所述燃气换热流路的两端对应连接,所述进水阀总成与所述热水流路的进水端连接,所述进水阀总成包括用以控制进水流量的第一水伺服组件,所述热水器的控制方法包括以下步骤:
    在热水流路的出水端被打开用水时,控制燃气换热组件工作,以对换热流路中的水进行加热,且控制第一水伺服组件调节进水流量至Q1,Q1<Q,Q为当前可达流量;
    在热水流路的出水端的出水温度达到预设温度T1,控制所述燃气换热组件继续工作,且控制所述第一水伺服组件增大进水流量,T1=T+△T,T为目标温度。
  29. 如权利要求28所述的热水器的控制方法,其中,0.4Q≤Q1≤0.9Q。
  30. 如权利要求28或29所述的热水器的控制方法,其中,在热水流路的出水端被打开用水时,控制燃气换热组件工作,以对换热流路中的水进行加热,且控制第一水伺服组件调节进水流量至Q1,Q1<Q,Q为当前可达流量步骤中,控制燃气换热组件的工作包括:
    根据出水温度与目标温度之间的第一温度差,控制所述燃气换热组件的火力。
  31. 如权利要求30所述的热水器的控制方法,其中,根据出水温度与目标温度之间的第一温度差,控制所述燃气换热组件的火力的步骤,包括:
    当所述第一温度差减小时,控制所述燃气换热组件的火力减小。
  32. 如权利要求28至31任意一项所述的热水器的控制方法,其中,所述第一水伺服组件包括第一连接件、第一阀芯和驱动装置;
    在热水流路的出水端被打开用水时,控制燃气换热组件工作,以对换热流路中的水进行加热,且控制第一水伺服组件调节进水流量至Q1,Q1<Q,Q为当前可达流量步骤中,控制第一水伺服组件工作包括:
    在第一水伺服组件的开度降低至设定开度时,控制驱动装置减速。
  33. 如权利要求28至32任意一项所述的热水器的控制方法,其中,在热水流路的出水端的出水温度达到预设温度T1,控制所述燃气换热组件继续工作,且控制所述第一水伺服组件增大进水流量,T1=T+△T,T为目标温度的步骤中,控制所述第一水伺服组件增大进水流量包括:
    控制所述第一水伺服组件以设定梯度的形式逐渐增大进水流量。
  34. 如权利要求28至33任意一项所述的热水器的控制方法,其中,在热水流路的出水端的出水温度达到预设温度T1,控制所述燃气换热组件继续工作,且控制所述第一水伺服组件增大进水流量,T1=T+△T,T为目标温度的步骤中,控制所述第一水伺服组件增大进水流量包括:
    获取进水温度与目标温度之间的第二温度差;
    根据所述第二温度差,选择对所述第一水伺服组件调节的时间间隔;
    根据所述时间间隔,调节所述第一水伺服组件。
  35. 如权利要求28至34任意一项所述的热水器的控制方法,其中,在热水流路的出水端的出水温度达到预设温度T1,控制所述燃气换热组件继续工作,且控制所述第一水伺服组件增大进水流量,T1=T+△T,T为目标温度的步骤,包括:
    在所述第一水伺服组件增大进水流量,控制所述燃气换热组件增大火力;
    当火力增大至设定火力H1时,控制所述第一水伺服组件停止调节进水流量,H1小于额定火力。
  36. 如权利要求35所述的热水器的控制方法,其中,
    所述设定火力H1≥92%额定火力。
  37. 如权利要求35或36所述的热水器的控制方法,其中,当火力增大至设定火力H1时,控制所述第一水伺服组件停止调节进水流量的步骤之后,还包括:
    当所述燃气换热组件增大火力达到额定火力时,获取此时热水流路的流量Q2以及此时的出水温度和目标温度之间的当前温度差值;
    根据Q2和当前温度差值,对Q进行修正。
  38. 如权利要求28所述的热水器的控制方法,其中,在热水流路的出水端被打开用水时,控制燃气换热组件工作,以对换热流路中的水进行加热,且控制第一水伺服组件调节进水流量至Q1,Q1<Q,Q为当前可达流量的步骤中,控制燃气换热组件工作包括:
    在水流量达到设定流量时,获取第一水伺服组件的开合度;
    根据所述第一水伺服组件的开合度,选择所述燃气换热组件的匹配火力;
    根据所述匹配火力,控制所述燃气换热组件工作。
  39. 如权利要求28或38所述的热水器的控制方法,其中,在热水流路的出水端的出水温度达到预设温度T1,控制所述燃气换热组件继续工作,且控制所述第一水伺服组件增大进水流量,T1=T+△T,T为目标温度的步骤中,控制所述第一水伺服组件增大进水流量包括:
    在设定时间内,控制所述第一水伺服组件的开度达到100%。
  40. 一种热水器,包括:
    燃气换热流路,其上设置有燃气换热组件,所述燃气换热流路的两端用以对应与采暖流路的两端连接;
    热水换热器,其内部形成有换热流路以及与所述换热流路能够热交换的热水流路,所述换热流路的两端与所述燃气换热流路的两端对应连接;
    进水阀总成,包括用以控制进水流量的第一水伺服组件;以及,
    控制装置,与所述燃气换热组件和所述第一水伺服组件电性连接。
  41. 如权利要求40所述的热水器,其中,所述控制装置包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行热水器的控制程序,所述热水器的控制程序配置为实现如权利要求28至39中任一项所述的热水器的控制方法的步骤。
  42. 如权利要求40或41所述的热水器,其中,所述进水阀总成包括如权利要求15-25任意一项所述的进水阀总成。
PCT/CN2023/108246 2022-12-06 2023-07-19 第一水伺服组件、进水阀总成、热水器及其控制方法 WO2024119835A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202223270370.6U CN218992431U (zh) 2022-12-06 2022-12-06 进水阀总成及热水器
CN202223270370.6 2022-12-06

Publications (1)

Publication Number Publication Date
WO2024119835A1 true WO2024119835A1 (zh) 2024-06-13

Family

ID=86221149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108246 WO2024119835A1 (zh) 2022-12-06 2023-07-19 第一水伺服组件、进水阀总成、热水器及其控制方法

Country Status (2)

Country Link
CN (1) CN218992431U (zh)
WO (1) WO2024119835A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218992431U (zh) * 2022-12-06 2023-05-09 芜湖美的智能厨电制造有限公司 进水阀总成及热水器

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50111485D1 (de) * 2000-04-18 2007-01-04 Vaillant Gmbh Gasbeheizter Durchlauferhitzer
CN102853545A (zh) * 2012-04-28 2013-01-02 广州迪森家用锅炉制造有限公司 燃气采暖热水炉的板换集成水路
CN103344046A (zh) * 2013-06-28 2013-10-09 海尔集团公司 恒温燃气热水器控制方法及恒温燃气热水器
CN104236109A (zh) * 2013-06-24 2014-12-24 海尔集团公司 恒温燃气热水器的控制方法及控制装置
CN204554013U (zh) * 2015-02-17 2015-08-12 陈山石 水伺服阀
CN105276822A (zh) * 2015-10-30 2016-01-27 青岛海尔科技有限公司 一种热水器的恒温控制方法及装置
CN106322737A (zh) * 2015-06-18 2017-01-11 青岛经济技术开发区海尔热水器有限公司 燃气热水器及其控制方法
CN108548319A (zh) * 2018-06-05 2018-09-18 广东诺科冷暖设备有限公司 全预混燃气壁挂炉
CN209588389U (zh) * 2018-10-30 2019-11-05 青岛经济技术开发区海尔热水器有限公司 一种燃气采暖热水炉
CN210566420U (zh) * 2019-06-26 2020-05-19 广东万和热能科技有限公司 一种水路阀总成及暖浴两用炉
CN111365855A (zh) * 2020-03-16 2020-07-03 华帝股份有限公司 一种可多级限流控温的燃气热水器及其控制方法
CN113324071A (zh) * 2021-04-16 2021-08-31 重庆海尔热水器有限公司 进水阀及采暖热水器
CN218992431U (zh) * 2022-12-06 2023-05-09 芜湖美的智能厨电制造有限公司 进水阀总成及热水器

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50111485D1 (de) * 2000-04-18 2007-01-04 Vaillant Gmbh Gasbeheizter Durchlauferhitzer
CN102853545A (zh) * 2012-04-28 2013-01-02 广州迪森家用锅炉制造有限公司 燃气采暖热水炉的板换集成水路
CN104236109A (zh) * 2013-06-24 2014-12-24 海尔集团公司 恒温燃气热水器的控制方法及控制装置
CN103344046A (zh) * 2013-06-28 2013-10-09 海尔集团公司 恒温燃气热水器控制方法及恒温燃气热水器
CN204554013U (zh) * 2015-02-17 2015-08-12 陈山石 水伺服阀
CN106322737A (zh) * 2015-06-18 2017-01-11 青岛经济技术开发区海尔热水器有限公司 燃气热水器及其控制方法
CN105276822A (zh) * 2015-10-30 2016-01-27 青岛海尔科技有限公司 一种热水器的恒温控制方法及装置
CN108548319A (zh) * 2018-06-05 2018-09-18 广东诺科冷暖设备有限公司 全预混燃气壁挂炉
CN209588389U (zh) * 2018-10-30 2019-11-05 青岛经济技术开发区海尔热水器有限公司 一种燃气采暖热水炉
CN210566420U (zh) * 2019-06-26 2020-05-19 广东万和热能科技有限公司 一种水路阀总成及暖浴两用炉
CN111365855A (zh) * 2020-03-16 2020-07-03 华帝股份有限公司 一种可多级限流控温的燃气热水器及其控制方法
CN113324071A (zh) * 2021-04-16 2021-08-31 重庆海尔热水器有限公司 进水阀及采暖热水器
CN218992431U (zh) * 2022-12-06 2023-05-09 芜湖美的智能厨电制造有限公司 进水阀总成及热水器

Also Published As

Publication number Publication date
CN218992431U (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2024119835A1 (zh) 第一水伺服组件、进水阀总成、热水器及其控制方法
WO2021031596A1 (zh) 一种热水器系统
WO2012000311A1 (zh) 燃气热水器及其进出水控制方法
WO2011130953A1 (zh) 一种蒸汽站电烫斗
WO2021063010A1 (zh) 采暖热水炉及其控制方法、计算机可读存储介质
CN112032999A (zh) 燃气采暖设备及采暖供热水系统
CN201964613U (zh) 速热式热泵热水器
CN210512148U (zh) 燃气采暖设备及采暖供热水系统
CN112032996B (zh) 燃气采暖装置及采暖供热水系统
JP2007010213A (ja) 貯湯装置
CN209470355U (zh) 一种往复式水加热器
CN111219866A (zh) 一种含独立调节温度水龙头的燃气热水器系统
CN221005459U (zh) 热水器
CN215295360U (zh) 一种多功能燃气热水器组件
CN112344430B (zh) 采暖供热水系统的控制方法
CN221003871U (zh) 小型流量阀和热水器
JP2008082633A (ja) 給湯装置とプレート式熱交換器
CN221003870U (zh) 小型流量阀和热水器
CN221098974U (zh) 一种恒温电热水器
CN210980362U (zh) 一种加热炉和储水箱一体式装置及系统
CN218033709U (zh) 一种快速响应的恒温热水器
CN213746988U (zh) 一种具有双模式供热的热泵热水器
CN112856810B (zh) 热交换器的控制系统、采暖炉及其出水温度控制方法
CN221036192U (zh) 热水器
CN216114671U (zh) 恒温热水器