WO2024119681A1 - 一种面板型onu - Google Patents

一种面板型onu Download PDF

Info

Publication number
WO2024119681A1
WO2024119681A1 PCT/CN2023/086764 CN2023086764W WO2024119681A1 WO 2024119681 A1 WO2024119681 A1 WO 2024119681A1 CN 2023086764 W CN2023086764 W CN 2023086764W WO 2024119681 A1 WO2024119681 A1 WO 2024119681A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
circuit board
pigtail
bottom shell
type onu
Prior art date
Application number
PCT/CN2023/086764
Other languages
English (en)
French (fr)
Inventor
向景
魏奇文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024119681A1 publication Critical patent/WO2024119681A1/zh

Links

Definitions

  • the present application relates to the field of optical network technology, and in particular to a panel-type ONU.
  • the FTTR (Fiber To The Room) system replaces network cables with optical fiber, allowing optical fiber to go from “to the home” to "to the room”, extending high-quality networks to every corner of the room, effectively improving user experience.
  • the main gateway is ONT (Optical Network Terminal), which is connected to OLT (Optical Line Termination) for networking.
  • ONT can provide a downstream optical interface and connect to ONU (Optical Network Unit), which forms a slave gateway.
  • a more beautiful networking method is to use the 86-box panel ONU from the gateway for networking.
  • the existing 86-box panel ONU adopts the BOSA (Bi-Directional Optical Sub-Assembly, optical transmitting and receiving assembly) solution.
  • panel-type ONU can also be used in other application scenarios.
  • the axis L of the plug-in port 011 on the flange of the BOSA module 01 for plugging the pigtail 02 is parallel to the direction S1 of the first side of the panel, and the axis L of the plug-in port 011 is perpendicular to the direction S2 of the second side of the panel.
  • the first side and the second side are adjacent sides of the panel.
  • the distance between the plug-in port 011 and the second side is relatively small, that is, the space left for the pigtail 02 is limited. Therefore, ordinary pigtails or on-site terminated optical fiber terminals cannot be conveniently placed in the 86-box space and coiled, which increases the hidden danger of optical fiber failure and reduces construction efficiency.
  • the present application provides a panel-type ONU.
  • the panel-type ONU has a relatively large space for arranging pigtails.
  • it can support pigtails with longer tail sleeves, or on-site terminated optical fiber terminals, etc., which is conducive to improving construction efficiency and success rate.
  • An embodiment of the present application provides a panel-type ONU, including an inner plate and a bottom shell, a receiving cavity is formed between the inner plate and the bottom shell, a groove is provided on a side of the bottom shell facing away from the inner plate, the groove depth direction is inclined to one side of the bottom shell, and the groove is used to accommodate the connector of the pigtail.
  • the bottom wall of the slot has an opening for inserting the pigtail, and the opening is located in the middle area of the bottom shell, so that the arrangement space of the pigtail can be increased as much as possible.
  • the panel-type ONU includes a BOSA module, the BOSA module is located in the accommodating cavity, the BOSA module has an insertion port for plugging in a pigtail, and the insertion port corresponds to the opening position.
  • the BOSA module has a limiting hole so that the flat cable of the pigtail after being plugged in is perpendicular to the inner board.
  • the plugging port is configured so that the plugged pigtail is tilted away from the inner plate, so as to facilitate the fiber coiling operation of the pigtail and avoid damage to the pigtail during fiber coiling.
  • the panel-type ONU also includes a first circuit board, the first circuit board is located in the accommodating cavity, the BOSA module is electrically connected to the first circuit board, the BOSA module is located on the side of the first circuit board facing the bottom shell, and there is a set distance between the plug-in interface of the BOSA module and the first circuit board to avoid electronic components on the first circuit board.
  • the panel-type ONU further includes a second circuit board, which is located in the accommodating cavity, the second circuit board is vertically arranged with respect to the first circuit board, and the BOSA module is mounted on the second circuit board.
  • the bottom shell includes a rectangular structure adapted to the inner plate and a protruding structure extending from the rectangular structure in a direction away from the inner plate, and the groove is located in the protruding structure.
  • the bottom shell is provided with a plurality of fiber winding grooves, which are arranged around the slot, so that the redundant optical fiber part of the pigtail can be wound up and stored conveniently, avoiding affecting the assembly of the panel-type ONU and the installation box.
  • a wire clamping part is provided on the bottom shell, and the wire clamping part is used to limit the fiber coiling position of the pigtail so that the fiber coiling radius of the pigtail is at a set value. In this way, it can be avoided that the fiber coiling radius is too small to affect the transmission effect of the optical fiber, and it can also be avoided that the fiber coiling radius is too large to be assembled with an outer box of a limited size.
  • the wire clamping portion has at least one curved surface for fitting with the optical fiber of the fiber coil, so as to provide a buffer for the fiber coil of the pigtail and avoid damaging the pigtail.
  • the inner panel and the bottom shell match the 86-type installation box.
  • the panel-type ONU can be conveniently placed in the 86-type installation box and realize fiber coiling, which can reduce the hidden danger of optical fiber failure.
  • the panel-type ONU is used to form a slave gateway in the FTTR networking system.
  • the panel-type ONU can be used in the FTTR networking system to provide a more aesthetically pleasing networking mode.
  • FIG1 is a schematic diagram of the structure of an existing panel-type ONU
  • FIG2 is a schematic diagram of the structure of a panel-type ONU provided in an embodiment of the present application.
  • FIG3 is a partial enlarged view of the portion A in FIG2 ;
  • FIG4 is a schematic diagram of the structure of the panel-type ONU shown in FIG2 with the bottom shell hidden;
  • FIG5 is a simple schematic diagram of the relative positions of the pigtail and the first circuit board in a specific application
  • FIG6 is a schematic diagram of the structure of a panel-type ONU provided in another embodiment of the present application.
  • FIG7 is a partial enlarged view of the portion B in FIG6 ;
  • FIG8 is a schematic structural diagram of the panel-type ONU shown in FIG6 from another perspective
  • FIG. 9 is a schematic diagram of the structure of an FTTR networking system.
  • the present application provides a panel-type ONU (Optical Network Unit), which The structural optimization of the panel-type ONU provides a relatively large space for pigtail arrangement, which is convenient for application in 86-type installation boxes. It can support pigtails with longer tail sleeves or on-site terminated optical fiber terminals, which is beneficial to improving the efficiency and success rate of on-site pipe threading and construction.
  • Figure 2 is a structural diagram of a panel-type ONU provided in an embodiment of the present application
  • Figure 3 is a partial enlarged view of part A in Figure 2
  • Figure 4 is a structural diagram of the panel-type ONU shown in Figure 2 with the bottom shell hidden.
  • the panel-type ONU 100 can be used to provide users with interfaces such as telephone, data communication, and images.
  • the pigtail 200 is plugged into the panel-type ONU 100 to form an optical data transmission path.
  • the panel-type ONU 100 includes an inner plate 110 and a bottom shell 130, and a receiving cavity is formed between the inner plate 110 and the bottom shell 130, and the receiving cavity can be used to receive the electronic devices and other components of the panel-type ONU 100.
  • the bottom shell 130 is provided with a groove 131 on the side facing away from the inner plate 110, and the groove depth direction of the groove 131 is inclined with respect to one side of the bottom shell 130, and the groove 131 is used to receive at least part of the structure of the pigtail 200, such as the connector 210 of the pigtail 200.
  • the above-mentioned structural arrangement of the bottom shell 130 provides a relatively large arrangement space for the pigtail 200.
  • the pigtail 200 includes a connector 210 and a cable.
  • the cable is specifically an optical fiber 230
  • the connector 210 is connected to the optical fiber 230.
  • the pigtail 200 may also be provided with a tail sleeve 220, which is placed on the optical fiber 230 and connected to the connector 210 to protect the optical fiber 230 near the connector 210.
  • the groove 131 of the bottom shell 130 includes a first groove side wall 1311, a groove bottom wall 1312 and a second groove side wall 1313.
  • the first groove side wall 1311 and the second groove side wall 1313 are arranged opposite to each other.
  • the groove depth direction of the groove 131 can be understood as the approximate extension direction of the first groove side wall 1311 or the second groove side wall 1313, or the direction perpendicular to the groove bottom wall 1312.
  • the bottom wall 1312 of the slot 131 has an opening 131a, which is used to plug in the pigtail 200.
  • the connector 210 of the pigtail 200 is located in the slot 131.
  • at least part of the tail sleeve 220 of the pigtail 200 may also be located in the slot 131.
  • At least one of the inner plate 110 and the bottom shell 130 is a groove-shaped structure, so as to form the aforementioned accommodation cavity between the inner plate 110 and the bottom shell 130 .
  • the inner plate 110 may be a groove-shaped structure with a groove opening facing the bottom shell 130 , and has an installation space inside.
  • the bottom shell 130 may include a rectangular structure 130A that is adapted to the shape of the inner panel 110 and a protruding structure 130B that extends from the rectangular structure 130A in a direction away from the inner panel 110, wherein the rectangular structure 130A may be a plate-like structure, and a portion of the plate-like structure protrudes in a direction away from the inner panel 110 to form the protruding structure 130B, so that the protruding structure 130B has an open installation space, and after the inner panel 110 and the rectangular structure 130A of the bottom shell 130 are docked, the installation space of the inner panel 110 and the installation space of the protruding structure 130B may together constitute the aforementioned accommodating cavity.
  • the rectangular structure 130A of the bottom shell 130 may also be a groove-shaped structure with a rectangular groove
  • the inner plate 110 may also be a rectangular plate-shaped structure, which is only used to block the groove opening of the bottom shell 130.
  • the bottom shell 130 as a whole may also be a groove-shaped structure with a regular shape.
  • a groove 131 is formed on the raised structure 130B of the bottom shell 130, and the rectangular structure 130A of the bottom shell 130 is the portion docking with the inner plate 110, and the rectangular structure 130A has four sides, namely a first side C11, a second side C12, a third side C13 and a fourth side C14, wherein the first side C11 and the third side C13 are opposite, and the second side C12 and the fourth side C14 are opposite.
  • the first side C11 is used as the reference side in the groove depth direction of the groove 131. It can be seen that the groove depth direction of the groove 131 is inclined relative to the first side C11, and the groove bottom wall 1312 of the groove 131 is roughly toward the intersection of the third side C13 and the fourth side C14. After the pigtail 200 is plugged into the opening 131a of the groove bottom wall 1312, the axial direction C2 of the pigtail 200 is inclined to the first side C11. Compared with the existing solution shown in Figure 1, this solution is equivalent to rotating the pigtail 200 by an angle to plug it into the bottom shell 130.
  • the panel-type ONU 100 provided in this embodiment can support the pigtail 200 with a longer tail sleeve 220 or the optical fiber terminal terminated on site, etc., and can be applied to the 86-type installation box, which can improve the on-site construction efficiency and success rate.
  • the opening 131a of the slot 131 is located in the middle area of the bottom shell 130, so that the layout space of the pigtail 200 on the panel-type ONU 100 can be increased as much as possible.
  • the slot 131 has a first slot side wall 1311, a second slot side wall 1313 and a slot bottom wall 1312.
  • the slot 131 may also have only two slot walls.
  • the slot bottom wall 1312 of the slot 131 may extend in the direction of the first side edge C11 and penetrate the protruding structure 130B.
  • the slot 131 only has the first slot side wall 1311 and the slot bottom wall 1312.
  • the slot depth direction of the slot 131 may be the extension direction of the first slot side wall 1311 or the extension direction of the slot bottom wall 1312. Accordingly, the slot 131 is used for plugging in pigtails.
  • the opening 131a of 200 can be set on the bottom wall 1312 of the groove, and can also be set on the first groove side wall 1311.
  • the arrangement space of the fiber pigtail 200 on the bottom shell 130 is consistent with that shown in Figure 2.
  • the reference side can be determined as the third side C13 of the bottom shell 130. That is to say, the axial direction of the fiber pigtail 200 after plugging in is inclined to the third side C13, which can also increase the arrangement space of the fiber pigtail 200 on the bottom shell 130.
  • the angle between the axial direction C2 of the pigtail 200 and the first side C11 as the reference side can be selected in the range of 20° to 70°, and can be further selected in the range of 35° to 40°. In actual setting, the angle between C11 and C2 can be adjusted according to specific application requirements.
  • a BOSA (Bi-Directional Optical Sub-Assembly) module 140 is provided in the accommodating cavity of the panel-type ONU 100.
  • the BOSA module 140 has a plug-in port 140a for plugging in the pigtail 200.
  • the opening 131a of the bottom shell 130 corresponds to the position of the plug-in port 140a, so as to facilitate the connector 210 of the pigtail 200 to pass through the opening 131a and dock with the plug-in port 140a.
  • the axial direction C2 of the pigtail 200 shown in FIG. 2 can also be understood as the axial direction of the plug-in port 140a, that is, the axial direction of the plug-in port 140a determines the extension direction of the pigtail 200 after plugging.
  • the bottom shell 130 is provided with a plurality of fiber winding grooves 132, which are arranged around the slot 131, so that it is convenient to wind up the excess portion of the optical fiber 230 of the pigtail 200, and the fiber winding groove 132 is used to define the relative position of the optical fiber 230 and the bottom shell 130.
  • the number of the fiber winding grooves 130 can be set as needed, generally more than two, and the intervals between the plurality of fiber winding grooves 130 can be set as evenly as possible to avoid the optical fiber 230 being damaged due to uneven force.
  • a wire clamping portion 133 is further provided on the bottom shell 130, and the wire clamping portion 133 is used to limit the fiber coiling position of the pigtail 200 so that the fiber coiling radius of the pigtail 200 is at a set value, thereby ensuring that during construction, the fiber coiling radius is not too small, affecting the transmission effect of the optical fiber 230, and ensuring that the fiber coiling radius is not too large to cause assembly failure.
  • the clamping portion 133 is disposed at a notch position adjacent to the slot 131, and its location determines the radius of the fiber coil. From the perspective shown in FIG. 2, when coiling the fiber, the optical fiber 230 of the pigtail 200 is rotated counterclockwise. The optical fiber 230 is bent in the direction of the cable clamping portion 133 and is coiled. During the coiling process, the optical fiber 230 passes through the fiber coiling groove 132 to achieve positioning.
  • the wire holding portion 133 and one of the fiber winding grooves 132 can be set adjacent to each other, or the wire holding portion 133 and one of the fiber winding grooves 132 can be set as an integrated structure, as shown in Figure 3.
  • the optical fiber 230 can be positioned by the fiber winding groove 132 adjacent to the wire holding portion 133 when it is wound in contact with the wire holding portion 133, which is beneficial to ensuring the fiber winding radius.
  • the wire clamping portion 133 and the adjacent fiber winding groove 132 may also be relatively independent structures.
  • the wire holding part 133 has at least one curved surface, and the curvature of the curved surface is consistent with the winding path of the optical fiber 230. In this way, when the optical fiber 230 is wound, it can fit with the curved surface of the wire holding part 133. While assisting the winding of the optical fiber 230, the contact area between the optical fiber 230 and the wire holding part 133 can be increased, thereby avoiding undesirable phenomena such as bending of the optical fiber 230 when winding.
  • the wire holding portion 133 has two curved surfaces, namely a first curved surface 1331 and a second curved surface 1332. From the perspective of the illustration, the optical fiber 230 is coiled in a counterclockwise direction, firstly conforming to the first curved surface 1331 and then conforming to the second curved surface 1332.
  • the fiber winding groove 132 adjacent to the wire holding portion 133 is located between the first curved surface 1331 and the second curved surface 1332.
  • the optical fiber 230 when it is coiled, it first conforms to the first curved surface 1331, then passes through the fiber winding groove 132 adjacent to the wire holding portion 133, and then conforms to the second curved surface 1332, and subsequently passes through each fiber winding groove 132 on the winding path in sequence.
  • the first curved surface 1331 and the second curved surface 1332 have different curvatures and lengths.
  • the number, arrangement and parameters of the curved surfaces of the wire clamping portion 133 can be adjusted according to fiber coiling requirements.
  • a first circuit board 150 is provided in the accommodating cavity of the panel-type ONU 100, and the BOSA module 140 is electrically connected to the first circuit board 150.
  • the BOSA module 140 is located on the side of the first circuit board 150 facing the bottom shell 130, and a set distance may be provided between the BOSA module 140 and the first circuit board 150 to avoid electronic components on the first circuit board 150.
  • the plug-in interface 140a of the BOSA module 140 and the first circuit board 150 have the aforementioned set distance to avoid affecting the arrangement of electronic components on the first circuit board 150 corresponding to the position of the pigtail 200 due to the insertion of the pigtail 200, so as to improve the utilization space of the first circuit board 150.
  • the board surface of the first circuit board 150 is perpendicular to the docking direction of the inner plate 110 and the bottom shell 130, so that it is convenient to be placed in the accommodating cavity between the inner plate 110 and the bottom shell 130.
  • a second circuit board 160 may also be provided, and the second circuit board 160 is provided perpendicularly to the first circuit board 150.
  • the BOSA module 140 is installed on the second circuit board 160. In this way, the distance between the BOSA module 140 and the first circuit board 150 can be increased.
  • the distance between the BOSA module 140 and the first circuit board 150 can be adjusted by adjusting the height position of the BOSA module 140 on the second circuit board 160, so that there is enough space between the pigtail 200 plugged into the BOSA module 140 and the first circuit board 150 to arrange other electronic components, thereby avoiding insufficient space below the pigtail 200 (close to the direction of the first circuit board 150) to make it difficult to arrange other electronic components and waste them.
  • the first circuit board 150 may be configured in different shapes such as a rectangle or an I-shape, and the second circuit board 160 may be physically connected to the first circuit board 150 by welding or other methods.
  • the pigtail 200 may be tilted in a direction away from the first circuit board 150 to further increase the space between the optical fiber 230 and the first circuit board 150 .
  • the BOSA module 140 is tilted relative to the second circuit board 160 so that the insertion of the BOSA module 140
  • the interface 140a is inclined in a direction away from the first circuit board 150;
  • the tail sleeve 220 of the pigtail 200 can be tilted in a direction away from the first circuit board 150, so that the fiber outlet of the tail sleeve 220 is tilted in a direction away from the first circuit board 150; when the pigtail 200 does not have a tail sleeve 220, the portion of the optical fiber 230 close to the connector 210 can be tilted in a direction away from the first circuit board 150.
  • the inclination angle in each of the above methods can be set to a smaller value to avoid excessive inclination angle affecting the size of the panel-type ONU 100 in the thickness direction.
  • the scheme of increasing the distance between the pigtail 200 and the first circuit board 150 is also beneficial to the fiber coiling operation.
  • the pigtail 200 is relatively close to one side of the bottom shell 130. In this way, the height difference between the pigtail 200 and the fiber coiling groove 132 on the bottom shell 130 is reduced, and the pigtail 200 is closer to the fiber coiling groove 132.
  • the torque on the optical fiber 230 is reduced, which is beneficial to the protection of the optical fiber 230.
  • the second circuit board 160 may not be provided, and the BOSA module 140 may be directly mounted on the first circuit board 150.
  • the distance between the pigtail 200 and the first circuit board 150 is small, and no additional electronic components can be arranged in the area on the first circuit board 150 corresponding to the pigtail 200.
  • the BOSA module 140 is connected to the first circuit board 150 through the second circuit board 160, and the BOSA module 140 is directly connected to the first circuit board 150 in the same figure, and the BOSA module 140 and the pigtail 200 in the two schemes are distinguished by dotted lines and solid lines.
  • the inner plate 110 and the bottom shell 130 can be fixed by fasteners such as screws, or can be snapped together by means of buckles, etc.
  • the inner plate 110 has mounting holes or screws and other connectors.
  • the panel-type ONU 100 is also provided with a panel 120, which is used to cover the mounting structure on the inner plate 110.
  • the shape of the panel 120 can be consistent with the inner plate 110, or it can be other shapes, such as a circular or oval shape corresponding to the screws or mounting holes, as long as it can cover the mounting structure on the inner plate 110.
  • FIG. 6 and FIG. 8 respectively show schematic structural diagrams of a panel-type ONU in another embodiment at two viewing angles
  • FIG. 7 is a partial enlarged view of portion B in FIG. 6 .
  • the basic structure and layout of the panel-type ONU are similar to those of the panel-type ONU 100 shown in Figures 2 to 4.
  • the same functional components or structures in the figures are indicated by the same symbols. Only the differences between the two are explained below.
  • the cable of the pigtail 200 is a flat cable
  • the optoelectronic composite cable 230' is used as an example here, and the flat cable can also be an optical fiber.
  • the optoelectronic composite cable 230' is a flat structure, and its cross section is roughly rectangular with rounded corners.
  • the optoelectronic composite cable 230' has a first thickness and a second thickness, and the first thickness is greater than the second thickness.
  • the first thickness and the second thickness can be understood as the length and width of its rectangular cross section. As shown in Figure 7, the direction of the first thickness is the direction indicated by D1, and the direction of the second thickness is the direction indicated by D2.
  • the opening 131a of the slot 131 of the bottom shell 130 and the plug-in interface 140a of the BOSA module are configured such that after the pigtail 200 is plugged in, the first thickness direction D1 of the optoelectronic composite cable 230' is the docking direction of the bottom shell 130 and the inner plate 110, or in other words, the first thickness direction D1 of the optoelectronic composite cable 230' is perpendicular to the inner plate 110, which is conducive to the smoothness of the winding of the redundant optoelectronic composite cable 230' on the bottom shell 130, avoiding affecting the communication effect of the optoelectronic composite cable 230'.
  • the dotted line in FIG7 illustrates the approximate path of the optoelectronic composite cable 230'.
  • the first thickness direction D1 of the optoelectronic composite cable 230' is substantially perpendicular to the coiling direction. Since the second thickness of the optoelectronic composite cable 230' is relatively small, damage to the optoelectronic composite cable 230' can be reduced when coiling.
  • the insertion direction of the pigtail 200 can be limited by setting a limiting structure (such as a limiting hole) between the opening 131a and the connector 210 of the pigtail 200 or between the connector 210 and the plug-in port 140a to ensure that the first thickness direction D1 of the optoelectronic composite cable 230' is perpendicular to the inner plate 110 after the pigtail 200 is plugged in.
  • a limiting structure such as a limiting hole
  • the internal BOSA module is flipped 90 degrees along the insertion direction of the pigtail 200 as the axis, so that after the pigtail 200 is plugged in with the BOSA module according to the above-mentioned limiting structure, the first thickness direction D1 of the optoelectronic composite cable 230' can be perpendicular to the inner plate 110; limiting holes can be set on the BOSA module to limit the insertion direction of the pigtail 200.
  • a fiber winding groove 132 and a wire clamping portion 133 are also provided on the bottom shell 130.
  • the wire clamping portion 133 has a curved surface 133a, and the curved surface 133a is used to fit the wound optoelectronic composite cable 230' to limit the winding radius of the optoelectronic composite cable 230'.
  • FIG8 shows a partial winding path of the optoelectronic composite cable 230' by a dotted line to illustrate its relationship with the wire clamping portion 133 and the fiber winding groove 132.
  • the height of the wire clamping part 133 is not less than the first thickness of the optoelectronic composite cable 230', and the wire clamping part 133 can be set larger than the first thickness of the optoelectronic composite cable 230' to improve the buffering effect when the optoelectronic composite cable 230' is coiled.
  • the curved surface 133a of the wire clamping part 133 can be set as an arc surface, and can have a certain length in the winding direction, that is, the curved surface 133a has a certain arc length (for example, it can be 1 to 2 cm) to increase the contact area between the optoelectronic composite cable 230' and the wire clamping part 133, enhance the buffering effect of winding, and avoid damage to the optoelectronic composite cable 230'.
  • the aforementioned panel-type ONU 100 can be applicable to a 86-type installation box, and the inner panel 110 and the bottom shell 130 of the panel-type ONU 100 can be designed to match the 86-type installation box.
  • the aforementioned panel-type ONU 100 can be used to form an FTTR networking system as a slave gateway of the FTTR networking system.
  • the FTTR (Fiber To The Room) all-optical home network solution can extend high-quality networks to every corner of the room, effectively improving user experience.
  • an FTTR networking system can be understood by referring to FIG9 , where the OLT (Optical Line Termination) is connected to the main gateway via optical fiber, and the main gateway can be connected to multiple slave gateways respectively via a splitter, at least one of which can be networked using the aforementioned panel-type ONU 100.
  • OLT Optical Line Termination
  • the panel-type ONU 100 can also be used as a gateway for other systems.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)

Abstract

一种面板型ONU,包括内板和底壳,所述内板和所述底壳之间形成容纳腔,所述底壳背向所述内板的一面设有开槽,所述开槽的槽深方向与所述底壳的一侧边倾斜,所述开槽用于容纳尾纤的接头。在应用于86型安装盒时可支持尾套较长的尾纤,或者现场成端的光纤端子等,有利于提高施工效率和成功率。

Description

一种面板型ONU
本申请要求于2022年12月09日提交中国专利局、申请号为202223325956.8、发明名称为“ONU面板、OMU设备以及FTTR组网系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光网络技术领域,尤其涉及一种面板型ONU。
背景技术
FTTR(Fiber To The Room,光纤到房间)系统用光纤替代网线,让光纤从“到户”进一步“到房间”,可以将高品质的网络延伸到室内的各个角落,有效提升了用户体验。
在FTTR组网系统中,主网关为ONT(Optical Network Terminal,光网络单元),其挂在OLT(Optical Line Termination,光线路终端)下组网,ONT可以提供下行光接口,与ONU(Optical Network Unit,光网络单元)连接,ONU形成从网关。
在FTTR组网系统中,比较美观的组网方式是采用86盒面板型ONU的从网关进行组网。现有的86盒面板型ONU采用BOSA(Bi-Directional Optical Sub-Assembly,光发射接收组件)方案。
除了前述FTTR组网系统,面板型ONU也可用于其他应用场景。
如图1所示,现有的面板型ONU中,BOSA模块01的法兰上用于插接尾纤02的插接口011的轴线L与面板的第一边所在方向S1平行,插接口011的轴线L与面板第二边S2所在方向垂直,前述第一边和第二边为面板的相邻两侧边;由图1可见,插接口011与第二边之间的距离相对较小,即留给尾纤02的空间有限。因此,普通尾纤,或者现场成端的光纤端子,均不能很便利地安置在86盒空间中并盘纤,增加了光纤故障的隐患,降低了施工效率。
发明内容
本申请提供了一种面板型ONU,通过结构优化,面板型ONU具有相对较大的尾纤布置空间,在应用于86型安装盒时可支持尾套较长的尾纤,或者现场成端的光纤端子等,有利于提高施工效率和成功率。
本申请实施例提供了一种面板型ONU,包括内板和底壳,内板和底壳之间形成容纳腔,底壳背向内板的一面设有开槽,开槽的槽深方向与底壳的一侧边倾斜,开槽用于容纳尾纤的接头。
采用该方案,预留给尾纤的布置空间增加,方便应用于86型安装盒,可支持尾套较长的尾纤或者现场成端的光纤端子等,利于提升现场穿管及施工的效率以及成功率。
在一种可能的实现方式中,开槽的槽底壁具有用于插接尾纤的开口,开口位于底壳的中部区域。这样,可尽可能地增大尾纤的布置空间。
在一种可能的实现方式中,面板型ONU包括BOSA模块,BOSA模块位于容纳腔内,BOSA模块具有插接尾纤的插接口,插接口与开口位置对应。
在一种可能的实现方式中,BOSA模块具有限位孔,以使插接后的尾纤的扁形线缆垂直于内板。
在一种可能的实现方式中,插接口配置为插接的尾纤向远离内板方向倾斜。如此,方便尾纤的盘纤操作,避免盘纤时损伤尾纤。
在一种可能的实现方式中,面板型ONU还包括第一电路板,第一电路板位于容纳腔,BOSA模块与第一电路板电连接,BOSA模块位于第一电路板朝向底壳的一侧,BOSA模块的插接口与第一电路板之间具有设定距离,以避让第一电路板上的电子元器件。
示例性的,面板型ONU还包括第二电路板,第二电路板位于容纳腔,第二电路板与第一电路板垂直设置,BOSA模块安装在第二电路板上。
这样,有利于增加尾纤和第一电路板之间的距离,利于电子元器件在第一电路板上的排布。
在一种可能的实现方式中,底壳包括与内板适配的矩形结构和自矩形结构向远离内板方向延伸的凸起结构,开槽位于凸起结构。
在一种可能的实现方式中,底壳上设有若干个盘纤槽,若干个盘纤槽环绕开槽布置。如此,方便将尾纤的多余的光纤部分盘起来收纳,避免影响面板型ONU与安装盒的组装。
在一种可能的实现方式中,底壳上设有卡线部,卡线部用于限定尾纤的盘纤位置,以使尾纤的盘纤半径处于设定值。如此,可避免盘纤半径过小而影响光纤的传输效果,也可避免盘纤半径过大而无法与限定尺寸的外盒装配。
在一种可能的实现方式中,卡线部具有至少一个弯曲面,用于与盘纤的光纤贴合。这样对尾纤的盘纤起到缓冲作用,避免损伤尾纤。
在一种可能的实现方式中,内板和底壳与86型安装盒匹配。该面板型ONU可较为方便地安置在86型安装盒内并实现盘纤,可降低光纤故障隐患。
在一种可能的实现方式中,面板型ONU用于形成FTTR组网系统中的从网关。该面板型ONU可用于FTTR组网系统,使其具有比较美观的组网方式。
附图说明
图1为现有一种面板型ONU的结构示意图;
图2为本申请一实施例提供的面板型ONU的结构示意图;
图3为图2中A部位的局部放大图;
图4为图2所示面板型ONU隐去底壳后的结构示意图;
图5为具体应用中尾纤与第一电路板相对位置的简单示意图;
图6为本申请另一实施例提供的面板型ONU的结构示意图;
图7为图6中B部位的局部放大图;
图8为图6所示面板型ONU的另一视角的结构示意图;
图9为一种FTTR组网系统的结构示意图。
具体实施方式
本申请实施例提供一种面板型ONU(Optical Network Unit,光网络单元),通过 对面板型ONU的结构优化,使其具有相对较大的尾纤布置空间,方便应用于86型安装盒,可支持尾套较长的尾纤或者现场成端的光纤端子等,利于提升现场穿管及施工的效率以及成功率。
请参考图2至图4,图2为本申请一实施例提供的面板型ONU的结构示意图,图3为图2中A部位的局部放大图;图4为图2所示面板型ONU隐去底壳后的结构示意图。
面板型ONU 100作为接入端的用户侧设备,可用于为用户提供电话、数据通信、图像等接口。尾纤200与面板型ONU 100插接,以构成光数据传输通路。
本实施例中,面板型ONU 100包括内板110和底壳130,内板110和底壳130之间形成容纳腔,该容纳腔可用于容纳面板型ONU 100的电子器件及其他元件。底壳130在背向内板110的一面设有开槽131,开槽131的槽深方向与底壳130的一个侧边倾斜,该开槽131用于容纳尾纤200的至少部分结构,比如说尾纤200的接头210等。底壳130的前述结构设置给尾纤200提供了相对较大的布置空间。
尾纤200包括接头210和线缆,本实施例中,线缆具体为光纤230,接头210与光纤230连接。尾纤200还可以设置有尾套220,尾套220外套于光纤230,并与接头210连接,对靠近接头210位置的光纤230进行保护。
图示方案中,底壳130的开槽131包括第一槽侧壁1311、槽底壁1312和第二槽侧壁1313,第一槽侧壁1311和第二槽侧壁1313相对设置,此时,开槽131的槽深方向可以理解为第一槽侧壁1311或第二槽侧壁1313的大致延伸方向,或者垂直于槽底壁1312的方向。
具体应用中,开槽131的槽底壁1312具有开口131a,该开口131a用于插接尾纤200,尾纤200与面板型ONU 100插接后,尾纤200的接头210位于开槽131内,根据开槽131的槽深大小,尾纤200的尾套220的至少部分也可位于开槽131内。
具体应用中,内板110和底壳130中的至少一者为槽状结构,以便在内板110和底壳130之间形成前述容纳腔。
内板110可以为槽口朝向底壳130的槽型结构,其内部具有安装空间。
图示方案中,底壳130可以包括与内板110形状适配的矩形结构130A和自矩形结构130A向远离内板110方向延伸的凸起结构130B,其中,矩形结构130A可以为板状结构,板状结构的部分向远离内板110方向凸起形成凸起结构130B,这样,凸起结构130B具有敞口的安装空间,内板110和底壳130的矩形结构130A对接后,内板110的安装空间和凸起结构130B的安装空间可一起构成前述容纳腔。
在其他实施例中,底壳130的矩形结构130A也可以为具有矩形槽的槽型结构,内板110也可以为矩形的板状结构,仅用于封堵底壳130朝向其的槽口。在其他实施例中,底壳130整体也可呈规则形状的槽型结构。
以图示示例来说,底壳130的凸起结构130B上形成有开槽131,底壳130的矩形结构130A为与内板110对接的部分,该矩形结构130A具有四个侧边,分别为第一侧边C11、第二侧边C12、第三侧边C13和第四侧边C14,其中,第一侧边C11和第三侧边C13相对,第二侧边C12和第四侧边C14相对。
本实施例中,以第一侧边C11作为前述开槽131槽深方向的参考侧边,从图2中 可以看出,开槽131的槽深方向相对第一侧边C11倾斜,开槽131的槽底壁1312大致朝向第三侧边C13和第四侧边C14相交的部位,尾纤200插接在槽底壁1312的开口131a后,尾纤200的轴线方向C2与第一侧边C11倾斜,与图1所示的现有方案相比,本方案相当于将尾纤200旋转一个角度与底壳130插接,这样,尾纤200的插接位置与底壳130的边缘之间的空间增大,预留给尾纤200的布置空间增大,这样,本实施例提供的面板型ONU 100可支持尾套220较长的尾纤200或者现场成端的光纤端子等,可适用86型安装盒,能够提高现场施工效率以及成功率。
具体应用中,开槽131的开口131a位于底壳130的中部区域设置,如此,可尽可能多地增大面板型ONU 100上尾纤200的布置空间。
在图2所示示例中,开槽131具有第一槽侧壁1311、第二槽侧壁1313和一个槽底壁1312,在其他实施例中,开槽131也可以仅具有两个槽壁,以图2所示的底壳130结构为基础,比如开槽131的槽底壁1312可以向第一侧边C11所在方向延伸贯穿凸起结构130B,此时,开槽131只具有第一槽侧壁1311和槽底壁1312,开槽131的槽深方向可以为第一槽侧壁1311的延伸方向,也可以为槽底壁1312的延伸方向,相应地,用于插接尾纤200的开口131a可以设置在槽底壁1312上,也可以设置在第一槽侧壁1311上,当开口131a设在槽底壁1312时,尾纤200在底壳130的布置空间与图2所示一致,当开口131a设在第一槽侧壁1311上时,尾纤200插接后的轴线方向大致与槽底壁1312的延伸方向一致,此时的参考侧边可以确定为底壳130的第三侧边C13,也就是说,尾纤200插接后的轴线方向与第三侧边C13倾斜,同样能够增大尾纤200在底壳130上的布置空间。
具体应用中,尾纤200与面板型ONU 100插接后,尾纤200的轴线方向C2与作为参考侧边的第一侧边C11之间的夹角可以在20°~70°范围内选取,可进一步在35°~40°范围内选取。实际设置时,可根据具体应用需求来调整C11和C2之间的角度。
本实施例中,面板型ONU 100的容纳腔内设有BOSA(Bi-Directional Optical Sub-Assembly,光发射接收组件)模块140,BOSA模块140具有插接尾纤200的插接口140a,底壳130的开口131a与插接口140a位置对应,以方便尾纤200的接头210穿过开口131a与插接口140a对接。图2中所示的尾纤200的轴线方向C2也可以理解为插接口140a的轴线方向,也就是说,插接口140a的轴线方向决定了尾纤200插接后的延伸方向。
具体应用中,底壳130上设有若干个盘纤槽132,若干个盘纤槽132环绕开槽131布置,这样,方便将尾纤200的光纤230的多余部分盘起来,盘纤槽132用于限定光纤230与底壳130的相对位置。盘纤槽130的数量可根据需要来设置,一般大于两个,若干个盘纤槽130的间隔可以尽量均匀设置,避免光纤230受力不均而受损。
具体应用中,底壳130上还设有卡线部133,卡线部133用于限定尾纤200的盘纤位置,以使尾纤200的盘纤半径处于设定值,保证在施工时,盘纤半径不会过小,影响光纤230的传输效果,又可保证盘纤半径不会过大而导致无法组装。
结合图2和图3,卡线部133设置在邻近开槽131的槽口位置,其设置位置决定了盘纤的半径大小,以图2所示视角来说,盘纤时,将尾纤200的光纤230沿逆时针方 向弯曲,光纤230贴合卡线部133盘绕,盘绕过程中穿过盘纤槽132以实现定位。
实际设置时,可以将卡线部133和若干盘纤槽132中的一个邻近设置,或者将卡线部133和若干盘纤槽132中的一个设为一体结构,如图3所示,这样,盘纤时,光纤230在贴合卡线部133盘绕时,可通过卡线部133邻近的盘纤槽132限定位置,有利于确保盘纤半径。
在其他实施例中,卡线部133和与其邻近的盘纤槽132也可以为相对独立的结构。
具体设置时,卡线部133具有至少一个弯曲面,弯曲面的弯曲走势与光纤230的盘绕路径一致,这样,光纤230盘绕时,可与卡线部133的弯曲面贴合,在辅助光纤230盘绕的同时,可以增大光纤230与卡线部133的接触面积,避免光纤230在盘绕时出现折弯等不良现象。
图示示例中,卡线部133具有两个弯曲面,分别为第一弯曲面1331和第二弯曲面1332,以图示视角,光纤230向逆时针方向盘绕,先与第一弯曲面1331贴合,再与第二弯曲面1332贴合,邻近卡线部133的盘纤槽132位于第一弯曲面1331和第二弯曲面1332之间,即光纤230盘绕时,先与第一弯曲面1331贴合,之后穿过邻近卡线部133的盘纤槽132,再与第二弯曲面1332贴合,后续依次穿过盘绕路径上的各盘纤槽132。
图示方案中,第一弯曲面1331和第二弯曲面1332的曲率和长度不同,实际应用中,卡线部133的弯曲面的数量、排布以及各弯曲面的参数等可根据盘纤需求来调整。
本实施例中,面板型ONU 100的容纳腔内设有第一电路板150,BOSA模块140与第一电路板150电连接,BOSA模块140位于第一电路板150朝向底壳130的一侧,BOSA模块140与第一电路板150之间可以具有设定距离,以避让第一电路板150上的电子元器件。具体的,BOSA模块140的插接口140a与第一电路板150之间具有前述设定距离,以免因插接尾纤200而影响与尾纤200位置对应的第一电路板150上的电子元器件的排布,以提高第一电路板150的利用空间。
如图4所示,具体实施时,第一电路板150的板面与内板110和底壳130的对接方向垂直,方便放置在内板110和底壳130之间的容纳腔内,还可设置第二电路板160,第二电路板160与第一电路板150垂直设置,BOSA模块140安装在第二电路板160上,这样,可增加BOSA模块140与第一电路板150之间的距离,结合图5,可通过调整BOSA模块140在第二电路板160上的高度位置,来调整BOSA模块140与第一电路板150之间的距离,从而使得插接于BOSA模块140上的尾纤200与第一电路板150之间具有足够的空间来设置其他电子元器件,避免尾纤200下方(靠近第一电路板150所在方向)的空间不足很难布置其他电子元器件而浪费。
其中,第一电路板150可以设为矩形或工字形等不同形状,第二电路板160与第一电路板150之间可通过焊接或其他方式实现物理连接。
具体应用中,尾纤200可以向远离第一电路板150的方向倾斜,以进一步增加光纤230和第一电路板150之间的空间。
具体的,将尾纤200向远离第一电路板150方向倾斜的方式可以有以下几种:
第一,将BOSA模块140相对第二电路板160倾斜设置,使得BOSA模块140的插 接口140a向远离第一电路板150的方向倾斜;
第二,尾纤200有尾套220时,可将尾纤200的尾套220向远离第一电路板150的方向倾斜设置,使得尾套220的出纤口向远离第一电路板150的方向倾斜;尾纤200没有尾套220时,可将光纤230靠近接头210的部分向远离第一电路板150的方向倾斜设置。
上述各方式中的倾斜角度均可较小设置,避免倾斜角度过大影响面板型ONU 100在厚度方向上的尺寸。
上述增加尾纤200和第一电路板150之间距离的方案除了上述效果外,还有利于盘纤操作,将尾纤200与第一电路板150之间的距离拉大后,尾纤200相对靠近底壳130一侧,这样,尾纤200与底壳130上的盘纤槽132之间的高度差减小,更接近于盘纤槽132,在盘纤时,光纤230所受的扭力减小,有利于对光纤230的保护。
在其他实施例中,也可不设置第二电路板160,将BOSA模块140直接安装在第一电路板150上,此状态下,尾纤200与BOSA模块140插接后,如图5中的虚线示意,尾纤200与第一电路板150之间的距离较小,第一电路板150上对应于尾纤200的区域无法再额外布置电子元器件。
这里为方便对比示意说明,将BOSA模块140通过第二电路板160与第一电路板150连接,以及BOSA模块140直接连接在第一电路板150上在同一张图上示意,以虚线和实线来区分两种方案种的BOSA模块140和尾纤200。
实际应用中,内板110和底壳130可以通过螺钉等紧固件固接,也可以通过卡扣等方式卡接,内板110上具有安装孔或者螺钉等连接件,为遮蔽这些结构,以使安装后面板型ONU 100面向用户的一面较为整齐或美观,面板型ONU 100还设置有面板120,面板120用于遮蔽内板110上的安装结构。具体的,面板120的外形可以与内板110一致,也可以为其他形状,比如对应螺钉或安装孔的圆形或椭圆形等形状,只要能够遮盖内板110上的安装结构即可。
请一并参考图6至图8,图6和图8分别示出了另一实施例中面板型ONU在两个视角下的结构示意图,图7为图6中B部位的局部放大图。
本实施例中,面板型ONU与前述图2至图4所示面板型ONU 100的基本结构组成和布置形式类似,为了清晰示出本方案与图2至图4所示方案的区别和联系,图中相同功能构成或结构采用相同标记进行示明。下面仅就两者的区别之处进行说明。
本实施例中,尾纤200的线缆为扁形线缆,这里以光电复合缆230’为例说明,扁形线缆也可以是光纤。光电复合缆230’为扁形结构,其横截面大致呈带圆角的矩形形状,光电复合缆230’具有第一厚度和第二厚度,第一厚度大于第二厚度,这里可将第一厚度和第二厚度理解为其矩形横截面的长度和宽度,如图7所示,第一厚度所在方向为D1指示方向,第二厚度所在方向为D2指示方向。
底壳130的开槽131的开口131a和BOSA模块的插接口140a配置为尾纤200插接后,其光电复合缆230’的第一厚度方向D1为底壳130和内板110的对接方向,或者说,光电复合缆230’的第一厚度方向D1垂直于内板110,这样,有利于多余的光电复合缆230’在底壳130上的盘绕的平顺性,避免影响光电复合缆230’的通信效果, 参考图7,图7中的虚线示意了光电复合缆230’盘绕的大致路径,盘绕时,光电复合缆230’的第一厚度方向D1与盘绕方向大致垂直,因光电复合缆230’的第二厚度较小,盘绕时,可降低对光电复合缆230’的损伤。
具体的,可通过在开口131a和尾纤200的接头210之间或者接头210和插接口140a之间设置限位结构(比如限位孔的形式)来限制尾纤200的插接方向,以确保尾纤200插接后其光电复合缆230’的第一厚度方向D1垂直于内板110。相对于现有面板型ONU中BOSA模块的位置,本实施例中是将内部的BOSA模块沿尾纤200插入方向为轴线,翻转了90度,这样,尾纤200根据上述限位结构与BOSA模块插接后,可实现光电复合缆230’的第一厚度方向D1垂直于内板110;可以在BOSA模块上设置限位孔来对尾纤200的插入方向进行限位。
本方案中,在底壳130上也设有盘纤槽132和卡线部133,卡线部133具有弯曲面133a,该弯曲面133a用于盘绕的光电复合缆230’贴合,以限制光电复合缆230’的盘绕半径,图8中以虚线示意了光电复合缆230’的部分盘绕路径,以说明其与卡线部133和盘纤槽132的关系。
具体设置时,卡线部133的高度不小于光电复合缆230’的第一厚度,卡线部133可以比光电复合缆230’的第一厚度偏大设置,以提高光电复合缆230’盘绕时的缓冲效果。
具体设置时,卡线部133的弯曲面133a可以设为弧形面,可在盘绕方向上具有一定长度,即弯曲面133a具有一定的弧长(比如可以为1~2cm),以增大光电复合缆230’与卡线部133的接触面积,增强盘绕的缓冲效果,避免对光电复合缆230’造成损伤。
在一种应用场景中,前述面板式ONU 100可以适用于86型安装盒,面板式ONU 100的内板110和底壳130可与86型安装盒匹配设计。
在一种应用场景下,前述面板型ONU 100可用于形成FTTR组网系统,作为FTTR组网系统的从网关。FTTR(Fiber To The Room,光纤到房间)全光家庭网络方案可以将高品质的网络延伸到室内的各个角落,有效提升用户体验。实际应用中,一种FTTR组网系统可参考图9理解,OLT(Optical Line Termination,光线路终端)通过光纤与主网关连接,主网关可通过分光器分别连接多个从网关,其中至少一个从网关可以采用前述面板型ONU 100进行组网。
面板型ONU 100除了应用于FTTR组网系统,也可以用作其他系统的网关。
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (13)

  1. 一种面板型ONU,其特征在于,包括内板和底壳,所述内板和所述底壳之间形成容纳腔,所述底壳背向所述内板的一面设有开槽,所述开槽的槽深方向与所述底壳的一侧边倾斜,所述开槽用于容纳尾纤的接头。
  2. 根据权利要求1所述的面板型ONU,其特征在于,所述开槽的槽底壁具有用于插接尾纤的开口,所述开口位于所述底壳的中部区域。
  3. 根据权利要求2所述的面板型ONU,其特征在于,所述面板型ONU还包括BOSA模块,所述BOSA模块位于所述容纳腔,所述BOSA模块具有插接所述尾纤的插接口,所述插接口与所述开口位置对应。
  4. 根据权利要求3所述的面板型ONU,其特征在于,所述BOSA模块具有限位孔,以使插接后的所述尾纤的扁形线缆垂直于所述内板。
  5. 根据权利要求3所述的面板型ONU,其特征在于,所述插接口配置为插接的所述尾纤向远离所述内板方向倾斜。
  6. 根据权利要求3所述的面板型ONU,其特征在于,所述面板型ONU还包括第一电路板,所述第一电路板位于所述容纳腔,所述BOSA模块与所述第一电路板电连接,所述BOSA模块位于所述第一电路板朝向所述底壳的一侧,所述BOSA模块的所述插接口与所述第一电路板之间具有设定距离,以避让所述第一电路板上的电子元器件。
  7. 根据权利要求6所述的面板型ONU,其特征在于,所述面板型ONU还包括第二电路板,所述第二电路板位于所述容纳腔,所述第二电路板与所述第一电路板垂直设置,所述BOSA模块安装在所述第二电路板上。
  8. 根据权利要求1-7任一项所述的面板型ONU,其特征在于,所述底壳包括与所述内板适配的矩形结构和自所述矩形结构向远离所述内板方向延伸的凸起结构,所述开槽位于所述凸起结构。
  9. 根据权利要求1-7任一项所述的面板型ONU,其特征在于,所述底壳上设有若干个盘纤槽,若干个所述盘纤槽环绕所述开槽布置。
  10. 根据权利要求1-7任一项所述的面板型ONU,其特征在于,所述底壳上设有卡线部,所述卡线部用于限定所述尾纤的盘纤位置,以使所述尾纤的盘纤半径处于设定值。
  11. 根据权利要求10所述的面板型ONU,其特征在于,所述卡线部具有至少一个弯曲面,用于与盘纤的光纤贴合。
  12. 根据权利要求1-7任一项所述的面板型ONU,其特征在于,所述内板和所述底壳与86型安装盒匹配。
  13. 根据权利要求1-7任一项所述的面板型ONU,其特征在于,所述面板型ONU用于形成FTTR组网系统中的从网关。
PCT/CN2023/086764 2022-12-09 2023-04-07 一种面板型onu WO2024119681A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202223325956.8U CN219143148U (zh) 2022-12-09 2022-12-09 Onu面板、omu设备以及fttr组网系统
CN202223325956.8 2022-12-09

Publications (1)

Publication Number Publication Date
WO2024119681A1 true WO2024119681A1 (zh) 2024-06-13

Family

ID=86562215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086764 WO2024119681A1 (zh) 2022-12-09 2023-04-07 一种面板型onu

Country Status (2)

Country Link
CN (2) CN219143148U (zh)
WO (1) WO2024119681A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217762A (zh) * 2013-04-15 2013-07-24 华为机器有限公司 一种出纤结构件以及光模块
CN210803791U (zh) * 2019-07-10 2020-06-19 武汉一网万联科技有限公司 一种适用于86底盒的onu
CN112424662A (zh) * 2018-07-09 2021-02-26 康普技术有限责任公司 电信端子
CN213069279U (zh) * 2020-10-20 2021-04-27 安徽朝元通信技术有限公司 一种通信线路安装用可调式光纤预留尾纤盒
US20210294055A1 (en) * 2017-02-15 2021-09-23 CommScope Connectivity Belgium BVBA Interchangeable telecommunications enclosure components
CN215734285U (zh) * 2021-09-18 2022-02-01 武汉一网万联科技有限公司 一种86面板式光纤收发器
CN216752400U (zh) * 2022-01-05 2022-06-14 深圳市视达特科技有限公司 增加尾纤盘纤钩和电源线接线柱的无源光纤接入装置
CN217904572U (zh) * 2022-06-23 2022-11-25 浙江一舟电子科技股份有限公司 一种onu单元

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103217762A (zh) * 2013-04-15 2013-07-24 华为机器有限公司 一种出纤结构件以及光模块
US20210294055A1 (en) * 2017-02-15 2021-09-23 CommScope Connectivity Belgium BVBA Interchangeable telecommunications enclosure components
CN112424662A (zh) * 2018-07-09 2021-02-26 康普技术有限责任公司 电信端子
CN210803791U (zh) * 2019-07-10 2020-06-19 武汉一网万联科技有限公司 一种适用于86底盒的onu
CN213069279U (zh) * 2020-10-20 2021-04-27 安徽朝元通信技术有限公司 一种通信线路安装用可调式光纤预留尾纤盒
CN215734285U (zh) * 2021-09-18 2022-02-01 武汉一网万联科技有限公司 一种86面板式光纤收发器
CN216752400U (zh) * 2022-01-05 2022-06-14 深圳市视达特科技有限公司 增加尾纤盘纤钩和电源线接线柱的无源光纤接入装置
CN217904572U (zh) * 2022-06-23 2022-11-25 浙江一舟电子科技股份有限公司 一种onu单元

Also Published As

Publication number Publication date
CN220493004U (zh) 2024-02-13
CN219143148U (zh) 2023-06-06

Similar Documents

Publication Publication Date Title
US4986762A (en) Termination module for use in an array of modules
US8130502B2 (en) Modular stackable angled patch panel for enclosure
US7901236B2 (en) Telecommunication patch panel
JP6137845B2 (ja) ケーブル保持を改善するためのワイヤ封入キャップを有する通信コネクタ
WO2013074869A1 (en) High bandwidth jack with rj45 backwards compatibility
US10495834B2 (en) Optical fiber management
WO1996026563A1 (en) Low profile mixed media information outlet
US11387606B2 (en) Communication connectors utilizing multiple contact points
JP2005338618A (ja) モジュール搭載型ラックパネル
US20110249941A1 (en) Telecommunication socket outlet
JP2023510774A (ja) 接続インターフェース
WO2024119681A1 (zh) 一种面板型onu
US11105983B2 (en) Receptacle structure for optical connector
JP2009075213A (ja) 光ローゼット
US6876809B1 (en) Release mechanism for disconnecting internal fiber from an optical module
TW201504707A (zh) 使用直通光纜總成的資料中心連接器系統
TWM398286U (en) Optical cable wiring box
US20240039202A1 (en) Single pair ethernet coupler and adapter
KR100964106B1 (ko) 소형 통합 스위칭허브 인출구
CN217063126U (zh) 拼接托盘式桥架
US20240019653A1 (en) Bracket for optical network terminal
KR930007583B1 (ko) 광섬유 케이블 접속 장치
WO2024116109A1 (en) Connector box and retaining formation
TWM428369U (en) Swivel fiber optical cableterminal box
JPH10186142A (ja) 光ファイバの余長収納構造及び光配線方法及び作業用治具