WO2024116789A1 - Lubricating oil composition - Google Patents

Lubricating oil composition Download PDF

Info

Publication number
WO2024116789A1
WO2024116789A1 PCT/JP2023/040521 JP2023040521W WO2024116789A1 WO 2024116789 A1 WO2024116789 A1 WO 2024116789A1 JP 2023040521 W JP2023040521 W JP 2023040521W WO 2024116789 A1 WO2024116789 A1 WO 2024116789A1
Authority
WO
WIPO (PCT)
Prior art keywords
base oil
lubricating oil
olefin
oil composition
mass
Prior art date
Application number
PCT/JP2023/040521
Other languages
French (fr)
Japanese (ja)
Inventor
佳奈子 鮫島
正実 金丸
清和 片山
省二朗 棚瀬
幸太 大場
貴浩 阪口
潤 小比類巻
行敏 藤浪
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Publication of WO2024116789A1 publication Critical patent/WO2024116789A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M107/00Lubricating compositions characterised by the base-material being a macromolecular compound
    • C10M107/02Hydrocarbon polymers; Hydrocarbon polymers modified by oxidation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives

Definitions

  • the present invention relates to a lubricating oil composition.
  • Wind power generation utilizes wind force by converting the kinetic energy of the wind into power using a propeller or other rotor that rotates when exposed to the wind, and this power is then used to drive a generator to convert it into electrical energy.
  • a gearbox is used in consideration of the power generation efficiency of the generator.
  • Various types of gearboxes are known, among which planetary gear type power transmission devices are widely used.
  • Patent Document 1 discloses a lubricating oil composition containing at least one lubricating base oil selected from mineral oils and synthetic oils, and a copolymer of an olefin having a molecular weight of 1,200 to 50,000 and an alkyl methacrylate, for the purpose of reducing the amount of sludge generated, improving the viscosity index, and improving the extreme pressure properties.
  • An object of the present invention is to provide a lubricating oil composition which has a high viscosity index and excellent low-temperature fluidity.
  • a lubricating oil composition containing a metallocene-catalyzed poly- ⁇ -olefin with a specific kinetic viscosity and a base oil with a specific kinetic viscosity in a specific ratio can solve the above problems.
  • a lubricating oil composition comprising the following base oil (a) and the following base oil (b), wherein the mass ratio of base oil (a) to base oil (b) [(a)/(b)] is 50/50 to 95/5.
  • Base oil (a1) metallocene catalyst-based poly- ⁇ -olefin having a 100°C kinematic viscosity of 40 to 50 mm2 /s.
  • base oil (b) is at least one selected from the group consisting of the following base oil (b1) and the following base oil (b2).
  • Base oil (b1) nonmetallocene catalyst-based poly- ⁇ -olefin having a 100°C kinematic viscosity of 1 to 10 mm2 /s
  • Base oil (b2) ester having a 100°C kinematic viscosity of 10 to 15 mm2 /s ⁇ 4>
  • Base oil (b3) nonmetallocene catalyst-based poly- ⁇ -olefin having a 100°C kinematic viscosity of 5 to 10 mm2/s.
  • the lubricating oil composition according to the above ⁇ 1> wherein the base oil (a) is the following base oil (a2), the base oil (b) is the following base oil (b2) and the following base oil (b4), the mass ratio of the base oil (a2) to the base oil (b) [(a2)/(b)] is 50/50 to 70/30, and the mass ratio of the base oil (b2) to the base oil (b4) [(b2)/(b4)] is 25/75 to 60/40.
  • the lubricating oil composition according to any one of the above ⁇ 1> to ⁇ 6>, further comprising 1 to 30 mass% of at least one additive selected from the group consisting of extreme pressure agents, antiwear agents, ashless detergent-dispersants, antioxidants, rust inhibitors, metal deactivators and pour point depressants.
  • ⁇ 8> The lubricating oil composition according to any one of the above ⁇ 1> to ⁇ 7>, which has a kinematic viscosity at 40° C. of 288 to 352 mm 2 /s.
  • a gear oil for wind power generation comprising the lubricating oil composition according to any one of ⁇ 1> to ⁇ 8> above.
  • the present invention provides a lubricating oil composition that has a large viscosity index and excellent low-temperature fluidity.
  • This lubricating oil composition is suitable as a gear oil for wind power generation.
  • the lubricating oil composition of the present invention is a lubricating oil composition comprising the following base oil (a) and the following base oil (b), wherein the mass ratio of base oil (a) to base oil (b) [(a)/(b)] is 50/50 to 95/5.
  • Base oil (a) a metallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinetic viscosity of 40 to 130 mm 2 /s.
  • Base oil (b) a base oil having a 100° C. kinetic viscosity of 1 to 30 mm 2 /s.
  • the lubricating oil composition of the present invention is obtained by blending the following base oil (a) and the following base oil (b), and has a mass ratio of base oil (a) to base oil (b) [(a)/(b)] of 50/50 to 95/5.
  • base oil (a) and base oil (b) in the above ratio, it is possible to obtain a lubricating oil composition having a high viscosity index and excellent low-temperature fluidity.
  • the lubricating oil composition of the present invention contains a base oil (a) which is a metallocene-catalyzed poly- ⁇ -olefin having a 100° C. kinematic viscosity of 40 to 130 mm 2 /s.
  • the base oil (a) is a metallocene-catalyzed poly- ⁇ -olefin, and the term "metallocene-catalyzed poly- ⁇ -olefin" refers to a poly- ⁇ -olefin polymerized using a metallocene catalyst as a polymerization catalyst.
  • Metallocene catalyst-based poly- ⁇ -olefins have the characteristics of a narrow composition distribution, fewer components with low regularity, and a narrow molecular weight distribution, compared to poly- ⁇ -olefins polymerized using a conventional catalyst as a polymerization catalyst (non-metallocene catalyst-based poly- ⁇ -olefins).
  • the lubricating oil composition of the present invention has these characteristics, and by containing a metallocene catalyst-based poly- ⁇ -olefin having a specific kinetic viscosity as a main component, it is believed that a lubricating oil composition having a large viscosity index and excellent low-temperature fluidity can be obtained.
  • the base oil (a) preferably satisfies the following formula (1). (Pour point (°C)) ⁇ 0.01 ⁇ (40°C kinematic viscosity (mm 2 /s)) ⁇ 56 (1)
  • the base oil (a) preferably has a kinematic viscosity at 40° C. of 350 to 450 mm 2 /s and a pour point of ⁇ 50° C. or lower.
  • the base oil (a) preferably satisfies the following formula (2). (Pour point (°C)) ⁇ 0.28 ⁇ (viscosity index) ⁇ 102 (2)
  • the base oil (a) preferably contains structural units derived from 1-octene and structural units derived from 1-dodecene.
  • the total ratio of the constituent units derived from 1-octene and the constituent units derived from 1-dodecene in the base oil (a) is preferably 90 to 100 mol %.
  • base oil (a) contains constituent units derived from 1-octene and constituent units derived from 1-dodecene
  • the molar ratio of the constituent units derived from 1-octene to the constituent units derived from 1-dodecene in base oil (a) is preferably 3:7 to 7:3, more preferably 4:6 to 6:4, and even more preferably 4.5:5.5 to 5.5:4.5.
  • the base oil (a) is preferably the base oil (a1).
  • the base oil (a1) is a metallocene-catalyzed poly- ⁇ -olefin having a 100° C. kinematic viscosity of 40 to 50 mm 2 /s. The 100° C.
  • kinematic viscosity of the base oil (a1) is from 40 to 50 mm 2 /s, preferably from 43 to 50 mm 2 /s, more preferably from 45 to 50 mm 2 /s, and even more preferably from 45 to 49 mm 2 /s.
  • the base oil (a1) has a kinematic viscosity at 40° C. of preferably 300 to 500 mm 2 /s, more preferably 350 to 450 mm 2 /s, and even more preferably 380 to 420 mm 2 /s. If the 100° C. kinetic viscosity and the 40° C. kinetic viscosity are within the above ranges, the evaporation loss is small and the power loss due to the viscous resistance is not large, which is preferable.
  • the base oil (a) is preferably the base oil (a2).
  • the base oil (a2) is a metallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinematic viscosity of 120 to 130 mm 2 /s.
  • the 100° C. kinematic viscosity of the base oil (a2) is from 120 to 130 mm 2 /s, preferably from 122 to 130 mm 2 /s, more preferably from 125 to 130 mm 2 /s, and further preferably from 127 to 130 mm 2 /s.
  • the base oil (a2) has a 40° C.
  • kinematic viscosity of preferably 800 to 1800 mm 2 /s, more preferably 1000 to 1500 mm 2 /s, and even more preferably 1100 to 1400 mm 2 /s. If the 100° C. kinetic viscosity and the 40° C. kinetic viscosity are within the above ranges, the evaporation loss is small and the power loss due to the viscous resistance is not large, which is preferable.
  • the catalyst mixture by a production method including a step 1 of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound to convert it into a cation, an organometallic compound (C), a plurality of raw material monomers (D) differing in the number of carbon atoms by two or more, and a component (E) which is at least one selected from alcohols (E1), phenols (E2) and ether compounds (E3) to obtain a catalyst mixture, and a step 2 of polymerizing an ⁇ -olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
  • a production method including a step 1 of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound to convert it into a cation, an organometallic compound (C), a plurality of raw material monomers (D) differing in the number of carbon atoms by two or more, and
  • Step 1 is a step of obtaining a catalyst mixture by mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound to be converted into a cation, an organometallic compound (C), a plurality of raw material monomers (D) each having a carbon number differing by two or more, and a component (E) which is at least one selected from alcohols (E1), phenols (E2) and ether compounds (E3).
  • Examples of the metallocene compound (A) include an unbridged metallocene compound, a single-bridged metallocene compound, and a double-bridged metallocene compound.
  • a double-bridged metallocene compound is preferred, and a double-bridged metallocene compound represented by the following general formula (I) is more preferred.
  • R a and R b each independently represent a linking group represented by the following general formula -[L c (R 1c ) (R 2c )] n -.
  • X 1 and X 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or an organic group having 1 to 20 carbon atoms containing one or more atoms selected from a halogen atom, a silicon atom, an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom.
  • M represents a transition metal of Groups 4 to 6 of the periodic table.
  • n is an integer of 1 to 3.
  • R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms.
  • L c represents an atom of Group 14 of the periodic table.
  • X1 and X2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or an organic group having 1 to 20 carbon atoms containing one or more atoms selected from a halogen atom, a silicon atom, an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom.
  • M represents a transition metal of Groups 4 to 6 of the periodic table, and is preferably zirconium, titanium, or hafnium.
  • R a and R b are each independently a linking group represented by -[L c (R 1c ) (R 2c )] n -, and are preferably -C(R 1c ) (R 2c )-, -Si(R 1c ) (R 2c )-, -C(R 1c ) (R 2c )-C(R 1c ) (R 2c )- or -Si(R 1c ) (R 2c )-Si(R 1c ) (R 2c )-.
  • n is an integer from 1 to 3.
  • R 1c and R 2c each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Lc represents an atom of Group 14 of the periodic table, and is preferably a carbon atom or a silicon atom.
  • the doubly bridged metallocene compound represented by the general formula (I) include (1,1'-ethylene)(2,2'-ethylene)biscyclopentadienyl zirconium dichloride, (1,1'-dimethylsilylene)(2,2'-dimethylsilylene)biscyclopentadienyl zirconium dichloride, (1,1'-dimethylsilylene)(2,2'-ethylene)biscyclopentadienyl zirconium dichloride, (1,1'-dimethylsilylene)(2,2'-ethylene)biscyclopentadienyl zirconium dichloride, (1,1'-isopropylidene)(2,2'- Examples of such compounds include dichlorides such as (1,1'-isopropylidene)(2,2'-isopropylidene)bis(3-methylcyclopentadienyl)zirconium dichloride, as well as dimethyl, diethyl, dihydr
  • the ionic compound (B) is not limited as long as it is an ionic compound capable of reacting with the metallocene compound (A) to be converted into a cation.
  • the ionic compound (B) is preferably a compound represented by the following general formula (V) or a compound represented by the following general formula (VI), and more preferably a compound represented by the following general formula (V). ([L 1 ⁇ R 3 ] k+ ) a ([Z] ⁇ ) b ... (V) ([L 2 ] k+ ) a ([Z] ⁇ ) b ... (VI)
  • L1 represents a Lewis base
  • R3 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a hydrocarbon group having 6 to 20 carbon atoms selected from an aryl group, an alkylaryl group, and an arylalkyl group.
  • L1 include amines such as ammonia, methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N,N-dimethylaniline, trimethylamine, triethylamine, tri-n-butylamine, methyldiphenylamine, pyridine, p-bromo-N,N-dimethylaniline, p-nitro-N,N-dimethylaniline, phosphines such as triethylphosphine, triphenylphosphine, diphenylphosphine, thioethers such as tetrahydrothiophene, esters such as ethyl benzoate, nitriles such as acetonitrile, benzonitrile, etc.
  • R3 include a hydrogen atom, a methyl group, an ethyl group, a benzyl group, a trityl group, etc.
  • L2 represents M1 , R4R5M2 , R63C or R7M2 .
  • R4 and R5 each independently represent a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group or a fluorenyl group
  • R6 represents an alkyl group having 1 to 20 carbon atoms or a hydrocarbon group having 6 to 20 carbon atoms selected from an aryl group, an alkylaryl group and an arylalkyl group.
  • R7 represents a macrocyclic ligand such as tetraphenylporphyrin or phthalocyanine.
  • M 1 includes an element of Groups 1 to 3, 11 to 13, and 17 of the periodic table
  • M 2 represents an element of Groups 7 to 12 of the periodic table.
  • R 4 and R 5 include a cyclopentadienyl group, a methylcyclopentadienyl group, an ethylcyclopentadienyl group, and a pentamethylcyclopentadienyl group.
  • R 6 include a phenyl group, a p-tolyl group, and a p-methoxyphenyl group
  • R 7 include tetraphenylporphyrin and phthalocyanine.
  • M 1 include Li, Na, K, Ag, Cu, Br, I, and I 3
  • specific examples of M 2 include Mn, Fe, Co, Ni, and Zn.
  • k is the ionic valence of [L 1 -R 3 ] and [L 2 ] and is an integer of 1 to 3
  • a is an integer of 1 or more
  • b (k ⁇ a).
  • [Z] - represents a non-coordinating anion [Z 1 ] - or [Z 2 ] - .
  • [Z 1 ] - represents an anion in which a plurality of groups are bonded to an element, that is, [M 3 G 1 G 2 ... G f ] - .
  • M 3 represents an element of Groups 5 to 15 of the periodic table, preferably an element of Groups 13 to 15 of the periodic table.
  • G 1 to G f each represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 40 carbon atoms, an arylalkyl group having 7 to 40 carbon atoms, a halogen-substituted hydrocarbon group having 1 to 20 carbon atoms, an acyloxy group or an organic metalloid group having 1 to 20 carbon atoms, or a heteroatom-containing hydrocarbon group having 2 to 20 carbon atoms.
  • G 1 to G f may form a ring.
  • f represents an integer of [(the valence of the central metal M 3 ) + 1].
  • [Z 2 ] ⁇ represents a conjugate base of a single Br ⁇ nsted acid or a combination of a Br ⁇ nsted acid and a Lewis acid having a logarithm of the reciprocal of the acid dissociation constant (pKa) of ⁇ 10 or less, or a conjugate base of an acid generally defined as a superacid.
  • a Lewis base may be coordinated.
  • M 3 include B, Al, Si, P, As, Sb, etc., and preferably B and Al.
  • G 1 and G 2 to G f include dialkylamino groups such as dimethylamino and diethylamino, alkoxy groups or aryloxy groups such as methoxy, ethoxy, n-propoxy, and phenoxy, hydrocarbon groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-octyl, n-eicosyl, phenyl, p-tolyl, benzyl, 4-t-butylphenyl, and 3,5-dimethylphenyl, halogen atoms such as fluorine, chlorine, bromine, Examples of iodine and heteroatom-containing hydrocarbon groups include
  • organic metalloid groups include a pentamethylantimony group, a trimethylsilyl group, a trimethylgermyl group, a diphenylarsine group, a dicyclohexylantimony group, and a diphenylboron group.
  • non-coordinating anions that is, the conjugate base [Z 2 ] ⁇ of a single Bronsted acid or a combination of a Bronsted acid and a Lewis acid having a pKa of ⁇ 10 or less
  • trifluoromethanesulfonate anion CF 3 SO 3 ) ⁇
  • bis(trifluoromethanesulfonyl)methyl anion bis(trifluoromethanesulfonyl)benzyl anion, bis(trifluoromethanesulfonyl)amide
  • perchlorate anion (ClO 4 ) ⁇ trifluoroacetate anion (CF 3 COO) ⁇ , hexafluoroantimony anion (SbF 6 ) ⁇
  • fluorosulfonate anion (FSO 3 ) ⁇ chlorosulfonate anion (ClSO 3 ) ⁇
  • the ionic compound (B) is preferably a tetraphenylborate which may have a substituent, and more specifically, triethylammonium tetraphenylborate, tri-n-butylammonium tetraphenylborate, trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl(tri-n-butyl)ammonium tetraphenylborate, benzyl(tri-n-butyl)ammonium tetraphenylborate, dimethyldiphenylammonium tetraphenylborate, triphenyl(methyl)ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methylpyridinium tetraphenylborate, benzylpyridinium tetraphenylborate, methyl(2-cyanopyri
  • organometallic compound (C) is preferably at least one selected from the group consisting of organoaluminum compounds and organozinc compounds, and more preferably an organoaluminum compound (C1).
  • organoaluminum compound a compound represented by the general formula (VII) is used. (R 8 ) v AlQ 3-v ...
  • R8 is an alkyl group having 1 to 10 carbon atoms
  • Q is a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a halogen atom
  • v is an integer of 1 to 3 or 1.5.
  • organozinc compound a compound represented by the general formula (VIII) is used. (R 9 ) u ZnP 2-u ...
  • R9 represents an alkyl group having 1 to 10 carbon atoms
  • P represents an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a halogen atom
  • u represents an integer of 1 or 2.
  • organoaluminum compounds represented by the general formula (VII) include trimethylaluminum, triethylaluminum, tri-normal propylaluminum, triisopropylaluminum, tri-normal butylaluminum, triisobutylaluminum, triheptylaluminum, trioctylaluminum, diisobutylaluminum hydride, diethylaluminum hydride, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum fluoride, and ethylaluminum sesquichloride, with triisobutylaluminum being preferred.
  • organozinc compound represented by the general formula (VIII) include dimethylzinc, diethylzinc, dibutylzinc, and dioctylzinc.
  • the organometallic compound (C) may be used alone or in combination of two or more kinds.
  • the molar ratio of the metallocene compound (A) to the ionic compound (B) is preferably 10:1 to 1:100, more preferably 2:1 to 1:10.
  • the molar ratio of the metallocene compound (A) to the organometallic compound (C) is preferably 1:1 to 1:10,000, more preferably 1:10 to 1:1,000.
  • the ionic compound (B) and the organometallic compound (C) can each be used alone or in combination of two or more kinds. When using two or more kinds in combination, it is preferable from the viewpoint of catalytic activity that the total ratio of the two or more kinds is within the above range.
  • the multiple raw material monomers (D) used in step 1 are ⁇ -olefins having different carbon numbers of 2 or more, and are included in the ⁇ -olefins polymerized in step 2.
  • the resulting poly- ⁇ -olefin-containing lubricating oil composition has excellent low-temperature fluidity.
  • the poly- ⁇ -olefin-containing lubricating oil composition obtained by using ⁇ -olefins with carbon numbers differing by 2 or more in obtaining the catalyst mixture has excellent low-temperature fluidity
  • the excellent low-temperature fluidity is due to the random arrangement of structural units derived from multiple raw material monomers at the molecular terminals of the poly- ⁇ -olefin.
  • the multiple raw material monomers (D) are preferably ⁇ -olefins having 3 to 30 carbon atoms, more preferably ⁇ -olefins having 6 to 20 carbon atoms, and even more preferably ⁇ -olefins having 8 to 14 carbon atoms.
  • the multiple raw material monomers (D) include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-icosene, 1-henicosene, and 1-hexene.
  • Examples of the 1-octene include 1-octene, 1-docosene, 1-tricosene, 1-tetracosene, 1-pentacosene, 1-hexacosene, 1-heptacosene, 1-octacosene, 1-nonacosene, and 1-triacontene. At least two selected from the group consisting of 1-octene, 1-nonene, 1-decene, 1-undecene, and 1-dodecene are preferred, and 1-octene (D1) and 1-dodecene (D2) are more preferred.
  • the ratio [D1/D2] of 1-octene (D1) to 1-dodecene (D2) used in step 1 is preferably 3:7 to 7:3, more preferably 4:6 to 6:4, and even more preferably 4.5:5.5 to 5.5:4.5, in terms of molar ratio.
  • the multiple raw material monomers (D) have a carbon number difference of 2 or more between the first raw material monomer and the second raw material monomer, and the difference in the carbon number between the first raw material monomer and the second raw material monomer is 2 or more, preferably 3 or more, and more preferably 4 or more.
  • the difference in the carbon number between the first raw material monomer and the second raw material monomer is preferably 6 or less, more preferably 5 or less, and even more preferably 4.
  • At least two kinds of the raw material monomers (D) are used, but three or more kinds may be used, and preferably two kinds.
  • the raw material monomers (D) may be used as they are in the polymerization reaction, but it is more preferable to treat them with an adsorbent such as activated alumina or molecular sieve before use, since this removes impurities and improves activity.
  • the ratio [D/A] of the total of the multiple raw material monomers (D) to the metallocene compound (A) is, in molar ratio, preferably 1 to 1000, more preferably 40 to 300.
  • the amount of the multiple raw material monomers (D) used in step 1 is preferably 0.1 to 30 volume %, more preferably 0.5 to 20 volume %, even more preferably 0.5 to 15 volume %, still more preferably 0.6 to 12 volume %, and even more preferably 0.6 to 10 volume %, based on the catalyst mixture obtained in step 1.
  • the amount of the multiple raw material monomers (D) used within the above range the low-temperature fluidity of the resulting lubricating oil composition containing the poly- ⁇ -olefin can be improved.
  • the component (E) in step 1 is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3), and is preferably an alcohol (E1).
  • the (E) component particularly the alcohols (E1), the low-temperature fluidity of the obtained poly- ⁇ -olefin-containing lubricating oil composition can be further improved. The reason for this is unclear, but is thought to be as follows.
  • the alcohol (E1) is preferably an alcohol having 1 to 20 carbon atoms, more preferably an alcohol having 1 to 8 carbon atoms, and even more preferably an alcohol having 1 to 6 carbon atoms.
  • Specific examples of the alcohol include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 1-butyl alcohol, 2-butyl alcohol, isobutyl alcohol, tertiary butyl alcohol, 1-pentyl alcohol, 2-pentyl alcohol, 3-methyl-1-butyl alcohol, 1-hexyl alcohol, cyclohexyl alcohol, 1-heptyl alcohol, 1-octyl alcohol, 2-ethylhexyl alcohol, triphenylmethanol, 1,2-ethanediol, 1,2-propanediol, benzyl alcohol, ⁇ -methylbenzyl alcohol, and the like, and is preferably tertiary butyl alcohol.
  • the alcohol (E1) may be used alone or in combination of
  • the phenol (E2) is preferably a phenol having 6 to 20 ring carbon atoms, more preferably a phenol having 6 to 14 ring carbon atoms, and even more preferably a phenol having 6 to 12 ring carbon atoms.
  • Specific examples of the phenol include phenol, catechol, cresol, naphthol, 4-phenylphenol, thymol, and bisphenol A.
  • the phenol (E2) may be used alone or in combination of two or more.
  • R 10 and R 11 are each independently a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, and the total number of carbon atoms of R 10 and R 11 is preferably 8 or less.
  • the ether compound examples include dimethyl ether, diethyl ether, dipropyl ether, dibutyl ether, diamyl ether, dioctyl ether, didecyl ether, methyl normal butyl ether, methyl isobutyl ether, methyl tertiary butyl ether, ethyl normal butyl ether, ethyl isobutyl ether, ethyl tertiary butyl ether, methyl phenyl ether, chloromethyl methyl ether, chloromethyl ethyl ether, bromomethyl methyl ether, 2,2-dichloroethyl methyl ether, 2-chloroethyl methyl ether, 2-bromoethyl methyl ether, 2-chloroethyl ethyl ether, ⁇ , ⁇ -dichloromethyl methyl ether, 1-chloro-2,2,2-trifluoroethyl
  • the ratio (usage ratio) of the metallocene compound (A) to the component (E) [A/E] is preferably 10:1 to 1:100, more preferably 1:1 to 1:50, and even more preferably 1:1 to 1:30, in terms of molar ratio.
  • the ratio of the organometallic compound (C) to the component (E) is preferably less than 1, and the molar ratio of the organometallic compound (C) to the component (E) is preferably 10:9 to 1000:1.
  • the alcohol (E1) that is the component (E) is generally added in large quantities as a terminator after the polymerization reaction. Surprisingly, in this production method, activity can be improved by adding a small amount of the component (E) before polymerization.
  • a solvent may be further mixed, and it is preferable to mix a solvent from the viewpoint of uniformly mixing each component of the catalyst mixture.
  • the solvent that can be used in step 1 is preferably at least one selected from the group consisting of aromatic hydrocarbons, alicyclic hydrocarbons, aliphatic hydrocarbons, and halogenated hydrocarbons, and more preferably aromatic hydrocarbons.
  • aromatic hydrocarbons include benzene, toluene, xylene, and ethylbenzene, and are preferably toluene or xylene, and more preferably toluene.
  • alicyclic hydrocarbon examples include cyclopentane, cyclohexane, and methylcyclohexane.
  • Aliphatic hydrocarbons include pentane, hexane, heptane, octane, and the like.
  • halogenated hydrocarbons include chloroform and dichloromethane.
  • the solvent may be used alone or in combination of two or more kinds.
  • the amount of the solvent used is not particularly limited, but is preferably an amount that results in a concentration of the metallocene compound (A) of 0.1 to 10 mmol/L, more preferably an amount that results in a concentration of 0.5 to 5 mmol/L, and even more preferably an amount that results in a concentration of 1 to 3 mmol/L.
  • Step 1 is the step of mixing the above components to obtain a catalyst mixture.
  • mixing is preferably carried out at 50° C. or lower for 30 minutes or longer.
  • the temperature when the above components are mixed is preferably 50° C. or lower, more preferably 40° C. or lower, and even more preferably 30° C. or lower.
  • the lower limit is preferably 0° C. or higher, and more preferably 10° C. or higher.
  • the time for mixing the above components is preferably 30 minutes or more, more preferably 30 minutes to 10 hours, and even more preferably 1 to 7 hours. That is, in step 1, mixing is preferably performed for 30 minutes or more at 50° C. or lower.
  • Step 2 is a step of polymerizing an ⁇ -olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
  • an ⁇ -olefin is polymerized to obtain a poly- ⁇ -olefin, and therefore the ⁇ -olefin used in step 2 is a raw material for the poly- ⁇ -olefin.
  • the ⁇ -olefin used in step 2 contains the plurality of raw material monomers (D).
  • the ⁇ -olefin used in step 2 is preferably an ⁇ -olefin having 3 to 30 carbon atoms, more preferably an ⁇ -olefin having 6 to 20 carbon atoms, and even more preferably an ⁇ -olefin having 8 to 14 carbon atoms.
  • the multiple raw material monomers (D) include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-icosene, 1-henicosene, and the like.
  • Examples of the 1-octene include 1-octene, 1-docosene, 1-tricosene, 1-tetracosene, 1-pentacosene, 1-hexacosene, 1-heptacosene, 1-octacosene, 1-nonacosene, and 1-triacontene. At least two selected from the group consisting of 1-octene, 1-nonene, 1-decene, 1-undecene, and 1-dodecene are preferred, and 1-octene (D1) and 1-dodecene (D2) are more preferred.
  • the ratio [D1/D2] of 1-octene (D1) to 1-dodecene (D2) used in step 2 is preferably 3:7 to 7:3, more preferably 4:6 to 6:4, and even more preferably 4.5:5.5 to 5.5:4.5, in terms of molar ratio.
  • the ratio of the multiple raw material monomers (D) in the ⁇ -olefin used in step 2 is preferably 70 to 100 mol %, more preferably 80 to 100 mol %, even more preferably 90 to 100 mol %, and still more preferably 95 to 100 mol %.
  • the ⁇ -olefin used in step 2 may be composed only of the multiple raw material monomers (D), or may be composed only of 1-octene (D1) and 1-dodecene (D2).
  • the ⁇ -olefin used in step 2 contains the plurality of raw material monomers (D) and therefore at least two types are used, but three or more types may be used, and two types are preferred.
  • the ⁇ -olefin used in step 2 may be used as it is in the polymerization reaction, but it is more preferable to treat it with an adsorbent such as activated alumina or molecular sieve before use, since this removes impurities and improves activity.
  • the amount of ⁇ -olefin used as the raw material is preferably 200 kg or more, more preferably 300 kg or more, even more preferably 400 kg or more, and even more preferably 500 kg or more.
  • the polymerization method is not particularly limited, and any method such as bulk polymerization, solution polymerization, suspension polymerization, slurry polymerization, and gas phase polymerization may be used.
  • the polymerization temperature is preferably 0 to 200°C, more preferably 30 to 150°C, even more preferably 40 to 120°C, and still more preferably 80 to 120°C.
  • the ratio of the catalyst to the raw material ⁇ -olefin that is, the molar ratio of the ⁇ -olefin used in step 2 to the metallocene compound (A) used in step 1 [ ⁇ -olefin/metallocene compound (A)] is preferably 1 to 10 8 , more preferably 100 to 10 6 .
  • the polymerization time is preferably 5 minutes to 20 hours, and the reaction pressure is preferably 0 to 0.2 MPaG.
  • the polymerization is preferably performed without a solvent, but a solvent may be used.
  • the solvent that can be used in step 2 is preferably at least one selected from the group consisting of aromatic hydrocarbons, alicyclic hydrocarbons, aliphatic hydrocarbons, and halogenated hydrocarbons, and more preferably aromatic hydrocarbons.
  • aromatic hydrocarbons include benzene, toluene, xylene, and ethylbenzene, and toluene or xylene is preferable, and toluene is more preferable.
  • the alicyclic hydrocarbon include cyclopentane, cyclohexane, and methylcyclohexane.
  • Aliphatic hydrocarbons include pentane, hexane, heptane, octane, and the like.
  • halogenated hydrocarbons include chloroform and dichloromethane.
  • the solvent may be used alone or in combination of two or more kinds.
  • step 2 when polymerizing ⁇ -olefins, it is preferable to add hydrogen because the activity is improved by adding hydrogen.
  • the hydrogen partial pressure is preferably 0.2 MPaG or less, and more preferably 0.1 MPaG or less.
  • the lower limit of the hydrogen partial pressure is 0.01 MPaG.
  • Step 2 is a step of polymerizing an ⁇ -olefin using the catalyst mixture, and in step 2, it is preferable to mix the ⁇ -olefin with an organoaluminum compound (C2), and then mix the catalyst mixture to polymerize the ⁇ -olefin.
  • the organoaluminum compound (C2) used here is the same as the organoaluminum compound (C1) used in step 1, and the preferred compounds are also the same. It is more preferable that the organoaluminum compound (C2) and the organoaluminum compound (C1) are the same compound.
  • step 2 it is more preferable to mix the ⁇ -olefin with the organoaluminum compound (C2), then mix the catalyst mixture, and then raise the temperature to 80° C. or higher to polymerize the ⁇ -olefin.
  • the preferred polymerization temperature is as described above, and is preferably 80 to 120° C.
  • the molecular weight of the ⁇ -olefin polymer can be adjusted by adjusting the type, amount of each catalyst component used, reaction amount, polymerization temperature, and solvent.
  • the polymerization in step 2 is preferably carried out in a reaction vessel having a capacity of 700 L or more, more preferably in a reaction vessel having a capacity of 800 L or more, and more preferably in a reaction vessel having a capacity of 1000 L or more. It is believed that by increasing the reaction scale, the effect of the reactor wall on the catalytic activity is reduced, and the obtained lubricating oil composition containing the poly- ⁇ -olefin has better low-temperature fluidity.
  • Methods for removing the monomer and oligomer components include, for example, distillation.
  • the ⁇ -olefin polymer obtained in step 2 may be used as it is as a lubricant, a lubricant base oil, or an additive for a lubricant, but it is preferable to further carry out hydrogenation. Hydrogenation can improve stability.
  • the reaction conditions for the hydrogenation step may be general hydrogenation reaction conditions, but the preferred conditions are as follows. In this hydrogenation step, a commonly used gas phase hydrogenation method can be used. When a precious metal catalyst such as palladium or platinum is used as the catalyst, the reaction temperature is preferably 60 to 100°C and the hydrogen pressure is preferably 0.1 to 1 MPa.
  • the reaction temperature is preferably 100 to 250°C and the hydrogen pressure is preferably 1 to 20 MPa.
  • the amount of catalyst is preferably 0.05 to 50 mass% relative to the polymer obtained in step 2, and the reaction time is preferably 2 to 48 hours.
  • the hydrogenation reaction proceeds quickly by using the hydrogenation catalyst, but even after the significant absorption of hydrogen has subsided, additional operations such as increasing the temperature or pressure may be performed in order to completely hydrogenate the remaining trace amounts of raw material.
  • the lubricating oil composition of the present invention contains a base oil (b) having a 100° C. kinematic viscosity of 1 to 30 mm 2 /s.
  • the base oil (b) may be a metallocene-catalyzed poly- ⁇ -olefin, but is preferably at least one selected from the group consisting of non-metallocene-catalyzed poly- ⁇ -olefins and esters.
  • the type of suitable base oil (b) varies depending on the type (100° C. kinematic viscosity) of the base oil (a).
  • non-metallocene catalyst-based poly- ⁇ -olefin refers to a poly- ⁇ -olefin polymerized using a catalyst other than a metallocene catalyst as a polymerization catalyst, and refers to a poly- ⁇ -olefin polymerized using a conventional catalyst as a polymerization catalyst.
  • the nonmetallocene catalyst-based poly- ⁇ -olefin is preferably a poly- ⁇ -olefin obtained by using one or more ⁇ -olefins having 8 to 12 carbon atoms.
  • the non-metallocene catalyst-based poly- ⁇ -olefin is a poly- ⁇ -olefin polymerized using a catalyst other than a metallocene catalyst as a polymerization catalyst, preferably a poly- ⁇ -olefin polymerized using a cationic catalyst or a Ziegler catalyst as a polymerization catalyst, and more preferably a poly- ⁇ -olefin polymerized using a cationic catalyst.
  • nonmetallocene-catalyzed poly- ⁇ -olefins having a more diverse structure than metallocene-catalyzed poly- ⁇ -olefins with metallocene-catalyzed poly- ⁇ -olefins in the lubricating oil composition of the present invention, a lubricating oil having excellent low-temperature fluidity can be obtained. Furthermore, the nonmetallocene-catalyzed poly- ⁇ -olefins improve the solubility of various additives in the lubricating oil composition of the present invention, and the lubricating oil composition is also excellent in terms of the expression of the additives' functions.
  • nonmetallocene-catalyzed poly- ⁇ -olefins have the characteristic of being more diverse in structure than metallocene-catalyzed poly- ⁇ -olefins.
  • the viscosity index of the nonmetallocene catalyst-based poly- ⁇ -olefin is preferably at least 80, more preferably at least 100, and even more preferably at least 130. If the viscosity index is within the above range, the viscosity change due to the change in temperature is small.
  • the pour point of the nonmetallocene catalyst-based poly- ⁇ -olefin is preferably ⁇ 25° C. or lower, more preferably ⁇ 30° C. or lower, and even more preferably ⁇ 40° C. or lower.
  • the lubricating oil composition of the present invention containing it will have sufficient fluidity even in a low-temperature environment.
  • the kinematic viscosity and viscosity index are values measured in accordance with JIS K 2283, and the pour point is a value measured in accordance with JIS K 2265.
  • base oil (b) The preferred physical properties of the base oil (b) vary depending on the type and content of the base oil (a). The composition numbers are described in the ⁇ Composition of the lubricating oil composition> described later.
  • suitable nonmetallocene catalyst-based poly- ⁇ -olefins include base oils (b3), (b1) and (b4).
  • the base oil (b) is preferably the base oil (b3).
  • the base oil (b3) is a nonmetallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinematic viscosity of 5 to 10 mm 2 /s.
  • the 100° C. kinematic viscosity of the base oil (b3) is from 5 to 10 mm 2 /s, preferably from 5 to 9 mm 2 /s, more preferably from 5 to 8 mm 2 /s, and even more preferably from 5 to 7 mm 2 /s.
  • kinematic viscosity of the base oil (b3) is preferably 25 to 50 mm 2 /s, more preferably 25 to 40 mm 2 /s, even more preferably 25 to 35 mm 2 /s, and still more preferably 30 to 35 mm 2 /s. If the 100° C. kinetic viscosity and the 40° C. kinetic viscosity are within the above ranges, the evaporation loss is small and the power loss due to the viscous resistance is not large, which is preferable.
  • base oil (b1) is optional, but it is preferable to use base oil (b1) as base oil (b).
  • the base oil (b1) is a nonmetallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinematic viscosity of 1 to 10 mm 2 /s.
  • the 100°C kinematic viscosity of the base oil (b1) is 1 to 10 mm 2 /s, preferably 3 to 10 mm 2 /s, more preferably 5 to 10 mm 2 /s, even more preferably 5 to 9 mm 2 /s, still more preferably 5 to 8 mm 2 /s, and even more preferably 5 to 7 mm 2 /s.
  • the 40°C kinematic viscosity of the base oil (b1) is preferably 10 to 50 mm 2 /s, more preferably 20 to 50 mm 2 /s, even more preferably 25 to 50 mm 2 /s, still more preferably 25 to 40 mm 2 /s, even more preferably 25 to 35 mm 2 /s, and even more preferably 30 to 35 mm 2 /s. If the 100° C. kinetic viscosity and the 40° C. kinetic viscosity are within the above ranges, the evaporation loss is small and the power loss due to the viscous resistance is not large, which is preferable.
  • the base oil (b) is preferably base oil (b4).
  • the base oil (b4) is a nonmetallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinematic viscosity of 1 to 30 mm 2 /s.
  • the 100°C kinematic viscosity of base oil (b4) is 1 to 30 mm 2 /s, preferably 1 to 20 mm 2 /s, more preferably 1 to 10 mm 2 /s, even more preferably 3 to 10 mm 2 /s, still more preferably 5 to 10 mm 2 /s, even more preferably 5 to 9 mm 2 /s, even more preferably 5 to 8 mm 2 /s, and even more preferably 5 to 7 mm 2 /s.
  • the 40°C kinematic viscosity of the base oil (b4) is preferably 10 to 300 mm 2 /s, more preferably 10 to 150 mm 2 /s, even more preferably 10 to 50 mm 2 /s, still more preferably 20 to 50 mm 2 /s, even more preferably 25 to 50 mm 2 /s, even more preferably 25 to 40 mm 2 /s, even more preferably 25 to 35 mm 2 /s, and even more preferably 30 to 35 mm 2 /s. If the 100° C. kinetic viscosity and the 40° C. kinetic viscosity are within the above ranges, the evaporation loss is small and the power loss due to the viscous resistance is not large, which is preferable.
  • the ester may be a known ester such as a diester, an aromatic ester, a polyol ester, etc.
  • a polyol ester is preferred, and at least one selected from the group consisting of a partial ester of a polyol and a complete ester of a polyol is more preferred.
  • the lubricating oil composition of the present invention has even better low-temperature fluidity.
  • the polyol used as a raw material for the polyol ester is not particularly limited, but an aliphatic polyol is preferable.
  • polyol examples include dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, tetramethylene glycol, and neopentyl glycol; trihydric alcohols such as glycerin, trimethylolethane, and trimethylolpropane; and tetrahydric or higher polyhydric alcohols such as diglycerin, triglycerin, pentaerythritol, dipentaerythritol, mannitol, and sorbitol.
  • dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, tetramethylene glycol, and neopentyl glycol
  • trihydric alcohols such as glycerin, trimethylolethane, and trimethylolpropane
  • tetrahydric or higher polyhydric alcohols such as diglycerin,
  • the hydrocarbon group constituting the carboxylic acid portion of the polyol ester is preferably an alkyl or alkenyl group having 6 to 30 carbon atoms, more preferably an alkyl or alkenyl group having 12 to 24 carbon atoms, and examples thereof include various hexyl groups, octyl groups, decyl groups, dodecyl groups, tetradecyl groups, hexadecyl groups, heptadecyl groups, octadecyl groups, hexenyl groups, octenyl groups, decenyl groups, dodecenyl groups, tetradecenyl groups, hexadecenyl groups, and octadecenyl groups.
  • the alkyl group and alkenyl group may be either linear or branched.
  • esters of polyols include, but are not limited to, neopentyl glycol esters such as neopentyl glycol dilaurate, neopentyl glycol dimyristate, neopentyl glycol dipalmitate, neopentyl glycol distearate, and neopentyl glycol diisostearate; trimethylolpropane esters such as trimethylolpropane trilaurate, trimethylolpropane trimyristate, trimethylolpropane tripalmitate, trimethylolpropane tristearate, and trimethylolpropane triisostearate; glycerin esters such as glycerin trilaurate, glycerin tristearate, and glycerin triisostearate; and dipentaerythritol esters such as dipentaerythritol hexalaurate.
  • the partial ester of the polyol is not particularly limited as long as it has at least one remaining hydroxyl group.
  • Specific examples of the partial ester of the polyol include partial esters of neopentyl glycol, such as neopentyl glycol monolaurate, neopentyl glycol monomyristate, neopentyl glycol monopalmitate, neopentyl glycol monostearate, and neopentyl glycol monoisostearate; partial esters of trimethylolpropane, such as trimethylolpropane mono- or dilaurate, trimethylolpropane mono- or dimyristate, trimethylolpropane mono- or dipalmitate, trimethylolpropane mono- or distearate, and trimethylolpropane mono- or diisostearate; partial esters of glycerin, such as glycerin mono- or dilaurate, glycer
  • R 1 is a hydrocarbon group having 6 to 30 carbon atoms
  • n is an integer from 2 to 6
  • L is an n-valent hydrocarbon group or an n-valent hydrocarbon group containing an ether bond.
  • the above R 1 is preferably an alkyl or alkenyl group having 8 to 18 carbon atoms. It is preferred that n is 3 or 4.
  • L is preferably an n-valent hydrocarbon group having 3 to 10 carbon atoms, or an n-valent hydrocarbon group containing an ether bond.
  • hydrocarbon group containing an ether bond refers to two hydrocarbon groups bonded via an ether bond (-O-).
  • Preferred specific examples of the ester when L is an n-valent hydrocarbon group having 3 to 10 carbon atoms include neopentyl glycol esters such as neopentyl glycol dilaurate and neopentyl glycol dimyristate, etc.
  • Preferred specific examples of the ester when L is a hydrocarbon group containing an ether bond include dipentaerythritol esters such as dipentaerythritol hexalaurate and dipentaerythritol pentalaurate, etc.
  • the polyol ester may be used alone or in combination of two or more kinds.
  • the preferred physical properties of the base oil (b) vary depending on the type and content of the base oil (a).
  • the composition numbers are given in the ⁇ Composition of the lubricating oil composition> described later.
  • a suitable ester is base oil (b2).
  • the base oil (b) is preferably the base oil (b2).
  • the use of base oil (b2) is optional, but it is preferable to use base oil (b2) as base oil (b).
  • the base oil (b2) is an ester having a 100° C. kinematic viscosity of 10 to 15 mm 2 /s. The 100° C.
  • kinematic viscosity of the base oil (b2) is from 10 to 15 mm 2 /s, preferably from 11 to 15 mm 2 /s, more preferably from 12 to 15 mm 2 /s, and even more preferably from 12 to 14 mm 2 /s.
  • the 40° C. kinematic viscosity of the base oil (b2) is preferably 50 to 200 mm 2 /s, more preferably 60 to 150 mm 2 /s, even more preferably 70 to 130 mm 2 /s, and still more preferably 80 to 120 mm 2 /s. If the 100° C. kinetic viscosity and the 40° C. kinetic viscosity are within the above ranges, the evaporation loss is small and the power loss due to the viscous resistance is not large, which is preferable.
  • the lubricating oil composition of the present invention may contain base oils other than the above-mentioned base oil (a) and base oil (b) as long as the effects of the present invention are not impaired.
  • the other base oils are not particularly limited in type, and can be either mineral oils or synthetic oils.
  • the mineral oils can be any of various types known in the art, such as paraffin-based mineral oils, intermediate-based mineral oils, naphthene-based mineral oils, and the like.Specific examples include light neutral oils, medium neutral oils, heavy neutral oils, and bright stocks, which are obtained by solvent refining or hydrogen refining.
  • various conventionally known oils can be used, such as polybutene, phosphate ester, polyphenyl ether, alkylbenzene, alkylnaphthalene, polyoxyalkylene glycol, neopentyl glycol, silicone oil, trimethylolpropane, pentaerythritol, and further hindered ester.
  • These base oils can be used alone or in combination of two or more, and mineral oil and synthetic oil can be used in combination.
  • the lubricating oil composition of the present invention may further contain various additives within the range that does not impair the effects of the present invention. Various additives can be used appropriately depending on the application of the lubricating oil composition, etc.
  • the lubricating oil composition of the present invention preferably further contains 1 to 30 mass % of at least one additive selected from the group consisting of extreme pressure agents, antiwear agents, ashless detergent-dispersants, antioxidants, rust inhibitors, metal deactivators and pour point depressants.
  • the content of the additives in the lubricating oil composition of the present invention is preferably 1 to 30 mass %, more preferably 1 to 20 mass %, even more preferably 1 to 10 mass %, still more preferably 1 to 5 mass %, even more preferably 1 to 4 mass %, and even more preferably 2 to 4 mass %.
  • the extreme pressure agent examples include sulfur-based extreme pressure agents, phosphorus-based extreme pressure agents, extreme pressure agents containing sulfur and metal, and extreme pressure agents containing phosphorus and metal. These extreme pressure agents can be used alone or in combination of two or more.
  • the extreme pressure agent may be any agent that contains sulfur atoms and/or phosphorus atoms in the molecule and can exhibit load resistance and wear resistance.
  • the amount of the extreme pressure agent blended is preferably 0.01 to 20 mass %, and more preferably 0.01 to 10 mass %, based on the total amount of the lubricating oil composition, from the standpoint of blending effect and economy.
  • anti-wear agents include sulfur-containing compounds such as zinc dialkyldithiophosphate (ZnDTP), zinc phosphate, disulfides, sulfurized olefins, sulfurized oils and fats, sulfurized esters, thiocarbonates, thiocarbamates, and polysulfides; phosphorus-containing compounds such as phosphites, phosphates, phosphonates, and amine salts or metal salts thereof; and sulfur- and phosphorus-containing anti-wear agents such as thiophosphites, thiophosphates, thiophosphonates, and amine salts or metal salts thereof.
  • the amount of the anti-wear agent blended is preferably 0.01 to 20 mass %, more preferably 0.01 to 10 mass %, based on the total amount of the lubricating oil composition, from the viewpoints of blending effect and economy.
  • Examples of the ashless detergent-dispersant include succinimides, boron-containing succinimides, benzylamines, boron-containing benzylamines, succinic acid esters, fatty acids, and mono- or di-carboxylic acid amides such as succinic acid.
  • the antioxidant is preferably at least one selected from the group consisting of amine-based antioxidants, phenol-based antioxidants, and sulfur-based antioxidants. These antioxidants can be used alone or in combination of two or more.
  • the amine-based antioxidant include monoalkyldiphenylamine-based compounds such as monooctyldiphenylamine and monononyldiphenylamine; dialkyldiphenylamine-based compounds such as 4,4'-dibutyldiphenylamine, 4,4'-dipentyldiphenylamine, 4,4'-dihexyldiphenylamine, 4,4'-diheptyldiphenylamine, 4,4'-dioctyldiphenylamine and 4,4'-dinonyldiphenylamine; polyalkyldiphenylamine-based compounds such as tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphen
  • phenol-based antioxidant examples include monophenol-based compounds such as 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, and diphenol-based compounds such as 4,4'-methylenebis(2,6-di-tert-butylphenol) and 2,2'-methylenebis(4-ethyl-6-tert-butylphenol).
  • sulfur-based antioxidant examples include thioterpene compounds such as 2,6-di-tert-butyl-4-(4,6-bis(octylthio)-1,3,5-triazin-2-ylamino)phenol, a reaction product of phosphorus pentasulfide with pinene, and dialkyl thiodipropionates such as dilauryl thiodipropionate and distearyl thiodipropionate.
  • thioterpene compounds such as 2,6-di-tert-butyl-4-(4,6-bis(octylthio)-1,3,5-triazin-2-ylamino)phenol
  • a reaction product of phosphorus pentasulfide with pinene examples include dialkyl thiodipropionates such as dilauryl thiodipropionate and distearyl thiodipropionate.
  • the amount of the antioxidant contained in the lubricating oil composition of the present invention is preferably 0.1 mass% or more, more preferably 0.2 mass% or more, even more preferably 0.3 mass% or more, and even more preferably 0.4 mass% or more, based on the total amount of the lubricating oil composition. It is preferably 20 mass% or less, and may be 3 mass% or less.
  • the rust inhibitor examples include metal sulfonates and succinic acid esters. From the viewpoint of the blending effect, the blending amount of the rust inhibitor is preferably 0.01 to 20 mass %, more preferably 0.05 to 5 mass %, based on the total amount of the lubricating oil composition.
  • metal deactivators examples include benzotriazole and thiadiazole. From the viewpoint of blending effect, the preferred blending amount of the metal deactivator is preferably 0.01 to 20 mass % based on the total amount of the lubricating oil composition, and more preferably 0.01 to 1 mass %.
  • polymethacrylate with a weight average molecular weight of 50,000 to 150,000 can be used.
  • the lubricating oil composition of the present invention may also contain a lubricating oil additive package as an additive.
  • the lubricating oil additive package contains at least one additive selected from the group consisting of extreme pressure agents, antiwear agents, ashless detergent-dispersants, antioxidants, rust inhibitors, metal deactivators, and pour point depressants.
  • the lubricating oil additive package may be appropriately selected depending on the application of the lubricating oil composition of the present invention, but when the lubricating oil composition is used in gear oil, it is preferable to use a gear oil additive package.
  • the additives contained in the lubricating oil additive package are preferably at least one selected from the group consisting of extreme pressure agents, antiwear agents, ashless detergent-dispersants, antioxidants, rust inhibitors, metal deactivators, and pour point depressants, and more preferably at least one selected from the group consisting of extreme pressure agents, antiwear agents, metal deactivators, pour point depressants, and antioxidants.
  • the lubricating oil additive package may further contain additives other than the above additives.
  • the content of the lubricating oil additive package in the lubricating oil composition of the present invention is preferably 1 to 30 mass %, more preferably 1 to 20 mass %, even more preferably 1 to 10 mass %, still more preferably 1 to 5 mass %, even more preferably 1 to 4 mass %, and even more preferably 2 to 4 mass %.
  • the present invention relates to a lubricating oil composition
  • a lubricating oil composition comprising the following base oil (a) and base oil (b), in which the mass ratio of base oil (a) to base oil (b) [(a)/(b)] is 50/50 to 95/5.
  • Base oil (a) a metallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinetic viscosity of 40 to 130 mm 2 /s.
  • Base oil (b) a base oil having a 100° C. kinetic viscosity of 1 to 30 mm 2 /s.
  • the mass ratio of base oil (a) to base oil (b) in the lubricating oil composition of the present invention is 50/50 to 95/5.
  • the total content of the base oil (a) and the base oil (b) in the lubricating oil composition of the present invention is preferably 70 mass% or more, more preferably 80 mass% or more, even more preferably 90 mass% or more, even more preferably 95 mass% or more, and even more preferably 96 mass% or more.
  • the lubricating oil composition of the present invention may consist of only the base oil (a) and the base oil (b), but the total content of the base oil (a) and the base oil (b) in the lubricating oil composition of the present invention is preferably 100 mass% or less, more preferably less than 100 mass%, even more preferably 99 mass% or less, and even more preferably 98 mass% or less.
  • the components of the preferred lubricating oil compositions are described below. For convenience, the lubricating oil compositions having each component are numbered as lubricating oil composition (1), lubricating oil composition (1-1), lubricating oil composition (2), etc.
  • Lubricating oil composition (1) is a lubricating oil composition of the present invention in which base oil (a) is base oil (a1) described below, and the mass ratio of base oil (a1) to base oil (b) [(a1)/(b)] is 80/20 to 95/5.
  • Lubricating oil composition (1) is a lubricating oil composition having a larger viscosity index and more excellent low-temperature fluidity than the other lubricating oil compositions of the present invention.
  • Base oil (a1) metallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinematic viscosity of 40 to 50 mm 2 /s
  • the lubricating oil composition (1) is a lubricating oil composition containing the following base oil (a1) and the following base oil (b), in which the mass ratio of base oil (a1) to base oil (b) [(a1)/(b)] is 80/20 to 95/5.
  • Base oil (a1) metallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinetic viscosity of 40 to 50 mm 2 /s
  • Base oil (b) base oil having a 100° C. kinetic viscosity of 1 to 30 mm 2 /s
  • the lubricating oil composition (1) is further preferably a lubricating oil composition (1-1).
  • the lubricating oil composition (1-1) is a lubricating oil composition in which the base oil (b) is at least one selected from the group consisting of the following base oil (b1) and the following base oil (b2).
  • the lubricating oil composition (1-1) is a lubricating oil composition having a larger viscosity index and more excellent low-temperature fluidity than the lubricating oil compositions (1).
  • Base oil (b1) nonmetallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinetic viscosity of 1 to 10 mm 2 /s
  • Base oil (b2) ester having a 100° C. kinetic viscosity of 10 to 15 mm 2 /s
  • the lubricating oil composition (1-1) contains the following base oil (a1) and the following base oil (b), wherein the mass ratio of the base oil (a1) to the base oil (b) [(a1)/(b)] is 80/20 to 95/5, and the base oil (b) is at least one selected from the group consisting of the following base oil (b1) and the following base oil (b2).
  • Base oil (a1) metallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinetic viscosity of 40 to 50 mm 2 /s
  • the mass ratio of base oil (a1) to base oil (b) in lubricating oil composition (1-1) [(a1)/(b)] is 80/20 to 95/5.
  • the lubricating oil composition (1) is further preferably a lubricating oil composition (1-2).
  • the lubricating oil composition (1-2) is a lubricating oil composition in which the base oil (b) is the following base oil (b3) and the mass ratio of the base oil (a1) to the base oil (b3) [(a1)/(b3)] is 90/10 to 95/5 among the lubricating oil compositions (1).
  • the lubricating oil composition (1-2) is a lubricating oil composition having a higher viscosity index and better low-temperature fluidity than the lubricating oil compositions (1).
  • the lubricating oil composition (1-2) is also included in the lubricating oil composition (1-1), and the lubricating oil composition (1-2) is a lubricating oil composition having a higher viscosity index and better low-temperature fluidity than the lubricating oil compositions (1-1).
  • the lubricating oil composition (1-2) is a lubricating oil composition containing the following base oil (a1) and the following base oil (b3), in which the mass ratio of the base oil (a1) to the base oil (b3) [(a1)/(b3)] is 90/10 to 95/5.
  • Base oil (a1) metallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinetic viscosity of 40 to 50 mm 2 /s.
  • Base oil (b3) non-metallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinetic viscosity of 5 to 10 mm 2 /s.
  • the content of the base oil (a1) is preferably 90 to 95 mass%, more preferably 90 to 94 mass%, even more preferably 90 to 93 mass%, still more preferably 90 to 92 mass%, and even more preferably 91 to 92 mass%, based on the total amount of the lubricating oil composition (1-2).
  • the content of the base oil (b3) is preferably 5 to 9 mass%, more preferably 5 to 8 mass%, even more preferably 5 to 7 mass%, and still more preferably 5 to 6 mass%.
  • the mass ratio of base oil (a1) to base oil (b3) in lubricating oil composition (1-2) [(a1)/(b3)] is 90/10 to 95/5, preferably 91/9 to 95/5, more preferably 92/8 to 95/5, even more preferably 93/7 to 95/5, and even more preferably 94/6 to 95/5.
  • the lubricating oil composition (1-1) is further preferably a lubricating oil composition (1-1-1).
  • the lubricating oil composition (1-1-1) is a lubricating oil composition in which the base oil (b) is base oil (b2), or base oil (b2) and base oil (b1), and the mass ratio of the base oil (b2) to the base oil (b1) [(b2)/(b1)] is 80/20 to 100/0.
  • the lubricating oil composition (1-1-1) contains the following base oil (a1) and base oil (b2), and does not contain base oil (b1) or contains base oil (b1), in which the mass ratio of base oil (a1) to the sum of base oil (b1) and base oil (b2) [(a1)/((b1)+(b2)]] is 80/20 to 95/5, and the mass ratio of base oil (b2) to base oil (b1) [(b2)/(b1)]] is 80/20 to 100/0.
  • Base oil (a1) metallocene catalyst-based poly- ⁇ -olefin having a 100° C.
  • Base oil (b1) non-metallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinetic viscosity of 1 to 10 mm 2 /s
  • the content of base oil (a1) is preferably 80 to 95 mass%, more preferably 82 to 92 mass%, and even more preferably 83 to 89 mass%, based on the total amount of the lubricating oil composition (1-1-1).
  • the content of base oil (a1) is even more preferably 83 to 87 mass%, and even more preferably 83 to 86 mass%, based on the total amount of the lubricating oil composition (1-1-1).
  • the content of base oil (a1) is even more preferably 84 to 89 mass%, and even more preferably 84 to 87 mass%, based on the total amount of the lubricating oil composition (1-1-1).
  • the content of the base oil (b) is preferably 5 to 20 mass%, more preferably 8 to 18 mass%, and even more preferably 9 to 16 mass%.
  • the content of the base oil (b) is more preferably 10 to 16 mass%, and even more preferably 11 to 15 mass%, based on the total amount of the lubricating oil composition (1-1-1).
  • the base oil (b) contains the base oil (b1)
  • the content of the base oil (b) is more preferably 9 to 15 mass%, and even more preferably 10 to 14 mass%, based on the total amount of the lubricating oil composition (1-1-1).
  • the content of the base oil (b2) is preferably 5 to 20 mass%, more preferably 7 to 18 mass%, and even more preferably 9 to 16 mass%.
  • the content of the base oil (b2) is more preferably 10 to 16 mass%, and even more preferably 11 to 15 mass%, based on the total amount of the lubricating oil composition (1-1-1).
  • the content of the base oil (b2) is more preferably 8 to 14 mass%, and even more preferably 9 to 13 mass%, based on the total amount of the lubricating oil composition (1-1-1).
  • the content of the base oil (b1) is preferably 0 to 5 mass %, more preferably 0 to 3 mass %, and even more preferably 0 to 2 mass %.
  • the mass ratio [(a1)/(b)] of the base oil (a1) to the base oil (b) in the lubricating oil composition (1-1-1) is 80/20 to 95/5, preferably 82/18 to 92/8, and more preferably 84/16 to 91/9.
  • the mass ratio [(a1)/(b)] of the base oil (a1) to the base oil (b) in the lubricating oil composition (1-1-1) is more preferably 84/16 to 89/11, and even more preferably 85/15 to 88/12.
  • the mass ratio [(a1)/(b)] of the base oil (a1) to the base oil (b) in the lubricating oil composition (1-1-1) is more preferably 86/14 to 91/9, and even more preferably 87/13 to 90/10.
  • the mass ratio [(a1)/(b2)] of the base oil (a1) to the base oil (b2) in the lubricating oil composition (1-1-1) is preferably 85/15 to 95/5, more preferably 85/15 to 93/7, and even more preferably 85/15 to 92/8.
  • the mass ratio [(a1)/(b2)] of the base oil (a1) to the base oil (b2) in the lubricating oil composition (1-1-1) is even more preferably 85/15 to 89/11, and even more preferably 85/15 to 88/12.
  • the mass ratio of the base oil (a1) to the base oil (b2) in the lubricating oil composition (1-1-1) [(a1)/(b2)] is more preferably 86/14 to 92/8, and even more preferably 88/12 to 91/9.
  • the mass ratio [(a1)/(b1)] of the base oil (a1) to the base oil (b1) in the lubricating oil composition (1-1-1) is preferably 95/5 to 100/0, more preferably 97/3 to 100/0, and even more preferably 98/2 to 100/0.
  • the base oil (b) contains the base oil (b1), it is even more preferably 98/2 to 99/1.
  • the mass ratio of base oil (b2) to base oil (b1) in the lubricating oil composition (1-1-1) [(b2)/(b1)] is 80/20 to 100/0, preferably 85/15 to 100/0, and more preferably 87/13 to 100/0.
  • base oil (b) contains base oil (b1), it is even more preferably 87/13 to 95/5.
  • Lubricating oil composition (2) is a lubricating oil composition of the present invention in which base oil (a) is base oil (a2) described below, base oil (b) is base oil (b2) described below and base oil (b4) described below, the mass ratio of base oil (a2) to base oil (b) [(a2)/(b)] is 50/50 to 70/30, and the mass ratio of base oil (b2) to base oil (b4) [(b2)/(b4)] is 25/75 to 60/40.
  • Lubricating oil composition (2) is a lubricating oil composition having a larger viscosity index and better low-temperature fluidity than the lubricating oil compositions of the present invention.
  • the lubricating oil composition (2) comprises the following base oil (a2), base oil (b2), and base oil (b4), in which the mass ratio of the base oil (a2) to the base oil (b) [(a2)/(b)] is 50/50 to 70/30, and the mass ratio of the base oil (b2) to the base oil (b4) [(b2)/(b4)] is 25/75 to 60/40.
  • Base oil (a2) metallocene catalyst-based poly- ⁇ -olefin having a 100° C. kinetic viscosity of 120 to 130 mm 2 /s
  • the content of the base oil (a2) is preferably 50 to 70 mass%, more preferably 53 to 68 mass%, even more preferably 55 to 67 mass%, still more preferably 57 to 65 mass%, and even more preferably 58 to 64 mass%, based on the total amount of the lubricating oil composition (2).
  • the content of the base oil (b) is preferably 25 to 45 mass%, more preferably 27 to 43 mass%, even more preferably 28 to 42 mass%, still more preferably 30 to 40 mass%, and even more preferably 34 to 38 mass%.
  • the content of the base oil (b2) is preferably 10 to 20 mass%, more preferably 10 to 19 mass%, even more preferably 11 to 18 mass%, still more preferably 12 to 17 mass%, and even more preferably 13 to 16 mass%.
  • the content of base oil (b4) is preferably from 15 to 25 mass %, more preferably from 17 to 23 mass %, and even more preferably from 18 to 22 mass %.
  • the mass ratio of base oil (a2) to base oil (b) in the lubricating oil composition (2) [(a2)/(b)] is 50/50 to 70/30, preferably 53/47 to 70/30, more preferably 55/45 to 70/30, even more preferably 57/43 to 70/30, and even more preferably 60/40 to 70/30.
  • the mass ratio of the base oil (a2) to the base oil (b2) in the lubricating oil composition (2) [(a2)/(b2)] is preferably 70/30 to 90/10, more preferably 73/27 to 90/10, even more preferably 75/25 to 87/13, even more preferably 77/23 to 85/15, and even more preferably 80/20 to 85/15.
  • the mass ratio of base oil (a2) to base oil (b4) in the lubricating oil composition (2) [(a2)/(b4)] is preferably 65/35 to 85/15, more preferably 70/30 to 83/17, even more preferably 73/27 to 81/19, and even more preferably 75/25 to 80/20.
  • the mass ratio of base oil (b2) to base oil (b4) in the lubricating oil composition (2) [(b2)/(b4)] is 25/75 to 60/40, preferably 35/15 to 50/50, more preferably 45/55 to 50/50, and even more preferably 40/60 to 45/55.
  • the 40°C kinematic viscosity of the lubricating oil composition of the present invention is preferably 288 to 352 mm 2 /s. That is, it is preferable that the ISO viscosity grade corresponds to ISO VG320.
  • the 40°C kinematic viscosity of the lubricating oil composition of the present invention is in the above range, it becomes suitable as a gear oil for wind power generation.
  • the 40°C kinematic viscosity of the lubricating oil composition of the present invention is more preferably 290 to 350 mm 2 /s, even more preferably 300 to 340 mm 2 /s, and even more preferably 310 to 330 mm 2 /s.
  • the gear oil for wind power generation of the present invention is a gear oil for wind power generation that contains the lubricating oil composition described above. That is, the gear oil for wind power generation of the present invention is a gear oil for wind power generation that contains a lubricating oil composition that contains the following base oil (a) and the following base oil (b), and in which the mass ratio of base oil (a) to base oil (b) [(a)/(b)] is 50/50 to 95/5.
  • the gear oil for wind power generation of the present invention may be a gear oil for wind power generation containing a lubricating oil composition containing 50 to 95 mass % of the following base oil (a) and 5 to 50 mass % of the following base oil (b).
  • the gear oil for wind power generation of the present invention is a gear oil for wind power generation that contains the above-mentioned lubricating oil composition, and preferred lubricating oil compositions are also as described above.
  • the gear oil for wind power generation of the present invention contains the lubricating oil composition in an amount of preferably 80 mass% or more, more preferably 90 mass% or more, even more preferably 95 mass% or more, and even more preferably 99 mass% or more. There is no upper limit to the content, but it is preferably 100 mass% or less, and may be 100 mass%, and the gear oil for wind power generation of the present invention may consist only of the lubricating oil composition.
  • the gear oil for wind power generation of the present invention contains the lubricating oil composition, and therefore has a high viscosity index and excellent low-temperature fluidity. Therefore, the gear oil for wind power generation of the present invention is stable even when used in harsh environments with large temperature changes, and can reduce viscosity increase, especially at low temperatures.
  • Step 2 A stainless steel reaction vessel with an internal volume of 1.2 m 3 (1200 L) was thoroughly dried and purged with nitrogen, after which 230 kg of 1-dodecene (D2) and 345 kg of 1-octene (D1) were introduced, followed by 0.19 kg of triisobutylaluminum (C1) (20% toluene solution), and the temperature was raised to 95° C. Hydrogen at 0.2 MPaG was introduced, and the catalyst mixture obtained in step 1 was continuously introduced at a rate of 0.4 kg per hour. After the start of introduction of the catalyst mixture, the internal temperature was maintained at 103° C. to carry out the reaction.
  • D2 1-dodecene
  • D1 1-octene
  • C1 triisobutylaluminum
  • reaction liquid A small amount of the reaction liquid was withdrawn during the reaction, and the conversion was measured, and the reaction was stopped when the conversion reached 90%. Distillation was carried out under reduced pressure of 50 Pa and 250° C. to remove residual monomers, etc., to obtain poly- ⁇ -olefin.
  • Base oil (c) non-metallocene catalyst-based poly- ⁇ -olefin
  • the nonmetallocene catalyst-based poly- ⁇ -olefin (base oil (c)) had a kinematic viscosity at 100° C. of 103.1 mm 2 /s, a kinematic viscosity at 40° C. of 1,263.2 mm 2 /s, and a viscosity index of 172.
  • Base oil (b-1) nonmetallocene catalyst-based poly- ⁇ -olefin
  • the nonmetallocene catalyst-based poly- ⁇ -olefin (base oil (b-1)) had a 100° C. kinematic viscosity of 5.9 mm 2 /s, a 40° C. kinematic viscosity of 30.6 mm 2 /s, and a viscosity index of 138.
  • Base oil (b-2) (ester)
  • Polyol ester obtained by reacting trimethylolpropane with saturated fatty acid.
  • the polyol ester (base oil (b-2)) had a 100° C. kinetic viscosity of 13.1 mm 2 /s, a 40° C. kinetic viscosity of 100.5 mm 2 /s, and a viscosity index of 128.
  • the lubricating oil compositions obtained in the examples have the same 40°C and 100°C kinetic viscosities as the lubricating oil compositions of the comparative examples, but have a higher viscosity index, a very low pour point, and excellent low-temperature fluidity compared to the lubricating oil compositions of the comparative examples.
  • This shows that the lubricating oil composition of the present invention has a high viscosity index and excellent low-temperature fluidity, and can be particularly suitably used as a gear oil for wind turbines used in harsh environments with large temperature changes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Lubricants (AREA)

Abstract

Provided is a lubricating oil composition including a base oil (a) and a base oil (b), wherein the mass ratio [(a)/(b)] of the base oil (a) to the base oil (b) is 50/50 to 95/5. The base oil (a) is a metallocene catalyst–based poly-α-olefin having a kinematic viscosity at 100°C of 40-130 mm2/s. The base oil (b) is a base oil having a kinematic viscosity at 100°C of 1-30 mm2/s. The lubricating oil composition has a high viscosity index and excellent low-temperature fluidity, and particularly, can suitably be used as gear oil used in wind power generators that are utilized in harsh environments with large temperature variation.

Description

潤滑油組成物Lubricating Oil Composition
 本発明は、潤滑油組成物に関する。 The present invention relates to a lubricating oil composition.
 近年、環境への負荷を軽減し、枯渇が懸念される化石燃料の使用を削減するために、再生可能なエネルギーを活用した風力発電は、今後さらなる需要の増加が予想されている。
 風力を利用した風力発電は、風を受けて回転するプロペラその他のロータを使用して風の運動エネルギーを動力に変換し、この動力で発電機を駆動して電気エネルギーに変換する。
 風力発電においては、ロータの回転速度が遅いため、発電機の発電効率を考慮し、増速機が使用される。この増速機としては、様々なものが知られているが、その中で遊星歯車式動力伝達装置が多用されている。
 このような遊星歯車式動力伝達装置には、高性能のギヤオイルが必要とされ、更にオイル交換の頻度が少なく、長期間メンテナンスフリーで運用可能であることが要求される。
 こうした要求に対して、潤滑油基油や添加剤の検討が行われている。
 たとえば、特許文献1には、スラッジ発生量の低減、高粘度指数、極圧性の向上を目的として、鉱油及び合成油から選ばれた少なくとも1種の潤滑油基油、分子量が1200~50000のオレフィンとアルキルメタアクリレートとの共重合体を含有する潤滑油組成物が開示されている。
In recent years, in order to reduce the burden on the environment and the use of fossil fuels, which are at risk of depletion, demand for wind power generation, which utilizes renewable energy, is expected to increase further in the future.
Wind power generation utilizes wind force by converting the kinetic energy of the wind into power using a propeller or other rotor that rotates when exposed to the wind, and this power is then used to drive a generator to convert it into electrical energy.
In wind power generation, because the rotation speed of the rotor is slow, a gearbox is used in consideration of the power generation efficiency of the generator. Various types of gearboxes are known, among which planetary gear type power transmission devices are widely used.
Such planetary gear type power transmission devices require high-performance gear oil, and are also required to be able to operate for long periods of time without maintenance, with less frequent oil changes.
In response to these demands, lubricant base oils and additives are being investigated.
For example, Patent Document 1 discloses a lubricating oil composition containing at least one lubricating base oil selected from mineral oils and synthetic oils, and a copolymer of an olefin having a molecular weight of 1,200 to 50,000 and an alkyl methacrylate, for the purpose of reducing the amount of sludge generated, improving the viscosity index, and improving the extreme pressure properties.
特開2013-249461号公報JP 2013-249461 A
 一般的な機械用潤滑油においても、高温及び低温においても粘度の変化が少なく、安定した潤滑性能を示すことが好ましい。特に風力発電機は、温度変化の大きな過酷な環境下で使用されるため、風力発電機に用いられるギヤオイルには、大きな温度変化に対する安定性が要求される。特に低温での粘度上昇を低減することが望まれる。
 そのため、粘度指数が大きく、低温流動性の良好な潤滑油が求められていた。
 本発明の目的は、粘度指数が大きく、低温流動性に優れる潤滑油組成物を提供することである。
It is preferable that general machine lubricating oils have little change in viscosity at high and low temperatures and exhibit stable lubricating performance. In particular, wind power generators are used in harsh environments with large temperature changes, so gear oils used in wind power generators are required to be stable against large temperature changes. In particular, it is desirable to reduce the increase in viscosity at low temperatures.
Therefore, there has been a demand for lubricating oils with high viscosity index and good low temperature fluidity.
An object of the present invention is to provide a lubricating oil composition which has a high viscosity index and excellent low-temperature fluidity.
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、特定の動粘度であるメタロセン触媒系ポリ-α-オレフィンと、特定の動粘度である基油を特定比率で含む潤滑油組成物が前記の課題を解決することを見出した。 As a result of extensive research into solving the above problems, the inventors discovered that a lubricating oil composition containing a metallocene-catalyzed poly-α-olefin with a specific kinetic viscosity and a base oil with a specific kinetic viscosity in a specific ratio can solve the above problems.
 すなわち、本発明は、以下の<1>~<9>に関する。
<1>下記基油(a)及び下記基油(b)を含み、基油(b)に対する基油(a)の質量比[(a)/(b)]が50/50~95/5である、潤滑油組成物。
 基油(a):100℃動粘度が40~130mm/sであるメタロセン触媒系ポリ-α-オレフィン
 基油(b):100℃動粘度が1~30mm/sである基油
<2>基油(a)が下記基油(a1)であり、基油(b)に対する基油(a1)の質量比[(a1)/(b)]が80/20~95/5である、上記<1>に記載の潤滑油組成物。
 基油(a1):100℃動粘度が40~50mm/sであるメタロセン触媒系ポリ-α-オレフィン
<3>基油(b)が下記基油(b1)及び下記基油(b2)からなる群より選ばれる少なくとも1種である、上記<2>に記載の潤滑油組成物。
 基油(b1):100℃動粘度が1~10mm/sである非メタロセン触媒系ポリ-α-オレフィン
 基油(b2):100℃動粘度が10~15mm/sであるエステル
<4>基油(b)が下記基油(b3)であり、基油(b3)に対する基油(a1)の質量比[(a1)/(b3)]が90/10~95/5である、上記<2>に記載の潤滑油組成物。
 基油(b3):100℃動粘度が5~10mm/sである非メタロセン触媒系ポリ-α-オレフィン
<5>基油(b)が基油(b2)、又は基油(b2)と基油(b1)であり、基油(b1)に対する基油(b2)の質量比[(b2)/(b1)]が80/20~100/0である、上記<3>に記載の潤滑油組成物。
<6>基油(a)が下記基油(a2)であり、基油(b)が下記基油(b2)と下記基油(b4)であり、基油(b)に対する基油(a2)の質量比[(a2)/(b)]が50/50~70/30であり、基油(b4)に対する基油(b2)の質量比[(b2)/(b4)]が25/75~60/40である、上記<1>に記載の潤滑油組成物。
 基油(a2):100℃動粘度が120~130mm/sであるメタロセン触媒系ポリ-α-オレフィン
 基油(b2):100℃動粘度が10~15mm/sであるエステル
 基油(b4):100℃動粘度が1~30mm/sである非メタロセン触媒系ポリ-α-オレフィン
<7>更に、極圧剤、耐摩耗剤、無灰清浄分散剤、酸化防止剤、防錆剤、金属不活性化剤及び流動点降下剤からなる群より選ばれる少なくとも一種の添加剤を1~30質量%含有する、上記<1>~<6>のいずれか1つに記載の潤滑油組成物。
<8>40℃動粘度が288~352mm/sである、上記<1>~<7>のいずれか1つに記載の潤滑油組成物。
<9>上記<1>~<8>のいずれか1つに記載の潤滑油組成物を含有する風力発電用ギヤオイル。
That is, the present invention relates to the following <1> to <9>.
<1> A lubricating oil composition comprising the following base oil (a) and the following base oil (b), wherein the mass ratio of base oil (a) to base oil (b) [(a)/(b)] is 50/50 to 95/5.
Base oil (a): metallocene-catalyzed poly-α-olefin having a 100°C kinematic viscosity of 40 to 130 mm2 /s Base oil (b): base oil having a 100°C kinematic viscosity of 1 to 30 mm2 /s <2> The lubricating oil composition according to the above <1>, wherein the base oil (a) is the following base oil (a1), and the mass ratio of the base oil (a1) to the base oil (b) [(a1)/(b)] is 80/20 to 95/5.
Base oil (a1): metallocene catalyst-based poly-α-olefin having a 100°C kinematic viscosity of 40 to 50 mm2 /s. <3> The lubricating oil composition according to the above <2>, wherein the base oil (b) is at least one selected from the group consisting of the following base oil (b1) and the following base oil (b2).
Base oil (b1): nonmetallocene catalyst-based poly-α-olefin having a 100°C kinematic viscosity of 1 to 10 mm2 /s Base oil (b2): ester having a 100°C kinematic viscosity of 10 to 15 mm2 /s <4> The lubricating oil composition according to the above <2>, wherein the base oil (b) is the following base oil (b3), and the mass ratio of the base oil (a1) to the base oil (b3) [(a1)/(b3)] is 90/10 to 95/5.
Base oil (b3): nonmetallocene catalyst-based poly-α-olefin having a 100°C kinematic viscosity of 5 to 10 mm2/s. <5> The lubricating oil composition according to the above <3>, wherein the base oil (b) is base oil (b2), or base oil (b2) and base oil (b1), and the mass ratio of base oil (b2) to base oil (b1) [(b2)/(b1)] is 80/20 to 100/0.
<6> The lubricating oil composition according to the above <1>, wherein the base oil (a) is the following base oil (a2), the base oil (b) is the following base oil (b2) and the following base oil (b4), the mass ratio of the base oil (a2) to the base oil (b) [(a2)/(b)] is 50/50 to 70/30, and the mass ratio of the base oil (b2) to the base oil (b4) [(b2)/(b4)] is 25/75 to 60/40.
Base oil (a2): metallocene-catalyzed poly-α-olefin having a 100°C kinetic viscosity of 120 to 130 mm2 /s Base oil (b2): ester having a 100°C kinetic viscosity of 10 to 15 mm2 /s Base oil (b4): non-metallocene-catalyzed poly-α-olefin having a 100°C kinetic viscosity of 1 to 30 mm2 /s <7> The lubricating oil composition according to any one of the above <1> to <6>, further comprising 1 to 30 mass% of at least one additive selected from the group consisting of extreme pressure agents, antiwear agents, ashless detergent-dispersants, antioxidants, rust inhibitors, metal deactivators and pour point depressants.
<8> The lubricating oil composition according to any one of the above <1> to <7>, which has a kinematic viscosity at 40° C. of 288 to 352 mm 2 /s.
<9> A gear oil for wind power generation, comprising the lubricating oil composition according to any one of <1> to <8> above.
 本発明によれば、粘度指数が大きく、低温流動性に優れる潤滑油組成物を提供することができる。当該潤滑油組成物は、風力発電用ギヤオイルとして好適である。 The present invention provides a lubricating oil composition that has a large viscosity index and excellent low-temperature fluidity. This lubricating oil composition is suitable as a gear oil for wind power generation.
[潤滑油組成物]
 本発明の潤滑油組成物は、下記基油(a)及び下記基油(b)を含み、基油(b)に対する基油(a)の質量比[(a)/(b)]が50/50~95/5である、潤滑油組成物である。
 基油(a):100℃動粘度が40~130mm/sであるメタロセン触媒系ポリ-α-オレフィン
 基油(b):100℃動粘度が1~30mm/sである基油
[Lubricating Oil Composition]
The lubricating oil composition of the present invention is a lubricating oil composition comprising the following base oil (a) and the following base oil (b), wherein the mass ratio of base oil (a) to base oil (b) [(a)/(b)] is 50/50 to 95/5.
Base oil (a): a metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 40 to 130 mm 2 /s. Base oil (b): a base oil having a 100° C. kinetic viscosity of 1 to 30 mm 2 /s.
 本発明の潤滑油組成物は、下記基油(a)及び下記基油(b)を配合して得られ、基油(b)に対する基油(a)の質量比[(a)/(b)]が50/50~95/5である潤滑油組成物である。基油(a)と基油(b)を上記割合で配合することによって、粘度指数が大きく、低温流動性に優れる潤滑油組成物を得ることができる。
 基油(a):100℃動粘度が40~130mm/sであるメタロセン触媒系ポリ-α-オレフィン
 基油(b):100℃動粘度が1~30mm/sである基油
 以下に、本発明の潤滑油組成物の各成分及び組成、特性等について詳細に説明する。
The lubricating oil composition of the present invention is obtained by blending the following base oil (a) and the following base oil (b), and has a mass ratio of base oil (a) to base oil (b) [(a)/(b)] of 50/50 to 95/5. By blending base oil (a) and base oil (b) in the above ratio, it is possible to obtain a lubricating oil composition having a high viscosity index and excellent low-temperature fluidity.
Base oil (a): metallocene catalyst-based poly-α-olefin having a 100°C kinematic viscosity of 40 to 130 mm2 /s Base oil (b): base oil having a 100°C kinematic viscosity of 1 to 30 mm2 /s The components, composition, characteristics, etc. of the lubricating oil composition of the present invention will be described in detail below.
[基油(a)]
 本発明の潤滑油組成物には、100℃動粘度が40~130mm/sであるメタロセン触媒系ポリ-α-オレフィンである基油(a)を含む。
 基油(a)は、メタロセン触媒系ポリ-α-オレフィンであり、「メタロセン触媒系ポリ-α-オレフィン」とは、「重合触媒としてメタロセン触媒を用いて重合されたポリ-α-オレフィン」のことをいう。
 メタロセン触媒系ポリ-α-オレフィンは、重合触媒として従来の触媒を用いて重合されたポリ-α-オレフィン(非メタロセン触媒系ポリ-α-オレフィン)に比べ、組成分布が狭く、規則性の低い成分が少なく、分子量分布が狭いといった特徴を有する。本発明の潤滑油組成物では、このような特徴を有し、特定の動粘度を有するメタロセン触媒系ポリ-α-オレフィンを主成分として含有することで、粘度指数が大きく、低温流動性に優れる潤滑油組成物とすることができるものと考えられる。
[Base oil (a)]
The lubricating oil composition of the present invention contains a base oil (a) which is a metallocene-catalyzed poly-α-olefin having a 100° C. kinematic viscosity of 40 to 130 mm 2 /s.
The base oil (a) is a metallocene-catalyzed poly-α-olefin, and the term "metallocene-catalyzed poly-α-olefin" refers to a poly-α-olefin polymerized using a metallocene catalyst as a polymerization catalyst.
Metallocene catalyst-based poly-α-olefins have the characteristics of a narrow composition distribution, fewer components with low regularity, and a narrow molecular weight distribution, compared to poly-α-olefins polymerized using a conventional catalyst as a polymerization catalyst (non-metallocene catalyst-based poly-α-olefins). The lubricating oil composition of the present invention has these characteristics, and by containing a metallocene catalyst-based poly-α-olefin having a specific kinetic viscosity as a main component, it is believed that a lubricating oil composition having a large viscosity index and excellent low-temperature fluidity can be obtained.
 基油(a)は、好ましくは、下記式(1)を満たす。
  (流動点(℃))≦0.01×(40℃動粘度(mm/s))-56   (1)
The base oil (a) preferably satisfies the following formula (1).
(Pour point (°C))≦0.01×(40°C kinematic viscosity (mm 2 /s))−56 (1)
 基油(a)は、好ましくは、40℃動粘度が350~450mm/sであり、かつ流動点が-50℃以下である。
 基油(a)は、好ましくは、下記式(2)を満たす。
  (流動点(℃))≦0.28×(粘度指数)-102   (2)
The base oil (a) preferably has a kinematic viscosity at 40° C. of 350 to 450 mm 2 /s and a pour point of −50° C. or lower.
The base oil (a) preferably satisfies the following formula (2).
(Pour point (°C))≦0.28 × (viscosity index) −102 (2)
 基油(a)は、好ましくは、1-オクテンに由来する構成単位と1-ドデセンに由来する構成単位を含有する。
 基油(a)中の1-オクテンに由来する構成単位と1-ドデセンに由来する構成単位の合計の比率は、好ましくは、90~100モル%である。
The base oil (a) preferably contains structural units derived from 1-octene and structural units derived from 1-dodecene.
The total ratio of the constituent units derived from 1-octene and the constituent units derived from 1-dodecene in the base oil (a) is preferably 90 to 100 mol %.
 基油(a)が、1-オクテンに由来する構成単位と1-ドデセンに由来する構成単位を含有する場合、基油(a)中の1-オクテンに由来する構成単位と1-ドデセンに由来する構成単位の比率は、モル比で、好ましくは3:7~7:3であり、より好ましくは4:6~6:4であり、更に好ましくは4.5:5.5~5.5:4.5である。 When base oil (a) contains constituent units derived from 1-octene and constituent units derived from 1-dodecene, the molar ratio of the constituent units derived from 1-octene to the constituent units derived from 1-dodecene in base oil (a) is preferably 3:7 to 7:3, more preferably 4:6 to 6:4, and even more preferably 4.5:5.5 to 5.5:4.5.
 基油(a)は、基油(b)の種類、含有量によって、好適な物性が異なる。
 後述の<潤滑油組成物の組成>に記載した組成物の番号によって説明する。
 潤滑油組成物(1)、潤滑油組成物(1-1)、潤滑油組成物(1-2)、及び潤滑油組成物(1-1-1)では、基油(a)として、基油(a1)が好ましい。
 基油(a1)は、100℃動粘度が40~50mm/sであるメタロセン触媒系ポリ-α-オレフィンである。
 基油(a1)の100℃動粘度は、40~50mm/sであり、好ましくは43~50mm/sであり、より好ましくは45~50mm/sであり、更に好ましくは45~49mm/sである。
 基油(a1)の40℃動粘度は、好ましくは300~500mm/sであり、より好ましくは350~450mm/sであり、更に好ましくは380~420mm/sである。
 100℃動粘度及び40℃動粘度が上記の範囲であれば、蒸発損失が少なく、粘性抵抗による動力損失が大きくなることがなく、好ましい。
The preferred physical properties of the base oil (a) vary depending on the type and content of the base oil (b).
The composition will be described below with reference to the composition numbers given in "Composition of the lubricating oil composition".
In the lubricating oil composition (1), the lubricating oil composition (1-1), the lubricating oil composition (1-2), and the lubricating oil composition (1-1-1), the base oil (a) is preferably the base oil (a1).
The base oil (a1) is a metallocene-catalyzed poly-α-olefin having a 100° C. kinematic viscosity of 40 to 50 mm 2 /s.
The 100° C. kinematic viscosity of the base oil (a1) is from 40 to 50 mm 2 /s, preferably from 43 to 50 mm 2 /s, more preferably from 45 to 50 mm 2 /s, and even more preferably from 45 to 49 mm 2 /s.
The base oil (a1) has a kinematic viscosity at 40° C. of preferably 300 to 500 mm 2 /s, more preferably 350 to 450 mm 2 /s, and even more preferably 380 to 420 mm 2 /s.
If the 100° C. kinetic viscosity and the 40° C. kinetic viscosity are within the above ranges, the evaporation loss is small and the power loss due to the viscous resistance is not large, which is preferable.
 潤滑油組成物(2)では、基油(a)として、基油(a2)が好ましい。
 基油(a2)は、100℃動粘度が120~130mm/sであるメタロセン触媒系ポリ-α-オレフィンである。
 基油(a2)の100℃動粘度は、120~130mm/sであり、好ましくは122~130mm/sであり、より好ましくは125~130mm/sであり、更に好ましくは127~130mm/sである。
 基油(a2)の40℃動粘度は、好ましくは800~1800mm/sであり、より好ましくは1000~1500mm/sであり、更に好ましくは1100~1400mm/sである。
 100℃動粘度及び40℃動粘度が上記の範囲であれば、蒸発損失が少なく、粘性抵抗による動力損失が大きくなることがなく、好ましい。
In the lubricating oil composition (2), the base oil (a) is preferably the base oil (a2).
The base oil (a2) is a metallocene catalyst-based poly-α-olefin having a 100° C. kinematic viscosity of 120 to 130 mm 2 /s.
The 100° C. kinematic viscosity of the base oil (a2) is from 120 to 130 mm 2 /s, preferably from 122 to 130 mm 2 /s, more preferably from 125 to 130 mm 2 /s, and further preferably from 127 to 130 mm 2 /s.
The base oil (a2) has a 40° C. kinematic viscosity of preferably 800 to 1800 mm 2 /s, more preferably 1000 to 1500 mm 2 /s, and even more preferably 1100 to 1400 mm 2 /s.
If the 100° C. kinetic viscosity and the 40° C. kinetic viscosity are within the above ranges, the evaporation loss is small and the power loss due to the viscous resistance is not large, which is preferable.
<基油(a)の製造方法>
 基油(a)は、重合触媒としてメタロセン触媒を用いて重合されたポリ-α-オレフィンであれば、製造方法に制限はないが、次の方法によって得ることが好ましい。
 具体的には、メタロセン化合物(A)と、上記メタロセン化合物と反応してカチオンに変換しうるイオン性化合物(B)と、有機金属化合物(C)と、炭素数が2以上異なる複数の原料モノマー(D)と、アルコール類(E1)、フェノール類(E2)及びエーテル化合物(E3)から選択される少なくとも1種である(E)成分とを混合して触媒混合物を得る工程1、及び前記触媒混合物を用いて前記複数の原料モノマー(D)を含有するα-オレフィンを重合する工程2を有する製造方法によって得ることが好ましい。
 以下に、詳細に説明する。
<Method for producing base oil (a)>
There are no limitations on the method for producing the base oil (a) so long as it is a poly-α-olefin polymerized using a metallocene catalyst as the polymerization catalyst, but it is preferable to obtain it by the following method.
Specifically, it is preferable to obtain the catalyst mixture by a production method including a step 1 of mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound to convert it into a cation, an organometallic compound (C), a plurality of raw material monomers (D) differing in the number of carbon atoms by two or more, and a component (E) which is at least one selected from alcohols (E1), phenols (E2) and ether compounds (E3) to obtain a catalyst mixture, and a step 2 of polymerizing an α-olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
This is explained in detail below.
(工程1)
 工程1は、メタロセン化合物(A)と、上記メタロセン化合物と反応してカチオンに変換しうるイオン性化合物(B)と、有機金属化合物(C)と、炭素数が2以上異なる複数の原料モノマー(D)と、アルコール類(E1)、フェノール類(E2)及びエーテル化合物(E3)から選択される少なくとも1種である(E)成分とを混合して触媒混合物を得る工程である。
(Step 1)
Step 1 is a step of obtaining a catalyst mixture by mixing a metallocene compound (A), an ionic compound (B) capable of reacting with the metallocene compound to be converted into a cation, an organometallic compound (C), a plurality of raw material monomers (D) each having a carbon number differing by two or more, and a component (E) which is at least one selected from alcohols (E1), phenols (E2) and ether compounds (E3).
〔メタロセン化合物(A)〕
 メタロセン化合物(A)としては、無架橋メタロセン化合物、単架橋メタロセン化合物、及び二架橋メタロセン化合物が挙げられ、好ましくは二架橋メタロセン化合物であり、より好ましくは下記一般式(I)で表される二架橋メタロセン化合物である。
Figure JPOXMLDOC01-appb-C000001

(式中、R及びRは、それぞれ独立に、下記一般式-[L(R1c)(R2c)]-で表わされる連結基である。X及びXは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、またはハロゲン原子、ケイ素原子、酸素原子、イオウ原子、窒素原子およびリン原子から選ばれる一種以上の原子を含有する炭素数1~20の有機基を示す。Mは周期表第4~6族の遷移金属を示す。nは1~3の整数である。R及びRは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン含有炭化水素基を示す。Lは周期表第14族の原子を示す。)
[Metallocene Compound (A)]
Examples of the metallocene compound (A) include an unbridged metallocene compound, a single-bridged metallocene compound, and a double-bridged metallocene compound. A double-bridged metallocene compound is preferred, and a double-bridged metallocene compound represented by the following general formula (I) is more preferred.
Figure JPOXMLDOC01-appb-C000001

(In the formula, R a and R b each independently represent a linking group represented by the following general formula -[L c (R 1c ) (R 2c )] n -. X 1 and X 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or an organic group having 1 to 20 carbon atoms containing one or more atoms selected from a halogen atom, a silicon atom, an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom. M represents a transition metal of Groups 4 to 6 of the periodic table. n is an integer of 1 to 3. R 1 and R 2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms. L c represents an atom of Group 14 of the periodic table.)
 式(I)において、X及びXは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、またはハロゲン原子、ケイ素原子、酸素原子、イオウ原子、窒素原子およびリン原子から選ばれる一種以上の原子を含有する炭素数1~20の有機基を示す。
 Mは周期表第4~6族の遷移金属を示し、好ましくはジルコニウム、チタン、又はハフニウムである。
 R及びRは、それぞれ独立に、-[L(R1c)(R2c)]-で表わされる連結基であり、好ましくは、-C(R1c)(R2c)-、-Si(R1c)(R2c)-、-C(R1c)(R2c)-C(R1c)(R2c)-又は-Si(R1c)(R2c)-Si(R1c)(R2c)-である。
 nは1~3の整数である。
 R1c及びR2cは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン含有炭化水素基を示し、好ましくは水素原子または炭素数1~4の炭化水素基であり、より好ましくは水素原子または炭素数1~4のアルキル基である。
 Lは周期表第14族の原子を示し、好ましくは炭素原子又はケイ素原子である。
In formula (I), X1 and X2 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or an organic group having 1 to 20 carbon atoms containing one or more atoms selected from a halogen atom, a silicon atom, an oxygen atom, a sulfur atom, a nitrogen atom, and a phosphorus atom.
M represents a transition metal of Groups 4 to 6 of the periodic table, and is preferably zirconium, titanium, or hafnium.
R a and R b are each independently a linking group represented by -[L c (R 1c ) (R 2c )] n -, and are preferably -C(R 1c ) (R 2c )-, -Si(R 1c ) (R 2c )-, -C(R 1c ) (R 2c )-C(R 1c ) (R 2c )- or -Si(R 1c ) (R 2c )-Si(R 1c ) (R 2c )-.
n is an integer from 1 to 3.
R 1c and R 2c each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, preferably a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms, and more preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
Lc represents an atom of Group 14 of the periodic table, and is preferably a carbon atom or a silicon atom.
 前記一般式(I)で表される二架橋メタロセン化合物の具体例としては、(1,1’-エチレン)(2,2’-エチレン)ビスシクロペンタジエニルジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビスシクロペンタジエニルジルコニウムジクロリド、(1,1’-ジメチルシリレン)(2,2’-エチレン)ビスシクロペンタジエニルジルコニウムジクロリド、(1,1’-イソプロピリデン)(2,2’-ジメチルシリレン)ビスシクロペンタジエニルジルコニウムジクロリド、(1,1’-イソプロピリデン)(2,2’-イソプロピリデン)ビス(3-メチルシクロペンタジエニル)ジルコニウムジクロリド等のジクロル体及び上記化合物のジメチル体、ジエチル体、ジヒドロ体、ジフェニル体、ジベンジル体が挙げられ、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)ビスシクロペンタジエニルジルコニウムジクロリドが好ましい。
 また、上記化合物のジルコニウムを、チタン又はハフニウムに置き換えた化合物が挙げられる。
 メタロセン化合物(A)は、一種用いてもよく、二種以上を組み合わせて用いてもよい。
Specific examples of the doubly bridged metallocene compound represented by the general formula (I) include (1,1'-ethylene)(2,2'-ethylene)biscyclopentadienyl zirconium dichloride, (1,1'-dimethylsilylene)(2,2'-dimethylsilylene)biscyclopentadienyl zirconium dichloride, (1,1'-dimethylsilylene)(2,2'-ethylene)biscyclopentadienyl zirconium dichloride, (1,1'-dimethylsilylene)(2,2'-ethylene)biscyclopentadienyl zirconium dichloride, (1,1'-isopropylidene)(2,2'- Examples of such compounds include dichlorides such as (1,1'-isopropylidene)(2,2'-isopropylidene)bis(3-methylcyclopentadienyl)zirconium dichloride, as well as dimethyl, diethyl, dihydro, diphenyl and dibenzyl forms of the above compounds, with (1,1'-dimethylsilylene)(2,2'-dimethylsilylene)biscyclopentadienylzirconium dichloride being preferred.
Further, compounds in which zirconium in the above compounds is replaced with titanium or hafnium can be mentioned.
The metallocene compound (A) may be used alone or in combination of two or more kinds.
〔イオン性化合物(B)〕
 イオン性化合物(B)は、前記メタロセン化合物(A)と反応してカチオンに変換しうるイオン性化合物であれば、制限はないが、好ましくは下記一般式(V)で表される化合物又は下記一般式(VI)で表される化合物であり、より好ましくは下記一般式(V)で表される化合物である。
   ([L-Rk+([Z] ・・・(V)
   ([Lk+([Z]    ・・・(VI)
[Ionic Compound (B)]
The ionic compound (B) is not limited as long as it is an ionic compound capable of reacting with the metallocene compound (A) to be converted into a cation. The ionic compound (B) is preferably a compound represented by the following general formula (V) or a compound represented by the following general formula (VI), and more preferably a compound represented by the following general formula (V).
([L 1 −R 3 ] k+ ) a ([Z] ) b ... (V)
([L 2 ] k+ ) a ([Z] ) b ... (VI)
 一般式(V)において、Lはルイス塩基を示し、Rは水素原子、炭素数1~20のアルキル基、または、アリール基、アルキルアリール基およびアリールアルキル基から選ばれる炭素数6~20の炭化水素基を示す。 In general formula (V), L1 represents a Lewis base, and R3 represents a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, or a hydrocarbon group having 6 to 20 carbon atoms selected from an aryl group, an alkylaryl group, and an arylalkyl group.
 ここで、Lの具体例としては、アンモニア、メチルアミン、アニリン、ジメチルアミン、ジエチルアミン、N-メチルアニリン、ジフェニルアミン、N,N-ジメチルアニリン、トリメチルアミン、トリエチルアミン、トリ-n-ブチルアミン、メチルジフェニルアミン、ピリジン、p-ブロモ-N,N-ジメチルアニリン、p-ニトロ-N,N-ジメチルアニリンなどのアミン類、トリエチルホスフィン、トリフェニルホスフィン、ジフェニルホスフィンなどのホスフィン類、テトラヒドロチオフェンなどのチオエーテル類、安息香酸エチルなどのエステル類、アセトニトリル、ベンゾニトリルなどのニトリル類などを挙げることができる。Rの具体例としては、水素原子、メチル基、エチル基、ベンジル基、トリチル基などを挙げることができる。 Specific examples of L1 include amines such as ammonia, methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N,N-dimethylaniline, trimethylamine, triethylamine, tri-n-butylamine, methyldiphenylamine, pyridine, p-bromo-N,N-dimethylaniline, p-nitro-N,N-dimethylaniline, phosphines such as triethylphosphine, triphenylphosphine, diphenylphosphine, thioethers such as tetrahydrothiophene, esters such as ethyl benzoate, nitriles such as acetonitrile, benzonitrile, etc. Specific examples of R3 include a hydrogen atom, a methyl group, an ethyl group, a benzyl group, a trityl group, etc.
 一般式(VI)において、LはM、R、R C又はRを表す。R及びRは、それぞれ独立に、シクロペンタジエニル基、置換シクロペンタジエニル基、インデニル基又はフルオレニル基を示し、Rは炭素数1~20のアルキル基、または、アリール基、アルキルアリール基およびアリールアルキル基から選ばれる炭素数6~20の炭化水素基を示す。Rはテトラフェニルポルフィリン、フタロシアニン等の大環状配位子を示す。
 Mは、周期律表第1~3、11~13、17族元素を含むものであり、Mは、周期律表第7~12族元素を示す。
In general formula (VI), L2 represents M1 , R4R5M2 , R63C or R7M2 . R4 and R5 each independently represent a cyclopentadienyl group, a substituted cyclopentadienyl group, an indenyl group or a fluorenyl group, R6 represents an alkyl group having 1 to 20 carbon atoms or a hydrocarbon group having 6 to 20 carbon atoms selected from an aryl group, an alkylaryl group and an arylalkyl group. R7 represents a macrocyclic ligand such as tetraphenylporphyrin or phthalocyanine.
M 1 includes an element of Groups 1 to 3, 11 to 13, and 17 of the periodic table, and M 2 represents an element of Groups 7 to 12 of the periodic table.
 ここで、R、Rの具体例としては、シクロペンタジエニル基、メチルシクロペンタジエニル基、エチルシクロペンタジエニル基、ペンタメチルシクロペンタジエニル基などを挙げることができる。Rの具体例としては、フェニル基、p-トリル基、p-メトキシフェニル基等を挙げることができ、Rの具体例としては、テトラフェニルポルフィリン、フタロシアニンなどを挙げることができる。また、Mの具体例としては、Li、Na、K、Ag、Cu、Br、I、Iなどを挙げることができ、Mの具体例としては、Mn、Fe、Co、Ni、Znなどを挙げることができる。 Here, specific examples of R 4 and R 5 include a cyclopentadienyl group, a methylcyclopentadienyl group, an ethylcyclopentadienyl group, and a pentamethylcyclopentadienyl group. Specific examples of R 6 include a phenyl group, a p-tolyl group, and a p-methoxyphenyl group, and specific examples of R 7 include tetraphenylporphyrin and phthalocyanine. Specific examples of M 1 include Li, Na, K, Ag, Cu, Br, I, and I 3 , and specific examples of M 2 include Mn, Fe, Co, Ni, and Zn.
 一般式(V)および(VI)において、kは[L-R]、[L]のイオン価数で1~3の整数、aは1以上の整数、b=(k×a)である。
 [Z]は、非配位性アニオン[Z又は[Zを表す。
 [Zは複数の基が元素に結合したアニオン、すなわち[M・・・Gを表す。ここで、Mは周期律表第5~15族元素、好ましくは周期律表第13~15族元素を示す。G~Gはそれぞれ水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数2~40のジアルキルアミノ基、炭素数1~20のアルコキシ基、炭素数6~20のアリール基、炭素数6~20のアリールオキシ基、炭素数7~40のアルキルアリール基、炭素数7~40のアリールアルキル基、炭素数1~20のハロゲン置換炭化水素基、炭素数1~20のアシルオキシ基又は有機メタロイド基又は炭素数2~20のヘテロ原子含有炭化水素基を示す。G~Gのうち二つ以上が環を形成してもよい。fは[(中心金属Mの原子価)+1]の整数を示す。
 [Zは酸解離定数の逆数の対数(pKa)が-10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基、又は一般的に超強酸と定義される酸の共役塩基を示す。また、ルイス塩基が配位していてもよい。
In formulae (V) and (VI), k is the ionic valence of [L 1 -R 3 ] and [L 2 ] and is an integer of 1 to 3, a is an integer of 1 or more, and b=(k×a).
[Z] - represents a non-coordinating anion [Z 1 ] - or [Z 2 ] - .
[Z 1 ] - represents an anion in which a plurality of groups are bonded to an element, that is, [M 3 G 1 G 2 ... G f ] - . Here, M 3 represents an element of Groups 5 to 15 of the periodic table, preferably an element of Groups 13 to 15 of the periodic table. G 1 to G f each represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, a dialkylamino group having 2 to 40 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aryloxy group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 40 carbon atoms, an arylalkyl group having 7 to 40 carbon atoms, a halogen-substituted hydrocarbon group having 1 to 20 carbon atoms, an acyloxy group or an organic metalloid group having 1 to 20 carbon atoms, or a heteroatom-containing hydrocarbon group having 2 to 20 carbon atoms. Two or more of G 1 to G f may form a ring. f represents an integer of [(the valence of the central metal M 3 ) + 1].
[Z 2 ] represents a conjugate base of a single Brønsted acid or a combination of a Brønsted acid and a Lewis acid having a logarithm of the reciprocal of the acid dissociation constant (pKa) of −10 or less, or a conjugate base of an acid generally defined as a superacid. A Lewis base may be coordinated.
 ここで、[Z、すなわち[M・・・Gにおいて、Mの具体例としては、B、Al、Si、P、As、Sbなど、好ましくはB及びAlを挙げることができる。また、G、G~Gの具体例としては、ジアルキルアミノ基としてジメチルアミノ基、ジエチルアミノ基など、アルコキシ基又はアリールオキシ基として、メトキシ基、エトキシ基、n-プロポキシ基、フェノキシ基など、炭化水素基として、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、n-オクチル基、n-エイコシル基、フェニル基、p-トリル基、ベンジル基、4-t-ブチルフェニル基、3,5-ジメチルフェニル基など、ハロゲン原子として、フッ素、塩素、臭素、ヨウ素、ヘテロ原子含有炭化水素基として、p-フルオロフェニル基、3,5-ジフルオロフェニル基、ペンタクロロフェニル基、3,4,5-トリフルオロフェニル基、ペンタフルオロフェニル基、3,5-ビス(トリフルオロメチル)フェニル基、ビス(トリメチルシリル)メチル基など、有機メタロイド基として、ペンタメチルアンチモン基、トリメチルシリル基、トリメチルゲルミル基、ジフェニルアルシン基、ジシクロヘキシルアンチモン基、ジフェニルホウ素基などを挙げることができる。 Here, in [Z 1 ] - , that is, [M 3 G 1 G 2 ... G f ] - , specific examples of M 3 include B, Al, Si, P, As, Sb, etc., and preferably B and Al. Specific examples of G 1 and G 2 to G f include dialkylamino groups such as dimethylamino and diethylamino, alkoxy groups or aryloxy groups such as methoxy, ethoxy, n-propoxy, and phenoxy, hydrocarbon groups such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, n-octyl, n-eicosyl, phenyl, p-tolyl, benzyl, 4-t-butylphenyl, and 3,5-dimethylphenyl, halogen atoms such as fluorine, chlorine, bromine, Examples of iodine and heteroatom-containing hydrocarbon groups include a p-fluorophenyl group, a 3,5-difluorophenyl group, a pentachlorophenyl group, a 3,4,5-trifluorophenyl group, a pentafluorophenyl group, a 3,5-bis(trifluoromethyl)phenyl group, and a bis(trimethylsilyl)methyl group. Examples of organic metalloid groups include a pentamethylantimony group, a trimethylsilyl group, a trimethylgermyl group, a diphenylarsine group, a dicyclohexylantimony group, and a diphenylboron group.
 また、非配位性のアニオン、すなわちpKaが-10以下のブレンステッド酸単独又はブレンステッド酸及びルイス酸の組合わせの共役塩基[Zの具体例としては、トリフルオロメタンスルホン酸アニオン(CFSO、ビス(トリフルオロメタンスルホニル)メチルアニオン、ビス(トリフルオロメタンスルホニル)ベンジルアニオン、ビス(トリフルオロメタンスルホニル)アミド、過塩素酸アニオン(ClO、トリフルオロ酢酸アニオン(CFCOO)、ヘキサフルオロアンチモンアニオン(SbF、フルオロスルホン酸アニオン(FSO、クロロスルホン酸アニオン(ClSO、フルオロスルホン酸アニオン/5-フッ化アンチモン(FSO/SbF、フルオロスルホン酸アニオン/5-フッ化ヒ素(FSO/AsF、トリフルオロメタンスルホン酸/5-フッ化アンチモン(CFSO/SbFなどを挙げることができる。 Specific examples of non-coordinating anions, that is, the conjugate base [Z 2 ] of a single Bronsted acid or a combination of a Bronsted acid and a Lewis acid having a pKa of −10 or less, include trifluoromethanesulfonate anion (CF 3 SO 3 ) , bis(trifluoromethanesulfonyl)methyl anion, bis(trifluoromethanesulfonyl)benzyl anion, bis(trifluoromethanesulfonyl)amide, perchlorate anion (ClO 4 ) , trifluoroacetate anion (CF 3 COO) , hexafluoroantimony anion (SbF 6 ) , fluorosulfonate anion (FSO 3 ) , chlorosulfonate anion (ClSO 3 ) , fluorosulfonate anion/antimony 5-fluoride (FSO 3 /SbF 5 ) , fluorosulfonate anion/arsenic 5-fluoride (FSO 3 /AsF 5 ) , trifluoromethanesulfonic acid/5-antimony fluoride (CF 3 SO 3 /SbF 5 ) − , and the like.
 イオン性化合物(B)は、好ましくは置換基を有していてもよいテトラフェニルホウ酸塩であり、より具体的には、テトラフェニルホウ酸トリエチルアンモニウム、テトラフェニルホウ酸トリ-n-ブチルアンモニウム、テトラフェニルホウ酸トリメチルアンモニウム、テトラフェニルホウ酸テトラエチルアンモニウム、テトラフェニルホウ酸メチル(トリ-n-ブチル)アンモニウム、テトラフェニルホウ酸ベンジル(トリ-n-ブチル)アンモニウム、テトラフェニルホウ酸ジメチルジフェニルアンモニウム、テトラフェニルホウ酸トリフェニル(メチル)アンモニウム、テトラフェニルホウ酸トリメチルアニリニウム、テトラフェニルホウ酸メチルピリジニウム、テトラフェニルホウ酸ベンジルピリジニウム、テトラフェニルホウ酸メチル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)ホウ酸トリエチルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸トリ-n-ブチルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸トリフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸テトラ-n-ブチルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸テトラエチルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ベンジル(トリ-n-ブチル)アンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸メチルジフェニルアンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸トリフェニル(メチル)アンモニウム、テトラキス(ペンタフルオロフェニル)ホウ酸メチルアニリニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ジメチルアニリニウム、テトラキス(ペンタフルオロフェニル)ホウ酸トリメチルアニリニウム、テトラキス(ペンタフルオロフェニル)ホウ酸メチルピリジニウム、テトラキス(ペンタフルオロフェニル)ホウ酸ベンジルピリジニウム、テトラキス(ペンタフルオロフェニル)ホウ酸メチル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)ホウ酸ベンジル(2-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)ホウ酸メチル(4-シアノピリジニウム)、テトラキス(ペンタフルオロフェニル)ホウ酸トリフェニルホスホニウム、テトラキス[ビス(3,5-ジトリフルオロメチル)フェニル]ホウ酸ジメチルアニリニウム、テトラフェニルホウ酸フェロセニウム、テトラフェニルホウ酸銀、テトラフェニルホウ酸トリチル、テトラフェニルホウ酸テトラフェニルポルフィリンマンガン、テトラキス(ペンタフルオロフェニル)ホウ酸フェロセニウム、テトラキス(ペンタフルオロフェニル)ホウ酸(1,1’-ジメチルフェロセニウム)、テトラキス(ペンタフルオロフェニル)ホウ酸デカメチルフェロセニウム、テトラキス(ペンタフルオロフェニル)ホウ酸銀、テトラキス(ペンタフルオロフェニル)ホウ酸トリチル、テトラキス(ペンタフルオロフェニル)ホウ酸リチウム、テトラキス(ペンタフルオロフェニル)ホウ酸ナトリウム、テトラキス(ペンタフルオロフェニル)ホウ酸テトラフェニルポルフィリンマンガン、テトラフルオロホウ酸銀、ヘキサフルオロリン酸銀、ヘキサフルオロヒ素酸銀、過塩素酸銀、トリフルオロ酢酸銀、トリフルオロメタンスルホン酸銀などが挙げられる。これらのなかでも、イオン性化合物(B)は、好ましくはテトラキス(ペンタフルオロフェニル)ホウ酸ジメチルアニリニウムである。
 イオン性化合物(B)は一種用いてもよく、また二種以上を組み合わせて用いてもよい。
The ionic compound (B) is preferably a tetraphenylborate which may have a substituent, and more specifically, triethylammonium tetraphenylborate, tri-n-butylammonium tetraphenylborate, trimethylammonium tetraphenylborate, tetraethylammonium tetraphenylborate, methyl(tri-n-butyl)ammonium tetraphenylborate, benzyl(tri-n-butyl)ammonium tetraphenylborate, dimethyldiphenylammonium tetraphenylborate, triphenyl(methyl)ammonium tetraphenylborate, trimethylanilinium tetraphenylborate, methylpyridinium tetraphenylborate, benzylpyridinium tetraphenylborate, methyl(2-cyanopyridinium)tetraphenylborate, ammonium tetrakis(pentafluorophenyl)borate, triethylammonium tetrakis(pentafluorophenyl)borate, tri-n-butylammonium tetrakis(pentafluorophenyl)borate, triphenylammonium tetrakis(pentafluorophenyl)borate, tetra-n-butylammonium tetrakis(pentafluorophenyl)borate, tetraethylammonium tetrakis(pentafluorophenyl)borate, benzyl(tri-n-butyl)ammonium tetrakis(pentafluorophenyl)borate, methyldiphenylammonium tetrakis(pentafluorophenyl)borate, triphenyl(methyl)ammonium tetrakis(pentafluorophenyl)borate, methylanilinium tetrakis(pentafluorophenyl)borate, tetrakis(pentafluorophenyl)borate Dimethylanilinium, trimethylanilinium tetrakis(pentafluorophenyl)borate, methylpyridinium tetrakis(pentafluorophenyl)borate, benzylpyridinium tetrakis(pentafluorophenyl)borate, methyl(2-cyanopyridinium)tetrakis(pentafluorophenyl)borate, benzyl(2-cyanopyridinium)tetrakis(pentafluorophenyl)borate, methyl(4-cyanopyridinium)tetrakis(pentafluorophenyl)borate, triphenylphosphonium tetrakis(pentafluorophenyl)borate, dimethylanilinium tetrakis[bis(3,5-ditrifluoromethyl)phenyl]borate, ferrocenium tetraphenylborate, silver tetraphenylborate, trityl tetraphenylborate, tetraphenylphosphonium tetrakis[bis(3,5-ditrifluoromethyl)phenyl]borate, Examples of the ionic compound (B) include manganese tetraphenylporphyrin borate, ferrocenium tetrakis(pentafluorophenyl)borate, (1,1'-dimethylferrocenium tetrakis(pentafluorophenyl)borate, decamethylferrocenium tetrakis(pentafluorophenyl)borate, silver tetrakis(pentafluorophenyl)borate, trityl tetrakis(pentafluorophenyl)borate, lithium tetrakis(pentafluorophenyl)borate, sodium tetrakis(pentafluorophenyl)borate, manganese tetraphenylporphyrin tetrakis(pentafluorophenyl)borate, silver tetrafluoroborate, silver hexafluorophosphate, silver hexafluoroarsenate, silver perchlorate, silver trifluoroacetate, and silver trifluoromethanesulfonate. Among these, the ionic compound (B) is preferably dimethylanilinium tetrakis(pentafluorophenyl)borate.
The ionic compound (B) may be used alone or in combination of two or more kinds.
〔有機金属化合物(C)〕
 有機金属化合物(C)は、好ましくは有機アルミニウム化合物及び有機亜鉛化合物からなる群より選ばれる少なくとも1つであり、より好ましくは有機アルミニウム化合物(C1)である。
 有機アルミニウム化合物としては、一般式(VII)で示される化合物が用いられる。
   (RAlQ3-v  ・・・(VII)
(式中、Rは炭素数1~10のアルキル基、Qは水素原子、炭素数1~20のアルコキシ基,炭素数6~20のアリール基又はハロゲン原子を示し、vは1~3の整数または1.5である。)
 有機亜鉛化合物としては、一般式(VIII)で示される化合物が用いられる。
   (RZnP2-u  ・・・(VIII)
(式中、Rは炭素数1~10のアルキル基、Pは炭素数1~20のアルコキシ基,炭素数6~20のアリール基又はハロゲン原子を示し、uは1~2の整数である。)
[Organometallic Compound (C)]
The organometallic compound (C) is preferably at least one selected from the group consisting of organoaluminum compounds and organozinc compounds, and more preferably an organoaluminum compound (C1).
As the organoaluminum compound, a compound represented by the general formula (VII) is used.
(R 8 ) v AlQ 3-v ... (VII)
(In the formula, R8 is an alkyl group having 1 to 10 carbon atoms, Q is a hydrogen atom, an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a halogen atom, and v is an integer of 1 to 3 or 1.5.)
As the organozinc compound, a compound represented by the general formula (VIII) is used.
(R 9 ) u ZnP 2-u ... (VIII)
(In the formula, R9 represents an alkyl group having 1 to 10 carbon atoms, P represents an alkoxy group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a halogen atom, and u represents an integer of 1 or 2.)
 前記一般式(VII)で示される有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリノルマルプロピルアルミニウム、トリイソプロピルアルミニウム、トリノルマルブチルアルミニウム、トリイソブチルアルミニウム、トリヘプチルアルミニウム、トリオクチルアルミニウム、ジイソブチルアルミニウムヒドリド、ジエチルアルミニウムヒドリド、ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、メチルアルミニウムジクロリド、エチルアルミニウムジクロリド、ジメチルアルミニウムフルオリド、エチルアルミニウムセスキクロリド等が挙げられ、トリイソブチルアルミニウムが好ましい。 Specific examples of organoaluminum compounds represented by the general formula (VII) include trimethylaluminum, triethylaluminum, tri-normal propylaluminum, triisopropylaluminum, tri-normal butylaluminum, triisobutylaluminum, triheptylaluminum, trioctylaluminum, diisobutylaluminum hydride, diethylaluminum hydride, dimethylaluminum chloride, diethylaluminum chloride, methylaluminum dichloride, ethylaluminum dichloride, dimethylaluminum fluoride, and ethylaluminum sesquichloride, with triisobutylaluminum being preferred.
 前記一般式(VIII)で示される有機亜鉛化合物の具体例としては、ジメチル亜鉛、ジエチル亜鉛、ジブチル亜鉛、ジオクチル亜鉛等を挙げることができる。
 有機金属化合物(C)は一種用いてもよく、また二種以上を組み合わせて用いてもよい。
Specific examples of the organozinc compound represented by the general formula (VIII) include dimethylzinc, diethylzinc, dibutylzinc, and dioctylzinc.
The organometallic compound (C) may be used alone or in combination of two or more kinds.
 本製造方法においてメタロセン化合物(A)とイオン性化合物(B)との使用割合は、モル比で、好ましくは10:1~1:100、より好ましくは2:1~1:10である。メタロセン化合物(A)と有機金属化合物(C)は、好ましくはモル比で1:1~1:10,000、より好ましくは1:10~1:1,000である。また、イオン性化合物(B)、有機金属化合物(C)はそれぞれ1種類又は二種以上組み合わせて用いることもできる。二種以上組み合わせて用いる場合にも、二種以上の合計での使用割合が上記の範囲内であることが触媒活性の観点から好ましい。 In this production method, the molar ratio of the metallocene compound (A) to the ionic compound (B) is preferably 10:1 to 1:100, more preferably 2:1 to 1:10. The molar ratio of the metallocene compound (A) to the organometallic compound (C) is preferably 1:1 to 1:10,000, more preferably 1:10 to 1:1,000. The ionic compound (B) and the organometallic compound (C) can each be used alone or in combination of two or more kinds. When using two or more kinds in combination, it is preferable from the viewpoint of catalytic activity that the total ratio of the two or more kinds is within the above range.
〔炭素数が2以上異なる複数の原料モノマー(D)〕
 工程1において、用いられる複数の原料モノマー(D)は、炭素数が2以上異なるα-オレフィンであり、工程2で重合されるα-オレフィンに含まれる。
 本工程で炭素数が2以上異なるα-オレフィンを用いることで、得られるポリ-α-オレフィンを含む潤滑油組成物が低温流動性に優れるものとなる。炭素数が2以上異なるα-オレフィンを、触媒混合物を得る際に用いることで、得られるポリ-α-オレフィンを含む潤滑油組成物が低温流動性に優れる理由は定かではないが、ポリ-α-オレフィンの分子末端に複数の原料モノマーを由来とする構成単位がランダムに配列するために低温流動性に優れるものと考えられる。
[Multiple raw material monomers (D) having two or more different carbon atoms]
The multiple raw material monomers (D) used in step 1 are α-olefins having different carbon numbers of 2 or more, and are included in the α-olefins polymerized in step 2.
By using α-olefins with carbon numbers differing by 2 or more in this step, the resulting poly-α-olefin-containing lubricating oil composition has excellent low-temperature fluidity. Although the reason why the poly-α-olefin-containing lubricating oil composition obtained by using α-olefins with carbon numbers differing by 2 or more in obtaining the catalyst mixture has excellent low-temperature fluidity is not clear, it is believed that the excellent low-temperature fluidity is due to the random arrangement of structural units derived from multiple raw material monomers at the molecular terminals of the poly-α-olefin.
 複数の原料モノマー(D)としては、好ましくは炭素数3~30のα-オレフィンであり、より好ましくは炭素数6~20のα-オレフィンであり、更に好ましくは炭素数8~14のα-オレフィンである。具体的には、複数の原料モノマー(D)としては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-イコセン、1-ヘンイコセン、1-ドコセン、1-トリコセン、1-テトラコセン、1-ペンタコセン、1-ヘキサコセン、1-ヘプタコセン、1-オクタコセン、1-ノナコセン、1-トリアコンテン等が挙げられ、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセンからなる群より選ばれる少なくとも2つが好ましく、より好ましくは、1-オクテン(D1)と1-ドデセン(D2)である。
 複数の原料モノマー(D)が、1-オクテン(D1)と1-ドデセン(D2)を含む場合、工程1で用いられる1-オクテン(D1)と1-ドデセン(D2)の比率[D1/D2]は、モル比で、好ましくは3:7~7:3であり、より好ましくは4:6~6:4であり、更に好ましくは4.5:5.5~5.5:4.5である。
The multiple raw material monomers (D) are preferably α-olefins having 3 to 30 carbon atoms, more preferably α-olefins having 6 to 20 carbon atoms, and even more preferably α-olefins having 8 to 14 carbon atoms. Specifically, the multiple raw material monomers (D) include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-icosene, 1-henicosene, and 1-hexene. Examples of the 1-octene include 1-octene, 1-docosene, 1-tricosene, 1-tetracosene, 1-pentacosene, 1-hexacosene, 1-heptacosene, 1-octacosene, 1-nonacosene, and 1-triacontene. At least two selected from the group consisting of 1-octene, 1-nonene, 1-decene, 1-undecene, and 1-dodecene are preferred, and 1-octene (D1) and 1-dodecene (D2) are more preferred.
When the multiple raw material monomers (D) include 1-octene (D1) and 1-dodecene (D2), the ratio [D1/D2] of 1-octene (D1) to 1-dodecene (D2) used in step 1 is preferably 3:7 to 7:3, more preferably 4:6 to 6:4, and even more preferably 4.5:5.5 to 5.5:4.5, in terms of molar ratio.
 複数の原料モノマー(D)は、第1の原料モノマーと第2の原料モノマーの炭素数が2以上異なるが、第1の原料モノマーと第2の原料モノマーの炭素数の差は2以上であり、好ましくは3以上であり、より好ましくは4以上である。第1の原料モノマーと第2の原料モノマーの炭素数の差は、好ましくは6以下であり、より好ましくは5以下であり、更に好ましくは4である。 The multiple raw material monomers (D) have a carbon number difference of 2 or more between the first raw material monomer and the second raw material monomer, and the difference in the carbon number between the first raw material monomer and the second raw material monomer is 2 or more, preferably 3 or more, and more preferably 4 or more. The difference in the carbon number between the first raw material monomer and the second raw material monomer is preferably 6 or less, more preferably 5 or less, and even more preferably 4.
 複数の原料モノマー(D)は、少なくとも2種を使用するが、3種以上使用してもよい。好ましくは2種である。
 複数の原料モノマー(D)はそのまま重合反応に使用しても良いが、活性アルミナ、モレキュラーシーブ等の吸着剤で処理して使用すると不純物が除去され、活性が向上しより好ましい。
At least two kinds of the raw material monomers (D) are used, but three or more kinds may be used, and preferably two kinds.
The raw material monomers (D) may be used as they are in the polymerization reaction, but it is more preferable to treat them with an adsorbent such as activated alumina or molecular sieve before use, since this removes impurities and improves activity.
 工程1において、メタロセン化合物(A)に対する前記複数の原料モノマー(D)の合計の比率[D/A]が、モル比で、好ましくは1~1000であり、より好ましくは40~300である。複数の原料モノマー(D)の使用量を上記範囲とすることで、得られるポリ-α-オレフィンを含む潤滑油組成物の低温流動性を向上させることができる。
 工程1における複数の原料モノマー(D)の使用量は、工程1で得られる触媒混合物に対して、好ましくは0.1~30体積%であり、より好ましくは0.5~20体積%であり、更に好ましくは0.5~15体積%であり、より更に好ましくは0.6~12体積%であり、より更に好ましくは0.6~10体積%である。複数の原料モノマー(D)の使用量を上記範囲とすることで、得られるポリ-α-オレフィンを含む潤滑油組成物の低温流動性を向上させることができる。
In step 1, the ratio [D/A] of the total of the multiple raw material monomers (D) to the metallocene compound (A) is, in molar ratio, preferably 1 to 1000, more preferably 40 to 300. By setting the amount of the multiple raw material monomers (D) used within the above range, the low-temperature fluidity of the resulting poly-α-olefin-containing lubricating oil composition can be improved.
The amount of the multiple raw material monomers (D) used in step 1 is preferably 0.1 to 30 volume %, more preferably 0.5 to 20 volume %, even more preferably 0.5 to 15 volume %, still more preferably 0.6 to 12 volume %, and even more preferably 0.6 to 10 volume %, based on the catalyst mixture obtained in step 1. By setting the amount of the multiple raw material monomers (D) used within the above range, the low-temperature fluidity of the resulting lubricating oil composition containing the poly-α-olefin can be improved.
〔(E)成分〕
 工程1における(E)成分は、アルコール類(E1)、フェノール類(E2)及びエーテル化合物(E3)からなる群より選択される少なくとも1種であり、好ましくはアルコール類(E1)である。
 (E)成分、特にアルコール類(E1)を用いることで、得られるポリ-α-オレフィンを含む潤滑油組成物の低温流動性をより向上させることができる。その理由は定かではないが、次のように考えられる。工程1における触媒液中では、活性化体と不活性化体が共存していると推定されるが、特にアルコール類(E1)を添加した触媒液では、アルコール類が活性体構造に作用し、保護構造を形成することで、不活性化体の生成を抑制し、触媒の活性向上に寄与すると考えられる。この保護構造を持った活性化体になることで、異なった分子量を有する複数の原料モノマーのいずれもが作用しやくすくなり、より複数の原料モノマーを由来とする構成単位がランダムに配列しやすくなり、得られるポリ-α-オレフィンを含む潤滑油組成物は低温流動性に優れるものと考えられる。
[Component (E)]
The component (E) in step 1 is at least one selected from the group consisting of alcohols (E1), phenols (E2) and ether compounds (E3), and is preferably an alcohol (E1).
By using the (E) component, particularly the alcohols (E1), the low-temperature fluidity of the obtained poly-α-olefin-containing lubricating oil composition can be further improved. The reason for this is unclear, but is thought to be as follows. It is presumed that activated and inactivated forms coexist in the catalyst solution in step 1, but it is thought that in the catalyst solution to which alcohols (E1) have been added, the alcohols act on the activated form structure to form a protective structure, thereby suppressing the generation of inactivated forms and contributing to improved catalyst activity. By becoming an activated form with this protective structure, it becomes easier for multiple raw material monomers having different molecular weights to act on each other, and it becomes easier for the structural units derived from multiple raw material monomers to be randomly arranged, and it is thought that the obtained poly-α-olefin-containing lubricating oil composition has excellent low-temperature fluidity.
(アルコール類(E1))
 アルコール類(E1)は、好ましくは炭素数1~20のアルコールであり、より好ましくは炭素数1~8のアルコールであり、さらに好ましくは炭素数1~6のアルコールである。アルコール類の具体例としては、メチルアルコール、エチルアルコール、1-プロピルアルコール、2-プロピルアルコール、1-ブチルアルコール、2-ブチルアルコール、イソブチルアルコール、ターシャリーブチルアルコール、1-ペンチルアルコール、2-ペンチルアルコール、3-メチル-1-ブチルアルコール、1-ヘキシルアルコール、シクロヘキシルアルコール、1-ヘプチルアルコール、1-オクチルアルコール、2-エチルヘキシルアルコール、トリフェニルメタノール、1,2-エタンジオール、1,2-プロパンジオール、ベンジルアルコール、α-メチルベンジルアルコール等が挙げられ、好ましくはターシャリーブチルアルコールである。アルコール類(E1)は一種用いてもよく、また二種以上を組み合わせて用いてもよい。
(Alcohols (E1))
The alcohol (E1) is preferably an alcohol having 1 to 20 carbon atoms, more preferably an alcohol having 1 to 8 carbon atoms, and even more preferably an alcohol having 1 to 6 carbon atoms. Specific examples of the alcohol include methyl alcohol, ethyl alcohol, 1-propyl alcohol, 2-propyl alcohol, 1-butyl alcohol, 2-butyl alcohol, isobutyl alcohol, tertiary butyl alcohol, 1-pentyl alcohol, 2-pentyl alcohol, 3-methyl-1-butyl alcohol, 1-hexyl alcohol, cyclohexyl alcohol, 1-heptyl alcohol, 1-octyl alcohol, 2-ethylhexyl alcohol, triphenylmethanol, 1,2-ethanediol, 1,2-propanediol, benzyl alcohol, α-methylbenzyl alcohol, and the like, and is preferably tertiary butyl alcohol. The alcohol (E1) may be used alone or in combination of two or more kinds.
(フェノール類(E2))
 フェノール類(E2)は、好ましくは環形成炭素数が6~20のフェノールであり、より好ましくは環形成炭素数が6~14のフェノールであり、さらに好ましくは環形成炭素数が6~12のフェノールである。フェノール類の具体例としては、フェノール、カテコール、クレゾール、ナフトール、4-フェニルフェノール、チモール、ビスフェノールA等が挙げられる。フェノール類(E2)は一種用いてもよく、また二種以上を組み合わせて用いてもよい。
(Phenols (E2))
The phenol (E2) is preferably a phenol having 6 to 20 ring carbon atoms, more preferably a phenol having 6 to 14 ring carbon atoms, and even more preferably a phenol having 6 to 12 ring carbon atoms. Specific examples of the phenol include phenol, catechol, cresol, naphthol, 4-phenylphenol, thymol, and bisphenol A. The phenol (E2) may be used alone or in combination of two or more.
(エーテル化合物(E3))
 エーテル化合物(E3)は、一般式R10-O-R11で表した場合、R10及びR11は、それぞれ独立に、炭素数1~20の炭化水素基、または炭素数1~20のハロゲン含有炭化水素基であり、R10及びR11の総炭素数が8個以下のものが好適に用いられる。
(Ether compound (E3))
When the ether compound (E3) is represented by the general formula R 10 -O-R 11 , R 10 and R 11 are each independently a hydrocarbon group having 1 to 20 carbon atoms, or a halogen-containing hydrocarbon group having 1 to 20 carbon atoms, and the total number of carbon atoms of R 10 and R 11 is preferably 8 or less.
 エーテル化合物の具体的な化合物としてはジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、ジブチルエーテル、ジアミルエーテル、ジオクチルエーテル、ジデシルエーテル、メチルノルマルブチルエーテル、メチルイソブチルエーテル、メチルターシャリ-ブチルエーテル、エチルノルマルブチルエーテル、エチルイソブチルエーテル、エチルターシャリ-ブチルエーテル、メチルフェニルエーテル、クロロメチルメチルエーテル、クロロメチルエチルエーテル、ブロモメチルメチルエーテル、2,2-ジクロロエチルメチルエーテル、2-クロロエチルメチルエーテル、2-ブロモエチルメチルエーテル、2-ブロモエチルエチルエーテル、2-クロロエチルエチルエーテル、α,α-ジクロロメチルメチルエーテル、1-クロロ-2,2,2-トリフルオロエチルジフルオロメチルエーテル、2-クロロ-1,1,2-トリフルオロエチルジフルオロメチルエーテル、ジフルオロメチル-2,2,2-トリフルオロエチルエーテル、2-クロロ-1,1,2-トリフルオロエチルメチルエーテル、2,2-ジクロロ-1,1-ジフルオロエチルメチルエーテル、2-ブロモ-1,1,2-トリフルオロエチルエチルエーテル、2-クロロ-1,1,2-トリフルオロエチルエチルエーテル、エチル-1,1,2,2-テトラフルオロエチルエーテル、ヘプタフルオロプロピル-1,2,2,2-テトラフルオロエチルエーテル、n-ブチル-1,1,2,2-テトラフルオロエチルエーテル、4-ブロモフェニルトリフルオロメチルエーテル、テトラヒドロフルフリルクロリド、2-ブロモフラン、3-ブロモフラン、パーフルオロ-2-ブチルテトラヒドロフラン、ビス(4-フルオロフェニル)エーテル、2-ブロモエチルエーテル、2-クロロエチルエーテル、1,2-ジクロロエチルエチルエーテル、ペンタフルオロアニソール、2,3,5,6-ペンタフルオロアニソール、2,4,6-トリブロモアニソール、2,3,4-トリクロルアニソール、2,4,6-トリクロロアニソール、2,4,5-トリフルオロアニソール、2-ブロモ-4-フルオロアニソール、4-ブロモ-2-フルオロアニソール、2,4-ジブロモアニソール、α,4-ジクロロアニソール、2,3-ジクロロアニソール、2,4-ジフルオロアニソール、2-ブロモアニソール、2-クロロアニソール、2-フルオロアニソール、2-ヨードアニソール、ベンジル-3-ブロモプロピルエーテル等が挙げられる。エーテル化合物(E3)は一種用いてもよく、また二種以上を組み合わせて用いてもよい。
 (E)成分としては(E1)~(E3)から選択されるものを単独又は二種以上組み合わせて用いることができる。
Specific examples of the ether compound include dimethyl ether, diethyl ether, dipropyl ether, dibutyl ether, diamyl ether, dioctyl ether, didecyl ether, methyl normal butyl ether, methyl isobutyl ether, methyl tertiary butyl ether, ethyl normal butyl ether, ethyl isobutyl ether, ethyl tertiary butyl ether, methyl phenyl ether, chloromethyl methyl ether, chloromethyl ethyl ether, bromomethyl methyl ether, 2,2-dichloroethyl methyl ether, 2-chloroethyl methyl ether, 2-bromoethyl methyl ether, 2-chloroethyl ethyl ether, α,α-dichloromethyl methyl ether, 1-chloro-2,2,2-trifluoroethyl difluoromethyl ether, 2-chloro-1,1,2-trifluoroethyl difluoromethyl ether, difluoromethyl-2,2,2-trifluoroethyl ether, 2-chloro-1,1,2-trifluoroethyl methyl ether, 2,2-dichloro-1,1-difluoroethyl methyl ether, 2-bromo-1,1,2-trifluoroethyl ethyl ether, 2-chloro-1, 1,2-trifluoroethyl ether, ethyl-1,1,2,2-tetrafluoroethyl ether, heptafluoropropyl-1,2,2,2-tetrafluoroethyl ether, n-butyl-1,1,2,2-tetrafluoroethyl ether, 4-bromophenyl trifluoromethyl ether, tetrahydrofurfuryl chloride, 2-bromofuran, 3-bromofuran, perfluoro-2-butyltetrahydrofuran, bis(4-fluorophenyl)ether, 2-bromoethyl ether, 2-chloroethyl ether, 1,2-dichloroethyl ether, pentafluoro 2,3,5,6-pentafluoroanisole, 2,4,6-tribromoanisole, 2,3,4-trichloroanisole, 2,4,6-trichloroanisole, 2,4,5-trifluoroanisole, 2-bromo-4-fluoroanisole, 4-bromo-2-fluoroanisole, 2,4-dibromoanisole, α,4-dichloroanisole, 2,3-dichloroanisole, 2,4-difluoroanisole, 2-bromoanisole, 2-chloroanisole, 2-fluoroanisole, 2-iodoanisole, benzyl-3-bromopropyl ether, etc. The ether compound (E3) may be used alone or in combination of two or more kinds.
As the component (E), one or more of the following compounds selected from (E1) to (E3) can be used alone or in combination.
 メタロセン化合物(A)と(E)成分との比率(使用割合)[A/E]は、モル比で、好ましくは10:1~1:100であり、より好ましくは1:1~1:50であり、さらに好ましくは1:1~1:30である。有機金属化合物(C)と(E)成分との使用割合は、有機金属化合物(C)に対して(E)成分のモル比が1未満であることが好ましく、有機金属化合物(C)と(E)成分とのモル比が10:9~1000:1であることが好ましい。(E)成分であるアルコール類(E1)は一般的には重合反応の後に停止剤として多量に添加されることが多い。本製造方法では意外にも少量の(E)成分を重合前に添加することで活性を向上することができる。 The ratio (usage ratio) of the metallocene compound (A) to the component (E) [A/E] is preferably 10:1 to 1:100, more preferably 1:1 to 1:50, and even more preferably 1:1 to 1:30, in terms of molar ratio. The ratio of the organometallic compound (C) to the component (E) is preferably less than 1, and the molar ratio of the organometallic compound (C) to the component (E) is preferably 10:9 to 1000:1. The alcohol (E1) that is the component (E) is generally added in large quantities as a terminator after the polymerization reaction. Surprisingly, in this production method, activity can be improved by adding a small amount of the component (E) before polymerization.
〔溶媒〕
 工程1において、更に溶媒を混合してもよく、触媒混合物の各成分を均一に混合する観点から、溶媒を混合することが好ましい。
 工程1で用いることができる溶媒としては、芳香族炭化水素、脂環式炭化水素、脂肪族炭化水素及びハロゲン化炭化水素からなる群より選ばれる少なくとも1つが好ましく、芳香族炭化水素がより好ましい。芳香族炭化水素としては、ベンゼン、トルエン、キシレン、エチルベンゼン等が挙げられ、トルエン又はキシレンが好ましく、トルエンがより好ましい。
 脂環式炭化水素としては、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等が挙げられる。
 脂肪族炭化水素としては、ペンタン、ヘキサン、ヘプタン、オクタン等が挙げられる。
 ハロゲン化炭化水素としては、クロロホルム、ジクロロメタン等が挙げられる。
 溶媒は、一種を単独で用いてもよく、二種以上のものを組み合わせてもよい。
〔solvent〕
In step 1, a solvent may be further mixed, and it is preferable to mix a solvent from the viewpoint of uniformly mixing each component of the catalyst mixture.
The solvent that can be used in step 1 is preferably at least one selected from the group consisting of aromatic hydrocarbons, alicyclic hydrocarbons, aliphatic hydrocarbons, and halogenated hydrocarbons, and more preferably aromatic hydrocarbons. Examples of aromatic hydrocarbons include benzene, toluene, xylene, and ethylbenzene, and are preferably toluene or xylene, and more preferably toluene.
Examples of the alicyclic hydrocarbon include cyclopentane, cyclohexane, and methylcyclohexane.
Aliphatic hydrocarbons include pentane, hexane, heptane, octane, and the like.
Examples of halogenated hydrocarbons include chloroform and dichloromethane.
The solvent may be used alone or in combination of two or more kinds.
 溶媒の使用量は、特に限定されないが、メタロセン化合物(A)の濃度が、0.1~10mmol/Lとなる量が好ましく、0.5~5mmol/Lとなる量がより好ましく、1~3mmol/Lとなる量が更に好ましい。 The amount of the solvent used is not particularly limited, but is preferably an amount that results in a concentration of the metallocene compound (A) of 0.1 to 10 mmol/L, more preferably an amount that results in a concentration of 0.5 to 5 mmol/L, and even more preferably an amount that results in a concentration of 1 to 3 mmol/L.
〔混合〕
 工程1は、上記成分を混合して触媒混合物を得る工程である。
 工程1において、好ましくは、50℃以下で30分間以上混合する。
 上記成分を混合する際の温度は、好ましくは50℃以下であり、より好ましくは40℃以下であり、更に好ましくは30℃以下である。下限値としては、好ましくは0℃以上であり、より好ましくは10℃以上である。
 上記成分を混合する際の時間は、好ましくは30分間以上であり、より好ましくは30分間~10時間であり、更に好ましくは1~7時間である。
 つまり、工程1において、好ましくは、50℃以下で30分間以上混合するものである。混合する際の温度と時間を上記の範囲にすることによって、得られるポリ-α-オレフィンを含む潤滑油組成物は低温流動性に優れる。
〔mixture〕
Step 1 is the step of mixing the above components to obtain a catalyst mixture.
In step 1, mixing is preferably carried out at 50° C. or lower for 30 minutes or longer.
The temperature when the above components are mixed is preferably 50° C. or lower, more preferably 40° C. or lower, and even more preferably 30° C. or lower. The lower limit is preferably 0° C. or higher, and more preferably 10° C. or higher.
The time for mixing the above components is preferably 30 minutes or more, more preferably 30 minutes to 10 hours, and even more preferably 1 to 7 hours.
That is, in step 1, mixing is preferably performed for 30 minutes or more at 50° C. or lower. By setting the mixing temperature and time within the above ranges, the obtained poly-α-olefin-containing lubricating oil composition has excellent low-temperature fluidity.
(工程2)
 工程2は、前記触媒混合物を用いて前記複数の原料モノマー(D)を含有するα-オレフィンを重合する工程である。
(Step 2)
Step 2 is a step of polymerizing an α-olefin containing the plurality of raw material monomers (D) using the catalyst mixture.
 本製造方法は、α-オレフィンを重合して、ポリ-α-オレフィンを得るものであるため、工程2で用いられるα-オレフィンは、ポリ-α-オレフィンの原料である。
 工程2で用いられるα-オレフィンは、前記複数の原料モノマー(D)を含有する。
In this production method, an α-olefin is polymerized to obtain a poly-α-olefin, and therefore the α-olefin used in step 2 is a raw material for the poly-α-olefin.
The α-olefin used in step 2 contains the plurality of raw material monomers (D).
〔α-オレフィン〕
 工程2で用いられるα-オレフィンとしては、好ましくは炭素数3~30のα-オレフィンであり、より好ましくは炭素数6~20のα-オレフィンであり、更に好ましくは炭素数8~14のα-オレフィンである。具体的には、複数の原料モノマー(D)としては、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、4-メチル-1-ペンテン、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン、1-トリデセン、1-テトラデセン、1-ペンタデセン、1-ヘキサデセン、1-ヘプタデセン、1-オクタデセン、1-ノナデセン、1-イコセン、1-ヘンイコセン、1-ドコセン、1-トリコセン、1-テトラコセン、1-ペンタコセン、1-ヘキサコセン、1-ヘプタコセン、1-オクタコセン、1-ノナコセン、1-トリアコンテン等が挙げられ、1-オクテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセンからなる群より選ばれる少なくとも2つが好ましく、より好ましくは、1-オクテン(D1)と1-ドデセン(D2)である。
 工程2で用いられるα-オレフィンが、1-オクテン(D1)と1-ドデセン(D2)を含む場合、工程2で用いられる1-オクテン(D1)と1-ドデセン(D2)の比率[D1/D2]は、モル比で、好ましくは3:7~7:3であり、より好ましくは4:6~6:4であり、更に好ましくは4.5:5.5~5.5:4.5である。
 工程2で用いられるα-オレフィン中の複数の原料モノマー(D)の比率は、好ましくは70~100モル%であり、より好ましくは80~100モル%であり、更に好ましくは90~100モル%であり、より更に好ましくは95~100モル%である。工程2で用いられるα-オレフィンは、複数の原料モノマー(D)のみからなっていてもよく、1-オクテン(D1)と1-ドデセン(D2)のみからなっていてもよい。
[α-Olefin]
The α-olefin used in step 2 is preferably an α-olefin having 3 to 30 carbon atoms, more preferably an α-olefin having 6 to 20 carbon atoms, and even more preferably an α-olefin having 8 to 14 carbon atoms. Specifically, the multiple raw material monomers (D) include propylene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene, 1-heptene, 1-octene, 1-nonene, 1-decene, 1-undecene, 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-heptadecene, 1-octadecene, 1-nonadecene, 1-icosene, 1-henicosene, and the like. Examples of the 1-octene include 1-octene, 1-docosene, 1-tricosene, 1-tetracosene, 1-pentacosene, 1-hexacosene, 1-heptacosene, 1-octacosene, 1-nonacosene, and 1-triacontene. At least two selected from the group consisting of 1-octene, 1-nonene, 1-decene, 1-undecene, and 1-dodecene are preferred, and 1-octene (D1) and 1-dodecene (D2) are more preferred.
When the α-olefin used in step 2 contains 1-octene (D1) and 1-dodecene (D2), the ratio [D1/D2] of 1-octene (D1) to 1-dodecene (D2) used in step 2 is preferably 3:7 to 7:3, more preferably 4:6 to 6:4, and even more preferably 4.5:5.5 to 5.5:4.5, in terms of molar ratio.
The ratio of the multiple raw material monomers (D) in the α-olefin used in step 2 is preferably 70 to 100 mol %, more preferably 80 to 100 mol %, even more preferably 90 to 100 mol %, and still more preferably 95 to 100 mol %. The α-olefin used in step 2 may be composed only of the multiple raw material monomers (D), or may be composed only of 1-octene (D1) and 1-dodecene (D2).
 工程2で用いられるα-オレフィンは、前記複数の原料モノマー(D)を含有するため、少なくとも2種を使用するが、3種以上使用してもよい。好ましくは2種である。
 工程2で用いられるα-オレフィンはそのまま重合反応に使用しても良いが、活性アルミナ、モレキュラーシーブ等の吸着剤で処理して使用すると不純物が除去され、活性が向上しより好ましい。
The α-olefin used in step 2 contains the plurality of raw material monomers (D) and therefore at least two types are used, but three or more types may be used, and two types are preferred.
The α-olefin used in step 2 may be used as it is in the polymerization reaction, but it is more preferable to treat it with an adsorbent such as activated alumina or molecular sieve before use, since this removes impurities and improves activity.
 工程2において、原料として用いられるα-オレフィンの量は、好ましくは200kg以上であり、より好ましくは300kg以上であり、更に好ましくは400kg以上であり、より更に好ましくは500kg以上である。反応スケールが大きくなることで、反応器壁による触媒活性への影響が少なくなり、得られるポリ-α-オレフィンを含む潤滑油組成物は、より低温流動性に優れるものとなると考えられる。 In step 2, the amount of α-olefin used as the raw material is preferably 200 kg or more, more preferably 300 kg or more, even more preferably 400 kg or more, and even more preferably 500 kg or more. By increasing the reaction scale, the effect of the reactor wall on the catalytic activity is reduced, and it is believed that the resulting lubricating oil composition containing poly-α-olefin will have better low-temperature fluidity.
〔重合〕
 工程2において、重合方法は特に制限されず、塊状重合法、溶液重合法、懸濁重合法、スラリー重合法、気相重合法、などのいずれの方法を用いてもよい。
 重合温度は、好ましくは0~200℃であり、より好ましくは30~150℃であり、更に好ましくは40~120℃であり、より更に好ましくは80~120℃である。
 原料のα-オレフィンに対する触媒の使用割合は、工程1で用いられるメタロセン化合物(A)に対する工程2で用いられるα-オレフィンのモル比[α-オレフィン/メタロセン化合物(A)]が、好ましくは1~10であり、より好ましくは100~10である。
 重合時間は、好ましくは5分間~20時間であり、反応圧力は、好ましくは0~0.2MPaGである。
〔polymerization〕
In step 2, the polymerization method is not particularly limited, and any method such as bulk polymerization, solution polymerization, suspension polymerization, slurry polymerization, and gas phase polymerization may be used.
The polymerization temperature is preferably 0 to 200°C, more preferably 30 to 150°C, even more preferably 40 to 120°C, and still more preferably 80 to 120°C.
The ratio of the catalyst to the raw material α-olefin, that is, the molar ratio of the α-olefin used in step 2 to the metallocene compound (A) used in step 1 [α-olefin/metallocene compound (A)], is preferably 1 to 10 8 , more preferably 100 to 10 6 .
The polymerization time is preferably 5 minutes to 20 hours, and the reaction pressure is preferably 0 to 0.2 MPaG.
 工程2においては、生産性の観点から、好ましくは無溶媒で重合を行うが、溶媒を用いてもよい。工程2で用いることができる溶媒としては、芳香族炭化水素、脂環式炭化水素、脂肪族炭化水素及びハロゲン化炭化水素からなる群より選ばれる少なくとも1つが好ましく、芳香族炭化水素がより好ましい。芳香族炭化水素としては、ベンゼン、トルエン、キシレン、エチルベンゼン等が挙げられ、トルエン又はキシレンが好ましく、トルエンがより好ましい。
 脂環式炭化水素としては、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等が挙げられる。
 脂肪族炭化水素としては、ペンタン、ヘキサン、ヘプタン、オクタン等が挙げられる。
 ハロゲン化炭化水素としては、クロロホルム、ジクロロメタン等が挙げられる。
 溶媒は、一種を単独で用いてもよく、二種以上のものを組み合わせてもよい。
In step 2, from the viewpoint of productivity, the polymerization is preferably performed without a solvent, but a solvent may be used. The solvent that can be used in step 2 is preferably at least one selected from the group consisting of aromatic hydrocarbons, alicyclic hydrocarbons, aliphatic hydrocarbons, and halogenated hydrocarbons, and more preferably aromatic hydrocarbons. Examples of aromatic hydrocarbons include benzene, toluene, xylene, and ethylbenzene, and toluene or xylene is preferable, and toluene is more preferable.
Examples of the alicyclic hydrocarbon include cyclopentane, cyclohexane, and methylcyclohexane.
Aliphatic hydrocarbons include pentane, hexane, heptane, octane, and the like.
Examples of halogenated hydrocarbons include chloroform and dichloromethane.
The solvent may be used alone or in combination of two or more kinds.
 工程2において、α-オレフィンを重合する際に、水素を添加することで活性が向上するため、水素を添加することが好ましい。水素を用いる場合の水素分圧は、好ましくは0.2MPaG以下であり、より好ましくは0.1MPaG以下である。水素分圧の下限は、0.01MPaGである。 In step 2, when polymerizing α-olefins, it is preferable to add hydrogen because the activity is improved by adding hydrogen. When hydrogen is used, the hydrogen partial pressure is preferably 0.2 MPaG or less, and more preferably 0.1 MPaG or less. The lower limit of the hydrogen partial pressure is 0.01 MPaG.
 工程2は、前記触媒混合物を用いてα-オレフィンを重合する工程であるが、工程2においては、α-オレフィンと有機アルミニウム化合物(C2)を混合し、次に触媒混合物を混合し、α-オレフィンを重合することが好ましい。ここで用いられる有機アルミニウム化合物(C2)は、工程1で用いられる有機アルミニウム化合物(C1)と同様であり、好ましい化合物も同様である。有機アルミニウム化合物(C2)と有機アルミニウム化合物(C1)は同一の化合物であることが更に好ましい。
 更に、工程2において、α-オレフィンと有機アルミニウム化合物(C2)を混合し、次に触媒混合物を混合し、次に80℃以上に昇温し、α-オレフィンを重合することがより好ましい。好ましい重合温度は前記のとおりであり、80~120℃であることが好ましい。
Step 2 is a step of polymerizing an α-olefin using the catalyst mixture, and in step 2, it is preferable to mix the α-olefin with an organoaluminum compound (C2), and then mix the catalyst mixture to polymerize the α-olefin. The organoaluminum compound (C2) used here is the same as the organoaluminum compound (C1) used in step 1, and the preferred compounds are also the same. It is more preferable that the organoaluminum compound (C2) and the organoaluminum compound (C1) are the same compound.
Furthermore, in step 2, it is more preferable to mix the α-olefin with the organoaluminum compound (C2), then mix the catalyst mixture, and then raise the temperature to 80° C. or higher to polymerize the α-olefin. The preferred polymerization temperature is as described above, and is preferably 80 to 120° C.
 工程2において、各触媒成分の種類、使用量、反応量、重合温度、溶媒を調整することによって、α-オレフィン重合体の分子量を調節することができる。
 工程2の重合は、700L以上の容量を有する反応容器で行うことが好ましく、800L以上の容量を有する反応容器で行うことが好ましく、1000L以上の容量を有する反応容器で行うことが好ましく、反応スケールが大きくなることで、反応器壁による触媒活性への影響が少なくなり、得られるポリ-α-オレフィンを含む潤滑油組成物は、より低温流動性に優れるものとなると考えられる。
In step 2, the molecular weight of the α-olefin polymer can be adjusted by adjusting the type, amount of each catalyst component used, reaction amount, polymerization temperature, and solvent.
The polymerization in step 2 is preferably carried out in a reaction vessel having a capacity of 700 L or more, more preferably in a reaction vessel having a capacity of 800 L or more, and more preferably in a reaction vessel having a capacity of 1000 L or more. It is believed that by increasing the reaction scale, the effect of the reactor wall on the catalytic activity is reduced, and the obtained lubricating oil composition containing the poly-α-olefin has better low-temperature fluidity.
 工程2のあとにモノマーやオリゴマー成分を除去することが好ましい。除去方法としては、たとえば、蒸留等が挙げられる。 It is preferable to remove the monomer and oligomer components after step 2. Methods for removing the monomer and oligomer components include, for example, distillation.
〔水素添加工程〕
 工程2で得られたα-オレフィン重合体をそのまま潤滑油、潤滑油基油、潤滑油の添加剤として用いてもよいが、更に水素添加を行うことが好ましい。
 水素添加を行うことで、安定性を向上させることができる。
 水素添加工程の反応条件は、一般的な水素添加反応の条件で行えばよいが、好ましい条件は以下のとおりである。
 この水素添加工程では、一般に使用される気相水素化法を用いることができる。触媒に、パラジウム、白金などの貴金属触媒を用いた場合は、反応温度を60~100℃とし、水素圧を0.1~1MPaとすることが好ましい。ニッケル系触媒を用いた場合は、反応温度を100~250℃とし、水素圧を1~20MPaとすることが好ましい。触媒量は、いずれの系も、工程2で得られた重合体に対し、好ましくは0.05~50質量%であり、反応時間は、好ましくは2~48時間である。なお、水素添加反応は、前記の水素添加触媒を用いることで速やかに進行するが、水素の顕著な吸収が収まってからも、残存する微量の原料の水素添加を完全に行うため、昇温ないし昇圧などの追加操作を行ってもよい。
[Hydrogenation step]
The α-olefin polymer obtained in step 2 may be used as it is as a lubricant, a lubricant base oil, or an additive for a lubricant, but it is preferable to further carry out hydrogenation.
Hydrogenation can improve stability.
The reaction conditions for the hydrogenation step may be general hydrogenation reaction conditions, but the preferred conditions are as follows.
In this hydrogenation step, a commonly used gas phase hydrogenation method can be used. When a precious metal catalyst such as palladium or platinum is used as the catalyst, the reaction temperature is preferably 60 to 100°C and the hydrogen pressure is preferably 0.1 to 1 MPa. When a nickel-based catalyst is used, the reaction temperature is preferably 100 to 250°C and the hydrogen pressure is preferably 1 to 20 MPa. In either system, the amount of catalyst is preferably 0.05 to 50 mass% relative to the polymer obtained in step 2, and the reaction time is preferably 2 to 48 hours. The hydrogenation reaction proceeds quickly by using the hydrogenation catalyst, but even after the significant absorption of hydrogen has subsided, additional operations such as increasing the temperature or pressure may be performed in order to completely hydrogenate the remaining trace amounts of raw material.
[基油(b)]
 本発明の潤滑油組成物には、100℃動粘度が1~30mm/sである基油(b)を含む。
 基油(b)は、メタロセン触媒系ポリ-α-オレフィンであってもよいが、好ましくは、非メタロセン触媒系ポリ-α-オレフィン及びエステルからなる群より選ばれる少なくとも1つであることが好ましい。基油(a)の種類(100℃動粘度)によって、好適な基油(b)の種類が異なる。
 「非メタロセン触媒系ポリ-α-オレフィン」とは、「重合触媒としてメタロセン触媒以外の触媒を用いて重合されたポリ-α-オレフィン」のことをいい、重合触媒として従来の触媒を用いて重合されたポリ-α-オレフィンをいう。
[Base oil (b)]
The lubricating oil composition of the present invention contains a base oil (b) having a 100° C. kinematic viscosity of 1 to 30 mm 2 /s.
The base oil (b) may be a metallocene-catalyzed poly-α-olefin, but is preferably at least one selected from the group consisting of non-metallocene-catalyzed poly-α-olefins and esters. The type of suitable base oil (b) varies depending on the type (100° C. kinematic viscosity) of the base oil (a).
The term "non-metallocene catalyst-based poly-α-olefin" refers to a poly-α-olefin polymerized using a catalyst other than a metallocene catalyst as a polymerization catalyst, and refers to a poly-α-olefin polymerized using a conventional catalyst as a polymerization catalyst.
<非メタロセン触媒系ポリ-α-オレフィン>
 上記非メタロセン触媒系ポリ-α-オレフィンは、好ましくは炭素数8~12のα-オレフィンを一種又は二種以上用いて得られるポリ-α-オレフィンである。
 上記非メタロセン触媒系ポリ-α-オレフィンは、重合触媒としてメタロセン触媒以外の触媒を用いて重合されたポリ-α-オレフィンであり、好ましくは重合触媒として、カチオン触媒又はチーグラー触媒を用いて重合されたポリ-α-オレフィンであり、より好ましくはカチオン触媒を用いて重合されたポリ-α-オレフィンである。
 本発明の潤滑油組成物に、メタロセン触媒系ポリ-α-オレフィンに比べて多様な構造を有する非メタロセン触媒系ポリ-α-オレフィンを、メタロセン触媒系ポリ-α-オレフィンと混合して用いることによって、低温流動性に優れる潤滑油となる。更に、非メタロセン触媒系ポリ-α-オレフィンによって、本発明の潤滑油組成物の各種添加剤の溶解性が向上し、添加剤の機能発現という点においても優れるものとなる。これは、非メタロセン触媒系ポリ-α-オレフィンがメタロセン触媒系ポリ-α-オレフィンに比べて、構造の多様性に優れるという特徴を有するためである。
 非メタロセン触媒系ポリ-α-オレフィンの粘度指数は、好ましくは80以上であり、より好ましくは100以上であり、更に好ましくは130以上である。粘度指数が上記範囲であれば、温度の変化による粘度変化が小さい。
 また、非メタロセン触媒系ポリ-α-オレフィンの流動点は、好ましくは-25℃以下であり、より好ましくは-30℃以下であり、更に好ましくは-40℃以下である。流動点が上記範囲であれば、これを含有する本発明の潤滑油組成物は、低温環境においても十分な流動性を有するものとなる。
 なお、前記動粘度及び粘度指数は、JIS K 2283に準拠して測定した値であり、流動点は、JIS K 2265に準拠して測定した値である。
<Nonmetallocene Catalyst-Based Poly-α-Olefins>
The nonmetallocene catalyst-based poly-α-olefin is preferably a poly-α-olefin obtained by using one or more α-olefins having 8 to 12 carbon atoms.
The non-metallocene catalyst-based poly-α-olefin is a poly-α-olefin polymerized using a catalyst other than a metallocene catalyst as a polymerization catalyst, preferably a poly-α-olefin polymerized using a cationic catalyst or a Ziegler catalyst as a polymerization catalyst, and more preferably a poly-α-olefin polymerized using a cationic catalyst.
By mixing nonmetallocene-catalyzed poly-α-olefins having a more diverse structure than metallocene-catalyzed poly-α-olefins with metallocene-catalyzed poly-α-olefins in the lubricating oil composition of the present invention, a lubricating oil having excellent low-temperature fluidity can be obtained. Furthermore, the nonmetallocene-catalyzed poly-α-olefins improve the solubility of various additives in the lubricating oil composition of the present invention, and the lubricating oil composition is also excellent in terms of the expression of the additives' functions. This is because nonmetallocene-catalyzed poly-α-olefins have the characteristic of being more diverse in structure than metallocene-catalyzed poly-α-olefins.
The viscosity index of the nonmetallocene catalyst-based poly-α-olefin is preferably at least 80, more preferably at least 100, and even more preferably at least 130. If the viscosity index is within the above range, the viscosity change due to the change in temperature is small.
The pour point of the nonmetallocene catalyst-based poly-α-olefin is preferably −25° C. or lower, more preferably −30° C. or lower, and even more preferably −40° C. or lower. If the pour point is within the above range, the lubricating oil composition of the present invention containing it will have sufficient fluidity even in a low-temperature environment.
The kinematic viscosity and viscosity index are values measured in accordance with JIS K 2283, and the pour point is a value measured in accordance with JIS K 2265.
 基油(b)は、基油(a)の種類、含有量によって、好適な物性が異なる。
 後述の<潤滑油組成物の組成>に記載した組成物の番号によって説明する。基油(b)のうち、好適な非メタロセン触媒系ポリ-α-オレフィンとしては、基油(b3)、基油(b1)及び基油(b4)が挙げられる。
The preferred physical properties of the base oil (b) vary depending on the type and content of the base oil (a).
The composition numbers are described in the <Composition of the lubricating oil composition> described later. Among the base oils (b), suitable nonmetallocene catalyst-based poly-α-olefins include base oils (b3), (b1) and (b4).
 潤滑油組成物(1-2)では、基油(b)として、基油(b3)が好ましい。
 基油(b3)は、100℃動粘度が5~10mm/sである非メタロセン触媒系ポリ-α-オレフィンである。
 基油(b3)の100℃動粘度は、5~10mm/sであり、好ましくは5~9mm/sであり、より好ましくは5~8mm/sであり、更に好ましくは5~7mm/sである。
 基油(b3)の40℃動粘度は、好ましくは25~50mm/sであり、より好ましくは25~40mm/sであり、更に好ましくは25~35mm/sであり、より更に好ましくは30~35mm/sである。
 100℃動粘度及び40℃動粘度が上記の範囲であれば、蒸発損失が少なく、粘性抵抗による動力損失が大きくなることがなく、好ましい。
In the lubricating oil composition (1-2), the base oil (b) is preferably the base oil (b3).
The base oil (b3) is a nonmetallocene catalyst-based poly-α-olefin having a 100° C. kinematic viscosity of 5 to 10 mm 2 /s.
The 100° C. kinematic viscosity of the base oil (b3) is from 5 to 10 mm 2 /s, preferably from 5 to 9 mm 2 /s, more preferably from 5 to 8 mm 2 /s, and even more preferably from 5 to 7 mm 2 /s.
The 40° C. kinematic viscosity of the base oil (b3) is preferably 25 to 50 mm 2 /s, more preferably 25 to 40 mm 2 /s, even more preferably 25 to 35 mm 2 /s, and still more preferably 30 to 35 mm 2 /s.
If the 100° C. kinetic viscosity and the 40° C. kinetic viscosity are within the above ranges, the evaporation loss is small and the power loss due to the viscous resistance is not large, which is preferable.
 潤滑油組成物(1-1)及び潤滑油組成物(1-1-1)においては、基油(b1)を用いることは任意であるが、基油(b)として、基油(b1)を用いることが好ましい。
 基油(b1)は、100℃動粘度が1~10mm/sである非メタロセン触媒系ポリ-α-オレフィンである。
 基油(b1)の100℃動粘度は、1~10mm/sであり、好ましくは3~10mm/sであり、より好ましくは5~10mm/sであり、更に好ましくは5~9mm/sであり、より更に好ましくは5~8mm/sであり、より更に好ましくは5~7mm/sである。
 基油(b1)の40℃動粘度は、好ましくは10~50mm/sであり、より好ましくは20~50mm/sであり、更に好ましくは25~50mm/sであり、より更に好ましくは25~40mm/sであり、より更に好ましくは25~35mm/sであり、より更に好ましくは30~35mm/sである。
 100℃動粘度及び40℃動粘度が上記の範囲であれば、蒸発損失が少なく、粘性抵抗による動力損失が大きくなることがなく、好ましい。
In the lubricating oil compositions (1-1) and (1-1-1), the use of base oil (b1) is optional, but it is preferable to use base oil (b1) as base oil (b).
The base oil (b1) is a nonmetallocene catalyst-based poly-α-olefin having a 100° C. kinematic viscosity of 1 to 10 mm 2 /s.
The 100°C kinematic viscosity of the base oil (b1) is 1 to 10 mm 2 /s, preferably 3 to 10 mm 2 /s, more preferably 5 to 10 mm 2 /s, even more preferably 5 to 9 mm 2 /s, still more preferably 5 to 8 mm 2 /s, and even more preferably 5 to 7 mm 2 /s.
The 40°C kinematic viscosity of the base oil (b1) is preferably 10 to 50 mm 2 /s, more preferably 20 to 50 mm 2 /s, even more preferably 25 to 50 mm 2 /s, still more preferably 25 to 40 mm 2 /s, even more preferably 25 to 35 mm 2 /s, and even more preferably 30 to 35 mm 2 /s.
If the 100° C. kinetic viscosity and the 40° C. kinetic viscosity are within the above ranges, the evaporation loss is small and the power loss due to the viscous resistance is not large, which is preferable.
 潤滑油組成物(2)では、基油(b)として、基油(b4)が好ましい。
 基油(b4)は、100℃動粘度が1~30mm/sである非メタロセン触媒系ポリ-α-オレフィンである。
 基油(b4)の100℃動粘度は、1~30mm/sであり、好ましくは1~20mm/sであり、より好ましくは1~10mm/sであり、更に好ましくは3~10mm/sであり、より更に好ましくは5~10mm/sであり、より更に好ましくは5~9mm/sであり、より更に好ましくは5~8mm/sであり、より更に好ましくは5~7mm/sである。
 基油(b4)の40℃動粘度は、好ましくは10~300mm/sであり、より好ましくは10~150mm/sであり、更に好ましくは10~50mm/sであり、より更に好ましくは20~50mm/sであり、より更に好ましくは25~50mm/sであり、より更に好ましくは25~40mm/sであり、より更に好ましくは25~35mm/sであり、より更に好ましくは30~35mm/sである。
 100℃動粘度及び40℃動粘度が上記の範囲であれば、蒸発損失が少なく、粘性抵抗による動力損失が大きくなることがなく、好ましい。
In the lubricating oil composition (2), the base oil (b) is preferably base oil (b4).
The base oil (b4) is a nonmetallocene catalyst-based poly-α-olefin having a 100° C. kinematic viscosity of 1 to 30 mm 2 /s.
The 100°C kinematic viscosity of base oil (b4) is 1 to 30 mm 2 /s, preferably 1 to 20 mm 2 /s, more preferably 1 to 10 mm 2 /s, even more preferably 3 to 10 mm 2 /s, still more preferably 5 to 10 mm 2 /s, even more preferably 5 to 9 mm 2 /s, even more preferably 5 to 8 mm 2 /s, and even more preferably 5 to 7 mm 2 /s.
The 40°C kinematic viscosity of the base oil (b4) is preferably 10 to 300 mm 2 /s, more preferably 10 to 150 mm 2 /s, even more preferably 10 to 50 mm 2 /s, still more preferably 20 to 50 mm 2 /s, even more preferably 25 to 50 mm 2 /s, even more preferably 25 to 40 mm 2 /s, even more preferably 25 to 35 mm 2 /s, and even more preferably 30 to 35 mm 2 /s.
If the 100° C. kinetic viscosity and the 40° C. kinetic viscosity are within the above ranges, the evaporation loss is small and the power loss due to the viscous resistance is not large, which is preferable.
<エステル>
 上記エステルとしては、ジエステル、芳香族エステル、ポリオールエステル等、既知のエステルを使用することができる。好ましくはポリオールエステルであり、より好ましくはポリオールの部分エステル及びポリオールの完全エステルからなる群より選ばれる少なくとも1つである。
 本発明の潤滑油組成物にエステルを用いることによって、本発明の潤滑油組成物の流動性が向上し、低い流動点が得られるという点で優れるものとなる。これは、エステルが低温流動性に優れるという特徴を有するためである。ポリ-α-オレフィン、特にメタロセン触媒系ポリ-α-オレフィンと、エステルを混合することにより、更に優れた低温流動性を有する。
 前記ポリオールエステルの原料となるポリオールとしては、特に制限はないが、脂肪族ポリオールが好ましく、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、トリメチレングリコール、テトラメチレングリコール、ネオペンチルグリコールなどの二価アルコール、グリセリン、トリメチロールエタン、トリメチロールプロパンなどの三価アルコール、ジグリセリン、トリグリセリン、ペンタエリスリトール、ジペンタエリスリトール、マンニット、ソルビットなどの四価以上の多価アルコールを挙げることができる。
<Ester>
The ester may be a known ester such as a diester, an aromatic ester, a polyol ester, etc. A polyol ester is preferred, and at least one selected from the group consisting of a partial ester of a polyol and a complete ester of a polyol is more preferred.
By using an ester in the lubricating oil composition of the present invention, the fluidity of the lubricating oil composition of the present invention is improved, and the lubricating oil composition is excellent in that a low pour point can be obtained. This is because the ester has the characteristic of excellent low-temperature fluidity. By mixing an ester with a poly-α-olefin, particularly a metallocene catalyst-based poly-α-olefin, the lubricating oil composition of the present invention has even better low-temperature fluidity.
The polyol used as a raw material for the polyol ester is not particularly limited, but an aliphatic polyol is preferable. Examples of the polyol include dihydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, trimethylene glycol, tetramethylene glycol, and neopentyl glycol; trihydric alcohols such as glycerin, trimethylolethane, and trimethylolpropane; and tetrahydric or higher polyhydric alcohols such as diglycerin, triglycerin, pentaerythritol, dipentaerythritol, mannitol, and sorbitol.
 ポリオールエステルのカルボン酸部分を構成する炭化水素基としては、炭素数が6~30のアルキル基又はアルケニル基が好ましく、炭素数が12~24のアルキル基又はアルケニル基がより好ましく、例えば各種のヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ヘキセニル基、オクテニル基、デセニル基、ドデセニル基、テトラデセニル基、ヘキサデセニル基、オクタデセニル基などを挙げることができる。
 上記アルキル基やアルケニル基としては、直鎖状のものであっても分岐状のものであってもよい。
The hydrocarbon group constituting the carboxylic acid portion of the polyol ester is preferably an alkyl or alkenyl group having 6 to 30 carbon atoms, more preferably an alkyl or alkenyl group having 12 to 24 carbon atoms, and examples thereof include various hexyl groups, octyl groups, decyl groups, dodecyl groups, tetradecyl groups, hexadecyl groups, heptadecyl groups, octadecyl groups, hexenyl groups, octenyl groups, decenyl groups, dodecenyl groups, tetradecenyl groups, hexadecenyl groups, and octadecenyl groups.
The alkyl group and alkenyl group may be either linear or branched.
 ポリオールの完全エステルの具体例としては、ネオペンチルグリコールジラウレート、ネオペンチルグリコールジミリステート、ネオペンチルグリコールジパルミテート、ネオペンチルグリコールジステアレート、ネオペンチルグリコールジイソステアレート等のネオペンチルグリコールエステル;トリメチロールプロパントリラウレート、トリメチロールプロパントリミリステート、トリメチロールプロパントリパルミテート、トリメチロールプロパントリステアレート、トリメチロールプロパントリイソステアレート等のトリメチロールプロパンエステル;グリセリントリラウレート、グリセリントリステアレート、グリセリントリイソステアレート等のグリセリンエステル;ジペンタエリスリトールヘキサラウレート等のジペンタエリスリトールエステルなどを挙げることができるが、これらに限定されるものではない。 Specific examples of complete esters of polyols include, but are not limited to, neopentyl glycol esters such as neopentyl glycol dilaurate, neopentyl glycol dimyristate, neopentyl glycol dipalmitate, neopentyl glycol distearate, and neopentyl glycol diisostearate; trimethylolpropane esters such as trimethylolpropane trilaurate, trimethylolpropane trimyristate, trimethylolpropane tripalmitate, trimethylolpropane tristearate, and trimethylolpropane triisostearate; glycerin esters such as glycerin trilaurate, glycerin tristearate, and glycerin triisostearate; and dipentaerythritol esters such as dipentaerythritol hexalaurate.
 ポリオールの部分エステルは、少なくとも一つの水酸基が残存していれば特に制限はない。
 当該ポリオールの部分エステルの具体例としては、ネオペンチルグリコールモノラウレート、ネオペンチルグリコールモノミリステート、ネオペンチルグリコールモノパルミテート、ネオペンチルグリコールモノステアレート、ネオペンチルグリコールモノイソステアレート等のネオペンチルグリコールの部分エステル;トリメチロールプロパンモノ又はジラウレート、トリメチロールプロパンモノ又はジミリステート、トリメチロールプロパンモノ又はジパルミテート、トリメチロールプロパンモノ又はジステアレート、トリメチロールプロパンモノ又はジイソステアレート等のトリメチロールプロパンの部分エステル;グリセリンモノ又はジラウレート、グリセリンモノ又はジステアレート、グリセリンモノ又はジイソステアレート等のグリセリンの部分エステル;ジペンタエリスリトールペンタラウレート等のジペンタエリスリトールの部分エステルなどを挙げることができるが、これらに限定されるものではない。
The partial ester of the polyol is not particularly limited as long as it has at least one remaining hydroxyl group.
Specific examples of the partial ester of the polyol include partial esters of neopentyl glycol, such as neopentyl glycol monolaurate, neopentyl glycol monomyristate, neopentyl glycol monopalmitate, neopentyl glycol monostearate, and neopentyl glycol monoisostearate; partial esters of trimethylolpropane, such as trimethylolpropane mono- or dilaurate, trimethylolpropane mono- or dimyristate, trimethylolpropane mono- or dipalmitate, trimethylolpropane mono- or distearate, and trimethylolpropane mono- or diisostearate; partial esters of glycerin, such as glycerin mono- or dilaurate, glycerin mono- or distearate, and glycerin mono- or diisostearate; and partial esters of dipentaerythritol, such as dipentaerythritol pentalaurate, but are not limited thereto.
 上記ポリオールエステルとしては、下記一般式(B2)で表されるものが、泡立ち防止性等の観点から好ましい。
 (R-COO-)L  ・・・(B2)
(式中、Rは炭素数6~30の炭化水素基であり、nは2~6の整数であり、Lはn価の炭化水素基、またはn価のエーテル結合を含む炭化水素基である。)
 上記Rとしては、炭素数8~18のアルキル基又はアルケニル基が好ましい。
 nは3又は4であることが好ましい。
 Lは炭素数3~10のn価の炭化水素基、またはn価のエーテル結合を含む炭化水素基であることが好ましい。ここで「エーテル結合を含む炭化水素基」とは、2つの炭化水素基がエーテル結合(-O-)を介して結合したものをいう。
 Lが炭素数3~10のn価の炭化水素基である場合のエステルの好ましい具体例としては、ネオペンチルグリコールジラウレート、ネオペンチルグリコールジミリステート等のネオペンチルグリコールエステル等が挙げられる。また、Lがエーテル結合を含む炭化水素基である場合のエステルの好ましい具体例としては、ジペンタエリスリトールヘキサラウレート、ジペンタエリスリトールペンタラウレート等のジペンタエリスリトールエステル等が挙げられる。
As the polyol ester, those represented by the following general formula (B2) are preferred from the viewpoint of anti-foaming properties, etc.
(R 1 -COO-) n L ... (B2)
(In the formula, R 1 is a hydrocarbon group having 6 to 30 carbon atoms, n is an integer from 2 to 6, and L is an n-valent hydrocarbon group or an n-valent hydrocarbon group containing an ether bond.)
The above R 1 is preferably an alkyl or alkenyl group having 8 to 18 carbon atoms.
It is preferred that n is 3 or 4.
L is preferably an n-valent hydrocarbon group having 3 to 10 carbon atoms, or an n-valent hydrocarbon group containing an ether bond. Here, the term "hydrocarbon group containing an ether bond" refers to two hydrocarbon groups bonded via an ether bond (-O-).
Preferred specific examples of the ester when L is an n-valent hydrocarbon group having 3 to 10 carbon atoms include neopentyl glycol esters such as neopentyl glycol dilaurate and neopentyl glycol dimyristate, etc. Preferred specific examples of the ester when L is a hydrocarbon group containing an ether bond include dipentaerythritol esters such as dipentaerythritol hexalaurate and dipentaerythritol pentalaurate, etc.
 本発明の潤滑油組成物においては、当該エステルとして、ポリオールエステルを一種単独で用いてもよく、2種以上を組み合わせて用いてもよい。 In the lubricating oil composition of the present invention, the polyol ester may be used alone or in combination of two or more kinds.
 基油(b)は、基油(a)の種類、含有量によって、好適な物性が異なる。
 後述の<潤滑油組成物の組成>に記載した組成物の番号によって説明する。基油(b)のうち、好適なエステルとしては、基油(b2)が挙げられる。
The preferred physical properties of the base oil (b) vary depending on the type and content of the base oil (a).
The composition numbers are given in the <Composition of the lubricating oil composition> described later. Among the base oils (b), a suitable ester is base oil (b2).
 潤滑油組成物(1-1-1)及び潤滑油組成物(2)では、基油(b)として、基油(b2)が好ましい。
 潤滑油組成物(1-1)及び潤滑油組成物(1-2)においては、基油(b2)を用いることは任意であるが、基油(b)として、基油(b2)を用いることが好ましい。
 基油(b2)は、100℃動粘度が10~15mm/sであるエステルである。
 基油(b2)の100℃動粘度は、10~15mm/sであり、好ましくは11~15mm/sであり、より好ましくは12~15mm/sであり、更に好ましくは12~14mm/sである。
 基油(b2)の40℃動粘度は、好ましくは50~200mm/sであり、より好ましくは60~150mm/sであり、更に好ましくは70~130mm/sであり、より更に好ましくは80~120mm/sである。
 100℃動粘度及び40℃動粘度が上記の範囲であれば、蒸発損失が少なく、粘性抵抗による動力損失が大きくなることがなく、好ましい。
In the lubricating oil composition (1-1-1) and the lubricating oil composition (2), the base oil (b) is preferably the base oil (b2).
In the lubricating oil compositions (1-1) and (1-2), the use of base oil (b2) is optional, but it is preferable to use base oil (b2) as base oil (b).
The base oil (b2) is an ester having a 100° C. kinematic viscosity of 10 to 15 mm 2 /s.
The 100° C. kinematic viscosity of the base oil (b2) is from 10 to 15 mm 2 /s, preferably from 11 to 15 mm 2 /s, more preferably from 12 to 15 mm 2 /s, and even more preferably from 12 to 14 mm 2 /s.
The 40° C. kinematic viscosity of the base oil (b2) is preferably 50 to 200 mm 2 /s, more preferably 60 to 150 mm 2 /s, even more preferably 70 to 130 mm 2 /s, and still more preferably 80 to 120 mm 2 /s.
If the 100° C. kinetic viscosity and the 40° C. kinetic viscosity are within the above ranges, the evaporation loss is small and the power loss due to the viscous resistance is not large, which is preferable.
[その他の基油]
 本発明の潤滑油組成物は、本発明の効果を損なわない範囲で、上述の基油(a)及び基油(b)以外の基油を含有していてもよい。
 その他の基油としては、その種類については特に制限はなく、鉱油および合成油のいずれをも使用することができる。ここで鉱油としては、従来公知の種々のものが使用可能であり、例えば、パラフィン基系鉱油、中間基系鉱油、ナフテン基系鉱油などが挙げられ、具体例としては、溶剤精製または水素精製による軽質ニュートラル油、中質ニュートラル油、重質ニュートラル油又はブライトストックなどを挙げることができる。
 また、合成油としては、やはり従来公知の種々のものが使用可能であり、例えば、ポリブテン、リン酸エステル、ポリフェニルエーテル、アルキルベンゼン、アルキルナフタレン、ポリオキシアルキレングリコール、ネオペンチルグリコール、シリコーンオイル、トリメチロールプロパン、ペンタエリスリトール、更にはヒンダードエステルなどを用いることができる。これらの基油は、単独で、あるいは二種以上組み合わせて使用することができ、鉱油と合成油とを組み合わせて使用してもよい。
[Other base oils]
The lubricating oil composition of the present invention may contain base oils other than the above-mentioned base oil (a) and base oil (b) as long as the effects of the present invention are not impaired.
The other base oils are not particularly limited in type, and can be either mineral oils or synthetic oils.Here, the mineral oils can be any of various types known in the art, such as paraffin-based mineral oils, intermediate-based mineral oils, naphthene-based mineral oils, and the like.Specific examples include light neutral oils, medium neutral oils, heavy neutral oils, and bright stocks, which are obtained by solvent refining or hydrogen refining.
As the synthetic oil, various conventionally known oils can be used, such as polybutene, phosphate ester, polyphenyl ether, alkylbenzene, alkylnaphthalene, polyoxyalkylene glycol, neopentyl glycol, silicone oil, trimethylolpropane, pentaerythritol, and further hindered ester. These base oils can be used alone or in combination of two or more, and mineral oil and synthetic oil can be used in combination.
[添加剤]
 本発明の潤滑油組成物には、本発明の効果を損なわない範囲で、更に各種の添加剤を含んでいてもよく、各種の添加剤を潤滑油組成物の用途等に応じて、適宜添加剤を用いることができる。
 本発明の潤滑油組成物は、好ましくは、更に、極圧剤、耐摩耗剤、無灰清浄分散剤、酸化防止剤、防錆剤、金属不活性化剤及び流動点降下剤からなる群より選ばれる少なくとも一種の添加剤を1~30質量%含有する。
 本発明の潤滑油組成物中の添加剤の含有量は、好ましくは1~30質量%であり、より好ましくは1~20質量%であり、更に好ましくは1~10質量%であり、より更に好ましくは1~5質量%であり、より更に好ましくは1~4質量%であり、より更に好ましくは2~4質量%である。
[Additive]
The lubricating oil composition of the present invention may further contain various additives within the range that does not impair the effects of the present invention. Various additives can be used appropriately depending on the application of the lubricating oil composition, etc.
The lubricating oil composition of the present invention preferably further contains 1 to 30 mass % of at least one additive selected from the group consisting of extreme pressure agents, antiwear agents, ashless detergent-dispersants, antioxidants, rust inhibitors, metal deactivators and pour point depressants.
The content of the additives in the lubricating oil composition of the present invention is preferably 1 to 30 mass %, more preferably 1 to 20 mass %, even more preferably 1 to 10 mass %, still more preferably 1 to 5 mass %, even more preferably 1 to 4 mass %, and even more preferably 2 to 4 mass %.
 極圧剤としては、硫黄系極圧剤、リン系極圧剤、硫黄及び金属を含む極圧剤、リン及び金属を含む極圧剤が挙げられる。これらの極圧剤は一種を単独で又は二種以上組み合わせて用いることができる。極圧剤としては、分子中に硫黄原子及び/又はリン原子を含み、耐荷重性や耐摩耗性を発揮しうるものであればよい。
 極圧剤の配合量は、配合効果及び経済性の点から、潤滑油組成物全量基準で、好ましくは0.01~20質量%であり、好ましくは0.01~10質量%である。
Examples of the extreme pressure agent include sulfur-based extreme pressure agents, phosphorus-based extreme pressure agents, extreme pressure agents containing sulfur and metal, and extreme pressure agents containing phosphorus and metal. These extreme pressure agents can be used alone or in combination of two or more. The extreme pressure agent may be any agent that contains sulfur atoms and/or phosphorus atoms in the molecule and can exhibit load resistance and wear resistance.
The amount of the extreme pressure agent blended is preferably 0.01 to 20 mass %, and more preferably 0.01 to 10 mass %, based on the total amount of the lubricating oil composition, from the standpoint of blending effect and economy.
 耐摩耗剤としては、ジアルキルジチオリン酸亜鉛(ZnDTP)、リン酸亜鉛、ジスルフィド類、硫化オレフィン類、硫化油脂類、硫化エステル類、チオカーボネート類、チオカーバメート類、ポリサルファイド類等の硫黄含有化合物;亜リン酸エステル類、リン酸エステル類、ホスホン酸エステル類、及びこれらのアミン塩又は金属塩等のリン含有化合物;チオ亜リン酸エステル類、チオリン酸エステル類、チオホスホン酸エステル類、及びこれらのアミン塩又は金属塩等の硫黄及びリン含有耐摩耗剤が挙げられる。
 耐摩耗剤の配合量は、配合効果および経済性の観点から潤滑油組成物全量基準で、好ましくは0.01~20質量%であり、より好ましくは0.01~10質量%である。
Examples of anti-wear agents include sulfur-containing compounds such as zinc dialkyldithiophosphate (ZnDTP), zinc phosphate, disulfides, sulfurized olefins, sulfurized oils and fats, sulfurized esters, thiocarbonates, thiocarbamates, and polysulfides; phosphorus-containing compounds such as phosphites, phosphates, phosphonates, and amine salts or metal salts thereof; and sulfur- and phosphorus-containing anti-wear agents such as thiophosphites, thiophosphates, thiophosphonates, and amine salts or metal salts thereof.
The amount of the anti-wear agent blended is preferably 0.01 to 20 mass %, more preferably 0.01 to 10 mass %, based on the total amount of the lubricating oil composition, from the viewpoints of blending effect and economy.
 上記無灰清浄分散剤としては、例えばコハク酸イミド類、ホウ素含有コハク酸イミド類、ベンジルアミン類、ホウ素含有ベンジルアミン類、コハク酸エステル類、脂肪酸あるいはコハク酸で代表される一価又は二価カルボン酸アミド類などが挙げられる。 Examples of the ashless detergent-dispersant include succinimides, boron-containing succinimides, benzylamines, boron-containing benzylamines, succinic acid esters, fatty acids, and mono- or di-carboxylic acid amides such as succinic acid.
 酸化防止剤としては、アミン系酸化防止剤、フェノール系酸化防止剤及び硫黄系酸化防止剤からなる群より選ばれる少なくとも1種であることが好ましい。これらの酸化防止剤は、一種を単独で又は二種以上を組み合わせて用いることができる。
 アミン系酸化防止剤としては、モノオクチルジフェニルアミン、モノノニルジフェニルアミンなどのモノアルキルジフェニルアミン系化合物、4,4’-ジブチルジフェニルアミン、4,4’-ジペンチルジフェニルアミン、4,4’-ジヘキシルジフェニルアミン、4,4’-ジヘプチルジフェニルアミン、4,4’-ジオクチルジフェニルアミン、4,4’-ジノニルジフェニルアミンなどのジアルキルジフェニルアミン系化合物、テトラブチルジフェニルアミン、テトラヘキシルジフェニルアミン、テトラオクチルジフェニルアミン、テトラノニルジフェニルアミンなどのポリアルキルジフェニルアミン系化合物、α-ナフチルアミン、フェニル-α-ナフチルアミン、ブチルフェニル-α-ナフチルアミン、ペンチルフェニル-α-ナフチルアミン、ヘキシルフェニル-α-ナフチルアミン、ヘプチルフェニル-α-ナフチルアミン、オクチルフェニル-α-ナフチルアミン、ノニルフェニル-α-ナフチルアミンなどのナフチルアミン系化合物が挙げられる。
The antioxidant is preferably at least one selected from the group consisting of amine-based antioxidants, phenol-based antioxidants, and sulfur-based antioxidants. These antioxidants can be used alone or in combination of two or more.
Examples of the amine-based antioxidant include monoalkyldiphenylamine-based compounds such as monooctyldiphenylamine and monononyldiphenylamine; dialkyldiphenylamine-based compounds such as 4,4'-dibutyldiphenylamine, 4,4'-dipentyldiphenylamine, 4,4'-dihexyldiphenylamine, 4,4'-diheptyldiphenylamine, 4,4'-dioctyldiphenylamine and 4,4'-dinonyldiphenylamine; polyalkyldiphenylamine-based compounds such as tetrabutyldiphenylamine, tetrahexyldiphenylamine, tetraoctyldiphenylamine and tetranonyldiphenylamine; and naphthylamine-based compounds such as α-naphthylamine, phenyl-α-naphthylamine, butylphenyl-α-naphthylamine, pentylphenyl-α-naphthylamine, hexylphenyl-α-naphthylamine, heptylphenyl-α-naphthylamine, octylphenyl-α-naphthylamine and nonylphenyl-α-naphthylamine.
 フェノール系酸化防止剤としては、2,6-ジ-tert-ブチル-4-メチルフェノール、2,6-ジ-tert-ブチル-4-エチルフェノール、オクタデシル3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネートなどのモノフェノール系化合物、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、2,2’-メチレンビス(4-エチル-6-tert-ブチルフェノール)などのジフェノール系化合物が挙げられる。
 硫黄系酸化防止剤としては、2,6-ジ-tert-ブチル-4-(4,6-ビス(オクチルチオ)-1,3,5-トリアジン-2-イルアミノ)フェノール、五硫化リンとピネンとの反応物などのチオテルペン系化合物、ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネートなどのジアルキルチオジプロピオネートなどが挙げられる。
 本発明の潤滑油組成物に含まれる酸化防止剤の量は、潤滑油組成物全量基準で、好ましくは0.1質量%以上であり、より好ましくは0.2質量%以上であり、更に好ましくは0.3質量%以上であり、より更に好ましくは0.4質量%以上である。好ましくは20質量%以下であり、3質量%以下であってもよい。
Examples of the phenol-based antioxidant include monophenol-based compounds such as 2,6-di-tert-butyl-4-methylphenol, 2,6-di-tert-butyl-4-ethylphenol, and octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate, and diphenol-based compounds such as 4,4'-methylenebis(2,6-di-tert-butylphenol) and 2,2'-methylenebis(4-ethyl-6-tert-butylphenol).
Examples of the sulfur-based antioxidant include thioterpene compounds such as 2,6-di-tert-butyl-4-(4,6-bis(octylthio)-1,3,5-triazin-2-ylamino)phenol, a reaction product of phosphorus pentasulfide with pinene, and dialkyl thiodipropionates such as dilauryl thiodipropionate and distearyl thiodipropionate.
The amount of the antioxidant contained in the lubricating oil composition of the present invention is preferably 0.1 mass% or more, more preferably 0.2 mass% or more, even more preferably 0.3 mass% or more, and even more preferably 0.4 mass% or more, based on the total amount of the lubricating oil composition. It is preferably 20 mass% or less, and may be 3 mass% or less.
 防錆剤としては、金属系スルホネート、コハク酸エステルなどを挙げることができる。
防錆剤の配合量は、配合効果の点から、潤滑油組成物全量基準で、好ましくは0.01~20質量%であり、より好ましくは0.05~5質量%である。
Examples of the rust inhibitor include metal sulfonates and succinic acid esters.
From the viewpoint of the blending effect, the blending amount of the rust inhibitor is preferably 0.01 to 20 mass %, more preferably 0.05 to 5 mass %, based on the total amount of the lubricating oil composition.
 金属不活性化剤としては、ベンゾトリアゾール、チアジアゾールなどを挙げることができる。金属不活性化剤の好ましい配合量は、配合効果の点から、潤滑油組成物全量基準で、好ましくは0.01~20質量%であり、より好ましくは0.01~1質量%である。 Examples of metal deactivators include benzotriazole and thiadiazole. From the viewpoint of blending effect, the preferred blending amount of the metal deactivator is preferably 0.01 to 20 mass % based on the total amount of the lubricating oil composition, and more preferably 0.01 to 1 mass %.
 流動点降下剤としては、重量平均分子量が5万~15万のポリメタクリレートなどを用いることができる。 As a pour point depressant, polymethacrylate with a weight average molecular weight of 50,000 to 150,000 can be used.
 また、本発明の潤滑油組成物には、添加剤として、潤滑油用添加剤パッケージを使用することもできる。潤滑油用添加剤パッケージには、極圧剤、耐摩耗剤、無灰清浄分散剤、酸化防止剤、防錆剤、金属不活性化剤及び流動点降下剤からなる群より選ばれる少なくとも一種の添加剤が含まれる。潤滑油用添加剤パッケージは、本発明の潤滑油組成物の用途によって、適宜選択すればよいが、ギヤオイルに用いる場合には、歯車油用添加剤パッケージを用いることが好ましい。
 潤滑油用添加剤パッケージに含有される添加剤としては、好ましくは、極圧剤、耐摩耗剤、無灰清浄分散剤、酸化防止剤、防錆剤、金属不活性化剤及び流動点降下剤からなる群より選ばれる少なくとも一種であり、より好ましくは、極圧剤、耐摩耗剤、金属不活性化剤、流動点降下剤、及び酸化防止剤からなる群より選ばれる少なくとも一種である。更に上記の添加剤以外の添加剤を含んでいてもよい。
 本発明の潤滑油組成物中の潤滑油用添加剤パッケージの含有量は、好ましくは1~30質量%であり、より好ましくは1~20質量%であり、更に好ましくは1~10質量%であり、より更に好ましくは1~5質量%であり、より更に好ましくは1~4質量%であり、より更に好ましくは2~4質量%である。
The lubricating oil composition of the present invention may also contain a lubricating oil additive package as an additive. The lubricating oil additive package contains at least one additive selected from the group consisting of extreme pressure agents, antiwear agents, ashless detergent-dispersants, antioxidants, rust inhibitors, metal deactivators, and pour point depressants. The lubricating oil additive package may be appropriately selected depending on the application of the lubricating oil composition of the present invention, but when the lubricating oil composition is used in gear oil, it is preferable to use a gear oil additive package.
The additives contained in the lubricating oil additive package are preferably at least one selected from the group consisting of extreme pressure agents, antiwear agents, ashless detergent-dispersants, antioxidants, rust inhibitors, metal deactivators, and pour point depressants, and more preferably at least one selected from the group consisting of extreme pressure agents, antiwear agents, metal deactivators, pour point depressants, and antioxidants. The lubricating oil additive package may further contain additives other than the above additives.
The content of the lubricating oil additive package in the lubricating oil composition of the present invention is preferably 1 to 30 mass %, more preferably 1 to 20 mass %, even more preferably 1 to 10 mass %, still more preferably 1 to 5 mass %, even more preferably 1 to 4 mass %, and even more preferably 2 to 4 mass %.
<潤滑油組成物の組成>
 本発明は、下記基油(a)及び下記基油(b)を含み、基油(b)に対する基油(a)の質量比[(a)/(b)]が50/50~95/5である潤滑油組成物であるが、基油(a)と基油(b)の種類及び動粘度、並びに各含有量を特定の範囲に設定することによって、より本発明の効果を高めることができ、粘度指数が大きく、低温流動性に優れる潤滑油組成物を得ることができる。
 基油(a):100℃動粘度が40~130mm/sであるメタロセン触媒系ポリ-α-オレフィン
 基油(b):100℃動粘度が1~30mm/sである基油
<Composition of Lubricating Oil Composition>
The present invention relates to a lubricating oil composition comprising the following base oil (a) and base oil (b), in which the mass ratio of base oil (a) to base oil (b) [(a)/(b)] is 50/50 to 95/5. By setting the types and kinematic viscosities of base oil (a) and base oil (b) and the contents of each within specific ranges, the effects of the present invention can be further enhanced, and a lubricating oil composition with a high viscosity index and excellent low-temperature fluidity can be obtained.
Base oil (a): a metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 40 to 130 mm 2 /s. Base oil (b): a base oil having a 100° C. kinetic viscosity of 1 to 30 mm 2 /s.
 本発明の潤滑油組成物中の基油(b)に対する基油(a)の質量比[(a)/(b)]は、50/50~95/5である。基油(a)と基油(b)の質量比を特定の範囲に設定することによって、より本発明の効果を高めることができ、粘度指数が大きく、低温流動性に優れる潤滑油組成物を得ることができる。
 本発明の潤滑油組成物中の基油(a)と基油(b)の合計含有量は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、更に好ましくは90質量%以上であり、より更に好ましくは95質量%以上であり、より更に好ましくは96質量%以上である。上限値には制限はなく、本発明の潤滑油組成物は、基油(a)と基油(b)のみからなっていてもよいが、本発明の潤滑油組成物中の基油(a)と基油(b)の合計含有量は、好ましくは100質量%以下であり、より好ましくは100質量%未満であり、更に好ましくは99質量%以下であり、より更に好ましくは98質量%以下である。
 以下に、好ましい潤滑油組成物の各組成について説明する。便宜上、各組成を有する潤滑油組成物に対して、潤滑油組成物(1)、潤滑油組成物(1-1)、潤滑油組成物(2)等の番号を付す。
The mass ratio of base oil (a) to base oil (b) in the lubricating oil composition of the present invention [(a)/(b)] is 50/50 to 95/5. By setting the mass ratio of base oil (a) to base oil (b) within a specific range, the effects of the present invention can be further enhanced, and a lubricating oil composition having a large viscosity index and excellent low-temperature fluidity can be obtained.
The total content of the base oil (a) and the base oil (b) in the lubricating oil composition of the present invention is preferably 70 mass% or more, more preferably 80 mass% or more, even more preferably 90 mass% or more, even more preferably 95 mass% or more, and even more preferably 96 mass% or more. There is no upper limit, and the lubricating oil composition of the present invention may consist of only the base oil (a) and the base oil (b), but the total content of the base oil (a) and the base oil (b) in the lubricating oil composition of the present invention is preferably 100 mass% or less, more preferably less than 100 mass%, even more preferably 99 mass% or less, and even more preferably 98 mass% or less.
The components of the preferred lubricating oil compositions are described below. For convenience, the lubricating oil compositions having each component are numbered as lubricating oil composition (1), lubricating oil composition (1-1), lubricating oil composition (2), etc.
(潤滑油組成物(1))
 潤滑油組成物(1)は、本発明の潤滑油組成物のうち、基油(a)が下記基油(a1)であり、基油(b)に対する基油(a1)の質量比[(a1)/(b)]が80/20~95/5である潤滑油組成物である。潤滑油組成物(1)は、本発明の潤滑油組成物のなかでも、より粘度指数が大きく、より低温流動性に優れる潤滑油組成物である。
 基油(a1):100℃動粘度が40~50mm/sであるメタロセン触媒系ポリ-α-オレフィン
(Lubricating Oil Composition (1))
Lubricating oil composition (1) is a lubricating oil composition of the present invention in which base oil (a) is base oil (a1) described below, and the mass ratio of base oil (a1) to base oil (b) [(a1)/(b)] is 80/20 to 95/5. Lubricating oil composition (1) is a lubricating oil composition having a larger viscosity index and more excellent low-temperature fluidity than the other lubricating oil compositions of the present invention.
Base oil (a1): metallocene catalyst-based poly-α-olefin having a 100° C. kinematic viscosity of 40 to 50 mm 2 /s
 すなわち、潤滑油組成物(1)は、下記基油(a1)及び下記基油(b)を含み、基油(b)に対する基油(a1)の質量比[(a1)/(b)]が80/20~95/5である潤滑油組成物である。
 基油(a1):100℃動粘度が40~50mm/sであるメタロセン触媒系ポリ-α-オレフィン
 基油(b):100℃動粘度が1~30mm/sである基油
That is, the lubricating oil composition (1) is a lubricating oil composition containing the following base oil (a1) and the following base oil (b), in which the mass ratio of base oil (a1) to base oil (b) [(a1)/(b)] is 80/20 to 95/5.
Base oil (a1): metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 40 to 50 mm 2 /s Base oil (b): base oil having a 100° C. kinetic viscosity of 1 to 30 mm 2 /s
(潤滑油組成物(1-1))
 潤滑油組成物(1)は、更に潤滑油組成物(1-1)であることが好ましい。
 潤滑油組成物(1-1)は、潤滑油組成物(1)のうち、基油(b)が下記基油(b1)及び下記基油(b2)からなる群より選ばれる少なくとも1種である潤滑油組成物である。潤滑油組成物(1-1)は、潤滑油組成物(1)のなかでも、より粘度指数が大きく、より低温流動性に優れる潤滑油組成物である。
 基油(b1):100℃動粘度が1~10mm/sである非メタロセン触媒系ポリ-α-オレフィン
 基油(b2):100℃動粘度が10~15mm/sであるエステル
(Lubricating Oil Composition (1-1))
The lubricating oil composition (1) is further preferably a lubricating oil composition (1-1).
The lubricating oil composition (1-1) is a lubricating oil composition in which the base oil (b) is at least one selected from the group consisting of the following base oil (b1) and the following base oil (b2). The lubricating oil composition (1-1) is a lubricating oil composition having a larger viscosity index and more excellent low-temperature fluidity than the lubricating oil compositions (1).
Base oil (b1): nonmetallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 1 to 10 mm 2 /s Base oil (b2): ester having a 100° C. kinetic viscosity of 10 to 15 mm 2 /s
 すなわち、潤滑油組成物(1-1)は、下記基油(a1)及び下記基油(b)を含み、基油(b)に対する基油(a1)の質量比[(a1)/(b)]が80/20~95/5であり、基油(b)が下記基油(b1)及び下記基油(b2)からなる群より選ばれる少なくとも1種である潤滑油組成物である。
 基油(a1):100℃動粘度が40~50mm/sであるメタロセン触媒系ポリ-α-オレフィン
 基油(b1):100℃動粘度が1~10mm/sである非メタロセン触媒系ポリ-α-オレフィン
 基油(b2):100℃動粘度が10~15mm/sであるエステル
That is, the lubricating oil composition (1-1) contains the following base oil (a1) and the following base oil (b), wherein the mass ratio of the base oil (a1) to the base oil (b) [(a1)/(b)] is 80/20 to 95/5, and the base oil (b) is at least one selected from the group consisting of the following base oil (b1) and the following base oil (b2).
Base oil (a1): metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 40 to 50 mm 2 /s Base oil (b1): non-metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 1 to 10 mm 2 /s Base oil (b2): ester having a 100° C. kinetic viscosity of 10 to 15 mm 2 /s
 潤滑油組成物(1-1)中の基油(b)に対する基油(a1)の質量比[(a1)/(b)]は、80/20~95/5である。基油(a1)と基油(b)の質量比を特定の範囲に設定することによって、より本発明の効果を高めることができ、粘度指数が大きく、低温流動性に優れる潤滑油組成物を得ることができる。 The mass ratio of base oil (a1) to base oil (b) in lubricating oil composition (1-1) [(a1)/(b)] is 80/20 to 95/5. By setting the mass ratio of base oil (a1) to base oil (b) within a specific range, the effects of the present invention can be further enhanced, and a lubricating oil composition with a large viscosity index and excellent low-temperature fluidity can be obtained.
(潤滑油組成物(1-2))
 潤滑油組成物(1)は、更に潤滑油組成物(1-2)であることが好ましい。
 潤滑油組成物(1-2)は、潤滑油組成物(1)のうち、基油(b)が下記基油(b3)であり、基油(b3)に対する基油(a1)の質量比[(a1)/(b3)]が90/10~95/5である潤滑油組成物である。潤滑油組成物(1-2)は、潤滑油組成物(1)のなかでも、より粘度指数が大きく、より低温流動性に優れる潤滑油組成物である。なお、潤滑油組成物(1-2)は、潤滑油組成物(1-1)にも含まれ、潤滑油組成物(1-2)は、潤滑油組成物(1-1)のなかでも、より粘度指数が大きく、より低温流動性に優れる潤滑油組成物である。
 基油(b3):100℃動粘度が5~10mm/sである非メタロセン触媒系ポリ-α-オレフィン
(Lubricating Oil Composition (1-2))
The lubricating oil composition (1) is further preferably a lubricating oil composition (1-2).
The lubricating oil composition (1-2) is a lubricating oil composition in which the base oil (b) is the following base oil (b3) and the mass ratio of the base oil (a1) to the base oil (b3) [(a1)/(b3)] is 90/10 to 95/5 among the lubricating oil compositions (1). The lubricating oil composition (1-2) is a lubricating oil composition having a higher viscosity index and better low-temperature fluidity than the lubricating oil compositions (1). The lubricating oil composition (1-2) is also included in the lubricating oil composition (1-1), and the lubricating oil composition (1-2) is a lubricating oil composition having a higher viscosity index and better low-temperature fluidity than the lubricating oil compositions (1-1).
Base oil (b3): nonmetallocene catalyst-based poly-α-olefin having a 100° C. kinematic viscosity of 5 to 10 mm 2 /s
 すなわち、潤滑油組成物(1-2)は、下記基油(a1)及び下記基油(b3)を含み、基油(b3)に対する基油(a1)の質量比[(a1)/(b3)]が90/10~95/5である潤滑油組成物である。
 基油(a1):100℃動粘度が40~50mm/sであるメタロセン触媒系ポリ-α-オレフィン
 基油(b3):100℃動粘度が5~10mm/sである非メタロセン触媒系ポリ-α-オレフィン
That is, the lubricating oil composition (1-2) is a lubricating oil composition containing the following base oil (a1) and the following base oil (b3), in which the mass ratio of the base oil (a1) to the base oil (b3) [(a1)/(b3)] is 90/10 to 95/5.
Base oil (a1): metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 40 to 50 mm 2 /s. Base oil (b3): non-metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 5 to 10 mm 2 /s.
 潤滑油組成物(1-2)において、基油(a1)の含有量は、潤滑油組成物(1-2)全量に対して、好ましくは90~95質量%であり、より好ましくは90~94質量%であり、更に好ましくは90~93質量%であり、より更に好ましくは90~92質量%であり、より更に好ましくは91~92質量%である。
 潤滑油組成物(1-2)において、基油(b3)の含有量は、好ましくは5~9質量%であり、より好ましくは5~8質量%であり、更に好ましくは5~7質量%であり、より更に好ましくは5~6質量%である。
In the lubricating oil composition (1-2), the content of the base oil (a1) is preferably 90 to 95 mass%, more preferably 90 to 94 mass%, even more preferably 90 to 93 mass%, still more preferably 90 to 92 mass%, and even more preferably 91 to 92 mass%, based on the total amount of the lubricating oil composition (1-2).
In the lubricating oil composition (1-2), the content of the base oil (b3) is preferably 5 to 9 mass%, more preferably 5 to 8 mass%, even more preferably 5 to 7 mass%, and still more preferably 5 to 6 mass%.
 潤滑油組成物(1-2)中の基油(b3)に対する基油(a1)の質量比[(a1)/(b3)]は、90/10~95/5であり、好ましくは91/9~95/5であり、より好ましくは92/8~95/5であり、更に好ましくは93/7~95/5であり、より更に好ましくは94/6~95/5である。基油(a1)と基油(b3)の質量比を上記の範囲に設定することによって、より本発明の効果を高めることができ、粘度指数が大きく、低温流動性に優れる潤滑油組成物を得ることができる。 The mass ratio of base oil (a1) to base oil (b3) in lubricating oil composition (1-2) [(a1)/(b3)] is 90/10 to 95/5, preferably 91/9 to 95/5, more preferably 92/8 to 95/5, even more preferably 93/7 to 95/5, and even more preferably 94/6 to 95/5. By setting the mass ratio of base oil (a1) to base oil (b3) in the above range, the effects of the present invention can be further enhanced, and a lubricating oil composition with a high viscosity index and excellent low-temperature fluidity can be obtained.
(潤滑油組成物(1-1-1))
 潤滑油組成物(1-1)は、更に潤滑油組成物(1-1-1)であることが好ましい。
 潤滑油組成物(1-1-1)は、潤滑油組成物(1-1)のうち、基油(b)が基油(b2)、又は基油(b2)と基油(b1)であり、基油(b1)に対する基油(b2)の質量比[(b2)/(b1)]が80/20~100/0である潤滑油組成物である。
 すなわち、潤滑油組成物(1-1-1)は、下記基油(a1)及び基油(b2)を含み、基油(b1)を含まないか、基油(b1)を含み、基油(b1)と基油(b2)の合計に対する基油(a1)の質量比[(a1)/((b1)+(b2))]が80/20~95/5であり、基油(b1)に対する基油(b2)の質量比[(b2)/(b1)]が80/20~100/0である潤滑油組成物である。
 基油(a1):100℃動粘度が40~50mm/sであるメタロセン触媒系ポリ-α-オレフィン
 基油(b1):100℃動粘度が1~10mm/sである非メタロセン触媒系ポリ-α-オレフィン
 基油(b2):100℃動粘度が10~15mm/sであるエステル
(Lubricating oil composition (1-1-1))
The lubricating oil composition (1-1) is further preferably a lubricating oil composition (1-1-1).
The lubricating oil composition (1-1-1) is a lubricating oil composition in which the base oil (b) is base oil (b2), or base oil (b2) and base oil (b1), and the mass ratio of the base oil (b2) to the base oil (b1) [(b2)/(b1)] is 80/20 to 100/0.
That is, the lubricating oil composition (1-1-1) contains the following base oil (a1) and base oil (b2), and does not contain base oil (b1) or contains base oil (b1), in which the mass ratio of base oil (a1) to the sum of base oil (b1) and base oil (b2) [(a1)/((b1)+(b2)]] is 80/20 to 95/5, and the mass ratio of base oil (b2) to base oil (b1) [(b2)/(b1)]] is 80/20 to 100/0.
Base oil (a1): metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 40 to 50 mm 2 /s Base oil (b1): non-metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 1 to 10 mm 2 /s Base oil (b2): ester having a 100° C. kinetic viscosity of 10 to 15 mm 2 /s
 潤滑油組成物(1-1-1)において、基油(a1)の含有量は、潤滑油組成物(1-1-1)全量に対して、好ましくは80~95質量%であり、より好ましくは82~92質量%であり、更に好ましくは83~89質量%である。基油(b)が基油(b1)を含まない場合、基油(a1)の含有量は、潤滑油組成物(1-1-1)全量に対して、より更に好ましくは83~87質量%であり、より更に好ましくは83~86質量%である。基油(b)が基油(b1)を含む場合、基油(a1)の含有量は、潤滑油組成物(1-1-1)全量に対して、より更に好ましくは84~89質量%であり、より更に好ましくは84~87質量%である。 In the lubricating oil composition (1-1-1), the content of base oil (a1) is preferably 80 to 95 mass%, more preferably 82 to 92 mass%, and even more preferably 83 to 89 mass%, based on the total amount of the lubricating oil composition (1-1-1). When the base oil (b) does not contain base oil (b1), the content of base oil (a1) is even more preferably 83 to 87 mass%, and even more preferably 83 to 86 mass%, based on the total amount of the lubricating oil composition (1-1-1). When the base oil (b) contains base oil (b1), the content of base oil (a1) is even more preferably 84 to 89 mass%, and even more preferably 84 to 87 mass%, based on the total amount of the lubricating oil composition (1-1-1).
 潤滑油組成物(1-1-1)において、基油(b)の含有量は、好ましくは5~20質量%であり、より好ましくは8~18質量%であり、更に好ましくは9~16質量%である。基油(b)が基油(b1)を含まない場合、基油(b)の含有量は、潤滑油組成物(1-1-1)全量に対して、より更に好ましくは10~16質量%であり、より更に好ましくは11~15質量%である。基油(b)が基油(b1)を含む場合、基油(b)の含有量は、潤滑油組成物(1-1-1)全量に対して、より更に好ましくは9~15質量%であり、より更に好ましくは10~14質量%である。
 潤滑油組成物(1-1-1)において、基油(b2)の含有量は、好ましくは5~20質量%であり、より好ましくは7~18質量%であり、更に好ましくは9~16質量%である。基油(b)が基油(b1)を含まない場合、基油(b2)の含有量は、潤滑油組成物(1-1-1)全量に対して、より更に好ましくは10~16質量%であり、より更に好ましくは11~15質量%である。基油(b)が基油(b1)を含む場合、基油(b2)の含有量は、潤滑油組成物(1-1-1)全量に対して、より更に好ましくは8~14質量%であり、より更に好ましくは9~13質量%である。
 潤滑油組成物(1-1-1)において、基油(b1)の含有量は、好ましくは0~5質量%であり、より好ましくは0~3質量%であり、更に好ましくは0~2質量%である。
In the lubricating oil composition (1-1-1), the content of the base oil (b) is preferably 5 to 20 mass%, more preferably 8 to 18 mass%, and even more preferably 9 to 16 mass%. When the base oil (b) does not contain the base oil (b1), the content of the base oil (b) is more preferably 10 to 16 mass%, and even more preferably 11 to 15 mass%, based on the total amount of the lubricating oil composition (1-1-1). When the base oil (b) contains the base oil (b1), the content of the base oil (b) is more preferably 9 to 15 mass%, and even more preferably 10 to 14 mass%, based on the total amount of the lubricating oil composition (1-1-1).
In the lubricating oil composition (1-1-1), the content of the base oil (b2) is preferably 5 to 20 mass%, more preferably 7 to 18 mass%, and even more preferably 9 to 16 mass%. When the base oil (b) does not contain the base oil (b1), the content of the base oil (b2) is more preferably 10 to 16 mass%, and even more preferably 11 to 15 mass%, based on the total amount of the lubricating oil composition (1-1-1). When the base oil (b) contains the base oil (b1), the content of the base oil (b2) is more preferably 8 to 14 mass%, and even more preferably 9 to 13 mass%, based on the total amount of the lubricating oil composition (1-1-1).
In the lubricating oil composition (1-1-1), the content of the base oil (b1) is preferably 0 to 5 mass %, more preferably 0 to 3 mass %, and even more preferably 0 to 2 mass %.
 潤滑油組成物(1-1-1)中の基油(a1)と基油(b)の質量比[(a1)/(b)]は、80/20~95/5であり、好ましくは82/18~92/8であり、より好ましくは84/16~91/9である。基油(b)が基油(b1)を含まない場合、潤滑油組成物(1-1-1)中の基油(a1)と基油(b)の質量比[(a1)/(b)]は、更に好ましくは84/16~89/11であり、より更に好ましくは85/15~88/12である。基油(b)が基油(b1)を含む場合、潤滑油組成物(1-1-1)中の基油(a1)と基油(b)の質量比[(a1)/(b)]は、更に好ましくは86/14~91/9であり、より更に好ましくは87/13~90/10である。基油(a1)と基油(b)の質量比を上記の範囲に設定することによって、より本発明の効果を高めることができ、粘度指数が大きく、低温流動性に優れる潤滑油組成物を得ることができる。 The mass ratio [(a1)/(b)] of the base oil (a1) to the base oil (b) in the lubricating oil composition (1-1-1) is 80/20 to 95/5, preferably 82/18 to 92/8, and more preferably 84/16 to 91/9. When the base oil (b) does not contain the base oil (b1), the mass ratio [(a1)/(b)] of the base oil (a1) to the base oil (b) in the lubricating oil composition (1-1-1) is more preferably 84/16 to 89/11, and even more preferably 85/15 to 88/12. When the base oil (b) contains the base oil (b1), the mass ratio [(a1)/(b)] of the base oil (a1) to the base oil (b) in the lubricating oil composition (1-1-1) is more preferably 86/14 to 91/9, and even more preferably 87/13 to 90/10. By setting the mass ratio of base oil (a1) to base oil (b) within the above range, the effects of the present invention can be further enhanced, and a lubricating oil composition with a large viscosity index and excellent low-temperature fluidity can be obtained.
 潤滑油組成物(1-1-1)中の基油(a1)と基油(b2)の質量比[(a1)/(b2)]は、好ましくは85/15~95/5であり、より好ましくは85/15~93/7であり、更に好ましくは85/15~92/8である。基油(b)が基油(b1)を含まない場合、潤滑油組成物(1-1-1)中の基油(a1)と基油(b2)の質量比[(a1)/(b2)]は、より更に好ましくは85/15~89/11であり、より更に好ましくは85/15~88/12である。基油(b)が基油(b1)を含む場合、潤滑油組成物(1-1-1)中の基油(a1)と基油(b2)の質量比[(a1)/(b2)]は、より更に好ましくは86/14~92/8であり、より更に好ましくは88/12~91/9である。基油(a1)と基油(b2)の質量比を上記の範囲に設定することによって、より本発明の効果を高めることができ、粘度指数が大きく、低温流動性に優れる潤滑油組成物を得ることができる。
 潤滑油組成物(1-1-1)中の基油(a1)と基油(b1)の質量比[(a1)/(b1)]は、好ましくは95/5~100/0であり、より好ましくは97/3~100/0であり、更に好ましくは98/2~100/0である。基油(b)が基油(b1)を含む場合、より更に好ましくは98/2~99/1である。基油(a1)と基油(b1)の質量比を上記の範囲に設定することによって、より本発明の効果を高めることができ、粘度指数が大きく、低温流動性に優れる潤滑油組成物を得ることができる。
The mass ratio [(a1)/(b2)] of the base oil (a1) to the base oil (b2) in the lubricating oil composition (1-1-1) is preferably 85/15 to 95/5, more preferably 85/15 to 93/7, and even more preferably 85/15 to 92/8. When the base oil (b) does not contain the base oil (b1), the mass ratio [(a1)/(b2)] of the base oil (a1) to the base oil (b2) in the lubricating oil composition (1-1-1) is even more preferably 85/15 to 89/11, and even more preferably 85/15 to 88/12. When the base oil (b) contains the base oil (b1), the mass ratio of the base oil (a1) to the base oil (b2) in the lubricating oil composition (1-1-1) [(a1)/(b2)] is more preferably 86/14 to 92/8, and even more preferably 88/12 to 91/9. By setting the mass ratio of the base oil (a1) to the base oil (b2) in the above range, the effects of the present invention can be further enhanced, and a lubricating oil composition having a large viscosity index and excellent low-temperature fluidity can be obtained.
The mass ratio [(a1)/(b1)] of the base oil (a1) to the base oil (b1) in the lubricating oil composition (1-1-1) is preferably 95/5 to 100/0, more preferably 97/3 to 100/0, and even more preferably 98/2 to 100/0. When the base oil (b) contains the base oil (b1), it is even more preferably 98/2 to 99/1. By setting the mass ratio of the base oil (a1) to the base oil (b1) in the above range, the effects of the present invention can be further enhanced, and a lubricating oil composition having a large viscosity index and excellent low-temperature fluidity can be obtained.
 潤滑油組成物(1-1-1)中の基油(b1)に対する基油(b2)の質量比[(b2)/(b1)]は、80/20~100/0であり、好ましくは85/15~100/0であり、より好ましくは87/13~100/0である。基油(b)が基油(b1)を含む場合、更に好ましくは87/13~95/5である。基油(b2)と基油(b1)の質量比を特定の範囲に設定することによって、より本発明の効果を高めることができ、粘度指数が大きく、低温流動性に優れる潤滑油組成物を得ることができる。 The mass ratio of base oil (b2) to base oil (b1) in the lubricating oil composition (1-1-1) [(b2)/(b1)] is 80/20 to 100/0, preferably 85/15 to 100/0, and more preferably 87/13 to 100/0. When base oil (b) contains base oil (b1), it is even more preferably 87/13 to 95/5. By setting the mass ratio of base oil (b2) to base oil (b1) within a specific range, the effects of the present invention can be further enhanced, and a lubricating oil composition with a large viscosity index and excellent low-temperature fluidity can be obtained.
(潤滑油組成物(2))
 潤滑油組成物(2)は、本発明の潤滑油組成物のうち、基油(a)が下記基油(a2)であり、基油(b)が下記基油(b2)と下記基油(b4)であり、基油(b)に対する基油(a2)の質量比[(a2)/(b)]が50/50~70/30であり、基油(b4)に対する基油(b2)の質量比[(b2)/(b4)]が25/75~60/40である潤滑油組成物である。潤滑油組成物(2)は、本発明の潤滑油組成物のなかでも、より粘度指数が大きく、より低温流動性に優れる潤滑油組成物である。
 基油(a2):100℃動粘度が120~130mm/sであるメタロセン触媒系ポリ-α-オレフィン
 基油(b2):100℃動粘度が10~15mm/sであるエステル
 基油(b4):100℃動粘度が1~30mm/sである非メタロセン触媒系ポリ-α-オレフィン
(Lubricating Oil Composition (2))
Lubricating oil composition (2) is a lubricating oil composition of the present invention in which base oil (a) is base oil (a2) described below, base oil (b) is base oil (b2) described below and base oil (b4) described below, the mass ratio of base oil (a2) to base oil (b) [(a2)/(b)] is 50/50 to 70/30, and the mass ratio of base oil (b2) to base oil (b4) [(b2)/(b4)] is 25/75 to 60/40. Lubricating oil composition (2) is a lubricating oil composition having a larger viscosity index and better low-temperature fluidity than the lubricating oil compositions of the present invention.
Base oil (a2): metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 120 to 130 mm 2 /s Base oil (b2): ester having a 100° C. kinetic viscosity of 10 to 15 mm 2 /s Base oil (b4): non-metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 1 to 30 mm 2 /s
 すなわち、潤滑油組成物(2)は、下記基油(a2)、下記基油(b2)及び下記基油(b4)を含み、基油(b)に対する基油(a2)の質量比[(a2)/(b)]が50/50~70/30であり、基油(b4)に対する基油(b2)の質量比[(b2)/(b4)]が25/75~60/40である潤滑油組成物である。
 基油(a2):100℃動粘度が120~130mm/sであるメタロセン触媒系ポリ-α-オレフィン
 基油(b2):100℃動粘度が10~15mm/sであるエステル
 基油(b4):100℃動粘度が1~30mm/sである非メタロセン触媒系ポリ-α-オレフィン
That is, the lubricating oil composition (2) comprises the following base oil (a2), base oil (b2), and base oil (b4), in which the mass ratio of the base oil (a2) to the base oil (b) [(a2)/(b)] is 50/50 to 70/30, and the mass ratio of the base oil (b2) to the base oil (b4) [(b2)/(b4)] is 25/75 to 60/40.
Base oil (a2): metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 120 to 130 mm 2 /s Base oil (b2): ester having a 100° C. kinetic viscosity of 10 to 15 mm 2 /s Base oil (b4): non-metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 1 to 30 mm 2 /s
 潤滑油組成物(2)において、基油(a2)の含有量は、潤滑油組成物(2)全量に対して、好ましくは50~70質量%であり、より好ましくは53~68質量%であり、更に好ましくは55~67質量%であり、より更に好ましくは57~65質量%であり、より更に好ましくは58~64質量%である。
 潤滑油組成物(2)において、基油(b)の含有量は、好ましくは25~45質量%であり、より好ましくは27~43質量%であり、更に好ましくは28~42質量%であり、より更に好ましくは30~40質量%であり、より更に好ましくは34~38質量%である。
 潤滑油組成物(2)において、基油(b2)の含有量は、好ましくは10~20質量%であり、より好ましくは10~19質量%であり、更に好ましくは11~18質量%であり、より更に好ましくは12~17質量%であり、より更に好ましくは13~16質量%である。
 潤滑油組成物(2)において、基油(b4)の含有量は、好ましくは15~25質量%であり、より好ましくは17~23質量%であり、更に好ましくは18~22質量%である。
In the lubricating oil composition (2), the content of the base oil (a2) is preferably 50 to 70 mass%, more preferably 53 to 68 mass%, even more preferably 55 to 67 mass%, still more preferably 57 to 65 mass%, and even more preferably 58 to 64 mass%, based on the total amount of the lubricating oil composition (2).
In the lubricating oil composition (2), the content of the base oil (b) is preferably 25 to 45 mass%, more preferably 27 to 43 mass%, even more preferably 28 to 42 mass%, still more preferably 30 to 40 mass%, and even more preferably 34 to 38 mass%.
In the lubricating oil composition (2), the content of the base oil (b2) is preferably 10 to 20 mass%, more preferably 10 to 19 mass%, even more preferably 11 to 18 mass%, still more preferably 12 to 17 mass%, and even more preferably 13 to 16 mass%.
In the lubricating oil composition (2), the content of base oil (b4) is preferably from 15 to 25 mass %, more preferably from 17 to 23 mass %, and even more preferably from 18 to 22 mass %.
 潤滑油組成物(2)中の基油(b)に対する基油(a2)の質量比[(a2)/(b)]は、50/50~70/30であり、好ましくは53/47~70/30であり、より好ましくは55/45~70/30であり、更に好ましくは57/43~70/30であり、より更に好ましくは60/40~70/30である。基油(a2)と基油(b)の質量比を上記の範囲に設定することによって、より本発明の効果を高めることができ、粘度指数が大きく、低温流動性に優れる潤滑油組成物を得ることができる。
 潤滑油組成物(2)中の基油(a2)と基油(b2)の質量比[(a2)/(b2)]は、好ましくは70/30~90/10であり、より好ましくは73/27~90/10であり、更に好ましくは75/25~87/13であり、より更に好ましくは77/23~85/15であり、より更に好ましくは80/20~85/15である。基油(a2)と基油(b2)の質量比を上記の範囲に設定することによって、より本発明の効果を高めることができ、粘度指数が大きく、低温流動性に優れる潤滑油組成物を得ることができる。
 潤滑油組成物(2)中の基油(a2)と基油(b4)の質量比[(a2)/(b4)]は、好ましくは65/35~85/15であり、より好ましくは70/30~83/17であり、更に好ましくは73/27~81/19であり、より更に好ましくは75/25~80/20である。基油(a2)と基油(b4)の質量比を上記の範囲に設定することによって、より本発明の効果を高めることができ、粘度指数が大きく、低温流動性に優れる潤滑油組成物を得ることができる。
 潤滑油組成物(2)中の基油(b4)に対する基油(b2)の質量比[(b2)/(b4)]は、25/75~60/40であり、好ましくは35/15~50/50であり、より好ましくは45/55~50/50であり、更に好ましくは40/60~45/55である。基油(b2)と基油(b4)の質量比を特定の範囲に設定することによって、より本発明の効果を高めることができ、粘度指数が大きく、低温流動性に優れる潤滑油組成物を得ることができる。
The mass ratio of base oil (a2) to base oil (b) in the lubricating oil composition (2) [(a2)/(b)] is 50/50 to 70/30, preferably 53/47 to 70/30, more preferably 55/45 to 70/30, even more preferably 57/43 to 70/30, and even more preferably 60/40 to 70/30. By setting the mass ratio of base oil (a2) to base oil (b) within the above range, the effects of the present invention can be further enhanced, and a lubricating oil composition having a large viscosity index and excellent low-temperature fluidity can be obtained.
The mass ratio of the base oil (a2) to the base oil (b2) in the lubricating oil composition (2) [(a2)/(b2)] is preferably 70/30 to 90/10, more preferably 73/27 to 90/10, even more preferably 75/25 to 87/13, even more preferably 77/23 to 85/15, and even more preferably 80/20 to 85/15. By setting the mass ratio of the base oil (a2) to the base oil (b2) in the above range, the effects of the present invention can be further enhanced, and a lubricating oil composition having a large viscosity index and excellent low-temperature fluidity can be obtained.
The mass ratio of base oil (a2) to base oil (b4) in the lubricating oil composition (2) [(a2)/(b4)] is preferably 65/35 to 85/15, more preferably 70/30 to 83/17, even more preferably 73/27 to 81/19, and even more preferably 75/25 to 80/20. By setting the mass ratio of base oil (a2) to base oil (b4) within the above range, the effects of the present invention can be further enhanced, and a lubricating oil composition having a large viscosity index and excellent low-temperature fluidity can be obtained.
The mass ratio of base oil (b2) to base oil (b4) in the lubricating oil composition (2) [(b2)/(b4)] is 25/75 to 60/40, preferably 35/15 to 50/50, more preferably 45/55 to 50/50, and even more preferably 40/60 to 45/55. By setting the mass ratio of base oil (b2) to base oil (b4) within a specific range, the effects of the present invention can be further enhanced, and a lubricating oil composition having a large viscosity index and excellent low-temperature fluidity can be obtained.
<潤滑油組成物の特性>
 本発明の潤滑油組成物の40℃動粘度は、好ましくは288~352mm/sである。すなわち、ISO粘度グレードでISO VG320に該当するものであることが好ましい。本発明の潤滑油組成物の40℃動粘度が上記範囲であることによって、風力発電用ギヤオイルとして適するものとなる。本発明の潤滑油組成物の40℃動粘度は、より好ましくは290~350mm/sであり、更に好ましくは300~340mm/sであり、より更に好ましくは310~330mm/sである。
<Characteristics of the lubricating oil composition>
The 40°C kinematic viscosity of the lubricating oil composition of the present invention is preferably 288 to 352 mm 2 /s. That is, it is preferable that the ISO viscosity grade corresponds to ISO VG320. When the 40°C kinematic viscosity of the lubricating oil composition of the present invention is in the above range, it becomes suitable as a gear oil for wind power generation. The 40°C kinematic viscosity of the lubricating oil composition of the present invention is more preferably 290 to 350 mm 2 /s, even more preferably 300 to 340 mm 2 /s, and even more preferably 310 to 330 mm 2 /s.
[風力発電用ギヤオイル]
 本発明の風力発電用ギヤオイルは、前記潤滑油組成物を含有する風力発電用ギヤオイルである。すなわち、本発明の風力発電用ギヤオイルは、下記基油(a)及び下記基油(b)を含み、基油(b)に対する基油(a)の質量比[(a)/(b)]が50/50~95/5である潤滑油組成物を含有する風力発電用ギヤオイルである。
 また、本発明の風力発電用ギヤオイルは、下記基油(a)50~95質量%、及び下記基油(b)5~50質量%を含む潤滑油組成物を含有する風力発電用ギヤオイルであってもよい。
 基油(a):100℃動粘度が40~130mm/sであるメタロセン触媒系ポリ-α-オレフィン
 基油(b):100℃動粘度が1~30mm/sである基油
[Gear oil for wind power generation]
The gear oil for wind power generation of the present invention is a gear oil for wind power generation that contains the lubricating oil composition described above. That is, the gear oil for wind power generation of the present invention is a gear oil for wind power generation that contains a lubricating oil composition that contains the following base oil (a) and the following base oil (b), and in which the mass ratio of base oil (a) to base oil (b) [(a)/(b)] is 50/50 to 95/5.
The gear oil for wind power generation of the present invention may be a gear oil for wind power generation containing a lubricating oil composition containing 50 to 95 mass % of the following base oil (a) and 5 to 50 mass % of the following base oil (b).
Base oil (a): a metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 40 to 130 mm 2 /s. Base oil (b): a base oil having a 100° C. kinetic viscosity of 1 to 30 mm 2 /s.
 本発明の風力発電用ギヤオイルは、前記潤滑油組成物を含有する風力発電用ギヤオイルであり、好ましい潤滑油組成物も前記のとおりである。
 本発明の風力発電用ギヤオイルは、前記潤滑油組成物を、好ましくは80質量%以上含有し、より好ましくは90質量%以上含有し、更に好ましくは95質量%以上含有し、より更に好ましくは99質量%以上含有する。含有量の上限には制限はないが、好ましくは100質量%以下であり、100質量%であってもよく、本発明の風力発電用ギヤオイルは、前記潤滑油組成物のみからなっていてもよい。
 本発明の風力発電用ギヤオイルは、前記潤滑油組成物を含有するため、粘度指数が大きく、低温流動性に優れる。したがって、本発明の風力発電用ギヤオイルは、温度変化の大きな過酷な環境下で使用されても、安定であり、特に低温での粘度上昇を低減することができる。
The gear oil for wind power generation of the present invention is a gear oil for wind power generation that contains the above-mentioned lubricating oil composition, and preferred lubricating oil compositions are also as described above.
The gear oil for wind power generation of the present invention contains the lubricating oil composition in an amount of preferably 80 mass% or more, more preferably 90 mass% or more, even more preferably 95 mass% or more, and even more preferably 99 mass% or more. There is no upper limit to the content, but it is preferably 100 mass% or less, and may be 100 mass%, and the gear oil for wind power generation of the present invention may consist only of the lubricating oil composition.
The gear oil for wind power generation of the present invention contains the lubricating oil composition, and therefore has a high viscosity index and excellent low-temperature fluidity. Therefore, the gear oil for wind power generation of the present invention is stable even when used in harsh environments with large temperature changes, and can reduce viscosity increase, especially at low temperatures.
 次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be described in more detail using examples, but the present invention is not limited to these examples.
 基油の物性評価は以下の方法により行った。結果は表1に示す。
(1)100℃動粘度、40℃動粘度及び粘度指数
 動粘度は、JIS K 2283:2000に準拠し測定した。粘度指数は、動粘度より、JIS K 2283:2000に準拠し計算して求めた。粘度指数が大きいほど、温度による粘度変化が小さく、潤滑油として優れる。したがって、粘度指数が大きいほど、特に風力発電用ギヤオイルのような使用時の温度変化が大きい用途に適している。
(2)流動点
 JIS K 2269:1987に準拠し測定した。流動点の温度が低いほど、低温流動性に優れる。
(3)-30℃粘度
 設定温度を-30℃として、ASTM D2983-09に準拠して測定した。-30℃粘度が小さいほど、低温流動性に優れる。
The physical properties of the base oils were evaluated by the following methods, and the results are shown in Table 1.
(1) Kinematic Viscosity at 100°C, Kinematic Viscosity at 40°C, and Viscosity Index Kinematic viscosity was measured in accordance with JIS K 2283:2000. Viscosity index was calculated from kinematic viscosity in accordance with JIS K 2283:2000. The higher the viscosity index, the smaller the viscosity change due to temperature, and the better the lubricant. Therefore, the higher the viscosity index, the more suitable it is for applications where temperature changes are large during use, such as gear oil for wind power generation.
(2) Pour point: Measured according to JIS K 2269: 1987. The lower the pour point temperature, the better the low-temperature fluidity.
(3) -30°C Viscosity Measured in accordance with ASTM D2983-09 with a set temperature of -30°C. The smaller the -30°C viscosity, the better the low-temperature fluidity.
 実施例及び比較例で使用した基油及び添加剤を以下に示す。
[基油(a-1)(メタロセン触媒系ポリ-α-オレフィン)]
製造例1(基油(a-1)(メタロセン触媒系ポリ-α-オレフィン)の製造)
(工程1)
 30Lのステンレス製容器に、窒素雰囲気下で、水分10ppm以下まで脱水したトルエン18.9kg、トリイソブチルアルミニウム(C1)(20%トルエン溶液)1.2kg、ターシャリーブチルアルコール(E1)0.0440kg、(1,1’-ジメチルシリレン)(2,2’-ジメチルシリレン)-ビス(シクロペンタジエニル)ジルコニウムジクロリド(A)30mmol、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート(B)36mmol、1-オクテン(D1)0.586kg、1-ドデセン(D2)0.880kgを添加し、室温(25℃)で2時間撹拌し、触媒混合物を得た。
The base oils and additives used in the examples and comparative examples are shown below.
[Base oil (a-1) (metallocene catalyst-based poly-α-olefin)]
Production Example 1 (Production of Base Oil (a-1) (Metallocene Catalyst-Based Poly-α-Olefin))
(Step 1)
A 30 L stainless steel vessel was charged with 18.9 kg of toluene that had been dehydrated to a water content of 10 ppm or less under a nitrogen atmosphere, 1.2 kg of triisobutylaluminum (C1) (20% toluene solution), 0.0440 kg of tertiary butyl alcohol (E1), 30 mmol of (1,1'-dimethylsilylene)(2,2'-dimethylsilylene)-bis(cyclopentadienyl)zirconium dichloride (A), 36 mmol of N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate (B), 0.586 kg of 1-octene (D1), and 0.880 kg of 1-dodecene (D2), and the mixture was stirred at room temperature (25°C) for 2 hours to obtain a catalyst mixture.
(工程2)
 内容積1.2m3(1200L)のステンレス製反応容器を十分乾燥し、窒素置換の後に、1-ドデセン(D2)230kg、1-オクテン(D1)345kgを導入し、次にトリイソブチルアルミニウム(C1)(20%トルエン溶液)0.19kgを入れ、95℃に昇温した。水素0.2MPaGを導入し、工程1で得られた触媒混合物を1時間あたり0.4kgの速度で連続的に導入した。触媒混合物導入開始後内温を103℃に維持して反応させた。反応途中の反応液を少量抜き出し、転化率を測定し、転化率が90%に達したところで反応を停止した。
 50Pa、250℃の減圧蒸留を行い、残留モノマー等を除去して、ポリ-α-オレフィンを得た。
(Step 2)
A stainless steel reaction vessel with an internal volume of 1.2 m 3 (1200 L) was thoroughly dried and purged with nitrogen, after which 230 kg of 1-dodecene (D2) and 345 kg of 1-octene (D1) were introduced, followed by 0.19 kg of triisobutylaluminum (C1) (20% toluene solution), and the temperature was raised to 95° C. Hydrogen at 0.2 MPaG was introduced, and the catalyst mixture obtained in step 1 was continuously introduced at a rate of 0.4 kg per hour. After the start of introduction of the catalyst mixture, the internal temperature was maintained at 103° C. to carry out the reaction. A small amount of the reaction liquid was withdrawn during the reaction, and the conversion was measured, and the reaction was stopped when the conversion reached 90%.
Distillation was carried out under reduced pressure of 50 Pa and 250° C. to remove residual monomers, etc., to obtain poly-α-olefin.
(水素添加工程)
 工程2で得られたα-オレフィン重合体に、ニッケル触媒を質量比で0.25質量%添加後、0.4MPaの水素のもと、150℃で6時間反応させた。反応終了後、触媒成分をろ過で除去し、無色透明な水素添加ポリ-α-オレフィン(基油(a-1))を得た。
 得られた水素添加ポリ-α-オレフィン(基油(a-1))の100℃動粘度は46.7mm/sであり、40℃動粘度は399.9mm/sであった。
(Hydrogenation process)
A nickel catalyst was added in an amount of 0.25% by mass to the α-olefin polymer obtained in step 2, and the mixture was reacted under hydrogen of 0.4 MPa at 150° C. for 6 hours. After the reaction was completed, the catalyst component was removed by filtration to obtain a colorless and transparent hydrogenated poly-α-olefin (base oil (a-1)).
The resulting hydrogenated poly-α-olefin (base oil (a-1)) had a 100° C. kinetic viscosity of 46.7 mm 2 /s and a 40° C. kinetic viscosity of 399.9 mm 2 /s.
[基油(a-2)(メタロセン触媒系ポリ-α-オレフィン)]
製造例2(基油(a-2)(メタロセン触媒系ポリ-α-オレフィン)の製造)
 製造例1において、ターシャリーブチルアルコール(E1)の量を0.0440kgから、0.0264kgに変更した以外は製造例1と同様にして、無色透明な水素添加ポリ-α-オレフィン(基油(a-2))を得た。
 得られた水素添加ポリ-α-オレフィン(基油(a-2))の100℃動粘度は129.2mm/sであり、40℃動粘度は1267.6mm/sであった。
[Base oil (a-2) (metallocene catalyst-based poly-α-olefin)]
Production Example 2 (Production of Base Oil (a-2) (Metallocene Catalyst-Based Poly-α-Olefin))
A colorless and transparent hydrogenated poly-α-olefin (base oil (a-2)) was obtained in the same manner as in Production Example 1, except that the amount of tertiary butyl alcohol (E1) was changed from 0.0440 kg to 0.0264 kg.
The resulting hydrogenated poly-α-olefin (base oil (a-2)) had a 100° C. kinetic viscosity of 129.2 mm 2 /s and a 40° C. kinetic viscosity of 1267.6 mm 2 /s.
[基油(c)(非メタロセン触媒系ポリ-α-オレフィン)]
 重合触媒として、カチオン触媒を用いて、1-デセンを重合したポリ-α-オレフィン(デセンオリゴマー)。
 非メタロセン触媒系ポリ-α-オレフィン(基油(c))の100℃動粘度は103.1mm/sであり、40℃動粘度は1263.2mm/s、粘度指数は172であった。
[Base oil (c) (non-metallocene catalyst-based poly-α-olefin)]
A poly-α-olefin (decene oligomer) obtained by polymerizing 1-decene using a cationic catalyst as a polymerization catalyst.
The nonmetallocene catalyst-based poly-α-olefin (base oil (c)) had a kinematic viscosity at 100° C. of 103.1 mm 2 /s, a kinematic viscosity at 40° C. of 1,263.2 mm 2 /s, and a viscosity index of 172.
[基油(b-1)(非メタロセン触媒系ポリ-α-オレフィン)]
 重合触媒として、カチオン触媒を用いて、1-デセンを重合したポリ-α-オレフィン(デセンオリゴマー)。
 非メタロセン触媒系ポリ-α-オレフィン(基油(b-1))の100℃動粘度は5.9mm/sであり、40℃動粘度は30.6mm/s、粘度指数は138であった。
[Base oil (b-1) (nonmetallocene catalyst-based poly-α-olefin)]
A poly-α-olefin (decene oligomer) obtained by polymerizing 1-decene using a cationic catalyst as a polymerization catalyst.
The nonmetallocene catalyst-based poly-α-olefin (base oil (b-1)) had a 100° C. kinematic viscosity of 5.9 mm 2 /s, a 40° C. kinematic viscosity of 30.6 mm 2 /s, and a viscosity index of 138.
[基油(b-2)(エステル)]
 トリメチロールプロパンと飽和脂肪酸を反応させたポリオールエステル。ポリオールエステル(基油(b-2))の100℃動粘度は、13.1mm/sであり、40℃動粘度は、100.5mm/s、粘度指数は128であった。
[Base oil (b-2) (ester)]
Polyol ester obtained by reacting trimethylolpropane with saturated fatty acid. The polyol ester (base oil (b-2)) had a 100° C. kinetic viscosity of 13.1 mm 2 /s, a 40° C. kinetic viscosity of 100.5 mm 2 /s, and a viscosity index of 128.
[添加剤]
 全ての実施例及び比較例で同一の歯車油用添加剤パッケージを用いた。該歯車油用添加剤パッケージには、極圧剤、耐摩耗剤、金属不活性化剤、流動点降下剤、及び酸化防止剤が含まれる。
[Additive]
All examples and comparative examples used the same gear oil additive package, which included extreme pressure agents, antiwear agents, metal deactivators, pour point depressants, and antioxidants.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例で得られた潤滑油組成物は、比較例の潤滑油組成物と同様の40℃動粘度、同様の100℃動粘度であるにもかかわらず、比較例の潤滑油組成物に比べ、粘度指数が大きく、流動点が非常に低く、低温流動性に優れることがわかる。このことから、本発明の潤滑油組成物は、粘度指数が大きく、低温流動性に優れ、特に、温度変化の大きな過酷な環境下で使用される風力発電機に用いられるギヤオイルとして好適に用いることができる。 The lubricating oil compositions obtained in the examples have the same 40°C and 100°C kinetic viscosities as the lubricating oil compositions of the comparative examples, but have a higher viscosity index, a very low pour point, and excellent low-temperature fluidity compared to the lubricating oil compositions of the comparative examples. This shows that the lubricating oil composition of the present invention has a high viscosity index and excellent low-temperature fluidity, and can be particularly suitably used as a gear oil for wind turbines used in harsh environments with large temperature changes.

Claims (9)

  1.  下記基油(a)及び下記基油(b)を含み、基油(b)に対する基油(a)の質量比[(a)/(b)]が50/50~95/5である、潤滑油組成物。
     基油(a):100℃動粘度が40~130mm/sであるメタロセン触媒系ポリ-α-オレフィン
     基油(b):100℃動粘度が1~30mm/sである基油
    A lubricating oil composition comprising the following base oil (a) and the following base oil (b), wherein the mass ratio of base oil (a) to base oil (b) [(a)/(b)] is 50/50 to 95/5:
    Base oil (a): a metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 40 to 130 mm 2 /s. Base oil (b): a base oil having a 100° C. kinetic viscosity of 1 to 30 mm 2 /s.
  2.  基油(a)が下記基油(a1)であり、基油(b)に対する基油(a1)の質量比[(a1)/(b)]が80/20~95/5である、請求項1に記載の潤滑油組成物。
     基油(a1):100℃動粘度が40~50mm/sであるメタロセン触媒系ポリ-α-オレフィン
    The lubricating oil composition according to claim 1, wherein the base oil (a) is the following base oil (a1), and the mass ratio of the base oil (a1) to the base oil (b) [(a1)/(b)] is 80/20 to 95/5.
    Base oil (a1): a metallocene catalyst-based poly-α-olefin having a 100° C. kinematic viscosity of 40 to 50 mm 2 /s
  3.  基油(b)が下記基油(b1)及び下記基油(b2)からなる群より選ばれる少なくとも1種である、請求項2に記載の潤滑油組成物。
     基油(b1):100℃動粘度が1~10mm/sである非メタロセン触媒系ポリ-α-オレフィン
     基油(b2):100℃動粘度が10~15mm/sであるエステル
    The lubricating oil composition according to claim 2, wherein the base oil (b) is at least one selected from the group consisting of the following base oil (b1) and the following base oil (b2):
    Base oil (b1): nonmetallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 1 to 10 mm 2 /s Base oil (b2): ester having a 100° C. kinetic viscosity of 10 to 15 mm 2 /s
  4.  基油(b)が下記基油(b3)であり、基油(b3)に対する基油(a1)の質量比[(a1)/(b3)]が90/10~95/5である、請求項2に記載の潤滑油組成物。
     基油(b3):100℃動粘度が5~10mm/sである非メタロセン触媒系ポリ-α-オレフィン
    The lubricating oil composition according to claim 2, wherein the base oil (b) is the following base oil (b3), and the mass ratio of the base oil (a1) to the base oil (b3) [(a1)/(b3)] is 90/10 to 95/5.
    Base oil (b3): nonmetallocene catalyst-based poly-α-olefin having a 100° C. kinematic viscosity of 5 to 10 mm 2 /s
  5.  基油(b)が基油(b2)、又は基油(b2)と基油(b1)であり、基油(b1)に対する基油(b2)の質量比[(b2)/(b1)]が80/20~100/0である、請求項3に記載の潤滑油組成物。 The lubricating oil composition according to claim 3, wherein the base oil (b) is base oil (b2), or base oil (b2) and base oil (b1), and the mass ratio of base oil (b2) to base oil (b1) [(b2)/(b1)] is 80/20 to 100/0.
  6.  基油(a)が下記基油(a2)であり、基油(b)が下記基油(b2)と下記基油(b4)であり、基油(b)に対する基油(a2)の質量比[(a2)/(b)]が50/50~70/30であり、基油(b4)に対する基油(b2)の質量比[(b2)/(b4)]が25/75~60/40である、請求項1に記載の潤滑油組成物。
     基油(a2):100℃動粘度が120~130mm/sであるメタロセン触媒系ポリ-α-オレフィン
     基油(b2):100℃動粘度が10~15mm/sであるエステル
     基油(b4):100℃動粘度が1~30mm/sである非メタロセン触媒系ポリ-α-オレフィン
    The lubricating oil composition according to claim 1, wherein the base oil (a) is the following base oil (a2), the base oil (b) is the following base oil (b2) and the following base oil (b4), the mass ratio of the base oil (a2) to the base oil (b) [(a2)/(b)] is 50/50 to 70/30, and the mass ratio of the base oil (b2) to the base oil (b4) [(b2)/(b4)] is 25/75 to 60/40.
    Base oil (a2): metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 120 to 130 mm 2 /s Base oil (b2): ester having a 100° C. kinetic viscosity of 10 to 15 mm 2 /s Base oil (b4): non-metallocene catalyst-based poly-α-olefin having a 100° C. kinetic viscosity of 1 to 30 mm 2 /s
  7.  更に、極圧剤、耐摩耗剤、無灰清浄分散剤、酸化防止剤、防錆剤、金属不活性化剤及び流動点降下剤からなる群より選ばれる少なくとも一種の添加剤を1~30質量%含有する、請求項1~6のいずれか1つに記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 6 further contains 1 to 30 mass % of at least one additive selected from the group consisting of extreme pressure agents, antiwear agents, ashless detergent-dispersants, antioxidants, rust inhibitors, metal deactivators, and pour point depressants.
  8.  40℃動粘度が288~352mm/sである、請求項1~7のいずれか1つに記載の潤滑油組成物。 The lubricating oil composition according to any one of claims 1 to 7, having a kinematic viscosity at 40°C of 288 to 352 mm 2 /s.
  9.  請求項1~8のいずれか1つに記載の潤滑油組成物を含有する風力発電用ギヤオイル。

     
    A gear oil for wind power generation comprising the lubricating oil composition according to any one of claims 1 to 8.

PCT/JP2023/040521 2022-12-02 2023-11-10 Lubricating oil composition WO2024116789A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022193771A JP2024080513A (en) 2022-12-02 2022-12-02 Lubricant composition
JP2022-193771 2022-12-02

Publications (1)

Publication Number Publication Date
WO2024116789A1 true WO2024116789A1 (en) 2024-06-06

Family

ID=91323449

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040521 WO2024116789A1 (en) 2022-12-02 2023-11-10 Lubricating oil composition

Country Status (2)

Country Link
JP (1) JP2024080513A (en)
WO (1) WO2024116789A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160177A (en) * 1998-11-30 2000-06-13 Idemitsu Kosan Co Ltd Two-cycle engine oil composition
WO2010084966A1 (en) * 2009-01-23 2010-07-29 出光興産株式会社 Lubricant for gears
WO2011093295A1 (en) * 2010-01-26 2011-08-04 出光興産株式会社 α-OLEFIN (CO)POLYMER, HYDROGENATED α-OLEFIN (CO)POLYMER AND LUBRICATING OIL COMPOSITION CONTAINING THE SAME
JP2016069404A (en) * 2014-09-26 2016-05-09 三井化学株式会社 Lubricant composition
JP2019199586A (en) * 2018-05-18 2019-11-21 出光興産株式会社 Lubricant oil composition
WO2020194549A1 (en) * 2019-03-26 2020-10-01 三井化学株式会社 Lubricating oil composition and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160177A (en) * 1998-11-30 2000-06-13 Idemitsu Kosan Co Ltd Two-cycle engine oil composition
WO2010084966A1 (en) * 2009-01-23 2010-07-29 出光興産株式会社 Lubricant for gears
WO2011093295A1 (en) * 2010-01-26 2011-08-04 出光興産株式会社 α-OLEFIN (CO)POLYMER, HYDROGENATED α-OLEFIN (CO)POLYMER AND LUBRICATING OIL COMPOSITION CONTAINING THE SAME
JP2016069404A (en) * 2014-09-26 2016-05-09 三井化学株式会社 Lubricant composition
JP2019199586A (en) * 2018-05-18 2019-11-21 出光興産株式会社 Lubricant oil composition
WO2020194549A1 (en) * 2019-03-26 2020-10-01 三井化学株式会社 Lubricating oil composition and method for producing same

Also Published As

Publication number Publication date
JP2024080513A (en) 2024-06-13

Similar Documents

Publication Publication Date Title
JP5745277B2 (en) Gear lubricant
JP5787484B2 (en) Lubricating oil composition
EP2532688A1 (en) Alpha-olefin (co)polymer, hydrogenated alpha-olefin (co)polymer and lubricating oil composition containing the same
US20140309151A1 (en) 1-octene/1-decene copolymer and lubricating-oil composition containing same
US9023960B2 (en) Process for producing α-olefin polymer, α-olefin polymer, and lubricating oil composition
EP2735574A1 (en) 1-octene, 1-decene, 1-dodecene ternary copolymer and lubricant composition containing same
EP2738186A1 (en) 1-decene/1-dodecene copolymer and lubricating-oil composition containing same
EP2554644A1 (en) Grease composition
EP3569678B1 (en) Lubricant oil composition for automobile gears
JP5555478B2 (en) Lubricating oil composition for transmission
WO2024116789A1 (en) Lubricating oil composition
EP3950893B1 (en) Lubricating oil composition for industrial gears and method for producing same
JP2011121990A (en) Lubricant composition
WO2024080214A1 (en) METHOD FOR PRODUCING α-OLEFIN POLYMER
JP2014105220A (en) Lubricant composition
EP3950895A1 (en) Lubricating oil composition for hydraulic oil and method for producing same
US20220169948A1 (en) Lubricating oil composition for compressor oils and method for producing the same
EP3950901A1 (en) Lubricating oil composition for internal combustion engines and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897441

Country of ref document: EP

Kind code of ref document: A1