WO2024116352A1 - Power converter control device and power converter - Google Patents

Power converter control device and power converter Download PDF

Info

Publication number
WO2024116352A1
WO2024116352A1 PCT/JP2022/044267 JP2022044267W WO2024116352A1 WO 2024116352 A1 WO2024116352 A1 WO 2024116352A1 JP 2022044267 W JP2022044267 W JP 2022044267W WO 2024116352 A1 WO2024116352 A1 WO 2024116352A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
command value
adjustment
motor
torque
Prior art date
Application number
PCT/JP2022/044267
Other languages
French (fr)
Japanese (ja)
Inventor
学 関口
高見 鈴木
康平 大西
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to PCT/JP2022/044267 priority Critical patent/WO2024116352A1/en
Publication of WO2024116352A1 publication Critical patent/WO2024116352A1/en

Links

Images

Definitions

  • the present invention relates to a power converter control device and a power converter.
  • a motor control device that performs vector control of an AC motor based on the d-axis and q-axis.
  • a motor control device that performs such vector control generates a d-axis current command value id* and a q-axis current command value iq*, and controls the drive of the AC motor based on these d-axis current command value id* and q-axis current command value iq*.
  • Patent Document 1 discloses a motor control method for an electric vehicle that performs the above-mentioned vector control.
  • the motor control method for an electric vehicle disclosed in Patent Document 1 generates a magnetic flux command value from a torque command value, and further determines a current command value based on a map that shows the relationship between the torque command value, the magnetic flux command value, and the current command value (the d-axis current command value id* and the q-axis current command value iq*).
  • the MTPA Maximum Torque Per Ampere
  • the response characteristics to the torque command value change depending on both the rotation speed and the output voltage of the DC power supply.
  • the electric vehicle motor control method disclosed in Patent Document 1 may have difficulty in ensuring the accuracy of the output torque relative to the torque command value.
  • the present invention was made in consideration of the above-mentioned problems, and aims to improve the accuracy of the output torque relative to the torque command value when controlling a motor.
  • the present invention adopts the following configuration as a means for solving the above problems.
  • One aspect of the present invention is a power converter control device that controls a power converter that performs power conversion between a DC power source and a motor, and is configured to include a magnetic flux command value generation unit that determines a magnetic flux command value based on a torque command value, a current command value generation unit that determines a current command value for controlling the motor based on the torque command value and the magnetic flux command value, and a current command value adjustment unit that adjusts the current command value based on the torque command value, a rotation detection value that indicates the rotation speed of the motor, and a DC voltage value that indicates the output voltage of the DC power source.
  • a current command value generated by a current command value generation unit is adjusted by a current command value adjustment unit.
  • the current command value adjustment unit adjusts the current command value based on a rotation detection value indicating the motor's rotation speed and a DC voltage value indicating the output voltage of a DC power supply, in addition to the torque command value. Therefore, in one aspect of the present invention, the current command value can be adjusted according to both the rotation detection value and the DC voltage value. Therefore, the present invention can reduce the difference between the torque command value and the output torque even when the motor's rotation speed and DC voltage value change, and can improve the accuracy of the output torque relative to the torque command value.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a motor control device according to a first embodiment of the present invention
  • 1 is a block diagram showing a functional configuration of a power converter control device according to a first embodiment of the present invention
  • FIG. 2 is a block diagram showing a functional configuration of a torque control unit in the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing a functional configuration of a magnetic flux command value generating unit in the first embodiment of the present invention.
  • FIG. 4 is a conceptual diagram of a current command value map in the first embodiment of the present invention.
  • 3 is a block diagram showing a functional configuration of a current command value adjusting unit in the first embodiment of the present invention.
  • FIG. 4 is a conceptual diagram of an adjustment value map in the first embodiment of the present invention.
  • 1 is a schematic diagram for explaining the operation and effect of the power converter control device in the first embodiment of the present invention
  • 1 is a schematic diagram for explaining the operation and effect of the power converter control device in the first embodiment of the present invention
  • 1 is a schematic diagram for explaining the operation and effect of the power converter control device in the first embodiment of the present invention
  • FIG. 11 is a block diagram showing a functional configuration of a power converter control device according to a second embodiment of the present invention.
  • FIG. 1 is a circuit diagram showing a schematic configuration of a motor control device 1 (power conversion device) according to this embodiment. As shown in this diagram, the motor control device 1 includes a power converter 2 and a power converter control device 3.
  • the power converter 2 is disposed between the motor M and the battery P (DC power source) and performs power conversion between the motor M and the battery P.
  • the power converter 2 includes a step-up/step-down converter 2a, a drive inverter 2b, and a power generation inverter 2c.
  • the step-up/step-down converter 2a steps up the DC voltage output from the battery P at a predetermined step-up ratio.
  • the step-up/step-down converter 2a steps down the DC voltage output from the drive inverter 2b or the power generation inverter 2c at a predetermined step-down ratio. As shown in FIG.
  • the step-up/step-down converter 2a includes, for example, a plurality of capacitors, a transformer, and a plurality of power semiconductor elements for transformation.
  • the power semiconductor elements IGBTs (Insulated Gate Bipolar Transistors) and SiC-MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) can be used.
  • Such a buck-boost converter 2a is a power circuit known as a magnetically coupled interleaved chopper circuit.
  • the buck-boost converter 2a selectively performs a boost operation in which it boosts the DC power input from the battery P via a pair of battery terminals and outputs it to the drive inverter 2b, and a step-down operation in which it steps down the DC power input from the drive inverter 2b or the power generation inverter 2c and outputs it to the battery P via a pair of battery terminals.
  • the buck-boost converter 2a is a power conversion circuit that inputs and outputs DC power in both directions between the battery P and the drive inverter 2b or the power generation inverter 2c.
  • the drive inverter 2b converts the DC power output from the battery P into AC power based on a PWM (Pulse Width Modulation) signal from the power converter control device 3 and supplies it to the motor M.
  • the drive inverter 2b also converts the AC power output from the motor M into DC power based on the PWM signal from the power converter control device 3 and supplies it to the step-up/step-down converter 2a.
  • a drive inverter 2b has three switching legs and is equipped with a total of six drive power semiconductor elements.
  • Such a drive inverter 2b has three (multiple) switching legs corresponding to the number of phases of the motor M.
  • This drive inverter 2b is a power conversion circuit that selectively performs a power running operation and a regenerative operation. That is, the drive inverter 2b selectively performs a power running operation in which the DC power input from the step-up/step-down converter 2a is converted into three-phase AC power and output to the motor M via three motor terminals, and a regenerative operation in which the three-phase AC power input from the motor M is converted into DC power via the three motor terminals and output to the step-up/step-down converter 2a. That is, the drive inverter 2b is a power circuit that converts DC power and three-phase AC power between the step-up/step-down converter 2a and the motor M.
  • the power generation inverter 2c converts the AC power output from the generator G into DC power based on a PWM signal from the power converter control device 3 and supplies it to the step-up/step-down converter 2a. Like the drive inverter 2b, this power generation inverter 2c also has three switching legs and is equipped with a total of six drive power semiconductor elements.
  • Such a power generation inverter 2c has three (multiple) switching legs corresponding to the number of phases of the generator G.
  • This power generation inverter 2c is a power conversion circuit that converts three-phase AC power input from the generator G via three generator terminals into DC power and outputs it to the step-up/step-down converter 2a.
  • this power generation inverter 2c is a power circuit that converts DC power and three-phase AC power between the step-up/step-down converter 2a and the generator G.
  • the battery P has a positive electrode connected to the positive battery terminal E1 and a negative electrode connected to the negative battery terminal E2.
  • This battery P is a secondary battery such as a lithium ion battery, and discharges DC power to the motor control device 1 and charges DC power via the motor control device 1.
  • the power converter control device 3 includes a gate driver and an ECU (Electronic Control Unit).
  • the gate driver is a circuit that generates a gate signal based on various duty command values (transformation duty command value, drive duty command value, and power generation duty command value) input from the ECU. For example, the gate driver generates a gate signal to be supplied to the step-up/step-down converter 2a based on the transformation duty command value input from the ECU. The gate driver also generates a gate signal to be supplied to the drive inverter 2b based on the drive duty command value input from the ECU. The gate driver also generates a gate signal to be supplied to the power generation inverter 2c based on the power generation duty command value input from the ECU.
  • the ECU is a control circuit that performs a predetermined control process based on a control program stored in advance.
  • This ECU outputs various duty command values (transformation duty command value, drive duty command value, and power generation duty command value) generated based on the above control process to the gate driver.
  • Such an ECU controls the drive of the motor M and the charging of the battery P via the power converter 2 and the gate driver.
  • this ECU generates various duty command values (transformation duty command value, drive duty command value, and power generation duty command value) for the step-up/step-down converter 2a, the drive inverter 2b, and the power generation inverter 2c based on the detection values (voltage detection values) of the voltage sensors and the detection values (current detection values) of the current sensors that are additionally provided to the step-up/step-down converter 2a, the drive inverter 2b, and the power generation inverter 2c, as well as operation information of the electric vehicle, etc.
  • various duty command values transformation duty command value, drive duty command value, and power generation duty command value
  • the power converter control device 3 also includes a storage unit 3a, as shown in FIG. 1.
  • the storage unit 3a stores the above-mentioned control programs and various data.
  • the storage unit 3a stores a current command value map Ma, as shown in FIG. 1.
  • the current command value map Ma is a map used when the power converter control device 3 determines a current command value for controlling the motor M. This current command value map Ma will be described in detail later.
  • the memory unit 3a also stores an adjustment value map Mb.
  • the adjustment value map Mb is a map used when setting an adjustment value for adjusting the current command value. This adjustment value map Mb will also be described in detail later.
  • FIG. 2 is a block diagram showing the functional configuration of the power converter control device 3.
  • the motor control device 1 includes a current sensor 4, a rotation angle sensor 5, and a voltage sensor 6, as shown in FIG. 2.
  • the current sensor 4 detects each phase current between the motor M and the power converter 2, and outputs the detection result to the power converter control device 3. Note that multiple current sensors 4 may be provided between the power converter 2 and the motor M, or may be provided inside the power converter 2.
  • the current sensor 4 is not particularly limited as long as it is configured to detect the phase current of each phase, but may include, for example, a current transformer (CT) with a transformer or a Hall element.
  • CT current transformer
  • the current sensor 4 may also be a shunt resistor.
  • the rotation angle sensor 5 detects the rotation angle of the motor M.
  • the rotation angle of the motor M is the electrical angle of the rotor from a predetermined reference rotation position.
  • the rotation angle sensor 5 outputs a detection signal indicating the detected rotation angle to the power converter control device 3.
  • the rotation angle sensor 5 may include a resolver.
  • the rotation speed of the motor M (motor rotation speed) can be calculated based on the detection signal output from the rotation angle sensor 5. In other words, the rotation angle sensor 5 outputs a detection signal that includes the motor rotation speed as information.
  • the voltage sensor 6 detects the output voltage of the battery P.
  • the voltage sensor 6 is shown separated from the battery P, but in reality, the voltage sensor 6 is connected to the wiring connected to the battery P, and outputs the voltage value between the positive and negative electrodes as a DC bus voltage value (DC voltage detection value Vdcf).
  • This DC voltage detection value Vdcf is a DC voltage value that indicates the output voltage of the battery P, which is a DC power source.
  • the power converter control device 3 includes a torque control unit 11, a current detection unit 12, a three-phase/dq conversion unit 13, an angular velocity calculation unit 14, a current control unit 15, a dq/three-phase conversion unit 16, and a PWM control unit 17 as functional units embodied by, for example, the above-mentioned gate driver and ECU.
  • the torque control unit 11 receives an uncompensated torque command value T* from the outside. Based on the uncompensated torque command value T*, the torque control unit 11 generates a d-axis current command value id*, which is the target value of the d-axis current of the motor M, and a q-axis current command value iq*, which is the target value of the q-axis current of the motor M. The torque control unit 11 also outputs the generated d-axis current command value id* and q-axis current command value iq* to the current control unit 15.
  • FIG. 3 is a block diagram showing the functional configuration of the torque control unit 11.
  • the torque control unit 11 includes a torque command value generation unit 10, a magnetic flux command value generation unit 20, a current command value generation unit 30, a current command value adjustment unit 40, and a rotation speed calculation unit 50.
  • the torque command value generating unit 10 generates a compensated torque command value Tecmp* from the pre-compensated torque command value T* based on the torque feedback value calculated based on the state of the motor M.
  • the method of calculating the torque feedback value is not particularly limited.
  • the torque feedback value can be obtained based on a value indicating the state of the motor M (e.g., the state of the output torque or the temperature state) acquired by a detector (not shown).
  • the compensated torque command value Tecmp* is a torque command value obtained by correcting the pre-compensated torque command value T* to match the actual output torque based on the torque feedback value.
  • the compensated torque command value Tecmp* is input to the magnetic flux command value generating unit 20 and the current command value adjusting unit 40 as a torque command value.
  • the flux command value generating unit 20 generates a flux command value (in this embodiment, a compensated flux command value ⁇ ocmp*, which will be described later) based on the compensated torque command value Tecmp*.
  • FIG. 4 is a block diagram of the flux command value generating unit 20. As shown in this figure, the flux command value generating unit 20 includes a flux linkage command calculator 21, a flux linkage command limit calculator 22, a flux linkage command limit restricting unit 23, a flux linkage calculator 24, a PI controller 25, a flux linkage compensation limit calculator 26, and a flux linkage compensation limit restricting unit 27.
  • the flux linkage command calculator 21 calculates a pre-compensation flux linkage command value ⁇ o* (pre-compensation flux command value) based on the compensated torque command value Tecmp*.
  • the motor rotation speed Nf rotation detection value
  • This motor rotation speed Nf is a value calculated by the rotation speed calculation unit 50 based on the angular speed ⁇ , as described below.
  • the angular speed ⁇ is calculated based on the output value of the rotation angle sensor 5. Therefore, the motor rotation speed Nf is a rotation detection value indicating the rotation speed of the motor M.
  • the angular speed ⁇ is also a rotation detection value indicating the rotation speed of the motor M.
  • the flux linkage command calculator 21 also receives the DC voltage detection value Vdcf. For example, the flux linkage command calculator 21 determines the modulation factor coefficient gmref used in the power converter 2 based on a map that determines the modulation factor coefficient gmref using the compensated torque command value Tecmp*, the motor speed Nf, and the DC voltage detection value Vdcf as parameters. Furthermore, the flux linkage command calculator 21 calculates the pre-compensation flux linkage command value ⁇ o* based on the modulation factor coefficient gmref, the motor speed Nf, and the DC voltage detection value Vdcf.
  • the flux linkage command calculator 21 also calculates the flux estimation error ⁇ based on the modulation factor coefficient gmref, the compensated torque command value Tecmp*, the angular velocity ⁇ , the DC voltage detection value Vdcf, the d-axis current command value id* (current command value), the q-axis current command value iq* (current command value), and the armature resistance minimum value Ramin.
  • the flux linkage command calculator 21 also calculates the pre-compensation flux linkage command value ⁇ o* using the flux estimation error ⁇ .
  • the following formula (1) is an example of a formula for calculating the flux estimation error ⁇ .
  • ⁇ fx in formula (1) can be calculated, for example, by the following formula (2).
  • the pre-compensation interlinkage flux command value ⁇ o* can be calculated, for example, by the following formula (3).
  • k ⁇ 1 ⁇ in formulas (1) and (3) is a value obtained by the following formula (4).
  • the armature resistance minimum value Ramin is stored in advance, for example, in the memory unit 3a.
  • the flux linkage command calculator 21 calculates the flux estimation error ⁇ based on equations (1) and (2).
  • the flux linkage command calculator 21 also calculates the pre-compensation flux linkage command value ⁇ o* based on equation (3).
  • the flux linkage command limit calculator 22 calculates a flux linkage command upper limit ⁇ omax and a flux linkage command lower limit ⁇ omin based on the compensated torque command value Tecmp*, the motor speed Nf, and the DC voltage detection value Vdcf.
  • the flux linkage command upper limit ⁇ omax (maximum flux linkage value) is the maximum flux linkage value that can be set for the compensated torque command value Tecmp*, assuming that field control is possible.
  • the flux linkage command lower limit ⁇ omin is the minimum flux linkage value that can be set for the compensated torque command value Tecmp*, assuming that field control is possible.
  • the flux linkage command limit calculator 22 determines the flux linkage command upper limit value ⁇ omax based on a flux linkage limit map for field control that indicates the maximum value of the flux linkage command value for each value of the compensated torque command value Tecmp*.
  • the flux linkage command lower limit value ⁇ omin may be a predetermined value instead of being calculated.
  • the flux linkage command limit restriction unit 23 restricts the upper and lower limits of the pre-compensation flux linkage command value ⁇ o* calculated by the flux linkage command limit calculator 21 based on the flux linkage command upper limit value ⁇ omax and the flux linkage command lower limit value ⁇ omin calculated by the flux linkage command limit calculator 22. In other words, when the pre-compensation flux linkage command value ⁇ o* input from the flux linkage command calculator 21 is greater than the flux linkage command upper limit value ⁇ omax, the flux linkage command limit restriction unit 23 replaces the value of the pre-compensation flux linkage command value ⁇ o* with the value of the flux linkage command upper limit value ⁇ omax and outputs it.
  • the flux linkage command limiter 23 replaces the value of the pre-compensation flux linkage command value ⁇ o* with the value of the flux linkage command lower limit value ⁇ omin and outputs it.
  • the pre-compensation flux linkage command value ⁇ o* output from the flux linkage command limiter 23 is referred to as the pre-compensation flux linkage command value ⁇ off*.
  • the flux linkage calculator 24 calculates the flux linkage feedback value ⁇ of (flux feedback value) based on the angular velocity ⁇ . For example, the voltage command value V* (d-axis voltage command value Vd* and q-axis voltage command value Vq*) is fed back to the flux linkage calculator 24 from the current control unit 15 shown in FIG. 2. The flux linkage calculator 24 calculates the flux linkage feedback value ⁇ of based on the angular velocity ⁇ indicating the current motor rotation speed input from the angular velocity calculator 14 and the current voltage command value V* input from the current control unit 15.
  • the PI controller 25 calculates the flux compensation value d ⁇ obuf* based on the deviation ⁇ oerr between the pre-compensation flux linkage command value ⁇ off* and the flux linkage feedback value ⁇ of.
  • the deviation ⁇ oerr calculated by the subtractor 28 is input.
  • the subtractor 28 calculates the deviation ⁇ oerr by subtracting the flux linkage feedback value ⁇ of input via a low-pass filter (LPF) from the pre-compensation flux linkage command value ⁇ off* input via a low-pass filter (LPF).
  • LPF low-pass filter
  • the PI controller 25 calculates the magnetic flux compensation value d ⁇ obuf* by adding together a value obtained by multiplying the deviation ⁇ oerr by the proportional gain and a value obtained by multiplying the deviation ⁇ oerr by the integral gain and then integrating the result. In this way, the PI controller 25 calculates the magnetic flux compensation value d ⁇ obuf* based on an operation using the proportional gain and an operation using the integral gain.
  • feedback anti-windup processing may be performed so that the integral term does not saturate.
  • a value is obtained by subtracting the flux compensation value d ⁇ o* (described later) output from the flux linkage compensation limiter 27 from the pre-compensation flux linkage command value ⁇ off* output from the PI controller 25. This value is then multiplied by the reciprocal of the proportional gain used in the PI controller 25 to obtain a value, which is then subtracted from the deviation ⁇ oerr, and the integral gain is then multiplied as described above.
  • the flux linkage compensation limit calculator 26 calculates the limit value used in the flux linkage compensation limit limiter 27.
  • the flux linkage compensation limiter 27 calculates an upper limit value d ⁇ omax that limits the upper limit value of the flux compensation value d ⁇ obuf*.
  • the calculated upper limit value d ⁇ omax is supplied to the flux linkage compensation limiter 27.
  • the flux linkage compensation limit calculator 26 also calculates a lower limit value d ⁇ omin that limits the lower limit value of the flux compensation value d ⁇ obuf*.
  • the calculated lower limit value d ⁇ omin is supplied to the flux linkage compensation limiter 27.
  • the flux linkage compensation limit calculator 26 calculates the upper limit value d ⁇ omax and the lower limit value d ⁇ omin based on the pre-compensation flux linkage command value ⁇ o* input from the flux linkage command calculator 21 and the flux linkage command upper limit value ⁇ omax input from the flux linkage command limit calculator 22.
  • the limitation of the flux compensation value d ⁇ obuf* by the flux linkage compensation limit limiting unit 27 described later is useful when performing field weakening control on the motor M. Furthermore, when the pre-compensation flux linkage command value ⁇ o* is smaller than the flux linkage command upper limit value ⁇ omax, it can be determined that field weakening control is necessary. Therefore, when the pre-compensation flux linkage command value ⁇ o* is smaller than the flux linkage command upper limit value ⁇ omax, the flux linkage compensation limit calculator 26 calculates the upper limit value d ⁇ omax and the lower limit value d ⁇ omin so that the upper and lower limits of the flux compensation value d ⁇ obuf* are limited.
  • the flux linkage compensation limit calculator 26 sets the upper limit value d ⁇ omax and the lower limit value d ⁇ omin so that the upper and lower limits of the flux compensation value d ⁇ obuf* are zero.
  • the flux linkage compensation limit calculator 26 may calculate the upper limit value d ⁇ omax and the lower limit value d ⁇ omin using the pre-compensation flux linkage command value ⁇ off* output from the flux linkage command limiter 23 instead of the pre-compensation flux linkage command value ⁇ o*.
  • the upper limit value d ⁇ omax and the lower limit value d ⁇ omin may also be calculated using the pre-compensation flux linkage command value ⁇ o* and the pre-compensation flux linkage command value ⁇ off*.
  • the flux linkage compensation limit restricting unit 27 restricts the upper and lower limits of the flux compensation value d ⁇ obuf* based on the limit values.
  • the flux linkage compensation limit restricting unit 27 restricts the upper and lower limits of the flux compensation value d ⁇ obuf* based on the upper limit value d ⁇ omax and the lower limit value d ⁇ omamin input from the flux linkage compensation limit calculator 26.
  • the interlinkage flux compensation limiter 27 replaces the value of the flux compensation value d ⁇ obuf* with the upper limit value d ⁇ omax and outputs it. Also, when the flux compensation value d ⁇ obuf* input from the PI controller 25 is smaller than the lower limit value d ⁇ omin, the interlinkage flux compensation limiter 27 replaces the value of the flux compensation value d ⁇ obuf* with the lower limit value d ⁇ omin and outputs it.
  • the flux compensation value d ⁇ obuf* output from the interlinkage flux compensation limiter 27 is referred to as the flux compensation value d ⁇ o*.
  • the flux command value generating unit 20 includes an adder 29 that adds the pre-compensation flux linkage command value ⁇ off* and the flux compensation value d ⁇ o* to calculate and output the post-compensation flux command value ⁇ ocmp*.
  • the adder 29 calculates the post-compensation flux command value ⁇ ocmp* from the pre-compensation flux linkage command value ⁇ off* based on the flux compensation value d ⁇ o*.
  • the compensated torque command value Tecmp*, the motor speed Nf, the angular speed ⁇ , and the DC voltage detection value Vdcf are input to the flux linkage command calculator 21.
  • the flux linkage command calculator 21 determines the pre-compensation flux linkage command value ⁇ o* based on the compensated torque command value Tecmp*, the motor speed Nf, the angular speed ⁇ , and the DC voltage detection value Vdcf.
  • the flux linkage command limit calculator 22 determines the flux linkage command upper limit value ⁇ omax and the flux linkage command lower limit value ⁇ omin based on the compensated torque command value Tecmp*, the motor speed Nf, and the DC voltage detection value Vdcf.
  • the pre-compensation flux linkage command value ⁇ o* is limited in the flux linkage command limiter 23 based on the flux linkage command upper limit value ⁇ omax or the flux linkage command lower limit value ⁇ omin as necessary, and is output as the pre-compensation flux linkage command value ⁇ off*.
  • the flux linkage calculator 24 calculates the flux linkage feedback value ⁇ of based on the angular velocity ⁇ and the voltage command value V*.
  • the pre-compensation flux linkage command value ⁇ off* is input to the subtractor 28 via a low-pass filter.
  • the flux linkage feedback value ⁇ of is also input to the subtractor 28 via a low-pass filter.
  • the subtractor 28 calculates the deviation ⁇ oerr by subtracting the flux linkage feedback value ⁇ of from the pre-compensation flux linkage command value ⁇ off*.
  • the deviation ⁇ oerr is input to the PI controller 25.
  • the PI controller 25 calculates the magnetic flux compensation value d ⁇ obuf* by adding a value obtained by multiplying the deviation ⁇ oerr by a proportional gain and a value obtained by multiplying the deviation ⁇ oerr by an integral gain and then integrating the result.
  • the pre-compensation flux linkage command value ⁇ o* output from the flux linkage command calculator 21 and the flux linkage command upper limit value ⁇ omax output from the flux linkage command limit calculator 22 are input to the flux linkage compensation limit calculator 26.
  • the flux linkage compensation limit calculator 26 calculates an upper limit value d ⁇ omax that limits the upper limit of the flux compensation value d ⁇ obuf* based on the pre-compensation flux linkage command value ⁇ o* and the flux linkage command upper limit value ⁇ omax.
  • the flux linkage compensation limit calculator 26 also calculates a lower limit value d ⁇ omin that limits the lower limit of the flux compensation value d ⁇ obuf* based on the pre-compensation flux linkage command value ⁇ o* and the flux linkage command upper limit value ⁇ omax.
  • the flux compensation value d ⁇ obuf* output from the PI controller 25 is limited in the flux linkage compensation limiter 27 based on the upper limit value d ⁇ omax or the lower limit value d ⁇ omin as necessary, and is output as the flux compensation value d ⁇ o*.
  • the pre-compensation flux linkage command value ⁇ off* output from the flux linkage command limit limiter 23 and the flux compensation value d ⁇ o* output from the flux linkage compensation limiter 27 are input to an adder 29.
  • the adder 29 adds the pre-compensation flux linkage command value ⁇ off* and the flux compensation value d ⁇ o* to calculate a post-compensation flux command value ⁇ ocmp*.
  • the calculated post-compensation flux command value ⁇ ocmp* is input to a current command value generator 30 shown in FIG. 3.
  • this post-compensation flux command value ⁇ ocmp* is input to the current command value generation unit 30 as the flux command value.
  • the flux command value calculated using the interlinkage flux feedback value ⁇ of (flux feedback value) is input to the current command value generation unit 30. Therefore, the current command value generation unit 30 can calculate the pre-adjustment current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) described below, including the components caused by the interlinkage flux feedback value ⁇ of.
  • the current command value generating unit 30 determines the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase* based on the compensated torque command value Tecmp* and the compensated magnetic flux command value ⁇ ocmp*.
  • the current command value generating unit 30 determines the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase* based on the current command value map Ma stored in the memory unit 3a.
  • FIG. 5 is a conceptual diagram of the current command value map Ma.
  • the current command value map Ma is a two-dimensional map with the compensated torque command value Tecmp* and the compensated magnetic flux command value ⁇ ocmp* as parameters.
  • the pre-adjustment d-axis current command value idbase* and the pre-compensated q-axis current command value iqbase* are associated with the compensated torque command value Tecmp* and the compensated magnetic flux command value ⁇ ocmp*.
  • the current command value generator 30 refers to this current command value map Ma to determine the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase* based on the compensated torque command value Tecmp* and the compensated magnetic flux command value ⁇ ocmp*.
  • the current command value adjustment unit 40 determines the d-axis current command value id* and the q-axis current command value iq* by adjusting the pre-adjustment d-axis current command value and the q-axis current command value (the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase*) based on the input compensated torque command value Tecmp*, motor rotation speed Nf, and DC voltage detection value Vdcf.
  • the d-axis current command value id* and the q-axis current command value iq* are the d-axis current command value and the q-axis current command value adjusted by the current command value adjustment unit 40.
  • FIG. 6 is a block diagram showing the functional configuration of the current command value adjustment unit 40. As shown in this figure, the current command value adjustment unit 40 has an adjustment value setting unit 41 and an adder 42 (adder-subtracter).
  • the current command value adjustment unit 40 has an adjustment value setting unit 41 and an adder 42 (adder-subtracter).
  • the adjustment value setting unit 41 sets an adjustment value based on the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf.
  • the adjustment value setting unit 41 sets an adjustment value based on the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf, with reference to the adjustment value map Mb stored in the memory unit.
  • FIG. 7 is a conceptual diagram of the adjustment value map Mb.
  • the adjustment value map Mb is a three-dimensional map in which a plurality of two-dimensional maps M1 are provided according to the DC voltage value. For example, one two-dimensional map M1 is provided for each 1V DC voltage value. Note that the number of V of the DC voltage for which the two-dimensional map M1 is provided can be changed arbitrarily.
  • Each two-dimensional map M1 is a map with the compensated torque command value Tecmp* and the motor speed Nf as parameters.
  • the adjustment value (d-axis current adjustment value ariaj* and q-axis current adjustment value iqadj*) is associated with the compensated torque command value Tecmp* and the motor speed Nf.
  • the adjustment value setting unit 41 refers to such an adjustment value map Mb and sets the adjustment value based on the compensated torque command value Tecmp*, the motor speed Nf, and the DC voltage detection value Vdcf.
  • adjustment values are determined in advance by experiments and simulations. Depending on the values of the compensated torque command value Tecmp*, the motor rotation speed Nf, or the DC voltage detection value Vdcf, there may be cases where the d-axis current command value and the q-axis current command value do not need to be changed by adjustment. For this reason, the adjustment value that meets the condition where the d-axis current command value and the q-axis current command value do not need to be changed by adjustment is set to "0".
  • the values of the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase* do not change due to adjustment, and are output from the current command value adjustment unit 40 as the d-axis current command value id* and the q-axis current command value iq*.
  • the adder 42 adds the adjustment value to the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase*.
  • the adder 42 adds the d-axis current adjustment value idadj* to the pre-adjustment d-axis current command value idbase*.
  • the adder 42 also adds the q-axis current adjustment value iqadj* to the pre-adjustment q-axis current command value iqbase*.
  • the d-axis current command value id* is obtained by adding the d-axis current adjustment value ariaj* to the pre-adjustment d-axis current command value idbase*.
  • the q-axis current command value iq* is obtained by adding the q-axis current adjustment value iqadj* to the pre-adjustment q-axis current command value iqbase*.
  • the adjustment value may be set as a value to be subtracted from the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase*. In such a case, a subtractor is provided instead of the adder 42.
  • the rotation speed calculation unit 50 calculates the motor rotation speed Nf from the angular speed ⁇ input from the angular speed calculation unit 14.
  • the rotation speed calculation unit 50 may also calculate the motor rotation speed Nf from the electrical angle acquired from the rotation angle sensor 5.
  • the rotation speed calculation unit 50 outputs the calculated motor rotation speed Nf to the magnetic flux command value generation unit 20 and the current command value adjustment unit 40.
  • the torque control unit 11 includes a rotation speed calculation unit 50.
  • the rotation speed calculation unit 50 may be any map in which the rotation detection value indicating the motor rotation speed, such as the motor rotation speed Nf or the angular speed ⁇ , is used as a parameter.
  • the motor rotation speed Nf which is one of the parameters of the current command value map Ma
  • the angular speed ⁇ it is not necessary to input the motor rotation speed Nf calculated by the rotation speed calculation unit 50 to the current command value adjustment unit 40.
  • the current detection unit 12 detects the current value iu flowing through the U-phase coil of the motor M (hereinafter referred to as the "U-phase current value”), the current value iv flowing through the V-phase coil of the motor M (hereinafter referred to as the "V-phase current value”), and the current value iw flowing through the W-phase coil of the motor M (hereinafter referred to as the "W-phase current value”) from the detection results of each current sensor 4.
  • the current detection unit 12 then outputs the detected U-phase current value iu, V-phase current value iv, and W-phase current value iw to the three-phase/dq conversion unit 13.
  • the three-phase/dq conversion unit 13 converts the U-phase current value iu, the V-phase current value iv, and the W-phase current value iw obtained from the current detection unit 12 into a d-axis current value id and a q-axis current value iq in the dq coordinate system using the electrical angle obtained from the rotation angle sensor 5.
  • the three-phase/dq conversion unit 13 outputs the d-axis current value id and the q-axis current value iq to the current control unit 15.
  • the angular velocity calculation unit 14 calculates the angular velocity ⁇ (rotation detection value) based on the electrical angle of the motor M output from the rotation angle sensor 5.
  • the angular velocity calculation unit 14 outputs the calculated angular velocity ⁇ to the current control unit 15.
  • the current control unit 15 calculates the d-axis voltage command value Vd* based on the d-axis current command value id*.
  • the current control unit 15 calculates the q-axis voltage command value Vq* based on the q-axis current command value iq*.
  • the current control unit 15 outputs the d-axis voltage command value Vd* and the q-axis voltage command value Vq* to the dq/three-phase conversion unit 16.
  • the power converter 2 is driven based on the PWM signals (the above-mentioned PWM signals Du, Dv, and Dw) input from the PWM control unit 17, thereby controlling the rotation of the motor M.
  • PWM signals the above-mentioned PWM signals Du, Dv, and Dw
  • the torque command value generating unit 10 generates a compensated torque command value Tecmp* from the pre-compensated torque command value T* based on the torque feedback value.
  • the compensated torque command value Tecmp* is input to the flux command value generating unit 20, the current command value generating unit 30, and the current command value adjusting unit 40.
  • the flux command value generating unit 20 generates a compensated flux command value ⁇ ocmp* based on the compensated torque command value Tecmp*.
  • the compensated flux command value ⁇ ocmp* is input to the current command value generating unit 30.
  • the d-axis current command value id* and the q-axis current command value iq* are calculated based on the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf.
  • the power converter control device 3 provided in the motor control device 1 of this embodiment as described above controls the power converter 2 that performs power conversion between the battery P and the motor M.
  • the power converter control device 3 of this embodiment includes a flux command value generating unit 20, a current command value generating unit 30, and a current command value adjusting unit 40.
  • the flux command value generating unit 20 determines a compensated flux command value ⁇ ocmp* based on the compensated torque command value Tecmp*.
  • the current command value generating unit 30 determines current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) for controlling the motor M based on the compensated torque command value Tecmp* and the compensated flux command value ⁇ ocmp*.
  • the current command value adjustment unit 40 adjusts the current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) based on the compensated torque command value Tecmp*, the motor rotation speed Nf indicating the rotation speed of the motor M, and the DC voltage detection value Vdcf indicating the output voltage of the battery P.
  • the power converter control device 3 of this embodiment adjusts the current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) generated by the current command value generation unit 30 in the current command value adjustment unit 40.
  • the current command value adjustment unit 40 adjusts the current command value based on the motor rotation speed Nf indicating the rotation speed of the motor M and the DC voltage detection value Vdcf indicating the output voltage of the battery P in addition to the compensated torque command value Tecmp*. Therefore, the power converter control device 3 of this embodiment can adjust the current command value according to both the motor rotation speed Nf and the DC voltage detection value Vdcf.
  • the power converter control device 3 of this embodiment can reduce the difference between the compensated torque command value Tecmp* and the output torque even if the motor M rotation speed and the DC voltage detection value Vdcf change, and can improve the accuracy of the output torque relative to the compensated torque command value Tecmp*.
  • the compensated torque command value Tecmp* is a value between a plurality of values (grid points) set in the current command value map Ma
  • linear interpolation is performed to obtain the d-axis current command value id* and the q-axis current command value iq*.
  • the compensated torque command value Tecmp* is not a value obtained by linear interpolation of two lattice points (i.e., it is not located on a line connecting two lattice points)
  • the search for a point where it converges in the magnetic flux feedback process continues, and it is considered that the d-axis current command value id* and the q-axis current command value iq* cannot converge.
  • the d-axis current command value id* and the q-axis current command value iq* become unstable and oscillate, and the output torque becomes unstable.
  • the d-axis current command value id* and the q-axis current command value iq* can be adjusted to converge using an adjustment value, making it possible to stabilize the output torque.
  • FIG. 8 and 9 are schematic diagrams for explaining the action and effect of the power converter control device 3 of this embodiment.
  • FIG. 8 and FIG. 9 are schematic diagrams showing the transition of the current operating point in the id-iq plane.
  • MTPA line minimum current maximum torque line
  • FIG. 8 when the motor M is driven at maximum output, the current operating point transitions so as to follow the minimum current maximum torque line (MTPA line) that provides the highest efficiency. If such a minimum current maximum torque line is set in the control so as to be only one line independent of the motor rotation speed Nf or the output voltage of the battery P, torque accuracy cannot be ensured when the actual minimum current maximum torque line changes as shown by the dashed line in FIG. 8 depending on the state of the motor rotation speed Nf or the output voltage of the battery P.
  • MTPA line minimum current maximum torque line
  • the power converter control device 3 of this embodiment can set different magnetic flux limit circles in the control depending on the state of the motor rotation speed Nf or the output voltage of the battery P. Therefore, it is possible to ensure torque accuracy even when the motor rotation speed Nf or the output voltage of the battery P is low.
  • Figure 10 is a graph showing the relationship between the motor rotation speed Nf and the actual output torque Te of the motor M. As shown in this figure, in the region R1 where the output torque Te is close to 0 Nm, it is difficult to ensure torque accuracy when controlling using a single two-dimensional map with the motor rotation speed and magnetic flux command value as parameters.
  • the torque command value generating unit 10 may determine the torque command value without using the torque feedback value. In such a case, it is difficult to ensure torque accuracy when controlling using a single two-dimensional map with the motor rotation speed and magnetic flux command value as parameters.
  • the current command value adjustment unit 40 includes an adjustment value setting unit 41 and an adder 42.
  • the adjustment value setting unit 41 sets an adjustment value based on the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf.
  • the adder 42 adds the adjustment value to the current command value.
  • the current command value can be adjusted by simply adding the adjustment value to the current command value. Therefore, the power converter control device 3 of this embodiment can ensure torque accuracy while suppressing the amount of calculation.
  • the power converter control device 3 of the above embodiment also includes a storage unit 3a.
  • the storage unit 3a stores an adjustment value map Mb that indicates the relationship between the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf, and the adjustment value.
  • the adjustment value setting unit 41 also sets the adjustment value based on the adjustment value map Mb.
  • the power converter control device 3 of this embodiment can easily set the adjustment value by referring to the adjustment value map Mb. Therefore, the power converter control device 3 of this embodiment can easily determine the current command value.
  • adjustment value map Mb it is possible to set the adjustment value finely in a range where the torque accuracy is likely to decrease, and set the adjustment value coarsely in a range where the torque accuracy is unlikely to decrease.
  • Setting the adjustment value finely means setting many adjustment values in a certain change range of the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf in the adjustment value map Mb.
  • the storage capacity of the adjustment value map Mb can be reduced. This makes it possible to reduce the storage area allocated to the adjustment value map Mb in the storage unit 3a, and other data, etc.
  • the power converter control device 3 of this embodiment makes it possible to store the adjustment value map Mb in the storage unit 3a even in such vehicles that are compatible with OTA.
  • the power converter control device 3 of this embodiment also includes a torque command value generation unit 10.
  • the torque command value generation unit 10 is capable of determining the compensated torque command value Tecmp* using a torque feedback value calculated based on the state of the motor M. Furthermore, when the torque command value generation unit 10 determines the compensated torque command value Tecmp* without using the torque feedback value, the current command value adjustment unit 40 changes the value of the current command value. This makes it possible to ensure torque accuracy even when the torque command value generation unit 10 determines the compensated torque command value Tecmp* without using the torque feedback value.
  • the flux command value generating unit 20 determines the compensated flux command value ⁇ ocmp* using the flux feedback value calculated based on the state of the motor M. Therefore, the power converter control device 3 of this embodiment can determine a current command value that reflects the flux linkage feedback value ⁇ of. Therefore, the power converter control device 3 of this embodiment can further improve the torque accuracy.
  • the motor control device 1 of this embodiment also includes a power converter 2 and a power converter control device 3. Therefore, the motor control device 1 of this embodiment can improve the torque accuracy with respect to the compensated torque command value Tecmp*.
  • FIG. 11 is a schematic diagram of the power converter control device 3 of this embodiment.
  • the memory unit 3a stores a current command value map Mc for MTPA control, a current command value map Md for waste electricity control, an adjustment value map Me for MTPA control, and an adjustment value map Mf for waste electricity control.
  • the current command value map Mc for MTPA control is a current command value map Ma used to determine a current command value when performing MTPA control (maximum torque/current control) on the motor M.
  • the current command value map Mc for MTPA control is a map in which the current command values based on MTPA control (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) are associated with the compensated torque command value Tecmp* and the compensated magnetic flux command value ⁇ ocmp*.
  • the current command value map Md for waste electricity control is a current command value map Ma used to determine a current command value when waste electricity control (strengthened magnetic field control) is performed on the motor M.
  • the current command value map Md for waste electricity control is a map in which the current command values based on waste electricity control (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) are associated with the compensated torque command value Tecmp* and the compensated magnetic flux command value ⁇ ocmp*.
  • the adjustment value map Me for MTPA control is an adjustment value map Mb used to determine adjustment values when performing MTPA control on the motor M.
  • the adjustment value map Me for MTPA control is a map in which adjustment values (d-axis current adjustment value idadj* and q-axis current adjustment value iqadj*) according to the current command value based on MTPA control are associated with the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf.
  • the waste electricity control adjustment value map Mf is an adjustment value map Mb used to determine adjustment values when waste electricity control is performed on the motor M.
  • the waste electricity control adjustment value map Mf is a map in which adjustment values (d-axis current adjustment value ariaj* and q-axis current adjustment value iqadj*) according to the current command value based on waste electricity control are associated with the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf.
  • the current command value generating unit 30 determines the control state of the motor M based on, for example, a signal input from the outside. Specifically, the current command value generating unit 30 determines whether the control state of the motor M is MTPA control or waste electricity control. Similarly, the adjustment value setting unit 41 of the current command value adjusting unit 40 also determines whether the control state of the motor M is MTPA control or waste electricity control.
  • the current command value generating unit 30 refers to the current command value map Mc for MTPA control to determine the current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*).
  • the adjustment value setting unit 41 of the current command value adjusting unit 40 refers to the adjustment value map Me for MTPA control to set the adjustment values (d-axis current adjustment value idadj* and q-axis current adjustment value iqadj*).
  • the current command value generating unit 30 refers to the waste electricity control current command value map Md to determine the current command values (the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase*). Also, when the control state of the motor M is waste electricity control, the adjustment value setting unit 41 of the current command value adjusting unit 40 refers to the waste electricity control adjustment value map Mf to set the adjustment values (the d-axis current adjustment value idadj* and the q-axis current adjustment value iqadj*).
  • the storage unit 3a stores the MTPA control adjustment value map Me as the adjustment value map Mb used when performing MTPA control on the motor M. Furthermore, the adjustment value setting unit 41 sets adjustment values based on the MTPA control adjustment value map Me when performing MTPA control on the motor M. According to the power converter control device 3 of this embodiment, the current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) can be adjusted using adjustment values suitable for MTPA control.
  • the memory unit 3a stores an adjustment value map Mf for waste electricity control as an adjustment value map Mb used when performing waste electricity control on the motor M. Furthermore, the adjustment value setting unit 41 sets an adjustment value based on the adjustment value map Mf for waste electricity control when performing waste electricity control on the motor M. According to the power converter control device 3 of this embodiment, the current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) can be adjusted using adjustment values suitable for waste electricity control.
  • different current command values pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*
  • different adjustment values d-axis current adjustment value idadj* and q-axis current adjustment value iqadj*
  • a power converter control device that controls a power converter that performs power conversion between a DC power source and a motor, a magnetic flux command value generating unit that calculates a magnetic flux command value based on a torque command value; a current command value generating unit that calculates a current command value for controlling the motor based on the torque command value and the magnetic flux command value; a current command value adjustment unit that adjusts the current command value based on the torque command value, a rotation detection value indicating a rotation speed of the motor, and a DC voltage value indicating an output voltage of the DC power supply.
  • the current command value adjustment unit an adjustment value setting unit that sets an adjustment value based on the torque command value, the rotation detection value, and the DC voltage value; an adder/subtractor that adds/subtracts the adjustment value to/from the current command value.
  • (Appendix 3) a storage unit configured to store an adjustment value map indicating a relationship between the torque command value, the rotation detection value, and the DC voltage value, and the adjustment value;
  • the power converter control device configured to store an adjustment value map indicating a relationship between the torque command value, the rotation detection value, and the DC voltage value, and the adjustment value;
  • the storage unit stores a maximum torque/current control adjustment value map as the adjustment value map used when maximum torque/current control is performed on the motor; 4.
  • the adjustment value setting unit sets the adjustment value based on a maximum torque/current control adjustment value map when maximum torque/current control is performed on the motor.
  • the storage unit stores an adjustment value map for strong magnetic field control as the adjustment value map used when performing strong magnetic field control on the motor; 5.
  • the adjustment value setting unit sets the adjustment value based on a strong magnetic field control adjustment value map when the strong magnetic field control is performed on the motor.
  • Appendix 8 A power conversion device comprising the power converter and the power converter control device according to any one of appendices 1 to 7.

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

This power converter control device controls a power converter for performing power conversion between a DC power supply and a motor and comprises: a magnetic flux command value generation unit that obtains a magnetic flux command value on the basis of a torque command value; a current command value generation unit that obtains, on the basis of the torque command value and the magnetic flux command value, a current command value for controlling the motor; and a current command value adjustment unit that adjusts the current command value on the basis of the torque command value, a rotation detection value indicating the rotational speed of the motor, and a DC voltage value indicating the output voltage of the DC power supply.

Description

電力変換器制御装置及び電力変換器Power converter control device and power converter
 本発明は、電力変換器制御装置及び電力変換器に関するものである。 The present invention relates to a power converter control device and a power converter.
 交流モータをd軸及びq軸に基づいてベクトル制御するモータ制御装置が知られている。このようなベクトル制御を行うモータ制御装置は、d軸電流指令値id*とq軸電流指令値iq*とを生成し、これらのd軸電流指令値id*及びq軸電流指令値iq*に基づいて交流モータの駆動を制御している。例えば、特許文献1には、上述のようなベクトル制御を行う電気自動車用モータ制御方法が開示されている。特許文献1に開示された電気自動車用モータ制御方法は、トルク指令値から磁束指令値を生成し、さらにトルク指令値と磁束指令値と電流指令値(d軸電流指令値id*及びq軸電流指令値iq*)との関係を示すマップに基づいて、電流指令値を求めている。 A motor control device is known that performs vector control of an AC motor based on the d-axis and q-axis. A motor control device that performs such vector control generates a d-axis current command value id* and a q-axis current command value iq*, and controls the drive of the AC motor based on these d-axis current command value id* and q-axis current command value iq*. For example, Patent Document 1 discloses a motor control method for an electric vehicle that performs the above-mentioned vector control. The motor control method for an electric vehicle disclosed in Patent Document 1 generates a magnetic flux command value from a torque command value, and further determines a current command value based on a map that shows the relationship between the torque command value, the magnetic flux command value, and the current command value (the d-axis current command value id* and the q-axis current command value iq*).
日本国特許第6192263号公報Japanese Patent No. 6192263
 しかしながら、実際に車両に搭載されたモータにおいては、モータの回転数や直流電源の出力電圧の変化に応じてMTPA(Maximum Torque Per Ampere)ラインが変化したり、磁束制限円の中心点が変化したりする場合がある。つまり、実際に車両に搭載されたモータにおいては、回転数と直流電源の出力電圧との両方の要因によって、トルク指令値に対する応答特性が変化する。このため、特許文献1のようにトルク指令値及び磁束指令値と基づいて、単一のマップから電流指令値を求める場合には、トルク指令値と出力トルクとの差が大きくなる場合がある。したがって、特許文献1に開示された電気自動車用モータ制御方法は、トルク指令値に対する出力トルクの精度を確保することが困難となることがある。 However, in a motor actually mounted on a vehicle, the MTPA (Maximum Torque Per Ampere) line may change or the center point of the magnetic flux limit circle may change depending on the motor rotation speed and the output voltage of the DC power supply. In other words, in a motor actually mounted on a vehicle, the response characteristics to the torque command value change depending on both the rotation speed and the output voltage of the DC power supply. For this reason, when the current command value is calculated from a single map based on the torque command value and the magnetic flux command value as in Patent Document 1, the difference between the torque command value and the output torque may become large. Therefore, the electric vehicle motor control method disclosed in Patent Document 1 may have difficulty in ensuring the accuracy of the output torque relative to the torque command value.
 本発明は、上述する問題点に鑑みてなされたもので、モータを制御する場合に、トルク指令値に対する出力トルク精度を向上させることを目的とする。 The present invention was made in consideration of the above-mentioned problems, and aims to improve the accuracy of the output torque relative to the torque command value when controlling a motor.
 本発明は、上記課題を解決するための手段として、以下の構成を採用する。 The present invention adopts the following configuration as a means for solving the above problems.
 本発明の一態様は、直流電源とモータとの間で電力変換を行う電力変換器を制御する電力変換器制御装置であって、トルク指令値に基づいて磁束指令値を求める磁束指令値生成部と、上記トルク指令値及び上記磁束指令値に基づいて、上記モータを制御するための電流指令値を求める電流指令値生成部と、上記トルク指令値、上記モータの回転数を示す回転検出値、及び、上記直流電源の出力電圧を示す直流電圧値に基づいて、上記電流指令値を調整する電流指令値調整部とを備えるという構成を採用する。 One aspect of the present invention is a power converter control device that controls a power converter that performs power conversion between a DC power source and a motor, and is configured to include a magnetic flux command value generation unit that determines a magnetic flux command value based on a torque command value, a current command value generation unit that determines a current command value for controlling the motor based on the torque command value and the magnetic flux command value, and a current command value adjustment unit that adjusts the current command value based on the torque command value, a rotation detection value that indicates the rotation speed of the motor, and a DC voltage value that indicates the output voltage of the DC power source.
 本発明の一態様は、電流指令値生成部で生成された電流指令値を電流指令値調整部で調整する。電流指令値調整部は、トルク指令値に加えて、モータの回転数を示す回転検出値、及び、直流電源の出力電圧を示す直流電圧値に基づいて、電流指令値を調整する。このため、本発明の一態様は、回転検出値と直流電圧値との両方に応じて電流指令値を調整することができる。したがって、本発明は、モータの回転数と直流電圧値とが変化した場合であっても、トルク指令値と出力トルクとの差を小さくすることができ、トルク指令値に対する出力トルクの精度を向上させることができる。 In one aspect of the present invention, a current command value generated by a current command value generation unit is adjusted by a current command value adjustment unit. The current command value adjustment unit adjusts the current command value based on a rotation detection value indicating the motor's rotation speed and a DC voltage value indicating the output voltage of a DC power supply, in addition to the torque command value. Therefore, in one aspect of the present invention, the current command value can be adjusted according to both the rotation detection value and the DC voltage value. Therefore, the present invention can reduce the difference between the torque command value and the output torque even when the motor's rotation speed and DC voltage value change, and can improve the accuracy of the output torque relative to the torque command value.
本発明の第1実施形態におけるモータ制御装置の概略構成を模式的に示す回路図である。1 is a circuit diagram showing a schematic configuration of a motor control device according to a first embodiment of the present invention; 本発明の第1実施形態における電力変換器制御装置の機能構成を示すブロック図である。1 is a block diagram showing a functional configuration of a power converter control device according to a first embodiment of the present invention; 本発明の第1実施形態におけるトルク制御部の機能構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of a torque control unit in the first embodiment of the present invention. 本発明の第1実施形態における磁束指令値生成部の機能構成を示すブロック図である。FIG. 2 is a block diagram showing a functional configuration of a magnetic flux command value generating unit in the first embodiment of the present invention. 本発明の第1実施形態における電流指令値マップの概念図である。FIG. 4 is a conceptual diagram of a current command value map in the first embodiment of the present invention. 本発明の第1実施形態における電流指令値調整部の機能構成を示すブロック図である。3 is a block diagram showing a functional configuration of a current command value adjusting unit in the first embodiment of the present invention. FIG. 本発明の第1実施形態における調整値マップの概念図である。FIG. 4 is a conceptual diagram of an adjustment value map in the first embodiment of the present invention. 本発明の第1実施形態における電力変換器制御装置の作用効果を説明するための模式図である。1 is a schematic diagram for explaining the operation and effect of the power converter control device in the first embodiment of the present invention; 本発明の第1実施形態における電力変換器制御装置の作用効果を説明するための模式図である。1 is a schematic diagram for explaining the operation and effect of the power converter control device in the first embodiment of the present invention; 本発明の第1実施形態における電力変換器制御装置の作用効果を説明するための模式図である。1 is a schematic diagram for explaining the operation and effect of the power converter control device in the first embodiment of the present invention; 本発明の第2実施形態における電力変換器制御装置の機能構成を示すブロック図である。FIG. 11 is a block diagram showing a functional configuration of a power converter control device according to a second embodiment of the present invention.
 以下、図面を参照して、本発明に係る電力変換器制御装置及び電力変換装置の一実施形態について説明する。 Below, an embodiment of a power converter control device and a power conversion device according to the present invention will be described with reference to the drawings.
 図1は、本実施形態のモータ制御装置1(電力変換装置)の概略構成を模式的に示す回路図である。この図に示すように、モータ制御装置1は、電力変換器2と、電力変換器制御装置3とを備えている。 FIG. 1 is a circuit diagram showing a schematic configuration of a motor control device 1 (power conversion device) according to this embodiment. As shown in this diagram, the motor control device 1 includes a power converter 2 and a power converter control device 3.
 電力変換器2は、モータMと電池P(直流電源)との間に配置され、モータMと電池Pとの間で電力変換を行う。図1に示すように、電力変換器2は、昇降圧コンバータ2a、駆動用インバータ2b及び発電用インバータ2cを備えている。昇降圧コンバータ2aは、電池Pから出力される直流電圧を所定の昇圧比で昇圧する。また、昇降圧コンバータ2aは、駆動用インバータ2bあるいは発電用インバータ2cから出力される直流電圧を所定の降圧比で降圧する。このような昇降圧コンバータ2aは、図1に示すように、例えば、複数のコンデンサ、トランス、複数の変圧用のパワー半導体素子を備えている。パワー半導体素子としては、IGBT(Insulated Gate Bipolar Transistor)やSiC-MOSFET(Metal Oxide Semiconductor Field Effect Transistor)を用いることができる。 The power converter 2 is disposed between the motor M and the battery P (DC power source) and performs power conversion between the motor M and the battery P. As shown in FIG. 1, the power converter 2 includes a step-up/step-down converter 2a, a drive inverter 2b, and a power generation inverter 2c. The step-up/step-down converter 2a steps up the DC voltage output from the battery P at a predetermined step-up ratio. The step-up/step-down converter 2a steps down the DC voltage output from the drive inverter 2b or the power generation inverter 2c at a predetermined step-down ratio. As shown in FIG. 1, the step-up/step-down converter 2a includes, for example, a plurality of capacitors, a transformer, and a plurality of power semiconductor elements for transformation. As the power semiconductor elements, IGBTs (Insulated Gate Bipolar Transistors) and SiC-MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) can be used.
 このような昇降圧コンバータ2aは、いわゆる磁気結合インターリーブ型チョッパ回路と言われる電力回路である。昇降圧コンバータ2aは、一対の電池用端子を介して電池Pから入力された直流電力を昇圧して駆動用インバータ2bに出力する昇圧動作と、駆動用インバータ2bあるいは発電用インバータ2cから入力された直流電力を降圧して一対の電池用端子を介して電池Pに出力する降圧動作とを択一的に行う。すなわち、昇降圧コンバータ2aは、電池Pと駆動用インバータ2bあるいは発電用インバータ2cとの間で直流電力を双方向に入出力する電力変換回路である。 Such a buck-boost converter 2a is a power circuit known as a magnetically coupled interleaved chopper circuit. The buck-boost converter 2a selectively performs a boost operation in which it boosts the DC power input from the battery P via a pair of battery terminals and outputs it to the drive inverter 2b, and a step-down operation in which it steps down the DC power input from the drive inverter 2b or the power generation inverter 2c and outputs it to the battery P via a pair of battery terminals. In other words, the buck-boost converter 2a is a power conversion circuit that inputs and outputs DC power in both directions between the battery P and the drive inverter 2b or the power generation inverter 2c.
 駆動用インバータ2bは、電力変換器制御装置3からのPWM(Pulse Width Modulation)信号に基づいて、電池Pから出力される直流電力を交流電力に変換してモータMに供給する。また、駆動用インバータ2bは、電力変換器制御装置3からのPWM信号に基づいて、モータMから出力される交流電力を直流電力に変換して昇降圧コンバータ2aに供給する。このような駆動用インバータ2bは、図1に示すように、3つのスイッチングレグを有し、合計で6つの駆動用パワー半導体素子を備えている。 The drive inverter 2b converts the DC power output from the battery P into AC power based on a PWM (Pulse Width Modulation) signal from the power converter control device 3 and supplies it to the motor M. The drive inverter 2b also converts the AC power output from the motor M into DC power based on the PWM signal from the power converter control device 3 and supplies it to the step-up/step-down converter 2a. As shown in FIG. 1, such a drive inverter 2b has three switching legs and is equipped with a total of six drive power semiconductor elements.
 このような駆動用インバータ2bは、モータMの相数に対応して3つ(複数)のスイッチングレグを備える。この駆動用インバータ2bは、力行動作と回生動作とを択一的に行う電力変換回路である。すなわち、駆動用インバータ2bは、昇降圧コンバータ2aから入力された直流電力を三相交流電力に変換し、3つのモータ用端子を介してモータMに出力する力行動作と、3つのモータ用端子を介してモータMから入力された三相交流電力を直流電力に変換して昇降圧コンバータ2aに出力する回生動作とを択一的に行う。つまり、駆動用インバータ2bは、昇降圧コンバータ2aとモータMとの間で直流電力と三相交流電力とを相互変換する電力回路である。 Such a drive inverter 2b has three (multiple) switching legs corresponding to the number of phases of the motor M. This drive inverter 2b is a power conversion circuit that selectively performs a power running operation and a regenerative operation. That is, the drive inverter 2b selectively performs a power running operation in which the DC power input from the step-up/step-down converter 2a is converted into three-phase AC power and output to the motor M via three motor terminals, and a regenerative operation in which the three-phase AC power input from the motor M is converted into DC power via the three motor terminals and output to the step-up/step-down converter 2a. That is, the drive inverter 2b is a power circuit that converts DC power and three-phase AC power between the step-up/step-down converter 2a and the motor M.
 発電用インバータ2cは、電力変換器制御装置3からのPWM信号に基づいて、発電機Gから出力される交流電力を直流電力に変換して昇降圧コンバータ2aに供給する。このような発電用インバータ2cも、駆動用インバータ2bと同様に、3つのスイッチングレグを有し、合計で6つの駆動用パワー半導体素子を備えている。 The power generation inverter 2c converts the AC power output from the generator G into DC power based on a PWM signal from the power converter control device 3 and supplies it to the step-up/step-down converter 2a. Like the drive inverter 2b, this power generation inverter 2c also has three switching legs and is equipped with a total of six drive power semiconductor elements.
 このような発電用インバータ2cは、発電機Gの相数に対応して3つ(複数)のスイッチングレグを備える。この発電用インバータ2cは、3つの発電機用端子を介して発電機Gから入力される三相交流電力を直流電力に変換して昇降圧コンバータ2aに出力する電力変換回路である。つまり、この発電用インバータ2cは、昇降圧コンバータ2aと発電機Gとの間で直流電力と三相交流電力とを相互変換する電力回路である。 Such a power generation inverter 2c has three (multiple) switching legs corresponding to the number of phases of the generator G. This power generation inverter 2c is a power conversion circuit that converts three-phase AC power input from the generator G via three generator terminals into DC power and outputs it to the step-up/step-down converter 2a. In other words, this power generation inverter 2c is a power circuit that converts DC power and three-phase AC power between the step-up/step-down converter 2a and the generator G.
 このような電力変換器2には、図示するように電池P、モータM及び発電機Gがそれぞれ接続されている。電力変換器2は、外部接続用の端子として、電池Pが接続される一対の電池用端子(プラス極電池用端子E1及びマイナス極電池用端子E2)を備えている。また、電力変換器2は、モータMが接続される3つのモータ用端子(U相モータ用端子Fu、V相モータ用端子Fv、及びW相モータ用端子Fw)を備えている。また、電力変換器2は、発電機Gが接続される3つの発電機用端子(U相発電機用端子Hu、V相発電機用端子Hv及びW相発電機用端子Hw)を備えている。 As shown in the figure, a battery P, a motor M, and a generator G are each connected to such a power converter 2. The power converter 2 has a pair of battery terminals (positive battery terminal E1 and negative battery terminal E2) to which the battery P is connected as terminals for external connection. The power converter 2 also has three motor terminals (U-phase motor terminal Fu, V-phase motor terminal Fv, and W-phase motor terminal Fw) to which the motor M is connected. The power converter 2 also has three generator terminals (U-phase generator terminal Hu, V-phase generator terminal Hv, and W-phase generator terminal Hw) to which the generator G is connected.
 このような電力変換器2を備えるモータ制御装置1は、ハイブリッド車や電気自動車等の電動車両に備えられる電気装置であり、回転電機であるモータMを制御すると共に、発電機Gで発生した交流電力の電池Pへの充電を制御する。すなわち、このモータ制御装置1は、電池Pの出力(電池電力)に基づくモータMの駆動制御と発電機Gの出力電力(発電電力)に基づく電池Pの充電制御とを行う。 The motor control device 1 equipped with such a power converter 2 is an electrical device provided in electric vehicles such as hybrid cars and electric automobiles, and controls the motor M, which is a rotating electric machine, and also controls the charging of the battery P with the AC power generated by the generator G. In other words, this motor control device 1 controls the drive of the motor M based on the output of the battery P (battery power) and controls the charging of the battery P based on the output power (generated power) of the generator G.
 なお、モータ制御装置1は、電力変換器2に発電用インバータ2cを備えずに、電力変換器2に発電機Gが接続されていない構成とすることも可能である。この場合には、モータ制御装置1は、発電機Gの出力電力(発電電力)に基づく電池Pの充電制御を行わずに、電池Pの出力(電池電力)に基づくモータMの駆動制御を行う。 The motor control device 1 can also be configured so that the power converter 2 does not include a power generation inverter 2c, and the generator G is not connected to the power converter 2. In this case, the motor control device 1 does not control the charging of the battery P based on the output power (generated power) of the generator G, but instead controls the drive of the motor M based on the output of the battery P (battery power).
 ここで、電池Pは、図示するように、プラス電極がプラス極電池用端子E1に接続され、マイナス電極がマイナス極電池用端子E2に接続されている。この電池Pは、リチウムイオン電池等の二次電池であり、モータ制御装置1に対する直流電力の放電とモータ制御装置1を介した直流電力の充電とを行う。 As shown in the figure, the battery P has a positive electrode connected to the positive battery terminal E1 and a negative electrode connected to the negative battery terminal E2. This battery P is a secondary battery such as a lithium ion battery, and discharges DC power to the motor control device 1 and charges DC power via the motor control device 1.
 モータMは、相数が「3」の三相電動機であり、駆動用インバータ2bの負荷である。このモータMは、U相入力端子がU相モータ用端子Fuに接続され、V相入力端子がV相モータ用端子Fvに接続され、またW相入力端子がW相モータ用端子Fwに接続されている。このようなモータMは、回転軸(駆動軸)が電動車両の車輪に接続されており、当該車輪に回転動力を作用させることにより車輪を回転駆動する。 Motor M is a three-phase motor with three phases, and is the load of drive inverter 2b. This motor M has a U-phase input terminal connected to U-phase motor terminal Fu, a V-phase input terminal connected to V-phase motor terminal Fv, and a W-phase input terminal connected to W-phase motor terminal Fw. The rotating shaft (drive shaft) of this motor M is connected to the wheels of an electric vehicle, and rotational power is applied to the wheels to drive the wheels.
 発電機Gは、三相発電機であり、U相出力端子がU相発電機用端子Huに接続され、V相出力端子がV相発電機用端子Hvに接続され、またW相出力端子がW相発電機用端子Hwに接続されている。この発電機Gは、電動車両に搭載されたエンジン等の動力源の出力軸に接続されており、三相交流電力をモータ制御装置1に出力する。 The generator G is a three-phase generator with a U-phase output terminal connected to the U-phase generator terminal Hu, a V-phase output terminal connected to the V-phase generator terminal Hv, and a W-phase output terminal connected to the W-phase generator terminal Hw. This generator G is connected to the output shaft of a power source such as an engine mounted on an electric vehicle, and outputs three-phase AC power to the motor control device 1.
 電力変換器制御装置3は、ゲートドライバやECU(Electronic Control Unit)を備えている。ゲートドライバは、ECUから入力される各種Duty指令値(変圧用Duty指令値、駆動用Duty指令値及び発電用Duty指令値)に基づいてゲート信号を生成する回路である。例えば、ゲートドライバは、ECUから入力される変圧用Duty指令値に基づいて、昇降圧コンバータ2aに供給するゲート信号を生成する。また、ゲートドライバは、ECUから入力される駆動用Duty指令値に基づいて、駆動用インバータ2bに供給するゲート信号を生成する。また、ゲートドライバは、ECUから入力される発電用Duty指令値に基づいて、発電用インバータ2cに供給するゲート信号を生成する。 The power converter control device 3 includes a gate driver and an ECU (Electronic Control Unit). The gate driver is a circuit that generates a gate signal based on various duty command values (transformation duty command value, drive duty command value, and power generation duty command value) input from the ECU. For example, the gate driver generates a gate signal to be supplied to the step-up/step-down converter 2a based on the transformation duty command value input from the ECU. The gate driver also generates a gate signal to be supplied to the drive inverter 2b based on the drive duty command value input from the ECU. The gate driver also generates a gate signal to be supplied to the power generation inverter 2c based on the power generation duty command value input from the ECU.
 ECUは、予め記憶された制御プログラムに基づいて所定の制御処理を行う制御回路である。このECUは、上記制御処理に基づいて生成した各種Duty指令値(変圧用Duty指令値、駆動用Duty指令値及び発電用Duty指令値)をゲートドライバに出力する。このようなECUは、電力変換器2及びゲートドライバを介してモータMの駆動制御及び電池Pの充電制御を行う。すなわち、このECUは、昇降圧コンバータ2a、駆動用インバータ2b及び発電用インバータ2cに付帯的に設けられる電圧センサの検出値(電圧検出値)及び電流センサの検出値(電流検出値)並びに電動車両の操作情報等に基づいて昇降圧コンバータ2a、駆動用インバータ2b及び発電用インバータ2cに関する各種Duty指令値(変圧用Duty指令値、駆動用Duty指令値及び発電用Duty指令値)を生成する。 The ECU is a control circuit that performs a predetermined control process based on a control program stored in advance. This ECU outputs various duty command values (transformation duty command value, drive duty command value, and power generation duty command value) generated based on the above control process to the gate driver. Such an ECU controls the drive of the motor M and the charging of the battery P via the power converter 2 and the gate driver. That is, this ECU generates various duty command values (transformation duty command value, drive duty command value, and power generation duty command value) for the step-up/step-down converter 2a, the drive inverter 2b, and the power generation inverter 2c based on the detection values (voltage detection values) of the voltage sensors and the detection values (current detection values) of the current sensors that are additionally provided to the step-up/step-down converter 2a, the drive inverter 2b, and the power generation inverter 2c, as well as operation information of the electric vehicle, etc.
 また、電力変換器制御装置3は、図1に示すように、記憶部3aを備えている。記憶部3aは、上述の制御プログラムや各種データを記憶する。本実施形態においては、記憶部3aは、図1に示すように、電流指令値マップMaを記憶している。電流指令値マップMaは、電力変換器制御装置3が、モータMを制御するための電流指令値を求める場合に用いるマップである。この電流指令値マップMaについては、後に詳細に説明する。 The power converter control device 3 also includes a storage unit 3a, as shown in FIG. 1. The storage unit 3a stores the above-mentioned control programs and various data. In this embodiment, the storage unit 3a stores a current command value map Ma, as shown in FIG. 1. The current command value map Ma is a map used when the power converter control device 3 determines a current command value for controlling the motor M. This current command value map Ma will be described in detail later.
 また、記憶部3aは、調整値マップMbを記憶している。調整値マップMbは、電流指令値を調整する調整値を設定する場合に用いるマップである。この調整値マップMbについても、後に詳細に説明する。 The memory unit 3a also stores an adjustment value map Mb. The adjustment value map Mb is a map used when setting an adjustment value for adjusting the current command value. This adjustment value map Mb will also be described in detail later.
 図2は、電力変換器制御装置3の機能構成を示すブロック図である。モータ制御装置1は、電力変換器2及び電力変換器制御装置3に加えて、図2に示すように、電流センサ4と、回転角センサ5と、電圧センサ6とを備えている。 FIG. 2 is a block diagram showing the functional configuration of the power converter control device 3. In addition to the power converter 2 and the power converter control device 3, the motor control device 1 includes a current sensor 4, a rotation angle sensor 5, and a voltage sensor 6, as shown in FIG. 2.
 電流センサ4は、モータMと電力変換器2との間にて各相電流を検出し、その検出結果を電力変換器制御装置3に出力する。なお、複数の電流センサ4は、電力変換器2とモータMとの間に設けられてもよいし、電力変換器2の内部に設けられてもよい。電流センサ4は、各相の相電流を検出する構成であれば特に限定されないが、例えば、トランスを備えたカレントトランス(CT)やホール素子を備えている。また、電流センサ4は、シャント抵抗であってもよい。 The current sensor 4 detects each phase current between the motor M and the power converter 2, and outputs the detection result to the power converter control device 3. Note that multiple current sensors 4 may be provided between the power converter 2 and the motor M, or may be provided inside the power converter 2. The current sensor 4 is not particularly limited as long as it is configured to detect the phase current of each phase, but may include, for example, a current transformer (CT) with a transformer or a Hall element. The current sensor 4 may also be a shunt resistor.
 回転角センサ5は、モータMの回転角を検出する。モータMの回転角は、所定の基準回転位置からの上記ロータの電気角である。回転角センサ5は、検出した回転角を示す検出信号を電力変換器制御装置3に出力する。例えば、回転角センサ5は、レゾルバを備えてもよい。なお、回転角センサ5から出力される検出信号に基づいてモータMの回転数(モータ回転数)を算出することができる。つまり、回転角センサ5は、モータ回転数を情報として含む検出信号を出力する。 The rotation angle sensor 5 detects the rotation angle of the motor M. The rotation angle of the motor M is the electrical angle of the rotor from a predetermined reference rotation position. The rotation angle sensor 5 outputs a detection signal indicating the detected rotation angle to the power converter control device 3. For example, the rotation angle sensor 5 may include a resolver. The rotation speed of the motor M (motor rotation speed) can be calculated based on the detection signal output from the rotation angle sensor 5. In other words, the rotation angle sensor 5 outputs a detection signal that includes the motor rotation speed as information.
 電圧センサ6は、電池Pの出力電圧を検出する。図2においては、電圧センサ6が電池Pから離れて図示されているが、実際には、電圧センサ6は、電池Pに接続された配線と接続されており、プラス電極とマイナス電極との間の電圧値をDCバス電圧値(直流電圧検出値Vdcf)として出力する。この直流電圧検出値Vdcfは、直流電源である電池Pの出力電圧を示す直流電圧値である。 The voltage sensor 6 detects the output voltage of the battery P. In FIG. 2, the voltage sensor 6 is shown separated from the battery P, but in reality, the voltage sensor 6 is connected to the wiring connected to the battery P, and outputs the voltage value between the positive and negative electrodes as a DC bus voltage value (DC voltage detection value Vdcf). This DC voltage detection value Vdcf is a DC voltage value that indicates the output voltage of the battery P, which is a DC power source.
 電力変換器制御装置3は、例えば上述のゲートドライバやECU等によって具現化される機能部として、トルク制御部11、電流検出部12、三相/dq変換部13、角速度演算部14、電流制御部15、dq/三相変換部16及びPWM制御部17とを備える。 The power converter control device 3 includes a torque control unit 11, a current detection unit 12, a three-phase/dq conversion unit 13, an angular velocity calculation unit 14, a current control unit 15, a dq/three-phase conversion unit 16, and a PWM control unit 17 as functional units embodied by, for example, the above-mentioned gate driver and ECU.
 トルク制御部11は、外部から補償前トルク指令値T*が入力される。トルク制御部11は、補償前トルク指令値T*に基づいて、モータMのd軸電流の目標値であるd軸電流指令値id*と、モータMのq軸電流の目標値であるq軸電流指令値iq*と、を生成する。また、トルク制御部11は、生成したd軸電流指令値id*及びq軸電流指令値iq*を電流制御部15に出力する。 The torque control unit 11 receives an uncompensated torque command value T* from the outside. Based on the uncompensated torque command value T*, the torque control unit 11 generates a d-axis current command value id*, which is the target value of the d-axis current of the motor M, and a q-axis current command value iq*, which is the target value of the q-axis current of the motor M. The torque control unit 11 also outputs the generated d-axis current command value id* and q-axis current command value iq* to the current control unit 15.
 図3は、トルク制御部11の機能構成を示すブロック図である。この図に示すように、本実施形態においては、トルク制御部11は、トルク指令値生成部10と、磁束指令値生成部20と、電流指令値生成部30と、電流指令値調整部40と、回転数算出部50とを備えている。 FIG. 3 is a block diagram showing the functional configuration of the torque control unit 11. As shown in this figure, in this embodiment, the torque control unit 11 includes a torque command value generation unit 10, a magnetic flux command value generation unit 20, a current command value generation unit 30, a current command value adjustment unit 40, and a rotation speed calculation unit 50.
 トルク指令値生成部10は、モータMの状態に基づいて算出されたトルクフィードバック値に基づいて、補償前トルク指令値T*から補償後トルク指令値Tecmp*を生成する。なお、トルクフィードバック値の算出方法は特に限定されるものではない。例えば、トルクフィードバック値は、不図示の検出器で取得されたモータMの状態(例えば出力トルクの状態や温度状態)を示す値に基づいて求めることができる。補償後トルク指令値Tecmp*は、トルクフィードバック値に基づいて、補償前トルク指令値T*を実際の出力トルクに合わせて修正したトルク指令値である。 The torque command value generating unit 10 generates a compensated torque command value Tecmp* from the pre-compensated torque command value T* based on the torque feedback value calculated based on the state of the motor M. The method of calculating the torque feedback value is not particularly limited. For example, the torque feedback value can be obtained based on a value indicating the state of the motor M (e.g., the state of the output torque or the temperature state) acquired by a detector (not shown). The compensated torque command value Tecmp* is a torque command value obtained by correcting the pre-compensated torque command value T* to match the actual output torque based on the torque feedback value.
 本実施形態においては、補償後トルク指令値Tecmp*は、磁束指令値生成部20や電流指令値調整部40にトルク指令値として入力される。しかしながら、必ずしも補償前トルク指令値T*から補償後トルク指令値Tecmp*を生成する必要はない。つまり、補償前トルク指令値T*を、磁束指令値生成部20や電流指令値調整部40にトルク指令値として入力することも可能である。このような場合には、トルク指令値生成部10を設けないことも可能である。 In this embodiment, the compensated torque command value Tecmp* is input to the magnetic flux command value generating unit 20 and the current command value adjusting unit 40 as a torque command value. However, it is not necessarily necessary to generate the compensated torque command value Tecmp* from the pre-compensated torque command value T*. In other words, it is also possible to input the pre-compensated torque command value T* as a torque command value to the magnetic flux command value generating unit 20 and the current command value adjusting unit 40. In such a case, it is also possible not to provide the torque command value generating unit 10.
 磁束指令値生成部20は、補償後トルク指令値Tecmp*に基づいて磁束指令値(本実施形態においては後述する補償後磁束指令値Φocmp*)を生成する。図4は、磁束指令値生成部20のブロック図である。この図に示すように、磁束指令値生成部20は、鎖交磁束指令演算器21と、鎖交磁束指令リミット演算器22と、鎖交磁束指令リミット制限部23と、鎖交磁束演算器24と、PI制御器25と、鎖交磁束補償リミット演算器26と、鎖交磁束補償リミット制限部27とを備えている。 The flux command value generating unit 20 generates a flux command value (in this embodiment, a compensated flux command value Φocmp*, which will be described later) based on the compensated torque command value Tecmp*. FIG. 4 is a block diagram of the flux command value generating unit 20. As shown in this figure, the flux command value generating unit 20 includes a flux linkage command calculator 21, a flux linkage command limit calculator 22, a flux linkage command limit restricting unit 23, a flux linkage calculator 24, a PI controller 25, a flux linkage compensation limit calculator 26, and a flux linkage compensation limit restricting unit 27.
 鎖交磁束指令演算器21は、補償後トルク指令値Tecmp*に基づいて補償前鎖交磁束指令値Φo*(補償前磁束指令値)を算出する。例えば、鎖交磁束指令演算器21には、図3に示す回転数算出部50からモータMの回転数を示すモータ回転数Nf(回転検出値)が入力される。このモータ回転数Nfは、後述するように回転数算出部50が、角速度ωに基づいて算出する値である。また、角速度ωは、回転角センサ5の出力値に基づいて算出される。したがって、モータ回転数Nfは、モータMの回転数を示す回転検出値である。また、同様に、角速度ωも、モータMの回転数を示す回転検出値である。 The flux linkage command calculator 21 calculates a pre-compensation flux linkage command value Φo* (pre-compensation flux command value) based on the compensated torque command value Tecmp*. For example, the motor rotation speed Nf (rotation detection value) indicating the rotation speed of the motor M is input to the flux linkage command calculator 21 from the rotation speed calculation unit 50 shown in FIG. 3. This motor rotation speed Nf is a value calculated by the rotation speed calculation unit 50 based on the angular speed ω, as described below. Furthermore, the angular speed ω is calculated based on the output value of the rotation angle sensor 5. Therefore, the motor rotation speed Nf is a rotation detection value indicating the rotation speed of the motor M. Similarly, the angular speed ω is also a rotation detection value indicating the rotation speed of the motor M.
 また、鎖交磁束指令演算器21には、直流電圧検出値Vdcfが入力される。例えば、鎖交磁束指令演算器21は、補償後トルク指令値Tecmp*と、モータ回転数Nfと、直流電圧検出値Vdcfとをパラメータとして変調率係数gmrefを求めるマップに基づいて、電力変換器2で用いる変調率係数gmrefを求める。さらに、鎖交磁束指令演算器21は、変調率係数gmrefと、モータ回転数Nfと、直流電圧検出値Vdcfとに基づいて、補償前鎖交磁束指令値Φo*を算出する。 The flux linkage command calculator 21 also receives the DC voltage detection value Vdcf. For example, the flux linkage command calculator 21 determines the modulation factor coefficient gmref used in the power converter 2 based on a map that determines the modulation factor coefficient gmref using the compensated torque command value Tecmp*, the motor speed Nf, and the DC voltage detection value Vdcf as parameters. Furthermore, the flux linkage command calculator 21 calculates the pre-compensation flux linkage command value Φo* based on the modulation factor coefficient gmref, the motor speed Nf, and the DC voltage detection value Vdcf.
 また、鎖交磁束指令演算器21は、変調率係数gmref、補償後トルク指令値Tecmp*、角速度ω、直流電圧検出値Vdcf、d軸電流指令値id*(電流指令値)、q軸電流指令値iq*(電流指令値)及び電機子抵抗最小値Raminに基づいて磁束推定誤差αεを算出する。さらに鎖交磁束指令演算器21は、磁束推定誤差αεを用いて補償前鎖交磁束指令値Φo*を求める。 The flux linkage command calculator 21 also calculates the flux estimation error αε based on the modulation factor coefficient gmref, the compensated torque command value Tecmp*, the angular velocity ω, the DC voltage detection value Vdcf, the d-axis current command value id* (current command value), the q-axis current command value iq* (current command value), and the armature resistance minimum value Ramin. The flux linkage command calculator 21 also calculates the pre-compensation flux linkage command value Φo* using the flux estimation error αε.
 下式(1)は、磁束推定誤差αεを算出する式の一例である。また、式(1)における、Δεfxは、例えば、下式(2)によって算出できる。また、補償前鎖交磁束指令値Φo*は、例えば、下式(3)によって算出できる。なお、式(1)、(3)におけるkν1ωは、下式(4)で求められる値である。なお、電機子抵抗最小値Raminは、例えば、記憶部3aに対して予め記憶されている。 The following formula (1) is an example of a formula for calculating the flux estimation error αε. In addition, Δεfx in formula (1) can be calculated, for example, by the following formula (2). In addition, the pre-compensation interlinkage flux command value Φo* can be calculated, for example, by the following formula (3). Note that kν1ω in formulas (1) and (3) is a value obtained by the following formula (4). Note that the armature resistance minimum value Ramin is stored in advance, for example, in the memory unit 3a.
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000001
 
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000002
 
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000003
 
Figure JPOXMLDOC01-appb-M000004
 
Figure JPOXMLDOC01-appb-M000004
 
 例えば、鎖交磁束指令演算器21は、式(1)及び式(2)に基づいて、磁束推定誤差αεを算出する。また、鎖交磁束指令演算器21は、式(3)に基づいて、補償前鎖交磁束指令値Φo*を算出する。  For example, the flux linkage command calculator 21 calculates the flux estimation error αε based on equations (1) and (2). The flux linkage command calculator 21 also calculates the pre-compensation flux linkage command value Φo* based on equation (3).
 鎖交磁束指令リミット演算器22は、補償後トルク指令値Tecmp*と、モータ回転数Nfと、直流電圧検出値Vdcfとに基づいて、鎖交磁束指令上限値Φomaxと、鎖交磁束指令下限値Φominとを算出する。鎖交磁束指令上限値Φomax(最大鎖交磁束値)は、界磁制御が可能であることを前提として補償後トルク指令値Tecmp*に対して設定可能な最大の鎖交磁束値である。また、鎖交磁束指令下限値Φominは、界磁制御が可能であることを前提として補償後トルク指令値Tecmp*に対して設定可能な最小の鎖交磁束値である。 The flux linkage command limit calculator 22 calculates a flux linkage command upper limit Φomax and a flux linkage command lower limit Φomin based on the compensated torque command value Tecmp*, the motor speed Nf, and the DC voltage detection value Vdcf. The flux linkage command upper limit Φomax (maximum flux linkage value) is the maximum flux linkage value that can be set for the compensated torque command value Tecmp*, assuming that field control is possible. The flux linkage command lower limit Φomin is the minimum flux linkage value that can be set for the compensated torque command value Tecmp*, assuming that field control is possible.
 例えば、鎖交磁束指令リミット演算器22は、補償後トルク指令値Tecmp*の値ごとにおける鎖交磁束指令値の最大値を示す界磁制御用鎖交磁束制限マップに基づいて、鎖交磁束指令上限値Φomaxを求める。なお、鎖交磁束指令下限値Φominは、算出せずに予め定められた値を用いるようにしても良い。 For example, the flux linkage command limit calculator 22 determines the flux linkage command upper limit value Φomax based on a flux linkage limit map for field control that indicates the maximum value of the flux linkage command value for each value of the compensated torque command value Tecmp*. Note that the flux linkage command lower limit value Φomin may be a predetermined value instead of being calculated.
 鎖交磁束指令リミット制限部23は、鎖交磁束指令リミット演算器22にて算出された鎖交磁束指令上限値Φomaxと、鎖交磁束指令下限値Φominに基づいて、鎖交磁束指令演算器21で算出された補償前鎖交磁束指令値Φo*の上限値と下限値とを制限する。つまり、鎖交磁束指令リミット制限部23は、鎖交磁束指令演算器21から入力される補償前鎖交磁束指令値Φo*が、鎖交磁束指令上限値Φomaxよりも大きい場合には、補償前鎖交磁束指令値Φo*の値を鎖交磁束指令上限値Φomaxの値に置き換えて出力する。また、鎖交磁束指令リミット制限部23は、鎖交磁束指令演算器21から入力される補償前鎖交磁束指令値Φo*が、鎖交磁束指令下限値Φominよりも小さい場合には、補償前鎖交磁束指令値Φo*の値を鎖交磁束指令下限値Φominの値に置き換えて出力する。なお、鎖交磁束指令リミット制限部23から出力された補償前鎖交磁束指令値Φo*は、補償前鎖交磁束指令値Φoff*と称する。 The flux linkage command limit restriction unit 23 restricts the upper and lower limits of the pre-compensation flux linkage command value Φo* calculated by the flux linkage command limit calculator 21 based on the flux linkage command upper limit value Φomax and the flux linkage command lower limit value Φomin calculated by the flux linkage command limit calculator 22. In other words, when the pre-compensation flux linkage command value Φo* input from the flux linkage command calculator 21 is greater than the flux linkage command upper limit value Φomax, the flux linkage command limit restriction unit 23 replaces the value of the pre-compensation flux linkage command value Φo* with the value of the flux linkage command upper limit value Φomax and outputs it. In addition, when the pre-compensation flux linkage command value Φo* input from the flux linkage command calculator 21 is smaller than the flux linkage command lower limit value Φomin, the flux linkage command limiter 23 replaces the value of the pre-compensation flux linkage command value Φo* with the value of the flux linkage command lower limit value Φomin and outputs it. The pre-compensation flux linkage command value Φo* output from the flux linkage command limiter 23 is referred to as the pre-compensation flux linkage command value Φoff*.
 鎖交磁束演算器24は、角速度ωに基づいて鎖交磁束フィードバック値Φof(磁束フィードバック値)を算出する。例えば、鎖交磁束演算器24には、図2に示す電流制御部15から電圧指令値V*(d軸電圧指令値Vd*及びq軸電圧指令値Vq*)がフィードバック入力される。鎖交磁束演算器24は、角速度演算部14から入力される現在のモータ回転数を示す角速度ωと、電流制御部15から入力される現在の電圧指令値V*とに基づいて、鎖交磁束フィードバック値Φofを算出する。 The flux linkage calculator 24 calculates the flux linkage feedback value Φof (flux feedback value) based on the angular velocity ω. For example, the voltage command value V* (d-axis voltage command value Vd* and q-axis voltage command value Vq*) is fed back to the flux linkage calculator 24 from the current control unit 15 shown in FIG. 2. The flux linkage calculator 24 calculates the flux linkage feedback value Φof based on the angular velocity ω indicating the current motor rotation speed input from the angular velocity calculator 14 and the current voltage command value V* input from the current control unit 15.
 PI制御器25は、補償前鎖交磁束指令値Φoff*と鎖交磁束フィードバック値Φofとの偏差Φoerrに基づいて磁束補償値dΦobuf*を算出する。減算器28で求められた偏差Φoerrが入力される。減算器28は、ローパスフィルタ(LPF)を介して入力される補償前鎖交磁束指令値Φoff*から、ローパスフィルタ(LPF)を介して入力される鎖交磁束フィードバック値Φofを減算することで偏差Φoerrを算出する。 The PI controller 25 calculates the flux compensation value dΦobuf* based on the deviation Φoerr between the pre-compensation flux linkage command value Φoff* and the flux linkage feedback value Φof. The deviation Φoerr calculated by the subtractor 28 is input. The subtractor 28 calculates the deviation Φoerr by subtracting the flux linkage feedback value Φof input via a low-pass filter (LPF) from the pre-compensation flux linkage command value Φoff* input via a low-pass filter (LPF).
 PI制御器25は、偏差Φoerrに対して比例ゲインを乗算して得た値と、偏差Φoerrに対して積分ゲインを乗算して得た後に積分することで得た値とを加算することで磁束補償値dΦobuf*を算出する。このように、PI制御器25は、比例ゲインを用いた演算と積分ゲインとを用いた演算とに基づいて磁束補償値dΦobuf*を算出する。 The PI controller 25 calculates the magnetic flux compensation value dΦobuf* by adding together a value obtained by multiplying the deviation Φoerr by the proportional gain and a value obtained by multiplying the deviation Φoerr by the integral gain and then integrating the result. In this way, the PI controller 25 calculates the magnetic flux compensation value dΦobuf* based on an operation using the proportional gain and an operation using the integral gain.
 なお、積分項が飽和しないようにフィードバック型アンチワインドアップ処理を行っても良い。この場合には、PI制御器25から出力される補償前鎖交磁束指令値Φoff*から鎖交磁束補償リミット制限部27から出力される後述の磁束補償値dΦo*を減算した値を求める。また、この値に対してPI制御器25で用いる比例ゲインの逆数を乗算して得た値を偏差Φoerrから減算し、その後に上述のように積分ゲインを乗算した演算を行う。 Furthermore, feedback anti-windup processing may be performed so that the integral term does not saturate. In this case, a value is obtained by subtracting the flux compensation value dΦo* (described later) output from the flux linkage compensation limiter 27 from the pre-compensation flux linkage command value Φoff* output from the PI controller 25. This value is then multiplied by the reciprocal of the proportional gain used in the PI controller 25 to obtain a value, which is then subtracted from the deviation Φoerr, and the integral gain is then multiplied as described above.
 鎖交磁束補償リミット演算器26は、鎖交磁束補償リミット制限部27で用いる制限値を算出する。ここでは、鎖交磁束補償リミット制限部27は、磁束補償値dΦobuf*の上限値を制限する上制限値dΦomaxを算出する。算出された上制限値dΦomaxは、鎖交磁束補償リミット制限部27に供給される。また、鎖交磁束補償リミット演算器26は、磁束補償値dΦobuf*の下限値を制限する下制限値dΦominを算出する。算出された下制限値dΦominは、鎖交磁束補償リミット制限部27に供給される。 The flux linkage compensation limit calculator 26 calculates the limit value used in the flux linkage compensation limit limiter 27. Here, the flux linkage compensation limiter 27 calculates an upper limit value dΦomax that limits the upper limit value of the flux compensation value dΦobuf*. The calculated upper limit value dΦomax is supplied to the flux linkage compensation limiter 27. The flux linkage compensation limit calculator 26 also calculates a lower limit value dΦomin that limits the lower limit value of the flux compensation value dΦobuf*. The calculated lower limit value dΦomin is supplied to the flux linkage compensation limiter 27.
 例えば、鎖交磁束補償リミット演算器26は、鎖交磁束指令演算器21から入力される補償前鎖交磁束指令値Φo*と、鎖交磁束指令リミット演算器22から入力される鎖交磁束指令上限値Φomaxとに基づいて、上制限値dΦomax及び下制限値dΦominを算出する。 For example, the flux linkage compensation limit calculator 26 calculates the upper limit value dΦomax and the lower limit value dΦomin based on the pre-compensation flux linkage command value Φo* input from the flux linkage command calculator 21 and the flux linkage command upper limit value Φomax input from the flux linkage command limit calculator 22.
 後述する鎖交磁束補償リミット制限部27による磁束補償値dΦobuf*の制限は、モータMを弱め界磁制御する場合に有用である。また、補償前鎖交磁束指令値Φo*が鎖交磁束指令上限値Φomaxよりも小さい場合には、弱め界磁制御が必要であると判断できる。したがって、鎖交磁束補償リミット演算器26は、補償前鎖交磁束指令値Φo*が鎖交磁束指令上限値Φomaxよりも小さい場合に、磁束補償値dΦobuf*の上限値と下限値とが制限されるように上制限値dΦomax及び下制限値dΦominを算出する。つまり、鎖交磁束補償リミット演算器26は、補償前鎖交磁束指令値Φo*が鎖交磁束指令上限値Φomaxよりも大きくて弱め界磁制御が必要でない場合には、磁束補償値dΦobuf*の上限値と下限値とがゼロになるように上制限値dΦomax及び下制限値dΦominを設定する。 The limitation of the flux compensation value dΦobuf* by the flux linkage compensation limit limiting unit 27 described later is useful when performing field weakening control on the motor M. Furthermore, when the pre-compensation flux linkage command value Φo* is smaller than the flux linkage command upper limit value Φomax, it can be determined that field weakening control is necessary. Therefore, when the pre-compensation flux linkage command value Φo* is smaller than the flux linkage command upper limit value Φomax, the flux linkage compensation limit calculator 26 calculates the upper limit value dΦomax and the lower limit value dΦomin so that the upper and lower limits of the flux compensation value dΦobuf* are limited. In other words, when the pre-compensation flux linkage command value Φo* is greater than the flux linkage command upper limit value Φomax and field weakening control is not necessary, the flux linkage compensation limit calculator 26 sets the upper limit value dΦomax and the lower limit value dΦomin so that the upper and lower limits of the flux compensation value dΦobuf* are zero.
 なお、鎖交磁束補償リミット演算器26は、補償前鎖交磁束指令値Φo*に換えて、鎖交磁束指令リミット制限部23から出力された補償前鎖交磁束指令値Φoff*を用いて上制限値dΦomax及び下制限値dΦominを算出するようにしても良い。また、補償前鎖交磁束指令値Φo*及び補償前鎖交磁束指令値Φoff*を用いて上制限値dΦomax及び下制限値dΦominを算出するようにしても良い。 The flux linkage compensation limit calculator 26 may calculate the upper limit value dΦomax and the lower limit value dΦomin using the pre-compensation flux linkage command value Φoff* output from the flux linkage command limiter 23 instead of the pre-compensation flux linkage command value Φo*. The upper limit value dΦomax and the lower limit value dΦomin may also be calculated using the pre-compensation flux linkage command value Φo* and the pre-compensation flux linkage command value Φoff*.
 鎖交磁束補償リミット制限部27は、磁束補償値dΦobuf*の上限値及び下限値を制限値に基づいて制限する。ここでは、鎖交磁束補償リミット制限部27は、鎖交磁束補償リミット演算器26から入力された上制限値dΦomax及び下制限値dΦominに基づいて、磁束補償値dΦobuf*の上限値及び下限値を制限する。 The flux linkage compensation limit restricting unit 27 restricts the upper and lower limits of the flux compensation value dΦobuf* based on the limit values. Here, the flux linkage compensation limit restricting unit 27 restricts the upper and lower limits of the flux compensation value dΦobuf* based on the upper limit value dΦomax and the lower limit value dΦomamin input from the flux linkage compensation limit calculator 26.
 つまり、鎖交磁束補償リミット制限部27は、PI制御器25から入力される磁束補償値dΦobuf*が上制限値dΦomaxよりも大きい場合には、磁束補償値dΦobuf*の値を上制限値dΦomaxに置き換えて出力する。また、鎖交磁束補償リミット制限部27は、PI制御器25から入力される磁束補償値dΦobuf*が下制限値dΦominよりも小さい場合には、磁束補償値dΦobuf*の値を下制限値dΦominに置き換えて出力する。なお、鎖交磁束補償リミット制限部27から出力された磁束補償値dΦobuf*は、磁束補償値dΦo*と称する。 In other words, when the flux compensation value dΦobuf* input from the PI controller 25 is greater than the upper limit value dΦomax, the interlinkage flux compensation limiter 27 replaces the value of the flux compensation value dΦobuf* with the upper limit value dΦomax and outputs it. Also, when the flux compensation value dΦobuf* input from the PI controller 25 is smaller than the lower limit value dΦomin, the interlinkage flux compensation limiter 27 replaces the value of the flux compensation value dΦobuf* with the lower limit value dΦomin and outputs it. The flux compensation value dΦobuf* output from the interlinkage flux compensation limiter 27 is referred to as the flux compensation value dΦo*.
 また、図4に示すように、磁束指令値生成部20は、補償前鎖交磁束指令値Φoff*と磁束補償値dΦo*とを加算して、補償後磁束指令値Φocmp*を算出して出力する加算器29を備えている。つまり、加算器29は、磁束補償値dΦo*に基づいて補償前鎖交磁束指令値Φoff*から補償後磁束指令値Φocmp*を算出する。 Also, as shown in FIG. 4, the flux command value generating unit 20 includes an adder 29 that adds the pre-compensation flux linkage command value Φoff* and the flux compensation value dΦo* to calculate and output the post-compensation flux command value Φocmp*. In other words, the adder 29 calculates the post-compensation flux command value Φocmp* from the pre-compensation flux linkage command value Φoff* based on the flux compensation value dΦo*.
 このように構成された磁束指令値生成部20では、補償後トルク指令値Tecmp*、モータ回転数Nf、角速度ω及び直流電圧検出値Vdcfが鎖交磁束指令演算器21に入力される。鎖交磁束指令演算器21では、補償後トルク指令値Tecmp*、モータ回転数Nf、角速度ω及び直流電圧検出値Vdcfに基づいて、補償前鎖交磁束指令値Φo*が求められる。 In the flux command value generating unit 20 configured in this manner, the compensated torque command value Tecmp*, the motor speed Nf, the angular speed ω, and the DC voltage detection value Vdcf are input to the flux linkage command calculator 21. The flux linkage command calculator 21 determines the pre-compensation flux linkage command value Φo* based on the compensated torque command value Tecmp*, the motor speed Nf, the angular speed ω, and the DC voltage detection value Vdcf.
 一方、補償後トルク指令値Tecmp*、モータ回転数Nf及び直流電圧検出値Vdcfは、鎖交磁束指令リミット演算器22にも入力される。鎖交磁束指令リミット演算器22では、補償後トルク指令値Tecmp*、モータ回転数Nf及び直流電圧検出値Vdcfに基づいて、鎖交磁束指令上限値Φomaxと、鎖交磁束指令下限値Φominとが求められる。 Meanwhile, the compensated torque command value Tecmp*, the motor speed Nf, and the DC voltage detection value Vdcf are also input to the flux linkage command limit calculator 22. The flux linkage command limit calculator 22 determines the flux linkage command upper limit value Φomax and the flux linkage command lower limit value Φomin based on the compensated torque command value Tecmp*, the motor speed Nf, and the DC voltage detection value Vdcf.
 補償前鎖交磁束指令値Φo*は、鎖交磁束指令リミット制限部23において、必要に応じて鎖交磁束指令上限値Φomaxあるいは鎖交磁束指令下限値Φominに基づいて値が制限され、補償前鎖交磁束指令値Φoff*として出力される。 The pre-compensation flux linkage command value Φo* is limited in the flux linkage command limiter 23 based on the flux linkage command upper limit value Φomax or the flux linkage command lower limit value Φomin as necessary, and is output as the pre-compensation flux linkage command value Φoff*.
 また、角速度ω及び電圧指令値V*は、鎖交磁束演算器24に入力される。鎖交磁束演算器24では、角速度ω及び電圧指令値V*に基づいて、鎖交磁束フィードバック値Φofが算出される。 Furthermore, the angular velocity ω and the voltage command value V* are input to the flux linkage calculator 24. The flux linkage calculator 24 calculates the flux linkage feedback value Φof based on the angular velocity ω and the voltage command value V*.
 補償前鎖交磁束指令値Φoff*は、ローパスフィルタを介して減算器28に入力される。また、鎖交磁束フィードバック値Φofも、ローパスフィルタを介して減算器28に入力される。減算器28では、補償前鎖交磁束指令値Φoff*から、鎖交磁束フィードバック値Φofが減算されることで偏差Φoerrが算出される。 The pre-compensation flux linkage command value Φoff* is input to the subtractor 28 via a low-pass filter. The flux linkage feedback value Φof is also input to the subtractor 28 via a low-pass filter. The subtractor 28 calculates the deviation Φoerr by subtracting the flux linkage feedback value Φof from the pre-compensation flux linkage command value Φoff*.
 偏差Φoerrは、PI制御器25に入力される。PI制御器25では、偏差Φoerrに対して比例ゲインを乗算して得た値と、偏差Φoerrに対して積分ゲインを乗算して得た後に積分することで得た値とを加算することで磁束補償値dΦobuf*が算出される。 The deviation Φoerr is input to the PI controller 25. The PI controller 25 calculates the magnetic flux compensation value dΦobuf* by adding a value obtained by multiplying the deviation Φoerr by a proportional gain and a value obtained by multiplying the deviation Φoerr by an integral gain and then integrating the result.
 一方、鎖交磁束指令演算器21から出力された補償前鎖交磁束指令値Φo*と、鎖交磁束指令リミット演算器22から出力された鎖交磁束指令上限値Φomaxとは、鎖交磁束補償リミット演算器26に入力される。鎖交磁束補償リミット演算器26では、補償前鎖交磁束指令値Φo*と鎖交磁束指令上限値Φomaxとに基づいて、磁束補償値dΦobuf*の上限値を制限する上制限値dΦomaxが算出される。また、鎖交磁束補償リミット演算器26では、補償前鎖交磁束指令値Φo*と鎖交磁束指令上限値Φomaxとに基づいて、磁束補償値dΦobuf*の下限値を制限する下制限値dΦominが算出される。 Meanwhile, the pre-compensation flux linkage command value Φo* output from the flux linkage command calculator 21 and the flux linkage command upper limit value Φomax output from the flux linkage command limit calculator 22 are input to the flux linkage compensation limit calculator 26. The flux linkage compensation limit calculator 26 calculates an upper limit value dΦomax that limits the upper limit of the flux compensation value dΦobuf* based on the pre-compensation flux linkage command value Φo* and the flux linkage command upper limit value Φomax. The flux linkage compensation limit calculator 26 also calculates a lower limit value dΦomin that limits the lower limit of the flux compensation value dΦobuf* based on the pre-compensation flux linkage command value Φo* and the flux linkage command upper limit value Φomax.
 PI制御器25から出力された磁束補償値dΦobuf*は、鎖交磁束補償リミット制限部27において、必要に応じて上制限値dΦomaxあるいは下制限値dΦominに基づいて値が制限され、磁束補償値dΦo*として出力される。 The flux compensation value dΦobuf* output from the PI controller 25 is limited in the flux linkage compensation limiter 27 based on the upper limit value dΦomax or the lower limit value dΦomin as necessary, and is output as the flux compensation value dΦo*.
 鎖交磁束指令リミット制限部23から出力された補償前鎖交磁束指令値Φoff*と、鎖交磁束補償リミット制限部27から出力された磁束補償値dΦo*とは、加算器29に入力される。加算器29では、補償前鎖交磁束指令値Φoff*と磁束補償値dΦo*とが加算され、補償後磁束指令値Φocmp*が算出される。算出された補償後磁束指令値Φocmp*は、図3に示す電流指令値生成部30に入力される。 The pre-compensation flux linkage command value Φoff* output from the flux linkage command limit limiter 23 and the flux compensation value dΦo* output from the flux linkage compensation limiter 27 are input to an adder 29. The adder 29 adds the pre-compensation flux linkage command value Φoff* and the flux compensation value dΦo* to calculate a post-compensation flux command value Φocmp*. The calculated post-compensation flux command value Φocmp* is input to a current command value generator 30 shown in FIG. 3.
 本実施形態では、この補償後磁束指令値Φocmp*が磁束指令値として、電流指令値生成部30に入力される。つまり、本実施形態では、鎖交磁束フィードバック値Φof(磁束フィードバック値)を用いて求められた磁束指令値が電流指令値生成部30に入力される。このため、電流指令値生成部30では、鎖交磁束フィードバック値Φofに起因する成分を含んだ状態で、後述の調整前電流指令値(調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*)を求めることができる。しかしながら、補償前鎖交磁束指令値Φoff*を磁束指令値として、電流指令値生成部30に入力することも可能である。 In this embodiment, this post-compensation flux command value Φocmp* is input to the current command value generation unit 30 as the flux command value. In other words, in this embodiment, the flux command value calculated using the interlinkage flux feedback value Φof (flux feedback value) is input to the current command value generation unit 30. Therefore, the current command value generation unit 30 can calculate the pre-adjustment current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) described below, including the components caused by the interlinkage flux feedback value Φof. However, it is also possible to input the pre-compensation flux linkage command value Φoff* to the current command value generation unit 30 as the flux command value.
 電流指令値生成部30は、補償後トルク指令値Tecmp*、及び補償後磁束指令値Φocmp*に基づいて、調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*を求める。ここで、電流指令値生成部30は、記憶部3aに記憶された電流指令値マップMaに基づいて、調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*を求める。 The current command value generating unit 30 determines the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase* based on the compensated torque command value Tecmp* and the compensated magnetic flux command value Φocmp*. Here, the current command value generating unit 30 determines the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase* based on the current command value map Ma stored in the memory unit 3a.
 図5は、電流指令値マップMaの概念図である。図5に示すように、電流指令値マップMaは、補償後トルク指令値Tecmp*及び補償後磁束指令値Φocmp*をパラメーとする2次元マップである。電流指令値マップMaは、調整前d軸電流指令値idbase*及び補償前q軸電流指令値iqbase*が、補償後トルク指令値Tecmp*及び補償後磁束指令値Φocmp*に対応付けられている。電流指令値生成部30は、このような電流指令値マップMaを参照して、補償後トルク指令値Tecmp*及び補償後磁束指令値Φocmp*に基づいて、調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*を求める。 FIG. 5 is a conceptual diagram of the current command value map Ma. As shown in FIG. 5, the current command value map Ma is a two-dimensional map with the compensated torque command value Tecmp* and the compensated magnetic flux command value Φocmp* as parameters. In the current command value map Ma, the pre-adjustment d-axis current command value idbase* and the pre-compensated q-axis current command value iqbase* are associated with the compensated torque command value Tecmp* and the compensated magnetic flux command value Φocmp*. The current command value generator 30 refers to this current command value map Ma to determine the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase* based on the compensated torque command value Tecmp* and the compensated magnetic flux command value Φocmp*.
 電流指令値調整部40は、入力される補償後トルク指令値Tecmp*、モータ回転数Nf、及び、直流電圧検出値Vdcfに基づいて、調整前のd軸電流指令値及びq軸電流指令値(調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*)を調整することで、d軸電流指令値id*及びq軸電流指令値iq*を求める。つまり、つまり、本実施形態において、d軸電流指令値id*及びq軸電流指令値iq*は、電流指令値調整部40で調整されたd軸電流指令値及びq軸電流指令値である。 The current command value adjustment unit 40 determines the d-axis current command value id* and the q-axis current command value iq* by adjusting the pre-adjustment d-axis current command value and the q-axis current command value (the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase*) based on the input compensated torque command value Tecmp*, motor rotation speed Nf, and DC voltage detection value Vdcf. In other words, in this embodiment, the d-axis current command value id* and the q-axis current command value iq* are the d-axis current command value and the q-axis current command value adjusted by the current command value adjustment unit 40.
 図6は、電流指令値調整部40の機能構成を示すブロック図である。この図に示すように、電流指令値調整部40は、調整値設定部41と、加算器42(加減算器)とを有している。 FIG. 6 is a block diagram showing the functional configuration of the current command value adjustment unit 40. As shown in this figure, the current command value adjustment unit 40 has an adjustment value setting unit 41 and an adder 42 (adder-subtracter).
 調整値設定部41は、補償後トルク指令値Tecmp*、モータ回転数Nf、及び、直流電圧検出値Vdcfに基づいて、調整値を設定する。調整値設定部41は、記憶部に記憶された調整値マップMbを参照して、補償後トルク指令値Tecmp*、モータ回転数Nf、及び、直流電圧検出値Vdcfに基づいて、調整値を設定する。 The adjustment value setting unit 41 sets an adjustment value based on the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf. The adjustment value setting unit 41 sets an adjustment value based on the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf, with reference to the adjustment value map Mb stored in the memory unit.
 図7は、調整値マップMbの概念図である。図7に示すように、調整値マップMbは、2次元マップM1が直流電圧値に応じて複数設けられた3次元マップである。例えば、2次元マップM1は、直流電圧値1Vごとに1つ設けられている。なお、直流電圧値の何Vごとに2次元マップM1を設けるかは任意に変更可能である。各々の2次元マップM1は、補償後トルク指令値Tecmp*及びモータ回転数Nfをパラメータとするマップである。また、各々の2次元マップM1は、調整値(d軸電流調整値idadj*及びq軸電流調整値iqadj*)が、補償後トルク指令値Tecmp*及びモータ回転数Nfに対応付けられている。調整値設定部41は、このような調整値マップMbを参照して、補償後トルク指令値Tecmp*、モータ回転数Nf、及び、直流電圧検出値Vdcfに基づいて、調整値を設定する。 FIG. 7 is a conceptual diagram of the adjustment value map Mb. As shown in FIG. 7, the adjustment value map Mb is a three-dimensional map in which a plurality of two-dimensional maps M1 are provided according to the DC voltage value. For example, one two-dimensional map M1 is provided for each 1V DC voltage value. Note that the number of V of the DC voltage for which the two-dimensional map M1 is provided can be changed arbitrarily. Each two-dimensional map M1 is a map with the compensated torque command value Tecmp* and the motor speed Nf as parameters. In addition, in each two-dimensional map M1, the adjustment value (d-axis current adjustment value idadj* and q-axis current adjustment value iqadj*) is associated with the compensated torque command value Tecmp* and the motor speed Nf. The adjustment value setting unit 41 refers to such an adjustment value map Mb and sets the adjustment value based on the compensated torque command value Tecmp*, the motor speed Nf, and the DC voltage detection value Vdcf.
 なお、このような調整値は、予め実験やシミュレーションによって定められている。補償後トルク指令値Tecmp*、モータ回転数Nf、又は、直流電圧検出値Vdcfの値によっては、d軸電流指令値及びq軸電流指令値を調整により変更しなくてもよい場合がある。このため、d軸電流指令値及びq軸電流指令値を調整により変更しなくてもよい条件に合う調整値は、「0」に設定されている。調整値が「0」である場合には、調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*の値は、調整により変化することなく、電流指令値調整部40からd軸電流指令値id*及びq軸電流指令値iq*として出力される。 These adjustment values are determined in advance by experiments and simulations. Depending on the values of the compensated torque command value Tecmp*, the motor rotation speed Nf, or the DC voltage detection value Vdcf, there may be cases where the d-axis current command value and the q-axis current command value do not need to be changed by adjustment. For this reason, the adjustment value that meets the condition where the d-axis current command value and the q-axis current command value do not need to be changed by adjustment is set to "0". When the adjustment value is "0", the values of the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase* do not change due to adjustment, and are output from the current command value adjustment unit 40 as the d-axis current command value id* and the q-axis current command value iq*.
 加算器42は、調整値を調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*に加算する。加算器42は、調整前d軸電流指令値idbase*に対して、d軸電流調整値idadj*を加算する。また、加算器42は、調整前q軸電流指令値iqbase*に対して、q軸電流調整値iqadj*を加算する。調整前d軸電流指令値idbase*に対して、d軸電流調整値idadj*を加算することで、d軸電流指令値id*が求められる。調整前q軸電流指令値iqbase*に対して、q軸電流調整値iqadj*を加算することで、q軸電流指令値iq*が求められる。なお、調整値を調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*に対して減算する値として設定してもよい。このような場合には、加算器42に換えて減算器を設ける。 The adder 42 adds the adjustment value to the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase*. The adder 42 adds the d-axis current adjustment value idadj* to the pre-adjustment d-axis current command value idbase*. The adder 42 also adds the q-axis current adjustment value iqadj* to the pre-adjustment q-axis current command value iqbase*. The d-axis current command value id* is obtained by adding the d-axis current adjustment value idadj* to the pre-adjustment d-axis current command value idbase*. The q-axis current command value iq* is obtained by adding the q-axis current adjustment value iqadj* to the pre-adjustment q-axis current command value iqbase*. The adjustment value may be set as a value to be subtracted from the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase*. In such a case, a subtractor is provided instead of the adder 42.
 回転数算出部50は、角速度演算部14から入力される角速度ωからモータ回転数Nfを算出する。なお、回転数算出部50は、回転角センサ5から取得した電気角からモータ回転数Nfを算出してもよい。この回転数算出部50は、算出したモータ回転数Nfを磁束指令値生成部20及び電流指令値調整部40に向けて出力する。 The rotation speed calculation unit 50 calculates the motor rotation speed Nf from the angular speed ω input from the angular speed calculation unit 14. The rotation speed calculation unit 50 may also calculate the motor rotation speed Nf from the electrical angle acquired from the rotation angle sensor 5. The rotation speed calculation unit 50 outputs the calculated motor rotation speed Nf to the magnetic flux command value generation unit 20 and the current command value adjustment unit 40.
 なお、本実施形態では、トルク制御部11が回転数算出部50を備えている。しかしながら、回転数算出部50をトルク制御部11の外部に設けることも可能である。また、電流指令値マップMaのパラメータの1つであるモータ回転数Nfを、角速度ωに変更することも可能である。つまり、電流指令値マップMaは、モータ回転数Nfや角速度ω等のモータの回転数を示す回転検出値をパラメータとするマップであればよい。例えば、電流指令値マップMaのパラメータの1つであるモータ回転数Nfを角速度ωに変更する場合には、回転数算出部50で算出されたモータ回転数Nfを電流指令値調整部40に対して入力しなくてもよい。 In this embodiment, the torque control unit 11 includes a rotation speed calculation unit 50. However, it is also possible to provide the rotation speed calculation unit 50 outside the torque control unit 11. It is also possible to change the motor rotation speed Nf, which is one of the parameters of the current command value map Ma, to the angular speed ω. In other words, the current command value map Ma may be any map in which the rotation detection value indicating the motor rotation speed, such as the motor rotation speed Nf or the angular speed ω, is used as a parameter. For example, when changing the motor rotation speed Nf, which is one of the parameters of the current command value map Ma, to the angular speed ω, it is not necessary to input the motor rotation speed Nf calculated by the rotation speed calculation unit 50 to the current command value adjustment unit 40.
 図2に戻り、電流検出部12は、各電流センサ4の検出結果から、モータMにおけるU相のコイルに流れる電流値(以下、「U相電流値」という。)iu、モータMにおけるV相のコイルに流れる電流値(以下、「V相電流値」という。)iv、モータMにおけるW相のコイルに流れる電流値(以下、「W相電流値」という。)iwを検出する。そして、電流検出部12は、検出したU相電流値iu、V相電流値iv及びW相電流値iwを三相/dq変換部13に出力する。 Returning to FIG. 2, the current detection unit 12 detects the current value iu flowing through the U-phase coil of the motor M (hereinafter referred to as the "U-phase current value"), the current value iv flowing through the V-phase coil of the motor M (hereinafter referred to as the "V-phase current value"), and the current value iw flowing through the W-phase coil of the motor M (hereinafter referred to as the "W-phase current value") from the detection results of each current sensor 4. The current detection unit 12 then outputs the detected U-phase current value iu, V-phase current value iv, and W-phase current value iw to the three-phase/dq conversion unit 13.
 三相/dq変換部13は、電流検出部12から取得したU相電流値iu、V相電流値iv及びW相電流値iwを、回転角センサ5から取得した電気角を用いて、dq座標系のd軸電流値id及びq軸電流値iqに変換する。三相/dq変換部13は、d軸電流値id及びq軸電流値iqを電流制御部15に出力する。 The three-phase/dq conversion unit 13 converts the U-phase current value iu, the V-phase current value iv, and the W-phase current value iw obtained from the current detection unit 12 into a d-axis current value id and a q-axis current value iq in the dq coordinate system using the electrical angle obtained from the rotation angle sensor 5. The three-phase/dq conversion unit 13 outputs the d-axis current value id and the q-axis current value iq to the current control unit 15.
 角速度演算部14は、回転角センサ5から出力されるモータMの電気角に基づいて、角速度ω(回転検出値)を演算する。角速度演算部14は、演算した角速度ωを電流制御部15に出力する。電流制御部15は、d軸電流指令値id*に基づいて、d軸電圧指令値Vd*を算出する。電流制御部15は、q軸電流指令値iq*に基づいて、q軸電圧指令値Vq*を算出する。電流制御部15は、d軸電圧指令値Vd*及びq軸電圧指令値Vq*をdq/三相変換部16に出力する。 The angular velocity calculation unit 14 calculates the angular velocity ω (rotation detection value) based on the electrical angle of the motor M output from the rotation angle sensor 5. The angular velocity calculation unit 14 outputs the calculated angular velocity ω to the current control unit 15. The current control unit 15 calculates the d-axis voltage command value Vd* based on the d-axis current command value id*. The current control unit 15 calculates the q-axis voltage command value Vq* based on the q-axis current command value iq*. The current control unit 15 outputs the d-axis voltage command value Vd* and the q-axis voltage command value Vq* to the dq/three-phase conversion unit 16.
 dq/三相変換部16は、回転角センサ5から電気角を取得する。dq/三相変換部16は、d軸電圧指令値Vd*及びq軸電圧指令値Vq*を電流制御部15から取得する。dq/三相変換部16は、電気角を用いて、d軸電圧指令値Vd*及びq軸電圧指令値Vq*を、モータMにおけるUVW相の各相の電圧指令値であるU相電圧指令値Vu*、V相電圧指令値Vv*及びW相電圧指令値Vw*に変換する。そして、dq/三相変換部16は、U相電圧指令値Vu*、V相電圧指令値Vv*及びW相電圧指令値Vw*をPWM制御部17に出力する。U相電圧指令値Vu*、V相電圧指令値Vv*及びW相電圧指令値Vw*は、変調波であって、それぞれを区別しない場合には「電圧指令信号」と称する場合がある。 The dq/three-phase converter 16 obtains the electrical angle from the rotation angle sensor 5. The dq/three-phase converter 16 obtains the d-axis voltage command value Vd* and the q-axis voltage command value Vq* from the current controller 15. The dq/three-phase converter 16 converts the d-axis voltage command value Vd* and the q-axis voltage command value Vq* into a U-phase voltage command value Vu*, a V-phase voltage command value Vv*, and a W-phase voltage command value Vw*, which are voltage command values for the UVW phases of the motor M, using the electrical angle. The dq/three-phase converter 16 then outputs the U-phase voltage command value Vu*, the V-phase voltage command value Vv*, and the W-phase voltage command value Vw* to the PWM controller 17. The U-phase voltage command value Vu*, the V-phase voltage command value Vv*, and the W-phase voltage command value Vw* are modulated waves, and may be referred to as "voltage command signals" when they are not distinguished from one another.
 PWM制御部17は、所定のキャリア周波数のキャリア波と電圧指令信号とを比較する。そして、PWM制御部17は、比較の結果、キャリア波より電圧指令信号の振幅が大きい期間にHiレベルの信号を出力し、キャリア波より電圧指令信号の振幅が小さい期間にLoレベルの信号を出力することでPWM信号を電力変換器2に出力する。PWM制御部17は、キャリア波とU相電圧指令値Vu*とを比較することによりPWM信号Duを生成して電力変換器2に出力する。PWM制御部17は、キャリア波とV相電圧指令値Vv*とを比較することによりPWM信号Dvを生成して電力変換器2に出力する。PWM制御部17は、キャリア波とW相電圧指令値Vw*とを比較することによりPWM信号Dwを生成して電力変換器2に出力する。 The PWM control unit 17 compares the carrier wave of a predetermined carrier frequency with the voltage command signal. Then, as a result of the comparison, the PWM control unit 17 outputs a Hi level signal during a period when the amplitude of the voltage command signal is greater than that of the carrier wave, and outputs a Lo level signal during a period when the amplitude of the voltage command signal is smaller than that of the carrier wave, thereby outputting a PWM signal to the power converter 2. The PWM control unit 17 compares the carrier wave with the U-phase voltage command value Vu* to generate a PWM signal Du and outputs it to the power converter 2. The PWM control unit 17 compares the carrier wave with the V-phase voltage command value Vv* to generate a PWM signal Dv and outputs it to the power converter 2. The PWM control unit 17 compares the carrier wave with the W-phase voltage command value Vw* to generate a PWM signal Dw and outputs it to the power converter 2.
 電力変換器2がPWM制御部17から入力されるPWM信号(上述のPWM信号Du、PWM信号Dv、PWM信号Dw)に基づいて駆動されることで、モータMの回転が制御される。 The power converter 2 is driven based on the PWM signals (the above-mentioned PWM signals Du, Dv, and Dw) input from the PWM control unit 17, thereby controlling the rotation of the motor M.
 このような本実施形態のモータ制御装置1では、トルク指令値生成部10で、トルクフィードバック値に基づいて、補償前トルク指令値T*から補償後トルク指令値Tecmp*が生成される。補償後トルク指令値Tecmp*は、磁束指令値生成部20、電流指令値生成部30及び電流指令値調整部40に入力される。また、磁束指令値生成部20では、補償後トルク指令値Tecmp*に基づいて補償後磁束指令値Φocmp*が生成される。補償後磁束指令値Φocmp*は、電流指令値生成部30に入力される。 In the motor control device 1 of this embodiment, the torque command value generating unit 10 generates a compensated torque command value Tecmp* from the pre-compensated torque command value T* based on the torque feedback value. The compensated torque command value Tecmp* is input to the flux command value generating unit 20, the current command value generating unit 30, and the current command value adjusting unit 40. The flux command value generating unit 20 generates a compensated flux command value Φocmp* based on the compensated torque command value Tecmp*. The compensated flux command value Φocmp* is input to the current command value generating unit 30.
 電流指令値生成部30では、補償後トルク指令値Tecmp*、及び補償後磁束指令値Φocmp*に基づいて、調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*が求められる。これらの調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*は、電流指令値調整部40に入力される。電流指令値調整部40では、補償後トルク指令値Tecmp*、モータ回転数Nf、及び、直流電圧検出値Vdcfに基づいて、d軸電流指令値id*及びq軸電流指令値iq*が求められる。 In the current command value generating unit 30, the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase* are calculated based on the compensated torque command value Tecmp* and the compensated magnetic flux command value Φocmp*. These pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase* are input to the current command value adjusting unit 40. In the current command value adjusting unit 40, the d-axis current command value id* and the q-axis current command value iq* are calculated based on the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf.
 以上のような本実施形態のモータ制御装置1が備える電力変換器制御装置3は、電池PとモータMとの間で電力変換を行う電力変換器2を制御する。本実施形態の電力変換器制御装置3は、磁束指令値生成部20と、電流指令値生成部30と、電流指令値調整部40とを備える。磁束指令値生成部20は、補償後トルク指令値Tecmp*に基づいて補償後磁束指令値Φocmp*を求める。電流指令値生成部30は、補償後トルク指令値Tecmp*及び補償後磁束指令値Φocmp*に基づいて、モータMを制御するための電流指令値(調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*)を求める。電流指令値調整部40は、補償後トルク指令値Tecmp*、モータMの回転数を示すモータ回転数Nf、及び、電池Pの出力電圧を示す直流電圧検出値Vdcfに基づいて、電流指令値(調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*)を調整する。 The power converter control device 3 provided in the motor control device 1 of this embodiment as described above controls the power converter 2 that performs power conversion between the battery P and the motor M. The power converter control device 3 of this embodiment includes a flux command value generating unit 20, a current command value generating unit 30, and a current command value adjusting unit 40. The flux command value generating unit 20 determines a compensated flux command value Φocmp* based on the compensated torque command value Tecmp*. The current command value generating unit 30 determines current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) for controlling the motor M based on the compensated torque command value Tecmp* and the compensated flux command value Φocmp*. The current command value adjustment unit 40 adjusts the current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) based on the compensated torque command value Tecmp*, the motor rotation speed Nf indicating the rotation speed of the motor M, and the DC voltage detection value Vdcf indicating the output voltage of the battery P.
 本実施形態の電力変換器制御装置3は、上述のように、電流指令値生成部30で生成された電流指令値(調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*)を電流指令値調整部40で調整する。電流指令値調整部40は、補償後トルク指令値Tecmp*に加えて、モータMの回転数を示すモータ回転数Nf、及び、電池Pの出力電圧を示す直流電圧検出値Vdcfに基づいて、電流指令値を調整する。このため、本実施形態の電力変換器制御装置3は、モータ回転数Nfと直流電圧検出値Vdcfとの両方に応じて電流指令値を調整することができる。したがって、本実施形態の電力変換器制御装置3は、モータMの回転数と直流電圧検出値Vdcfとが変化した場合であっても、補償後トルク指令値Tecmp*と出力トルクとの差を小さくすることができ、補償後トルク指令値Tecmp*に対する出力トルクの精度を向上させることができる。 As described above, the power converter control device 3 of this embodiment adjusts the current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) generated by the current command value generation unit 30 in the current command value adjustment unit 40. The current command value adjustment unit 40 adjusts the current command value based on the motor rotation speed Nf indicating the rotation speed of the motor M and the DC voltage detection value Vdcf indicating the output voltage of the battery P in addition to the compensated torque command value Tecmp*. Therefore, the power converter control device 3 of this embodiment can adjust the current command value according to both the motor rotation speed Nf and the DC voltage detection value Vdcf. Therefore, the power converter control device 3 of this embodiment can reduce the difference between the compensated torque command value Tecmp* and the output torque even if the motor M rotation speed and the DC voltage detection value Vdcf change, and can improve the accuracy of the output torque relative to the compensated torque command value Tecmp*.
 また、例えば、補償後トルク指令値Tecmp*が、電流指令値マップMaに設定されている複数の値(格子点)の間の値である場合には、線形補間が実施してd軸電流指令値id*及びq軸電流指令値iq*を求めることができる。このとき、補償後トルク指令値Tecmp*が2つの格子点の線形補間で求められる値でない場合(すなわち、2つの格子点を結ぶ線状に位置しない場合)には、磁束フィードバック処理にて収束するポイントの探索が続けられ、d軸電流指令値id*及びq軸電流指令値iq*を収束できないことが考えられる。このような場合には、d軸電流指令値id*及びq軸電流指令値iq*が安定せずに振動的となり、出力トルクが安定しなくなる。これに対して、本実施形態の電力変換器制御装置3によれば、調整値を用いてd軸電流指令値id*及びq軸電流指令値iq*が収束するように調整することができ、出力トルクを安定させることが可能となる。 Also, for example, when the compensated torque command value Tecmp* is a value between a plurality of values (grid points) set in the current command value map Ma, linear interpolation is performed to obtain the d-axis current command value id* and the q-axis current command value iq*. At this time, if the compensated torque command value Tecmp* is not a value obtained by linear interpolation of two lattice points (i.e., it is not located on a line connecting two lattice points), the search for a point where it converges in the magnetic flux feedback process continues, and it is considered that the d-axis current command value id* and the q-axis current command value iq* cannot converge. In such a case, the d-axis current command value id* and the q-axis current command value iq* become unstable and oscillate, and the output torque becomes unstable. In contrast, according to the power converter control device 3 of this embodiment, the d-axis current command value id* and the q-axis current command value iq* can be adjusted to converge using an adjustment value, making it possible to stabilize the output torque.
 図8及び図9は、本実施形態の電力変換器制御装置3の作用効果を説明するための模式図である。図8及び図9は、id-iq平面における電流動作点の推移を示す模式図である。例えば、図8に示すように、モータMを最大出力で駆動する場合には、最も高効率となる最小電流最大トルクライン(MTPA線)に沿うように電流動作点が推移される。このような最小電流最大トルクラインが、モータ回転数Nfや電池Pの出力電圧に依存せずに1本のみとなるように制御上設定されていると、モータ回転数Nfや電池Pの出力電圧の状態に応じて、実際の最小電流最大トルクラインが図8の破線で示すように変化した場合に、トルク精度が確保できなくなる。これに対して、本実施形態の電力変換器制御装置3では、モータ回転数Nfや電池Pの出力電圧の状態に応じて、異なる最小電流最大トルクラインを制御上設定することができる。このため、モータ回転数Nfや電池Pの出力電圧が変化しても、トルク精度を確保することが可能となる。 8 and 9 are schematic diagrams for explaining the action and effect of the power converter control device 3 of this embodiment. FIG. 8 and FIG. 9 are schematic diagrams showing the transition of the current operating point in the id-iq plane. For example, as shown in FIG. 8, when the motor M is driven at maximum output, the current operating point transitions so as to follow the minimum current maximum torque line (MTPA line) that provides the highest efficiency. If such a minimum current maximum torque line is set in the control so as to be only one line independent of the motor rotation speed Nf or the output voltage of the battery P, torque accuracy cannot be ensured when the actual minimum current maximum torque line changes as shown by the dashed line in FIG. 8 depending on the state of the motor rotation speed Nf or the output voltage of the battery P. In contrast, in the power converter control device 3 of this embodiment, different minimum current maximum torque lines can be set in the control depending on the state of the motor rotation speed Nf or the output voltage of the battery P. Therefore, it is possible to ensure torque accuracy even if the motor rotation speed Nf or the output voltage of the battery P changes.
 図9に示すように、モータMを弱め界磁制御する場合には、磁束制限円に沿うように電流動作点が推移される。モータ回転数Nfが低い場合や電池Pの出力電圧が低い場合には、実際の磁束制限円の位置が図9の破線で示すように変化する。このとき、制御上の磁束制限円が1つのみであると、モータ回転数Nfや電池Pの出力電圧の状態に応じて、実際の磁束制限円が図9の破線で示すように変化した場合に、トルク精度が確保できなくなる。これに対して、本実施形態の電力変換器制御装置3では、モータ回転数Nfや電池Pの出力電圧の状態に応じて、異なる磁束制限円を制御上設定することができる。このため、モータ回転数Nfや電池Pの出力電圧が低い場合であっても、トルク精度を確保することが可能となる。 As shown in FIG. 9, when the motor M is subjected to field-weakening control, the current operating point shifts to follow the magnetic flux limit circle. When the motor rotation speed Nf is low or the output voltage of the battery P is low, the position of the actual magnetic flux limit circle changes as shown by the dashed line in FIG. 9. In this case, if there is only one magnetic flux limit circle in the control, torque accuracy cannot be ensured if the actual magnetic flux limit circle changes as shown by the dashed line in FIG. 9 depending on the state of the motor rotation speed Nf or the output voltage of the battery P. In contrast, the power converter control device 3 of this embodiment can set different magnetic flux limit circles in the control depending on the state of the motor rotation speed Nf or the output voltage of the battery P. Therefore, it is possible to ensure torque accuracy even when the motor rotation speed Nf or the output voltage of the battery P is low.
 図10は、モータ回転数Nfと、モータMの実際の出力トルクTeとの関係を示すグラフである。この図に示すように、出力トルクTeが0Nmに近い領域R1では、モータ回転数と磁束指令値とをパラメータとする単一の2次元マップを用いて制御する場合に、トルク精度を確保することが難しい。 Figure 10 is a graph showing the relationship between the motor rotation speed Nf and the actual output torque Te of the motor M. As shown in this figure, in the region R1 where the output torque Te is close to 0 Nm, it is difficult to ensure torque accuracy when controlling using a single two-dimensional map with the motor rotation speed and magnetic flux command value as parameters.
 図10に示すように、また、モータ回転数Nfが低い領域R2では、トルク指令値生成部10がトルクフィードバック値を用いずにトルク指令値を求めるようにしてもよい。このような場合には、モータ回転数と磁束指令値とをパラメータとする単一の2次元マップを用いて制御する場合に、トルク精度を確保することが難しい。 As shown in FIG. 10, in region R2 where the motor rotation speed Nf is low, the torque command value generating unit 10 may determine the torque command value without using the torque feedback value. In such a case, it is difficult to ensure torque accuracy when controlling using a single two-dimensional map with the motor rotation speed and magnetic flux command value as parameters.
 本実施形態の電力変換器制御装置3では、図10に示す領域R1や領域R2であっても、モータ回転数Nfや電池Pの出力電圧の状態に応じて、異なる磁束制限円を制御上設定することができる。このため、図10に示す領域R1や領域R2であっても、トルク精度を確保することが可能となる。 In the power converter control device 3 of this embodiment, even in the region R1 or region R2 shown in FIG. 10, different magnetic flux limiting circles can be set in a controlled manner depending on the motor rotation speed Nf and the state of the output voltage of the battery P. Therefore, even in the region R1 or region R2 shown in FIG. 10, it is possible to ensure torque accuracy.
 また、本実施形態の電力変換器制御装置3において、電流指令値調整部40は、調整値設定部41と、加算器42とを備える。調整値設定部41は、補償後トルク指令値Tecmp*、モータ回転数Nf、及び、直流電圧検出値Vdcfに基づいて調整値を設定する。加算器42は、調整値を電流指令値に加算する。 In addition, in the power converter control device 3 of this embodiment, the current command value adjustment unit 40 includes an adjustment value setting unit 41 and an adder 42. The adjustment value setting unit 41 sets an adjustment value based on the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf. The adder 42 adds the adjustment value to the current command value.
 このような本実施形態の電力変換器制御装置3では、電流指令値に調整値を加算するのみの演算で、電流指令値は調整できる。したがって、本実施形態の電力変換器制御装置3は、演算量を抑制しつつトルク精度を確保することが可能となる。 In the power converter control device 3 of this embodiment, the current command value can be adjusted by simply adding the adjustment value to the current command value. Therefore, the power converter control device 3 of this embodiment can ensure torque accuracy while suppressing the amount of calculation.
 また、上記実施形態の電力変換器制御装置3は、記憶部3aを備える。記憶部3aは、補償後トルク指令値Tecmp*、モータ回転数Nf、及び、直流電圧検出値Vdcfと、調整値との関係を示す調整値マップMbを記憶する。また、調整値設定部41は、調整値マップMbに基づいて、調整値を設定する。 The power converter control device 3 of the above embodiment also includes a storage unit 3a. The storage unit 3a stores an adjustment value map Mb that indicates the relationship between the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf, and the adjustment value. The adjustment value setting unit 41 also sets the adjustment value based on the adjustment value map Mb.
 このような本実施形態の電力変換器制御装置3は、調整値マップMbを参照することで、容易に調整値を設定することができる。したがって、本実施形態の電力変換器制御装置3は、容易に電流指令値を求めることができる。 The power converter control device 3 of this embodiment can easily set the adjustment value by referring to the adjustment value map Mb. Therefore, the power converter control device 3 of this embodiment can easily determine the current command value.
 また、例えば、調整値マップMbを用いることで、例えば、トルク精度が低下しやすい範囲では細かく調整値を設定し、トルク精度が低下し難い範囲では調整値の設定を粗くすることも可能となる。なお、調整値を細かく設定するとは、調整値マップMbにおいて補償後トルク指令値Tecmp*、モータ回転数Nf、及び、直流電圧検出値Vdcfのある一定の変化幅における調整値を多く設定することを意味する。このように、トルク精度が低下しやすい範囲において、トルク精度が低下し難い範囲よりも調整値を細かく設定することで、調整値マップMbの記憶容量を削減することができる。これによって、記憶部3aにおいて調整値マップMbに割かれる記憶領域を削減することができ、記憶部3aに他のデータ等を記憶させることができる。例えば、近年の車両では、OTA(Over The Air:無線によるプログラムのアップデート機能)に対応可能とするために、記憶部3aの記憶容量が増大している。本実施形態の電力変換器制御装置3は、このようなOTAに対応した車両においても、調整値マップMbを記憶部3aに記憶させることが可能になる。 Also, for example, by using the adjustment value map Mb, it is possible to set the adjustment value finely in a range where the torque accuracy is likely to decrease, and set the adjustment value coarsely in a range where the torque accuracy is unlikely to decrease. Setting the adjustment value finely means setting many adjustment values in a certain change range of the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf in the adjustment value map Mb. In this way, by setting the adjustment value finer in a range where the torque accuracy is likely to decrease than in a range where the torque accuracy is unlikely to decrease, the storage capacity of the adjustment value map Mb can be reduced. This makes it possible to reduce the storage area allocated to the adjustment value map Mb in the storage unit 3a, and other data, etc. can be stored in the storage unit 3a. For example, in recent vehicles, the storage capacity of the storage unit 3a has increased in order to be compatible with OTA (Over The Air: a function for updating programs wirelessly). The power converter control device 3 of this embodiment makes it possible to store the adjustment value map Mb in the storage unit 3a even in such vehicles that are compatible with OTA.
 また、本実施形態の電力変換器制御装置3は、トルク指令値生成部10を備える。トルク指令値生成部10は、モータMの状態に基づいて算出されたトルクフィードバック値を用いて補償後トルク指令値Tecmp*を求めることが可能である。また、トルク指令値生成部10がトルクフィードバック値を用いずに補償後トルク指令値Tecmp*を求める場合に、電流指令値調整部40は、電流指令値の値を変更する。これによって、トルク指令値生成部10がトルクフィードバック値を用いずに補償後トルク指令値Tecmp*を求める場合であっても、トルク精度を確保することが可能となる。 The power converter control device 3 of this embodiment also includes a torque command value generation unit 10. The torque command value generation unit 10 is capable of determining the compensated torque command value Tecmp* using a torque feedback value calculated based on the state of the motor M. Furthermore, when the torque command value generation unit 10 determines the compensated torque command value Tecmp* without using the torque feedback value, the current command value adjustment unit 40 changes the value of the current command value. This makes it possible to ensure torque accuracy even when the torque command value generation unit 10 determines the compensated torque command value Tecmp* without using the torque feedback value.
 また、本実施形態の電力変換器制御装置3において、磁束指令値生成部20は、モータMの状態に基づいて算出された磁束フィードバック値を用いて補償後磁束指令値Φocmp*を求める。このため、このような本実施形態の電力変換器制御装置3は、鎖交磁束フィードバック値Φofを反映した電流指令値を求めることができる。したがって、本実施形態の電力変換器制御装置3は、トルク精度をより向上させることが可能となる。 Furthermore, in the power converter control device 3 of this embodiment, the flux command value generating unit 20 determines the compensated flux command value Φocmp* using the flux feedback value calculated based on the state of the motor M. Therefore, the power converter control device 3 of this embodiment can determine a current command value that reflects the flux linkage feedback value Φof. Therefore, the power converter control device 3 of this embodiment can further improve the torque accuracy.
 また、本実施形態のモータ制御装置1は、電力変換器2と、電力変換器制御装置3とを備える。このため、本実施形態のモータ制御装置1は、補償後トルク指令値Tecmp*に対するトルク精度を向上させることができる。 The motor control device 1 of this embodiment also includes a power converter 2 and a power converter control device 3. Therefore, the motor control device 1 of this embodiment can improve the torque accuracy with respect to the compensated torque command value Tecmp*.
(第2実施形態)
 次に、本発明の第2実施形態について、図11を参照して説明する。なお、本実施形態の説明において、上記第1実施形態と同様の部分については、その説明を省略あるいは簡略化する。
Second Embodiment
Next, a second embodiment of the present invention will be described with reference to Fig. 11. In the description of this embodiment, the description of the same parts as those in the first embodiment will be omitted or simplified.
 図11は、本実施形態の電力変換器制御装置3の模式的な概略図である。この図に示すように、本実施形態の電力変換器制御装置3において、記憶部3aは、MTPA制御用電流指令値マップMcと、廃電制御用電流指令値マップMdと、MTPA制御用調整値マップMeと、廃電制御用調整値マップMfとを記憶している。 FIG. 11 is a schematic diagram of the power converter control device 3 of this embodiment. As shown in this figure, in the power converter control device 3 of this embodiment, the memory unit 3a stores a current command value map Mc for MTPA control, a current command value map Md for waste electricity control, an adjustment value map Me for MTPA control, and an adjustment value map Mf for waste electricity control.
 MTPA制御用電流指令値マップMcは、モータMに対してMTPA制御(最大トルク/電流制御)を行う場合に、電流指令値を求めるために用いる電流指令値マップMaである。MTPA制御用電流指令値マップMcは、MTPA制御に基づいた電流指令値(調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*)が、補償後トルク指令値Tecmp*及び補償後磁束指令値Φocmp*に対応づけられたマップである。 The current command value map Mc for MTPA control is a current command value map Ma used to determine a current command value when performing MTPA control (maximum torque/current control) on the motor M. The current command value map Mc for MTPA control is a map in which the current command values based on MTPA control (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) are associated with the compensated torque command value Tecmp* and the compensated magnetic flux command value Φocmp*.
 廃電制御用電流指令値マップMdは、モータMに対して廃電制御(強め磁界制御)を行う場合に、電流指令値を求めるために用いる電流指令値マップMaである。廃電制御用電流指令値マップMdは、廃電制御に基づいた電流指令値(調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*)が、補償後トルク指令値Tecmp*及び補償後磁束指令値Φocmp*に対応づけられたマップである。 The current command value map Md for waste electricity control is a current command value map Ma used to determine a current command value when waste electricity control (strengthened magnetic field control) is performed on the motor M. The current command value map Md for waste electricity control is a map in which the current command values based on waste electricity control (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) are associated with the compensated torque command value Tecmp* and the compensated magnetic flux command value Φocmp*.
 MTPA制御用調整値マップMeは、モータMに対してMTPA制御を行う場合に、調整値を求めるために用いる調整値マップMbである。MTPA制御用調整値マップMeは、MTPA制御に基づく電流指令値に応じた調整値(d軸電流調整値idadj*及びq軸電流調整値iqadj*)が、補償後トルク指令値Tecmp*、モータ回転数Nf、及び、直流電圧検出値Vdcfに対応づけられたマップである。 The adjustment value map Me for MTPA control is an adjustment value map Mb used to determine adjustment values when performing MTPA control on the motor M. The adjustment value map Me for MTPA control is a map in which adjustment values (d-axis current adjustment value idadj* and q-axis current adjustment value iqadj*) according to the current command value based on MTPA control are associated with the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf.
 廃電制御用調整値マップMfは、モータMに対して廃電制御を行う場合に、調整値を求めるために用いる調整値マップMbである。廃電制御用調整値マップMfは、廃電制御に基づく電流指令値に応じた調整値(d軸電流調整値idadj*及びq軸電流調整値iqadj*)が、補償後トルク指令値Tecmp*、モータ回転数Nf、及び、直流電圧検出値Vdcfに対応づけられたマップである。 The waste electricity control adjustment value map Mf is an adjustment value map Mb used to determine adjustment values when waste electricity control is performed on the motor M. The waste electricity control adjustment value map Mf is a map in which adjustment values (d-axis current adjustment value idadj* and q-axis current adjustment value iqadj*) according to the current command value based on waste electricity control are associated with the compensated torque command value Tecmp*, the motor rotation speed Nf, and the DC voltage detection value Vdcf.
 電流指令値生成部30は、例えば外部から入力される信号に基づいてモータMの制御状態を判断する。具体的には、電流指令値生成部30は、モータMの制御状態が、MTPA制御であるか、廃電制御であるかを判定する。また、電流指令値調整部40の調整値設定部41も、同様に、モータMの制御状態が、MTPA制御であるか、廃電制御であるかを判定する。 The current command value generating unit 30 determines the control state of the motor M based on, for example, a signal input from the outside. Specifically, the current command value generating unit 30 determines whether the control state of the motor M is MTPA control or waste electricity control. Similarly, the adjustment value setting unit 41 of the current command value adjusting unit 40 also determines whether the control state of the motor M is MTPA control or waste electricity control.
 電流指令値生成部30は、モータMの制御状態がMTPA制御である場合には、MTPA制御用電流指令値マップMcを参照して、電流指令値(調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*)を求める。また、電流指令値調整部40の調整値設定部41は、モータMの制御状態がMTPA制御である場合には、MTPA制御用調整値マップMeを参照して、調整値(d軸電流調整値idadj*及びq軸電流調整値iqadj*)を設定する。 When the control state of the motor M is MTPA control, the current command value generating unit 30 refers to the current command value map Mc for MTPA control to determine the current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*). When the control state of the motor M is MTPA control, the adjustment value setting unit 41 of the current command value adjusting unit 40 refers to the adjustment value map Me for MTPA control to set the adjustment values (d-axis current adjustment value idadj* and q-axis current adjustment value iqadj*).
 一方、電流指令値生成部30は、モータMの制御状態が廃電制御である場合には、廃電制御用電流指令値マップMdを参照して、電流指令値(調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*)を求める。また、電流指令値調整部40の調整値設定部41は、モータMの制御状態が廃電制御である場合には、廃電制御用調整値マップMfを参照して、調整値(d軸電流調整値idadj*及びq軸電流調整値iqadj*)を設定する。 On the other hand, when the control state of the motor M is waste electricity control, the current command value generating unit 30 refers to the waste electricity control current command value map Md to determine the current command values (the pre-adjustment d-axis current command value idbase* and the pre-adjustment q-axis current command value iqbase*). Also, when the control state of the motor M is waste electricity control, the adjustment value setting unit 41 of the current command value adjusting unit 40 refers to the waste electricity control adjustment value map Mf to set the adjustment values (the d-axis current adjustment value idadj* and the q-axis current adjustment value iqadj*).
 以上のような本実施形態の電力変換器制御装置3において、記憶部3aは、モータMに対してMTPA制御を行う場合に用いる調整値マップMbとしてMTPA制御用調整値マップMeを記憶している。また、調整値設定部41は、モータMに対してMTPA制御を行う場合にMTPA制御用調整値マップMeに基づいて、調整値を設定する。このような本実施形態の電力変換器制御装置3によれば、MTPA制御に適した調整値を用いて、電流指令値(調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*)を調整することができる。 In the power converter control device 3 of this embodiment as described above, the storage unit 3a stores the MTPA control adjustment value map Me as the adjustment value map Mb used when performing MTPA control on the motor M. Furthermore, the adjustment value setting unit 41 sets adjustment values based on the MTPA control adjustment value map Me when performing MTPA control on the motor M. According to the power converter control device 3 of this embodiment, the current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) can be adjusted using adjustment values suitable for MTPA control.
 また、本実施形態の電力変換器制御装置3において、記憶部3aは、モータMに対して廃電制御を行う場合に用いる調整値マップMbとして廃電制御用調整値マップMfを記憶している。また、調整値設定部41は、モータMに対して廃電制御を行う場合に廃電制御用調整値マップMfに基づいて、調整値を設定する。このような本実施形態の電力変換器制御装置3によれば、廃電制御に適した調整値を用いて、電流指令値(調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*)を調整することができる。 In addition, in the power converter control device 3 of this embodiment, the memory unit 3a stores an adjustment value map Mf for waste electricity control as an adjustment value map Mb used when performing waste electricity control on the motor M. Furthermore, the adjustment value setting unit 41 sets an adjustment value based on the adjustment value map Mf for waste electricity control when performing waste electricity control on the motor M. According to the power converter control device 3 of this embodiment, the current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) can be adjusted using adjustment values suitable for waste electricity control.
 このように本実施形態の電力変換器制御装置3によれば、モータMの制御状態に応じて、異なる電流指令値(調整前d軸電流指令値idbase*及び調整前q軸電流指令値iqbase*)及び異なる調整値(d軸電流調整値idadj*及びq軸電流調整値iqadj*)を用いる。このため、モータMの制御状態の各々に適した制御を行うことが可能となる。 In this way, according to the power converter control device 3 of this embodiment, different current command values (pre-adjustment d-axis current command value idbase* and pre-adjustment q-axis current command value iqbase*) and different adjustment values (d-axis current adjustment value idadj* and q-axis current adjustment value iqadj*) are used depending on the control state of the motor M. This makes it possible to perform control appropriate for each of the control states of the motor M.
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されないことは言うまでもない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The above describes a preferred embodiment of the present invention with reference to the attached drawings, but it goes without saying that the present invention is not limited to the above embodiment. The shapes and combinations of the components shown in the above embodiment are merely examples, and various modifications can be made based on design requirements, etc., without departing from the spirit of the present invention.
 なお、上記実施形態については、例えば以下の付記のようにも記載できる。 The above embodiment can also be described as follows, for example:
(付記1)
 直流電源とモータとの間で電力変換を行う電力変換器を制御する電力変換器制御装置であって、
 トルク指令値に基づいて磁束指令値を求める磁束指令値生成部と、
 前記トルク指令値及び前記磁束指令値に基づいて、前記モータを制御するための電流指令値を求める電流指令値生成部と、
 前記トルク指令値、前記モータの回転数を示す回転検出値、及び、前記直流電源の出力電圧を示す直流電圧値に基づいて、前記電流指令値を調整する電流指令値調整部と
 を備える
 ことを特徴とする電力変換器制御装置。
(Appendix 1)
A power converter control device that controls a power converter that performs power conversion between a DC power source and a motor,
a magnetic flux command value generating unit that calculates a magnetic flux command value based on a torque command value;
a current command value generating unit that calculates a current command value for controlling the motor based on the torque command value and the magnetic flux command value;
a current command value adjustment unit that adjusts the current command value based on the torque command value, a rotation detection value indicating a rotation speed of the motor, and a DC voltage value indicating an output voltage of the DC power supply.
(付記2)
 前記電流指令値調整部は、
 前記トルク指令値、前記回転検出値、及び、前記直流電圧値に基づいて調整値を設定する調整値設定部と、
 前記調整値を前記電流指令値に加減算する加減算器と
 を備える
 ことを特徴とする付記1記載の電力変換器制御装置。
(Appendix 2)
The current command value adjustment unit
an adjustment value setting unit that sets an adjustment value based on the torque command value, the rotation detection value, and the DC voltage value;
an adder/subtractor that adds/subtracts the adjustment value to/from the current command value.
(付記3)
 前記トルク指令値、前記回転検出値、及び、前記直流電圧値と、前記調整値との関係を示す調整値マップを記憶する記憶部を備え、
 前記調整値設定部は、前記調整値マップに基づいて、前記調整値を設定する
 ことを特徴とする付記2記載の電力変換器制御装置。
(Appendix 3)
a storage unit configured to store an adjustment value map indicating a relationship between the torque command value, the rotation detection value, and the DC voltage value, and the adjustment value;
The power converter control device according to claim 2, wherein the adjustment value setting unit sets the adjustment value based on the adjustment value map.
(付記4)
 前記記憶部は、前記モータに対して最大トルク/電流制御を行う場合に用いる前記調整値マップとして最大トルク/電流制御用調整値マップを記憶し、
 前記調整値設定部は、前記モータに対して最大トルク/電流制御を行う場合に最大トルク/電流制御用調整値マップに基づいて、前記調整値を設定する
 ことを特徴とする付記3記載の電力変換器制御装置。
(Appendix 4)
the storage unit stores a maximum torque/current control adjustment value map as the adjustment value map used when maximum torque/current control is performed on the motor;
4. The power converter control device according to claim 3, wherein the adjustment value setting unit sets the adjustment value based on a maximum torque/current control adjustment value map when maximum torque/current control is performed on the motor.
(付記5)
 前記記憶部は、前記モータに対して強め磁界制御を行う場合に用いる前記調整値マップとして強め磁界制御用調整値マップを記憶し、
 前記調整値設定部は、前記モータに対して前記強め磁界制御を行う場合に強め磁界制御用調整値マップに基づいて、前記調整値を設定する
 ことを特徴とする付記3または4記載の電力変換器制御装置。
(Appendix 5)
the storage unit stores an adjustment value map for strong magnetic field control as the adjustment value map used when performing strong magnetic field control on the motor;
5. The power converter control device according to claim 3, wherein the adjustment value setting unit sets the adjustment value based on a strong magnetic field control adjustment value map when the strong magnetic field control is performed on the motor.
(付記6)
 前記モータの状態に基づいて算出されたトルクフィードバック値を用いて前記トルク指令値を求めることが可能なトルク指令値生成部を備え、
 前記トルク指令値生成部がトルクフィードバック値を用いずに前記トルク指令値を求める場合に、
 前記電流指令値調整部は、前記電流指令値の値を変更する
 ことを特徴とする付記1~5のいずれか一つに記載の電力変換器制御装置。
(Appendix 6)
a torque command value generating unit capable of calculating the torque command value by using a torque feedback value calculated based on a state of the motor;
When the torque command value generating unit calculates the torque command value without using a torque feedback value,
The power converter control device according to any one of claims 1 to 5, wherein the current command value adjustment unit changes a value of the current command value.
(付記7)
 前記磁束指令値生成部は、
 前記モータの状態に基づいて算出された磁束フィードバック値を用いて前記磁束指令値を求める
 ことを特徴とする付記1~6のいずれか一つに記載の電力変換器制御装置。
(Appendix 7)
The magnetic flux command value generating unit
The power converter control device according to any one of claims 1 to 6, further comprising: determining the magnetic flux command value using a magnetic flux feedback value calculated based on a state of the motor.
(付記8)
 前記電力変換器と、付記1~7のいずれか一つに記載の電力変換器制御装置とを備えることを特徴とする電力変換装置。
(Appendix 8)
A power conversion device comprising the power converter and the power converter control device according to any one of appendices 1 to 7.
 1……モータ制御装置(電力変換装置)、2……電力変換器、3……電力変換器制御装置、3a……記憶部、10……トルク指令値生成部、11……トルク制御部、20……磁束指令値生成部、30……電流指令値生成部、40……電流指令値調整部、41……調整値設定部、42……加算器(加減算器)、50……回転数算出部 1...motor control device (power conversion device), 2...power converter, 3...power converter control device, 3a...storage unit, 10...torque command value generation unit, 11...torque control unit, 20...magnetic flux command value generation unit, 30...current command value generation unit, 40...current command value adjustment unit, 41...adjustment value setting unit, 42...adder (adder-subtractor), 50...rotation speed calculation unit

Claims (8)

  1.  直流電源とモータとの間で電力変換を行う電力変換器を制御する電力変換器制御装置であって、
     トルク指令値に基づいて磁束指令値を求める磁束指令値生成部と、
     前記トルク指令値及び前記磁束指令値に基づいて、前記モータを制御するための電流指令値を求める電流指令値生成部と、
     前記トルク指令値、前記モータの回転数を示す回転検出値、及び、前記直流電源の出力電圧を示す直流電圧値に基づいて、前記電流指令値を調整する電流指令値調整部と
     を備える
     ことを特徴とする電力変換器制御装置。
    A power converter control device that controls a power converter that performs power conversion between a DC power source and a motor,
    a magnetic flux command value generating unit that calculates a magnetic flux command value based on a torque command value;
    a current command value generating unit that calculates a current command value for controlling the motor based on the torque command value and the magnetic flux command value;
    a current command value adjustment unit that adjusts the current command value based on the torque command value, a rotation detection value indicating a rotation speed of the motor, and a DC voltage value indicating an output voltage of the DC power supply.
  2.  前記電流指令値調整部は、
     前記トルク指令値、前記回転検出値、及び、前記直流電圧値に基づいて調整値を設定する調整値設定部と、
     前記調整値を前記電流指令値に加減算する加減算器と
     を備える
     ことを特徴とする請求項1記載の電力変換器制御装置。
    The current command value adjustment unit
    an adjustment value setting unit that sets an adjustment value based on the torque command value, the rotation detection value, and the DC voltage value;
    The power converter control device according to claim 1 , further comprising: an adder/subtractor that adds/subtracts the adjustment value to/from the current command value.
  3.  前記トルク指令値、前記回転検出値、及び、前記直流電圧値と、前記調整値との関係を示す調整値マップを記憶する記憶部を備え、
     前記調整値設定部は、前記調整値マップに基づいて、前記調整値を設定する
     ことを特徴とする請求項2記載の電力変換器制御装置。
    a storage unit configured to store an adjustment value map indicating a relationship between the torque command value, the rotation detection value, and the DC voltage value, and the adjustment value;
    The power converter control device according to claim 2 , wherein the adjustment value setting unit sets the adjustment value based on the adjustment value map.
  4.  前記記憶部は、前記モータに対して最大トルク/電流制御を行う場合に用いる前記調整値マップとして最大トルク/電流制御用調整値マップを記憶し、
     前記調整値設定部は、前記モータに対して最大トルク/電流制御を行う場合に最大トルク/電流制御用調整値マップに基づいて、前記調整値を設定する
     ことを特徴とする請求項3記載の電力変換器制御装置。
    the storage unit stores a maximum torque/current control adjustment value map as the adjustment value map used when maximum torque/current control is performed on the motor;
    4. The power converter control device according to claim 3, wherein the adjustment value setting unit sets the adjustment value based on a maximum torque/current control adjustment value map when maximum torque/current control is performed on the motor.
  5.  前記記憶部は、前記モータに対して強め磁界制御を行う場合に用いる前記調整値マップとして強め磁界制御用調整値マップを記憶し、
     前記調整値設定部は、前記モータに対して前記強め磁界制御を行う場合に強め磁界制御用調整値マップに基づいて、前記調整値を設定する
     ことを特徴とする請求項3または4記載の電力変換器制御装置。
    the storage unit stores an adjustment value map for strong magnetic field control as the adjustment value map used when performing strong magnetic field control on the motor;
    5. The power converter control device according to claim 3, wherein the adjustment value setting unit sets the adjustment value based on a strong magnetic field control adjustment value map when the strong magnetic field control is performed on the motor.
  6.  前記モータの状態に基づいて算出されたトルクフィードバック値を用いて前記トルク指令値を求めることが可能なトルク指令値生成部を備え、
     前記トルク指令値生成部がトルクフィードバック値を用いずに前記トルク指令値を求める場合に、
     前記電流指令値調整部は、前記電流指令値の値を変更する
     ことを特徴とする請求項1~4のいずれか一項に記載の電力変換器制御装置。
    a torque command value generating unit capable of calculating the torque command value by using a torque feedback value calculated based on a state of the motor;
    When the torque command value generating unit calculates the torque command value without using a torque feedback value,
    5. The power converter control device according to claim 1, wherein the current command value adjustment unit changes a value of the current command value.
  7.  前記磁束指令値生成部は、
     前記モータの状態に基づいて算出された磁束フィードバック値を用いて前記磁束指令値を求める
     ことを特徴とする請求項1~4のいずれか一項に記載の電力変換器制御装置。
    The magnetic flux command value generating unit
    5. The power converter control device according to claim 1, wherein the magnetic flux command value is determined using a magnetic flux feedback value calculated based on a state of the motor.
  8.  前記電力変換器と、請求項1~4のいずれか一項に記載の電力変換器制御装置とを備えることを特徴とする電力変換装置。 A power conversion device comprising the power converter and the power converter control device according to any one of claims 1 to 4.
PCT/JP2022/044267 2022-11-30 2022-11-30 Power converter control device and power converter WO2024116352A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044267 WO2024116352A1 (en) 2022-11-30 2022-11-30 Power converter control device and power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/044267 WO2024116352A1 (en) 2022-11-30 2022-11-30 Power converter control device and power converter

Publications (1)

Publication Number Publication Date
WO2024116352A1 true WO2024116352A1 (en) 2024-06-06

Family

ID=91323135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044267 WO2024116352A1 (en) 2022-11-30 2022-11-30 Power converter control device and power converter

Country Status (1)

Country Link
WO (1) WO2024116352A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136699A (en) * 1996-10-25 1998-05-22 Toyota Motor Corp Motor control equipment
JP2000032799A (en) * 1998-07-07 2000-01-28 Hitachi Ltd Controller and control method for electric rotating machine
JP2010279113A (en) * 2009-05-27 2010-12-09 Aisin Aw Co Ltd Device for control of motor drive unit
JP2011217589A (en) * 2010-03-31 2011-10-27 Hyundai Motor Co Ltd Control method of permanent magnet synchronous motor
JP2018198479A (en) * 2017-05-23 2018-12-13 富士電機株式会社 Control device of synchronous motor
JP2020065416A (en) * 2018-10-19 2020-04-23 株式会社ケーヒン Vector controller

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136699A (en) * 1996-10-25 1998-05-22 Toyota Motor Corp Motor control equipment
JP2000032799A (en) * 1998-07-07 2000-01-28 Hitachi Ltd Controller and control method for electric rotating machine
JP2010279113A (en) * 2009-05-27 2010-12-09 Aisin Aw Co Ltd Device for control of motor drive unit
JP2011217589A (en) * 2010-03-31 2011-10-27 Hyundai Motor Co Ltd Control method of permanent magnet synchronous motor
JP2018198479A (en) * 2017-05-23 2018-12-13 富士電機株式会社 Control device of synchronous motor
JP2020065416A (en) * 2018-10-19 2020-04-23 株式会社ケーヒン Vector controller

Similar Documents

Publication Publication Date Title
EP2380272B1 (en) Control system for ac motor
US8497646B2 (en) Controller for AC electric motor and electric powered vehicle
JP4604820B2 (en) Control device for motor drive system
EP1881596A1 (en) Motor drive system control device and electric vehicle using the same
WO2010073865A1 (en) Sensorless motor controller
JP2007159368A (en) Control unit of motor drive system
US9935568B2 (en) Control apparatus of rotary electric machine
US11104374B2 (en) Motor control device, electrically driven actuator product, and electrically driven power steering device
JP6119585B2 (en) Electric motor drive
JP5955761B2 (en) Vehicle control device
JP2009201250A (en) Controller of electric motor
JP2011019302A (en) Controller for motor driving system
JP5696607B2 (en) AC motor control apparatus and control method
WO2017109884A1 (en) Rotating electric machine control device
WO2024116352A1 (en) Power converter control device and power converter
WO2024084566A1 (en) Electric power converter control device and electric power conversion device
JP7435189B2 (en) motor drive system
US20230308035A1 (en) Motor control device
JP7209656B2 (en) motor controller
JP2019161748A (en) Inverter control method and inverter control device
US11705845B2 (en) Motor control device
JP6954165B2 (en) Drive device
JP2022179990A (en) Motor control device
JP2017229127A (en) Device and method for controlling motor
JP5780022B2 (en) AC motor control apparatus and control method