WO2024116542A1 - Optical fiber holding member, optical connector, method for manufacturing optical fiber holding member, and method for manufacturing optical connector - Google Patents

Optical fiber holding member, optical connector, method for manufacturing optical fiber holding member, and method for manufacturing optical connector Download PDF

Info

Publication number
WO2024116542A1
WO2024116542A1 PCT/JP2023/033238 JP2023033238W WO2024116542A1 WO 2024116542 A1 WO2024116542 A1 WO 2024116542A1 JP 2023033238 W JP2023033238 W JP 2023033238W WO 2024116542 A1 WO2024116542 A1 WO 2024116542A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
holding member
particle size
fiber holding
filler
Prior art date
Application number
PCT/JP2023/033238
Other languages
French (fr)
Japanese (ja)
Inventor
卓朗 渡邊
大 佐々木
知巳 佐野
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Publication of WO2024116542A1 publication Critical patent/WO2024116542A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means

Definitions

  • the present disclosure relates to an optical fiber holding member, an optical connector, a manufacturing method of an optical fiber holding member, and a manufacturing method of an optical connector.
  • Patent Document 1 discloses an optical fiber array that includes optical fibers and a support member that supports the optical fibers.
  • the support member is composed of a base resin and a filler that is mixed into the base resin at a predetermined mass ratio. This gives the support member, which is ultraviolet-transmitting, a low linear expansion coefficient.
  • Patent Document 2 discloses a multi-core MT cord with optical fibers attached.
  • an optical fiber holding member including a holding part configured to hold an optical fiber.
  • the optical fiber holding member is configured to include a base resin and multiple types of fillers.
  • the optical fiber holding member has a light transmittance of 50% or more in a wavelength range of 300 nm or more and 400 nm or less, and a linear expansion coefficient of 5 ⁇ 10 -5 /° C. or less.
  • the particle size distribution of the filler has peaks in each of multiple particle size ranges.
  • FIG. 1 is a perspective view showing an optical connector according to an embodiment.
  • FIG. 2 is a top view showing an optical connector according to an embodiment.
  • FIG. 3 is a perspective view showing an optical fiber holding member provided in the optical connector.
  • FIG. 4 is a diagram showing a schematic view of a base resin and a filler in an optical fiber holding member.
  • Patent Document 1 a base resin mixed with a filler is used to produce an optical fiber array (holding member) having ultraviolet light transmittance. In this way, Patent Document 1 produces an optical fiber array (holding member) having a low linear expansion coefficient.
  • one type of filler average particle size 20 ⁇ m
  • voids are likely to occur between the fillers, making it difficult to increase the filler content. If the filler content is increased in order to reduce the linear expansion coefficient in the configuration of this holding member, the fluidity of the resin material used for molding will decrease. As a result, the manufacturing efficiency of the holding member will decrease.
  • an optical fiber holding member having ultraviolet light transmittance and a low linear expansion coefficient can be efficiently manufactured.
  • An optical fiber holding member includes a holding portion configured to hold an optical fiber.
  • the optical fiber holding member is configured to include a base resin and multiple types of fillers.
  • the optical fiber holding member has a light transmittance of 50% or more in a wavelength range of 300 nm or more and 400 nm or less, and a linear expansion coefficient of 5 ⁇ 10 -5 /° C. or less.
  • the particle size distribution of the filler has peaks in each of multiple particle size ranges.
  • the light transmittance in the wavelength range of 300 nm to 400 nm is 50% or more, and the linear expansion coefficient is 5 ⁇ 10 ⁇ 5 /° C. or less, so that the optical fiber holding member has ultraviolet transmittance and a low linear expansion coefficient.
  • fillers are contained in a predetermined mass ratio, and the particle size distribution of these fillers has peaks in each of a plurality of particle size ranges.
  • at least two types of fillers that is, fillers with large particle sizes and fillers with small particle sizes, are contained in the optical fiber holding member, so that the small fillers enter the gaps between the large fillers. As a result, the filling property of the fillers is improved.
  • optical fiber holding member since it can be manufactured by a molding method with high fluidity, it is easy to make it into a high-precision optical fiber holding member.
  • the ratio of the filler in the resin material containing the base resin and the filler is 50% by mass or more
  • the multiple particle size ranges may include a first particle size range of 10 ⁇ m or less and a second particle size range of 18 ⁇ m or more and 32 ⁇ m or less.
  • the filler corresponding to the peak of the first particle size range enters the gap between the fillers corresponding to the peak of the second particle size range, improving the filling of the filler. Therefore, the volume of the filler, which is 50% by mass or more, is reduced, and the filler is efficiently blended.
  • the particle size of the filler is small, the fluidity of the filler is further improved. Therefore, according to this optical fiber holding member, it is possible to obtain an optical fiber holding member that has ultraviolet transmittance and a low linear expansion coefficient while having high dimensional accuracy.
  • the proportion of the filler in the resin material may be greater than 70 mass %.
  • the optical fiber holding member can have a further reduced linear expansion coefficient.
  • the first particle size range may be 6 ⁇ m or less, and the second particle size range may be 22 ⁇ m or more and 28 ⁇ m or less.
  • the base resin may be at least one amorphous thermoplastic resin selected from the group consisting of cycloolefin polymers, cycloolefin copolymers, and polycarbonates.
  • the base resin since the base resin has heat resistance in addition to high transparency, the optical fiber holding member can also have heat resistance.
  • the filler contains spherical silica particles, and a surface modifier may be added to the surface of the silica particles.
  • the surface modifier can easily reduce the difference in refractive index between the base resin and the filler. Therefore, ultraviolet light transmittance can be easily imparted to the optical fiber holding member.
  • the filler contains spherical silica particles, the isotropy of the linear expansion coefficient of the optical fiber holding member can be increased.
  • the particle size distribution of the filler may have a peak in each of three or more particle size ranges.
  • any of the optical fiber holding members [1] to [7] above may be provided with an opening through which the optical fiber is inserted and a window that connects the space connected to the opening with the outside, and the holding portion may be provided within the space.
  • adhesive can be easily introduced into the optical fiber holding member through the window.
  • An optical connector includes an optical fiber holding member according to any one of [1] to [8] above, and an optical fiber fixed to the optical fiber holding member with an ultraviolet-curing adhesive. According to this optical connector, since the optical fiber holding member is ultraviolet-transparent, the optical fiber can be fixed to the optical fiber holding member with an ultraviolet-curing adhesive. As a result, the manufacturing time of the optical connector can be shortened.
  • a method for manufacturing an optical fiber holding member includes the steps of preparing a mold having a cavity corresponding to the optical fiber holding member, preparing a base resin that is an amorphous thermoplastic resin and multiple types of fillers, adding a surface modifier to the surface of the filler particles, generating a resin composition by mixing the base resin and the filler so that the filler is contained at 50% by mass or more, and injecting the resin composition into a mold to mold an optical fiber holding member.
  • the particle size distribution of the filler has peaks in each of multiple particle size ranges, the filler can be easily blended so that the filler is contained at 50% by mass or more. Therefore, according to this manufacturing method for an optical fiber holding member, an optical fiber holding member having ultraviolet light transmittance and a low linear expansion coefficient can be efficiently manufactured.
  • the method for manufacturing an optical connector includes the steps of preparing an optical fiber holding member according to any one of [1] to [8] above, and arranging an optical fiber in the holding portion, applying an ultraviolet-curing adhesive to the optical fiber, and irradiating the optical fiber holding member with ultraviolet light from the outside to cure the ultraviolet-curing adhesive.
  • an ultraviolet-curing adhesive can be used. This allows the optical fiber to be fixed to the optical fiber holding member in a short time. Therefore, according to this method for manufacturing an optical connector, the manufacturing time of an optical connector equipped with an optical fiber holding member that is ultraviolet-transparent and has a low linear expansion coefficient can be shortened.
  • FIGS. 1 and 2 are diagrams showing an example of an optical connector according to this embodiment.
  • FIG. 3 is a perspective view showing an example of an optical fiber holding member.
  • the optical connector 1 comprises a cable 3 including a plurality of optical fibers 2, an optical fiber holding member 4 (hereinafter simply referred to as "holding member 4") that holds the plurality of optical fibers 2, and a resin boot 5 attached to the holding member 4.
  • holding member 4 an optical fiber holding member 4
  • the optical fiber 2 and the other optical module are optically coupled.
  • the cable 3 is a member that protects the optical fibers 2 by covering them with a coating resin or the like. As shown in FIG. 2, the cable 3 has multiple optical fibers 2 arranged in a horizontal direction. The number of optical fibers 2 included in the cable 3 is not particularly limited, but is, for example, 12.
  • the front ends 2a of the optical fibers 2 are exposed from the front end 3a of the cable 3.
  • the exposed front ends 2a are arranged in the holding portion 4f of the holding member 4 (see also FIG. 3). As a result, the front ends 2a are held by the holding portion 4f.
  • the holding member 4 is a rectangular member that holds the optical fiber 2 and positions the optical fiber 2. As described later, the holding member 4 is formed from a resin material in which multiple types of fillers are mixed with a base resin. As shown in Figures 1 to 3, the holding member 4 has a front end face 4a, a rear end face 4b, an upper face 4c, a pair of guide holes 4d, an opening 4e, a holding portion 4f, and a window 4g.
  • the front end face 4a faces the other optical module when the optical connector 1 is connected to the other optical module.
  • the rear end face 4b faces the front end face 4a.
  • the pair of guide holes 4d penetrate the inside of the holding member 4 from the front end face 4a to the rear end face 4b.
  • the pair of guide pins of the other optical module are inserted into the pair of guide holes 4d, thereby connecting the optical connector 1 to the other optical module.
  • the opening 4e is formed from the rear end face 4b to the vicinity of the center of the holding member 4.
  • the boot 5 holding the cable 3 is inserted into the opening 4e.
  • the optical fiber 2 is held in the holding part 4f, which is provided in the space connected to the opening 4e.
  • the holding portion 4f is formed from the opening 4e to the front end face 4a as shown in FIG. 3, and is a portion that holds multiple optical fibers.
  • the holding portion 4f may be a cylindrical hole, or may be a combination of a cylindrical hole and a groove formed continuously with the hole.
  • the holding portion 4f is composed of a cylindrical hole and a groove formed continuously with the hole.
  • the front end 2a of the optical fiber 2 exposed from the cable 3 is placed and held in the holding portion 4f.
  • the front end face 2b of the optical fiber 2 is exposed from the front end face 4a as shown in FIG. 2.
  • the front end face 2b and the front end face 4a are polished so that no gap is generated between the optical fiber 2 and another optical module when the optical fiber 2 is connected to the other optical module.
  • the window 4g is formed from the top surface 4c to the opening 4e, and is a hole for introducing adhesive (not shown) into the inside of the holding member 4.
  • adhesive is introduced from the window 4g. This causes the optical fiber 2 to be fixed to the holding portion 4f of the holding member 4.
  • the adhesive is, for example, an ultraviolet-curing adhesive.
  • FIG. 4 is a diagram showing a base resin and a filler in an optical fiber holding member.
  • the holding member 4 is formed from a resin material in which multiple types of fillers 41 and 42 are mixed into a base resin 40.
  • the base resin 40 is an amorphous thermoplastic resin.
  • the base resin 40 is made of a material that can transmit ultraviolet rays having a wavelength range of 300 nm to 400 nm.
  • the light transmittance of the base resin 40 in the wavelength range of 300 nm to 400 nm is at least 50%.
  • Such a base resin 40 is, for example, cycloolefin polymer (COP), cycloolefin copolymer (COC), or polycarbonate (PC).
  • COP cycloolefin polymer
  • COC cycloolefin copolymer
  • PC polycarbonate
  • the fillers 41 and 42 are, for example, inorganic fillers, and as an example, silica (SiO 2 ) fillers.
  • the mass ratio of the fillers 41 and 42 in the holding member 4 is 50 mass% or more.
  • the mass ratio of the fillers 41 and 42 may be 60 mass% or more, 65 mass% or more, more than 70 mass%, or 80 mass% or more.
  • the linear expansion coefficient of the holding member 4 is measured, for example, by thermomechanical analysis (TMA) in accordance with ISO11359.
  • TMA thermomechanical analysis
  • the mass ratio is the ratio of the mass of the fillers 41 and 42 to the total mass of the holding member 4 (the total mass of the resin material including the base resin 40 and the fillers 41 and 42).
  • the mass ratio of the fillers 41, 42 in the holding member 4 is measured by, for example, thermogravimetric analysis (TGA) in accordance with ISO 7111.
  • TGA thermogravimetric analysis
  • the fillers 41, 42 may be organic fillers or a mixture of both inorganic fillers and organic fillers as long as they can reduce the linear expansion coefficient.
  • the base resin 40 and the fillers 41, 42 are configured so that the difference in refractive index between the base resin 40 and the fillers 41, 42 is small.
  • the refractive index may be adjusted by a known method, for example, by adding a surface modifier for adjusting the refractive index to the fillers 41, 42.
  • An example of the surface modifier is a silane coupling agent.
  • the holding member 4 Since the holding member 4 has ultraviolet light transparency, when an ultraviolet-curing adhesive is introduced from the window 4g, the adhesive is cured by irradiating ultraviolet light from the outside of the holding member 4. This makes it possible to easily fix the optical fiber 2 to the holding member 4. As a result, the manufacturing time of the optical connector 1 can be shortened.
  • the fillers 41, 42 are spherical particles.
  • spherical includes true spherical and nearly spherical, and may have chips, holes, or recesses.
  • the fillers 41, 42 are isotropically blended into the retaining member 4, which can increase the isotropy of the linear expansion coefficient of the retaining member 4.
  • the fillers 41, 42 that fall off when the front end face 4a is polished are spherical, damage to the front end face 2b can be suppressed.
  • the particle size distribution of filler 41 is generally normal and has one peak.
  • the particle size distribution of filler 42 is generally normal and has one peak.
  • the particle size distribution of filler 42 has a peak in the first particle size range.
  • the particle size distribution of filler 41 has a peak in the second particle size range.
  • the first particle size range (filler 42) is 10 ⁇ m or less
  • the second particle size range (filler 41) is 18 ⁇ m or more and 32 ⁇ m or less.
  • the ranges of the first particle size range and the second particle size range are not particularly limited.
  • the first particle size range may be less than 10 ⁇ m, 8 ⁇ m or less, 6 ⁇ m or less, or 4 ⁇ m or less
  • the second particle size range may be 20 ⁇ m or more and 30 ⁇ m or less, or 22 ⁇ m or more and 28 ⁇ m or less.
  • the particle size distribution of the filler 41 has a peak in the second particle size range
  • the particle size distribution of the filler 42 has a peak in the first particle size range, so that the filler 42 having a particle size corresponding to the peak of the first particle size range enters the gap between the fillers 41 having a particle size corresponding to the peak of the second particle size range.
  • the particle size distribution of the filler may have a peak in each of three or more particle size ranges.
  • the particle size distribution of the filler is measured, for example, using a laser diffraction method or an optical microscope.
  • a method for manufacturing the retaining member 4 will be described.
  • a mold having a cavity corresponding to the external shape of the retaining member 4 and a nest corresponding to the internal structure (e.g., retaining portion 4f) are prepared. Then, the nest for forming the retaining portion 4f, etc. is placed at a predetermined position within the cavity.
  • a base resin 40 which is an amorphous thermoplastic resin, and fillers 41 and 42 are prepared.
  • the base resin 40 is, for example, cycloolefin polymer (COP), cycloolefin copolymer (COC), or polycarbonate (PC).
  • the fillers 41 and 42 are, for example, silica fillers having different particle size distributions.
  • the filler 42 in the first particle size range has a peak in a particle size range of, for example, 10 ⁇ m or less.
  • the filler 41 in the second particle size range has a peak in a particle size range of, for example, 18 ⁇ m or more and 32 ⁇ m or less.
  • the ranges of the first particle size range and the second particle size range are not particularly limited as long as the upper limit of the first particle size range is smaller than the lower limit of the second particle size range.
  • the peak of the first particle size range may be less than 10 ⁇ m, 8 ⁇ m or less, 6 ⁇ m or less, or 4 ⁇ m or less.
  • the peak of the second particle size range may be 20 ⁇ m or more and 30 ⁇ m or less, or 22 ⁇ m or more and 28 ⁇ m or less.
  • the fillers 41 and 42 with different particle size distributions prepared here may be different types of fillers having peaks in three or more particle size ranges.
  • the particle size of the filler can be adjusted, for example, by classifying the filler, but other methods may also be used.
  • the surface modifier is, for example, a silane coupling agent.
  • the molded optical fiber holding member 4 can have a light transmittance of 50% or more in the wavelength range of 300 nm to 400 nm. This allows the use of ultraviolet-curing adhesives when manufacturing optical connectors.
  • the base resin and the filler are mixed to produce a resin composition so that the filler is contained in 50 mass% or more. Since the filler is contained in 50 mass% or more, the linear expansion coefficient of the molded optical fiber holding member 4 can be set to 5 ⁇ 10 ⁇ 5 /° C. or less.
  • the filler 42 having a particle size corresponding to the peak of the first particle size range enters into the gap between the fillers 41 having a particle size corresponding to the peak of the second particle size range.
  • the filling property of the filler in the resin composition is improved.
  • the resin composition is melted and the molten resin composition is injected into the cavity of the mold.
  • the resin composition is injected with the nest placed in the cavity. After the resin composition is injected, it is cured to form the holding member 4.
  • a method for further manufacturing an optical connector using such a holding member 4 will be described.
  • a boot 5 is attached to the cable 3 holding the optical fiber 2. Then, this boot 5 is inserted into the opening 4e of the holding member 4. After that, the front end 2a of the optical fiber 2 exposed from the cable 3 is placed in the holding portion 4f of the holding member 4.
  • an ultraviolet-curing adhesive is introduced through the window 4g of the holding member 4, and the ultraviolet-curing adhesive is applied to the optical fiber 2 and the holding portion 4f.
  • ultraviolet light is irradiated from the outside of the holding member 4 to harden the ultraviolet-curing adhesive.
  • This fixes the optical fiber 2 to the holding member 4.
  • the manufacturing time of the optical connector 1 can be shortened.
  • the above-mentioned optical connector 1 can be obtained by the above manufacturing method.
  • the light transmittance in the wavelength region of 300 nm to 400 nm is 50% or more, and the linear expansion coefficient is 5 ⁇ 10 ⁇ 5 /° C. or less, so that the holding member 4 has ultraviolet transmittance and a low linear expansion coefficient.
  • the fillers 41 and 42 are contained at a predetermined mass ratio, and the particle size distribution of the fillers 41 and 42 has peaks in each of a plurality of particle size ranges. In this way, at least two types of fillers, the filler 41 having a large particle size and the filler 42 having a small particle size, are contained in the holding member 4, so that the small filler 42 enters the gap between the large fillers 41.
  • the filling property of the filler is improved. Therefore, even if the content of the filler is increased, the moldability can be improved without decreasing the fluidity of the molten resin material containing the filler. Therefore, according to the holding member 4, the holding member 4 having ultraviolet transmittance and a low linear expansion coefficient can be efficiently manufactured. In addition, since the holding member 4 can be manufactured by a molding method with high fluidity, it is also possible to obtain a holding member 4 with high precision.
  • the ratio of the fillers 41 and 42 in the resin material containing the base resin 40 and the fillers 41 and 42 is 50% by mass or more, and the multiple particle size ranges include a first particle size range of 10 ⁇ m or less and a second particle size range of 18 ⁇ m or more and 32 ⁇ m or less.
  • the filler 42 corresponding to the peak of the first particle size range enters the gap between the fillers 41 corresponding to the peak of the second particle size range, thereby improving the filling of the filler. Therefore, the volume of the fillers 41 and 42, which are 50% by mass or more, is reduced, and the filler is efficiently blended.
  • the particle size of the fillers 41 and 42 is small, the fluidity of the filler is increased. Therefore, according to the retaining member 4, it is possible to obtain a retaining member with high dimensional accuracy while having ultraviolet transmittance and a low linear expansion coefficient.
  • the ratio of the fillers 41 and 42 in the resin material may be greater than 70% by mass. As a result, it is possible to obtain a retaining member 4 with a further reduced linear expansion coefficient.
  • the base resin 40 is at least one amorphous thermoplastic resin selected from the group consisting of cycloolefin polymer, cycloolefin copolymer, and polycarbonate. This gives the base resin 40 high transparency and heat resistance, which further enhances the heat resistance of the retaining member 4.
  • the fillers 41 and 42 contain spherical silica particles, and a surface modifier is added to the surface of the silica particles. Even if the fillers 41 and 42 are blended into the retaining member 4, the difference in refractive index between the base resin 40 and the fillers 41 and 42 can be easily reduced by the surface modifier. Therefore, UV transparency can be easily imparted to the retaining member 4. Because the fillers 41 and 42 contain spherical silica particles, the isotropy of the linear expansion coefficient of the retaining member 4 can be increased.
  • the optical connector 1 includes the holding member 4 described above, and the optical fiber 2 fixed to the holding member 4 with an ultraviolet-curing adhesive.
  • the holding member 4 is ultraviolet-transparent, so the optical fiber 2 can be easily fixed to the holding member 4 with an ultraviolet-curing adhesive.
  • the manufacturing time of the optical connector 1 can be shortened.
  • the filler is mixed into the holding member 4 in the ratio described above, so that the optical connector 1 can have a low linear expansion coefficient.
  • the manufacturing method of the retaining member 4 includes the steps of preparing a mold having a cavity corresponding to the retaining member 4, preparing a base resin 40, which is an amorphous thermoplastic resin, and fillers 41 and 42, adding a surface modifier to the surfaces of the particles of the fillers 41 and 42, producing a resin composition by mixing the base resin 40 and the fillers 41 and 42 so that the fillers 41 and 42 are contained at 50% by mass or more, and injecting the resin composition into a mold to mold the retaining member 4.
  • the particle size distribution of the fillers 41 and 42 has peaks in each of a plurality of particle size ranges. Therefore, the fillers can be easily mixed so that the fillers 41 and 42 are contained at 50% by mass or more. Therefore, according to this manufacturing method of the retaining member 4, a retaining member having ultraviolet transmittance and a low linear expansion coefficient can be efficiently manufactured.
  • the manufacturing method of the optical connector 1 includes the steps of preparing the optical fiber holding member 4, placing the optical fiber 2 in the holding portion 4f, applying an ultraviolet-curing adhesive to the optical fiber 2, and irradiating the holding member 4 with ultraviolet light from the outside to cure the ultraviolet-curing adhesive.
  • an ultraviolet-curing adhesive can be used.
  • the optical fiber 2 can be fixed to the holding member 4 in a short time. Therefore, according to this manufacturing method of the optical connector 1, the manufacturing time of the optical connector 1 equipped with the holding member 4 having a low linear expansion coefficient can be shortened.
  • the present invention is not limited to the above embodiments and can be applied to various embodiments.
  • the holding member 4 is a ferrule
  • the embodiments of the present disclosure may also be applied to the configuration of an optical fiber array that connects optical fibers and silicon photonics on a substrate.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

An optical fiber holding member (4) comprises a holding unit (4f) configured to hold an optical fiber (2). The optical fiber holding member (4) is configured to include a base resin (40) and a plurality of types of fillers (41, 42). The light transmittance of the optical fiber holding member (4) in the wavelength region of 300-400 nm is 50% or greater, and the linear expansion coefficient of the optical fiber holding member (4) is 5×10-5/°C or less. In this optical fiber holding member (4), the particle size distributions of the fillers (41, 42) have peaks in each of a plurality of particle size ranges.

Description

光ファイバ保持部材、光コネクタ、光ファイバ保持部材の製造方法、及び、光コネクタの製造方法Optical fiber holding member, optical connector, manufacturing method of optical fiber holding member, and manufacturing method of optical connector
 本開示は、光ファイバ保持部材、光コネクタ、光ファイバ保持部材の製造方法、及び、光コネクタの製造方法に関する。
 本出願は、2022年11月28日出願の日本出願第2022-189118号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用する。
The present disclosure relates to an optical fiber holding member, an optical connector, a manufacturing method of an optical fiber holding member, and a manufacturing method of an optical connector.
This application claims priority based on Japanese Application No. 2022-189118 filed on November 28, 2022, and incorporates by reference all of the contents of said Japanese application.
 特許文献1は、光ファイバと光ファイバを支持する支持部材とを備えた光ファイバアレイを開示する。この光ファイバアレイでは、支持部材は、ベース樹脂と、ベース樹脂に所定の質量割合で配合されたフィラとを含んで構成されている。これにより、紫外線透過性を有する支持部材が低線膨張率となっている。特許文献2は、光ファイバを取り付けた多心MTコードを開示する。 Patent Document 1 discloses an optical fiber array that includes optical fibers and a support member that supports the optical fibers. In this optical fiber array, the support member is composed of a base resin and a filler that is mixed into the base resin at a predetermined mass ratio. This gives the support member, which is ultraviolet-transmitting, a low linear expansion coefficient. Patent Document 2 discloses a multi-core MT cord with optical fibers attached.
国際公開第2017/170689号International Publication No. 2017/170689 特開平9―159868号公報Japanese Patent Application Laid-Open No. 9-159868
 本開示は、一側面として、光ファイバを保持するように構成された保持部を備えた光ファイバ保持部材に関する。この光ファイバ保持部材は、ベース樹脂及び複数種類のフィラを含んで構成される。この光ファイバ保持部材における300nm以上400nm以下の波長域の光線透過率が50%以上であると共に、この光ファイバ保持部材の線膨張率が5×10-5/℃以下である。この光ファイバ保持部材では、フィラの粒径分布は、複数の粒径範囲のそれぞれにピークを有する。 One aspect of the present disclosure relates to an optical fiber holding member including a holding part configured to hold an optical fiber. The optical fiber holding member is configured to include a base resin and multiple types of fillers. The optical fiber holding member has a light transmittance of 50% or more in a wavelength range of 300 nm or more and 400 nm or less, and a linear expansion coefficient of 5×10 -5 /° C. or less. In this optical fiber holding member, the particle size distribution of the filler has peaks in each of multiple particle size ranges.
図1は、一実施形態に係る光コネクタを示す斜視図である。FIG. 1 is a perspective view showing an optical connector according to an embodiment. 図2は、一実施形態に係る光コネクタを示す上面図である。FIG. 2 is a top view showing an optical connector according to an embodiment. 図3は、光コネクタが備える光ファイバ保持部材を示す斜視図である。FIG. 3 is a perspective view showing an optical fiber holding member provided in the optical connector. 図4は、光ファイバ保持部材におけるベース樹脂とフィラとを模式的に示す図である。FIG. 4 is a diagram showing a schematic view of a base resin and a filler in an optical fiber holding member.
 [本開示が解決しようとする課題]
 特許文献1では、紫外線透過性を有する光ファイバアレイ(保持部材)を作製するにあたり、フィラが混合されたベース樹脂を用いている。これにより、特許文献1では、低線膨張率を有する光ファイバアレイ(保持部材)を作製している。しかしながら、この光ファイバアレイでは、1種類(平均粒径20μm)のフィラをベース樹脂に混合して保持部材が作製されている(特許文献1の実施例を参照)。このため、フィラ同士の間に空隙が生じやすく、フィラの含有量を高めづらい。仮に、この保持部材の構成において線膨張率を低くするためにフィラの含有量を高めると、成形に用いる樹脂材料の流動性が低下する。その結果、保持部材の製造効率が低下してしまう。
[Problem to be solved by this disclosure]
In Patent Document 1, a base resin mixed with a filler is used to produce an optical fiber array (holding member) having ultraviolet light transmittance. In this way, Patent Document 1 produces an optical fiber array (holding member) having a low linear expansion coefficient. However, in this optical fiber array, one type of filler (average particle size 20 μm) is mixed into the base resin to produce the holding member (see the examples in Patent Document 1). For this reason, voids are likely to occur between the fillers, making it difficult to increase the filler content. If the filler content is increased in order to reduce the linear expansion coefficient in the configuration of this holding member, the fluidity of the resin material used for molding will decrease. As a result, the manufacturing efficiency of the holding member will decrease.
 [本開示の効果]
 本開示によれば、紫外線透過性及び低線膨張率を有する光ファイバ保持部材を効率的に製造できる。
[Effects of the present disclosure]
According to the present disclosure, an optical fiber holding member having ultraviolet light transmittance and a low linear expansion coefficient can be efficiently manufactured.
 [本開示の実施形態の説明]
 最初に、本開示の実施形態の内容を列記して説明する。
[1]本開示の一実施形態に係る光ファイバ保持部材は、光ファイバを保持するように構成された保持部を備える。この光ファイバ保持部材は、ベース樹脂及び複数種類のフィラを含んで構成される。この光ファイバ保持部材における300nm以上400nm以下の波長域の光線透過率が50%以上であると共に、この光ファイバ保持部材の線膨張率が5×10-5/℃以下である。この光ファイバ保持部材では、フィラの粒径分布は、複数の粒径範囲のそれぞれにピークを有する。
[Description of the embodiments of the present disclosure]
First, the contents of the embodiments of the present disclosure will be listed and described.
[1] An optical fiber holding member according to an embodiment of the present disclosure includes a holding portion configured to hold an optical fiber. The optical fiber holding member is configured to include a base resin and multiple types of fillers. The optical fiber holding member has a light transmittance of 50% or more in a wavelength range of 300 nm or more and 400 nm or less, and a linear expansion coefficient of 5×10 -5 /° C. or less. In this optical fiber holding member, the particle size distribution of the filler has peaks in each of multiple particle size ranges.
 この光ファイバ保持部材では、300nm以上400nm以下の波長域の光線透過率が50%以上であると共に線膨張率が5×10-5/℃以下となっており、光ファイバ保持部材が紫外線透過性及び低線膨張率を有している。更に、この光ファイバ保持部材では、フィラが所定の質量割合だけ含まれ、これらフィラの粒径分布が複数の粒径範囲のそれぞれにピークを有している。この場合、粒径が大きいフィラと粒径が小さいフィラとの少なくとも2種類のフィラが光ファイバ保持部材に含まれるため、大きいフィラ同士の空隙に小さいフィラが入り込む。その結果、フィラの充填性が高まる。よって、フィラの含有量を高めたとしても、フィラを含む溶融樹脂材料の流動性を低下させずに成形性を良好なものとすることができる。したがって、この光ファイバ保持部材によれば、紫外線透過性及び低線膨張率を有する光ファイバ保持部材を効率的に製造できる。また、この光ファイバ保持部材によれば、流動性の高い成形方法で作製できるため、高精度な光ファイバ保持部材とすることも容易である。 In this optical fiber holding member, the light transmittance in the wavelength range of 300 nm to 400 nm is 50% or more, and the linear expansion coefficient is 5×10 −5 /° C. or less, so that the optical fiber holding member has ultraviolet transmittance and a low linear expansion coefficient. Furthermore, in this optical fiber holding member, fillers are contained in a predetermined mass ratio, and the particle size distribution of these fillers has peaks in each of a plurality of particle size ranges. In this case, at least two types of fillers, that is, fillers with large particle sizes and fillers with small particle sizes, are contained in the optical fiber holding member, so that the small fillers enter the gaps between the large fillers. As a result, the filling property of the fillers is improved. Therefore, even if the content of the filler is increased, the moldability can be improved without decreasing the fluidity of the molten resin material containing the filler. Therefore, according to this optical fiber holding member, an optical fiber holding member having ultraviolet transmittance and a low linear expansion coefficient can be efficiently manufactured. Furthermore, according to this optical fiber holding member, since it can be manufactured by a molding method with high fluidity, it is easy to make it into a high-precision optical fiber holding member.
 [2]上記[1]の光ファイバ保持部材において、ベース樹脂及びフィラを含む樹脂材料におけるフィラの割合は50質量%以上であり、複数の粒径範囲は、10μm以下の第1粒径範囲と、18μm以上32μm以下の第2粒径範囲とを含んでよい。この場合、第2粒径範囲のピークに相当するフィラ同士の空隙に、第1粒径範囲のピークに相当するフィラが入り込みフィラの充填性が高まる。よって、50質量%以上であるフィラの体積が小さくなり、フィラが効率よく配合される。また、フィラの粒径が小さいため、フィラの流動性が更に高まる。よって、この光ファイバ保持部材によれば、紫外線透過性及び低線膨張率を有しつつ寸法精度の高い光ファイバ保持部材とすることができる。 [2] In the optical fiber holding member of [1] above, the ratio of the filler in the resin material containing the base resin and the filler is 50% by mass or more, and the multiple particle size ranges may include a first particle size range of 10 μm or less and a second particle size range of 18 μm or more and 32 μm or less. In this case, the filler corresponding to the peak of the first particle size range enters the gap between the fillers corresponding to the peak of the second particle size range, improving the filling of the filler. Therefore, the volume of the filler, which is 50% by mass or more, is reduced, and the filler is efficiently blended. In addition, since the particle size of the filler is small, the fluidity of the filler is further improved. Therefore, according to this optical fiber holding member, it is possible to obtain an optical fiber holding member that has ultraviolet transmittance and a low linear expansion coefficient while having high dimensional accuracy.
 [3]上記[2]の光ファイバ保持部材において、樹脂材料におけるフィラの割合が70質量%より大きくてもよい。この場合、線膨張率を更に低減した光ファイバ保持部材とすることができる。 [3] In the optical fiber holding member of [2] above, the proportion of the filler in the resin material may be greater than 70 mass %. In this case, the optical fiber holding member can have a further reduced linear expansion coefficient.
 [4]上記[2]または[3]の光ファイバ保持部材において、第1粒径範囲は、6μm以下であってもよく、第2粒径範囲は、22μm以上28μm以下であってもよい。 [4] In the optical fiber holding member of [2] or [3] above, the first particle size range may be 6 μm or less, and the second particle size range may be 22 μm or more and 28 μm or less.
 [5]上記[1]から[4]のいずれかの光ファイバ保持部材において、ベース樹脂は、シクロオレフィンポリマー、シクロオレフィンコポリマー及びポリカーボネートからなる群より選ばれる少なくとも1種の非晶性熱可塑性樹脂であってもよい。この場合、ベース樹脂が高透明性に加えて耐熱性を有するため、光ファイバ保持部材がさらに耐熱性も有することができる。 [5] In any of the optical fiber holding members described above in [1] to [4], the base resin may be at least one amorphous thermoplastic resin selected from the group consisting of cycloolefin polymers, cycloolefin copolymers, and polycarbonates. In this case, since the base resin has heat resistance in addition to high transparency, the optical fiber holding member can also have heat resistance.
 [6]上記[1]から[5]のいずれかの光ファイバ保持部材において、フィラは、球状のシリカ粒子を含んでおり、シリカ粒子の表面には、表面改質剤が添加されてもよい。この場合、表面改質剤により、ベース樹脂とフィラとの屈折率の差を容易に小さくできる。よって、光ファイバ保持部材に対して紫外線透過性を容易に付与できる。また、フィラが球状のシリカ粒子を含むことから、光ファイバ保持部材の線膨張率の等方性を高めることができる。 [6] In any of the optical fiber holding members [1] to [5] above, the filler contains spherical silica particles, and a surface modifier may be added to the surface of the silica particles. In this case, the surface modifier can easily reduce the difference in refractive index between the base resin and the filler. Therefore, ultraviolet light transmittance can be easily imparted to the optical fiber holding member. In addition, since the filler contains spherical silica particles, the isotropy of the linear expansion coefficient of the optical fiber holding member can be increased.
 [7]上記[1]から[6]のいずれかの光ファイバ保持部材において、フィラの粒径分布は、3つ以上の粒径範囲のそれぞれにピークを有してもよい。 [7] In any of the optical fiber holding members [1] to [6] above, the particle size distribution of the filler may have a peak in each of three or more particle size ranges.
 [8]上記[1]から[7]のいずれかの光ファイバ保持部材には、光ファイバが挿入される開口部、および、開口部から連なる空間と外部とを連通している窓が設けられていてもよく、保持部は、空間内に設けられていてもよい。この場合、光ファイバ保持部材の内部に窓から接着剤を容易に導入できる。 [8] Any of the optical fiber holding members [1] to [7] above may be provided with an opening through which the optical fiber is inserted and a window that connects the space connected to the opening with the outside, and the holding portion may be provided within the space. In this case, adhesive can be easily introduced into the optical fiber holding member through the window.
 本開示の一実施形態に係る光コネクタは、上記[1]から[8]のいずれかの光ファイバ保持部材と、光ファイバ保持部材に紫外線硬化型接着剤で固着された光ファイバと、を備える。この光コネクタによれば、光ファイバ保持部材が紫外線透過性を有しているため、光ファイバを紫外線硬化型接着剤で光ファイバ保持部材に固着させることできる。その結果、光コネクタの製造時間の短縮を図ることができる。 An optical connector according to one embodiment of the present disclosure includes an optical fiber holding member according to any one of [1] to [8] above, and an optical fiber fixed to the optical fiber holding member with an ultraviolet-curing adhesive. According to this optical connector, since the optical fiber holding member is ultraviolet-transparent, the optical fiber can be fixed to the optical fiber holding member with an ultraviolet-curing adhesive. As a result, the manufacturing time of the optical connector can be shortened.
 本開示の一実施形態に係る光ファイバ保持部材の製造方法は、光ファイバ保持部材に対応するキャビティを有する金型を準備する工程と、非晶性熱可塑性樹脂であるベース樹脂と複数種類のフィラとを準備する工程と、フィラの粒子の表面に表面改質剤を添加する工程と、フィラが50質量%以上含まれるように、ベース樹脂とフィラとを混合した樹脂組成物を生成する工程と、樹脂組成物を金型に射出し、光ファイバ保持部材を成形する工程と、を備える。この製造方法では、フィラの粒径分布が複数の粒径範囲のそれぞれにピークを有しているので、フィラが50質量%以上含まれるように容易にフィラを配合できる。したがって、この光ファイバ保持部材の製造方法によれば、紫外線透過性及び低線膨張率を有する光ファイバ保持部材を効率的に製造できる。 A method for manufacturing an optical fiber holding member according to one embodiment of the present disclosure includes the steps of preparing a mold having a cavity corresponding to the optical fiber holding member, preparing a base resin that is an amorphous thermoplastic resin and multiple types of fillers, adding a surface modifier to the surface of the filler particles, generating a resin composition by mixing the base resin and the filler so that the filler is contained at 50% by mass or more, and injecting the resin composition into a mold to mold an optical fiber holding member. In this manufacturing method, since the particle size distribution of the filler has peaks in each of multiple particle size ranges, the filler can be easily blended so that the filler is contained at 50% by mass or more. Therefore, according to this manufacturing method for an optical fiber holding member, an optical fiber holding member having ultraviolet light transmittance and a low linear expansion coefficient can be efficiently manufactured.
 本開示の一実施形態に係る光コネクタの製造方法は、上記[1]から[8]のいずれかの光ファイバ保持部材を準備する工程と、保持部に光ファイバを配置し、光ファイバに紫外線硬化型接着剤を塗布して光ファイバ保持部材の外側から紫外線を照射して紫外線硬化型接着剤を硬化させる工程と、を備える。この光コネクタの製造方法では、光ファイバ保持部材が紫外線透過性を有しているので、紫外線硬化型接着剤を使用できる。これにより、短時間で光ファイバを光ファイバ保持部材に固着させることができる。したがって、この光コネクタの製造方法によれば、紫外線透過性及び低線膨張率を有する光ファイバ保持部材を備えた光コネクタの製造時間を短縮できる。 The method for manufacturing an optical connector according to one embodiment of the present disclosure includes the steps of preparing an optical fiber holding member according to any one of [1] to [8] above, and arranging an optical fiber in the holding portion, applying an ultraviolet-curing adhesive to the optical fiber, and irradiating the optical fiber holding member with ultraviolet light from the outside to cure the ultraviolet-curing adhesive. In this method for manufacturing an optical connector, since the optical fiber holding member is ultraviolet-transparent, an ultraviolet-curing adhesive can be used. This allows the optical fiber to be fixed to the optical fiber holding member in a short time. Therefore, according to this method for manufacturing an optical connector, the manufacturing time of an optical connector equipped with an optical fiber holding member that is ultraviolet-transparent and has a low linear expansion coefficient can be shortened.
[本開示の実施形態の詳細]
 本開示に係る光ファイバ保持部材及び光コネクタの具体例を、以下に図面を参照しつつ説明する。本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
[Details of the embodiment of the present disclosure]
Specific examples of the optical fiber holding member and optical connector according to the present disclosure will be described below with reference to the drawings. The present invention is not limited to these examples, but is indicated by the claims, and is intended to include all modifications within the meaning and scope equivalent to the claims. In the description of the drawings, the same elements are given the same reference numerals, and duplicated descriptions will be omitted.
 図1及び図2は、本実施形態に係る光コネクタの一例を示す図である。図3は、光ファイバ保持部材の一例を示す斜視図である。光コネクタ1は、図1及び図2に示すように、複数の光ファイバ2を含むケーブル3と、複数の光ファイバ2を保持する光ファイバ保持部材4(以下、単に「保持部材4」と記す)と、保持部材4に取り付けられる樹脂製のブーツ5と、を備える。光コネクタ1が他の光モジュールと連結することで、光ファイバ2と他の光モジュールとが光学的に結合される。 FIGS. 1 and 2 are diagrams showing an example of an optical connector according to this embodiment. FIG. 3 is a perspective view showing an example of an optical fiber holding member. As shown in FIGS. 1 and 2, the optical connector 1 comprises a cable 3 including a plurality of optical fibers 2, an optical fiber holding member 4 (hereinafter simply referred to as "holding member 4") that holds the plurality of optical fibers 2, and a resin boot 5 attached to the holding member 4. When the optical connector 1 is connected to another optical module, the optical fiber 2 and the other optical module are optically coupled.
 ケーブル3は、被覆樹脂等により光ファイバ2を覆うことで光ファイバ2を保護する部材である。ケーブル3は、図2に示すように、複数の光ファイバ2を横方向に順に配置している。ケーブル3に含まれる光ファイバ2の数は特に限定されるものではないが、例えば、12本である。光ファイバ2の前端部2aは、ケーブル3の前端3aから露出している。露出した前端部2aは、保持部材4の保持部4f(図3も参照)に配置されている。これにより、前端部2aが、保持部4fに保持される。 The cable 3 is a member that protects the optical fibers 2 by covering them with a coating resin or the like. As shown in FIG. 2, the cable 3 has multiple optical fibers 2 arranged in a horizontal direction. The number of optical fibers 2 included in the cable 3 is not particularly limited, but is, for example, 12. The front ends 2a of the optical fibers 2 are exposed from the front end 3a of the cable 3. The exposed front ends 2a are arranged in the holding portion 4f of the holding member 4 (see also FIG. 3). As a result, the front ends 2a are held by the holding portion 4f.
 保持部材4は、光ファイバ2を保持すると共に光ファイバ2を位置決めする矩形形状の部材である。保持部材4は、後述するように、複数種類のフィラがベース樹脂に混合された樹脂材料から形成されている。保持部材4は、図1から図3に示すように、前端面4aと、後端面4bと、上面4cと、一対のガイド穴4dと、開口部4eと、保持部4fと、窓4gとを有している。前端面4aは、光コネクタ1が他の光モジュールと連結する際に、他の光モジュールと対向する。後端面4bは、前端面4aと対向する。一対のガイド穴4dは、前端面4aから後端面4bにかけて保持部材4の内部を貫通する。一対のガイド穴4dに他の光モジュールの一対のガイドピンが挿入されることで、光コネクタ1と他の光モジュールとが連結される。開口部4eは、後端面4bから保持部材4の中心付近にかけて形成されている。開口部4eにはケーブル3を保持したブーツ5が挿入される。開口部4eから連なる空間内に設けられた保持部4fに光ファイバ2が保持される。 The holding member 4 is a rectangular member that holds the optical fiber 2 and positions the optical fiber 2. As described later, the holding member 4 is formed from a resin material in which multiple types of fillers are mixed with a base resin. As shown in Figures 1 to 3, the holding member 4 has a front end face 4a, a rear end face 4b, an upper face 4c, a pair of guide holes 4d, an opening 4e, a holding portion 4f, and a window 4g. The front end face 4a faces the other optical module when the optical connector 1 is connected to the other optical module. The rear end face 4b faces the front end face 4a. The pair of guide holes 4d penetrate the inside of the holding member 4 from the front end face 4a to the rear end face 4b. The pair of guide pins of the other optical module are inserted into the pair of guide holes 4d, thereby connecting the optical connector 1 to the other optical module. The opening 4e is formed from the rear end face 4b to the vicinity of the center of the holding member 4. The boot 5 holding the cable 3 is inserted into the opening 4e. The optical fiber 2 is held in the holding part 4f, which is provided in the space connected to the opening 4e.
 保持部4fは、図3に示すように、開口部4eから前端面4aにかけて形成され、複数の光ファイバを保持する部分である。保持部4fは、円柱形状の孔であってもよく、円柱形状の孔と当該孔に連続して形成された溝とを組み合わせたものであってもよい。本実施形態に係る光コネクタ1では、保持部4fは、円柱形状の孔と当該孔に連続して形成された溝とから構成されている。ケーブル3から露出した光ファイバ2の前端部2aは、保持部4fに配置され保持される。光ファイバ2の前端面2bは、図2に示すように、前端面4aから露出する。前端面2b及び前端面4aは、他の光モジュールと接続された際に他の光モジュールとの間に隙間が生じないように、研磨されている。 The holding portion 4f is formed from the opening 4e to the front end face 4a as shown in FIG. 3, and is a portion that holds multiple optical fibers. The holding portion 4f may be a cylindrical hole, or may be a combination of a cylindrical hole and a groove formed continuously with the hole. In the optical connector 1 according to this embodiment, the holding portion 4f is composed of a cylindrical hole and a groove formed continuously with the hole. The front end 2a of the optical fiber 2 exposed from the cable 3 is placed and held in the holding portion 4f. The front end face 2b of the optical fiber 2 is exposed from the front end face 4a as shown in FIG. 2. The front end face 2b and the front end face 4a are polished so that no gap is generated between the optical fiber 2 and another optical module when the optical fiber 2 is connected to the other optical module.
 窓4gは、図3に示すように、上面4cから開口部4eにかけて形成され、接着剤(不図示)を保持部材4の内部に導入するための穴である。開口部4eにブーツ5を挿入して光ファイバ2を保持部4fに配置した後、窓4gから接着剤が導入される。これにより、光ファイバ2が保持部材4の保持部4fに固着される。接着剤は、例えば紫外線硬化型接着剤である。 As shown in FIG. 3, the window 4g is formed from the top surface 4c to the opening 4e, and is a hole for introducing adhesive (not shown) into the inside of the holding member 4. After inserting the boot 5 into the opening 4e and placing the optical fiber 2 in the holding portion 4f, adhesive is introduced from the window 4g. This causes the optical fiber 2 to be fixed to the holding portion 4f of the holding member 4. The adhesive is, for example, an ultraviolet-curing adhesive.
 ここで、保持部材4の材料構成について図4を参照しながら説明する。図4は、光ファイバ保持部材におけるベース樹脂とフィラとを模式的に示す図である。保持部材4は、複数種類のフィラ41、42がベース樹脂40に混合された樹脂材料から形成されている。ベース樹脂40は、非晶性熱可塑性樹脂である。ベース樹脂40は、300nm以上400nm以下の波長域を有する紫外線を透過可能な材料から構成されている。ベース樹脂40における300nm以上400nm以下の波長域の光線透過率は少なくとも50%以上である。このようなベース樹脂40は、例えば、シクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、又は、ポリカーボネート(PC)である。保持部材4の光線透過率は、例えばISO13468に準拠した透過率測定により測定される。 Here, the material composition of the holding member 4 will be described with reference to FIG. 4. FIG. 4 is a diagram showing a base resin and a filler in an optical fiber holding member. The holding member 4 is formed from a resin material in which multiple types of fillers 41 and 42 are mixed into a base resin 40. The base resin 40 is an amorphous thermoplastic resin. The base resin 40 is made of a material that can transmit ultraviolet rays having a wavelength range of 300 nm to 400 nm. The light transmittance of the base resin 40 in the wavelength range of 300 nm to 400 nm is at least 50%. Such a base resin 40 is, for example, cycloolefin polymer (COP), cycloolefin copolymer (COC), or polycarbonate (PC). The light transmittance of the holding member 4 is measured by a transmittance measurement in accordance with, for example, ISO13468.
 フィラ41、42は、例えば無機フィラであり、一例として、シリカ(SiO)フィラである。保持部材4におけるフィラ41、42の質量割合は、50質量%以上である。フィラ41、42の質量割合は、60質量%以上であってもよく、65質量%以上であってもよく、70質量%より大きくてもよく、80質量%以上であってもよい。このようにフィラ41、42が高い割合で配合されることにより、保持部材4の線膨張率を5×10-5/℃以下まで低くでき、充填率によっては3×10-5/℃以下まで低くできる。保持部材4の線膨張率は、例えばISO11359に準拠した熱機械分析(TMA;Thermomechanical analysis)により測定される。ここで質量割合とは、保持部材4の全質量(ベース樹脂40とフィラ41、42とを含む樹脂材料の全質量)に対するフィラ41、42の質量の割合である。保持部材4におけるフィラ41、42の質量割合は、例えばISO7111に準拠した熱重量分析(TGA;Thermogravimetric analysis)により測定される。なお、フィラ41、42は、線膨張率を低くできるものであれば、有機フィラであってもよく、無機フィラと有機フィラとの両方が混在したものでもよい。 The fillers 41 and 42 are, for example, inorganic fillers, and as an example, silica (SiO 2 ) fillers. The mass ratio of the fillers 41 and 42 in the holding member 4 is 50 mass% or more. The mass ratio of the fillers 41 and 42 may be 60 mass% or more, 65 mass% or more, more than 70 mass%, or 80 mass% or more. By blending the fillers 41 and 42 at a high ratio in this way, the linear expansion coefficient of the holding member 4 can be reduced to 5×10 −5 /°C or less, and depending on the filling rate, it can be reduced to 3×10 −5 /°C or less. The linear expansion coefficient of the holding member 4 is measured, for example, by thermomechanical analysis (TMA) in accordance with ISO11359. Here, the mass ratio is the ratio of the mass of the fillers 41 and 42 to the total mass of the holding member 4 (the total mass of the resin material including the base resin 40 and the fillers 41 and 42). The mass ratio of the fillers 41, 42 in the holding member 4 is measured by, for example, thermogravimetric analysis (TGA) in accordance with ISO 7111. Note that the fillers 41, 42 may be organic fillers or a mixture of both inorganic fillers and organic fillers as long as they can reduce the linear expansion coefficient.
 ベース樹脂40とフィラ41、42とは、ベース樹脂40とフィラ41、42との屈折率の差が小さくなるように構成されている。屈折率の調整は、既知の方法によって行われてよく、例えばフィラ41、42に屈折率調整用の表面改質剤を添加することによって行われる。表面改質剤としては、シランカップリング剤を例示できる。このように、ベース樹脂40とフィラ41、42との屈折率の差が小さいことで、ベース樹脂40にフィラ41、42を混合した場合であっても、保持部材4における300nm以上400nm以下の波長域の光線透過率を50%以上とすることができる。すなわち、保持部材4は、紫外線透過性を有することができる。保持部材4が紫外線透過性を有するため、窓4gから紫外線硬化型接着剤を導入した際に、保持部材4の外側から紫外線を照射することで接着剤が硬化する。これにより、光ファイバ2を保持部材4に容易に固着させることができる。その結果、光コネクタ1の製造時間を短縮できる。 The base resin 40 and the fillers 41, 42 are configured so that the difference in refractive index between the base resin 40 and the fillers 41, 42 is small. The refractive index may be adjusted by a known method, for example, by adding a surface modifier for adjusting the refractive index to the fillers 41, 42. An example of the surface modifier is a silane coupling agent. In this way, since the difference in refractive index between the base resin 40 and the fillers 41, 42 is small, even when the fillers 41, 42 are mixed with the base resin 40, the light transmittance of the holding member 4 in the wavelength range of 300 nm to 400 nm can be 50% or more. In other words, the holding member 4 can have ultraviolet light transparency. Since the holding member 4 has ultraviolet light transparency, when an ultraviolet-curing adhesive is introduced from the window 4g, the adhesive is cured by irradiating ultraviolet light from the outside of the holding member 4. This makes it possible to easily fix the optical fiber 2 to the holding member 4. As a result, the manufacturing time of the optical connector 1 can be shortened.
 フィラ41、42は、球状の粒子である。ここで球状とは真球状及び略球状を含み、一部に欠け、孔、又は、凹部を有していてもよい。これにより、フィラ41、42は保持部材4内に等方的に配合されるので、保持部材4の線膨張率の等方性を高めることができる。また、前端面4aを研磨した際に、脱離するフィラ41、42が球状であるため、前端面2bが傷つけられることを抑制できる。 The fillers 41, 42 are spherical particles. Here, spherical includes true spherical and nearly spherical, and may have chips, holes, or recesses. As a result, the fillers 41, 42 are isotropically blended into the retaining member 4, which can increase the isotropy of the linear expansion coefficient of the retaining member 4. In addition, since the fillers 41, 42 that fall off when the front end face 4a is polished are spherical, damage to the front end face 2b can be suppressed.
 フィラ41の粒径分布は、概ね正規分布となっており、一つのピークを有している。フィラ42の粒径分布は、概ね正規分布となっており、一つのピークを有している。フィラ42の粒径分布は、第1粒径範囲にピークを有している。フィラ41の粒径分布は、第2粒径範囲にピークを有している。ここで、第1粒径範囲(フィラ42)は10μm以下であり、第2粒径範囲(フィラ41)は18μm以上32μm以下である。第1粒径範囲の上限が第2粒径範囲の下限より小さければ、第1粒径範囲と第2粒径範囲との範囲は特に限定されない。第1粒径範囲が10μm未満、8μm以下、6μm以下、4μm以下であってもよく、第2粒径範囲が20μm以上30μm以下、22μm以上28μm以下であってもよい。このようにフィラ41の粒径分布が第2粒径範囲にピークを有し、フィラ42の粒径分布が第1粒径範囲にピークを有することで、第2粒径範囲のピークに相当する粒径を有するフィラ41同士の空隙に、第1粒径範囲のピークに相当する粒径を有するフィラ42が入り込む。その結果、フィラの充填性を高めることができる。フィラの粒径分布は、3つ以上の粒径範囲のそれぞれにピークを有していてもよい。フィラの粒径分布は、例えばレーザー回折法、光学顕微鏡を用いて測定される。 The particle size distribution of filler 41 is generally normal and has one peak. The particle size distribution of filler 42 is generally normal and has one peak. The particle size distribution of filler 42 has a peak in the first particle size range. The particle size distribution of filler 41 has a peak in the second particle size range. Here, the first particle size range (filler 42) is 10 μm or less, and the second particle size range (filler 41) is 18 μm or more and 32 μm or less. As long as the upper limit of the first particle size range is smaller than the lower limit of the second particle size range, the ranges of the first particle size range and the second particle size range are not particularly limited. The first particle size range may be less than 10 μm, 8 μm or less, 6 μm or less, or 4 μm or less, and the second particle size range may be 20 μm or more and 30 μm or less, or 22 μm or more and 28 μm or less. In this way, the particle size distribution of the filler 41 has a peak in the second particle size range, and the particle size distribution of the filler 42 has a peak in the first particle size range, so that the filler 42 having a particle size corresponding to the peak of the first particle size range enters the gap between the fillers 41 having a particle size corresponding to the peak of the second particle size range. As a result, the filling property of the filler can be improved. The particle size distribution of the filler may have a peak in each of three or more particle size ranges. The particle size distribution of the filler is measured, for example, using a laser diffraction method or an optical microscope.
 次に保持部材4の製造方法について説明する。保持部材4の製造方法では、まず、保持部材4の外形に対応するキャビティを有する金型と内部構造(例えば保持部4f)に対応する入れ子とを準備する。そして、保持部4f等を形成するための入れ子を、キャビティ内の所定の位置に配置する。 Next, a method for manufacturing the retaining member 4 will be described. In the method for manufacturing the retaining member 4, first, a mold having a cavity corresponding to the external shape of the retaining member 4 and a nest corresponding to the internal structure (e.g., retaining portion 4f) are prepared. Then, the nest for forming the retaining portion 4f, etc. is placed at a predetermined position within the cavity.
 続いて、非晶性熱可塑性樹脂であるベース樹脂40とフィラ41、42とを準備する。ここでベース樹脂40は、例えばシクロオレフィンポリマー(COP)、シクロオレフィンコポリマー(COC)、又は、ポリカーボネート(PC)である。 Next, a base resin 40, which is an amorphous thermoplastic resin, and fillers 41 and 42 are prepared. Here, the base resin 40 is, for example, cycloolefin polymer (COP), cycloolefin copolymer (COC), or polycarbonate (PC).
 フィラ41、42は、例えば、異なる粒径分布を有するシリカフィラである。第1粒径範囲のフィラ42は、例えば10μm以下の粒径範囲にピークを有する。第2粒径範囲のフィラ41は、例えば18μm以上32μm以下の粒径範囲にピークを有する。フィラの粒径を調整する際は、第1粒径範囲の上限が第2粒径範囲の下限より小さければ、第1粒径範囲と第2粒径範囲との範囲は特に限定されない。第1粒径範囲のピークが10μm未満、8μm以下、6μm以下、4μm以下であってもよい。第2粒径範囲のピークが20μm以上30μm以下、22μm以上28μm以下であってもよい。ここで準備する異なる粒径分布のフィラ41、42は、3つ以上の粒径範囲のそれぞれにピークを有する異なる種類のフィラであってもよい。フィラの粒径の調整は、例えばフィラを分級する方法があげられるが、他の方法を用いてもよい。 The fillers 41 and 42 are, for example, silica fillers having different particle size distributions. The filler 42 in the first particle size range has a peak in a particle size range of, for example, 10 μm or less. The filler 41 in the second particle size range has a peak in a particle size range of, for example, 18 μm or more and 32 μm or less. When adjusting the particle size of the filler, the ranges of the first particle size range and the second particle size range are not particularly limited as long as the upper limit of the first particle size range is smaller than the lower limit of the second particle size range. The peak of the first particle size range may be less than 10 μm, 8 μm or less, 6 μm or less, or 4 μm or less. The peak of the second particle size range may be 20 μm or more and 30 μm or less, or 22 μm or more and 28 μm or less. The fillers 41 and 42 with different particle size distributions prepared here may be different types of fillers having peaks in three or more particle size ranges. The particle size of the filler can be adjusted, for example, by classifying the filler, but other methods may also be used.
 続いて、ベース樹脂40とフィラ41、42との準備が終了すると、ベース樹脂40とフィラ41、42との屈折率の差が小さくなるようにフィラ41、42の粒子の表面に表面改質剤を添加する。ここで表面改質剤は、例えばシランカップリング剤である。また、このように、ベース樹脂40とフィラ41、42との屈折率の差が小さいことから、成形される光ファイバ保持部材4では、300nm以上400nm以下の波長域の光線透過率を50%以上とすることができる。これにより、光コネクタを製造する際に、紫外線硬化型接着剤を使用できる。 Next, once preparation of the base resin 40 and the fillers 41, 42 is complete, a surface modifier is added to the surfaces of the particles of the fillers 41, 42 so that the difference in refractive index between the base resin 40 and the fillers 41, 42 is small. Here, the surface modifier is, for example, a silane coupling agent. Furthermore, since the difference in refractive index between the base resin 40 and the fillers 41, 42 is thus small, the molded optical fiber holding member 4 can have a light transmittance of 50% or more in the wavelength range of 300 nm to 400 nm. This allows the use of ultraviolet-curing adhesives when manufacturing optical connectors.
 続いて、フィラ41、42への表面改質剤の添加、及び、フィラの粒径の調整が終了すると、フィラが50質量%以上含まれるように、ベース樹脂とフィラとを混合して樹脂組成物を生成する。このように、フィラが50質量%以上含まれることから、成形される光ファイバ保持部材4では、線膨張率を5×10-5/℃以下とすることができる。また、フィラの粒径分布が10μm以下の第1粒径範囲と、18μm以上32μm以下の第2粒径範囲とのそれぞれにピークを有していることから、第2粒径範囲のピークに相当する粒径を有するフィラ41同士の空隙に、第1粒径範囲のピークに相当する粒径を有するフィラ42が入り込む。その結果、樹脂組成物内でのフィラの充填性が高まる。 Next, after the addition of the surface modifier to the fillers 41 and 42 and the adjustment of the particle size of the filler are completed, the base resin and the filler are mixed to produce a resin composition so that the filler is contained in 50 mass% or more. Since the filler is contained in 50 mass% or more, the linear expansion coefficient of the molded optical fiber holding member 4 can be set to 5×10 −5 /° C. or less. In addition, since the particle size distribution of the filler has peaks in a first particle size range of 10 μm or less and a second particle size range of 18 μm or more and 32 μm or less, the filler 42 having a particle size corresponding to the peak of the first particle size range enters into the gap between the fillers 41 having a particle size corresponding to the peak of the second particle size range. As a result, the filling property of the filler in the resin composition is improved.
 続いて、樹脂組成物の生成が終了すると、樹脂組成物を溶融して、金型のキャビティ内に溶融樹脂組成物を射出する。ここではキャビティ内に入れ子が配置された状態で樹脂組成物を射出する。樹脂組成物を射出した後、樹脂組成物を硬化させることによって、保持部材4が成形される。 Next, when the production of the resin composition is completed, the resin composition is melted and the molten resin composition is injected into the cavity of the mold. Here, the resin composition is injected with the nest placed in the cavity. After the resin composition is injected, it is cured to form the holding member 4.
 次に、このような保持部材4を用いて、光コネクタを更に製造する方法について説明する。光コネクタの製造方法では、保持部材4が準備されると、光ファイバ2を保持したケーブル3にブーツ5を取り付ける。そして、このブーツ5を保持部材4の開口部4eに挿入する。その後、ケーブル3から露出した光ファイバ2の前端部2aを、保持部材4の保持部4fに配置する。 Next, a method for further manufacturing an optical connector using such a holding member 4 will be described. In the method for manufacturing an optical connector, once the holding member 4 is prepared, a boot 5 is attached to the cable 3 holding the optical fiber 2. Then, this boot 5 is inserted into the opening 4e of the holding member 4. After that, the front end 2a of the optical fiber 2 exposed from the cable 3 is placed in the holding portion 4f of the holding member 4.
 続いて、保持部4fに光ファイバ2が配置されると、保持部材4の窓4gから紫外線硬化型接着剤を導入して、紫外線硬化型接着剤を光ファイバ2及び保持部4fに塗布する。その後、保持部材4の外側から紫外線を照射し、紫外線硬化型接着剤を硬化させる。これにより、光ファイバ2が保持部材4に固着される。このように、紫外線硬化型接着剤を用いて光ファイバ2を保持部材4に固着させることにより、光コネクタ1の製造時間を短縮できる。以上の製造方法により、上述した光コネクタ1が得られる。 Next, when the optical fiber 2 is placed in the holding portion 4f, an ultraviolet-curing adhesive is introduced through the window 4g of the holding member 4, and the ultraviolet-curing adhesive is applied to the optical fiber 2 and the holding portion 4f. After that, ultraviolet light is irradiated from the outside of the holding member 4 to harden the ultraviolet-curing adhesive. This fixes the optical fiber 2 to the holding member 4. In this way, by fixing the optical fiber 2 to the holding member 4 using an ultraviolet-curing adhesive, the manufacturing time of the optical connector 1 can be shortened. The above-mentioned optical connector 1 can be obtained by the above manufacturing method.
 以上、本実施形態に係る保持部材4では、300nm以上400nm以下の波長域の光線透過率が50%以上であると共に、線膨張率が5×10-5/℃以下となっており、保持部材4が紫外線透過性及び低線膨張率を有する。更に、保持部材4では、フィラ41、42が所定の質量割合だけ含まれ、フィラ41、42の粒径分布が複数の粒径範囲のそれぞれにピークを有している。このように、粒径が大きいフィラ41と粒径が小さいフィラ42との少なくとも2種類のフィラが保持部材4に含まれるため、大きいフィラ41同士の空隙に小さいフィラ42が入り込む。その結果、フィラの充填性が高まる。よって、フィラの含有量を高めたとしても、フィラを含む溶融樹脂材料の流動性を低下させずに成形性を良好なものとすることができる。したがって、保持部材4によれば、紫外線透過性及び低線膨張率を有する保持部材4を効率的に製造できる。また、保持部材4を流動性の高い成形方法で作製できるため、高精度な保持部材4とすることも可能である。 As described above, in the holding member 4 according to this embodiment, the light transmittance in the wavelength region of 300 nm to 400 nm is 50% or more, and the linear expansion coefficient is 5×10 −5 /° C. or less, so that the holding member 4 has ultraviolet transmittance and a low linear expansion coefficient. Furthermore, in the holding member 4, the fillers 41 and 42 are contained at a predetermined mass ratio, and the particle size distribution of the fillers 41 and 42 has peaks in each of a plurality of particle size ranges. In this way, at least two types of fillers, the filler 41 having a large particle size and the filler 42 having a small particle size, are contained in the holding member 4, so that the small filler 42 enters the gap between the large fillers 41. As a result, the filling property of the filler is improved. Therefore, even if the content of the filler is increased, the moldability can be improved without decreasing the fluidity of the molten resin material containing the filler. Therefore, according to the holding member 4, the holding member 4 having ultraviolet transmittance and a low linear expansion coefficient can be efficiently manufactured. In addition, since the holding member 4 can be manufactured by a molding method with high fluidity, it is also possible to obtain a holding member 4 with high precision.
 本実施形態に係る保持部材4では、ベース樹脂40及びフィラ41、42を含む樹脂材料におけるフィラ41、42の割合は50質量%以上であり、複数の粒径範囲は、10μm以下の第1粒径範囲と、18μm以上32μm以下の第2粒径範囲とを含んでいる。これにより、第2粒径範囲のピークに相当するフィラ41同士の空隙に、第1粒径範囲のピークに相当するフィラ42が入り込むことで、フィラの充填性が高まる。よって、50質量%以上であるフィラ41、42の体積が小さくなり、フィラが効率よく配合される。また、フィラ41、42の粒径が小さいため、フィラの流動性が高まる。よって、保持部材4によれば、紫外線透過性及び低線膨張率を有しつつ寸法精度の高い保持部材とすることができる。保持部材4において、樹脂材料におけるフィラ41、42の割合が70質量%より大きくてもよい。これにより、線膨張率を更に低減した保持部材4とすることができる。 In the retaining member 4 according to this embodiment, the ratio of the fillers 41 and 42 in the resin material containing the base resin 40 and the fillers 41 and 42 is 50% by mass or more, and the multiple particle size ranges include a first particle size range of 10 μm or less and a second particle size range of 18 μm or more and 32 μm or less. As a result, the filler 42 corresponding to the peak of the first particle size range enters the gap between the fillers 41 corresponding to the peak of the second particle size range, thereby improving the filling of the filler. Therefore, the volume of the fillers 41 and 42, which are 50% by mass or more, is reduced, and the filler is efficiently blended. In addition, since the particle size of the fillers 41 and 42 is small, the fluidity of the filler is increased. Therefore, according to the retaining member 4, it is possible to obtain a retaining member with high dimensional accuracy while having ultraviolet transmittance and a low linear expansion coefficient. In the retaining member 4, the ratio of the fillers 41 and 42 in the resin material may be greater than 70% by mass. As a result, it is possible to obtain a retaining member 4 with a further reduced linear expansion coefficient.
 本実施形態に係る保持部材4では、ベース樹脂40は、シクロオレフィンポリマー、シクロオレフィンコポリマー及びポリカーボネートからなる群より選ばれる少なくとも1種の非晶性熱可塑性樹脂である。これにより、ベース樹脂40が高透明性に加えて耐熱性を有するため、保持部材4の耐熱性も更に高めることができる。 In the retaining member 4 according to this embodiment, the base resin 40 is at least one amorphous thermoplastic resin selected from the group consisting of cycloolefin polymer, cycloolefin copolymer, and polycarbonate. This gives the base resin 40 high transparency and heat resistance, which further enhances the heat resistance of the retaining member 4.
 本実施形態に係る保持部材4では、フィラ41、42は、球状のシリカ粒子を含んでおり、シリカ粒子の表面には、表面改質剤が添加されている。保持部材4にフィラ41、42が配合されても、表面改質剤により、ベース樹脂40とフィラ41、42との屈折率の差を容易に小さくできる。よって、保持部材4に対して紫外線透過性を容易に付与できる。フィラ41、42が球状のシリカ粒子を含むことから、保持部材4の線膨張率の等方性を高めることができる。 In the retaining member 4 according to this embodiment, the fillers 41 and 42 contain spherical silica particles, and a surface modifier is added to the surface of the silica particles. Even if the fillers 41 and 42 are blended into the retaining member 4, the difference in refractive index between the base resin 40 and the fillers 41 and 42 can be easily reduced by the surface modifier. Therefore, UV transparency can be easily imparted to the retaining member 4. Because the fillers 41 and 42 contain spherical silica particles, the isotropy of the linear expansion coefficient of the retaining member 4 can be increased.
 本実施形態に係る光コネクタ1は、上述した保持部材4と、保持部材4に紫外線硬化型接着剤で固着された光ファイバ2とを備えている。この光コネクタ1では、上述したように、保持部材4が紫外線透過性を有しているため、光ファイバ2を紫外線硬化型接着剤で保持部材4に容易に固着させることができる。その結果、光コネクタ1の製造時間の短縮を図ることができる。また、光コネクタ1では、保持部材4に対して上述した割合のフィラが混合されているため、線膨張率の低い光コネクタ1とすることができる。 The optical connector 1 according to this embodiment includes the holding member 4 described above, and the optical fiber 2 fixed to the holding member 4 with an ultraviolet-curing adhesive. As described above, in this optical connector 1, the holding member 4 is ultraviolet-transparent, so the optical fiber 2 can be easily fixed to the holding member 4 with an ultraviolet-curing adhesive. As a result, the manufacturing time of the optical connector 1 can be shortened. In addition, in the optical connector 1, the filler is mixed into the holding member 4 in the ratio described above, so that the optical connector 1 can have a low linear expansion coefficient.
 本実施形態に係る保持部材4の製造方法は、保持部材4に対応するキャビティを有する金型を準備する工程と、非晶性熱可塑性樹脂であるベース樹脂40とフィラ41、42とを準備する工程と、フィラ41、42の粒子の表面に表面改質剤を添加する工程と、フィラ41、42が50質量%以上含まれるように、ベース樹脂40とフィラ41、42とを混合した樹脂組成物を生成する工程と、樹脂組成物を金型に射出し、保持部材4を成形する工程と、を備える。この製造方法では、フィラ41、42の粒径分布が複数の粒径範囲のそれぞれにピークを有している。このため、フィラ41、42が50質量%以上含まれるように容易にフィラを配合できる。したがって、この保持部材4の製造方法によれば、紫外線透過性及び低線膨張率を有する保持部材を効率的に製造できる。 The manufacturing method of the retaining member 4 according to this embodiment includes the steps of preparing a mold having a cavity corresponding to the retaining member 4, preparing a base resin 40, which is an amorphous thermoplastic resin, and fillers 41 and 42, adding a surface modifier to the surfaces of the particles of the fillers 41 and 42, producing a resin composition by mixing the base resin 40 and the fillers 41 and 42 so that the fillers 41 and 42 are contained at 50% by mass or more, and injecting the resin composition into a mold to mold the retaining member 4. In this manufacturing method, the particle size distribution of the fillers 41 and 42 has peaks in each of a plurality of particle size ranges. Therefore, the fillers can be easily mixed so that the fillers 41 and 42 are contained at 50% by mass or more. Therefore, according to this manufacturing method of the retaining member 4, a retaining member having ultraviolet transmittance and a low linear expansion coefficient can be efficiently manufactured.
 本実施形態に係る光コネクタ1の製造方法は、光ファイバ保持部材4を準備する工程と、保持部4fに光ファイバ2を配置し、光ファイバ2に紫外線硬化型接着剤を塗布して保持部材4の外側から紫外線を照射して紫外線硬化型接着剤を硬化させる工程と、を備えている。このように、保持部材4が紫外線透過性を有しているので、紫外線硬化型接着剤を使用できる。その結果、短時間で光ファイバ2を保持部材4に固着させることができる。したがって、この光コネクタ1の製造方法によれば、低線膨張率を有する保持部材4を備えた光コネクタ1の製造時間を短縮できる。 The manufacturing method of the optical connector 1 according to this embodiment includes the steps of preparing the optical fiber holding member 4, placing the optical fiber 2 in the holding portion 4f, applying an ultraviolet-curing adhesive to the optical fiber 2, and irradiating the holding member 4 with ultraviolet light from the outside to cure the ultraviolet-curing adhesive. In this way, since the holding member 4 is ultraviolet-transparent, an ultraviolet-curing adhesive can be used. As a result, the optical fiber 2 can be fixed to the holding member 4 in a short time. Therefore, according to this manufacturing method of the optical connector 1, the manufacturing time of the optical connector 1 equipped with the holding member 4 having a low linear expansion coefficient can be shortened.
 以上、本開示の実施形態について詳細に説明してきたが、本発明は上記実施形態に限定されるものではなく様々な実施形態に適用することができる。例えば、上記の実施形態では、保持部材4がフェルールの場合の例について説明したが、基板上で光ファイバとシリコンフォトニクスとを接続する光ファイバアレイの構成に、本開示の実施形態を適用してもよい。 The above describes in detail the embodiments of the present disclosure, but the present invention is not limited to the above embodiments and can be applied to various embodiments. For example, in the above embodiment, an example was described in which the holding member 4 is a ferrule, but the embodiments of the present disclosure may also be applied to the configuration of an optical fiber array that connects optical fibers and silicon photonics on a substrate.
1…光コネクタ
2…光ファイバ
2a…前端部
2b…前端面
3…ケーブル
3a…前端
4…光ファイバ保持部材(保持部材)
4a…前端面
4b…後端面
4c…上面
4d…ガイド穴
4e…開口部
4f…保持部
4g…窓
5…ブーツ
40…ベース樹脂
41,42…フィラ
 
1...optical connector 2...optical fiber 2a...front end portion 2b...front end surface 3...cable 3a...front end 4...optical fiber holding member (holding member)
4a...front end surface 4b...rear end surface 4c...upper surface 4d...guide hole 4e...opening 4f...holding portion 4g...window 5...boot 40... base resin 41, 42...filler

Claims (11)

  1.  光ファイバを保持するように構成された保持部を備えた光ファイバ保持部材であって、
     前記光ファイバ保持部材は、ベース樹脂及び複数種類のフィラを含んで構成され、
     前記光ファイバ保持部材における300nm以上400nm以下の波長域の光線透過率が50%以上であると共に、前記光ファイバ保持部材の線膨張率が5×10-5/℃以下であり、
     前記フィラの粒径分布は、複数の粒径範囲のそれぞれにピークを有する、
    光ファイバ保持部材。
    An optical fiber holding member having a holding portion configured to hold an optical fiber,
    The optical fiber holding member is configured to include a base resin and a plurality of types of fillers,
    the optical fiber holding member has a light transmittance of 50% or more in a wavelength region of 300 nm or more and 400 nm or less, and the optical fiber holding member has a linear expansion coefficient of 5×10 −5 /° C. or less;
    The particle size distribution of the filler has peaks in each of a plurality of particle size ranges.
    Optical fiber holding member.
  2.  前記ベース樹脂及び前記フィラを含む樹脂材料における前記フィラの割合が50質量%以上であり、
     前記複数の粒径範囲は、10μm以下の第1粒径範囲と、18μm以上32μm以下の第2粒径範囲とを含む、
    請求項1に記載の光ファイバ保持部材。
    The ratio of the filler in a resin material containing the base resin and the filler is 50 mass% or more,
    The plurality of particle size ranges include a first particle size range of 10 μm or less and a second particle size range of 18 μm or more and 32 μm or less.
    2. The optical fiber holding member according to claim 1.
  3.  前記樹脂材料における前記フィラの割合が70質量%より大きい、
    請求項2に記載の光ファイバ保持部材。
    The proportion of the filler in the resin material is greater than 70 mass%.
    3. The optical fiber holding member according to claim 2.
  4.  前記第1粒径範囲は、6μm以下であり、
     前記第2粒径範囲は、22μm以上28μm以下である、
    請求項2に記載の光ファイバ保持部材。
    the first particle size range is 6 μm or less;
    The second particle size range is 22 μm or more and 28 μm or less.
    3. The optical fiber holding member according to claim 2.
  5.  前記ベース樹脂は、シクロオレフィンポリマー、シクロオレフィンコポリマー及びポリカーボネートからなる群より選ばれる少なくとも1種の非晶性熱可塑性樹脂である、
    請求項1に記載の光ファイバ保持部材。
    The base resin is at least one amorphous thermoplastic resin selected from the group consisting of cycloolefin polymers, cycloolefin copolymers, and polycarbonates.
    2. The optical fiber holding member according to claim 1.
  6.  前記フィラは、球状のシリカ粒子を含んでおり、
     前記シリカ粒子の表面には、表面改質剤が添加されている、
    請求項1に記載の光ファイバ保持部材。
    The filler includes spherical silica particles,
    A surface modifier is added to the surface of the silica particles.
    2. The optical fiber holding member according to claim 1.
  7.  前記フィラの粒径分布は、3つ以上の粒径範囲のそれぞれにピークを有する、
    請求項1に記載の光ファイバ保持部材。
    The particle size distribution of the filler has peaks in each of three or more particle size ranges.
    2. The optical fiber holding member according to claim 1.
  8.  前記光ファイバが挿入される開口部、および、前記開口部から連なる空間と外部とを連通している窓が設けられており、
     前記保持部は、前記空間内に設けられている、
    請求項1に記載の光ファイバ保持部材。
    an opening into which the optical fiber is inserted, and a window communicating a space connected to the opening with the outside,
    The holding portion is provided in the space.
    2. The optical fiber holding member according to claim 1.
  9.  請求項1から請求項8のいずれか1項に記載の光ファイバ保持部材と、
     前記光ファイバ保持部材に紫外線硬化型接着剤で固着された光ファイバと、
    を備えた光コネクタ。
    An optical fiber holding member according to any one of claims 1 to 8,
    an optical fiber fixed to the optical fiber holding member with an ultraviolet curing adhesive;
    An optical connector comprising:
  10.  光ファイバ保持部材に対応するキャビティを有する金型を準備する工程と、
     非晶性熱可塑性樹脂であるベース樹脂と複数種類のフィラとを準備する工程と、
     前記フィラの粒子の表面に表面改質剤を添加する工程と、
     前記フィラが50質量%以上含まれるように前記ベース樹脂と前記フィラとを混合した樹脂組成物を生成する工程と、
     前記樹脂組成物を前記金型内に射出し、前記光ファイバ保持部材を成形する工程と、
    を備え、
     前記フィラの粒径分布は、複数の粒径範囲のそれぞれにピークを有する、
    光ファイバ保持部材の製造方法。
    preparing a mold having a cavity corresponding to the optical fiber holding member;
    A step of preparing a base resin which is an amorphous thermoplastic resin and a plurality of types of fillers;
    adding a surface modifier to the surface of the filler particles;
    A step of producing a resin composition by mixing the base resin and the filler so that the filler is contained in an amount of 50 mass% or more;
    a step of injecting the resin composition into the mold to mold the optical fiber holding member;
    Equipped with
    The particle size distribution of the filler has peaks in each of a plurality of particle size ranges.
    A method for manufacturing an optical fiber holding member.
  11.  請求項1から請求項8のいずれか1項に記載の光ファイバ保持部材を準備する工程と、
     前記保持部に前記光ファイバを配置し、前記光ファイバに紫外線硬化型接着剤を塗布して前記光ファイバ保持部材の外側から紫外線を照射して前記紫外線硬化型接着剤を硬化させる工程と、
    を備える、光コネクタの製造方法。
     
    A step of preparing an optical fiber holding member according to any one of claims 1 to 8;
    a step of placing the optical fiber in the holding part, applying an ultraviolet-curing adhesive to the optical fiber, and curing the ultraviolet-curing adhesive by irradiating ultraviolet light from the outside of the optical fiber holding member;
    A method for manufacturing an optical connector comprising:
PCT/JP2023/033238 2022-11-28 2023-09-12 Optical fiber holding member, optical connector, method for manufacturing optical fiber holding member, and method for manufacturing optical connector WO2024116542A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-189118 2022-11-28
JP2022189118 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024116542A1 true WO2024116542A1 (en) 2024-06-06

Family

ID=91323481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033238 WO2024116542A1 (en) 2022-11-28 2023-09-12 Optical fiber holding member, optical connector, method for manufacturing optical fiber holding member, and method for manufacturing optical connector

Country Status (1)

Country Link
WO (1) WO2024116542A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264581A (en) * 2000-03-17 2001-09-26 Sumitomo Electric Ind Ltd Positioning component for optical fiber
US6481900B1 (en) * 2001-06-15 2002-11-19 The Furukawa Electric Co., Ltd. Optical ferrule
JP2003185886A (en) * 2001-10-09 2003-07-03 Sumitomo Electric Ind Ltd Optical connector and method for manufacturing the same
JP2007249053A (en) * 2006-03-17 2007-09-27 Sumitomo Metal Mining Co Ltd Resin material for optical fiber array
WO2017170689A1 (en) * 2016-03-31 2017-10-05 古河電気工業株式会社 Optical fiber array
WO2021200636A1 (en) * 2020-03-31 2021-10-07 古河電気工業株式会社 Optical connector and optical connector connection structure
WO2022065245A1 (en) * 2020-09-25 2022-03-31 住友電気工業株式会社 Ferrule, optical connector, and optical connection structure
WO2022113435A1 (en) * 2020-11-27 2022-06-02 株式会社フジクラ Ferrule and optical connector

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264581A (en) * 2000-03-17 2001-09-26 Sumitomo Electric Ind Ltd Positioning component for optical fiber
US6481900B1 (en) * 2001-06-15 2002-11-19 The Furukawa Electric Co., Ltd. Optical ferrule
JP2003185886A (en) * 2001-10-09 2003-07-03 Sumitomo Electric Ind Ltd Optical connector and method for manufacturing the same
JP2007249053A (en) * 2006-03-17 2007-09-27 Sumitomo Metal Mining Co Ltd Resin material for optical fiber array
WO2017170689A1 (en) * 2016-03-31 2017-10-05 古河電気工業株式会社 Optical fiber array
WO2021200636A1 (en) * 2020-03-31 2021-10-07 古河電気工業株式会社 Optical connector and optical connector connection structure
WO2022065245A1 (en) * 2020-09-25 2022-03-31 住友電気工業株式会社 Ferrule, optical connector, and optical connection structure
WO2022113435A1 (en) * 2020-11-27 2022-06-02 株式会社フジクラ Ferrule and optical connector

Similar Documents

Publication Publication Date Title
US20170315306A1 (en) Methods for securing an optical fiber to a ferrule and optical connectors formed by such methods
US5473721A (en) Multi-mode optical circuit to couple light between various optical elements and method of fabricating same
WO2017170689A1 (en) Optical fiber array
US7116868B2 (en) Optical branch device and optical coupler module
KR20160148626A (en) Matrix-free polymer nanocomposites and related products and methods thereof
JP2009134262A (en) Optical connector
US20030190130A1 (en) Multiple optical pathway fiber optic cable
WO2024116542A1 (en) Optical fiber holding member, optical connector, method for manufacturing optical fiber holding member, and method for manufacturing optical connector
JP3433422B2 (en) Multi-core ferrule for optical connector with guide hole
CN101093263B (en) Optical waveguide, method of manufacturing the same and optical communication module
CN1739048A (en) Polymeric optical device structures having controlled topographic and refractive index profiles
CN107111008A (en) The manufacture method of optical element and optical element
JP2018169581A (en) Optical connector
WO2022260068A1 (en) Multicore optical connector ferrule and optical module
JP2002372603A (en) Optical part for optical communication and method for manufacturing the same
KR101038223B1 (en) Interconnection technique of polymer splitter and polymer fiber array
JP3801933B2 (en) Manufacturing method of optical member
WO2020209365A1 (en) Optical connector and method for manufacturing optical connector
KR100935866B1 (en) Optical waveguide using epoxy resin and the fabricating methods thereof
JPH09152522A (en) Structure for connecting optical fiber aligning parts and optical waveguide substrate
JP3161656B2 (en) Manufacturing method of optical fiber array
JP2004013106A (en) Optical module
WO2024024348A1 (en) Ferrule, method for manufacturing ferrule, ferrule-equipped fiber ribbon, and method for manufacturing ferrule-equipped fiber ribbon
US20040132948A1 (en) Organic/inorganic composite optical material and optical element
JP3747927B2 (en) Manufacturing method of optical fiber alignment parts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23897201

Country of ref document: EP

Kind code of ref document: A1