WO2024119702A1 - 一种光伏组件的关断装置及光伏系统 - Google Patents
一种光伏组件的关断装置及光伏系统 Download PDFInfo
- Publication number
- WO2024119702A1 WO2024119702A1 PCT/CN2023/091148 CN2023091148W WO2024119702A1 WO 2024119702 A1 WO2024119702 A1 WO 2024119702A1 CN 2023091148 W CN2023091148 W CN 2023091148W WO 2024119702 A1 WO2024119702 A1 WO 2024119702A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- output terminal
- cable
- switch
- positive
- Prior art date
Links
- 238000009434 installation Methods 0.000 abstract description 11
- 230000007423 decrease Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 35
- 238000000034 method Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/34—Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02S—GENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
- H02S40/00—Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
- H02S40/30—Electrical components
- H02S40/36—Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Definitions
- the present application relates to the field of photovoltaic power generation technology, and in particular to a photovoltaic module shutdown device and a photovoltaic system.
- the photovoltaic power generation system converts the direct current generated by the photovoltaic array into alternating current through an inverter and transmits it to the power grid or load.
- the photovoltaic array consists of multiple photovoltaic modules connected in series and parallel, and its voltage can reach hundreds of volts or even thousands of volts. When maintenance personnel or other personnel approach the photovoltaic array, serious electric shock accidents may occur.
- shut-off devices are installed on each photovoltaic module.
- a host device can be manually triggered to send a shut-off command to control all shut-off devices to disconnect, so that the output voltage of the entire photovoltaic array reaches a safe voltage within a predetermined time.
- the photovoltaic modules in the prior art use split junction boxes. If the photovoltaic system does not add a shutdown device, the positive and negative output cables are connected to each other, and a shorter cable can be used, which has low cable cost and low cable loss. If the existing shutdown device is used, additional extension wires and terminals are required to connect the output end of the photovoltaic module and the input end of the shutdown device. Therefore, the current shutdown device will increase the length of the total cable, and the cable loss will also increase while the cost increases.
- the present application provides a photovoltaic module shutdown device and a photovoltaic system, which can reduce the cable length and reduce the overall loss.
- the present application provides a photovoltaic assembly shutdown device, comprising: a first part and a second part;
- the first part or the second part includes a shut-off circuit; the first part and the second part are connected by a cable;
- the first portion includes a negative input terminal and a negative output terminal
- the second portion includes a positive input terminal and a positive output terminal
- the negative input terminal and the positive input terminal are used to connect the negative pole and the positive pole of the corresponding photovoltaic module respectively;
- the positive output terminal and the negative output terminal are respectively used to be connected in series with different shutoff devices.
- the first part further comprises: a first bottom box;
- At least one of the negative input terminal and the negative output terminal is a line end terminal, and the line end terminal is connected to the first bottom box through a cable;
- At least one of the negative input terminal and the negative output terminal is a plate-end terminal, and the plate-end terminal is fixedly connected to the first bottom box.
- the negative input terminal and the negative output terminal are respectively located on different sides of the first bottom box.
- the first part comprises a three-way terminal
- the three-way terminal comprises a negative input terminal, a negative output terminal and a first cable terminal
- the first cable terminal is used for connecting with the second part.
- the second part further comprises: a second bottom box
- At least one of the positive input terminal and the positive output terminal is a line end terminal, and the line end terminal is connected to the second bottom box through a cable;
- At least one of the positive input terminal and the positive output terminal is a board-end terminal, and the board-end terminal is connected to the second bottom box through a cable.
- the positive input terminal and the positive output terminal are respectively located on different sides of the second bottom box.
- the second part comprises a three-way terminal
- the three-way terminal comprises a positive input terminal, a positive output terminal and a second cable terminal
- the second cable terminal is used for connecting with the first part.
- a first fastening structure is provided on the first bottom box, and the first fastening structure is used to fasten the first bottom box to the corresponding photovoltaic assembly.
- a second fastening structure is provided on the second base box, and the second fastening structure is used to fasten the second base box to the corresponding photovoltaic assembly.
- the second part comprises a shut-off circuit
- the shut-off circuit comprises a shut-off device
- the shutoff device comprises: a control circuit, a diode and a switch;
- a first end of the switch is connected to the positive input terminal, and a second end of the switch is connected to the positive output terminal;
- the anode of the diode is used to connect the negative output terminal through the cable, and the cathode of the diode is connected to the second end of the switch;
- the control circuit is used to control the switch to be turned on or off.
- the first part comprises a shut-off circuit;
- the shut-off circuit comprises a shut-off device;
- the shutoff device comprises: a control circuit, a diode and a switch;
- a first end of the switch is connected to the negative input terminal, and a second end of the switch is connected to the negative output terminal;
- the cathode of the diode is used to connect the positive output terminal through the cable, and the anode of the diode is connected to the second end of the switch;
- the control circuit is used to control the switch to be turned on or off.
- the shutdown circuit comprises an optimizer; the optimizer comprises a buck-boost circuit, a boost circuit or a buck circuit.
- the second part comprises an optimizer; the optimizer comprises a voltage-reducing circuit;
- the step-down circuit includes: a control circuit, a diode, a switch and an inductor;
- a first end of the switch is connected to the positive input terminal, and a second end of the switch is connected to the positive output terminal via an inductor;
- the anode of the diode is connected to the negative output terminal through a cable, and the cathode of the diode is connected to the positive output terminal through an inductor;
- the control circuit is used to control the switch to be turned on or off.
- the optimizer comprises a voltage step-down circuit
- the step-down circuit includes: a control circuit, a diode, a switch and an inductor;
- a first end of the switch is connected to the negative input terminal, and a second end of the switch is connected to the negative output terminal via an inductor;
- the cathode of the diode is connected to the positive output terminal through a cable, and the anode of the diode is connected to the negative output terminal through an inductor;
- the control circuit is used to control the switch to be turned on or off.
- the present application also provides a photovoltaic system, comprising a plurality of the shutdown devices described above, and further comprising: an inverter;
- each shutoff device The first and second parts of each shutoff device are connected together by a cable
- each shutoff device is also used to be connected to the negative output terminal of the first adjacent shutoff device, and the negative output terminal of each shutoff device is also used to be connected to the positive output terminal of the second adjacent shutoff device;
- each shutoff device The positive input terminal and the negative input terminal of each shutoff device are respectively used to connect the positive electrode and the negative electrode of the corresponding photovoltaic module;
- a plurality of shutoff devices are connected in series and then connected to the input end of the inverter.
- the shutoff device is pre-installed on the corresponding photovoltaic assembly.
- the shutoff device provided in the embodiment of the present application includes two parts, each part includes an input terminal and an output terminal, the input terminal is used to connect to the photovoltaic module, and the output terminal is used to be connected in series with the output terminals of other shutoff devices. Since the two parts are independent, the distance between the two parts can be set as needed, and they are set at a position convenient for connection with the photovoltaic module, and the two parts are connected by a cable connection interface. Therefore, the problem that the output cable of the three-part photovoltaic module of the junction box can only be connected to the shutoff device through an extension cable can be avoided, and the shutoff device does not need to add an additional extension cable. Therefore, the length of the total cable can be shortened, the installation time can be reduced, the total loss of the cable can be reduced, and the reliability of the photovoltaic system can be improved.
- FIG1 is a schematic diagram of a photovoltaic system provided by the present application.
- FIG2 is a schematic diagram of a conventional shutoff device
- FIG3 is a schematic diagram of a photovoltaic module shutdown device provided in an embodiment of the present application.
- FIG4 is a schematic diagram of an application of a shutoff device provided in an embodiment of the present application.
- FIG5 is a schematic diagram of a first part of a shutoff device provided in an embodiment of the present application.
- FIG6 is a schematic diagram of a first part of another shutoff device provided in an embodiment of the present application.
- FIG7 is a schematic diagram of a first part of another shutoff device provided in an embodiment of the present application.
- FIG8 is a schematic diagram of a shutoff device without a bottom box provided in an embodiment of the present application.
- FIG9 is a schematic diagram of another shutoff device without a bottom box provided in an embodiment of the present application.
- FIG10 is a schematic diagram of another shutoff device without a bottom box provided in an embodiment of the present application.
- FIG11 is a schematic diagram of the installation of a shut-off device and a photovoltaic module provided in an embodiment of the present application;
- FIG12 is a schematic diagram of another shutdown device and photovoltaic assembly installation provided in an embodiment of the present application.
- FIG13 is a schematic diagram of a specific shutoff device provided in an embodiment of the present application.
- FIG14 is a schematic diagram of another specific shutoff device provided in an embodiment of the present application.
- FIG15 is a schematic diagram of another specific shutoff device provided in an embodiment of the present application.
- FIG16 is a schematic diagram of another specific shutoff device provided in an embodiment of the present application.
- FIG. 17 is a schematic diagram of a photovoltaic system provided in an embodiment of the present application.
- FIG1 is a schematic diagram of a photovoltaic system provided in the present application.
- the input end of the inverter 100 is connected to a plurality of photovoltaic strings.
- FIG. 1 is described by taking the connection of two photovoltaic strings as an example, but one photovoltaic string may also be connected.
- Each photovoltaic string includes a plurality of photovoltaic modules, and the output end of each photovoltaic module is connected to the input end of the corresponding shutdown device PCU.
- the output ends of all the shutdown devices PCU in each photovoltaic string are connected in series and connected to the input end of the inverter 100.
- Each shutdown device PCU includes four terminals, two input terminals and two output terminals.
- the host SCU can control the switching state of each shutdown device PCU. When the shutdown device PCU is turned on, the corresponding PV energy is transferred to the input end of the inverter 100. When the shutdown device PCU is disconnected, the corresponding PV energy cannot be transferred to the input end of the inverter 100.
- shutoff device When the photovoltaic modules of the three-part junction box are connected in series through the shutoff device, traditionally, one shutoff device corresponds to one photovoltaic module, as shown in FIG2 , the two input terminals IN+ and IN- of the shutoff device are connected to the positive pole PV+ and the negative pole PV- of the corresponding photovoltaic module. The two output terminals OUT+ and OUT- of the shutoff device are respectively connected in series with the adjacent shutoff devices.
- the shutdown device shown in Figure 2 needs to add additional extension cables and terminals to connect the output end of the photovoltaic module and the input end of the PCU. This will increase the total length of the cable and increase power consumption.
- the embodiments of the present application provide a shutdown device for a photovoltaic module, which can shorten the total length of the cable and reduce the overall power consumption.
- FIG. 3 is a schematic diagram of a photovoltaic module shutdown device provided in an embodiment of the present application.
- the photovoltaic assembly shutdown device provided in this embodiment includes: a first part P1 and a second part P2; the first part P1 and the second part P2 can be connected by a cable LX.
- the first part P1 or the second part P2 includes a shut-off circuit, that is, the shut-off circuit is used to control the corresponding photovoltaic component to be disconnected from the inverter. After the shut-off, the power from the photovoltaic component at the input end cannot be transmitted to the output end.
- the first part P1 includes a negative input terminal IN- and a negative output terminal OUT-
- the second part P2 includes a positive input terminal IN+ and a positive output terminal OUT+.
- the negative input terminal IN- and the positive input terminal IN+ are used to connect the negative pole and the positive pole of the corresponding photovoltaic module respectively.
- the positive output terminal OUT+ and the negative output terminal OUT- are respectively used to be connected in series with different shutdown devices.
- the shutdown device is located at the edge of the photovoltaic string, OUT- or OUT- is used as the lead-out terminal of the photovoltaic string, for example, connected to the input terminal of the inverter.
- the first part P1 includes a male connector and a female connector
- the second part P2 includes a male connector and a female connector.
- the male and female connectors of IN- and OUT- of the first part P1 have opposite polarities, that is, one male connector and one female connector.
- the male and female connectors of IN+ and OUT+ of the second part P2 have opposite polarities, and the male and female connectors of IN- and IN+ have opposite polarities, and the male and female connectors of OUT- and OUT+ have opposite polarities.
- FIG 4 is a schematic diagram of the application of the shutoff device provided in an embodiment of the present application.
- FIG. 4 illustrates three photovoltaic modules and three shutoff devices; the cables corresponding to the three shutoff devices in the figure are a first cable LX11 , a second cable LX1 and a third cable LX2 .
- each shutoff device The first and second parts of each shutoff device are connected together by a cable
- each shutdown device is used to be connected with the negative output terminal OUT- of the first adjacent shutdown device, and the negative output terminal OUT- of each shutdown device is used to be connected with the positive output terminal OUT+ of the second adjacent shutdown device, that is, to achieve series connection with the adjacent shutdown devices.
- the positive input terminal IN+ and the negative input terminal IN- of each shut-off device are respectively used to connect the positive electrode PV+ and the negative electrode PV- of the corresponding photovoltaic module.
- the shutdown device provided in the embodiment of the present application includes two parts, each part includes an input terminal and an output terminal, the input terminal is used to connect to the photovoltaic module, and the output terminal is used to be connected in series with the output terminals of other shutdown devices. Since the two parts are independent, the distance between the two parts can be set as needed, and they can be set at a position convenient for connection with the photovoltaic module, and the two parts are connected by a cable connection interface. Therefore, the problem that the output cable of the three-part photovoltaic module of the junction box can only be connected to the shutdown device through an extension cable can be avoided, and the shutdown device does not need to add an additional extension cable. Therefore, it can be This can shorten the total cable length, reduce installation time, reduce total cable loss, and improve the reliability of the photovoltaic system.
- the first part and the second part of the shutoff device provided in the embodiment of the present application may both include a bottom box, or both may not include a bottom box, or one of them may include a bottom box.
- the following first describes the implementation method including the bottom box in conjunction with the accompanying drawings. Since the structures of the first part and the second part are symmetrical, the following drawings take the first part as an example for description.
- the embodiments of the present application do not specifically limit the specific positions of the input terminals and the output terminals in the bottom box.
- the two terminals can be located on two sides of the bottom box, and the input terminals and the output terminals can be vertical or non-vertical.
- the embodiments of the present application do not specifically limit the angle between the input terminals and the output terminals.
- the first part also includes: a first bottom box; at least one of the negative input terminal and the negative output terminal uses a line end terminal, and the line end terminal is connected to the first bottom box through a cable; for example, one can use a line end terminal and the other can use a board end terminal; or both can use line end terminals.
- At least one of the negative input terminal and the negative output terminal is a board-end terminal, and the board-end terminal is fixedly connected to the first bottom box.
- the board-end terminal is fixedly connected to the first bottom box.
- one may be a line-end terminal and the other may be a board-end terminal; or both may be board-end terminals.
- the negative input terminal and the negative output terminal are respectively located on different sides of the first bottom box.
- the negative input terminal and the negative output terminal are perpendicular to each other, which is conducive to the connection of the photovoltaic module.
- the second part also includes: a second bottom box; at least one of the positive input terminal and the positive output terminal uses a line end terminal, and the line end terminal is connected to the second bottom box through a cable; for example, one can use a line end terminal and the other can use a board end terminal; or both can use line end terminals.
- At least one of the positive input terminal and the positive output terminal is a board-end terminal, and the board-end terminal is connected to the second bottom box via a cable.
- the board-end terminal is connected to the second bottom box via a cable.
- one may be a line-end terminal and the other may be a board-end terminal; or both may be board-end terminals.
- the positive input terminal and the positive output terminal are respectively located on different sides of the second bottom box.
- the positive input terminal and the positive output terminal are perpendicular to each other, which is conducive to the connection of the photovoltaic module.
- the negative output terminal and the positive output terminal are both horizontal to the cable connection direction of the first part and the second part, so as to facilitate the series connection between the shutdown devices.
- the negative input terminal and the positive input terminal are respectively perpendicular to the negative output terminal and the positive output terminal, so as to facilitate the connection with the photovoltaic module.
- the embodiment of the present application does not specifically limit the specific types of the four terminals, for example, they can be line-end terminals or board-end terminals.
- the line-end terminals refer to terminals fixed on cables, and the terminals are connected to the bottom box through cables, and the line-end terminals and the bottom box are flexibly fixedly connected.
- the board-end terminals are directly fixed on the shell of the bottom box, and the board-end terminals and the bottom box are rigidly fixedly connected.
- the input terminal and the output terminal of the shutoff device may use different types of terminals, wherein the input terminal uses a terminal compatible with the output terminal of the photovoltaic module, and the output terminal uses a terminal incompatible with the output terminal of the photovoltaic module.
- FIG. 5 is a schematic diagram of the first part of a shut-off device provided in an embodiment of the present application.
- OUT- and IN- are fixed to the bottom box 100 using board terminals, and the cable LX connected to the second part is also connected to the bottom box 100.
- the connection between the bottom box 100 and OUT- and IN- and the cable LX needs to be sealed and waterproof.
- FIG. 6 is a schematic diagram of the first part of another shutoff device provided in an embodiment of the present application.
- Both IN- and OUT- use line-end terminals and are connected to the bottom box 100 through cables LX.
- the advantages of this solution are that the connection method of the bottom box 100 is single, the process is simple, and IN- and OUT- have a certain degree of freedom.
- only one of IN- and OUT- can be connected to the bottom box 100 using cables LX, and the other can be fixed to the bottom box 100 using board-end terminals, which is not specifically limited in the embodiments of the present application.
- FIG. 7 is a schematic diagram of the first part of another shutoff device provided in an embodiment of the present application.
- the bottom box 100 includes three terminals, namely IN-, OUT- and terminal C- connected to the second part.
- the cable LX connected to the second part also has a terminal with opposite polarity to C-, which makes it easier to connect to the second part.
- shutoff devices with a bottom box.
- the shutoff device may also be without a bottom box, which will be described in detail below in conjunction with the accompanying drawings.
- FIG 8 is a schematic diagram of a shutoff device without a bottom box provided in an embodiment of the present application.
- the first part of the shutoff device cancels the bottom box and directly adopts the three-way line terminal, OUT- At right angles to IN-, the first part is connected to the cable LX with a waterproof sealing ring, which can be sealed when the shutdown device leaves the factory or connected during on-site installation.
- FIG. 9 is a schematic diagram of another shutoff device without a bottom box provided in an embodiment of the present application.
- the first part of the disconnect device uses another three-way line-end terminal, OUT- and IN-level.
- FIG. 10 is a schematic diagram of another shutoff device without a bottom box provided in an embodiment of the present application.
- the first part of the shutoff device directly adopts a three-way terminal with three terminals, namely, IN-terminal, OUT-terminal and terminal C- connected to the second part.
- the cable LX connected to the second part also has a terminal with opposite polarity to C-, which is more convenient to connect to the second part.
- the above diagram shows that the first part includes a three-way terminal.
- the second part includes a three-way terminal.
- the three-way terminal includes a positive input terminal, a positive output terminal and a second cable terminal.
- the second cable terminal is used to connect with the first part, which will not be repeated here.
- the cable between the first part and the second part adopts a photovoltaic special cable, and its length can be selected according to the component width or slightly longer than the component width, the component length or slightly longer than the component length, so as to achieve horizontal or vertical installation relative to the photovoltaic component.
- the shutoff device provided by the present application is small in size and light in weight, and the cable can be selected according to the size of the standard component, so it does not need to be rigidly fixed after installation in the system. Of course, it can also be tied to the frame hole of the photovoltaic component or the bracket of the photovoltaic component by a cable tie.
- the following is an example of providing a fastening structure on the shut-off device and fixing it to the photovoltaic module.
- FIG. 11 is a schematic diagram of the installation of a shutdown device and a photovoltaic module provided in an embodiment of the present application.
- a fastening structure is provided on the bottom box 100, and the fastening structure is taken as a buckle KK as an example.
- the fastening structure is used to fasten the bottom box to the corresponding photovoltaic module.
- the shut-off device can be fastened to the photovoltaic module or the bracket. Take the photovoltaic module with aluminum frame BK as an example.
- the IN- of the shutoff device is connected to the PV- of the first photovoltaic module, and the PV- is led out from the junction box 20 of the first photovoltaic module.
- the bottom box 100 of the shutoff device is only connected to the first photovoltaic module through the buckle KK.
- the frame BK of the component can be fixed.
- a buckle KK is provided on the side of the bottom box 100, and the buckle KK is fixed together with the frame BK of the photovoltaic module, so as to fix the relative position of the shutoff device and the photovoltaic module.
- FIG11 shows a photovoltaic module with a frame. The following describes the implementation of a photovoltaic module without a frame in conjunction with the accompanying drawings.
- FIG 12 is a schematic diagram of the installation of another shutdown device and photovoltaic components provided in an embodiment of the present application.
- FIG. 12 The difference between FIG. 12 and FIG. 11 is that the photovoltaic module adopts a design without an aluminum frame, and the clip KK is directly fixed on the first photovoltaic module.
- the overlap point of the clip KK is on the front glass of the first photovoltaic module.
- the shutoff device is fixed on the photovoltaic module and can be installed on site at the photovoltaic power station or can be pre-installed directly on the photovoltaic module at the factory as a photovoltaic module with a shutoff function.
- the embodiments of the present application do not specifically limit the type of the internal shutdown circuit of the shutdown device.
- the shutdown device may be an optimizer or a shutdown device, which will be introduced below in conjunction with the analysis of the accompanying drawings.
- FIG. 13 is a schematic diagram of a specific shutdown device provided in an embodiment of the present application.
- the shutdown circuit in the shutdown device provided in this embodiment includes a shutdown device; the following description is made by taking the second part P2 of the shutdown device including the shutdown device as an example.
- the second part P2 includes a power supply, a control circuit 10, a diode D, and a switch S.
- the power supply is powered from the input end of IN+ and the line LX, which is equivalent to powering the photovoltaic module connected to IN+ and IN-, and supplies power to the internal control circuit 10.
- the shutoff device comprises: a control circuit 10, a diode D and a switch S;
- a first end of the switch S is connected to the positive input terminal IN+, and a second end of the switch S is connected to the positive output terminal OUT+;
- the anode of the diode D is used to connect to the negative output terminal OUT- through the cable LX, and the cathode of the diode D is connected to the second end of the switch S;
- the control circuit 10 is used to control the switch S to be turned on or off.
- the switch S can be a mechanical switch, such as a relay, or a semiconductor switch, such as a MOSFET.
- the diode D is connected between LX and OUT+. After the switch S is disconnected, it provides a bypass current path for the string.
- the diode D can also be implemented by a switch tube such as a MOSFET. When it is turned on, it performs synchronous rectification to reduce bypass losses.
- the control circuit controls the on and off of the switch S.
- the shutoff device can also have a communication circuit, such as power line carrier communication, wireless communication, etc.
- the communication circuit can also be set in the first part P1 to receive external instructions such as shutting down the photovoltaic module or opening the photovoltaic module.
- FIG13 is an introduction using the example of the second part including the shutdown circuit, and the following is an introduction using the example of the first part including the shutdown circuit.
- FIG. 14 is a schematic diagram of another specific shutoff device provided in an embodiment of the present application.
- the first part includes a shutdown circuit; the shutdown circuit includes a shutdown device;
- the shutoff device comprises: a control circuit 10, a diode D and a switch S;
- a first end of the switch S is connected to the negative input terminal IN-, and a second end of the switch S is connected to the negative output terminal OUT-;
- the cathode of the diode D is used to connect the positive output terminal OUT+ through a cable, and the anode of the diode D is connected to the second end of the switch S;
- the control circuit 10 is used to control the switch S to be turned on or off.
- the shutdown circuit provided in the embodiment of the present application may also be an optimizer; the optimizer includes a buck-boost circuit, a boost circuit or a buck circuit.
- FIG 15 is a schematic diagram of another specific shutoff device provided in an embodiment of the present application.
- the optimizer includes a step-down circuit;
- the step-down circuit (Buck circuit) includes: a control circuit (not shown in the figure), a diode D, a switch S and an inductor L;
- the step-down circuit further includes an input capacitor Cin and an output capacitor Cout. Two ends of Cin are connected to the cable LX and IN+ respectively, and two ends of Cout are connected to LX and OUT+ respectively.
- the step-down circuit includes: a control circuit, a diode D, a switch S and an inductor L;
- the first end of the switch S is connected to the positive input terminal IN+, and the second end of the switch S is connected to the positive input terminal IN+ through the inductor L.
- the anode of the diode D is connected to the negative output terminal OUT-, and the cathode of the diode D is connected to the positive output terminal OUT+ via the inductor L.
- the control circuit is used to control the switch S to be turned on or off.
- the Buck circuit can also realize the maximum power point tracking of the photovoltaic module.
- the current sampling of the inductor L can be realized by using a current sensor connected in series to the inductor L.
- FIG15 is an introduction using the example of the second part including the shutdown circuit, and the following is an introduction using the example of the first part including the shutdown circuit.
- FIG. 16 is a schematic diagram of another specific shutoff device provided in an embodiment of the present application.
- the optimizer includes a voltage-reducing circuit
- the step-down circuit includes: a control circuit (not shown in the figure), a diode D, a switch S and an inductor L;
- a first end of the switch S is connected to the negative input terminal IN-, and a second end of the switch S is connected to the negative output terminal OUT- through the inductor L;
- the cathode of the diode D is connected to the positive output terminal OUT+ through a cable, and the anode of the diode D is connected to the negative output terminal OUT- through an inductor L;
- the control circuit is used to control the switch S to be turned on or off.
- FIG 17 is a schematic diagram of a photovoltaic system provided in an embodiment of the present application.
- the photovoltaic system provided in this embodiment includes the shutdown device PCU described above, and also includes an inverter 100;
- each shutoff device The two input ends of each shutoff device are respectively connected to two different photovoltaic modules, and the two output ends of each shutoff device are respectively connected in series with two adjacent shutoff devices;
- a plurality of shutdown devices PCU are connected in series and then connected to the input end of the inverter 100 .
- the input end of the inverter 100 can also be connected to multiple photovoltaic strings, and Figure 17 only uses one string as an example for introduction.
- the photovoltaic system provided in this embodiment includes the shutdown device described above, so the length of the entire cable can be shortened, the power consumption of the entire system can be reduced, and the power generation efficiency of the photovoltaic system can be improved. It also saves installation time, does not require extension cords, reduces the number of wiring terminals, facilitates maintenance, and improves the reliability of the photovoltaic system.
- the shutoff device provided in the embodiment of the present application includes two parts, the operation is more flexible. Therefore, it can be conveniently pre-installed on the photovoltaic module before or after the photovoltaic module leaves the factory, that is, the shutoff device is pre-installed on the corresponding photovoltaic module. In this way, the shutoff devices equipped with photovoltaic modules are connected in series to form a photovoltaic string.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Photovoltaic Devices (AREA)
Abstract
本申请公开一种光伏组件的关断装置及光伏系统,关断装置包括:第一部分和第二部分;第一部分或第二部分包括关断电路;第一部分和第二部分通过线缆连接;第一部分包括负输入端子和负输出端子,第二部分包括正输入端子和正输出端子;负输入端子和正输入端子分别用于连接对应的光伏组件的负极和正极;正输出端子和负输出端子分别用于与不同的关断装置串联。由于两部分是独立的,两者的距离可以根据需要设置,设置在方便与光伏组件连接的位置,两部分之间通过线缆连接接口。该关断装置不需要额外添加延长线。缩短总线缆的长度,降低安装时长,降低线缆的总损耗,提高光伏系统的可靠性。
Description
本申请要求于2022年12月08日提交中国国家知识产权局的申请号为202211573001.6、申请名称为“一种光伏组件的关断装置及光伏系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及光伏发电技术领域,具体涉及一种光伏组件的关断装置及光伏系统。
光伏发电系统将光伏阵列发出的直流电经过逆变器变换为交流电,输送给电网或者负载。光伏阵列包括多个光伏组件串并联形成,其电压可达数百伏甚至上千伏。维护人员或其他人员在接近光伏阵列时,可能会出现严重的触电事故。
因此,为了保证安全,光伏组件配有关断装置,在每个光伏组件上安装一个关断装置,可以通过人工触发一个主机装置,发送关断指令控制所有的关断装置断开,使整个光伏阵列输出电压在预定时间内达到安全电压以内。
现有技术的光伏组件大部分采用分体式接线盒,若光伏系统中不增加关断装置,正负极输出线缆彼此连接,采用较短的线缆即可,线缆成本低,线缆损耗也低。若采用现有的关断装置,需要额外增加延长线和端子将光伏组件的输出端和关断装置的输入端连接在一起。因此,目前的关断装置将导致总线缆的长度增加,成本增加的同时线缆损耗也会增加。
发明内容
有鉴于此,本申请提供一种光伏组件的关断装置及光伏系统,能够降低线缆长度,降低整体损耗。
本申请提供一种光伏组件的关断装置,包括:第一部分和第二部分;
第一部分或第二部分包括关断电路;第一部分和第二部分通过线缆连接;
第一部分包括负输入端子和负输出端子,第二部分包括正输入端子和正输出端子;
负输入端子和正输入端子分别用于连接对应的光伏组件的负极和正极;
正输出端子和负输出端子分别用于与不同的关断装置串联。
优选地,第一部分还包括:第一底盒;
负输入端子和负输出端子中的至少一个采用线端端子,线端端子通过线缆连接第一底盒;
或,
负输入端子和负输出端子中的至少一个采用板端端子,板端端子固定连接第一底盒。
优选地,负输入端子和负输出端子分别位于第一底盒的不同侧面。
优选地,第一部分包括三通端子,三通端子包括负输入端子、负输出端子和第一线缆端子,第一线缆端子用于与第二部分连接。
优选地,第二部分还包括:第二底盒;
正输入端子和正输出端子中的至少一个采用线端端子,线端端子通过线缆连接第二底盒;
或,
正输入端子和正输出端子中的至少一个采用板端端子,板端端子通过线缆连接第二底盒。
优选地,正输入端子和正输出端子分别位于第二底盒的不同侧面。
优选地,第二部分包括三通端子,三通端子包括正输入端子、正输出端子和第二线缆端子,第二线缆端子用于与第一部分连接。
优选地,第一底盒上设有第一紧固结构,第一紧固结构用于将第一底盒紧固在对应的光伏组件上。
优选地,第二底盒上设有第二紧固结构,第二紧固结构用于将第二底盒紧固在对应的光伏组件上。
优选地,第二部分包括关断电路,关断电路包括关断器;
关断器包括:控制电路、二极管和开关;
开关的第一端连接正输入端子,开关的第二端连接正输出端子;
二极管的阳极用于通过线缆连接负输出端子,二极管的阴极连接开关的第二端;
控制电路,用于控制开关导通或断开。
优选地,第一部分包括关断电路;关断电路包括关断器;
关断器包括:控制电路、二极管和开关;
开关的第一端连接负输入端子,开关的第二端连接负输出端子;
二极管的阴极用于通过线缆连接正输出端子,二极管的阳极连接开关的第二端;
控制电路,用于控制开关导通或断开。
优选地,关断电路包括优化器;优化器包括升降压电路、升压电路或降压电路。
优选地,第二部分包括优化器;优化器包括降压电路;
降压电路包括:控制电路、二极管、开关和电感;
开关的第一端连接正输入端子,开关的第二端通过电感连接正输出端子;
二极管的阳极通过线缆连接负输出端子,二极管的阴极通过电感连接正输出端子;
控制电路,用于控制开关导通或断开。
优选地,优化器包括降压电路;
降压电路包括:控制电路、二极管、开关和电感;
开关的第一端连接负输入端子,开关的第二端通过电感连接负输出端子;
二极管的阴极通过线缆连接正输出端子,二极管的阳极通过电感连接负输出端子;
控制电路,用于控制开关导通或断开。
本申请还提供一种光伏系统,包括多个以上介绍的关断装置,还包括:逆变器;
每个关断装置的第一部分和第二部分通过线缆连接在一起;
每个关断装置的正输出端子还用于与第一相邻关断装置的负输出端子连接在一起,每个关断装置的负输出端子还用于与第二相邻关断装置的正输出端子连接在一起;
每个关断装置的正输入端子和负输入端子分别用于连接对应光伏组件的正极和负极;
多个关断装置串联在一起后连接逆变器的输入端。
优选地,关断装置预先安装在对应的光伏组件上。
由此可见,本申请具有如下有益效果:
由于本申请实施例提供的关断装置包括两部分,每部分包括一个输入端子一个输出端子,输入端子用于连接光伏组件,输出端子用于与其他关断装置的输出端子串联。由于两部分是独立的,因此,两者的距离可以根据需要设置,设置在方便与光伏组件连接的位置,两部分之间通过线缆连接接口。因此,可以避免接线盒三分体光伏组件的输出线缆通过延长线才能与关断装置连接的问题,该关断装置不需要额外添加延长线。因此,可以缩短总线缆的长度,降低安装时长,降低线缆的总损耗,提高光伏系统的可靠性。
图1为本申请提供的一种光伏系统的示意图;
图2为传统中的一种关断装置的示意图;
图3为本申请实施例提供的一种光伏组件的关断装置的示意图;
图4为本申请实施例提供的关断装置的应用示意图;
图5为本申请实施例提供的一种关断装置的第一部分的示意图;
图6为本申请实施例提供的另一种关断装置的第一部分的示意图;
图7为本申请实施例提供的又一种关断装置的第一部分的示意图;
图8为本申请实施例提供的一种不带底盒的关断装置的示意图;
图9为本申请实施例提供的另一种不带底盒的关断装置的示意图;
图10为本申请实施例提供的又一种不带底盒的关断装置的示意图;
图11为本申请实施例提供的一种关断装置与光伏组件安装的示意图;
图12为本申请实施例提供的另一种关断装置与光伏组件安装的示意图;
图13为本申请实施例提供的一种具体的关断装置示意图;
图14为本申请实施例提供的另一种具体的关断装置示意图;
图15为本申请实施例提供的又一种具体的关断装置示意图;
图16为本申请实施例提供的再一种具体的关断装置示意图;
图17为本申请实施例提供的一种光伏系统的示意图。
为了使本领域技术人员更好地理解本申请实施例提供的关断装置,下面先结合附图详细介绍关断装置的应用场景。
参见图1,该图为本申请提供的一种光伏系统的示意图。
逆变器100的输入端连接多个光伏组串,图1以连接两个光伏组串为例进行介绍,也可以连接一个光伏组串。
其中,每个光伏组串包括多个光伏组件,每个光伏组件的输出端连接对应的关断装置PCU的输入端,每个光伏组串中所有的关断装置PCU的输出端串联在一起连接在逆变器100的输入端。每个关断装置PCU包括四端,两个输入端和两个输出端。主机SCU可以控制每个关断装置PCU的开关状态,当关断装置PCU导通时,对应的PV能量被传递到逆变器100的输入端。当关断装置PCU断开时,对应的PV能量不能传递到逆变器100的输入端。
针对接线盒三分体的光伏组件通过关断装置串联在一起时,传统中都是一个关断装置对应一个光伏组件,参见图2所示,关断装置的两个输入端IN+和IN-连接对应的光伏组件的正极PV+和负极PV-。关断装置的两个输出端OUT+和OUT-分别与相邻的关断装置串联。
但是,由于光伏组件的输出线缆较短,图2所示的关断装置需要额外增加延长线和端子来连接光伏组件的输出端和PCU的输入端。这样将增加线缆的总长度,增加功耗。
因此,本申请实施例为了解决以上的技术问题,提供一种光伏组件的关断装置,能够缩短线缆的总长度,降低整体功耗。
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请实施例作进一步详细的说明。
参见图3,该图为本申请实施例提供的一种光伏组件的关断装置的示意图。
本实施例提供的光伏组件的关断装置,包括:第一部分P1和第二部分P2;第一部分P1和第二部分P2可以通过线缆LX连接。
第一部分P1或第二部分P2包括关断电路;即关断电路的作用为控制对应的光伏组件与逆变器断开连接。在关断后,输入端来自光伏组件的功率无法传送到输出端上。
第一部分P1包括负输入端子IN-和负输出端子OUT-,第二部分P2包括正输入端子IN+和正输出端子OUT+。
负输入端子IN-和正输入端子IN+分别用于连接对应的光伏组件的负极和正极。
正输出端子OUT+和负输出端子OUT-分别用于与不同的关断装置串联。另外,可以理解,如果关断装置位于光伏组串的边缘,则OUT-或OUT-作为该光伏组串的引出端,例如,连接逆变器的输入端。
一种可能的实现方式,例如,第一部分P1包括一个公头和一个母头,第二部分P2包括一个公头和一个母头。第一部分P1的IN-和OUT-的公母头极性相反,即1个公头和1个母头。第二部分P2的IN+和OUT+的公母头极性相反,而且,IN-和IN+的公母头极性相反,OUT-和OUT+的公母头极性相反。
为了更直观了解本申请实施例提供的关断装置,下面结合关断装置与光伏组件的连接关系图来介绍。
参见图4,该图为本申请实施例提供的关断装置的应用示意图。
图4中示意了三个光伏组件和三个关断装置;图中三个关断装置对应的线缆分别为第一线缆LX11,第二线缆LX1和第三线缆LX2。
每个关断装置的第一部分和第二部分通过线缆连接在一起;
每个关断装置的正输出端子OUT+用于与第一相邻关断装置的负输出端子OUT-连接在一起,每个关断装置的负输出端子OUT-用于与第二相邻关断装置的正输出端子OUT+连接在一起,即实现与相邻关断装置的串联。
每个关断装置的正输入端子IN+和负输入端子IN-分别用于连接对应光伏组件的正极PV+和负极PV-。
由于本申请实施例提供的关断装置包括两部分,每部分包括一个输入端子一个输出端子,输入端子用于连接光伏组件,输出端子用于与其他关断装置的输出端子串联。由于两部分是独立的,因此,两者的距离可以根据需要设置,设置在方便与光伏组件连接的位置,两部分之间通过线缆连接接口。因此,可以避免接线盒三分体光伏组件的输出线缆通过延长线才能与关断装置连接的问题,该关断装置不需要额外添加延长线。因此,可
以缩短总线缆的长度,降低安装时长,降低线缆的总损耗,提高光伏系统的可靠性。
本申请实施例提供的关断装置的第一部分和第二部分可以均包括底盒,也可以均不包括底盒,也可以其中一部分包括底盒。下面先结合附图介绍包括底盒的实现方式。由于第一部分和第二部分的结构对称,因此,下面的附图以第一部分为例进行介绍。
本申请实施例不具体限定,输入端子与输出端子位于底盒的具体位置,例如两个端子可以位于底盒的两个侧面,并且输入端子和输出端子可以垂直,也可以不垂直,本申请实施例不具体限定输入端子与输出端子之间的夹角。
第一部分还包括:第一底盒;负输入端子和负输出端子中的至少一个采用线端端子,线端端子通过线缆连接第一底盒;例如,可以一个采用线端端子,一个采用板端端子;也可以两个均采用线端端子。
或,负输入端子和负输出端子中的至少一个采用板端端子,板端端子固定连接第一底盒。例如,可以一个采用线端端子,一个采用板端端子;也可以两个均采用板端端子。
例如,负输入端子和负输出端子分别位于第一底盒的不同侧面。另外,负输入端子和负输出端子互相垂直,有利于光伏组件的连接。
第二部分还包括:第二底盒;正输入端子和正输出端子中的至少一个采用线端端子,线端端子通过线缆连接第二底盒;例如,可以一个采用线端端子,一个采用板端端子;也可以两个均采用线端端子。
或,正输入端子和正输出端子中的至少一个采用板端端子,板端端子通过线缆连接第二底盒。例如,可以一个采用线端端子,一个采用板端端子;也可以两个均采用板端端子。
例如,正输入端子和正输出端子分别位于第二底盒的不同侧面。另外,正输入端子和正输出端子互相垂直,有利于光伏组件的连接。
另外,负输出端子和正输出端子均与第一部分和第二部分的线缆连接方向水平,以方便关断装置之间互相串联连接。负输入端子和正输入端子分别与负输出端子和正输出端子垂直,以方便与光伏组件进行连接。
本申请实施例也不具体限定四个端子的具体类型,例如可以为线端端子,也可以为板端端子,线端端子是指固定在线缆上的端子,端子通过线缆连接在底盒,线端端子与底盒为柔性固定连接。板端端子直接固定在底盒的外壳上,板端端子与底盒为刚性固定连接。
为了避免输入端子和输出端子错接,关断装置的输入端子和输出端子可以采用不同类型的端子。其中,输入端子采用与光伏组件输出端子兼容的端子,输出端子采用与光伏组件输出端子不兼容的端子。
参见图5,该图为本申请实施例提供的一种关断装置的第一部分的示意图。
OUT-和IN-采用板端端子固定在底盒100上,与第二部分连接的线缆LX也连接在底盒100上,底盒100与OUT-和IN-以及线缆LX的连接处需要进行密封防水。
参见图6该图为本申请实施例提供的另一种关断装置的第一部分的示意图。
IN-和OUT-均采用线端端子,通过线缆LX连接到底盒100上。本方案的优点为底盒100的连接方式单一,工艺简单,且IN-和OUT-具有一定的自由度。另外,IN-和OUT-也可以只有其中之一采用线缆LX连接到底盒100上,另一个采用板端端子固定在底盒100上,本申请实施例均不做具体限定。
参见图7该图为本申请实施例提供的又一种关断装置的第一部分的示意图。
底盒100包括三个端子,分别为IN-、OUT-以及与第二部分连接的端子C-。与第二部分之间连接的线缆LX也具备与C-的极性相反的端子,这样更方便与第二部分的连接。
以上介绍的均为带有底盒的关断装置,另外,该关断装置也可以不带有底盒,下面结合附图进行详细介绍。
参见图8,该图为本申请实施例提供的一种不带底盒的关断装置的示意图。
该关断装置的第一部分取消了底盒,直接采用三通的线端端子,OUT-
和IN-呈直角,第一部分与线缆LX的连接带有防水密封圈,可以在关断装置出厂时完成密封连接,也可以在现场安装时进行连接。
参见图9,该图为本申请实施例提供的另一种不带底盒的关断装置的示意图。
该关断装置的第一部分采用了另一种三通的线端端子,OUT-和IN-水平。
参见图10,该图为本申请实施例提供的又一种不带底盒的关断装置的示意图。
该关断装置的第一部分直接采用带三个端子的三通端子,分别为IN-端子、OUT-端子以及与第二部分连接的端子C-。与第二部分之间连接的线缆LX也具备与C-极性相反的端子,这样更方便与第二部分连接。
以上示意的为第一部分包括三通端子,类似地,第二部分包括三通端子,三通端子包括正输入端子、正输出端子和第二线缆端子,所述第二线缆端子用于与第一部分连接,在此不再赘述。
第一部分和第二部分之间的线缆采用光伏专用线缆,其长度可以按照组件宽度或者略长于组件宽度尺寸、组件长度或者略长于组件长度尺寸来进行选型,从而实现相对于光伏组件横向或者竖向安装。
本申请提供的关断装置的体积较小、重量较轻,线缆又可以按照标准组件的尺寸进行选择,因而在系统中安装后可以无须进行刚性固定。当然,也可以通过扎带扎在光伏组件的边框孔上、或者光伏组件的支架上。
下面介绍关断装置上设置紧固结构与光伏组件固定的示例。
参见图11,该图为本申请实施例提供的一种关断装置与光伏组件安装的示意图。
本实施例提供的关断装置,底盒100上设有紧固结构,以紧固结构为卡扣KK为例。紧固结构用于将底盒紧固在对应的光伏组件上。
关断装置可以紧固在光伏组件上或者支架上。以光伏组件为铝边框BK为例,
应该理解,关断装置的IN-连接第一光伏组件的PV-,PV-由第一光伏组件的接线盒20引出。关断装置的底盒100通过卡扣KK只与第一光伏组
件的边框BK固定即可。
可以看出,底盒100的侧面设有卡扣KK,卡扣KK与光伏组件的边框BK固定在一起,从而固定关断装置与光伏组件的相互位置。
图11介绍为光伏组件设有边框,下面结合附图介绍光伏组件没有边框的实现情况。
参见图12,该图为本申请实施例提供的另一种关断装置与光伏组件安装的示意图。
图12与图11的区别为,光伏组件采用无铝边框设计,卡扣KK直接固定在第一光伏组件上,例如,卡扣KK的搭接点在第一光伏组件正面玻璃上。
关断装置固定在光伏组件上的操作,可以在光伏电站现场安装,也可以在出厂时直接在光伏组件上预装好,作为带关断功能的光伏组件。
本申请实施例不具体限定关断装置的内部关断电路的类型,例如关断装置可以为优化器,也可以为关断器,下面结合附图分析进行介绍。
参见图13,该图为本申请实施例提供的一种具体的关断装置示意图。
本实施例提供的关断装置中的关断电路包括关断器;下面以关断装置的第二部分P2中包括关断器为例进行介绍。
第一部分P1的IN-和OUT-在内部电气连接在一起,线缆LX与IN-等电位。第二部分P2内部包括电源、控制电路10、二极管D以及开关S。电源从IN+和线懒LX的输入端取电,相当于从IN+和IN-连接的光伏组件取电,为内部的控制电路10供电。
关断器包括:控制电路10、二极管D和开关S;
开关S的第一端连接正输入端子IN+,开关S的第二端连接正输出端子OUT+;
二极管D的阳极用于通过线缆LX连接负输出端子OUT-,二极管D的阴极连接开关S的第二端;
控制电路10,用于控制开关S导通或断开。
应该理解,S导通时,光伏组件与逆变器接通,将能量传递至逆变器的输入端。当S断开时,光伏组件与逆变器断开连接,无法传递能量至逆
变器。
开关S可以采用机械开关,如继电器,也可以采用半导体开关,如MOSFET。二极管D连接在LX与OUT+之间,在开关S断开后,为组串提供旁路电流通路,二极管D也可以用MOSFET等开关管实现,导通时进行同步整流工作,降低旁路损耗。控制电路控制开关S的通断。关断装置还可以具有通信电路,例如电力线载波通信、无线通信等,通信电路也可以设置在第一部分P1中,用于接收外部发送的关断光伏组件或开通光伏组件等指令。
图13是以第二部分包括关断电路为例进行的介绍,下面以第一部分包括关断电路为例进行介绍。
参见图14,该图为本申请实施例提供的另一种具体的关断装置示意图
第一部分包括关断电路;关断电路包括关断器;
关断器包括:控制电路10、二极管D和开关S;
开关S的第一端连接负输入端子IN-,开关S的第二端连接负输出端子OUT-;
二极管D的阴极用于通过线缆连接正输出端子OUT+,二极管D的阳极连接开关S的第二端;
控制电路10,用于控制开关S导通或断开。
关断电路的工作原理与图13介绍的类似,在此不再赘述。
另外,本申请实施例提供的关断电路也可以为优化器;优化器包括升降压电路、升压电路或降压电路。
下面以优化器为降压电路,即Buck电路为例进行介绍。
参见图15,该图为本申请实施例提供的又一种具体的关断装置示意图。
优化器包括降压电路;降压电路(Buck电路)包括:控制电路(图中未示出)、二极管D、开关S和电感L;
另外,降压电路还包括输入电容Cin和输出电容Cout。Cin的两端分别连接线缆LX和IN+,Cout的两端分别连接LX和OUT+。
降压电路包括:控制电路、二极管D、开关S和电感L;
开关S的第一端连接正输入端子IN+,开关S的第二端通过电感L连接
正输出端子OUT+;
二极管D的阳极连接负输出端子OUT-,二极管D的阴极通过电感L连接正输出端子OUT+。
控制电路,用于控制开关S导通或断开。
同时Buck电路还能实现对光伏组件的最大功率点跟踪。对电感L的电流采样可以采用串联在电感L上的电流传感器来实现。
图15是以第二部分包括关断电路为例进行的介绍,下面以第一部分包括关断电路为例进行介绍。
图16,该图为本申请实施例提供的再一种具体的关断装置示意图。
优化器包括降压电路;
降压电路包括:控制电路(图中未示出)、二极管D、开关S和电感L;
开关S的第一端连接负输入端子IN-,开关S的第二端通过电感L连接负输出端子OUT-;
二极管D的阴极通过线缆连接正输出端子OUT+,二极管D的阳极通过电感L连接负输出端子OUT-;
控制电路,用于控制开关S导通或断开。
关断电路的工作原理与图15介绍的类似,在此不再赘述。基于以上实施例提供的一种关断装置,本申请实施例还提供一种光伏系统,下面结合附图进行详细介绍。
参见图17,该图为本申请实施例提供的一种光伏系统的示意图。
本实施例提供的光伏系统,包括以上介绍的关断装置PCU,还包括逆变器100;
每个关断装置的两个输入端分别连接两个不同的光伏组件,每个关断装置的两个输出端分别与相邻的两个关断装置串联;
多个关断装置PCU串联在一起后连接逆变器100的输入端。
应该理解,逆变器100的输入端也可以连接多串光伏组串,图17仅以一串为例进行介绍。
本实施例提供的光伏系统,由于包括了以上介绍的关断装置,因此,可以缩短整体线缆的长度,降低整个系统的功耗,提高光伏系统的发电效
率。而且节省安装时间,不需要连接延长线,接线端子数量得以降低,便于维护,提高光伏系统的可靠性。
由于本申请实施例提供的关断装置包括两部分,操作更加灵活。因此,可以方便地在光伏组件出厂前或出厂后便预装在光伏组件上,即关断装置预先安装在对应的光伏组件上。这样,装有光伏组件的关断装置再串联在一起,形成光伏组串。
需要说明的是,本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统或装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本申请。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (16)
- 一种光伏组件的关断装置,其特征在于,包括:第一部分和第二部分;所述第一部分或所述第二部分包括关断电路;所述第一部分和所述第二部分通过线缆连接;所述第一部分包括负输入端子和负输出端子,所述第二部分包括正输入端子和正输出端子;所述负输入端子和所述正输入端子分别用于连接对应的光伏组件的负极和正极;所述正输出端子和所述负输出端子分别用于与不同的关断装置串联。
- 根据权利要求1所述的关断装置,其特征在于,所述第一部分还包括:第一底盒;所述负输入端子和所述负输出端子中的至少一个采用线端端子,所述线端端子通过线缆连接所述第一底盒;或,所述负输入端子和所述负输出端子中的至少一个采用板端端子,所述板端端子固定连接所述第一底盒。
- 根据权利要求2所述的关断装置,其特征在于,所述负输入端子和所述负输出端子分别位于所述第一底盒的不同侧面。
- 根据权利要求1所述的关断装置,其特征在于,所述第一部分包括三通端子,所述三通端子包括所述负输入端子、所述负输出端子和第一线缆端子,所述第一线缆端子用于与所述第二部分连接。
- 根据权利要求1-4任一项所述的关断装置,其特征在于,所述第二部分还包括:第二底盒;所述正输入端子和所述正输出端子中的至少一个采用线端端子,所述线端端子通过线缆连接所述第二底盒;或,所述正输入端子和所述正输出端子中的至少一个采用板端端子,所述板端端子通过线缆连接所述第二底盒。
- 根据权利要求5所述的关断装置,其特征在于,所述正输入端子和所 述正输出端子分别位于所述第二底盒的不同侧面。
- 根据权利要求1所述的关断装置,其特征在于,所述第二部分包括三通端子,所述三通端子包括所述正输入端子、所述正输出端子和第二线缆端子,所述第二线缆端子用于与所述第一部分连接。
- 根据权利要求2或3所述的关断装置,其特征在于,所述第一底盒上设有第一紧固结构,所述第一紧固结构用于将所述第一底盒紧固在对应的光伏组件上。
- 根据权利要求5或6所述的关断装置,其特征在于,所述第二底盒上设有第二紧固结构,所述第二紧固结构用于将所述第二底盒紧固在对应的光伏组件上。
- 根据权利要求1-9任一项所述的关断装置,其特征在于,所述第二部分包括关断电路,所述关断电路包括关断器;所述关断器包括:控制电路、二极管和开关;所述开关的第一端连接所述正输入端子,所述开关的第二端连接所述正输出端子;所述二极管的阳极用于通过线缆连接所述负输出端子,所述二极管的阴极连接所述开关的第二端;所述控制电路,用于控制所述开关导通或断开。
- 根据权利要求1-9任一项所述的关断装置,其特征在于,所述第一部分包括关断电路;所述关断电路包括关断器;所述关断器包括:控制电路、二极管和开关;所述开关的第一端连接所述负输入端子,所述开关的第二端连接所述负输出端子;所述二极管的阴极用于通过线缆连接所述正输出端子,所述二极管的阳极连接所述开关的第二端;所述控制电路,用于控制所述开关导通或断开。
- 根据权利要求1-9任一项所述的关断装置,其特征在于,所述关断电路包括优化器;所述优化器包括升降压电路、升压电路或降压电路。
- 根据权利要求12所述的关断装置,其特征在于,所述第二部分包括 所述优化器;所述优化器包括降压电路;所述降压电路包括:控制电路、二极管、开关和电感;所述开关的第一端连接所述正输入端子,所述开关的第二端通过所述电感连接所述正输出端子;所述二极管的阳极通过线缆连接所述负输出端子,所述二极管的阴极通过所述电感连接所述正输出端子;所述控制电路,用于控制所述开关导通或断开。
- 根据权利要求12所述的关断装置,其特征在于,所述优化器包括降压电路;所述降压电路包括:控制电路、二极管、开关和电感;所述开关的第一端连接所述负输入端子,所述开关的第二端通过所述电感连接所述负输出端子;所述二极管的阴极通过线缆连接所述正输出端子,所述二极管的阳极通过所述电感连接所述负输出端子;所述控制电路,用于控制所述开关导通或断开。
- 一种光伏系统,其特征在于,包括多个权利要求1-14任一项所述的关断装置,还包括:逆变器;每个所述关断装置的所述第一部分和所述第二部分通过线缆连接在一起;每个所述关断装置的正输出端子还用于与第一相邻所述关断装置的负输出端子连接在一起,每个所述关断装置的负输出端子还用于与第二相邻所述关断装置的正输出端子连接在一起;每个所述关断装置的正输入端子和负输入端子分别用于连接对应光伏组件的正极和负极;多个所述关断装置串联在一起后连接所述逆变器的输入端。
- 根据权利要求15所述的光伏系统,其特征在于,所述关断装置预先安装在对应的光伏组件上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211573001.6 | 2022-12-08 | ||
CN202211573001.6A CN115833742A (zh) | 2022-12-08 | 2022-12-08 | 一种光伏组件的关断装置及光伏系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024119702A1 true WO2024119702A1 (zh) | 2024-06-13 |
Family
ID=85544665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/091148 WO2024119702A1 (zh) | 2022-12-08 | 2023-04-27 | 一种光伏组件的关断装置及光伏系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115833742A (zh) |
WO (1) | WO2024119702A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115833742A (zh) * | 2022-12-08 | 2023-03-21 | 阳光电源股份有限公司 | 一种光伏组件的关断装置及光伏系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106602504A (zh) * | 2017-02-28 | 2017-04-26 | 阳光电源股份有限公司 | 一种光伏快速关断装置及光伏系统 |
CN106788220A (zh) * | 2017-03-31 | 2017-05-31 | 阳光电源股份有限公司 | 一种光伏组串接线端子 |
CN211557226U (zh) * | 2020-03-20 | 2020-09-22 | 泰州隆基乐叶光伏科技有限公司 | 一种光伏建材组件及光伏建材系统 |
CN217087856U (zh) * | 2022-03-31 | 2022-07-29 | 丰郅(上海)新能源科技有限公司 | 集成接线盒的光伏组件 |
CN217307636U (zh) * | 2022-04-11 | 2022-08-26 | 苏州快可光伏电子股份有限公司 | 一种组件间快速关断接线盒及可快速关断的光伏系统 |
CN115833742A (zh) * | 2022-12-08 | 2023-03-21 | 阳光电源股份有限公司 | 一种光伏组件的关断装置及光伏系统 |
CN115940795A (zh) * | 2022-12-08 | 2023-04-07 | 阳光电源股份有限公司 | 一种光伏组件的关断装置及光伏系统 |
-
2022
- 2022-12-08 CN CN202211573001.6A patent/CN115833742A/zh active Pending
-
2023
- 2023-04-27 WO PCT/CN2023/091148 patent/WO2024119702A1/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106602504A (zh) * | 2017-02-28 | 2017-04-26 | 阳光电源股份有限公司 | 一种光伏快速关断装置及光伏系统 |
CN106788220A (zh) * | 2017-03-31 | 2017-05-31 | 阳光电源股份有限公司 | 一种光伏组串接线端子 |
CN211557226U (zh) * | 2020-03-20 | 2020-09-22 | 泰州隆基乐叶光伏科技有限公司 | 一种光伏建材组件及光伏建材系统 |
CN217087856U (zh) * | 2022-03-31 | 2022-07-29 | 丰郅(上海)新能源科技有限公司 | 集成接线盒的光伏组件 |
CN217307636U (zh) * | 2022-04-11 | 2022-08-26 | 苏州快可光伏电子股份有限公司 | 一种组件间快速关断接线盒及可快速关断的光伏系统 |
CN115833742A (zh) * | 2022-12-08 | 2023-03-21 | 阳光电源股份有限公司 | 一种光伏组件的关断装置及光伏系统 |
CN115940795A (zh) * | 2022-12-08 | 2023-04-07 | 阳光电源股份有限公司 | 一种光伏组件的关断装置及光伏系统 |
Also Published As
Publication number | Publication date |
---|---|
CN115833742A (zh) | 2023-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024119702A1 (zh) | 一种光伏组件的关断装置及光伏系统 | |
US20110036386A1 (en) | Solar panel with inverter | |
TW201801437A (zh) | 電纜整合式太陽反相器 | |
TW201511464A (zh) | 用於光伏打產生器的模組化換流器的纜線模組 | |
CN112868153B (zh) | 一种应用于光伏发电系统的变换器、方法及系统 | |
JP2013536511A (ja) | 電源から電力を抽出するためのスイッチング回路および関連方法 | |
US20200295570A1 (en) | System and Device for Exporting Power, and Method of Configuring Thereof | |
TW201228203A (en) | DC power conversion module, control method thereof, junction box and power harvesting system | |
CN101902050A (zh) | 含pv模块和分离功率变换器的耐气候单元的太阳能发电 | |
EP3121959B1 (en) | Photovoltaic module and photovoltaic system including the same | |
US20180212532A1 (en) | Power module cascaded converter system | |
US20140196770A1 (en) | Photovoltaic module and system | |
WO2022203473A1 (ko) | Dc-dc 컨버터, 전력변환장치, 및 태양광 발전 시스템 | |
CN115940795A (zh) | 一种光伏组件的关断装置及光伏系统 | |
EP3214748B1 (en) | Combined inverter | |
CN201345555Y (zh) | 太阳能供电系统 | |
CN202094152U (zh) | 光伏太阳能接线盒夹接式结构 | |
JP2002084763A (ja) | インバータ装置 | |
KR20170009578A (ko) | 커넥터를 포함하는 태양광 인버터 | |
WO2024072175A1 (ko) | 광발전 모듈 | |
CN211790896U (zh) | 直流屏充电模块的并行控制装置 | |
WO2024072174A1 (ko) | 광발전 모듈 | |
EP3723281B1 (en) | Power wiring device | |
WO2024128778A1 (ko) | 광발전 모듈 | |
CN201904741U (zh) | 光伏阵列防雷汇流箱 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23899296 Country of ref document: EP Kind code of ref document: A1 |