WO2024119486A1 - 折叠式可展开皮层电极及其制备方法、皮层电极装置 - Google Patents

折叠式可展开皮层电极及其制备方法、皮层电极装置 Download PDF

Info

Publication number
WO2024119486A1
WO2024119486A1 PCT/CN2022/137957 CN2022137957W WO2024119486A1 WO 2024119486 A1 WO2024119486 A1 WO 2024119486A1 CN 2022137957 W CN2022137957 W CN 2022137957W WO 2024119486 A1 WO2024119486 A1 WO 2024119486A1
Authority
WO
WIPO (PCT)
Prior art keywords
foldable
electrode
substrate
expandable
cortical
Prior art date
Application number
PCT/CN2022/137957
Other languages
English (en)
French (fr)
Inventor
张明君
盛天成
谢铭效
杜念臻
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2022/137957 priority Critical patent/WO2024119486A1/zh
Publication of WO2024119486A1 publication Critical patent/WO2024119486A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • A61B5/293Invasive

Definitions

  • Embodiments of the present disclosure relate to a foldable and expandable cortical electrode, a preparation method thereof, and a cortical electrode device.
  • Neural electrodes are the core of brain-computer interface technology. According to the degree of invasion into neural tissue, existing neural electrodes are mainly divided into two categories: non-invasive and invasive.
  • Non-invasive neural electrodes are used to collect EEG signals on the surface of the scalp, also known as electroencephalogram electrodes (EEG electrodes). Due to the attenuation of signals by tissues such as the skull and skin, as well as interference from other physiological signals, the resulting EEG signals are weak, with low signal-to-noise ratio and low spatial resolution, limiting their scope of application.
  • EEG electrodes electroencephalogram electrodes
  • Invasive neural electrodes can be divided into two categories: penetrating electrodes and non-penetrating electrodes.
  • Penetrating electrodes directly contact brain tissue when used, so they have good spatial resolution and high signal-to-noise ratio, and can record spike signals and local field potential (LPF) signals.
  • LPF local field potential
  • Non-penetrating invasive electrodes are electrocortical electrodes (ECoG electrodes), which are placed on or under the dura mater when used. While ensuring the signal-to-noise ratio and spatiotemporal resolution, they reduce the risk of penetrating brain tissue and can achieve the acquisition of neural signals across brain regions.
  • At least one embodiment of the present disclosure provides a foldable and expandable cortical electrode, which has multiple electrode regions and includes a substrate, a conductive layer, and a packaging layer; the conductive layer is arranged on the substrate, and the packaging layer is arranged on a side of the conductive layer away from the substrate; wherein each of the multiple electrode regions includes at least one conductive contact arranged in the conductive layer and at least one wire connected to the at least one conductive contact, the packaging layer includes at least one opening exposing the at least one conductive contact, and a foldable portion is provided between two adjacent electrode regions among the multiple electrode regions so that the two adjacent electrode regions can be folded along the foldable portion.
  • the foldable and expandable cortical electrode provided by at least one embodiment of the present disclosure also includes: a reinforcement layer, which is arranged on a side of the encapsulation layer close to or away from the substrate, or on a side of the substrate close to or away from the encapsulation layer, and includes a plurality of patterns corresponding to the plurality of electrode areas, wherein a gap exists between two adjacent patterns among the plurality of patterns to form the foldable part.
  • a reinforcement layer which is arranged on a side of the encapsulation layer close to or away from the substrate, or on a side of the substrate close to or away from the encapsulation layer, and includes a plurality of patterns corresponding to the plurality of electrode areas, wherein a gap exists between two adjacent patterns among the plurality of patterns to form the foldable part.
  • At least part of the multiple patterns includes an illumination portion.
  • At least one of the substrate and the packaging layer includes a flexible portion in the foldable portion, and the elastic modulus of the flexible portion is lower than the elastic modulus of at least one of the substrate and the packaging layer other than the flexible portion.
  • At least one of the substrate and the packaging layer includes a hollow portion or a thinned portion in the foldable portion, the material of the hollow portion is removed, and the thickness of the thinned portion is lower than the thickness of at least one of the substrate and the packaging layer except the thinned portion.
  • the planar shape of the foldable and expandable cortical electrode is fan-shaped as a whole, at least some of the multiple electrode regions are arranged in sequence along the tangent direction of the fan-shape, and the foldable part between two adjacent electrode regions in at least some of the electrode regions extends along the radial direction of the fan-shape.
  • the planar shape of each of the at least partial electrode regions is fan-shaped, and the multiple foldable parts between the at least partial electrode regions are radially distributed.
  • the foldable and expandable cortical electrode provided in at least one embodiment of the present disclosure, at least part of the electrode area includes N electrode areas arranged in sequence along the tangent direction of the fan-shaped electrode, and N is a positive integer greater than 1; the foldable and expandable cortical electrode also includes: a first electrode connecting portion and a second electrode connecting portion, which are respectively arranged on opposite sides of the N electrode areas along the tangent direction, and are configured to be able to connect a folding control tool.
  • the planar shape of the foldable and expandable cortical electrode is fan-shaped as a whole, the first part of the multiple electrode areas is arranged in sequence along the tangent direction of the fan-shape, and the foldable part between two adjacent electrode areas in the first part extends along the radial direction of the fan-shape; the second part of the multiple electrode areas is arranged on one side of the first part along the radial direction of the fan-shape, and the foldable part between two adjacent electrode areas of the first part and the second part extends along the tangent direction of the fan-shape.
  • the first part includes N electrode areas arranged in sequence along the tangent direction of the fan-shaped electrode, and N is a positive integer greater than 1;
  • the foldable and expandable cortical electrode also includes: a first electrode connecting part and a second electrode connecting part, which are respectively arranged on opposite sides of the N electrode areas along the tangent direction, and are configured to be able to connect a folding control tool.
  • the planar shape of the foldable and expandable cortical electrode is a rectangle as a whole, at least some of the multiple electrode regions are arranged in sequence along the length direction or the width direction of the rectangle, and the foldable part between two adjacent electrode regions in at least some of the electrode regions extends along the width direction or the length direction of the rectangle.
  • the planar shape of the foldable and expandable cortical electrode is circular, triangular or polygonal as a whole, and the multiple foldable parts between the multiple electrode areas are radially distributed from a point on the circle or a vertex of the triangle or the polygon.
  • the foldable and expandable cortical electrode provided in at least one embodiment of the present disclosure further includes: a microfluidic layer, which is arranged on a side of the packaging layer away from the substrate or on a side of the substrate away from the packaging layer, and includes at least one microfluidic channel.
  • the microfluidic layer includes a first base film and a second base film arranged relatively to each other and a flow channel pattern arranged between the first base film and the second base film, and the flow channel pattern includes the at least one microfluidic channel.
  • the foldable and expandable cortical electrode provided in at least one embodiment of the present disclosure further includes: a biocompatible film, which is arranged on a side of the packaging layer away from the substrate or on a side of the substrate away from the packaging layer.
  • At least one embodiment of the present disclosure also provides a cortical electrode device, which includes the foldable and expandable cortical electrode provided in the embodiment of the present disclosure and a folding control tool, the folding control tool includes a first tube body and a second tube body, the first tube body has a first end and a second end relative to each other, the first end has a first control unit; the second tube body has a third end and a fourth end relative to each other, the third end has a second control unit, wherein the first tube body and the second tube body can be controlled to move relative to each other.
  • the second tube body can be accommodated in the first tube body, and when the second tube body is accommodated in the first tube body, the first tube body and the second tube body can be controlled to rotate relative to each other.
  • the first control unit includes a first arm set at an angle to the first tube body and a first matching structure set on the first arm;
  • the second control unit includes a second arm set at an angle to the second tube body and a second matching structure set on the second arm.
  • At least one embodiment of the present disclosure also provides a method for preparing a foldable and expandable cortical electrode, comprising: providing a substrate, forming a sacrificial layer on the substrate, forming a substrate on a side of the sacrificial layer away from the substrate, forming a conductive layer on a side of the substrate away from the sacrificial layer, forming a packaging layer on a side of the conductive layer away from the substrate, and peeling off the sacrificial layer; wherein the foldable and expandable cortical electrode has a plurality of electrode regions, each of the plurality of electrode regions comprises at least one conductive contact arranged in the conductive layer and at least one wire connected to the at least one conductive contact, the packaging layer comprises at least one opening exposing the at least one conductive contact, and a foldable portion is provided between two adjacent electrode regions among the plurality of electrode regions so that the two adjacent electrode regions can be folded along the foldable portion.
  • At least one embodiment of the present disclosure also provides a preparation method that also includes: forming a microchannel layer on a side of the encapsulation layer away from the substrate or a side of the substrate away from the encapsulation layer, including: forming a first base film, forming a photoresist material on the first base film, and exposing and developing the photoresist material, forming a second base film on a side of the photoresist material away from the first base film, immersing the first base film, the photoresist material and the second base film as a whole in a dissolving solution to dissolve the photoresist material to form a flow channel pattern; wherein the flow channel pattern includes at least one microchannel; attaching the first base film, the photoresist material and the second base film as a whole to a side of the encapsulation layer away from the substrate or a side of the substrate away from the encapsulation layer.
  • FIG1 is a schematic diagram of a planar structure of a foldable and deployable cortical electrode provided by at least one embodiment of the present disclosure
  • FIG2 is a schematic cross-sectional view of the foldable and deployable cortical electrode along line A-A in FIG1 ;
  • FIG3 is a schematic diagram of two adjacent electrode regions of a foldable and deployable cortical electrode provided by at least one embodiment of the present disclosure in an deployed state;
  • FIG4 is a schematic diagram of two adjacent electrode regions of a foldable and deployable cortical electrode in a folded state provided by at least one embodiment of the present disclosure
  • FIG5 is a cross-sectional schematic diagram of two adjacent electrode regions of a foldable and deployable cortical electrode provided by at least one embodiment of the present disclosure
  • FIG6 is a cross-sectional schematic diagram of two adjacent electrode regions of another foldable and deployable cortical electrode provided by at least one embodiment of the present disclosure
  • FIG7 is a cross-sectional schematic diagram of two adjacent electrode regions of yet another foldable and deployable cortical electrode provided by at least one embodiment of the present disclosure
  • FIG8 is a schematic diagram of a planar structure of another foldable and deployable cortical electrode provided by at least one embodiment of the present disclosure
  • FIG9 is a schematic diagram of a planar structure of yet another foldable and deployable cortical electrode provided by at least one embodiment of the present disclosure.
  • FIG10 is a schematic diagram of a planar structure of yet another foldable and deployable cortical electrode provided by at least one embodiment of the present disclosure
  • FIG11 is a schematic diagram of a planar structure of yet another foldable and deployable cortical electrode provided by at least one embodiment of the present disclosure
  • FIG12 is a schematic diagram of a planar structure of yet another foldable and deployable cortical electrode provided by at least one embodiment of the present disclosure
  • FIG13 is a schematic diagram of a planar structure of yet another foldable and deployable cortical electrode provided by at least one embodiment of the present disclosure
  • FIG14 is a partial cross-sectional schematic diagram of another foldable and deployable cortical electrode provided by at least one embodiment of the present disclosure.
  • FIG15 is a partial cross-sectional schematic diagram of yet another foldable and deployable cortical electrode provided by at least one embodiment of the present disclosure.
  • FIG16 is a three-dimensional schematic diagram of a folding control tool of a foldable and deployable cortical electrode device provided by at least one embodiment of the present disclosure
  • FIG17 is a schematic diagram of the structure of a first control unit and a second control unit of a folding control tool of a cortical electrode device provided in at least one embodiment of the present disclosure
  • FIG18 is a schematic diagram of a state in which a folding control tool of a cortical electrode device provided by at least one embodiment of the present disclosure controls a foldable cortical electrode;
  • FIG19 is a schematic diagram of neural signals collected by a foldable and deployable cortical electrode according to at least one embodiment of the present disclosure
  • FIG20 is a cross-sectional schematic diagram of a foldable and expandable cortical electrode during preparation according to at least one embodiment of the present disclosure.
  • FIG. 21 is a cross-sectional schematic diagram of the microfluidic layer of the foldable and expandable cortical electrode during the preparation process provided by at least one embodiment of the present disclosure.
  • the craniotomy area required for implantation and the electrode coverage area are key indicators for evaluating ECoG electrodes, which can be comprehensively expressed by the ratio of the two (damage ratio).
  • a larger coverage area can provide multi-brain region interaction capabilities and is the basis for a variety of scientific and clinical research.
  • a smaller craniotomy area can reduce trauma and avoid surgical risks such as cerebrospinal fluid leakage and intracranial infection.
  • a curling-based deployable electrode can be used.
  • the electrode can reduce the damage ratio of the implanted device, the device is still not compact enough after curling, and the working space of the unfolding action is large, making it difficult to complete the implantation and unfolding of the ECoG electrode in the gap structure above or below the dura mater.
  • At least one embodiment of the present disclosure provides a foldable and expandable cortical electrode and a preparation method thereof, and a cortical electrode device.
  • the foldable and expandable cortical electrode has multiple electrode regions and includes a substrate, a conductive layer and a packaging layer; the conductive layer is arranged on the substrate, and the packaging layer is arranged on the side of the conductive layer away from the substrate; wherein each of the multiple electrode regions includes at least one conductive contact arranged in the conductive layer and at least one wire connected to the at least one conductive contact, the packaging layer includes at least one opening exposing the at least one conductive contact, and a foldable portion is provided between two adjacent electrode regions among the multiple electrode regions so that the two adjacent electrode regions can be folded along the foldable portion.
  • the foldable and expandable cortical electrode provided by the embodiment of the present disclosure can be transformed between the expanded state and the folded state by folding (for example, the origami principle), so that it has a larger electrode coverage area in the expanded state and a smaller volume in the folded state, so as to adapt to different operations in different states.
  • folding for example, the origami principle
  • the foldable and expandable cortical electrode provided by the embodiment of the present disclosure only requires a smaller craniotomy area, and after implantation, a larger electrode coverage area can be achieved by unfolding, so as to minimize the damage ratio.
  • FIG1 shows a schematic diagram of the planar structure of the foldable expandable cortical electrode
  • FIG2 shows a schematic diagram of the cross-section of the foldable expandable cortical electrode along the A-A line in FIG1.
  • the foldable expandable cortical electrode has a plurality of electrode regions 10, and includes a substrate 101, a conductive layer 102, and a packaging layer 103.
  • the conductive layer 102 is disposed on the substrate 101, and the encapsulation layer 103 is disposed on a side of the conductive layer 102 away from the substrate 101.
  • Each of the plurality of electrode regions 10 includes at least one conductive contact 1021 disposed in the conductive layer 102 and at least one wire 1022 connected to the at least one conductive contact 1021.
  • the conductive layer 102 includes a plurality of (e.g., 16, 32, 64, 128, 256, 512, 1024, 2000, 3000, 4000, or 5000) conductive contacts 1021 and corresponding wires 1022, which may be evenly distributed in each electrode region 10, or distributed in each electrode region 10 in other suitable non-uniform manners.
  • the conductive contacts 1021 and the corresponding wires 1022 are responsible for establishing electrical connections between intracranial neural tissue and external devices (e.g., collectors, amplifiers, electrical stimulators, etc.).
  • the encapsulation layer 103 includes at least one opening 1031 exposing at least one conductive contact 1021 .
  • a foldable portion 20 (also referred to as a fold) is provided between two adjacent electrode regions 10 among the plurality of electrode regions 10 , so that the two adjacent electrode regions 10 can be folded along the foldable portion 20 .
  • two adjacent electrode regions 10 can be folded along the foldable portion 20, which means that the two adjacent electrode regions 10 can be bent along the foldable portion 20 so that the angle between the two adjacent electrode regions 10 can be gradually changed within an angle range of 0 degrees to 180 degrees (for example, within a range of 5 degrees to 85 degrees, for example, within a range of 10 degrees to 80 degrees, for example, within a range of 15 degrees to 75 degrees, etc.), and is not limited to a gradual change between 0 degrees and 180 degrees.
  • the multiple foldable portions 20 between the multiple electrode regions 10 can be arranged in parallel or intersecting configurations to divide the cortical electrode into multiple electrode regions 10.
  • the multiple foldable portions 20 can be reversibly bent to change the angle and spatial distribution of the multiple electrode regions 10, thereby changing the overall shape and volume of the cortical electrode.
  • the cortical electrode can be in an unfolded state with a larger coverage area, a folded state with a smaller overall volume, and a transitional state between the folded state and the unfolded state.
  • Figures 3 and 4 show schematic diagrams of the three-dimensional structure of two adjacent electrode areas in a foldable expandable cortical electrode provided in at least one embodiment of the present disclosure.
  • Figure 3 shows that the two adjacent electrode areas are in an expanded state
  • Figure 4 shows that the two adjacent electrode areas are in a folded state.
  • the foldable expandable cortical electrode may further include a reinforcement layer 104, which may be disposed on a side of the encapsulation layer 103 close to or away from the substrate 101 (the figure shows that the reinforcement layer 104 is disposed on a side of the encapsulation layer 103 away from the substrate 101), or in other embodiments, may also be disposed on a side of the substrate 101 close to or away from the encapsulation layer 103.
  • a reinforcement layer 104 which may be disposed on a side of the encapsulation layer 103 close to or away from the substrate 101 (the figure shows that the reinforcement layer 104 is disposed on a side of the encapsulation layer 103 away from the substrate 101), or in other embodiments, may also be disposed on a side of the substrate 101 close to or away from the encapsulation layer 103.
  • the reinforcement layer 104 includes a plurality of patterns 1041 corresponding to the plurality of electrode regions 10, for example, the shapes and sizes of the plurality of patterns 1041 are substantially the same as the shapes and sizes of the plurality of electrode regions 10, and there is a gap between two adjacent patterns 1041 in the plurality of patterns 1041 to form a foldable portion 20.
  • the bending stiffness of the foldable expandable cortical electrode with the pattern 1041 is greater than the bending stiffness without the pattern 1041 (that is, the gap). Therefore, the foldable expandable cortical electrode is easier to bend at the gap to form the above-mentioned foldable part 20 (also called a crease).
  • the illumination unit 1042 includes an illumination device, which may be in the form of an optical fiber or an LED lamp (e.g., a micro LED lamp).
  • the illumination unit 1042 may emit infrared light, ultraviolet light, or light of a specific wavelength. In use, the light emitted by the illumination unit 1042 may stimulate nerve cells, thereby increasing or decreasing the activity of nerve cells.
  • the reinforcement layer 104 can be made of insulating materials such as epoxy resin and plastic, or in other embodiments, it can be made of metals, alloys and other materials.
  • the reinforcement layer 104 needs to be arranged on the side of the packaging layer 103 away from the substrate 101 or on the side of the substrate 101 away from the packaging layer 103, and when there is a lighting part 1042, it also needs to be matched with a corresponding insulating structure to achieve accurate electrical connection.
  • the reinforcing layer 104 when the reinforcing layer 104 is made of insulating materials such as epoxy resin and plastic, and when the reinforcing layer 104 is disposed on a side of the encapsulation layer 103 away from the substrate 101, the position of the reinforcing layer 104 corresponding to the conductive contact 1021 also has an opening (not shown in the figure) to expose the conductive contact 1021.
  • the reinforcing layer 104 is made of organic insulating materials such as epoxy resin and plastic, and when the reinforcing layer 104 is disposed on a side of the substrate 101 away from the encapsulation layer 103, the reinforcing layer 104 may not be provided with an opening.
  • FIG5 shows a cross-sectional schematic diagram of another foldable expandable cortical electrode provided by at least one embodiment of the present disclosure.
  • at least one of the substrate 101 and the encapsulation layer 103 includes a flexible portion F in the foldable portion 20, and the elastic modulus of the flexible portion F is lower than the elastic modulus of the portion F1 of at least one of the substrate 101 and the encapsulation layer 103 other than the flexible portion F.
  • only the substrate 101 may include the flexible portion F
  • only the encapsulation layer 103 may include the flexible portion F
  • both the substrate 101 and the encapsulation layer 103 may include the flexible portion F, which is not specifically limited in the embodiments of the present disclosure.
  • Fig. 6 shows a cross-sectional schematic diagram of another foldable expandable cortical electrode provided by at least one embodiment of the present disclosure.
  • at least one of the substrate 101 and the encapsulation layer 103 includes a hollow portion H in the foldable portion 20, and the material of the hollow portion H is removed, so that the foldable expandable cortical electrode is easy to bend at the hollow portion H to form the above-mentioned foldable portion 20.
  • only the substrate 101 may include the hollow portion H, or only the encapsulation layer 103 may include the hollow portion H (the situation shown in FIG6 ), and the embodiments of the present disclosure do not specifically limit this.
  • FIG7 shows a cross-sectional schematic diagram of another foldable expandable cortical electrode provided by at least one embodiment of the present disclosure.
  • at least one of the substrate 101 and the encapsulation layer 103 includes a thinning portion H1 in the foldable portion 20, and the thickness of the thinning portion H1 is lower than the thickness of the portion H2 of at least one of the substrate 101 and the encapsulation layer 103 other than the thinning portion H1.
  • the thickness of a structure refers to the dimension of the structure in a direction perpendicular to the substrate 101 , for example, in FIG. 7 , it refers to the dimension in the vertical direction.
  • only the substrate 101 may include the thinning portion H1
  • only the encapsulation layer 103 may include the thinning portion H1
  • both the substrate 101 and the encapsulation layer 103 may include the thinning portion H1 (the situation shown in FIG. 7 ), and the embodiments of the present disclosure do not specifically limit this.
  • the overall planar shape of the foldable and expandable cortical electrode can be rectangular, circular, polygonal, triangular, fan-shaped, cross-shaped, or other irregular shapes or a combination of multiple shapes.
  • Figure 1 shows a case where the planar shape of the foldable expandable cortical electrode is fan-shaped as a whole.
  • at least part of the multiple electrode regions 10 are arranged in sequence along the tangential direction R1 of the fan, and the foldable part 20 between two adjacent electrode regions 10 extends along the radial direction R2 of the fan.
  • each electrode region 10 is also fan-shaped, and the multiple foldable portions 20 between the electrode regions 10 are radially distributed.
  • the multiple foldable portions 20 may extend to the same intersection point.
  • the portion indicated by the dotted circle in FIG1 is the electrical connection portion of the foldable and expandable cortical electrode, and the conductive contact 1021 in the conductive layer 102 extends thereto through the wire 1022, for example, to form an interface, so as to facilitate electrical connection with an external circuit (such as a collection device, etc.).
  • the interface can be connected to the collection device through a zero insertion force device, so that the collection device can collect multi-channel cortical neural electrical signals.
  • the foldable expandable cortical electrode includes N electrode regions arranged in sequence along the tangent direction R1 of the sector, where N is a positive integer greater than 1.
  • N is 8
  • the foldable expandable cortical electrode includes 8 electrode regions arranged in sequence along the tangent direction R1 of the sector, and there is a foldable portion 20 between each two adjacent electrode regions 10, and at this time, the number of the foldable portions 20 is 7.
  • each electrode region 10 may include 8 conductive contacts, so that the foldable expandable cortical electrode has a total of 64 conductive contacts.
  • the foldable expandable cortical electrode may also include a first electrode connecting portion 30 and a second electrode connecting portion 31, and the first electrode connecting portion 30 and the second electrode connecting portion 31 are respectively arranged on opposite sides of the above-mentioned N electrode regions along the tangent R1, and are configured to be able to connect to a folding control tool.
  • the folding control tool can realize the unfolding and folding operations of the foldable expandable cortical electrode by cooperating with the first electrode connecting portion 30 and the second electrode connecting portion 31.
  • the first electrode connection part 30 and the second electrode connection part 31 respectively include a connection hole 32 to enable connection with a folding control tool.
  • the first electrode connection part 30 and the second electrode connection part 31 respectively include two connection holes 32 to make the connection with the folding control tool more stable.
  • the first electrode connection portion 30 and the second electrode connection portion 31 are integrally connected to the substrate 101 , for example, are portions extending from the substrate 101 and are opened to form connection holes 32 .
  • the folding control tool can be connected to the connecting holes 32 on the first electrode connecting part 30 and the second electrode connecting part 31, and then a force is applied to the first electrode connecting part 30 and the second electrode connecting part 31 to achieve the unfolding and folding of the cortical electrode.
  • FIG8 shows a schematic plan view of another foldable expandable cortical electrode provided by at least one embodiment of the present disclosure.
  • the planar shape of the foldable expandable cortical electrode is fan-shaped as a whole, and the plurality of electrode regions 10 are divided into two parts (two layers), the first part P1 (bottom layer) of the plurality of electrode regions 10 is arranged in sequence along the tangent direction R1 of the fan-shaped, and the foldable part 21 between two adjacent electrode regions 10 in the first part P1 extends along the radial direction R2 of the fan-shaped; the second part P2 (top layer) of the plurality of electrode regions 10 is arranged on one side (e.g., outside) of the first part P1 along the radial direction R2 of the fan-shaped, and the foldable part 22 between two adjacent electrode regions 10 of the first part P1 and the second part P2 extends along the tangent direction R1 of the fan-shaped.
  • the foldable part 22 along the tangent direction R1 can also be folded, thereby further increasing the coverage area of the foldable cortical electrode in the unfolded state, which will be shown and described in detail later.
  • the first portion P1 includes N electrode regions sequentially arranged along the sector-shaped tangential direction R1, where N is a positive integer greater than 1, and in the embodiment of FIG8 , N is 8.
  • the second portion P2 is arranged outside the first portion P1 along the radial direction R2, and includes four electrode regions 10 located at the edge of the first portion P1, with two electrode regions 10 arranged at each edge, which is conducive to folding the foldable portion 22 of the second portion P2 along the tangential direction R1.
  • the first part P1 includes 8 electrode regions 10, the second part P2 includes 4 electrode regions 10, and the cortical electrode has a total of 12 electrode regions 10.
  • each electrode region 10 may have 4 conductive contacts or 8 conductive contacts, so that the cortical electrode has a total of 64 conductive contacts.
  • each electrode region 10 in the first part P1 has 4 conductive contacts 1021, and each electrode region 10 in the second part P2 has 8 conductive contacts 1021, so that the cortical electrode has a total of 64 conductive contacts.
  • the cortical electrode may also adopt other conductive contact configurations, which are not specifically limited in the embodiments of the present disclosure.
  • the foldable expandable cortical electrode also includes a first electrode connection portion 30 and a second electrode connection portion 31, which are respectively arranged on opposite sides of the N electrode regions of the first part P1 along the tangent direction R1, and are configured to be able to connect to a folding control tool.
  • first electrode connection portion 30 and the second electrode connection portion 31 are substantially the same as those in the above embodiment, and are not described in detail here.
  • the foldable expandable cortical electrode may also adopt other shapes.
  • FIG9 shows another plan view of a foldable expandable cortical electrode provided by at least one embodiment of the present disclosure.
  • the planar shape of the foldable expandable cortical electrode is rectangular as a whole, at least part of the electrode regions 10 (for example, all the electrode regions 10) of the plurality of electrode regions 10 are arranged in sequence along the length direction (or width direction) of the rectangle, and the foldable portion 20 between two adjacent electrode regions 10 extends along the width direction (or length direction) of the rectangle.
  • FIG10 shows another planar schematic diagram of a foldable expandable cortical electrode provided by at least one embodiment of the present disclosure.
  • the planar shape of the foldable expandable cortical electrode is rectangular as a whole, and the foldable expandable cortical electrode has a double-layer electrode region, and the first part P1 (bottom layer) of the plurality of electrode regions 10 is arranged in sequence along the length direction (or width direction) of the rectangle, and the foldable part 21 between two adjacent electrode regions 10 extends along the width direction (or length direction) of the rectangle.
  • the second part P2 (top layer) of the plurality of electrode regions 10 is arranged on one side (the upper side in the figure) of the first part P1 along the width direction (or length direction) of the rectangle, and the foldable part 22 between the adjacent electrode regions 10 of the first part P1 and the second part P2 extends along the length direction (or width direction) of the rectangle.
  • Figures 11-13 respectively show plan schematic diagrams of different foldable expandable cortical electrodes provided by at least one embodiment of the present disclosure.
  • the plan shape of the foldable expandable cortical electrode is triangular as a whole, each electrode region 10 is also triangular, and multiple foldable portions 20 between multiple electrode regions 10 are radially distributed at one vertex of the triangle.
  • the plan shape of the foldable expandable cortical electrode is polygonal as a whole (hexagonal as an example in the figure), each electrode region 10 is triangular, and multiple foldable portions 20 between multiple electrode regions 10 are radially distributed at one vertex of the polygon.
  • the plan shape of the foldable expandable cortical electrode is circular as a whole, and multiple foldable portions 20 between multiple electrode regions 10 are radially distributed at one vertex of the circle.
  • the foldable and expandable cortical electrode may also adopt other patterns, and arrange the electrode area 10 and the foldable part 20 in a manner similar to the above embodiment, and the embodiments of the present disclosure will not be repeated.
  • the foldable expandable cortical electrode may further include other functional layers.
  • FIG. 14 shows another cross-sectional schematic diagram of a foldable expandable cortical electrode provided by at least one embodiment of the present disclosure.
  • the foldable expandable cortical electrode may further include a microfluidic layer 105, the microfluidic layer 105 being arranged on a side of the encapsulation layer 103 away from the substrate 101 (the case shown in FIG. 14) or on a side of the substrate 101 away from the encapsulation layer 103, and the microfluidic layer 105 includes at least one microfluidic channel M, for example, a plurality of microfluidic channels M.
  • the microfluidic channel M can be used to transport drugs.
  • the microfluidic channel M can be used to connect a liquid delivery device, such as a peristaltic pump, which can be controlled by a collection system.
  • the collection system determines in real time whether to drive the liquid delivery device based on the characteristics of the electrical signal to achieve closed-loop delivery of drugs from the outside of the skull to the inside of the skull through the microfluidic channel M.
  • the microfluidic layer 105 includes a first base film 1051 and a second base film 1053 that are arranged opposite to each other, and a flow channel pattern 1052 that is arranged between the first base film 1051 and the second base film 1053, and the flow channel pattern 1052 includes at least one microfluidic channel M.
  • the extension shape of the microfluidic channel M can be a straight line, a curve, or other suitable patterns, which is not specifically limited in the embodiments of the present disclosure.
  • Figure 15 shows another cross-sectional schematic diagram of a foldable expandable cortical electrode provided by at least one embodiment of the present disclosure.
  • the foldable expandable cortical electrode may further include a biocompatible film 106, which is disposed on a side of the encapsulation layer 103 (or the reinforcement layer 104, or the microfluidic layer 105) away from the substrate 101 or on a side of the substrate 101 away from the encapsulation layer 103, that is, the biocompatible film 106 may be disposed on the outermost side of the foldable expandable cortical electrode.
  • the biocompatible film 106 may include biocompatible components such as polypeptides and proteins, thereby providing biocompatibility on the surface of the foldable and deployable cortical electrode to avoid adverse effects on contacted tissues or cells.
  • the substrate 101 can be made of insulating materials such as polyimide, polyparaxylene, epoxy resin, polydimethylsiloxane, silicone, etc.
  • the conductive layer 102 can be made of conductive materials such as metal or alloy (such as gold, platinum, platinum-iridium alloy, stainless steel, tungsten, etc.), metal oxide (magnesium oxide, iridium oxide, etc.), graphene, carbon nanotubes, conductive polymers, etc.
  • the encapsulation layer 103 can be made of insulating materials such as polyimide, polyparaxylene, epoxy resin, polydimethylsiloxane, silicone, etc.; the embodiments of the present disclosure do not limit the specific materials of the above-mentioned layers.
  • the foldable and expandable cortical electrode provided in the embodiment of the present disclosure adopts an origami-style design to form a foldable and expandable cortical electrode, and constructs a cortical electrode that can be folded in vitro, so that the cortical electrode can compress the electrode volume in a folded state, rather than compressing the volume by other means such as curling and irregular extrusion, which can fully maintain the integrity of the cortical electrode and avoid damage to the cortical electrode when the state changes; for example, during the folding and unfolding operation of the foldable and expandable cortical electrode, the stress generated is mainly concentrated in the foldable part, while the electrode area is basically unaffected, thereby fully protecting the conductive structure of the electrode area (such as conductive contacts and conduction, etc.), while in the process of compressing the electrode volume by other means such as curling and irregular extrusion, the stress distribution generated is difficult to control, which is likely to affect the structure of the conductive layer and cause structural damage; the foldable and expandable cortical electrode provided in
  • At least one embodiment of the present disclosure further provides a cortical electrode device, which includes a foldable and expandable cortical electrode provided in an embodiment of the present disclosure and a folding control tool.
  • a cortical electrode device which includes a foldable and expandable cortical electrode provided in an embodiment of the present disclosure and a folding control tool.
  • FIG16 shows a three-dimensional schematic diagram of the folding control tool
  • FIG17 shows a structural schematic diagram of a first control unit and a second control unit of the folding control tool.
  • the folding control tool includes a first tube body 41 and a second tube body 42, the first tube body 41 has a first end 41A and a second end 41B relative to each other, the first end 41A has a first control part 51; the second tube body 42 has a third end 42A and a fourth end 42B relative to each other, the third end 42A has a second control part 52, for example, the first tube body 41 and the first tube body 42 can be controlled to move relative to each other, so that the first control part 51 and the second control part 52 move relative to each other, and then when the first control part 51 and the second control part 52 are connected to the foldable expandable cortical electrode, the purpose of unfolding or folding the foldable expandable cortical electrode can be achieved.
  • the first control part 51 includes a first arm (i.e., the part indicated by label 51) arranged at an angle (e.g., perpendicular) to the first tube body 41, and a first matching structure 51A arranged on the first arm;
  • the second control part 52 includes a second arm (i.e., the part indicated by label 52) arranged at an angle (e.g., perpendicular) to the second tube body 42, and a second matching structure 52A arranged on the second arm.
  • the first mating structure 51A and the second mating structure 52A are protrusions respectively arranged on the first arm and the second arm, and the protrusions can cooperate with the connecting holes 32 on the first electrode connecting part 30 and the second electrode connecting part 31 of the foldable expandable cortical electrode, for example, extend into the connecting hole 32, thereby realizing the unfolding or folding of the foldable expandable cortical electrode.
  • the first control unit 51 and the second control unit 52 may also be in other forms, such as realizing a reversible or irreversible connection with the foldable expandable cortical electrode through colloid or welding.
  • the folding control tool can change its own shape under the drive of external force (mechanical force, thermal force, magnetic force, electric force), drive the folding and unfolding of the foldable expandable cortical electrode connected thereto, change the spatial form of the foldable expandable cortical electrode, and realize the switching of the foldable expandable cortical electrode between the folded state and the unfolded state.
  • the first tube 41 and the second tube 42 can be controlled to move closer to or farther from each other, thereby achieving the expansion or folding of the foldable and expandable cortical electrode.
  • the second tube body 42 can be accommodated in the first tube body 41, and when the second tube body 42 is accommodated in the first tube body 41, the first tube body 41 and the second tube body 42 can be controlled to rotate relative to each other, so that the foldable and deployable cortical electrode can be unfolded or folded.
  • this relatively rotatable folding control tool is more suitable for the radially foldable portion 20 shown in FIG. 1 , FIG. 8 , and FIG. 11 to FIG. 13 .
  • the second tube body 42 may be a solid cylindrical tube body
  • the first arm may be a cuboid arm
  • the first tube body 41 may be a hollow cylindrical tube body
  • the second arm may be a cuboid arm
  • the diameter of the hollow part of the hollow cylinder of the first tube body 41 is larger than the diameter of the solid cylinder of the second tube body 42, so that the solid cylinder can be inserted into the hollow part of the hollow cylinder, and the two can rotate around the same central axis.
  • the cuboid arms of the first tube body 41 and the second tube body 42 can be relatively rotated along the axes of the first tube body 41 and the second tube body 42 under the drive of an external force, so that the angle between the two cuboid arms can be changed within an angle range between 0 degrees and 180 degrees.
  • FIG18 shows a process diagram of controlled folding and unfolding of a foldable and deployable cortical electrode.
  • the folding and unfolding process in FIG18 takes the foldable and deployable cortical electrode in FIG8 as an example.
  • the foldable expandable cortical electrode can be folded by matching the first matching structure 51A on the first control part 51 and the second matching structure 52A on the second control part 52 of the folding control tool with the connecting holes 32 on the first electrode connecting part 30 and the second electrode connecting part 31 of the foldable expandable cortical electrode, and relatively rotating the first tube body 41 and the second tube body 42, that is, variation 1 in FIG. 18 .
  • the multiple electrode regions 10 of the foldable expandable cortical electrode can be folded seven times along the foldable portion 21 (these foldings can be performed simultaneously or in batches), and then two folds are performed along the foldable portion 22.
  • the foldable expandable cortical electrode has a smaller volume as a whole, so that it can enter the target object (such as the skull) through a smaller opening (such as a wound).
  • the foldable expandable cortical electrode together with the folding control tool is delivered into the gap between the dura mater and the skull through a small cranial window; thereafter, along the opposite
  • the first tube body 41 and the second tube body 42 are rotated relative to each other in the direction to produce the second change.
  • the angle between the two arms of the folding control tool gradually increases, and the first electrode connecting part 30 and the second electrode connecting part 31 of the foldable expandable cortical electrode are subjected to the force in the direction indicated by the arrow, so that the first part P1 of the foldable expandable cortical electrode is unfolded along the foldable part 22 relative to the second part P2, and further produce the third change, so that the foldable expandable cortical electrode is unfolded along the foldable part 21, so as to realize the further unfolding of the foldable expandable cortical electrode, for example, to reach a suitable unfolding state; thereafter, the connection between the folding control tool and the foldable expandable cortical electrode can be removed, for example, the first tube body 41 and the second tube body 42 are rotated in the opposite direction to realize the separation of the folding control tool and the foldable expandable cortical electrode, the folding control tool is taken out from the skull, and the foldable expandable cortical electrode is connected to an external circuit (such as an acquisition device, etc.) to realize the
  • the folding control tool adopts a coaxial double-arm structure.
  • the folding control tool may also be a coaxial multi-arm structure (in which case it may include more tube bodies), or a parallel slide rail structure (for example, a slide rail is added between the first tube body and the second tube body to limit the relative movement of the two), etc.
  • a parallel slide rail structure for example, a slide rail is added between the first tube body and the second tube body to limit the relative movement of the two
  • the folding control tool can be prepared using a 3D printing process.
  • Figure 19 is a schematic diagram of the neural signals collected by the foldable and expandable cortical electrode provided in at least one embodiment of the present disclosure.
  • the multi-channel (four channels are shown in the figure) cortical neural electrical signals collected by the foldable and expandable cortical electrode provided in the present disclosure are basically the same as the important information such as the frequency and amplitude of the neural electrical signals collected by other standard gold electrodes, which also verifies the feasibility of the foldable and expandable cortical electrode provided in at least one embodiment of the present disclosure.
  • At least one embodiment of the present disclosure also provides a method for preparing a foldable expandable cortical electrode, comprising: providing a substrate substrate, forming a sacrificial layer on the substrate substrate, forming a substrate on a side of the sacrificial layer away from the substrate substrate, forming a conductive layer on a side of the substrate away from the sacrificial layer, forming a packaging layer on a side of the conductive layer away from the substrate, and peeling off the sacrificial layer.
  • the foldable expandable cortical electrode has a plurality of electrode regions, each of the plurality of electrode regions includes at least one conductive contact disposed in the conductive layer and at least one wire connected to the at least one conductive contact, the packaging layer includes at least one opening exposing the at least one conductive contact, and a foldable portion is provided between two adjacent electrode regions in the plurality of electrode regions so that the two adjacent electrode regions can be folded along the foldable portion.
  • FIG20 shows a cross-sectional schematic diagram of the foldable expandable cortical electrode provided in at least one embodiment of the present disclosure during the preparation process.
  • the substrate S1 can be a silicon wafer, and the upper surface of the silicon wafer can be polished to facilitate the formation of subsequent functional layers; for example, a sacrificial layer S2 is formed on the substrate S1 by a process such as magnetron sputtering or thermal evaporation, for example, the sacrificial layer S2 can be made of metal nickel; then, a substrate 101 is formed on the sacrificial layer S2 by spin coating and thermal curing, for example, the substrate 101 can be made of polyimide; then, a conductive layer 102 is formed on the substrate 101 by a patterning process, for example, the patterning process can include coating a photoresist material on the substrate 101, exposing and developing the photoresist material to form a photoresist pattern, and then using the photoresist
  • the material of the encapsulation layer 103 is formed on the conductive layer 102 by spin coating and thermal curing, for example, the encapsulation layer 103 can be made of polyimide, and then the material of the encapsulation layer 103 is patterned and etched to expose the conductive contacts 1021 of the conductive layer 102.
  • the patterned etching of the material of the encapsulation layer 103 can include coating a photoresist material on the encapsulation layer 103, exposing and developing the photoresist material to form a photoresist pattern, and then etching the material of the encapsulation layer 103 using the photoresist pattern as a mask to form an opening 1031 of the encapsulation layer 103; then, in some embodiments, other functional layers such as an enhancement layer 104 can be formed on the encapsulation layer 103; finally, the sacrificial layer S2 is released by, for example, mechanical stripping to obtain a foldable and expandable cortical electrode such as shown in Figures 1 and 2.
  • the foldable and expandable cortical electrode provided in the embodiment of the present disclosure can be prepared through simple process steps using MEMS (micro-electromechanical system) technology. This preparation method is simple, low-cost, and suitable for mass production.
  • MEMS micro-electromechanical system
  • the preparation method may further include: forming a microfluidic layer 105 on a side of the encapsulation layer 103 away from the substrate 101 or a side of the substrate 101 away from the encapsulation layer 103.
  • the microfluidic layer 105 may be directly formed on a side of the encapsulation layer 103 away from the substrate 101 or a side of the substrate 101 away from the encapsulation layer 103 by a patterning process; or, in other embodiments, the microfluidic layer 105 may also be formed independently and then attached to a side of the encapsulation layer 103 away from the substrate 101 or a side of the substrate 101 away from the encapsulation layer 103.
  • FIG21 shows a schematic cross-sectional view of a microfluidic layer in the process of forming a microfluidic layer separately.
  • forming the microfluidic layer 105 may include: forming a first base film 1051 on a substrate S3 such as a silicon wafer by spin coating or the like, for example, the first base film 1051 may be made of a material such as polydimethylsiloxane (PDMS); then, forming a photoresist material (such as a positive photoresist material, or a negative photoresist material in other embodiments) on the first base film 1051, and exposing and developing the photoresist material; then, forming a second base film 1053 on a side of the photoresist material away from the first base film 1051 by, for example, spin coating or the like, and the second base film 1053 may be formed on the side of the photoresist material away from the first base film 1051.
  • PDMS polydimethylsiloxane
  • the membrane 1053 can be made of materials such as polydimethylsiloxane (PDMS); then, the first base film 1051, the photoresist material and the second base film 1053 are immersed in a dissolving solution, such as an acetone solution, to dissolve the photoresist material to form a flow channel pattern 1052, and the flow channel pattern 1052 includes at least one microchannel M; finally, the first base film 1051, the photoresist material (that is, the flow channel pattern 1052) and the second base film 1053 are attached to the side of the encapsulation layer 103 away from the substrate 101 or the side of the substrate 101 away from the encapsulation layer 103 to form a microfluidic layer 105.
  • a dissolving solution such as an acetone solution
  • the preparation method provided in the embodiments of the present disclosure can prepare a foldable expandable cortical electrode through a simple and mature process.
  • the foldable expandable cortical electrode adopts an origami design, which can compress the electrode volume in the folded state, fully maintain the integrity of the foldable expandable cortical electrode, and avoid damage to the foldable expandable cortical electrode when the state changes; with the assistance of a folding control tool, the folded foldable expandable cortical electrode can be implanted through a small incision and further unfolded into a large-area structure, thereby realizing minimally invasive large-area interaction and reducing the cortical electrode damage ratio.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)

Abstract

一种折叠式可展开皮层电极及其制备方法、皮层电极装置,折叠式可展开皮层电极具有多个电极区域(10),且包括衬底(101)、导电层(102)以及封装层(103);导电层(102)设置在衬底(101)上,封装层(103)设置在导电层(102)的远离衬底(101)的一侧;其中,多个电极区域(10)中的每个包括设置在导电层(102)中的至少一个导电触点(1021)以及与至少一个导电触点(1021)连接的至少一条导线(1022),封装层(103)包括暴露至少一个导电触点(1021)的至少一个开孔(1031),多个电极区域(10)中相邻的两个电极区域(10)之间具有可折叠部分(20),以使得相邻的两个电极区域(10)能够沿可折叠部分(20)折叠。折叠式可展开皮层电极可以通过折叠在展开状态和折叠状态之间转变,从而在展开状态具有较大的电极覆盖面积,在折叠状态具有较小的体积,以在不同状态适应于不同的操作。

Description

折叠式可展开皮层电极及其制备方法、皮层电极装置 技术领域
本公开的实施例涉及一种折叠式可展开皮层电极及其制备方法、皮层电极装置。
背景技术
神经电极是脑机接口技术的核心部分。根据侵入神经组织程度不同,现有神经电极主要分为非侵入式和侵入式两类。
非侵入式神经电极用于采集头皮表面的脑电信号,又称脑电图电极(EEG电极)。由于颅骨、皮肤等组织对信号的衰减作用以及其他生理信号的干扰,所得到的脑电信号微弱且信噪比低、空间分辨率低,应用范围受限。
侵入式神经电极又可分为穿透性电极和非穿透性电极两类。穿透性电极使用时直接接触脑组织,因此具有良好的空间分辨率和较高的信噪比,并可以记录到尖峰(Spike)信号和局部场电位(LPF)信号,然而手术风险大,可能会造成急性组织损伤,并引起慢性炎症反应。非穿透性侵入式电极即为脑皮层电图电极(ECoG电极),使用时放置在硬脑膜上或硬脑膜下,其在确保信噪比与时空分辨率的同时,降低了穿透脑组织所带来的风险,并且可实现跨脑区神经信号的采集。
发明内容
本公开至少一实施例提供一种折叠式可展开皮层电极,该折叠式可展开皮层电极具有多个电极区域,且包括衬底、导电层、以及封装层;导电层设置在所述衬底上,封装层设置在所述导电层的远离所述衬底的一侧;其中,所述多个电极区域中的每个包括设置在所述导电层中的至少一个导电触点以及与所述至少一个导电触点连接的至少一条导线,所述封装层包括暴露所述至少一个导电触点的至少一个开孔,所述多个电极区域中相邻的两个电极区域之间具有可折叠部分,以使得所述相邻的两个电极区域能够沿所述可折叠部分折叠。
例如,本公开至少一实施例提供的折叠式可展开皮层电极还包括:增强层,设置在所述封装层的靠近或者远离所述衬底的一侧,或者设置在所述衬底的靠近所述封装层或者远离所述封装层的一侧,包括对应于所述多个电极区域的多个图案,其中,所述多个图案中相邻的两个图案之间具有间隙,以形成所述可折叠部分。
例如,本公开至少一实施例提供的折叠式可展开皮层电极中,所述多个图案中的至少部分包括照明部。
例如,本公开至少一实施例提供的折叠式可展开皮层电极中,所述衬底和所述封装层中的至少一个在所述可折叠部分包括柔性部,所述柔性部的弹性模量低于所述衬底和所述封装层中的至少一个的除所述柔性部之外的部分的弹性模量。
例如,本公开至少一实施例提供的折叠式可展开皮层电极中,所述衬底和所述封装层中的至少一个在所述可折叠部分包括镂空部或者减薄部,所述镂空部的材料被去除,所述减薄部的厚度低于所述衬底和所述封装层中的至少一个的除所述减薄部之外的部分的厚度。
例如,本公开至少一实施例提供的折叠式可展开皮层电极中,所述折叠式可展开皮层电极的平面形状整体呈扇形,所述多个电极区域中的至少部分电极区域沿所述扇形的切向依次排列,所述至少部分电极区域中相邻的两个电极区域之间的可折叠部分沿所述扇形的径向延伸。
例如,本公开至少一实施例提供的折叠式可展开皮层电极中,所述至少部分电极区域的每个的平面形状呈扇形,所述至少部分电极区域之间的多个可折叠部分呈放射状分布。
例如,本公开至少一实施例提供的折叠式可展开皮层电极中,所述至少部分电极区域包括沿所述扇形的切向依次排列的N个电极区域,N为大于1的正整数;所述折叠式可展开皮层电极还包括:第一电极连接部和第二电极连接部,分别设置在所述N个电极区域沿切向的相对两侧,配置为能够连接折叠控制工具。
例如,本公开至少一实施例提供的折叠式可展开皮层电极中,所述折叠式可展开皮层电极的平面形状整体呈扇形,所述多个电极区域中的第一部分沿所述扇形的切向依次排列,所述第一部分中相邻的两个电极区域之间的可折叠部分沿所述扇形的径向延伸;所述多个电极区域中的第二部分沿所述 扇形的径向排列在所述第一部分的一侧,所述第一部分和所述第二部分的相邻的两个电极区域之间的可折叠部分沿所述扇形的切向延伸。
例如,本公开至少一实施例提供的折叠式可展开皮层电极中,所述第一部分包括沿所述扇形的切向依次排列的N个电极区域,N为大于1的正整数;所述折叠式可展开皮层电极还包括:第一电极连接部和第二电极连接部,分别设置在所述N个电极区域沿切向的相对两侧,配置为能够连接折叠控制工具。
例如,本公开至少一实施例提供的折叠式可展开皮层电极中,所述折叠式可展开皮层电极的平面形状整体呈矩形,所述多个电极区域中的至少部分电极区域沿所述矩形的长度方向或宽度方向依次排列,所述至少部分电极区域中相邻的两个电极区域之间的可折叠部分沿所述矩形的宽度方向或长度方向延伸。
例如,本公开至少一实施例提供的折叠式可展开皮层电极中,所述折叠式可展开皮层电极的平面形状整体呈圆形、三角形或者多边形,所述多个电极区域之间的多个可折叠部分以所述圆形上的一个点或者所述三角形或者所述多边形的一个顶点呈放射状分布。
例如,本公开至少一实施例提供的折叠式可展开皮层电极还包括:微流道层,设置在所述封装层的远离所述衬底的一侧或者所述衬底的远离所述封装层的一侧,包括至少一条微流道。
例如,本公开至少一实施例提供的折叠式可展开皮层电极中,所述微流道层包括相对设置的第一基底膜和第二基底膜以及设置在所述第一基底膜和所述第二基底膜之间的流道图案,所述流道图案包括所述至少一条微流道。
例如,本公开至少一实施例提供的折叠式可展开皮层电极还包括:生物相容性膜,设置在所述封装层的远离所述衬底的一侧或者所述衬底的远离所述封装层的一侧。
本公开至少一实施例还提供一种皮层电极装置,该皮层电极装置包括本公开实施例提供的折叠式可展开皮层电极以及折叠控制工具,折叠控制工具包括第一管体和第二管体,第一管体具有相对的第一端和第二端,所述第一端具有第一控制部;第二管体具有相对的第三端和第四端,所述第三端具有第二控制部,其中,所述第一管体和所述第二管体能够受控相对移动。
例如,本公开至少一实施例提供的皮层电极装置中,所述第二管体能够容纳在所述第一管体中,且在所述第二管体容纳在所述第一管体中的情况下,所述第一管体和所述第二管体可受控相对转动。
例如,本公开至少一实施例提供的皮层电极装置中,所述第一控制部包括与所述第一管体呈角度设置的第一臂以及设置在所述第一臂上的第一配合结构;所述第二控制部包括与所述第二管体呈角度设置的第二臂以及设置在所述第二臂上的第二配合结构。
本公开至少一实施例还提供一种折叠式可展开皮层电极的制备方法,包括:提供衬底基板,在所述衬底基板上形成牺牲层,在所述牺牲层的远离所述衬底基板的一侧形成衬底,在所述衬底的远离所述牺牲层的一侧形成导电层,在所述导电层的远离所述衬底的一侧形成封装层,以及剥离所述牺牲层;其中,所述折叠式可展开皮层电极具有多个电极区域,所述多个电极区域中的每个包括设置在所述导电层中的至少一个导电触点以及与所述至少一个导电触点连接的至少一条导线,所述封装层包括暴露所述至少一个导电触点的至少一个开孔,所述多个电极区域中相邻的两个电极区域之间具有可折叠部分,以使得所述相邻的两个电极区域能够沿所述可折叠部分折叠。
例如,本公开至少一实施例还提供的制备方法还包括:在所述封装层的远离所述衬底的一侧或者所述衬底的远离所述封装层的一侧形成微流道层,包括:形成第一基底膜,在所述第一基底膜上形成光刻胶材料,并对所述光刻胶材料进行曝光显影,在所述光刻胶材料的远离所述第一基底膜的一侧形成第二基底膜,将所述第一基底膜、所述光刻胶材料和所述第二基底膜的整体浸入溶解液中,以对所述光刻胶材料进行溶解,形成流道图案;其中,所述流道图案包括至少一条微流道;将所述第一基底膜、所述光刻胶材料和所述第二基底膜的整体贴附在所述封装层的远离所述衬底的一侧或者所述衬底的远离所述封装层的一侧。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开至少一实施例提供的折叠式可展开皮层电极的平面 结构示意图;
图2为图1中的折叠式可展开皮层电极沿A-A线的截面示意图;
图3为本公开至少一实施例提供的折叠式可展开皮层电极的相邻的两个电极区域处于展开状态的示意图;
图4为本公开至少一实施例提供的折叠式可展开皮层电极的相邻的两个电极区域处于折叠状态的示意图;
图5为本公开至少一实施例提供的折叠式可展开皮层电极的相邻的两个电极区域的截面示意图;
图6为本公开至少一实施例提供的另一折叠式可展开皮层电极的相邻的两个电极区域的截面示意图;
图7为本公开至少一实施例提供的再一折叠式可展开皮层电极的相邻的两个电极区域的截面示意图;
图8为本公开至少一实施例提供的另一折叠式可展开皮层电极的平面结构示意图;
图9为本公开至少一实施例提供的再一折叠式可展开皮层电极的平面结构示意图;
图10为本公开至少一实施例提供的再另一折叠式可展开皮层电极的平面结构示意图;
图11为本公开至少一实施例提供的再另一折叠式可展开皮层电极的平面结构示意图;
图12为本公开至少一实施例提供的再另一折叠式可展开皮层电极的平面结构示意图;
图13为本公开至少一实施例提供的再另一折叠式可展开皮层电极的平面结构示意图;
图14为本公开至少一实施例提供的另一折叠式可展开皮层电极的部分截面示意图;
图15为本公开至少一实施例提供的再一折叠式可展开皮层电极的部分截面示意图;
图16为本公开至少一实施例提供的折叠式可展开皮层电极装置的折叠控制工具的立体示意图;
图17为本公开至少一实施例提供的皮层电极装置的折叠控制工具 的第一控制部和第二控制部的结构示意图;
图18为本公开至少一实施例提供的皮层电极装置的折叠控制工具控制折叠式皮层电极的状态的示意图;
图19为本公开至少一实施例提供的折叠式可展开皮层电极采集到的神经信号的示意图;
图20为本公开至少一实施例提供的折叠式可展开皮层电极在制备过程中的截面示意图;以及
图21为本公开至少一实施例提供的折叠式可展开皮层电极的微流控层在制备过程中的截面示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
植入所需的开颅面积与电极覆盖面积是评价ECoG电极的关键指标,可以用二者的比值(损伤比)综合表述,较大的覆盖面积可以提供多脑区交互能力,是多种科学与临床研究的基础,较小的开颅面积能够降低创伤,避免脑脊液泄露、颅内感染等手术风险。
ECoG电极存在覆盖面积与开颅创口大小之间的矛盾,目前,往往需要开设与电极等大的颅窗才能实现植入,损伤比大。在一些实施例中,可以采 用基于卷曲的可展开电极,但是,虽然该电极能够降低植入器件的损伤比,然而由于卷曲后器件依然不够紧凑,展开动作的工作空间大,难以使ECoG电极在硬脑膜上或下等缝隙结构中完成植入与展开。
本公开至少一实施例提供一种折叠式可展开皮层电极及其制备方法、皮层电极装置,该折叠式可展开皮层电极具有多个电极区域,且包括衬底、导电层以及封装层;导电层设置在衬底上,封装层设置在导电层的远离衬底的一侧;其中,多个电极区域中的每个包括设置在导电层中的至少一个导电触点以及与至少一个导电触点连接的至少一条导线,封装层包括暴露至少一个导电触点的至少一个开孔,多个电极区域中相邻的两个电极区域之间具有可折叠部分,以使得相邻的两个电极区域能够沿可折叠部分折叠。
本公开实施例提供的折叠式可展开皮层电极可以通过折叠(例如折纸原理)在展开状态和折叠状态之间转变,从而在展开状态具有较大的电极覆盖面积,在折叠状态具有较小的体积,以在不同状态适应于不同的操作。例如,在植入过程中,本公开实施例提供的折叠式可展开皮层电极仅需要较小的开颅面积,在植入后,通过展开可以实现较大的电极覆盖面积,以在最大程度上降低损伤比。
下面,通过几个具体的实施例来详细介绍本公开实施例提供的折叠式可展开皮层电极及其制备方法、皮层电极装置。
本公开至少一实施例提供一种折叠式可展开皮层电极,图1示出了该折叠式可展开皮层电极的平面结构示意图,图2示出了图1中的折叠式可展开皮层电极沿A-A线的截面示意图。如图1和图2所示,该折叠式可展开皮层电极具有多个电极区域10,且包括衬底101、导电层102以及封装层103。
导电层102设置在衬底101上,封装层103设置在导电层102的远离衬底101的一侧。多个电极区域10中的每个包括设置在导电层102中的至少一个导电触点1021以及与该至少一个导电触点1021连接的至少一条导线1022。
例如,在一些实施例中,导电层102包括多个(例如16个、32个、64个、128个、256个、512个、1024个、2000个、3000个、4000个或者5000个)导电触点1021及对应的导线1022,这些导电触点1021及对应的导线1022可以均匀分布在各个电极区域10中,或者以其他合适的不均匀方式分布在各个电极区域10中。导电触点1021及对应的导线1022负责建立颅内 神经组织与外部设备(例如采集器、放大器、电刺激器等)之间的电气连接。
封装层103包括暴露至少一个导电触点1021的至少一个开孔1031。
多个电极区域10中相邻的两个电极区域10之间具有可折叠部分20(也可称为折痕),以使得相邻的两个电极区域10能够沿可折叠部分20折叠。
在本公开的实施例中,相邻的两个电极区域10能够沿可折叠部分20折叠指得是,相邻的两个电极区域10可通过沿可折叠部分20弯折使得相邻的两个电极区域10的夹角可以在0度~180度之间的角度范围(例如5度~85度,例如10度~80度,例如15度~75度等范围内)逐渐改变,并非局限于在0度~180度之间逐渐改变。
例如,在一些实施例中,多个电极区域10之间的多个可折叠部分20可以平行配置或相交配置,以将皮层电极划分为多个电极区域10。多个可折叠部分20能够给实现可逆弯折,以改变多个电极区域10区间的夹角与空间分布,进而改变皮层电极整体的形状与体积。例如,通过多个可折叠部分20的折叠与展开,皮层电极可以处于覆盖面积较大的展开状态,整体体积较小的折叠状态以及介于折叠状态与展开状态之间的过渡状态。
例如,图3和图4示出了本公开至少一实施例提供的折叠式可展开皮层电极中相邻的两个电极区域的立体结构示意图,图3示出的是相邻的两个电极区域处于展开状态,图4示出的是相邻的两个电极区域处于折叠状态。
如图3和图4所示,在一些实施例中,折叠式可展开皮层电极还可以包括增强层104,增强层104可以设置在封装层103的靠近或者远离衬底101的一侧(图中示出为增强层104设置在封装层103的远离衬底101的一侧),或者在其他实施例中也可以设置在衬底101的靠近封装层103或者远离封装层103的一侧。增强层104包括对应于多个电极区域10的多个图案1041,例如,多个图案1041的形状与尺寸分别与多个电极区域10的形状与尺寸基本相同,多个图案1041中相邻的两个图案1041之间具有间隙,以形成可折叠部分20。
在本公开的上述实施例中,由于增强层104的存在,折叠式可展开皮层电极的具有图案1041处的弯曲刚度大于没有图案1041(也即间隙)处的弯曲刚度,因此,折叠式可展开皮层电极更容易在间隙处进行弯折,以形成上述可折叠部分20(也可称为折痕)。
例如,在一些实施例中,多个图案1041中的至少部分(例如每个图案1041)包括照明部1042。例如,照明部1042包括照明装置,照明装置可以采用光纤或者LED灯(例如微型LED灯)等形式。照明部1042例如可以发出红外光、紫外光或者特定波长的光,在使用中,照明部1042发出的光可以刺激神经细胞,起到提高或降低神经细胞的活性等作用。
例如,在一些实施例中,增强层104可以采用环氧树脂、塑料等绝缘材料,或者在其他实施例中也可以采用金属、合金等材料,此时,增强层104需要设置在封装层103的远离衬底101的一侧或者衬底101的远离封装层103的一侧,并且在具有照明部1042时,也需要配合相应的绝缘结构,以实现准确的电气连接。
例如,在增强层104采用环氧树脂、塑料等绝缘材料,且在增强层104设置在封装层103的远离衬底101的一侧的情况下,增强层104中对应于导电触点1021的位置也具有开孔(图中未示出),以暴露出导电触点1021。在增强层104采用环氧树脂、塑料等有机绝缘材料,且在增强层104设置在衬底101的远离封装层103的一侧的情况下,增强层104中可以不设置开孔。
例如,在另一些实施例中,也可以采用其他方式形成可折叠部分20。例如,图5示出了本公开至少一实施例提供的另一折叠式可展开皮层电极的截面示意图。如图5所示,衬底101和封装层103中的至少一个在可折叠部分20包括柔性部F,柔性部F的弹性模量低于上述衬底101和封装层103中的至少一个的除柔性部F之外的部分F1的弹性模量。由此使得折叠式可展开皮层电极容易在弹性模量较低的柔性部F处进行弯折,以形成上述可折叠部分20。
例如,在图5的实施例中,可以是仅衬底101包括柔性部F,可以是仅封装层103包括柔性部F,也可以是衬底101和封装层103均包括柔性部F,本公开的实施例对此不作具体限定。
例如,图6示出了本公开至少一实施例提供的另一折叠式可展开皮层电极的截面示意图。如图6所示,在另一些实施例中,衬底101和封装层103中的至少一个在可折叠部分20包括镂空部H,镂空部H的材料被去除,由此使得折叠式可展开皮层电极容易在镂空部H处进行弯折,以形成上述可折叠部分20。
例如,在图6的实施例中,可以是仅衬底101包括镂空部H,可以是仅 封装层103包括镂空部H(图6示出的情况),本公开的实施例对此不作具体限定。
例如,图7示出了本公开至少一实施例提供的另一折叠式可展开皮层电极的截面示意图。如图7所示,在另一些实施例中,衬底101和封装层103中的至少一个在可折叠部分20包括减薄部H1,减薄部H1的厚度低于上述衬底101和封装层103中的至少一个的除减薄部H1之外的部分H2的厚度。由此使得折叠式可展开皮层电极容易在减薄部H1处进行弯折,以形成上述可折叠部分20。
需要注意的是,在本公开的实施例中,一个结构的厚度是指该结构在垂直于衬底101方向的尺寸,例如在图7中,为竖直方向的尺寸。
例如,在图7的实施例中,可以是仅衬底101包括减薄部H1,可以是仅封装层103包括减薄部H1,也可以是衬底101和封装层103均包括减薄部H1(图7示出的情况),本公开的实施例对此不作具体限定。
例如,在一些实施例中,折叠式可展开皮层电极的平面形状整体可以呈矩形、圆形、多边形、三角形、扇形、十字型或者其他不规则形状或多种形状的组合。
例如,图1示出为折叠式可展开皮层电极的平面形状整体呈扇形的情况,此时,多个电极区域10中的至少部分电极区域10(例如全部电极区域10)沿扇形的切向R1依次排列,相邻的两个电极区域10之间的可折叠部分20沿扇形的径向R2延伸。
例如,在图1的实施例中,每个电极区域10的平面形状也呈扇形,电极区域10之间的多个可折叠部分20呈放射状分布。例如,在一些实施例中,多个可折叠部分20可延伸至同一交汇点。
例如,图1中虚线圈所示的部分为折叠式可展开皮层电极的电连接部,导电层102中的导电触点1021通过导线1022延伸至此处,例如形成接口,以便于与外部电路(例如采集设备等)电连接。例如,在一些实施例中,接口可以通过零插入力器件与采集设备连接,以使得采集设备可采集多通道皮层神经电信号。
例如,在一些实施例中,如图1所示,折叠式可展开皮层电极包括沿扇形的切向R1依次排列的N个电极区域,N为大于1的正整数。在图1的实施例中,N为8,也即折叠式可展开皮层电极包括沿扇形的切向R1依 次排列的8个电极区域,每相邻的两个电极区域10之间具有可折叠部分20,此时,可折叠部分20的数量为7。例如,在一些示例中,每个电极区域10可以包括8个导电触点,使得折叠式可展开皮层电极一共具有64个导电触点。
例如,在一些实施例中,如图1所示,折叠式可展开皮层电极还可以包括第一电极连接部30和第二电极连接部31,第一电极连接部30和第二电极连接部31分别设置在上述N个电极区域沿切向R1的相对两侧,配置为能够连接折叠控制工具,折叠控制工具可以通过与第一电极连接部30和第二电极连接部31的配合实现对折叠式可展开皮层电极的展开与折叠操作。
例如,在一些示例中,第一电极连接部30和第二电极连接部31分别包括连接孔32,以能够连接折叠控制工具。例如,在一些实施例中,第一电极连接部30和第二电极连接部31分别包括两个连接孔32,以使得与折叠控制工具的连接更稳固。
例如,在一些实施例中,第一电极连接部30和第二电极连接部31是与衬底101一体连接的,例如是从衬底101延伸出来的部分,并进行开孔,以形成连接孔32。
例如,在皮层电极的使用过程中,可以将折叠控制工具与第一电极连接部30和第二电极连接部31上的连接孔32进行连接,然后对第一电极连接部30和第二电极连接部31施加作用力,实现对皮层电极的展开与折叠。
例如,图8示出了本公开至少一实施例提供的另一折叠式可展开皮层电极的平面示意图,如图8所示,在该实施例中,折叠式可展开皮层电极的平面形状整体呈扇形,多个电极区域10分为两个部分(两层),多个电极区域10中的第一部分P1(底层)沿扇形的切向R1依次排列,第一部分P1中相邻的两个电极区域10之间的可折叠部分21沿所述扇形的径向R2延伸;多个电极区域10中的第二部分P2(顶层)沿扇形的径向R2排列在第一部分P1的一侧(例如外侧),第一部分P1和第二部分P2的相邻的两个电极区域10之间的可折叠部分22沿扇形的切向R1延伸。由此,在折叠式皮层电极沿径向R2的可折叠部分21折叠后,还可以沿切向R1的可折叠部分22折叠,从而进一步提高折叠式皮层电极在展开状态的覆盖面积,稍后详细示出与介绍。
例如,如图8所示,第一部分P1包括沿扇形的切向R1依次排列的N 个电极区域,N为大于1的正整数,在图8的实施例中,N为8。第二部分P2设置在第一部分P1沿径向R2的外侧,包括位于第一部分P1的边缘的四个电极区域10,每个边缘设置两个电极区域10,该设置有利于第二部分P2沿切向R1的可折叠部分22进行折叠。
例如,在上述实施例中,第一部分P1包括8个电极区域10,第二部分P2包括4个电极区域10,皮层电极一共具有12的电极区域10。例如,在一些实施例中,每个电极区域10可以具有4个导电触点或8个导电触点,使得皮层电极一共具有64个导电触点。例如,在一些示例中,第一部分P1中的每个电极区域10具有4个导电触点1021,第二部分P2的每个电极区域10具有8个导电触点1021,以使得皮层电极一共具有64个导电触点。或者,在其他实施例中,皮层电极也可以采用其他导电触点配置方式,本公开的实施例对此不作具体限定。
例如,如图8所示,在该实施例中,折叠式可展开皮层电极也包括第一电极连接部30和第二电极连接部31,第一电极连接部30和第二电极连接部31分别设置在第一部分P1的N个电极区域沿切向R1的相对两侧,配置为能够连接折叠控制工具。例如,第一电极连接部30和第二电极连接部31的具体形式与上述实施例基本相同,这里不再赘述。
例如,在其他实施例中,折叠式可展开皮层电极也可以采用其他形状。例如,图9示出了本公开至少一实施例提供的折叠式可展开皮层电极的另一平面示意图。如图9所示,在一些实施例中,折叠式可展开皮层电极的平面形状整体呈矩形,多个电极区域10中的至少部分电极区域10(例如全部电极区域10)沿矩形的长度方向(或宽度方向)依次排列,相邻的两个电极区域10之间的可折叠部分20沿矩形的宽度方向(或长度方向)延伸。
例如,图10示出了本公开至少一实施例提供的折叠式可展开皮层电极的另一平面示意图。如图10所示,在一些实施例中,折叠式可展开皮层电极的平面形状整体呈矩形,折叠式可展开皮层电极具有双层电极区域,多个电极区域10中的第一部分P1(底层)沿矩形的长度方向(或宽度方向)依次排列,相邻的两个电极区域10之间的可折叠部分21沿矩形的宽度方向(或长度方向)延伸。多个电极区域10中的第二部分P2(顶层)沿矩形的宽度方向(或长度方向)设置在第一部分P1的一侧(图中的上侧),第一部分P1和第二部分P2的相邻的电极区域10之间可折叠部分22沿矩形的长度方 向(或宽度方向)延伸。
例如,图11-图13分别示出了本公开至少一实施例提供的不同的折叠式可展开皮层电极的平面示意图。如图11所示,在一些实施例中,折叠式可展开皮层电极的平面形状整体呈三角形,每个电极区域10也呈三角形,多个电极区域10之间的多个可折叠部分20以三角形的一个顶点呈放射状分布。如图12所示,在一些实施例中,折叠式可展开皮层电极的平面形状整体呈多边形(图中示出为六边形作为示例),每个电极区域10呈三角形,多个电极区域10之间的多个可折叠部分20以多边形的一个顶点呈放射状分布。如图13所示,在一些实施例中,折叠式可展开皮层电极的平面形状整体呈圆形,多个电极区域10之间的多个可折叠部分20以圆形的一个顶点呈放射状分布。
例如,在其他实施例中,折叠式可展开皮层电极也可以采用其他图形,并且按照类似于如上实施例的方式排列电极区域10以及可折叠部分20,本公开的实施例不再赘述。
例如,在一些实施例中,折叠式可展开皮层电极还可以包括其他功能层。例如,图14示出了本公开至少一实施例提供的折叠式可展开皮层电极的另一截面示意图。如图14所示,折叠式可展开皮层电极还可以包括微流道层105,微流道层105设置在封装层103的远离衬底101的一侧(图14中示出的情况)或者衬底101的远离封装层103的一侧,微流道层105包括至少一条微流道M,例如多条微流道M。
例如,微流道M可以用于传输药物。在使用过程中,微流道M可以用于连接液体输送器件,例如蠕动泵,液体输送器件可受采集系统控制,采集系统根据电信号特征实时判断是否驱动液体输送器件,以通过微流道M实现从颅外向颅内的药物的闭环递送。
例如,在一些实施例中,微流道层105包括相对设置的第一基底膜1051和第二基底膜1053以及设置在第一基底膜1051和第二基底膜1053之间的流道图案1052,流道图案1052包括至少一条微流道M。例如,微流道M延伸形状可以是直线形、曲线形或者其他合适的图案,本公开的实施例对此不作具体限定。
例如,图15示出了本公开至少一实施例提供的折叠式可展开皮层电极的另一截面示意图。如图15所示,在一些实施例中,折叠式可展开皮层电 极还可以包括生物相容性膜106,生物相容性膜106设置在封装层103(或者增强层104,或者微流道层105)的远离衬底101的一侧或者设置在衬底101的远离封装层103的一侧,也即,生物相容性膜106可以设置在折叠式可展开皮层电极的最外侧。
例如,生物相容性膜106可以包括多肽、蛋白质等具有生物相容性的成分,从而在折叠式可展开皮层电极表面提供生物相容性,以避免对接触的组织或细胞产生不良影响。
例如,在本公开的实施例中,基底101可以采用聚酰亚胺、聚对二甲苯、环氧树脂、聚二甲基硅氧烷、硅胶等绝缘材料;导电层102可以金属或合金(例如金、铂、铂铱合金、不锈钢、钨等)、金属氧化物(氧化镁、氧化铱等)、石墨烯、碳纳米管、导电聚合物等导电材料;封装层103可以采用聚酰亚胺、聚对二甲苯、环氧树脂、聚二甲基硅氧烷、硅胶等绝缘;本公开的实施例对上述各个层的具体材料不作限定。
综上,本公开实施例提供的折叠式可展开皮层电极采用折纸式设计,形成可折叠式可展开皮层电极,构建了可在体外折叠的皮层电极,使得皮层电极可以在折叠状态压缩电极体积,而非通过卷曲、不规则挤压等其他方式压缩体积,可以充分保持皮层电极的完整性,避免皮层电极在状态改变的情况下产生损坏;例如,可折叠式可展开皮层电极在进行折叠与展开的操作过程中,所产生的应力主要集中在可折叠部分,而电极区域基本不受影响,从而充分保护了电极区域的导电结构(例如导电触点和导电等),而通过卷曲、不规则挤压等其他方式压缩电极体积的过程中,产生的应力分布难以控制,很可能会影响导电层的结构,造成结构损坏;本公开实施例提供的折叠式可展开皮层电极在植入工具(例如稍后介绍的折叠控制工具)的辅助下,折叠后的皮层电极可以通过小型颅孔植入硬脑膜上或下隙,并进一步展开成大面积结构,实现微创大面积交互,降低皮层电极损伤比。
本公开至少一实施例还提供一种皮层电极装置,该皮层电极装置包括本公开实施例提供的折叠式可展开皮层电极以及折叠控制工具,例如,图16示出了折叠控制工具的立体示意图,图17示出了折叠控制工具的第一控制部和第二控制部的结构示意图。
如图16和图17所示,折叠控制工具包括第一管体41和第二管体42,第一管体41具有相对的第一端41A和第二端41B,第一端41A具有第一控 制部51;第二管体42具有相对的第三端42A和第四端42B,第三端42A具有第二控制部52,例如,第一管体41和第一管体42能够受控相对移动,以使得第一控制部51和第二控制部52相对移动,进而在第一控制部51和第二控制部52连接折叠式可展开皮层电极的情况下,可以实现展开或者折叠折叠式可展开皮层电极的目的。
例如,如图16和图17所示,第一控制部51包括与第一管体41呈角度(例如垂直)设置的第一臂(即标号51指示的部分)以及设置在第一臂上的第一配合结构51A;第二控制部52包括与第二管体42呈角度(例如垂直)设置的第二臂(即标号52指示的部分)以及设置在第二臂上的第二配合结构52A。
例如,在一些示例中,第一配合结构51A和第二配合结构52A分别为设置在第一臂和第二臂上的凸起,该凸起可以与折叠式可展开皮层电极的第一电极连接部30和第二电极连接部31上的连接孔32配合,例如伸入连接孔32,进而实现对折叠式可展开皮层电极的展开或者折叠。
例如,在其他实施例中,第一控制部51和第二控制部52也可以采用其他形式,例如通过胶体或者焊接的形式实现与折叠式可展开皮层电极的可逆或不可逆连接。此时,折叠控制工具可在外力(机械力、热力、磁力、电力)驱动下通过改变自身形状,带动与之连接的折叠式可展开皮层电极的折叠与展开,改变折叠式可展开皮层电极的空间形态,实现折叠式可展开皮层电极在折叠状态与展开状态间的切换。
例如,在一些示例中,第一管体41和第二管体42可以受控相互靠近或者远离,从而实现折叠式可展开皮层电极的展开或者折叠。
或者,在另一些实施例中,如图16和图17所示,第二管体42能够容纳在第一管体41中,且在第二管体42容纳在第一管体41中的情况下,第一管体41和第二管体42可受控相对转动,从而可以实现折叠式可展开皮层电极的展开或者折叠。例如,对于图1、图8以及图11-图13所示的呈放射形的可折叠部分20来说,该种可相对转动的折叠控制工具更适用。
例如,在上述实施例中,第二管体42可以为实心圆柱形管体,第一臂可以为长方体臂,第一管体41可以为空心圆柱形管体,第二臂为长方体臂,第一管体41的空心圆柱的空心部分的直径大于第二管体42的实心圆柱的直径,使得实心圆柱能插入空心圆柱的空心部分,并且两者能围绕同一圆心轴 旋转。此时,第一管体41和第二管体42的长方体臂可在外力驱动下沿第一管体41和第二管体42的轴进行相对转动,以使得两个长方体臂间的夹角可在0度-180度之间的角度范围改变。
例如,图18示出了折叠式可展开皮层电极受控折叠与展开的过程图,图18中的折叠与展开过程以图8中的折叠式可展开皮层电极作为示例。如图18所示,在一些实施例中,通过将折叠控制工具的第一控制部51上的第一配合结构51A和第二控制部52上的第二配合结构52A与折叠式可展开皮层电极的第一电极连接部30和第二电极连接部31上的连接孔32配合,并相对转动第一管体41和第二管体42,使得折叠式可展开皮层电极可以折叠,也即图18中的变化一,此时,折叠式可展开皮层电极的多个电极区域10可以沿可折叠部分21进行七个折叠(这些折叠可以同时或者分次进行)后,沿可折叠部分22进行两个折叠,经过共九个折叠使得折叠式可展开皮层电极的整体具有较小的体积,由此可以通过一个较小的开口(例如创口)进入目标物体内(例如颅内),例如折叠式可展开皮层电极连同折叠控制工具通过小型颅窗送入硬脑膜上与颅骨的间隙中;之后,沿相反的方向相对转动第一管体41和第二管体42,以产生变化二,此时,折叠控制工具的双臂之间的角度逐渐增大,折叠式可展开皮层电极的第一电极连接部30和第二电极连接部31受到如箭头所指示的方向的力,从而使得折叠式可展开皮层电极的第一部分P1相对于第二部分P2沿可折叠部分22展开,并进一步产生变化三,使得折叠式可展开皮层电极沿可折叠部分21展开,实现折叠式可展开皮层电极的进一步展开,例如达到合适的展开状态;之后,可以撤去折叠控制工具与折叠式可展开皮层电极的连接,例如反向旋转第一管体41和第二管体42,实现折叠控制工具与折叠式可展开皮层电极的分离,将折叠控制工具从颅内取出,并将折叠式可展开皮层电极与外部电路(例如采集设备等)连接,实现对折叠式可展开皮层电极的电通信操作。
例如,在上述实施例中,折叠控制工具采用同轴双臂结构,在其他实施例中,折叠控制工具也可以同轴多手臂结构(此时可以包括更多个管体),或者平行滑轨结构(例如在第一管体和第二管体之间增加滑轨,以限定二者的相对移动)等,本公开的实施例对此不作具体限定。
例如,在一些实施例中,折叠控制工具可以采用3D打印工艺制备。
例如,图19为本公开至少一实施例提供的折叠式可展开皮层电极采集 到的神经信号的示意图。通过对比,利用本公开实施例提供的折叠式可展开皮层电极采集到的多通道(图中示出了四个通道)皮层神经电信号与其他标准金电极采集到的神经电信号的频率与振幅等重要信息基本相同,由此也验证了本公开至少一实施例提供的折叠式可展开皮层电极的可行性。
本公开至少一实施例还提供一种折叠式可展开皮层电极的制备方法,包括:提供衬底基板,在衬底基板上形成牺牲层,在牺牲层的远离衬底基板的一侧形成衬底,在衬底的远离牺牲层的一侧形成导电层,在导电层的远离衬底的一侧形成封装层,以及剥离牺牲层。其中,折叠式可展开皮层电极具有多个电极区域,多个电极区域中的每个包括设置在导电层中的至少一个导电触点以及与至少一个导电触点连接的至少一条导线,封装层包括暴露该至少一个导电触点的至少一个开孔,多个电极区域中相邻的两个电极区域之间具有可折叠部分,以使得相邻的两个电极区域能够沿可折叠部分折叠。
例如,图20示出了本公开至少一实施例提供的折叠式可展开皮层电极在制备过程中的截面示意图。如图20所示,在一些实施例中,衬底基板S1可以采用硅片,硅片的上表面可以进行抛光处理,以便于后续功能层的形成;例如,在衬底基板S1上通过磁控溅射或热蒸发等工艺形成牺牲层S2,例如,牺牲层S2可以采用金属镍;之后,在牺牲层S2上采用旋涂并热固化等方式形成衬底101,例如,衬底101可以采用聚酰亚胺;然后,在衬底101上通过构图工艺形成导电层102,例如,构图工艺可以包括在衬底101上涂覆光刻胶材料,对光刻胶材料进行曝光和显影,形成光刻胶图案,然后以该光刻胶图案为掩模,沉积导电层102的材料,例如金,以形成导电层102的图案,例如上述导电触点1021以及导线1022;之后,在导电层102上采用旋涂并热固化等方式形成封装层103的材料,例如,封装层103可以采用聚酰亚胺,然后对封装层103的材料进行图案化刻蚀,以暴露导电层102的导电触点1021,例如,对封装层103的材料进行图案化刻蚀可以包括在封装层103上涂覆光刻胶材料,对光刻胶材料进行曝光和显影,形成光刻胶图案,然后以该光刻胶图案为掩模对封装层103的材料进行刻蚀,以形成封装层103的开孔1031;之后,在一些实施例中,还可以在封装层103上形成增强层104等其他功能层;最后,例如采用机械剥离等方式释放牺牲层S2,以得到例如图1和图2所示的折叠式可展开皮层电极。
在本公开实施例提供的上述方式中,采用MEMS(微机电系统)工艺通过简单的工艺步骤即可制备出本公开实施例提供的折叠式可展开皮层电极,该制备方式简单、成本较低,适用于大批量生产。
例如,在一些实施例中,制备方法还可以包括:在封装层103的远离所述衬底101的一侧或者衬底101的远离封装层103的一侧形成微流道层105。例如,在一些实施例中,微流道层105可以直接采用构图工艺形成在封装层103的远离衬底101的一侧或者衬底101的远离封装层103的一侧;或者,在另一些实施例中,微流道层105也可以独立形成,然后贴附在封装层103的远离衬底101的一侧或者衬底101的远离封装层103的一侧。
例如,图21示出了单独形成微流道层的过程中微流道层的一个截面示意图。在一些实施例中,如图21所示,形成微流道层105可以包括:在例如硅片等衬底基板S3上采用旋涂等方式形成第一基底膜1051,例如,第一基底膜1051可以采用聚二甲基硅氧烷(PDMS)等材料;之后,在第一基底膜1051上形成光刻胶材料(例如正性光刻胶材料,在其他实施例中也可以是负性光刻胶材料),并对光刻胶材料进行曝光显影;然后,在光刻胶材料的远离第一基底膜1051的一侧例如采用形成旋涂等方式形成第二基底膜1053,第二基底膜1053例如可以采用聚二甲基硅氧烷(PDMS)等材料;然后,将第一基底膜1051、光刻胶材料和第二基底膜1053的整体浸入溶解液中,例如丙酮溶液中,以对光刻胶材料进行溶解,形成流道图案1052,流道图案1052包括至少一条微流道M;最后,将第一基底膜1051、光刻胶材料(也即流道图案1052)和第二基底膜1053的整体贴附在封装层103的远离衬底101的一侧或者衬底101的远离封装层103的一侧,以形成微流道层105。
综上,本公开实施例提供的制备方法可以通过简单、成熟的工艺制备出折叠式可展开皮层电极,该折叠式可展开皮层电极采用折纸式设计,可以在折叠状态压缩电极体积,充分保持折叠式可展开皮层电极的完整性,避免折叠式可展开皮层电极在状态改变的情况下产生损坏;在折叠控制工具的辅助下,折叠后的折叠式可展开皮层电极可以通过小创口进行植入,并进一步展开成大面积结构,实现微创大面积交互,降低皮层电极损伤比。
还有以下几点需要说明:
(1)本公开实施例的附图只涉及到与本公开实施例涉及到的结构,其 他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”或者可以存在中间元件。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种折叠式可展开皮层电极,具有多个电极区域,且包括:
    衬底,
    导电层,设置在所述衬底上,以及
    封装层,设置在所述导电层的远离所述衬底的一侧;
    其中,所述多个电极区域中的每个包括设置在所述导电层中的至少一个导电触点以及与所述至少一个导电触点连接的至少一条导线,所述封装层包括暴露所述至少一个导电触点的至少一个开孔,
    所述多个电极区域中相邻的两个电极区域之间具有可折叠部分,以使得所述相邻的两个电极区域能够沿所述可折叠部分折叠。
  2. 根据权利要求1所述的折叠式可展开皮层电极,还包括:
    增强层,设置在所述封装层的靠近或者远离所述衬底的一侧,或者设置在所述衬底的靠近所述封装层或者远离所述封装层的一侧,包括对应于所述多个电极区域的多个图案,
    其中,所述多个图案中相邻的两个图案之间具有间隙,以形成所述可折叠部分。
  3. 根据权利要求2所述的折叠式可展开皮层电极,其中,所述多个图案中的至少部分包括照明部。
  4. 根据权利要求1所述的折叠式可展开皮层电极,其中,所述衬底和所述封装层中的至少一个在所述可折叠部分包括柔性部,所述柔性部的弹性模量低于所述衬底和所述封装层中的至少一个的除所述柔性部之外的部分的弹性模量。
  5. 根据权利要求1所述的折叠式可展开皮层电极,其中,所述衬底和所述封装层中的至少一个在所述可折叠部分包括镂空部或者减薄部,
    所述镂空部的材料被去除,
    所述减薄部的厚度低于所述衬底和所述封装层中的至少一个的除所述减薄部之外的部分的厚度。
  6. 根据权利要求1-5任一所述的折叠式可展开皮层电极,其中,所述折叠式可展开皮层电极的平面形状整体呈扇形,
    所述多个电极区域中的至少部分电极区域沿所述扇形的切向依次排列, 所述至少部分电极区域中相邻的两个电极区域之间的可折叠部分沿所述扇形的径向延伸。
  7. 根据权利要求6所述的折叠式可展开皮层电极,其中,所述至少部分电极区域的每个的平面形状呈扇形,所述至少部分电极区域之间的多个可折叠部分呈放射状分布。
  8. 根据权利要求6所述的折叠式可展开皮层电极,其中,所述至少部分电极区域包括沿所述扇形的切向R1依次排列的N个电极区域,N为大于1的正整数;所述折叠式可展开皮层电极还包括:
    第一电极连接部和第二电极连接部,分别设置在所述N个电极区域沿切向R1的相对两侧,配置为能够连接折叠控制工具。
  9. 根据权利要求1-5任一所述的折叠式可展开皮层电极,其中,所述折叠式可展开皮层电极的平面形状整体呈扇形,
    所述多个电极区域中的第一部分沿所述扇形的切向R1依次排列,所述第一部分中相邻的两个电极区域之间的可折叠部分沿所述扇形的径向R2延伸;
    所述多个电极区域中的第二部分沿所述扇形的径向排列在所述第一部分的一侧,所述第一部分和所述第二部分的相邻的两个电极区域之间的可折叠部分沿所述扇形的切向R1延伸。
  10. 根据权利要求9所述的折叠式可展开皮层电极,其中,所述第一部分包括沿所述扇形的切向R1依次排列的N个电极区域,N为大于1的正整数;所述折叠式可展开皮层电极还包括:
    第一电极连接部和第二电极连接部,分别设置在所述N个电极区域沿切向R1的相对两侧,配置为能够连接折叠控制工具。
  11. 根据权利要求1-5任一所述的折叠式可展开皮层电极,其中,所述折叠式可展开皮层电极的平面形状整体呈矩形,
    所述多个电极区域中的至少部分电极区域沿所述矩形的长度方向或宽度方向依次排列,所述至少部分电极区域中相邻的两个电极区域之间的可折叠部分沿所述矩形的宽度方向或长度方向延伸。
  12. 根据权利要求1-5任一所述的折叠式可展开皮层电极,其中,所述折叠式可展开皮层电极的平面形状整体呈圆形、三角形或者多边形,
    所述多个电极区域之间的多个可折叠部分以所述圆形上的一个点或者 所述三角形或者所述多边形的一个顶点呈放射状分布。
  13. 根据权利要求1-5任一所述的折叠式可展开皮层电极,还包括:
    微流道层,设置在所述封装层的远离所述衬底的一侧或者所述衬底的远离所述封装层的一侧,包括至少一条微流道。
  14. 根据权利要求13所述的折叠式可展开皮层电极,其中,所述微流道层包括相对设置的第一基底膜和第二基底膜以及设置在所述第一基底膜和所述第二基底膜之间的流道图案,
    所述流道图案包括所述至少一条微流道。
  15. 根据权利要求1-5任一所述的折叠式可展开皮层电极,还包括:
    生物相容性膜,设置在所述封装层的远离所述衬底的一侧或者所述衬底的远离所述封装层的一侧。
  16. 一种皮层电极装置,包括:
    权利要求1-15任一所述的折叠式可展开皮层电极,以及
    折叠控制工具,包括:
    第一管体,具有相对的第一端和第二端,所述第一端具有第一控制部;
    第二管体,具有相对的第三端和第四端,所述第三端具有第二控制部,
    其中,所述第一管体和所述第二管体能够受控相对移动。
  17. 根据权利要求16所述的皮层电极装置,其中,所述第二管体能够容纳在所述第一管体中,
    且在所述第二管体容纳在所述第一管体中的情况下,所述第一管体和所述第二管体可受控相对转动。
  18. 根据权利要求16或17所述的皮层电极装置,其中,所述第一控制部包括与所述第一管体呈角度设置的第一臂以及设置在所述第一臂上的第一配合结构;
    所述第二控制部包括与所述第二管体呈角度设置的第二臂以及设置在所述第二臂上的第二配合结构。
  19. 一种折叠式可展开皮层电极的制备方法,包括:
    提供衬底基板,
    在所述衬底基板上形成牺牲层,
    在所述牺牲层的远离所述衬底基板的一侧形成衬底,
    在所述衬底的远离所述牺牲层的一侧形成导电层,
    在所述导电层的远离所述衬底的一侧形成封装层,以及
    剥离所述牺牲层;
    其中,所述折叠式可展开皮层电极具有多个电极区域,所述多个电极区域中的每个包括设置在所述导电层中的至少一个导电触点以及与所述至少一个导电触点连接的至少一条导线,所述封装层包括暴露所述至少一个导电触点的至少一个开孔,
    所述多个电极区域中相邻的两个电极区域之间具有可折叠部分,以使得所述相邻的两个电极区域能够沿所述可折叠部分折叠。
  20. 根据权利要求19所述的制备方法,还包括:
    在所述封装层的远离所述衬底的一侧或者所述衬底的远离所述封装层的一侧形成微流道层,包括:
    形成第一基底膜,
    在所述第一基底膜上形成光刻胶材料,并对所述光刻胶材料进行曝光显影,
    在所述光刻胶材料的远离所述第一基底膜的一侧形成第二基底膜,将所述第一基底膜、所述光刻胶材料和所述第二基底膜的整体浸入溶解液中,以对所述光刻胶材料进行溶解,形成流道图案;其中,所述流道图案包括至少一条微流道;
    将所述第一基底膜、所述光刻胶材料和所述第二基底膜的整体贴附在所述封装层的远离所述衬底的一侧或者所述衬底的远离所述封装层的一侧。
PCT/CN2022/137957 2022-12-09 2022-12-09 折叠式可展开皮层电极及其制备方法、皮层电极装置 WO2024119486A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/137957 WO2024119486A1 (zh) 2022-12-09 2022-12-09 折叠式可展开皮层电极及其制备方法、皮层电极装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/137957 WO2024119486A1 (zh) 2022-12-09 2022-12-09 折叠式可展开皮层电极及其制备方法、皮层电极装置

Publications (1)

Publication Number Publication Date
WO2024119486A1 true WO2024119486A1 (zh) 2024-06-13

Family

ID=91378282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137957 WO2024119486A1 (zh) 2022-12-09 2022-12-09 折叠式可展开皮层电极及其制备方法、皮层电极装置

Country Status (1)

Country Link
WO (1) WO2024119486A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415187B1 (en) * 1998-02-10 2002-07-02 Advanced Bionics Corporation Implantable, expandable, multicontact electrodes and insertion needle for use therewith
CN102544052A (zh) * 2012-03-08 2012-07-04 中国科学院深圳先进技术研究院 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构
US20170231518A1 (en) * 2014-08-07 2017-08-17 The Regents Of The University Of California Flexible penetrating cortical multielectrode arrays, sensor devices and manufacturing methods
CN108853717A (zh) * 2018-06-19 2018-11-23 国家纳米科学中心 一种柔性神经电极以及柔性神经电极的植入方法
US20190308008A1 (en) * 2018-04-09 2019-10-10 Tufts Medical Center, Inc. Methods and devices for guided subdural electrode array placement
US20200108246A1 (en) * 2018-09-18 2020-04-09 Cadwell Laboratories, Inc. Minimally Invasive Two-Dimensional Grid Electrode
CN114145747A (zh) * 2021-12-16 2022-03-08 深圳市擎源医疗器械有限公司 颅内电极模组以及颅内电极植入装置
CN114652317A (zh) * 2022-02-24 2022-06-24 上海脑虎科技有限公司 一种可折叠脑电极结构及其制备方法与应用
CN115054257A (zh) * 2022-06-17 2022-09-16 中国科学院脑科学与智能技术卓越创新中心 一种用于脑部的柔性电极及其制造方法
CN115381458A (zh) * 2022-08-31 2022-11-25 上海脑虎科技有限公司 脑部电极装置及其制备方法、电极装置、电子设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6415187B1 (en) * 1998-02-10 2002-07-02 Advanced Bionics Corporation Implantable, expandable, multicontact electrodes and insertion needle for use therewith
CN102544052A (zh) * 2012-03-08 2012-07-04 中国科学院深圳先进技术研究院 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构
US20170231518A1 (en) * 2014-08-07 2017-08-17 The Regents Of The University Of California Flexible penetrating cortical multielectrode arrays, sensor devices and manufacturing methods
US20190308008A1 (en) * 2018-04-09 2019-10-10 Tufts Medical Center, Inc. Methods and devices for guided subdural electrode array placement
CN108853717A (zh) * 2018-06-19 2018-11-23 国家纳米科学中心 一种柔性神经电极以及柔性神经电极的植入方法
US20200108246A1 (en) * 2018-09-18 2020-04-09 Cadwell Laboratories, Inc. Minimally Invasive Two-Dimensional Grid Electrode
US11185684B2 (en) * 2018-09-18 2021-11-30 Cadwell Laboratories, Inc. Minimally invasive two-dimensional grid electrode
CN114145747A (zh) * 2021-12-16 2022-03-08 深圳市擎源医疗器械有限公司 颅内电极模组以及颅内电极植入装置
CN114652317A (zh) * 2022-02-24 2022-06-24 上海脑虎科技有限公司 一种可折叠脑电极结构及其制备方法与应用
CN115054257A (zh) * 2022-06-17 2022-09-16 中国科学院脑科学与智能技术卓越创新中心 一种用于脑部的柔性电极及其制造方法
CN115381458A (zh) * 2022-08-31 2022-11-25 上海脑虎科技有限公司 脑部电极装置及其制备方法、电极装置、电子设备

Similar Documents

Publication Publication Date Title
US10186546B2 (en) Systems, methods, and devices having stretchable integrated circuitry for sensing and delivering therapy
CN106456966B (zh) 大脑深度刺激导针
US10426362B2 (en) Deep-brain probe and method for recording and stimulating brain activity
CN104968261B (zh) 具有板载高密度标测电极的柔性高密度标测导管头端和柔性消融导管头端
US20140303452A1 (en) Systems, Methods, and Devices Having Stretchable Integrated Circuitry for Sensing and Delivering Therapy
CN111938626B (zh) 一种柔性植入式神经光电极及其制备方法
US8170638B2 (en) MEMS flexible substrate neural probe and method of fabricating same
US10292656B2 (en) Fabrication for ultra-compliant probes for neural and other tissues
CN114631822A (zh) 一种柔性神经电极、制备方法及设备
US20140277317A1 (en) Flexible neural interfaces with integrated stiffening shank
US20200261025A1 (en) System and method for making and implanting high-density electrode arrays
US10856764B2 (en) Method for forming a multielectrode conformal penetrating array
CN111053535A (zh) 用于生物植入的柔性可拉伸神经探针以及其制备方法
WO2013131261A1 (zh) 柔性颅内皮层微电极芯片及其制备和封装方法及封装结构
EP2397071A1 (en) Neural probe with a modular microelectrode for stimulating neurons or recording neural activity
US20200187862A1 (en) Implantable thin-film probes
WO2024046185A1 (zh) 植入式探针装置及其制备方法、电极装置、电子设备
WO2024046186A1 (zh) 脑部电极装置及其制备方法、电极装置、电子设备
CN112869747B (zh) 微电极及其制作和使用方法、塞类装置和微电极系统
CN111743537B (zh) 一种基于酢浆草仿生结构的柔性神经微电极及制备方法
WO2024119486A1 (zh) 折叠式可展开皮层电极及其制备方法、皮层电极装置
CN116919409A (zh) 柔性神经电极复合结构及制造、植入方法和辅助植入组件
CN113616211A (zh) 一种柔性神经电极结构及其制备方法
WO2023064911A1 (en) Apparatus, systems, and methods for high-bandwidth neural interfaces
WO2023240686A1 (zh) 用于与seeg电极结合的柔性电极装置及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22967634

Country of ref document: EP

Kind code of ref document: A1