WO2024114554A1 - 信息确定方法及相关装置 - Google Patents

信息确定方法及相关装置 Download PDF

Info

Publication number
WO2024114554A1
WO2024114554A1 PCT/CN2023/134217 CN2023134217W WO2024114554A1 WO 2024114554 A1 WO2024114554 A1 WO 2024114554A1 CN 2023134217 W CN2023134217 W CN 2023134217W WO 2024114554 A1 WO2024114554 A1 WO 2024114554A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
reference signal
signal binding
binding window
duration
Prior art date
Application number
PCT/CN2023/134217
Other languages
English (en)
French (fr)
Inventor
周欢
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Publication of WO2024114554A1 publication Critical patent/WO2024114554A1/zh

Links

Definitions

  • the present application relates to the field of communication technology, and in particular to an information determination method and related devices.
  • network equipment can configure joint transmission of multiple time slots for terminal devices to enhance uplink transmission performance.
  • the reference signal used for demodulation of each independent uplink channel is also extended to joint demodulation of multiple transmitted reference signals, also known as reference signal bundling.
  • Multiple time slots with multiple reference signal bundling can be called reference signal bundling windows. How terminal devices determine the reference signal bundling windows on time domain resources is an urgent problem to be solved.
  • the present application provides an information determination method and related devices, which can determine a reference signal binding window on a time domain resource, thereby facilitating consistent transmission of multiple reference signals and further improving the reliability of uplink transmission.
  • the present application provides an information determination method, which may be performed by a terminal device or a device, a chip module or a chip in the terminal device, and the method may include:
  • the first information is used to determine a first area and a second area on the time domain resource, the first area and the second area have different parameter configurations, and the parameter configuration includes at least one of a transmission parameter and a power control parameter;
  • the second information is used to determine the time domain resources and frequency domain resources of the uplink channel
  • the duration of the reference signal binding window is related to the positions of the first area and the second area on the time domain resource.
  • the duration of the reference signal binding window is related to the first area and the second area. Since the first area and the second area have different parameter configurations, the reference signal binding window determined in this way is conducive to the consistent transmission of multiple reference signals, thereby improving the reliability of uplink transmission.
  • the duration of each reference signal binding window depends on whether the region to which the reference signal binding window belongs is the first region or the second region.
  • the duration of each reference signal binding window depends on whether the area where the starting time slot of the reference signal binding window is located is the first area or the second area.
  • the duration of the reference signal binding window is equal to the first value; if the area where the starting time slot of the reference signal binding window is located is the second area, then the duration of the reference signal binding window is equal to the second value; the first value is the duration of the reference signal binding window configured for the first area, and the second value is the duration of the reference signal binding window configured for the second area. The duration of the reference signal binding window configured in the second area.
  • the actual reference signal binding window of the uplink channel is equal to the reference signal binding window, or is obtained by dividing the reference signal binding window based on events contained in the reference signal binding window; the events include at least one of the following: there is a switch between the first area and the second area in the reference signal binding window; there is a switch between the first area and the second area in the reference signal binding window and there is a change in the frequency domain resources used for uplink transmission in the reference signal binding window; there are one or more frequency domain hops in the reference signal binding window, and the duration of the frequency domain hop is related to whether the area where the starting time slot of the frequency domain hop is located is the first area or the second area.
  • the duration of the frequency domain hopping is equal to a third value; if the area where the starting time slot of the frequency domain hopping is located is a second area, the duration of the frequency domain hopping is equal to a fourth value; the third value is the duration of the frequency domain hopping configured for the first area, and the fourth value is the duration of the frequency domain hopping configured for the second area.
  • the first area is a sub-band full-duplex SBFD area, and different uplink and downlink transmissions or receptions exist between sub-bands of the same carrier in the SBFD area;
  • the second area is a non-SBFD area, and the same uplink and downlink transmissions or receptions exist between sub-bands of the same carrier in the non-SBFD area.
  • the present application also provides an information determination method, which can be executed by a network device or an apparatus in the network device, such as a chip or a chip module, and the method includes: sending first information and second information; the first information is used to determine a first area and a second area on the time domain resources, and the first area and the second area have different parameter configurations, and the parameter configuration includes at least one of a transmission parameter and a power control parameter; the second information is used to determine the time domain resources and frequency domain resources of the uplink channel; based on the first information and the second information, determine each reference signal binding window of the uplink channel; the duration of the reference signal binding window is related to the position of the first area and the second area on the time domain resources.
  • the duration of the reference signal binding window is related to the first area and the second area. Since the first area and the second area have different parameter configurations, the reference signal binding window determined in this way is conducive to the consistent transmission of multiple reference signals, thereby improving the reliability of uplink transmission.
  • the duration of each reference signal binding window depends on whether the region to which the reference signal binding window belongs is the first region or the second region.
  • the duration of each reference signal binding window depends on whether the area where the starting time slot of the reference signal binding window is located is the first area or the second area.
  • the duration of the reference signal binding window is equal to a first value; if the area where the starting time slot of the reference signal binding window is located is the second area, then the duration of the reference signal binding window is equal to a second value; the first value is the duration of the reference signal binding window configured for the first area, and the second value is the duration of the reference signal binding window configured for the second area.
  • the actual reference signal binding window of the uplink channel is equal to the reference signal binding window, or is obtained by dividing the reference signal binding window based on events included in the reference signal binding window; the events include at least one of the following: there is a switch between the first area and the second area in the reference signal binding window; there is a switch between the first area and the second area in the reference signal binding window and the reference signal binding window is There is a change in the frequency domain resources used for uplink transmission in the reference signal binding window; there are one or more frequency domain hopping in the reference signal binding window, and the duration of the frequency domain hopping is related to whether the area where the starting time slot of the frequency domain hopping is located is the first area or the second area.
  • the duration of the frequency domain hopping is equal to a third value; if the area where the starting time slot of the frequency domain hopping is located is a second area, the duration of the frequency domain hopping is equal to a fourth value; the third value is the duration of the frequency domain hopping configured for the first area, and the fourth value is the duration of the frequency domain hopping configured for the second area.
  • the first area is a sub-band full-duplex SBFD area, and different uplink and downlink transmissions or receptions exist between sub-bands of the same carrier in the SBFD area;
  • the second area is a non-SBFD area, and the same uplink and downlink transmissions or receptions exist between sub-bands of the same carrier in the non-SBFD area.
  • an embodiment of the present application further provides an information determination device, the device comprising:
  • a receiving unit configured to receive first information and second information
  • the first information is used to determine a first area and a second area on the time domain resource, the first area and the second area have different parameter configurations, and the parameter configuration includes at least one of a transmission parameter and a power control parameter;
  • the second information is used to determine the time domain resources and frequency domain resources of the uplink channel
  • a determining unit configured to determine each reference signal binding window of the uplink channel according to the first information and the second information
  • the duration of the reference signal binding window is related to the positions of the first area and the second area on the time domain resource.
  • an embodiment of the present application further provides an information determination device, the device comprising:
  • a sending unit configured to send first information and second information
  • the first information is used to determine a first area and a second area on the time domain resource, the first area and the second area have different parameter configurations, and the parameter configuration includes at least one of a transmission parameter and a power control parameter;
  • the second information is used to determine the time domain resources and frequency domain resources of the uplink channel
  • a determining unit configured to determine each reference signal binding window of the uplink channel according to the first information and the second information
  • the duration of the reference signal binding window is related to the positions of the first area and the second area on the time domain resource.
  • an embodiment of the present application provides a communication device, the communication device comprising: a processor, a memory, the processor and the memory are connected to each other, wherein the memory is used to store a computer program, the computer program includes program instructions, wherein the processor executes the program instructions to implement the steps in the method designed in the first aspect or the second aspect above.
  • the communication device can be a terminal device or a chip or chip module in a terminal device, or can be a network device or a device in a network device.
  • an embodiment of the present application provides a chip, the chip comprising a processor, wherein the processor executes the steps in the method designed in the first aspect or the second aspect.
  • the chip may also include a memory and a computer program or instruction stored in the memory, and the processor executes the computer program or instruction to implement the above-mentioned first aspect. The method of the first or second aspect.
  • an embodiment of the present application provides a chip module, including a transceiver component and a chip, wherein the chip includes a processor, wherein the processor executes the steps in the method designed in the first aspect or the second aspect.
  • the chip module may also include a memory and a computer program or instruction stored in the memory, and the processor executes the computer program or instruction to implement the method described in the first aspect or the second aspect.
  • an embodiment of the present application provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program, wherein the computer program includes program instructions, and when the program instructions are executed, the steps in the method designed in the first aspect or the second aspect are implemented.
  • an embodiment of the present application provides a computer program product, including a computer program or program instructions, which implement the method described in the first or second aspect above when executed.
  • an embodiment of the present application provides a communication system, comprising at least a terminal device and a network device, wherein the terminal device is capable of at least performing the related operations described in the above-mentioned first aspect, and the network device is capable of at least performing the related operations described in the above-mentioned second aspect.
  • FIG1 is a schematic diagram of the architecture of a communication system provided in an embodiment of the present application.
  • FIG2 is a flow chart of an information determination method provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of an SBFD region and a non-SBFD region provided in an embodiment of the present application
  • FIG4 is a schematic diagram of a normal TDW of an uplink channel provided in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a normal TDW of another uplink channel provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of an actual TDW of an uplink channel provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of an actual TDW of an uplink channel provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of frequency hopping in the frequency domain of an uplink channel provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of another frequency domain frequency hopping of an uplink channel provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of another information determination device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of an information determination device provided in an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • the signal transmission system may include a terminal device 101 and a network device 102, wherein the terminal device 101 takes a mobile phone as an example, and the network device 102 takes a base station as an example.
  • the terminal device 101 can receive first information and second information from the network device 102, and the first information is used to determine the first area and the second area on the time domain resources.
  • the first area and the second area have different parameter configurations, and the parameter configuration includes at least one of the transmission parameters and the functional parameters.
  • the parameter configuration may also include time domain resources, frequency domain resources, and power parameters, such as initial power, path loss parameters, etc.
  • the second information is used to determine the time domain resources and frequency domain resources of the uplink channel; the terminal device and the network device can determine the reference signal binding windows of the uplink channel based on the first information and the second information, thereby providing a multi-slot level reference signal for the uplink enhanced transmission, and further improving the reliability of the transmission.
  • Terminal equipment is a device with wireless communication function, which can also be called terminal, user equipment (UE), mobile station (MS), mobile terminal (MT), access terminal equipment, vehicle-mounted terminal equipment, industrial control terminal equipment, UE unit, UE station, mobile station, mobile station, remote station, remote terminal equipment, mobile device, UE terminal equipment, wireless communication equipment, intelligent terminal equipment, UE agent or UE device, etc.
  • Terminal equipment can be fixed or mobile.
  • the terminal device can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; it can be deployed on the water surface (such as ships); it can also be deployed in the air (such as airplanes, balloons and satellites).
  • the terminal device can support at least one wireless communication technology, such as Long-Term Evolution (LTE), new radio (NR), etc.
  • LTE Long-Term Evolution
  • NR new radio
  • the terminal device can be a mobile phone, a tablet computer (pad), a desktop computer, a laptop computer, an all-in-one computer, a vehicle-mounted terminal, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in self-driving, a wireless terminal in remote medical surgery, a wireless terminal in smart grid, a wireless terminal in transportation safety, a wireless terminal in smart city, etc.
  • LTE Long-Term Evolution
  • NR new radio
  • the terminal device can be a mobile phone, a tablet computer (pad), a desktop computer, a laptop computer, an all-in-one computer, a vehicle-mounted terminal, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, a wireless terminal in industrial control, a wireless terminal in self-
  • wired terminals wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital assistants (PDAs), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, wearable devices, next generation communication systems such as terminal devices in NR networks, terminal devices in future mobile communication networks, or terminal devices in future evolved public mobile land networks (PLMNs), etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDAs personal digital assistants
  • handheld devices with wireless communication functions computing devices or other processing devices connected to wireless modems
  • wearable devices next generation communication systems
  • next generation communication systems such as terminal devices in NR networks, terminal devices in future mobile communication networks, or terminal devices in future evolved public mobile land networks (PLMNs), etc.
  • PLMNs public mobile land networks
  • the terminal device may also include a device with a transceiver function, such as a chip system, wherein the chip system may include a chip and may also include other discrete devices.
  • a device with a transceiver function such as a chip system, wherein the chip system may include a chip and may also include other discrete devices.
  • the network device may be a device used to communicate with the terminal device, which is responsible for the radio resource management (RRM), quality of service (QoS) management, data compression and encryption, data transmission and reception, etc. on the air interface side.
  • the network device may be a base station (BS) in a communication system or a device deployed in a radio access network (RAN) to provide wireless communication functions.
  • BS base station
  • RAN radio access network
  • the base transceiver station (BTS) in a GSM or CDMA communication system the node B (NB) in a WCDMA communication system, the evolved node B (eNB or eNodeB) in an LTE communication system, the next generation evolved node B (ng-eNB) in an NR communication system, the next generation node B (gNB) in an NR communication system, the master node (MN) in a dual-link architecture, the second node or secondary node (SN) in a dual-link architecture, etc., are not specifically limited to these.
  • the network device may also be other devices in the core network (CN), such as access and mobility management function (AMF), user plan function (UPF), etc.; it may also be an access point (AP) in a wireless local area network (WLAN).
  • CN core network
  • AMF access and mobility management function
  • UPF user plan function
  • AP access point
  • WLAN wireless local area network
  • AP relay station
  • communication equipment in the future evolved PLMN network communication equipment in the NTN network, etc.
  • the network device may include a device that provides wireless communication functions for the terminal device, such as a chip system.
  • the chip system may include a chip and may also include other discrete devices.
  • the network device can be an independent node to implement all the functions of the above-mentioned base station, which can include a centralized unit (CU) and a distributed unit (DU), such as gNB-CU and gNB-DU; it can also include an active antenna unit (AAU).
  • the CU can implement some functions of the network device
  • the DU can also implement some functions of the network device.
  • the CU is responsible for processing non-real-time protocols and services, and implements the functions of the RRC layer, the service data adaptation protocol (SDAP) layer, and the packet data convergence protocol (PDCP) layer.
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • the DU is responsible for processing the physical layer protocol and real-time services, and implements the functions of the radio link control (RLC) layer, the medium access control (MAC) layer, and the physical (PHY) layer.
  • the AAU can implement some physical layer processing functions, RF processing, and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be converted from the information of the PHY layer, under this network deployment, high-level signaling (such as RRC layer signaling) can be considered to be sent by the DU, or sent by the DU and the AAU together.
  • the network device can include at least one of the CU, DU, and AAU.
  • the CU can be divided into a network device in the access network (radio access network, RAN), and the CU can also be divided into a network device in the core network, without specific limitation.
  • the network device may have a mobile feature, for example, the network device may be a mobile device.
  • the network device may be a satellite or a balloon station.
  • the satellite may be a low earth orbit (LEO) satellite, a medium earth orbit (MEO) satellite, a geostationary earth orbit (GEO) satellite, a high elliptical orbit (HEO) satellite, etc.
  • the network device may also be a base station set up in a location such as land or water.
  • the network device includes a network device 102.
  • the reference signal binding window is the duration or length of multiple reference signals used for channel estimation.
  • the reference signal binding window may include a normal reference signal binding window and an actual reference signal binding window.
  • the actual reference signal binding window of the uplink channel is equal to the reference signal binding window, or is obtained by dividing the reference signal binding window based on the event (Event) included in the reference signal binding window.
  • the slot-level reference signal used for channel estimation may be a demodulation reference signal (DMRS), so the reference signal bundling window may be a demodulation reference signal bundling (DMRS-Bundling) window.
  • the DMRS-Bundling window may include a normal time domain window (normal TDW) and an actual time domain window (actual TDW), that is, the normal reference signal bundling window may be normal TDW, and the actual reference signal bundling window may be actual TDW.
  • PUSCH transmissions of physical uplink share channel (PUSCH) repetition type A scheduled by downlink control information (DCI) format 0_1 or DCI format 0_2 PUSCH transmissions of PUSCH repetition type A configured with authorization type, PUSCH transmissions of PUSCH repetition type B, PUSCH transmissions involving multiple time slots with transport block (TB) processing, and physical uplink control channel (PUCCH) repetition transmissions
  • the terminal device determines one or more normal TDWs.
  • the length of Normal TDWs other than the last Normal TDW can be configured by high-level signaling, or determined by the smaller value of the maximum DMRS-Bundling length supported by the terminal device and the uplink channel transmission duration.
  • the length of the last Normal TDW is determined by the last PUSCH transmission.
  • the first Normal TDW of PUSCH or PUCCH starts at the timeslot of the first PUSCH/PUCCH actual transmission, and the last Normal TDW ends at the timeslot of the last PUSCH/PUCCH actual transmission.
  • Other Normal TDWs start at the timeslot after the previous Normal TDW is actually transmitted.
  • the first Normal TDW of PUSCH starts at the first time slot where PUSCH can be transmitted, and the last Normal TDW ends at the last time slot where PUSCH can be transmitted.
  • Other Normal TDWs start at the time slot after the previous Normal TDW can be transmitted.
  • the available time slot refers to the time slot that can be used for uplink transmission, such as the time slot for uplink transmission.
  • the unused time slot such as the time slot for downlink transmission, cannot be used for uplink transmission.
  • the terminal device needs to maintain the consistency of the transmission power and the continuity of the phase within the actual TDW.
  • the first actual TDW starts at the first symbol of the first PUSCH transmission, and the end position of the actual TDW can be any one or more of the following:
  • Events include at least one or more of the following:
  • the downlink time slot configured by the high-level signaling, downlink reception or downlink monitoring
  • the present application provides an information determination method in which a first area and a second area on a time domain resource have different parameter configurations.
  • a terminal device can determine each reference signal binding window of an uplink channel in combination with the time domain resources and frequency domain resources of the uplink channel, so that the determined reference signal binding window is conducive to the consistent transmission of multiple reference signals, thereby improving the reliability of uplink transmission.
  • FIG. 2 is a flow chart of an information determination method provided in an embodiment of the present application. As shown in FIG. 2, the information determination method may include but is not limited to the following steps:
  • a network device sends first information and second information, and correspondingly, a terminal device receives the first information and the second information;
  • the first information is used to determine the first area and the second area on the time domain resources.
  • the first area and the second area may use different frequency domain resources or be at different positions on the time domain resources.
  • the first area and the second area have different parameter configurations, and the parameter configuration includes at least one of the transmission parameters and the power control parameters.
  • the transmission parameters may include but are not limited to the transmission beam direction used, and the power control parameters may include but are not limited to the initial power and path loss parameters.
  • the first information can be sent to the terminal device via high-level signaling or physical layer signaling.
  • the second information is used to determine the time domain resources and frequency domain resources of the uplink channel.
  • the second information may include a The time domain resources, frequency domain resources, power control information of the uplink channel transmission, and the number of repeated transmissions of the uplink channel, thereby obtaining the time domain resources and frequency domain resources for uplink channel transmission.
  • the second information can be sent to the terminal device via high-layer signaling or physical layer signaling.
  • the first area is a subband full duplex (SBFD) area
  • the second area is a non-SBFD area.
  • TDD time division duplex
  • all frequency domain resources of a carrier must have the same transmission direction at the same time, such as uplink (UL) transmission at the same time, or downlink (DL) transmission at the same time, that is, all frequency domain resources of a carrier are in the direction of uplink or downlink, and uplink reception and downlink transmission cannot be performed at the same time. Since different services have different transmission requirements for uplink and downlink, a single uplink and downlink time slot ratio cannot meet the needs of different services. For this reason, this implementation can adopt a subband full duplex (SBFD) solution.
  • the first information used to determine the SBFD area and the non-SBFD area may be the time domain resource position of the uplink subband configured by high-level signaling within a period, the frequency domain resource position of the uplink subband configured by high-level signaling within this carrier; or may be the uplink subband time domain effective time within a period configured or indicated by MAC-CE or DCI; or may be the frequency domain resource change configured or indicated by MAC-CE or DCI. It can be seen that this implementation can reduce UL transmission delay, increase uplink coverage, and improve uplink performance.
  • n represents the time slot number, assuming that each wireless frame includes 10 time slots.
  • the U marked in time slots (slot or Slot) n+4 and slot n+9 indicates that the time slots include all UL symbols, which do not include downlink subbands, do not allow downlink transmission, and are performed by terminal devices for uplink transmission; in slot n, slot n+1, slot n+2, slot n+3, slot n+5, slot n+6, slot n+7, and slot n+8, an uplink subband (i.e., the subband marked as U) is added on the basis of the DL symbol, allowing the terminal device to transmit uplink on this uplink subband (such as the white-filled U in the figure), and the network device to transmit downlink on the remaining subbands except the uplink subband (such as the gray-filled D subband in FIG3).
  • the SBFD area and the non-SBFD area determined by the terminal device or the network device based on the first information are respectively: in FIG3, there is the same uplink transmission between each subband of the same carrier in slot n+4 and slot n+9, so it is a non-SBFD area; in FIG3, there is different uplink and downlink transmission or reception between each subband of the same carrier in slot n, slot n+1, slot n+2, slot n+3, slot n+5, slot n+6, slot n+7, and slot n+8, so it is an SBFD area.
  • S102, the network device and the terminal device determine the reference signal binding window of the uplink channel according to the first information and the second information respectively.
  • the method further includes the terminal device sending an uplink channel according to the determined reference signal binding window, and correspondingly, the network device receiving the uplink channel according to the determined reference signal binding window.
  • the reference signal binding window of the uplink channel is determined not only based on the first information and the second information, but also based on other configurations of the high-level signaling, the capabilities of the terminal device, the number of transmissions of the uplink channel, and so on.
  • the duration or length of each reference signal binding window is related to the position of the first area and the second area on the time domain resource. Taking the reference signal binding window as a DMRS-Bundling window as an example, the duration or length of each Normal TDW contained in the DMRS-Bundling window is related to the position of the first area and the second area on the time domain resource.
  • the duration or length of each Normal TDW contained in the DMRS-Bundling window is related to the position of the SBFD area and the non-SBFD area on the time domain resource.
  • the duration of each reference signal binding window depends on whether the area to which the reference signal binding window belongs is the first area or the second area.
  • the first area is an SBFD area
  • the second area is a non-SBFD area
  • the duration of each Normal TDW depends on whether the area to which the Normal TDW belongs is an SBFD area or a non-SBFD area.
  • the length of the last Normal TDW of the DMRS-Bundling window is determined by the last PUSCH transmission.
  • the region to which the reference signal binding window belongs may be the region where the starting time slot of the reference signal binding window as described below is located, or the region where the first time slot of the reference signal binding window is located, and the first time slot may be the starting time slot, the ending time slot, or any time slot between the starting time slot and the ending time slot of the reference signal binding window.
  • This article takes the region where the starting time slot of the reference signal binding window is located as an example for explanation.
  • the duration of each reference signal binding window depends on whether the region where the starting time slot of the reference signal binding window is located is the first region or the second region.
  • the first region is the SBFD region
  • the second region is the non-SBFD region as an example
  • the duration of each Normal TDW depends on whether the region where the starting time slot of the Normal TDW is located is the SBFD region or the non-SBFD region. The length of the last Normal TDW of the DMRS-Bundling window is determined by the last PUSCH transmission.
  • the duration of the reference signal binding window configured for the first region is the first value
  • the duration of the reference signal binding window configured for the second region is the second value. Therefore, in each reference signal binding window, except for the last reference signal binding window in the time domain position, for each reference signal binding window, if the region where the starting time slot of the reference signal binding window is located is a first region, the duration of the reference signal binding window is equal to the first value; if the region where the starting time slot of the reference signal binding window is located is a second region, the duration of the reference signal binding window is equal to the second value.
  • the duration of the Normal TDW configured for the SBFD area is a first value
  • the duration of the Normal TDW configured for the non-SBFD area is a second value. If the area where the start time slot of the Normal TDW is located is the SBFD area, the duration of the Normal TDW is equal to the first value; if the area where the start time slot of the Normal TDW is located is the non-SBFD area, the duration of the Normal TDW is equal to the second value.
  • the SBFD area and non-SBFD area determined based on the first information are shown in Figure 4, and the time domain resources of the uplink channel determined based on the second information are time slot 0 to time slot 9, wherein Slot 0 to Slot 9 in Figure 4 represent time slot indexes.
  • the frequency domain resources of the uplink channel are the uplink subbands used for uplink transmission in time slots 0 to 9, such as the white filled subbands marked U in FIG4 ; in this way, the terminal device determines that the starting time slot of the first Normal TDW is the starting time slot of the first time slot in the time domain resources of the uplink channel, that is, slot 0, and the area where the starting time slot 0 of the first Normal TDW is located is the SBFD area, so the duration of the first Normal TDW is 3 time slots, that is, slot 0 to slot 2; the starting time slot of the second Normal TDW is the time slot after the end position (such as the end slot) of the first Normal TDW, that is, slot 3, and the area where the starting time slot 3 of the second Normal TDW is located is the SBFD area, and the second Normal The duration of the first Normal TDW is 3 time slots, namely slot 3 to slot 5; the starting time slot of the third Normal TDW is the time slot after the end position (such as the end slot) of the second Normal TDW,
  • the difference between FIG5 and FIG3 is that, assuming that the time domain resources of the uplink channel determined based on the second information are slots 1 to 9, in this way, the terminal device determines that the starting time slot of the first Normal TDW is the starting time slot of the first time slot in the time domain resources of the uplink channel, that is, slot 1.
  • the first Normal The area where the starting time slot slot 1 of TDW is located is the SBFD area, so the duration of the first Normal TDW is 3 time slots, namely slot 1 to slot 3;
  • the starting time slot of the second Normal TDW is the time slot after the end position (such as the end slot) of the first Normal TDW, namely slot 4, and the area where the starting time slot slot 4 of the second Normal TDW is located is the non-SBFD area, so the duration of the second Normal TDW is 2 time slots, namely slot 4 to slot 5;
  • the starting time slot of the third Normal TDW is the time slot after the end position (such as the end slot) of the second Normal TDW, namely slot 6, and the area where the starting time slot slot 6 of the third Normal TDW is located is the SBFD area, so the duration of the third Normal TDW is 3 time slots, namely slot 6 to slot 8;
  • the end position of TDW is the end position of the time domain resource of the uplink signal, that is, slot 9.
  • the start time slot
  • the actual reference signal binding window of the uplink channel is equal to the reference signal binding window, or is obtained by dividing the reference signal binding window based on the Event contained in the reference signal binding window; in addition to the various situations described above, the event may also include at least one of the following: there is a switch between the first area and the second area in the reference signal binding window; there is a switch between the first area and the second area in the reference signal binding window and there is a change in the frequency domain resources used for uplink transmission in the reference signal binding window; there are one or more frequency domain hops in the reference signal binding window, and the duration of the frequency domain hop is related to whether the area where the starting time slot of the frequency domain hop is located is the first area or the second area.
  • the reference signal binding window contains an event
  • the reference signal binding window is divided to obtain an actual reference signal binding window. That is, as mentioned above, the first actual TDW starts at the first symbol of the first PUSCH transmission, and the end position of the actual TDW can be any one or more of the following: the last symbol of the last PUSCH/PUCCH transmission; the last symbol of the PUSCH/PUCCH transmission before the Event.
  • the starting position of the actual TDW can be the starting symbol, and the end position of the actual TDW can be the ending symbol.
  • the starting symbol of the actual TDW is the first symbol of the first PUSCH transmission
  • the end symbol of the actual TDW is the last symbol of the last PUSCH/PUCCH transmission or the last symbol of the PUSCH/PUCCH transmission before the Event.
  • the region where the start time slot of frequency domain hopping is located can be replaced by the region where the first time slot of frequency domain hopping is located, and the first time slot can be the start time slot, the end time slot, or any time slot between the start time slot and the end time slot of frequency domain hopping.
  • This article takes the region where the start time slot of frequency domain hopping is located as an example for explanation.
  • the first area is the SBFD area
  • the second area is the non-SBFD area
  • the Actual TDW of the uplink channel is equal to the Normal TDW, or is obtained by dividing the Normal TDW based on the Event contained in the Normal TDW; in addition to the various situations described above, the Event may also include at least one of the following: there is a switch between the SBFD area and the non-SBFD area in the Normal TDW; there is a switch between the SBFD area and the non-SBFD area in the Normal TDW and there is a change in the frequency domain resources used for uplink transmission in the Normal TDW; there are one or more frequency domain hopping in the Normal TDW, and the duration of the frequency domain hopping is related to whether the area where the starting time slot of the frequency domain hopping is located is the first area or the second area.
  • the duration of the frequency domain hopping configured for the first area is a third value
  • the duration of the frequency domain hopping configured for the second area is a fourth value. If the area where the starting time slot of the frequency domain hopping is located is a first area, the duration of the frequency domain hopping is equal to the third value; if the area where the starting time slot of the frequency domain hopping is located is a second area, the duration of the frequency domain hopping is equal to the fourth value.
  • the duration of the frequency domain hopping configured for the SBFD area is the third value
  • the duration of the frequency domain hopping configured for the non-SBFD area is the fourth value.
  • the duration of the frequency domain hopping is equal to the third value; if the area where the starting time slot of the frequency domain hopping is located is a non-SBFD area, the duration of the frequency domain hopping is equal to the fourth value.
  • FIG6 takes the normal TDW shown in FIG4 as an example. Since there is a SBFD region and a non- The event of switching the SBFD area is used, so the second normal TDW is divided into multiple actual TDWs based on the event; the remaining normal TDWs do not include the event, so the actual TDW is equal to the normal TDW; therefore, the time domain resources of the uplink transmission include 6 actual TDWs as shown in Figure 6, which are respectively used as actual DMRS binding windows.
  • Figure 7 takes the normal TDW shown in Figure 5 as an example. Since there is a switch between the SBFD area and the non-SBFD area in the second normal TDW and there is an Event of a change in the frequency domain resources used for uplink transmission in the Normal TDW (such as a change in the frequency domain resources for uplink transmission between slot 4 and slot 5), the second normal TDW is divided into two actual TDWs based on the Event; the remaining normal TDWs do not include the Event, so the actual TDW is equal to the normal TDW; therefore, the time domain resources of the uplink transmission include 5 actual TDWs as shown in Figure 7, which serve as actual DMRS binding windows.
  • FIG8 takes the normal TDW shown in FIG4 as an example, assuming that the duration of the frequency domain hopping configured for the SBFD area is 3 time slots, and the duration of the frequency domain hopping configured for the non-SBFD area is 2 time slots, then, as shown in FIG8 , the starting time slot of the first frequency domain hopping on the uplink channel is the starting time slot of the uplink channel on the time domain resource, that is, slot 0. Since the area where the starting time slot of the first frequency domain hopping is located is the SBFD area, the duration or length of the first frequency domain hopping is 3 time slots, that is, slot 0 to slot 2; the starting time slot of the second frequency domain hopping is the time slot after the ending time slot of the first frequency domain hopping, that is, slot 3.
  • the duration or length of the second frequency domain hopping is 3 time slots, namely slot 3 to slot 5; the starting time slot of the third frequency domain hopping is the time slot after the end slot of the second frequency domain hopping, namely slot 6. Since the region where the starting time slot of the third frequency domain hopping is located is the SBFD region, the duration or length of the third frequency domain hopping is 3 time slots, namely slot 6 to slot 8; the starting time slot of the last frequency domain hopping is the time slot after the end slot of the third frequency domain hopping, namely slot 9, so the duration of the last frequency domain hopping is 1 time slot. Correspondingly, if the Event is frequency domain hopping, 4 actual TDWs as shown in FIG8 can be obtained, which are respectively used as actual DMRS binding windows.
  • FIG9 takes the normal TDW shown in FIG5 as an example, assuming that the duration of the frequency domain hopping configured for the SBFD area is 3 time slots, and the duration of the frequency domain hopping configured for the non-SBFD area is 2 time slots, then, as shown in FIG9 , the starting time slot of the first frequency domain hopping on the uplink channel is the starting time slot of the uplink channel on the time domain resource, that is, slot 1. Since the area where the starting time slot of the first frequency domain hopping is located is the SBFD area, the duration or length of the first frequency domain hopping is 3 time slots, that is, slot 1 to slot 3; the starting time slot of the second frequency domain hopping is the time slot after the ending time slot of the first frequency domain hopping, that is, slot 4.
  • the duration or length of the second frequency domain hopping is 2 time slots, namely slot 4 to slot 5; the starting time slot of the third frequency domain hopping is the time slot after the end slot of the second frequency domain hopping, namely slot 6. Since the area where the starting time slot of the third frequency domain hopping is located is a SBFD area, the duration or length of the third frequency domain hopping is 3 time slots, namely slot 6 to slot 8; the starting time slot of the last frequency domain hopping is the time slot after the end slot of the third frequency domain hopping, namely slot 9, so the duration of the last frequency domain hopping is 1 time slot. Correspondingly, if the Event is frequency domain hopping, 4 actual TDWs as shown in Figure 9 can be obtained, which are respectively used as actual DMRS binding windows.
  • the information determination method described in the present application can configure different durations of the normal reference signal binding window for the first area and the second area on the uplink channel, such as the first value and the second value mentioned above.
  • the information determination method described in the present application can configure different durations of frequency domain hopping for the first area and the second area on the uplink channel, such as the first value and the second value mentioned above.
  • the present application also proposes the above-mentioned Event, which is conducive to ensuring the consistency of DMRS transmission in the actual TDW, thereby improving the reliability of uplink transmission.
  • the first value and the second value may be the same or different.
  • the third value and the fourth value may also be the same or different.
  • FIG10 is a schematic diagram of the structure of an information determination device provided in an embodiment of the present application.
  • the information determination device shown in FIG10 may include but is not limited to the following units: a receiving unit 701 and a determining unit 702.
  • the information determination device may execute Perform the above terminal equipment related operations, such as:
  • a receiving unit 701 is configured to receive first information and second information, wherein the first information is used to determine a first area and a second area on a time domain resource, the first area and the second area have different parameter configurations, and the parameter configuration includes at least one of a transmission parameter and a power control parameter; and the second information is used to determine a time domain resource and a frequency domain resource of an uplink channel;
  • the determination unit 702 is used to determine each reference signal binding window of the uplink channel based on the first information and the second information; the reference signal binding window is the duration of multiple reference signals used for channel estimation; the duration of the reference signal binding window is related to the position of the first area and the second area on the time domain resource.
  • the duration of each reference signal binding window depends on whether the region to which the reference signal binding window belongs is the first region or the second region.
  • the duration of each reference signal binding window depends on whether the area where the starting time slot of the reference signal binding window is located is the first area or the second area.
  • the duration of the reference signal binding window is equal to a first value; if the area where the starting time slot of the reference signal binding window is located is the second area, then the duration of the reference signal binding window is equal to a second value; the first value is the duration of the reference signal binding window configured for the first area, and the second value is the duration of the reference signal binding window configured for the second area.
  • the actual reference signal binding window of the uplink channel is equal to the reference signal binding window, or is obtained by dividing the reference signal binding window based on events contained in the reference signal binding window; the events include at least one of the following: there is a switch between the first area and the second area in the reference signal binding window; there is a switch between the first area and the second area in the reference signal binding window and there is a change in the frequency domain resources used for uplink transmission in the reference signal binding window; there are one or more frequency domain hops in the reference signal binding window, and the duration of the frequency domain hop is related to whether the area where the starting time slot of the frequency domain hop is located is the first area or the second area.
  • the duration of the frequency domain hopping is equal to a third value; if the area where the starting time slot of the frequency domain hopping is located is a second area, the duration of the frequency domain hopping is equal to a fourth value; the third value is the duration of the frequency domain hopping configured for the first area, and the fourth value is the duration of the frequency domain hopping configured for the second area.
  • the first area is a sub-band full-duplex SBFD area, and different uplink and downlink transmissions or receptions exist between sub-bands of the same carrier in the SBFD area;
  • the second area is a non-SBFD area, and the same uplink and downlink transmissions or receptions exist between sub-bands of the same carrier in the non-SBFD area.
  • FIG11 is a schematic diagram of the structure of another information determination device provided in an embodiment of the present application.
  • the information determination device shown in FIG11 may include but is not limited to the following units: a sending unit 801 and a determination unit 802.
  • the information determination device may perform related operations of the above-mentioned network device, for example:
  • the first information is used to determine a first area and a second area on the time domain resource, the first area and the second area have different parameter configurations, and the parameter configuration includes at least one of a transmission parameter and a power control parameter;
  • the second information is used to determine the time domain resources and frequency domain resources of the uplink channel
  • a determining unit 802 is configured to determine each reference signal binding window of the uplink channel according to the first information and the second information;
  • the reference signal binding window is a duration of a plurality of reference signals used for channel estimation; the duration of the reference signal binding window is related to the positions of the first area and the second area on the time domain resource.
  • the duration of each reference signal binding window depends on whether the region to which the reference signal binding window belongs is the first region or the second region.
  • the duration of each reference signal binding window depends on whether the area where the starting time slot of the reference signal binding window is located is the first area or the second area.
  • the duration of the reference signal binding window is equal to a first value; if the area where the starting time slot of the reference signal binding window is located is the second area, then the duration of the reference signal binding window is equal to a second value; the first value is the duration of the reference signal binding window configured for the first area, and the second value is the duration of the reference signal binding window configured for the second area.
  • the actual reference signal binding window of the uplink channel is equal to the reference signal binding window, or is obtained by dividing the reference signal binding window based on events contained in the reference signal binding window; the events include at least one of the following: there is a switch between the first area and the second area in the reference signal binding window; there is a switch between the first area and the second area in the reference signal binding window and there is a change in the frequency domain resources used for uplink transmission in the reference signal binding window; there are one or more frequency domain hops in the reference signal binding window, and the duration of the frequency domain hop is related to whether the area where the starting time slot of the frequency domain hop is located is the first area or the second area.
  • the duration of the frequency domain hopping is equal to a third value; if the area where the starting time slot of the frequency domain hopping is located is a second area, the duration of the frequency domain hopping is equal to a fourth value; the third value is the duration of the frequency domain hopping configured for the first area, and the fourth value is the duration of the frequency domain hopping configured for the second area.
  • the first area is a sub-band full-duplex SBFD area, and different uplink and downlink transmissions or receptions exist between sub-bands of the same carrier in the SBFD area;
  • the second area is a non-SBFD area, and the same uplink and downlink transmissions or receptions exist between sub-bands of the same carrier in the non-SBFD area.
  • FIG12 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application, wherein the communication device includes a processor 901 , a memory 902 , and a communication bus for connecting the processor 901 and the memory 902 .
  • the communication device may also include a communication interface, which may be used to receive and send data.
  • the memory 902 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), and erasable programmable read-only memory (EPROM). memory, EPROM) or portable read-only memory (compact disc read-only memory, CD-ROM), the memory 902 is used to store the executed program code and the transmitted data.
  • RAM random access memory
  • ROM read-only memory
  • EPROM erasable programmable read-only memory
  • memory EPROM
  • portable read-only memory compact disc read-only memory, CD-ROM
  • the processor 901 may be one or more central processing units (CPUs). When the processor 901 is a CPU, the CPU may be a single-core CPU or a multi-core CPU.
  • the processor may also be other general-purpose processors, digital signal processors (DSPs), application-specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSPs digital signal processors
  • ASICs application-specific integrated circuits
  • FPGAs field programmable gate arrays
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the processor 901 may be used to execute a computer program or instruction 903 stored in the memory 902 to perform the operation of the terminal device in the above information determination method, for example:
  • the first information is used to determine a first area and a second area on the time domain resource, the first area and the second area have different parameter configurations, and the parameter configuration includes at least one of a transmission parameter and a power control parameter;
  • the second information is used to determine the time domain resources and frequency domain resources of the uplink channel
  • the reference signal binding window is a duration of a plurality of reference signals used for channel estimation; the duration of the reference signal binding window is related to the positions of the first area and the second area on the time domain resource.
  • the duration of each reference signal binding window depends on whether the region to which the reference signal binding window belongs is the first region or the second region.
  • the duration of each reference signal binding window depends on whether the area where the starting time slot of the reference signal binding window is located is the first area or the second area.
  • the duration of the reference signal binding window is equal to a first value; if the area where the starting time slot of the reference signal binding window is located is the second area, then the duration of the reference signal binding window is equal to a second value; the first value is the duration of the reference signal binding window configured for the first area, and the second value is the duration of the reference signal binding window configured for the second area.
  • the actual reference signal binding window of the uplink channel is equal to the reference signal binding window, or is obtained by dividing the reference signal binding window based on events contained in the reference signal binding window; the events include at least one of the following: there is a switch between the first area and the second area in the reference signal binding window; there is a switch between the first area and the second area in the reference signal binding window and there is a change in the frequency domain resources used for uplink transmission in the reference signal binding window; there are one or more frequency domain hops in the reference signal binding window, and the duration of the frequency domain hop is related to whether the area where the starting time slot of the frequency domain hop is located is the first area or the second area.
  • the duration of the frequency domain hopping is equal to a third value; if the area where the starting time slot of the frequency domain hopping is located is a second area, the duration of the frequency domain hopping is equal to a fourth value; the third value is the duration of the frequency domain hopping configured for the first area, and the fourth value is the duration of the frequency domain hopping configured for the second area.
  • the first area is a sub-band full-duplex SBFD area, and the same There are different uplink and downlink transmissions or receptions between the subbands of a carrier; the second area is a non-SBFD area, and there are the same uplink and downlink transmissions or receptions between the subbands of the same carrier in the non-SBFD area.
  • the processor 901 may be used to execute a computer program or instruction 903 stored in the memory 902 to perform the operation of the network device in the above information determination method, for example:
  • the first information is used to determine a first area and a second area on the time domain resource, the first area and the second area have different parameter configurations, and the parameter configuration includes at least one of a transmission parameter and a power control parameter;
  • the second information is used to determine the time domain resources and frequency domain resources of the uplink channel
  • the reference signal binding window is a duration of a plurality of reference signals used for channel estimation; the duration of the reference signal binding window is related to the positions of the first area and the second area on the time domain resource.
  • the duration of each reference signal binding window depends on whether the region to which the reference signal binding window belongs is the first region or the second region.
  • the duration of each reference signal binding window depends on whether the area where the starting time slot of the reference signal binding window is located is the first area or the second area.
  • the duration of the reference signal binding window is equal to a first value; if the area where the starting time slot of the reference signal binding window is located is the second area, then the duration of the reference signal binding window is equal to a second value; the first value is the duration of the reference signal binding window configured for the first area, and the second value is the duration of the reference signal binding window configured for the second area.
  • the actual reference signal binding window of the uplink channel is equal to the reference signal binding window, or is obtained by dividing the reference signal binding window based on events contained in the reference signal binding window; the events include at least one of the following: there is a switch between the first area and the second area in the reference signal binding window; there is a switch between the first area and the second area in the reference signal binding window and there is a change in the frequency domain resources used for uplink transmission in the reference signal binding window; there are one or more frequency domain hops in the reference signal binding window, and the duration of the frequency domain hop is related to whether the area where the starting time slot of the frequency domain hop is located is the first area or the second area.
  • the duration of the frequency domain hopping is equal to a third value; if the area where the starting time slot of the frequency domain hopping is located is a second area, the duration of the frequency domain hopping is equal to a fourth value; the third value is the duration of the frequency domain hopping configured for the first area, and the fourth value is the duration of the frequency domain hopping configured for the second area.
  • the first area is a sub-band full-duplex SBFD area, and different uplink and downlink transmissions or receptions exist between sub-bands of the same carrier in the SBFD area;
  • the second area is a non-SBFD area, and the same uplink and downlink transmissions or receptions exist between sub-bands of the same carrier in the non-SBFD area.
  • An embodiment of the present application further provides a chip, which includes: a processor, a memory, and a computer program or instructions stored in the memory, wherein the processor executes the computer program or instructions to implement the steps described in the above method embodiment.
  • the present application also provides a chip module, including a transceiver component and a chip, wherein the chip includes a processor, a storage A processor and a computer program or instruction stored in the memory, wherein the processor executes the computer program or instruction to implement the steps described in the above method embodiment.
  • An embodiment of the present application also provides a computer-readable storage medium, wherein the computer storage medium stores a computer program or instructions for determining information, and when the computer program or instructions are executed, the computer implements part or all of the steps described in any of the above method embodiments.
  • the present application also provides a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program or instruction, and when the computer program or instruction is executed, some or all of the steps described in any of the above method embodiments are implemented.
  • the computer program product or instruction can be a software installation package.
  • the disclosed device can be implemented in other ways.
  • the device embodiments described above are only schematic, such as the division of the above-mentioned units, which is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, and the indirect coupling or communication connection of devices or units can be electrical or other forms.
  • the units described above as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the embodiments of the present application.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit may be implemented in the form of hardware or in the form of a software functional unit.
  • each device and product described in the above embodiments includes a unit/module, which may be a software unit/module or a hardware unit/module, or may be partially a software unit/module and partially a hardware unit/module.
  • each unit/module contained therein can be implemented in the form of hardware such as circuits, or at least some of the units/modules can be implemented in the form of software programs, which run on the integrated processor inside the chip, and the remaining units/modules can be implemented in the form of hardware such as circuits;
  • each unit/module contained therein can be implemented in the form of hardware such as circuits, and different units/modules can be located in the same part of the chip module (for example, a chip, a circuit unit, etc.) or in different components, at least some/modules can be implemented in the form of software programs, which run on the integrated processor inside the chip module, and the remaining units/modules can be implemented in the form of hardware such as circuits; for each device or product that applies to or integrates a terminal, the units/modules contained therein can be implemented in the form of hardware such as circuits, and different
  • the steps of the method or algorithm described in the embodiments of the present application can be implemented in hardware or by a processor executing software instructions.
  • the software instructions can be composed of corresponding software units, which can be stored in a USB flash drive, random access memory (RAM), flash memory, read-only memory (ROM), or other storage medium.
  • the storage medium may be a memory device, such as a memory card, a storage medium, a ROM, an erasable programmable ROM (EPROM), an electrically erasable programmable ROM (EEPROM), a register, a hard disk, a mobile hard disk, a magnetic disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in an ASIC.
  • the ASIC may be located in a terminal device or a network device.
  • the processor and the storage medium may also be present in a terminal device or a network device as discrete components.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable memory.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a memory, including a number of instructions for a computer device (which can be a personal computer, server or TRP, etc.) to perform all or part of the steps of the various embodiments of the present application.
  • the functions described in the embodiments of the present application can be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • the above integrated unit When the above integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable memory.
  • the technical solution of the present application is essentially or partly contributed to the prior art or all or part of the technical solution can be implemented in the form of a computer software product.
  • the computer software product is stored in a memory, including one or more computer instructions to enable a computer device (which can be a personal computer, server or TRP, etc.) to perform all or part of the steps of the methods of various embodiments of the present application.
  • the computer device can also be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, computer, server or data center to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server or data center that includes one or more available media.
  • the available medium can be a magnetic medium (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a digital video disc (DVD)), or a semiconductor medium (e.g., a solid state disk (SSD)).
  • a magnetic medium e.g., a floppy disk, a hard disk, a tape
  • an optical medium e.g., a digital video disc (DVD)
  • DVD digital video disc
  • SSD solid state disk

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种信息确定方法及相关装置,该方法可接收第一信息和第二信息,第一信息用于确定时域资源上的第一区域以及第二区域,第一区域与第二区域之间具有不同的参数配置,参数配置包括传输参数和功控参数中的至少一项;第二信息用于确定上行信道的时域资源和/或频域资源;根据第一信息和所述第二信息,确定上行信道的各参考信号绑定窗口;参考信号绑定窗口的时长与时域资源上第一区域和第二区域的位置有关,这样,有利于在多个参考信号绑定的窗口内保证多个参考信号的一致性传输,进而提升上行传输的可靠性。

Description

信息确定方法及相关装置
本申请要求于2022年11月30日提交中国专利局、申请号为2022115299379、申请名称为“信息确定方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信息确定方法及相关装置。
背景技术
在上行增强技术中,网络设备可为终端设备配置多时隙的联合传输,以增强上行传输性能,相应的,用于每个独立上行信道解调的参考信号,也扩展到多个传输的参考信号联合解调,又称为参考信号绑定(bundling)。具有多个参考信号绑定的多时隙可称为参考信号绑定窗口,终端设备如何确定时域资源上的参考信号绑定窗口是一个亟待解决的问题。
发明内容
本申请提供一种信息确定方法及相关装置,可确定时域资源上的参考信号绑定窗口,从而有利于使得多个参考信号的一致性传输,进而提升上行传输的可靠性。
第一方面,本申请提供一种信息确定方法,该方法可由终端设备或终端设备中的装置、芯片模组或芯片执行,该方法可包括:
接收第一信息和第二信息,
所述第一信息用于确定时域资源上的第一区域以及第二区域,所述第一区域与所述第二区域之间具有不同的参数配置,所述参数配置包括传输参数和功控参数中的至少一项;
所述第二信息用于确定上行信道的时域资源和频域资源;
根据所述第一信息和所述第二信息,确定所述上行信道的各参考信号绑定窗口;
所述参考信号绑定窗口的时长与所述时域资源上所述第一区域和所述第二区域的位置有关。
可见,该方法中,参考信号绑定窗口的时长与第一区域和第二区域有关,由于第一区域与第二区域之间具有不同的参数配置,因此,这样确定的参考信号绑定窗口有利于使得多个参考信号的一致性传输,进而提升上行传输的可靠性。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口所属的区域是所述第一区域,还是所述第二区域。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口的起始时隙所处的区域是所述第一区域,还是所述第二区域。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,针对每个所述参考信号绑定窗口,若该参考信号绑定窗口的起始时隙所处的区域是一个所述第一区域,则该参考信号绑定窗口的时长等于第一值;若该参考信号绑定窗口的起始时隙所处的区域是一个所述第二区域,则该参考信号绑定窗口的时长等于第二值;所述第一值是针对所述第一区域配置的参考信号绑定窗口的时长,所述第二值是针对所 述第二区域配置的参考信号绑定窗口的时长。
一种可选的实施方式中,所述上行信道的实际参考信号绑定窗口等于所述参考信号绑定窗口,或是基于所述参考信号绑定窗口包含的事件对所述参考信号绑定窗口进行划分获得的;所述事件包括以下至少一种:所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换;所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换且所述参考信号绑定窗口中存在用于上行传输的频域资源的变化;所述参考信号绑定窗口中存在一个或多个频域跳频,所述频域跳频的时长与所述频域跳频的起始时隙所处的区域是所述第一区域,还是所述第二区域有关。
一种可选的实施方式中,若所述频域跳频的起始时隙所处的区域是一个第一区域,则所述频域跳频的时长等于第三值;若所述频域跳频的起始时隙所处的区域是一个第二区域,则所述频域跳频的时长等于第四值;所述第三值是针对所述第一区域配置的频域跳频的时长,所述第四值是针对所述第二区域配置的频域跳频的时长。
一种可选的实施方式中,所述第一区域是子带全双工SBFD区域,所述SBFD区域中同一载波的各子带之间存在不同的上下行传输或接收;所述第二区域是非SBFD区域,所述非SBFD区域中同一载波的各子带之间存在相同的上下行传输或接收。
第二方面,本申请还提供一种信息确定方法,该方法可由网络设备或网络设备中的装置,如芯片或芯片模组执行,该方法包括:发送第一信息和第二信息;所述第一信息用于确定时域资源上的第一区域以及第二区域,所述第一区域与所述第二区域之间具有不同的参数配置,所述参数配置包括传输参数和功控参数中的至少一项;所述第二信息用于确定上行信道的时域资源和频域资源;根据所述第一信息和所述第二信息,确定所述上行信道的各参考信号绑定窗口;所述参考信号绑定窗口的时长与所述时域资源上所述第一区域和所述第二区域的位置有关。
可见,该方法中,参考信号绑定窗口的时长与第一区域和第二区域有关,由于第一区域与第二区域之间具有不同的参数配置,因此,这样确定的参考信号绑定窗口有利于使得多个参考信号的一致性传输,进而提升上行传输的可靠性。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口所属的区域是所述第一区域,还是所述第二区域。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口的起始时隙所处的区域是所述第一区域,还是所述第二区域。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,针对每个所述参考信号绑定窗口,若该参考信号绑定窗口的起始时隙所处的区域是一个所述第一区域,则该参考信号绑定窗口的时长等于第一值;若该参考信号绑定窗口的起始时隙所处的区域是一个所述第二区域,则该参考信号绑定窗口的时长等于第二值;所述第一值是针对所述第一区域配置的参考信号绑定窗口的时长,所述第二值是针对所述第二区域配置的参考信号绑定窗口的时长。
一种可选的实施方式中,所述上行信道的实际参考信号绑定窗口等于所述参考信号绑定窗口,或是基于所述参考信号绑定窗口包含的事件对所述参考信号绑定窗口进行划分获得的;所述事件包括以下至少一种:所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换;所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换且所述参 考信号绑定窗口中存在用于上行传输的频域资源的变化;所述参考信号绑定窗口中存在一个或多个频域跳频,所述频域跳频的时长与所述频域跳频的起始时隙所处的区域是所述第一区域,还是所述第二区域有关。
一种可选的实施方式中,若所述频域跳频的起始时隙所处的区域是一个第一区域,则所述频域跳频的时长等于第三值;若所述频域跳频的起始时隙所处的区域是一个第二区域,则所述频域跳频的时长等于第四值;所述第三值是针对所述第一区域配置的频域跳频的时长,所述第四值是针对所述第二区域配置的频域跳频的时长。
一种可选的实施方式中,所述第一区域是子带全双工SBFD区域,所述SBFD区域中同一载波的各子带之间存在不同的上下行传输或接收;所述第二区域是非SBFD区域,所述非SBFD区域中同一载波的各子带之间存在相同的上下行传输或接收。
第三方面,本申请实施例还提供了一种信息确定装置,该装置包括:
接收单元,用于接收第一信息和第二信息,
所述第一信息用于确定时域资源上的第一区域以及第二区域,所述第一区域与所述第二区域之间具有不同的参数配置,所述参数配置包括传输参数和功控参数中的至少一项;
所述第二信息用于确定上行信道的时域资源和频域资源;
确定单元,用于根据所述第一信息和所述第二信息,确定所述上行信道的各参考信号绑定窗口;
所述参考信号绑定窗口的时长与所述时域资源上所述第一区域和所述第二区域的位置有关。
可选地,该信息确定装置执行可选的实施方式以及有益效果可参见上述第一方面的相关内容,此处不再详述。
第四方面,本申请实施例还提供了一种信息确定装置,该装置包括:
发送单元,用于发送第一信息和第二信息;
所述第一信息用于确定时域资源上的第一区域以及第二区域,所述第一区域与所述第二区域之间具有不同的参数配置,所述参数配置包括传输参数和功控参数中的至少一项;
所述第二信息用于确定上行信道的时域资源和频域资源;
确定单元,用于根据所述第一信息和所述第二信息,确定所述上行信道的各参考信号绑定窗口;
所述参考信号绑定窗口的时长与所述时域资源上所述第一区域和所述第二区域的位置有关。
可选地,该信息确定装置执行可选的实施方式以及有益效果可参见上述第二方面的相关内容,此处不再详述。
第五方面,本申请实施例提供了一种通信装置,该通信装置包括:处理器、存储器,处理器和存储器相互连接,其中,存储器用于存储计算机程序,计算机程序包括程序指令,其中,处理器执行程序指令以实现上述第一方面或第二方面所设计的方法中的步骤。可选的,该通信装置可以为终端设备或终端设备中的芯片或芯片模组等,或者可以为网络设备或网络设备中装置。
第六方面,本申请实施例提供一种芯片,所述芯片包括处理器,其中,所述处理器执行上述第一方面或第二方面所设计的方法中的步骤。可选的,所述芯片还可以包括存储器以及存储在存储器上的计算机程序或指令,所述处理器执行所述计算机程序或指令以实现上述第 一方面或第二方面所述的方法。
第七方面,本申请实施例提供了一种芯片模组,包括收发组件和芯片,所述芯片包括处理器,其中,所述处理器执行上述第一方面或第二方面所设计的方法中的步骤。可选的,所述芯片模组还可以包括存储器以及存储在存储器上的计算机程序或指令,所述处理器执行所述计算机程序或指令以实现上述第一方面或第二方面所述的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被执行时实现上述第一方面或第二方面所设计的方法中的步骤。
第九方面,本申请实施例提供一种计算机程序产品,包括计算机程序或程序指令,所述计算机程序或程序指令被执行时实现上述第一方面或第二方面所述的方法。
第十方面,本申请实施例提供一种通信系统,至少包括终端设备和网络设备,所述终端设备至少能够执行上述第一方面所述的相关操作,所述网络设备至少能够执行上述第二方面所述的相关操作。
附图说明
图1是本申请实施例提供的一种通信系统的架构示意图;
图2是本申请实施例提供的一种信息确定方法的流程示意图;
图3是本申请实施例提供的一种SBFD区域和非SBFD区域的示意图;
图4是本申请实施例提供的一种上行信道的正常TDW的示意图;
图5是本申请实施例提供的另一种上行信道的正常TDW的示意图
图6是本申请实施例提供的一种上行信道的实际TDW的示意图;
图7是本申请实施例提供的一种上行信道的实际TDW的示意图;
图8是本申请实施例提供的一种上行信道的频域跳频的示意图;
图9是本申请实施例提供的另一种上行信道的频域跳频的示意图;
图10是本申请实施例提供的又一种信息确定装置的结构示意图;
图11是本申请实施例提供的一种信息确定装置的结构示意图;
图12是本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
需要说明的是,本申请中“第一”、“第二”、“第三”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。此外,术语“包括”及其任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元的过程、方法、软件、产品或设备没有限定于已列出的步骤或单元,而是还包括没有列出的步骤或单元,或还包括对于这些过程、方法、产品或设备固有的其他步骤或单元。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
请参见图1,图1是本申请实施例提供的一种通信系统的架构示意图。图1所示的设备 形态用于举例并不构成对本申请实施例的限定。如图1所示,该信号传输系统可包括终端设备101和网络设备102,其中,终端设备101以手机为例,网络设备102以基站为例,终端设备101可接收来自网络设备102的第一信息和第二信息,第一信息用于确定时域资源上的第一区域和第二区域,第一区域与第二区域之间具有不同的参数配置,该参数配置包括传输参数和功能参数中的至少一项。可选的,该参数配置还可包括时域资源、频域资源、功率参数,如初始功率、路损参数等。第二信息用于确定上行信道的时域资源和频域资源;终端设备以及网络设备可根据该第一信息和第二信息,确定上行信道的各参考信号绑定窗口,从而为上行增强传输提供多时隙级的参考信号,进一步的改善传输的可靠性。
终端设备是一种具有无线通信功能的设备,又可以称之为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、接入终端设备、车载终端设备、工业控制终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、无线通信设备、智能终端设备、UE代理或UE装置等。终端设备可以是固定的或者移动的。
可选的,终端设备可以部署在陆地上,包括室内或室外、手持、穿戴或车载;可以部署在水面上(如轮船等);还可以部署在空中(如飞机、气球和卫星等)。
需要说明的是,终端设备可以支持至少一种无线通信技术,例如长期演进系统(Long-Term Evolution,LTE)、新空口(new radio,NR)等。例如,终端设备可以是手机(mobile phone)、平板电脑(pad)、台式机、笔记本电脑、一体机、车载终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备、下一代通信系统例如NR网络中的终端设备、未来移动通信网络中的终端设备或者未来演进的公共移动陆地网络(public land mobile network,PLMN)中的终端设备等。
进一步的,终端设备还可以包括具有收发功能的装置,例如芯片系统。其中,芯片系统可以包括芯片,还可以包括其它分立器件。
本申请中,网络设备可以是用于与终端设备之间进行通信的设备,其负责空口侧的无线资源管理(radio resource management,RRM)、服务质量(quality of service,QoS)管理、数据压缩和加密、数据收发等。其中,网络设备可以是通信系统中的基站(base station,BS)或者部署于无线接入网(radio access network,RAN)以用于提供无线通信功能的设备。例如,GSM或CDMA通信系统中的基站(base transceiver station,BTS)、WCDMA通信系统中的节点B(node B,NB)、LTE通信系统中的演进型节点B(evolutional node B,eNB或eNodeB)、NR通信系统中的下一代演进型的节点B(next generation evolved node B,ng-eNB)、NR通信系统中的下一代节点B(next generation node B,gNB)、双链接架构中的主节点(master node,MN)、双链接架构中的第二节点或辅节点(secondary node,SN)等,对此不作具体限制。
可选的,网络设备还可以是核心网(core network,CN)中的其他设备,如访问和移动性管理功能(access and mobility management function,AMF)、用户计划功能(user plan function,UPF)等;还可以是无线局域网(wireless local area network,WLAN)中的接入点(access point, AP)、中继站、未来演进的PLMN网络中的通信设备、NTN网络中的通信设备等。
可选的,网络设备可以包括具有为终端设备提供无线通信功能的装置,例如芯片系统。示例的,芯片系统可以包括芯片,还可以包括其它分立器件。
需要说明的是,在一些网络部署中,网络设备可以是一个独立的节点以实现上述基站的所有功能,其可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),如gNB-CU和gNB-DU;还可以包括有源天线单元(active antenna unit,AAU)。其中,CU可以实现网络设备的部分功能,而DU也可以实现网络设备的部分功能。比如,CU负责处理非实时协议和服务,实现RRC层、服务数据适配(service data adaptation protocol,SDAP)层、分组数据汇聚(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(medium access control,MAC)层和物理(physical,PHY)层的功能。另外,AAU可以实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者由PHY层的信息转变而来,因此,在该网络部署下,高层信令(如RRC层信令)可以认为是由DU发送的,或者由DU和AAU共同发送的。可以理解的是,网络设备可以包括CU、DU、AAU中的至少一个。另外,可以将CU划分为接入网(radio access network,RAN)中的网络设备,也可以将CU划分为核心网中的网络设备,对此不做具体限定。
可选的,网络设备可以具有移动特性,例如网络设备可以为移动的设备。可选地,网络设备可以为卫星、气球站。例如,卫星可以为低地球轨道(low earth orbit,LEO)卫星、中地球轨道(medium earth orbit,MEO)卫星、地球同步轨道(geostationary earth orbit,GEO)卫星、高椭圆轨道(high elliptical orbit,HEO)卫星等。可选地,网络设备还可以为设置在陆地、水域等位置的基站。该网络设备包括网络设备102。
为便于理解,对本申请涉及的概念进行阐述。
1、参考信号绑定窗口、实际参考信号绑定窗口
参考信号绑定窗口是具有多个用于信道估计的参考信号的时长或长度。参考信号绑定窗口可包含正常参考信号绑定窗口和实际参考信号绑定窗口。上行信道的实际参考信号绑定窗口等于参考信号绑定窗口,或是基于参考信号绑定窗口包含的事件(Event)对参考信号绑定窗口进行划分获得的。
用于信道估计的时隙级参考信号可以是解调参考信号(Demodulation Reference Signal,DMRS),故参考信号绑定窗口可为解调参考信号绑定(DMRS-Bundling)窗口。DMRS-Bundling窗口可包含正常时域窗口(normal time domain window,normal TDW)、实际时域窗口(actual time domain window,actual TDW),即正常参考信号绑定窗口可为normal TDW,实际参考信号绑定窗口可为actual TDW。
对于被下行控制信息(downlink control information,DCI)格式0_1或DCI格式0_2调度的物理上行共享信道(physical uplink share channel,PUSCH)重复类型A的PUSCH传输、配置了授权类型的PUSCH重复传输类型A的PUSCH传输、PUSCH重复传输类型B的PUSCH传输以及存在传输块(Transport Block,TB)处理涉及多个时隙的PUSCH传输、物理上行控制信道(physical uplink control channel,PUCCH)重复传输,当DMRS-Bundling使能,终端设备确定一个或多个normal TDW。除最后一个Normal TDW外的Normal TDW长度可以由高层信令配置,或由终端设备所支持最大DMRS-Bundling长度和上行信道传输时长较小的值决定。而最后一个Normal TDW长度由最后一个PUSCH传输决定。
当配置了可用时隙传输时,PUSCH或PUCCH第一个Normal TDW起始于第一个PUSCH/PUCCH实际传输的时隙,最后Normal TDW结束于最后PUSCH/PUCCH实际传输的时隙。其它Normal TDW起始于前一个Normal TDW实际传输之后的时隙。
当没有配置可用时隙传输时,PUSCH第一个Normal TDW起始于第一个PUSCH可传输的时隙,最后Normal TDW结束于最后PUSCH可传输的时隙。其它Normal TDW起始于前一个Normal TDW可传输之后的时隙。其中,可用时隙是指能够用于上行传输的时隙,如上行传输的时隙,相应的,不用可时隙比如可以是下行传输的时隙,不能用于上行传输。
一个Normal TDW若存在Event,则会分为多个Actual TDW。终端设备需要在actual TDW内保持发送功率一致性及相位的连续性。第一个actual TDW起始于第一个PUSCH传输的第一个符号,actual TDW的结束位置可以为下述任何一项或多项:
a)最后PUSCH/PUCCH传输的最后符号;
b)Event前的PUSCH/PUCCH传输的最后符号;
若高层信令配置了actual Window重启,则一个新actual TDW起始于Event之后PUSCH/PUCCH传输的第一个符号。
2、事件(Event)
所有会影响PUSCH或PUCCH传输的终端设备发送功率一致及相位的连续性的均称为Event。Event至少包含以下一种或多种:
a)TDD系统中,高层信令配置的下行时隙,下行接收或下行监听;
b)两个连续PUSCH或PUCCH传输的间隔超过13个符号(正常CP),11符号(扩展CP);
c)两个连续PUSCH或PUCCH传输的间隔不超过13个符号(正常CP),11符号(扩展CP),且两次传输之间有其它上行传输;
d)PUSCH或PUCCH传输中有丢弃或取消操作;
e)上行同步(Timing Advance,TA)调整;
f)频域跳频。
本申请提供一种信息确定方法中,时域资源上的第一区域与第二区域之间具有不同的参数配置,终端设备可结合上行信道的时域资源和频域资源,确定上行信道的各参考信号绑定窗口,使得确定的参考信号绑定窗口有利于使得多个参考信号的一致性传输,进而提升上行传输的可靠性。
以下结合附图,对该信息确定方法进行阐述。
请参见图2,图2是本申请实施例提供的一种信息确定方法的流程示意图,如图2所示,该信息确定方法可包括但不限于以下步骤:
S101、网络设备发送第一信息和第二信息,相应的,终端设备接收该第一信息和第二信息;
其中,第一信息用于确定时域资源上的第一区域以及第二区域,第一区域和第二区域可采用不同的频域资源,或在时域资源上处于不同的位置。其中,第一区域与第二区域之间具有不同的参数配置,该参数配置包括传输参数和功控参数中的至少一项,其中,传输参数可包括但不限于使用的发送波束方向等,功控参数可包括但不限于初始功率和路损参数。可选的,该第一信息可通过高层信令或物理层信令发送给终端设备。
其中,第二信息用于确定上行信道的时域资源和频域资源。例如,第二信息可包括一次 上行信道传输的时域资源、频域资源、功控信息,以及该上行信道的重复传输次数,从而获得用于上行信道传输的时域资源和频域资源。可选的,该第二信息可通过高层信令或物理层信令发送给终端设备。
一种可选的实施方式中,第一区域是子带全双工(Subband full duplex,SBFD)区域,第二区域是非SBFD区域。在时分双工(Time Division Duplexing)系统中,一个载波的所有频域资源在同一时刻的传输方向需相同,如在同一时刻需均为上行(uplink,UL)传输,或在同一时刻需均为下行(downlink,DL)传输,即一个载波的所有频域资源的方向为上行或下行,不能同时进行上行接收及下行发送。由于不同业务对上下行的传输需求不同,单一的上下行时隙配比不能满足不同业务的需求,为此,该实施方式可采用子带全双工(Subband full duplex,SBFD)的解决方案。其中,SBFD区域中同一载波的各子带之间存在不同的上行传输或下行接收;非SBFD区域中同一载波的各子带之间存在相同的上行传输或下行接收。可选的,用于确定该SBFD区域和非SBFD区域的第一信息可以是高层信令配置的在一个周期内上行子带的时域资源位置,高层信令配置的上行子带在此载波内的频域资源位置;或可以是MAC-CE或DCI配置或指示的一个周期内上行子带时域生效时间;或可以是MAC-CE或DCI配置或指示频域资源更改。可见,该实施方式可以降低UL发送时延,增加上行覆盖,提高上行性能。
例如,图3所示,n表示时隙号,假设每个无线帧包括10个时隙。时隙(slot或Slot)n+4、slot n+9内标记的U,表示时隙包括的全是UL符号,其中,不包含下行子带,不允许下行传输,由终端设备进行上行传输;slot n、slot n+1、slot n+2、slot n+3、slot n+5、slot n+6、slot n+7、slot n+8内在DL符号基础上增加了一个上行子带(即标记为U的子带),允许在此上行子带(如图中白色填充的U)上终端设备传输上行,在除上行子带的其余子带(如图3中灰色填充的D的子带)上网络设备传输下行。因此,终端设备或网络设备基于第一信息确定的SBFD区域、非SBFD区域,分别是:图3中,slot n+4以及slot n+9中同一载波的各子带之间存在相同的上行传输,故是非SBFD区域;图3中slot n、slot n+1、slot n+2、slot n+3、slot n+5、slot n+6、slot n+7、slot n+8中同一载波的各子带之间存在不同的上下行传输或接收,故是SBFD区域。S102、网络设备以及终端设备分别根据第一信息和第二信息,确定上行信道的参考信号绑定窗口。
可选的,该方法还包括,终端设备根据确定的参考信号绑定窗口,发送上行信道,相应的,网络设备根据确定的参考信号绑定窗口,接收上行信道。
可选的,上行信道的参考信号绑定窗口不仅基于第一信息和第二信息,还会根据高层信令其他配置、终端设备能力及上行信道的发送次数等等确定上行信道的参考信号绑定窗口。各参考信号绑定窗口的时长或长度与时域资源上第一区域和第二区域的位置有关。以参考信号绑定窗口为DMRS-Bundling窗口为例,DMRS-Bundling窗口包含的各Normal TDW的时长或长度与时域资源上第一区域和第二区域的位置有关。以第一区域是SBFD区域,第二区域是非SBFD区域为例,DMRS-Bundling窗口包含的各Normal TDW的时长或长度与时域资源上SBFD区域和非SBFD的位置有关。
可选的,各参考信号绑定窗口中,除了时域位置最后的一个参考信号绑定窗口外,每个参考信号绑定窗口的时长取决于该参考信号绑定窗口所属的区域是第一区域,还是第二区域。可选的,以参考信号绑定窗口为DMRS-Bundling窗口,第一区域是SBFD区域,第二区域是非SBFD区域为例,各Normal TDW中,除了时域位置最后的一个Normal TDW外,每个Normal TDW的时长取决于该Normal TDW所属的区域是SBFD区域,还是非SBFD区域。该 DMRS-Bundling窗口的最后一个Normal TDW的长度由最后一个PUSCH传输决定。
需要注意的是,本申请中,参考信号绑定窗口所属的区域可以是如下文所述的参考信号绑定窗口的起始时隙所处的区域,或是参考信号绑定窗口的第一时隙所处的区域,该第一时隙可以是参考信号绑定窗口的起始时隙、结束时隙或起始时隙与结束时隙之间的任一时隙。本文以参考信号绑定窗口的起始时隙所处的区域为例进行阐述。
可选的,各参考信号绑定窗口中,除了时域位置最后的一个参考信号绑定窗口外,每个参考信号绑定窗口的时长取决于该参考信号绑定窗口的起始时隙所处的区域是第一区域,还是第二区域。可选的,以参考信号绑定窗口为DMRS-Bundling窗口,第一区域是SBFD区域,第二区域是非SBFD区域为例,各Normal TDW中,除了时域位置最后的一个Normal TDW外,每个Normal TDW的时长取决于该Normal TDW的起始时隙所处的区域是SBFD区域,还是非SBFD区域。该DMRS-Bundling窗口的最后一个Normal TDW的长度由最后一个PUSCH传输决定。
本申请中,针对第一区域配置的参考信号绑定窗口的时长为第一值,针对第二区域配置的参考信号绑定窗口的时长为第二值。因此,各参考信号绑定窗口中,除了时域位置最后的一个参考信号绑定窗口外,针对每个参考信号绑定窗口,若该参考信号绑定窗口的起始时隙所处的区域是一个第一区域,则该参考信号绑定窗口的时长等于第一值;若该参考信号绑定窗口的起始时隙所处的区域是一个第二区域,则该参考信号绑定窗口的时长等于第二值。
一种可选的实施方式中,以参考信号绑定窗口为Normal TDW,第一区域是SBFD区域,第二区域是非SBFD区域为例,针对SBFD区域配置的Normal TDW的时长为第一值,针对非SBFD区域配置的Normal TDW的时长为第二值。若该Normal TDW的起始时隙所处的区域是SBFD区域,则该Normal TDW的时长等于第一值;若该Normal TDW的起始时隙所处的区域是非SBFD区域,则该Normal TDW的时长等于第二值。
例如,假设针对SBFD区域配置的Normal TDW的时长为3个时隙,针对非SBFD区域配置的Normal TDW的时长为2个时隙,基于第一信息确定的SBFD区域和非SBFD区域如图4所示,以及基于第二信息确定的上行信道的时域资源是时隙0至时隙9,其中,图4中Slot 0至Slot 9表示时隙索引。该上行信道的频域资源是时隙0至时隙9中用于上行传输的上行子带,如图4中标记U的白色填充的子带;这样,终端设备确定第一个Normal TDW的起始时隙是上行信道的时域资源中第一个时隙的起始时隙,即slot 0,该第一个Normal TDW的起始时隙slot 0所在的区域是SBFD区域,故该第一个Normal TDW的时长是3个时隙,即slot 0至slot 2;第二个Normal TDW的起始时隙是第一个Normal TDW的结束位置(如结束时隙)之后的时隙,即slot 3,该第二个Normal TDW的起始时隙slot 3所处的区域是SBFD区域,该第二个Normal TDW的时长是3个时隙,即slot 3至slot 5;第三个Normal TDW的起始时隙是第二个Normal TDW的结束位置(如结束时隙)之后的时隙,即slot 6,该第三个Normal TDW的起始时隙slot 6所在的区域是SBFD区域,故该第三个Normal TDW的时长是3个时隙,即slot 6至slot 8;最后一个Normal TDW的结束位置为上行信号的时域资源的结束位置,即slot 9,起始时隙是前一个Normal TDW的结束位置(如结束时隙)之后的时隙,即slot 9,故最后一个Normal TDW的时长是1个时隙,即slot 9。
再例如,以图5所示,假设针对SBFD区域配置的Normal TDW的时长为3个时隙,针对非SBFD区域配置的Normal TDW的时长为2个时隙,图5与图3的不同之处在于,假设基于第二信息确定的上行信道的时域资源是slot 1至slot 9,这样,终端设备确定第一个Normal TDW的起始时隙是上行信道的时域资源中第一个时隙的起始时隙,即slot 1,该第一个Normal  TDW的起始时隙slot 1所在的区域是SBFD区域,故该第一个Normal TDW的时长是3个时隙,即slot 1至slot 3;第二个Normal TDW的起始时隙是第一个Normal TDW的结束位置(如结束时隙)之后的时隙,即slot 4,该第二个Normal TDW的起始时隙slot 4所处的区域是非SBFD区域,故该第二个Normal TDW的时长是2个时隙,即slot 4至slot 5;第三个Normal TDW的起始时隙是第二个Normal TDW的结束位置(如结束时隙)之后的时隙,即slot 6,该第三个Normal TDW的起始时隙slot 6所在的区域是SBFD区域,故该第三个Normal TDW的时长是3个时隙,即slot 6至slot 8;最后一个Normal TDW的结束位置为上行信号的时域资源的结束位置,即slot 9,起始时隙是前一个Normal TDW的结束位置(如结束时隙)之后的时隙,即slot 9,故最后一个Normal TDW的时长是1个时隙,即slot 9。
一种可选的实施方式中,上行信道的实际参考信号绑定窗口等于参考信号绑定窗口,或是基于参考信号绑定窗口包含的Event对参考信号绑定窗口进行划分获得的;该事件除了包括前文所述的各种情况外,还可以包括以下至少一种:参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换;所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换且所述参考信号绑定窗口中存在用于上行传输的频域资源的变化;所述参考信号绑定窗口中存在一个或多个频域跳频,所述频域跳频的时长与所述频域跳频的起始时隙所处的区域是所述第一区域,还是所述第二区域有关。
如果所述参考信号绑定窗口包含的事件,则对所述参考信号绑定窗口进行划分获得实际参考信号绑定窗口。也就是如前文所述,第一个actual TDW起始于第一个PUSCH传输的第一个符号,actual TDW的结束位置可以为下述任何一项或多项为:最后PUSCH/PUCCH传输的最后符号;Event前的PUSCH/PUCCH传输的最后符号。可选的,actual TDW的起始位置可以是起始符号,actual TDW的结束位置可以是结束符号。即actual TDW的起始符号是第一个PUSCH传输的第一个符号,actual TDW的结束符号是最后PUSCH/PUCCH传输的最后符号或Event前的PUSCH/PUCCH传输的最后符号。
可选的,频域跳频的起始时隙所处的区域,可以替换为频域跳频的第一时隙所处的区域,该第一时隙可以是频域跳频的起始时隙、结束时隙或起始时隙与结束时隙之间的任一时隙。本文以频域跳频的起始时隙所处的区域为例进行阐述。
一种可选的实施方式中,以参考信号绑定窗口为Normal TDW,第一区域是SBFD区域,第二区域是非SBFD区域为例,上行信道的Actual TDW等于Normal TDW,或是基于Normal TDW包含的Event对Normal TDW进行划分获得的;该Event除了包括前文所述的各种情况外,还可以包括以下至少一种:Normal TDW中存在SBFD区域与非SBFD区域之间的切换;Normal TDW中存在SBFD区域与非SBFD区域之间的切换且该Normal TDW中存在用于上行传输的频域资源的变化;Normal TDW中存在一个或多个频域跳频,频域跳频的时长与所述频域跳频的起始时隙所处的区域是所述第一区域,还是所述第二区域有关。
可选的,针对第一区域配置的频域跳频的时长为第三值,针对第二区域配置的频域跳频的时长为第四值,若频域跳频的起始时隙所处的区域是一个第一区域,则频域跳频的时长等于第三值;若频域跳频的起始时隙所处的区域是一个第二区域,则频域跳频的时长等于第四值。以第一区域是SBFD区域,第二区域是非SBFD区域为例,针对SBFD区域配置的频域跳频的时长为第三值,针对非SBFD区域配置的频域跳频的时长为第四值,若频域跳频的起始时隙所处的区域是SBFD区域,则频域跳频的时长等于第三值;若频域跳频的起始时隙所处的区域是非SBFD区域,则频域跳频的时长等于第四值。
例如,图6以图4所示的正常TDW为例,由于第二个正常TDW中存在SBFD区域与非 SBFD区域的切换的Event,故将第二个正常TDW基于Event划分为多个实际TDW;其余的正常TDW未包含Event,故实际TDW等于正常TDW;因此,该上行传输的时域资源上包括如图6所示的6个实际TDW,分别作为实际的DMRS绑定窗口。
再例如,图7以图5所示的正常TDW为例,由于第二个正常TDW中存在SBFD区域与非SBFD区域的切换且该Normal TDW中存在用于上行传输的频域资源的变化(如slot 4与slot 5之间存在上行传输的频域资源的变化)的Event,故将第二个正常TDW基于Event划分为两个实际TDW;其余的正常TDW未包含Event,故实际TDW等于正常TDW;因此,该上行传输的时域资源上包括如图7所示的5个实际TDW,分别作为实际的DMRS绑定窗口。
又例如,图8以图4所示的正常TDW为例,假设针对SBFD区域配置的频域跳频的时长为3个时隙,针对非SBFD区域配置的频域跳频的时长为2个时隙,那么,如图8所示,该上行信道上的第一个频域跳频的起始时隙是该上行信道在时域资源上的起始时隙,即slot 0,由于该第一个频域跳频的起始时隙所处的区域是SBFD区域,故该第一个频域跳频的时长或长度是3个时隙,即slot 0至slot 2;第二个频域跳频的起始时隙是第一个频域跳频的结束时隙之后的时隙,即slot 3,由于该第二个频域跳频的起始时隙所处的区域是SBFD区域,故该第二个频域跳频的时长或长度是3个时隙,即slot 3至slot 5;第三个频域跳频的起始时隙是第二个频域跳频的结束时隙之后的时隙,即slot 6,由于该第三个频域跳频的起始时隙所处的区域是SBFD区域,故该第三个频域跳频的时长或长度是3个时隙,即slot 6至slot 8;最后一个频域跳频的起始时隙是第三个频域跳频的结束时隙之后的时隙,即slot9,故最后一个频域跳频的时长是1个时隙。相应的,若Event是频域跳频,则可获得如图8所示的4个实际TDW,分别作为实际的DMRS绑定窗口。
又例如,图9以图5所示的正常TDW为例,假设针对SBFD区域配置的频域跳频的时长为3个时隙,针对非SBFD区域配置的频域跳频的时长为2个时隙,那么,如图9所示,该上行信道上的第一个频域跳频的起始时隙是该上行信道在时域资源上的起始时隙,即slot 1,由于该第一个频域跳频的起始时隙所处的区域是SBFD区域,故该第一个频域跳频的时长或长度是3个时隙,即slot 1至slot 3;第二个频域跳频的起始时隙是第一个频域跳频的结束时隙之后的时隙,即slot 4,由于该第二个频域跳频的起始时隙所处的区域是非SBFD区域,故该第二个频域跳频的时长或长度是2个时隙,即slot 4至slot 5;第三个频域跳频的起始时隙是第二个频域跳频的结束时隙之后的时隙,即slot 6,由于该第三个频域跳频的起始时隙所处的区域是SBFD区域,故该第三个频域跳频的时长或长度是3个时隙,即slot 6至slot 8;最后一个频域跳频的起始时隙是第三个频域跳频的结束时隙之后的时隙,即slot9,故最后一个频域跳频的时长是1个时隙。相应的,若Event是频域跳频,则可获得如图9所示的4个实际TDW,分别作为实际的DMRS绑定窗口。
可见,本申请所述的信息确定方法可分别针对上行信道上的第一区域和第二区域,配置不同的正常参考信号绑定窗口的时长,如前文所述第一值、第二值。另外,本申请所述的信息确定方法可分别针对上行信道上的第一区域和第二区域,配置不同的频域跳频的时长,如前文所述第一值、第二值。另外,本申请还提出了上述所述的Event,从而,有利于保证实际TDW中DMRS传输的一致性,进而提升上行传输的可靠性。可选的,第一值与第二值可相同或不同。第三值与第四值也可相同或不同。
示例性的,图10是本申请实施例提供的一种信息确定装置的结构示意图,图10所示的信息确定装置可包括但不限于以下单元:接收单元701和确定单元702.该信息确定装置可执 行上述终端设备的相关操作,例如:
接收单元701,用于接收第一信息和第二信息,所述第一信息用于确定时域资源上的第一区域以及第二区域,所述第一区域与所述第二区域之间具有不同的参数配置,所述参数配置包括传输参数和功控参数中的至少一项;所述第二信息用于确定上行信道的时域资源和频域资源;
确定单元702,用于根据所述第一信息和所述第二信息,确定所述上行信道的各参考信号绑定窗口;所述参考信号绑定窗口是具有多个用于信道估计的参考信号的时长;所述参考信号绑定窗口的时长与所述时域资源上所述第一区域和所述第二区域的位置有关。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口所属的区域是所述第一区域,还是所述第二区域。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口的起始时隙所处的区域是所述第一区域,还是所述第二区域。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,针对每个所述参考信号绑定窗口,若该参考信号绑定窗口的起始时隙所处的区域是一个所述第一区域,则该参考信号绑定窗口的时长等于第一值;若该参考信号绑定窗口的起始时隙所处的区域是一个所述第二区域,则该参考信号绑定窗口的时长等于第二值;所述第一值是针对所述第一区域配置的参考信号绑定窗口的时长,所述第二值是针对所述第二区域配置的参考信号绑定窗口的时长。
一种可选的实施方式中,所述上行信道的实际参考信号绑定窗口等于所述参考信号绑定窗口,或是基于所述参考信号绑定窗口包含的事件对所述参考信号绑定窗口进行划分获得的;所述事件包括以下至少一种:所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换;所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换且所述参考信号绑定窗口中存在用于上行传输的频域资源的变化;所述参考信号绑定窗口中存在一个或多个频域跳频,所述频域跳频的时长与所述频域跳频的起始时隙所处的区域是所述第一区域,还是所述第二区域有关。
一种可选的实施方式中,若所述频域跳频的起始时隙所处的区域是一个第一区域,则所述频域跳频的时长等于第三值;若所述频域跳频的起始时隙所处的区域是一个第二区域,则所述频域跳频的时长等于第四值;所述第三值是针对所述第一区域配置的频域跳频的时长,所述第四值是针对所述第二区域配置的频域跳频的时长。
一种可选的实施方式中,所述第一区域是子带全双工SBFD区域,所述SBFD区域中同一载波的各子带之间存在不同的上下行传输或接收;所述第二区域是非SBFD区域,所述非SBFD区域中同一载波的各子带之间存在相同的上下行传输或接收。
可以理解的是,本申请实施例提供的信息确定装置中各个单元的具体实现以及可以达到的有益效果可参考前述相关信息确定方法实施例的描述,在此不再赘述。
示例性的,图11是本申请实施例提供的另一种信息确定装置的结构示意图,图11所示的信息确定装置可包括但不限于以下单元:发送单元801和确定单元802.该信息确定装置可执行上述网络设备的相关操作,例如:
发送单元801,用于发送第一信息和第二信息;
所述第一信息用于确定时域资源上的第一区域以及第二区域,所述第一区域与所述第二区域之间具有不同的参数配置,所述参数配置包括传输参数和功控参数中的至少一项;
所述第二信息用于确定上行信道的时域资源和频域资源;
确定单元802,用于根据所述第一信息和所述第二信息,确定所述上行信道的各参考信号绑定窗口;
所述参考信号绑定窗口是具有多个用于信道估计的参考信号的时长;所述参考信号绑定窗口的时长与所述时域资源上所述第一区域和所述第二区域的位置有关。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口所属的区域是所述第一区域,还是所述第二区域。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口的起始时隙所处的区域是所述第一区域,还是所述第二区域。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,针对每个所述参考信号绑定窗口,若该参考信号绑定窗口的起始时隙所处的区域是一个所述第一区域,则该参考信号绑定窗口的时长等于第一值;若该参考信号绑定窗口的起始时隙所处的区域是一个所述第二区域,则该参考信号绑定窗口的时长等于第二值;所述第一值是针对所述第一区域配置的参考信号绑定窗口的时长,所述第二值是针对所述第二区域配置的参考信号绑定窗口的时长。
一种可选的实施方式中,所述上行信道的实际参考信号绑定窗口等于所述参考信号绑定窗口,或是基于所述参考信号绑定窗口包含的事件对所述参考信号绑定窗口进行划分获得的;所述事件包括以下至少一种:所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换;所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换且所述参考信号绑定窗口中存在用于上行传输的频域资源的变化;所述参考信号绑定窗口中存在一个或多个频域跳频,所述频域跳频的时长与所述频域跳频的起始时隙所处的区域是所述第一区域,还是所述第二区域有关。
一种可选的实施方式中,若所述频域跳频的起始时隙所处的区域是一个第一区域,则所述频域跳频的时长等于第三值;若所述频域跳频的起始时隙所处的区域是一个第二区域,则所述频域跳频的时长等于第四值;所述第三值是针对所述第一区域配置的频域跳频的时长,所述第四值是针对所述第二区域配置的频域跳频的时长。
一种可选的实施方式中,所述第一区域是子带全双工SBFD区域,所述SBFD区域中同一载波的各子带之间存在不同的上下行传输或接收;所述第二区域是非SBFD区域,所述非SBFD区域中同一载波的各子带之间存在相同的上下行传输或接收。
可以理解的是,本申请实施例提供的信息确定装置中各个单元的具体实现以及可以达到的有益效果可参考前述相关信息确定方法实施例的描述,在此不再赘述。
请参阅图12,图12是本申请实施例提供的一种通信装置的结构示意图。其中,包括处理器901、存储器902以及用于连接处理器901、存储器902的通信总线。
该通信装置还可以包括通信接口,其可以用于接收和发送数据。
存储器902包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read-only  memory,EPROM)或便携式只读存储器(compact disc read-only memory,CD-ROM),该存储器902用于存储所执行的程序代码和所传输的数据。
处理器901可以是一个或多个中央处理单元(Central Processing Unit,CPU),在处理器901是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。该处理器还可以是其他通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。其中,通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在一种可选的实施方式中,处理器901可用于执行存储器902中存储的计算机程序或指令903,执行上述信息确定方法中终端设备的操作,例如:
接收第一信息和第二信息,
所述第一信息用于确定时域资源上的第一区域以及第二区域,所述第一区域与所述第二区域之间具有不同的参数配置,所述参数配置包括传输参数和功控参数中的至少一项;
所述第二信息用于确定上行信道的时域资源和频域资源;
根据所述第一信息和所述第二信息,确定所述上行信道的各参考信号绑定窗口;
所述参考信号绑定窗口是具有多个用于信道估计的参考信号的时长;所述参考信号绑定窗口的时长与所述时域资源上所述第一区域和所述第二区域的位置有关。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口所属的区域是所述第一区域,还是所述第二区域。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口的起始时隙所处的区域是所述第一区域,还是所述第二区域。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,针对每个所述参考信号绑定窗口,若该参考信号绑定窗口的起始时隙所处的区域是一个所述第一区域,则该参考信号绑定窗口的时长等于第一值;若该参考信号绑定窗口的起始时隙所处的区域是一个所述第二区域,则该参考信号绑定窗口的时长等于第二值;所述第一值是针对所述第一区域配置的参考信号绑定窗口的时长,所述第二值是针对所述第二区域配置的参考信号绑定窗口的时长。
一种可选的实施方式中,所述上行信道的实际参考信号绑定窗口等于所述参考信号绑定窗口,或是基于所述参考信号绑定窗口包含的事件对所述参考信号绑定窗口进行划分获得的;所述事件包括以下至少一种:所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换;所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换且所述参考信号绑定窗口中存在用于上行传输的频域资源的变化;所述参考信号绑定窗口中存在一个或多个频域跳频,所述频域跳频的时长与所述频域跳频的起始时隙所处的区域是所述第一区域,还是所述第二区域有关。
一种可选的实施方式中,若所述频域跳频的起始时隙所处的区域是一个第一区域,则所述频域跳频的时长等于第三值;若所述频域跳频的起始时隙所处的区域是一个第二区域,则所述频域跳频的时长等于第四值;所述第三值是针对所述第一区域配置的频域跳频的时长,所述第四值是针对所述第二区域配置的频域跳频的时长。
一种可选的实施方式中,所述第一区域是子带全双工SBFD区域,所述SBFD区域中同 一载波的各子带之间存在不同的上下行传输或接收;所述第二区域是非SBFD区域,所述非SBFD区域中同一载波的各子带之间存在相同的上下行传输或接收。
在一种可选的实施方式中,处理器901可用于执行存储器902中存储的计算机程序或指令903,执行上述信息确定方法中网络设备的操作,例如:
发送第一信息和第二信息;
所述第一信息用于确定时域资源上的第一区域以及第二区域,所述第一区域与所述第二区域之间具有不同的参数配置,所述参数配置包括传输参数和功控参数中的至少一项;
所述第二信息用于确定上行信道的时域资源和频域资源;
根据所述第一信息和所述第二信息,确定所述上行信道的各参考信号绑定窗口;
所述参考信号绑定窗口是具有多个用于信道估计的参考信号的时长;所述参考信号绑定窗口的时长与所述时域资源上所述第一区域和所述第二区域的位置有关。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口所属的区域是所述第一区域,还是所述第二区域。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口的起始时隙所处的区域是所述第一区域,还是所述第二区域。
一种可选的实施方式中,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,针对每个所述参考信号绑定窗口,若该参考信号绑定窗口的起始时隙所处的区域是一个所述第一区域,则该参考信号绑定窗口的时长等于第一值;若该参考信号绑定窗口的起始时隙所处的区域是一个所述第二区域,则该参考信号绑定窗口的时长等于第二值;所述第一值是针对所述第一区域配置的参考信号绑定窗口的时长,所述第二值是针对所述第二区域配置的参考信号绑定窗口的时长。
一种可选的实施方式中,所述上行信道的实际参考信号绑定窗口等于所述参考信号绑定窗口,或是基于所述参考信号绑定窗口包含的事件对所述参考信号绑定窗口进行划分获得的;所述事件包括以下至少一种:所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换;所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换且所述参考信号绑定窗口中存在用于上行传输的频域资源的变化;所述参考信号绑定窗口中存在一个或多个频域跳频,所述频域跳频的时长与所述频域跳频的起始时隙所处的区域是所述第一区域,还是所述第二区域有关。
一种可选的实施方式中,若所述频域跳频的起始时隙所处的区域是一个第一区域,则所述频域跳频的时长等于第三值;若所述频域跳频的起始时隙所处的区域是一个第二区域,则所述频域跳频的时长等于第四值;所述第三值是针对所述第一区域配置的频域跳频的时长,所述第四值是针对所述第二区域配置的频域跳频的时长。
一种可选的实施方式中,所述第一区域是子带全双工SBFD区域,所述SBFD区域中同一载波的各子带之间存在不同的上下行传输或接收;所述第二区域是非SBFD区域,所述非SBFD区域中同一载波的各子带之间存在相同的上下行传输或接收。
本申请实施例还提供了一种芯片,该芯片包括:处理器、存储器及存储在存储器上的计算机程序或指令,其中,处理器执行计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种芯片模组,包括收发组件和芯片,该芯片包括处理器、存储 器及存储在该存储器上的计算机程序或指令,其中,该处理器执行该计算机程序或指令以实现上述方法实施例所描述的步骤。
本申请实施例还提供了一种计算机可读存储介质,其中,该计算机存储介质存储有用于信息确定的计算机程序或指令,该计算机程序或指令被执行时使得计算机实现上述任一方法实施例所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,该计算机程序产品包括存储了计算机程序或指令的非瞬时性计算机可读存储介质,该计算机程序或指令被执行时实现上述任一方法实施例所描述的部分或全部步骤。该计算机程序产品或指令可以为一个软件安装包。
需要说明的是,对于前述的各方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,本申请实施例对各个实施例的描述都各有侧重,任意多个实施例可以结合使用,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置,可通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如上述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性或其它的形式。
上述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本申请实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。也就是说,关于上述实施例中描述的各个装置、产品包含单元/模块,其可以是软件单元/模块,也可以是硬件单元/模块,或者也可以部分是软件单元/模块,部分是硬件单元/模块。例如,对于应用或集成芯片的各个装置、产品其包含的各个单元/模块可以都采用电路等硬件的方式实现,或者至少部分单元/模块可以采用软件程序的方式实现,该运行于芯片内部集成处理器,剩余的部分单元/模块可以采用电路等硬件方式实现;对于应于或集成芯片模组的各个装置、产品,其包含的各个单元/模块可以都采用电路等硬件的方式实现,不同单元/模块可以位于芯片模组的同一件(例如片、电路单元等)或者不同组件中,至少部分/模块可以采用软件程序的方式实现,该软件程运行于芯片模组内部集成处理器剩余部分单元/模块可以采用电路等硬件方式实现;对于应或集成终端的各个装置、产品,其包含的单元/模块可以都采用电路等硬件的方式实现,不同的单元/模块可以位于终端内同一组件(例如,芯片、电路单元等)或者不同组件中,或者至少部分单元/模块可以采用软件程序的方式实现,该序运行于终端内部集成的处理器,剩余分单元/单元可以采用电路等硬件方式实现。
本申请实施例所描述的方法或者算法的步骤可以以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件单元组成,软件单元可以被存放于U盘、随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory, ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、磁碟、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于终端设备或网络设备中。当然,处理器和存储介质也可以作为分立组件存在于终端设备或网络设备中。
上述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储器中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者TRP等)执行本申请各个实施例方法的全部或部分步骤。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当上述集成的单元以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储器中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以计算机软件产品的形式实现。该计算机软件产品存储在一个存储器中,包括一个或多个计算机指令,用以使得一台计算机设备(可为个人计算机、服务器或者TRP等)执行本申请各个实施例方法的全部或部分步骤。其中,该计算机设备还可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。该计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输。例如,该计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。该计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想,并不用于限定本申请实施例的保护范围;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。也就是说,以上所述仅为本申请实施例的具体实施方式而已,并不用于限定本申请实施例的保护范围,凡在本申请实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请实施例的保护范围之内。

Claims (20)

  1. 一种信息确定方法,其特征在于,所述方法包括:
    接收第一信息和第二信息,
    所述第一信息用于确定时域资源上的第一区域以及第二区域,所述第一区域与所述第二区域之间具有不同的参数配置,所述参数配置包括传输参数和功控参数中的至少一项;
    所述第二信息用于确定上行信道的时域资源和频域资源;
    根据所述第一信息和所述第二信息,确定所述上行信道的各参考信号绑定窗口;
    所述参考信号绑定窗口的时长与所述时域资源上所述第一区域和所述第二区域的位置有关。
  2. 根据权利要求1所述的方法,其特征在于,
    所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口所属的区域是所述第一区域,还是所述第二区域。
  3. 根据权利要求2所述的方法,其特征在于,所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口的起始时隙所处的区域是所述第一区域,还是所述第二区域。
  4. 根据权利要求3所述的方法,其特征在于,
    所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,针对每个所述参考信号绑定窗口,若该参考信号绑定窗口的起始时隙所处的区域是一个所述第一区域,则该参考信号绑定窗口的时长等于第一值;若该参考信号绑定窗口的起始时隙所处的区域是一个所述第二区域,则该参考信号绑定窗口的时长等于第二值;
    所述第一值是针对所述第一区域配置的参考信号绑定窗口的时长,所述第二值是针对所述第二区域配置的参考信号绑定窗口的时长。
  5. 根据权利要求1至4任一项所述的方法,其特征在于,所述上行信道的实际参考信号绑定窗口等于所述参考信号绑定窗口,或是基于所述参考信号绑定窗口包含的事件对所述参考信号绑定窗口进行划分获得的;
    所述事件包括以下至少一种:
    所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换;
    所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换且所述参考信号绑定窗口中存在用于上行传输的频域资源的变化;
    所述参考信号绑定窗口中存在一个或多个频域跳频,所述频域跳频的时长与所述频域跳频的起始时隙所处的区域是所述第一区域,还是所述第二区域有关。
  6. 根据权利要求5所述的方法,其特征在于,
    若所述频域跳频的起始时隙所处的区域是一个第一区域,则所述频域跳频的时长等于第三值;若所述频域跳频的起始时隙所处的区域是一个第二区域,则所述频域跳频的时长等于第四值;
    所述第三值是针对所述第一区域配置的频域跳频的时长,所述第四值是针对所述第二区域配置的频域跳频的时长。
  7. 根据权利要求1至4任一项所述的方法,其特征在于,
    所述第一区域是子带全双工SBFD区域,所述SBFD区域中同一载波的各子带之间存在不同的上下行传输或接收;
    所述第二区域是非SBFD区域,所述非SBFD区域中同一载波的各子带之间存在相同的 上下行传输或接收。
  8. 一种信息确定方法,其特征在于,所述方法包括:
    发送第一信息和第二信息;
    所述第一信息用于确定时域资源上的第一区域以及第二区域,所述第一区域与所述第二区域之间具有不同的参数配置,所述参数配置包括传输参数和功控参数中的至少一项;
    所述第二信息用于确定上行信道的时域资源和频域资源;
    根据所述第一信息和所述第二信息,确定所述上行信道的各参考信号绑定窗口;
    所述参考信号绑定窗口是具有多个用于信道估计的参考信号的时长;所述参考信号绑定窗口的时长与所述时域资源上所述第一区域和所述第二区域的位置有关。
  9. 根据权利要求8所述的方法,其特征在于,
    所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口所属的区域是所述第一区域,还是所述第二区域。
  10. 根据权利要求9所述的方法,其特征在于,
    所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,每个所述参考信号绑定窗口的时长取决于该参考信号绑定窗口的起始时隙所处的区域是所述第一区域,还是所述第二区域。
  11. 根据权利要求10所述的方法,其特征在于,
    所述各参考信号绑定窗口中,除了时域位置最后的一个所述参考信号绑定窗口外,针对每个所述参考信号绑定窗口,若该参考信号绑定窗口的起始时隙所处的区域是一个所述第一区域,则该参考信号绑定窗口的时长等于第一值;若该参考信号绑定窗口的起始时隙所处的区域是一个所述第二区域,则该参考信号绑定窗口的时长等于第二值;
    所述第一值是针对所述第一区域配置的参考信号绑定窗口的时长,所述第二值是针对所述第二区域配置的参考信号绑定窗口的时长。
  12. 根据权利要求8至11任一项所述的方法,其特征在于,所述上行信道的实际参考信号绑定窗口等于所述参考信号绑定窗口,或是基于所述参考信号绑定窗口包含的事件对所述参考信号绑定窗口进行划分获得的;
    所述事件包括以下至少一种:
    所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换;
    所述参考信号绑定窗口中存在所述第一区域与所述第二区域之间的切换且所述参考信号绑定窗口中存在用于上行传输的频域资源的变化;
    所述参考信号绑定窗口中存在一个或多个频域跳频,所述频域跳频的时长与所述频域跳频的起始时隙所处的区域是所述第一区域,还是所述第二区域有关。
  13. 根据权利要求12所述的方法,其特征在于,
    若所述频域跳频的起始时隙所处的区域是一个第一区域,则所述频域跳频的时长等于第三值;若所述频域跳频的起始时隙所处的区域是一个第二区域,则所述频域跳频的时长等于第四值;
    所述第三值是针对所述第一区域配置的频域跳频的时长,所述第四值是针对所述第二区域配置的频域跳频的时长。
  14. 根据权利要求8至11任一项所述的方法,其特征在于,
    所述第一区域是子带全双工SBFD区域,所述SBFD区域中同一载波的各子带之间存在不同的上下行传输或接收;
    所述第二区域是非SBFD区域,所述非SBFD区域中同一载波的各子带之间存在相同的上下行传输或接收。
  15. 一种通信装置,其特征在于,包括处理器和存储器,所述处理器和所述存储器相互连接,其中,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,执行如权利要求1至7任一项所述的信息确定方法,或者,执行如权利要求8至14任一项所述的信息确定方法。
  16. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令当被处理器执行时,使所述处理器执行如权利要求1至7任一项所述的信息确定方法,或者,执行如权利要求8至14任一项所述的信息确定方法。
  17. 一种芯片,其特征在于,所述芯片包括处理器,所述处理器执行如权利要求1至7任一项所述的信息确定方法,或者,执行如权利要求8至14任一项所述的信息确定方法。
  18. 一种芯片模组,其特征在于,所述芯片模组包括收发组件和芯片,所述芯片包括处理器,所述处理器执行如权利要求1至7任一项所述的信息确定方法,或者,执行如权利要求8至14任一项所述的信息确定方法。
  19. 一种通信系统,其特征在于,包括:执行如权利要求1至7任一项所述的信息确定方法的终端设备,以及,执行如权利要求8至14任一项所述的信息确定方法的网络设备。
  20. 一种计算机程序产品,其特征在于,包括计算机指令,当所述计算机指令在计算机上运行时,使得所述计算机执行如权利要求1至7任一项所述的方法;或者,使得所述计算机执行如权利要求8至14任一项所述的方法。
PCT/CN2023/134217 2022-11-30 2023-11-27 信息确定方法及相关装置 WO2024114554A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211529937.9 2022-11-30
CN202211529937.9A CN118119022A (zh) 2022-11-30 2022-11-30 信息确定方法及相关装置

Publications (1)

Publication Number Publication Date
WO2024114554A1 true WO2024114554A1 (zh) 2024-06-06

Family

ID=91219884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/134217 WO2024114554A1 (zh) 2022-11-30 2023-11-27 信息确定方法及相关装置

Country Status (2)

Country Link
CN (1) CN118119022A (zh)
WO (1) WO2024114554A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW202239171A (zh) * 2021-03-30 2022-10-01 美商Idac控股公司 用於無線系統中之動態資料傳輸的方法
CN115298995A (zh) * 2020-02-21 2022-11-04 高通股份有限公司 解调参考信号多时隙绑定指示
WO2022241742A1 (zh) * 2021-05-20 2022-11-24 北京小米移动软件有限公司 参数配置方法及装置、电子设备及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115298995A (zh) * 2020-02-21 2022-11-04 高通股份有限公司 解调参考信号多时隙绑定指示
TW202239171A (zh) * 2021-03-30 2022-10-01 美商Idac控股公司 用於無線系統中之動態資料傳輸的方法
WO2022241742A1 (zh) * 2021-05-20 2022-11-24 北京小米移动软件有限公司 参数配置方法及装置、电子设备及存储介质

Also Published As

Publication number Publication date
CN118119022A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
CN112020139B (zh) 通信方法及装置
CN109156011B (zh) 蜂窝网络中的tcp吞吐量的经改进斜升的tti调度
WO2019032087A1 (en) MULTI-MODE RETRANSMISSION SCHEME FOR WIRELESS NETWORKS
KR20200138814A (ko) 데이터를 전송하는 방법, 단말기 및 네트워크 기기
EP4333353A2 (en) Method and system for srs transmission
WO2017139969A1 (zh) 频带配置装置、方法以及通信系统
WO2020077667A1 (zh) 一种启动定时器的方法及装置、终端
WO2019174055A1 (zh) 通信方法和通信装置
WO2022027232A1 (zh) 无线通信方法和设备
WO2024103798A1 (zh) 无线通信的方法及装置
WO2018120156A1 (zh) 系统信息发送方法、系统信息接收方法及装置
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
WO2024114554A1 (zh) 信息确定方法及相关装置
US11985672B2 (en) Data transmission method and apparatus, network device and terminal
CN113273276B (zh) 一种发送上行信号的方法及装置
CN113039830A (zh) 无线通信系统中控制测量操作的装置和方法
WO2022170516A1 (zh) 一种传输信息的方法及其装置
WO2021223599A1 (zh) 一种上行数据传输方法及装置
WO2023024890A1 (zh) 频域资源配置方法及装置、频域资源切换方法及装置
WO2022011711A1 (zh) 通信方法、通信设备、电子设备及计算机存储介质
WO2022088188A1 (zh) 通信的方法、装置
WO2022188649A1 (zh) 通信方法和装置
WO2022257832A1 (zh) 数据传输方法和装置
US20240129072A1 (en) Method for determing drx activation time and terminal device
WO2023283950A1 (zh) 通信方法及装置