WO2024114439A1 - Mesh组网的测试系统及测试方法、控制终端、存储介质 - Google Patents

Mesh组网的测试系统及测试方法、控制终端、存储介质 Download PDF

Info

Publication number
WO2024114439A1
WO2024114439A1 PCT/CN2023/132865 CN2023132865W WO2024114439A1 WO 2024114439 A1 WO2024114439 A1 WO 2024114439A1 CN 2023132865 W CN2023132865 W CN 2023132865W WO 2024114439 A1 WO2024114439 A1 WO 2024114439A1
Authority
WO
WIPO (PCT)
Prior art keywords
attenuator
shielding box
port
gateway
switch
Prior art date
Application number
PCT/CN2023/132865
Other languages
English (en)
French (fr)
Inventor
许海峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024114439A1 publication Critical patent/WO2024114439A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present application relates to the field of testing, and in particular to a test system for Mesh networking, a test method for Mesh networking, a control terminal, and a computer-readable storage medium.
  • Wi-Fi wireless Fidelity
  • Wi-Fi Mesh networks bring great challenges to Mesh testing.
  • site resources for Mesh network self-healing testing are limited, and seamless roaming testing requires testers to walk back and forth with a large number of mobile terminals, resulting in a large amount of repeated waste of resources.
  • the present application provides a test system for Mesh networking, comprising: a control terminal, a switch, a master gateway shielding box, a first slave gateway shielding box, and a second slave gateway shielding box; the control terminal is communicatively connected to the switch; the first port of the master gateway shielding box is communicatively connected to the first switch port of the switch, and the master gateway shielding box
  • the second port of the first slave gateway shielding box is communicatively connected to the second switch port of the switch, the first port of the master gateway shielding box is used to communicate with the first port of the master gateway in the Mesh device to be tested located in the master gateway shielding box, and the second port of the master gateway shielding box is used to communicate with the second port of the master gateway of the Mesh device to be tested located in the master gateway shielding box;
  • the first port of the first slave gateway shielding box is communicatively connected to the third switch port of the switch, the second port of the first slave gateway shielding box is communicatively connected to the fourth switch port
  • the present application provides a testing method for Mesh networking, which is applied to the control terminal as described in the first aspect, including: sending a first control instruction to the switch, the first control instruction is used to instruct the first switch port, the third switch port, the fourth switch port and the fifth switch port to be turned on, and instructing the second switch port to be turned off, so as to simulate a wired chain Mesh networking mode; or, sending a second control instruction to the switch, the second control instruction is used to instruct the first switch port, the second switch port, the third switch port and the fifth switch port to be turned on, and instructing the fourth switch port to be turned off, so as to simulate a wired star Mesh networking mode.
  • the present application provides a control terminal including a processor, a communication interface, a memory and a communication bus.
  • the processor, the communication interface and the memory communicate with each other through the communication bus.
  • the memory is configured to store a computer program.
  • the processor is configured to execute the computer program stored in the memory to implement the Mesh networking test method described in the second aspect.
  • the present application provides a computer-readable storage medium having a computer program stored thereon, wherein the computer program is executed by a processor so that the processor implements the Mesh networking testing method described in the second aspect.
  • FIG1 is a structural diagram of a Mesh networking test system provided in an embodiment of the present application.
  • FIG2 is a structural diagram of a Mesh networking test system provided in an embodiment of the present application.
  • FIG3 is a structural diagram of a Mesh networking test system provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of multi-terminal user control provided by an embodiment of the present application.
  • FIG5 is a structural diagram of a control terminal provided in an embodiment of the present application.
  • the functional characteristics of Wi-Fi Mesh networks bring great challenges to Mesh testing.
  • the site resources of Mesh network self-healing test are limited, and seamless roaming test requires testers to hold a large number of mobile terminals and walk back and forth, resulting in a large amount of repeated waste of resources.
  • the present application provides a test system for Mesh networking, a test method for Mesh networking, a control terminal, and a computer-readable storage medium.
  • FIG. 1 is a structural diagram of a Mesh networking test system provided in an embodiment of the present application.
  • the Mesh networking test system includes: a control terminal, a switch, a master gateway shielding box, a first slave gateway shielding box and a second slave gateway shielding box; the control terminal is communicatively connected to the switch.
  • the switch can be connected to the control terminal for communication, and the control terminal controls the opening or closing of each switch port of the switch, thereby controlling the switching of the wired networking mode of the main gateway, the first slave gateway and the second slave gateway in the Mesh device to be tested.
  • the control terminal can be a terminal device that includes a processor capable of running an automated test program and can communicate with a switch and other devices, such as a PC, etc. The control terminal is pre-installed with an automated test program for the test system of the Mesh network.
  • the first switch port and the third switch port of the switch correspond to the same broadcast domain
  • the second switch port, the fourth switch port and the fifth switch port correspond to the same broadcast domain
  • the first port of the main gateway shielding box is communicatively connected to the first switch port of the switch
  • the second port of the main gateway shielding box is communicatively connected to the second switch port of the switch
  • the first port of the main gateway shielding box is used to communicate with the first port of the main gateway in the Mesh device to be tested located in the main gateway shielding box
  • the second port of the main gateway shielding box is used to communicate with the second port of the main gateway of the Mesh device to be tested located in the main gateway shielding box.
  • the switch When the first switch port is turned on, the switch can transmit data with the first port of the main gateway in the Mesh device to be tested through the first switch port. When the first switch port is turned off, the switch cannot transmit data with the first port of the main gateway in the Mesh device to be tested through the first switch port.
  • the second switch port When the second switch port is turned on, the switch can transmit data with the second port of the main gateway in the Mesh device to be tested through the second switch port. When the second switch port is turned off, the switch cannot transmit data with the second port of the main gateway in the Mesh device to be tested through the second switch port.
  • the first port of the first slave gateway shielding box is communicatively connected to the third switch port of the switch
  • the second port of the first slave gateway shielding box is communicatively connected to the fourth switch port of the switch
  • the first port of the first slave gateway shielding box is used to communicate with the first port of the first slave gateway in the Mesh device to be tested located in the first slave gateway shielding box
  • the second port of the first slave gateway shielding box is used to communicate with the second port of the first slave gateway of the Mesh device to be tested located in the first slave gateway shielding box.
  • the switch can transmit data with the first port of the first slave gateway in the tested Mesh device through the third switch port.
  • the switch cannot transmit data with the first port of the first slave gateway in the Mesh device to be tested through the third switch port; when the fourth switch port is opened, the switch can transmit data with the second port of the first slave gateway in the Mesh device to be tested through the fourth switch port; when the fourth switch port is closed, the switch cannot transmit data with the second port of the first slave gateway in the Mesh device to be tested through the fourth switch port.
  • the first port of the second slave gateway shielding box is communicatively connected to the fifth switch port of the switch, and the first port of the second slave gateway shielding box is used to communicate with the first port of the second slave gateway of the Mesh device to be tested located in the second slave gateway shielding box.
  • the switch When the fifth switch port is turned on, the switch can transmit data with the first port of the second slave gateway in the Mesh device to be tested through the fifth switch port. When the fifth switch port is turned off, the switch cannot transmit data with the first port of the second slave gateway in the Mesh device to be tested through the fifth switch port.
  • the Mesh networking test system provided in the embodiment of the present application can realize the test simulation of automated networking by internally setting up a switch, a main gateway shielding box, a first slave gateway shielding box and a second slave gateway shielding box.
  • the test process is simple and the results are clear, which greatly reduces the manpower and material resources required for testing.
  • the test system further includes: a first attenuator, a second attenuator, and a third attenuator.
  • the first antenna in the master gateway shielding box is communicatively connected to the second antenna in the first slave gateway shielding box through the second attenuator; through the first antenna and the second antenna, the master gateway and the first slave gateway can be connected in a wireless communication manner.
  • the third antenna of the first slave gateway shielding box is communicatively connected to the fourth antenna in the second slave gateway shielding box through the first attenuator; through the third antenna and the fourth antenna, the first slave gateway and the second slave gateway can be connected in a wireless communication manner.
  • the fifth antenna in the master gateway shielding box is communicatively connected to the sixth antenna in the second slave gateway shielding box through the third attenuator; through the fifth antenna and the sixth antenna, the master gateway and the second slave gateway can be connected in a wireless communication manner.
  • control terminal is respectively connected to the first attenuator, the second attenuator and the third attenuator for communication, and the control terminal can control the first attenuator,
  • the attenuation values of the second attenuator and the third attenuator are adjusted to control the switching of the wireless networking modes of the master gateway, the first slave gateway and the second slave gateway in the Mesh device to be tested.
  • the test system further includes: a light blocker and an optical splitter.
  • the input end of the optical blocker is communicatively connected to the optical fiber
  • the output end of the optical blocker is communicatively connected to the input end of the optical splitter
  • the three output ends of the optical splitter are communicatively connected to the master gateway, the first slave gateway and the second slave gateway respectively.
  • control terminal is communicatively connected with the optical blocker, and the control terminal can control the opening and closing of the optical blocker, thereby controlling the opening and closing of the optical fiber networking.
  • the test system also includes: a roaming shielding box, a fourth attenuator, a fifth attenuator and a sixth attenuator, the main gateway shielding box is also used to place the first module device for testing, the first slave gateway shielding box is also used to place the second module device for testing, the second slave gateway shielding box is also used to place the third module device for testing, and the first module device, the second module device and the third module device are used for multi-user simulation.
  • a roaming shielding box is also used to place the first module device for testing
  • the first slave gateway shielding box is also used to place the second module device for testing
  • the second slave gateway shielding box is also used to place the third module device for testing
  • the first module device, the second module device and the third module device are used for multi-user simulation.
  • the seventh antenna in the roaming shielding box is communicatively connected to the eighth antenna in the main gateway shielding box through the sixth attenuator.
  • the roaming shielding box is used to place a user terminal for testing.
  • the user terminal and the main gateway can be connected in a wireless communication manner.
  • the ninth antenna in the roaming shielding box is communicatively connected to the tenth antenna in the first slave gateway shielding box through the fifth attenuator; through the ninth antenna and the tenth antenna, the user terminal and the first slave gateway can be connected in a wireless communication manner.
  • the eleventh antenna in the roaming shielding box is communicatively connected to the twelfth antenna in the second slave gateway shielding box through the fourth attenuator; through the eleventh antenna and the twelfth antenna, the user terminal and the second slave gateway can be connected in a wireless communication manner.
  • the control terminal is respectively connected to the user terminal, the fourth attenuator, the fifth attenuator, the sixth attenuator, the first module device, the second module device and the third module device.
  • the control terminal can control the user terminal to access or exit the Mesh network and perform a service simulation test based on the Mesh network; it can also control the simulated services of the first module device, the second module device and the third module device.
  • Multiple simulated terminals can access or exit the Mesh network and perform traffic simulation tests based on the Mesh network; the attenuation values of the fourth attenuator, the fifth attenuator and the sixth attenuator can also be controlled to perform roaming simulation tests on user terminals.
  • a test method for a Mesh network is also provided.
  • the test method for a Mesh network can be applied to the control terminal as described above, and is used to control the test system of the aforementioned Mesh network to perform a Mesh network test.
  • the control terminal can be a terminal device that includes a processor that can run an automated test program and can communicate with devices such as switches, such as a PC.
  • the main gateway of the Mesh device When testing the Mesh network, place the user terminal in the roaming shielding box, the main gateway of the Mesh device to be tested in the main gateway shielding box, the first slave gateway in the first slave gateway shielding box, the second slave gateway in the second slave gateway shielding box, the first module device in the main gateway shielding box, the second module device in the first slave gateway shielding box, and the third module device in the second slave gateway shielding box;
  • the test method of the Mesh network includes: sending a first control instruction to the switch, the first control instruction is used to instruct the first switch port, the third switch port, the fourth switch port and the fifth switch port to be turned on, and instructing the second switch port to be turned off, so as to simulate a wired chain Mesh networking mode; or, sending a second control instruction to the switch, the second control instruction is used to instruct the first switch port, the second switch port, the third switch port and the fifth switch port to be turned on, and instructing the fourth switch port to be turned off, so as to simulate a wired star Mesh networking mode.
  • the embodiment of the present application can control the opening and closing of each switch port to simulate a wired chain Mesh networking mode or a wired star Mesh networking mode, thereby realizing test simulation of automated networking.
  • the test process is simple and the results are clear, which greatly reduces the manpower and material resources required for testing.
  • the test method for the Mesh network further includes: sending a third control instruction to the switch, the third control instruction being used to instruct the first switch to The first switch port, the second switch port, the third switch port, the fourth switch port and the fifth switch port are closed; the attenuation values of the second attenuator and the first attenuator are controlled to decrease, and the attenuation value of the third attenuator is controlled to increase, so as to simulate the wireless chain Mesh networking mode; or, the attenuation value of the first attenuator is controlled to increase, and the attenuation values of the second attenuator and the third attenuator are controlled to decrease, so as to simulate the wireless star Mesh networking mode.
  • the embodiment of the present application can simulate a wireless chain-type Mesh networking mode or a wireless star-type Mesh networking mode by controlling the opening and closing of each switch port and the attenuation values of the first attenuator, the second attenuator and the third attenuator, thereby realizing test simulation of automated networking.
  • the test process is simple and the results are clear, which greatly reduces the manpower and material resources required for testing.
  • the test method of the Mesh network also includes: sending a fourth control instruction to the switch, the fourth control instruction is used to instruct the first switch port and the third switch port to be turned on, and the fourth switch port and the fifth switch port to be turned off; controlling the attenuation value of the first attenuator to decrease, and controlling the attenuation value of the third attenuator to increase, so as to simulate a wired and wireless hybrid chain Mesh network; or, sending a fifth control instruction to the switch, the fifth control instruction is used to instruct the first switch port and the third switch port to be turned on; controlling the attenuation value of the first attenuator to increase, and controlling the attenuation value of the second attenuator and the third attenuator to decrease, so as to simulate a wired and wireless hybrid star Mesh network.
  • the embodiment of the present application can simulate a wired and wireless hybrid chain Mesh network or a wired and wireless hybrid star Mesh network by controlling the opening and closing of each switch port and the attenuation values of the first attenuator, the second attenuator and the third attenuator, thereby realizing test simulation of automated networking.
  • the test process is simple and the results are clear, which greatly reduces the manpower and material resources required for testing.
  • the controllable optical blocker is in an off state
  • the test method of the mesh network further includes: controlling the optical blocker to be off to simulate the fiber optic network of fiber to the room (FTTR); controlling the optical blocker to be on to simulate the wired network, wireless network or hybrid network of FTTR. That is, when the optical blocker is on and the optical fiber signal is not connected, the aforementioned method can be used to simulate the mesh network.
  • FTTR wired networking, wireless networking or hybrid networking.
  • the embodiment of the present application can simulate various networking modes of FTTR by controlling the opening and closing of the optical blocker, and realize the test simulation of automated networking.
  • the test process is simple and the results are clear, which greatly reduces the manpower and material resources required for the test.
  • the testing method of the Mesh network also includes: controlling user terminals to access or exit the Mesh network, and performing business simulation tests based on the Mesh network; or, controlling multiple simulated terminals simulated by the first module device, the second module device, and the third module device to access or exit the Mesh network, and performing traffic simulation tests based on the Mesh network.
  • the embodiments of the present application can control user terminals to access or exit the Mesh network, and perform business simulation tests based on the Mesh network, or control multiple simulated terminals simulated by the first module device, the second module device, and the third module device to access or exit the Mesh network, and perform traffic simulation tests based on the Mesh network, thereby realizing test simulation of automated networking, with a simple test process and clear results, which greatly reduces the manpower and material resources required for testing.
  • the test method of the Mesh network further includes: in any networking mode, controlling the attenuation value of the fourth attenuator to be a long-distance attenuation value, controlling the attenuation value of the fifth attenuator to be a medium-distance attenuation value, and controlling the attenuation value of the sixth attenuator to be a short-distance attenuation value; according to the preset attenuation step corresponding to each attenuator, adjusting the attenuation values of the fourth attenuator, the fifth attenuator, and the sixth attenuator in sequence until the attenuation value of the fourth attenuator is the medium-distance attenuation value, the attenuation value of the fifth attenuator is the short-distance attenuation value, and the attenuation value of the sixth at
  • the attenuation value of the attenuator is a medium-range attenuation value, and it is determined whether the user terminal has roamed to the first slave gateway; if the user terminal has roamed to the first slave gateway, according to the preset attenuation step corresponding to each attenuator, the attenuation values of the fourth attenuator, the fifth attenuator and the sixth attenuator are adjusted in sequence until the attenuation value of the fourth attenuator is a short-range attenuation value, the attenuation value of the fifth attenuator is a medium-range attenuation value, and the attenuation value of the sixth attenuator is a long-range attenuation value, and it is determined whether the user terminal has roamed to the second slave gateway; if the user terminal has roamed to the second slave gateway, it is determined that this unidirectional roaming simulation test is completed.
  • the Mesh networking test system and method provided in the present application can at least realize access simulation function, scenario simulation function, business simulation function and automated testing function.
  • Access simulation function mainly refers to the client system of the access test system, including the real client, that is, the user terminal (such as a smart phone) and the multi-client simulation device (supporting 64 and 128 user simulation).
  • the access simulation function can test the compatibility of the Mesh system with the client, and can also test the stability and robustness of the Mesh system for multi-user access scenarios.
  • the automated system can be used to perform roaming tests, client online and offline tests, and other various business tests on the accessed clients;
  • the access simulation function includes: the first step to the fourth step.
  • Step 1 Place multiple real mobile STAs in a roaming shielding box.
  • Step 2 Place the module device (supporting 64 and 128 user simulations) in the shielding boxes corresponding to the master gateway and the slave gateway (including the first slave gateway and the second slave gateway) respectively.
  • Step 3 All real mobile phone STAs are connected to the proxy PC via USB cables.
  • the proxy PC can control the corresponding mobile phone by detecting the unique identification information of each mobile phone, devices_id, and can operate the APP applications on each mobile phone through command simulation, including opening online video applications, live broadcast applications, speed test software, etc., as shown in Figure 4.
  • Multiple proxy PCs can be controlled by a master PC.
  • Step 4 The module device is placed in the shielding box corresponding to the master gateway and the slave gateway (including the first slave gateway and the second slave gateway).
  • One module device can simulate 64/128 simulated user devices.
  • the proxy PC can associate/disassociate multiple users through commands to control the simulated user devices of the module device to join/exit the Mesh network, and the traffic simulation test tool can be deployed on the proxy PC to perform various traffic simulation tests on multiple users, including IPTV and voice traffic.
  • Scenario simulation function mainly refers to the fact that the entire Mesh simulation system can simulate different Mesh networking scenarios and different test scenarios.
  • FTTR networking Through the access of optical fiber, FTTR networking can be realized; through the access of network cables and gigabit switches, wired star and chain networking can be realized; through the adjustment of attenuators, wireless star and chain networking can be realized; the above parts can cover various networking combinations and flexible switching through automated simulation, for example, by adjusting the attenuation value of the switch and attenuator of the gigabit switching port, wired and wireless hybrid networking scenarios can be realized; multipath simulation can be achieved by setting relative distance/frequency/ Parameters such as fading type/delay type simulate the transmission characteristics of real wireless space to construct different home environment test scenarios.
  • scenario policy functions include: steps one to nine.
  • Step 1 The master gateway and slave gateway of the three Mesh products can be placed in the system respectively.
  • the switch and the controllable optical blocker are both in the off state, and the attenuator is also in the non-attenuated state.
  • Step 2 Open the first switch port, the third switch port, the fourth switch port and the fifth switch port, and close the second switch port to complete the wired chain Mesh networking method.
  • Step 3 Open the first switch port, the second switch port, the third switch port and the fifth switch port, and close the fourth switch port to complete the wired star Mesh networking mode.
  • Step 4 Close all switch ports and complete wireless star or chain networking by adjusting the attenuation values of the master gateway and slave gateway.
  • Step 5 Open the first switch port and the third switch port, and close the fourth switch port and the fifth switch port; reduce the attenuation value of the first attenuator and control the attenuation value of the third attenuator to increase, so as to realize wired and wireless hybrid chain networking.
  • Step 6 FTTR products can realize flexible switching among fiber optic networking, wired networking and wireless networking.
  • Step 7 Automatically simulate the restart of the main gateway device and the slave gateway device. After the device restarts, the Mesh network completes self-healing recovery.
  • Step 8 Use the controllable power switch to simulate the power failure of the master gateway device and the slave gateway device. After a period of time, simulate the power-on of the master gateway device and the slave gateway device to test the self-healing and network optimization functions of the Mesh network.
  • Step 9 After completing the specific networking scenario, the deployment setting of the test environment can be completed by setting parameters such as relative distance/frequency/fading type/delay type.
  • Business simulation function mainly refers to the business traffic access model of the entire Mesh test simulation system. It can access video services and live broadcast services through real clients; it can also access script simulation traffic models through multi-client simulation devices. Through access tests of different traffic models, the processing of different traffic models by the Mesh system can be well tested. ability.
  • Automated testing function mainly refers to the automated access to the overall Mesh test simulation system, which can be achieved in an automated manner and deploy complete fault diagnosis tools to facilitate problem location.
  • a control terminal is also provided, as shown in Figure 5, including a processor 1110, a communication interface 1120, a memory 1130 and a communication bus 1140.
  • the processor 1110, the communication interface 1120, and the memory 1130 communicate with each other through the communication bus 1140.
  • the memory 1110 is configured to store a computer program
  • the processor 1130 is configured to execute the computer program stored in the memory 1110 to implement the aforementioned test method for Mesh networking applied to the control terminal.
  • the processor 1130 controls the opening and closing of each switch port of the aforementioned Mesh test system by executing the computer program stored in the memory 1110, simulating a wired chain Mesh networking mode or a wired star Mesh networking mode, and realizing the test simulation of automated networking.
  • the test process is simple and the results are clear, which greatly reduces the manpower and material resources required for testing.
  • the communication bus 1140 mentioned in the control terminal can be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the communication bus 1140 can be divided into an address bus, a data bus, a control bus, etc. For ease of representation, only one thick line is used in FIG5 , but it does not mean that there is only one bus or one type of bus.
  • the communication interface 1120 is used for communication between the above control terminal and other devices.
  • the memory 1130 may include a random access memory (RAM) or a non-volatile memory, such as at least one disk memory.
  • RAM random access memory
  • non-volatile memory such as at least one disk memory.
  • the memory may also be at least one storage device located away from the aforementioned processor.
  • the processor 1110 may be a general-purpose processor, including a central processing unit (CPU), a network processor (NP), etc.; it may also be a digital signal processor (DSP), a dedicated integrated circuit, or a processor. (Application Specific Integrated Circuit, referred to as ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, referred to as FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • a computer-readable storage medium is further provided, on which a computer program is stored.
  • the computer program is executed by a processor so that the processor implements the aforementioned test method for Mesh networking applied to a control terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种Mesh组网的测试系统、一种Mesh组网的测试方法、一种控制终端、一种计算机可读存储介质,所述Mesh组网的测试系统包括:控制终端、交换机、主网关屏蔽箱、第一从网关屏蔽箱和第二从网关屏蔽箱;所述控制终端与所述交换机通信连接;主网关屏蔽箱的第一端口与交换机的第一交换机端口通信连接,主网关屏蔽箱的第二端口与交换机的第二交换机端口通信连接,第一从网关屏蔽箱的第一端口与交换机的第三交换机端口通信连接,第一从网关屏蔽箱的第二端口与交换机的第四交换机端口通信连接,第二从网关屏蔽箱的第一端口与交换机的第五交换机端口通信连接。

Description

Mesh组网的测试系统及测试方法、控制终端、存储介质
相关申请的交叉引用
本申请要求于2022年11月30日提交的中国专利申请NO.202211528500.3的优先权,该中国专利申请的内容通过引用的方式整体合并于此。
技术领域
本申请涉及测试领域,尤其涉及Mesh组网的测试系统、Mesh组网的测试方法、控制终端及计算机可读存储介质。
背景技术
近年来,随着智能终端、门铃、摄像头等智能家居的日益普及,越来越多的家庭用户对无线网络通信技术(Wireless Fidelity,Wi-Fi)的使用体验要求越来越高,从而要求Wi-Fi具有更好的全屋性能和覆盖范围;目前对于大平层、跨楼层等家居场景,单台路由器终端已经无法满足用户的使用体验;从而具有自由扩展、一键放装、组网自愈、无缝漫游等特性的Mesh网络(无线网格网络)应运而生。
Wi-Fi Mesh网络的功能特点也为Mesh测试带来了很大的挑战。比如Mesh组网自愈测试的场地资源受限、无缝漫游测试需要测试人员抱着大量的手机终端进行来回的走动,从而带来了大量的资源的重复浪费。
公开内容
第一方面,本申请提供了一种Mesh组网的测试系统,包括:控制终端、交换机、主网关屏蔽箱、第一从网关屏蔽箱和第二从网关屏蔽箱;所述控制终端与所述交换机通信连接;所述主网关屏蔽箱的第一端口与所述交换机的第一交换机端口通信连接,所述主网关屏蔽箱 的第二端口与所述交换机的第二交换机端口通信连接,所述主网关屏蔽箱的第一端口用于与位于所述主网关屏蔽箱中的待测Mesh设备中主网关的第一端口通信连接,所述主网关屏蔽箱的第二端口用于与位于所述主网关屏蔽箱中的待测Mesh设备的主网关的第二端口通信连接;所述第一从网关屏蔽箱的第一端口与所述交换机的第三交换机端口通信连接,所述第一从网关屏蔽箱的第二端口与所述交换机的第四交换机端口通信连接,所述第一从网关屏蔽箱的第一端口用于与位于所述第一从网关屏蔽箱中的待测Mesh设备中第一从网关的第一端口通信连接,所述第一从网关屏蔽箱的第二端口用于与位于所述第一从网关屏蔽箱中的待测Mesh设备的第一从网关的第二端口通信连接;所述第二从网关屏蔽箱的第一端口与所述交换机的第五交换机端口通信连接,所述第二从网关屏蔽箱的第一端口用于与位于所述第二从网关屏蔽箱内的待测Mesh设备的第二从网关的第一端口通信连接。
第二方面,本申请提供了一种Mesh组网的测试方法,应用于如第一方面所述的控制终端,包括:向所述交换机发送第一控制指令,所述第一控制指令用于指示所述第一交换机端口、所述第三交换机端口、所述第四交换机端口和所述第五交换机端口开启,以及,指示所述第二交换机端口关闭,以模拟有线链式的Mesh组网方式;或者,向所述交换机发送第二控制指令,所述第二控制指令用于指示所述第一交换机端口、所述第二交换机端口、所述第三交换机端口和所述第五交换机端口开启,以及,指示所述第四交换机端口关闭,以模拟有线星式的Mesh组网方式。
第三方面,本申请提供了一种控制终端,包括处理器、通信接口、存储器和通信总线,处理器、通信接口和存储器通过通信总线完成相互间的通信,存储器配置为存储计算机程序,处理器配置为执行存储器所存储的计算机程序以实现第二方面所述的Mesh组网的测试方法。
第四方面,本申请提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行使得所述处理器实现第二方面所述的Mesh组网的测试方法。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种Mesh组网的测试系统的结构图;
图2为本申请实施例提供的一种Mesh组网的测试系统的结构图;
图3为本申请实施例提供的一种Mesh组网的测试系统的结构图;
图4为本申请实施例提供的多终端用户控制示意图;以及
图5为本申请实施例提供的一种控制终端的结构图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的示例性实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
Wi-Fi Mesh网络的功能特点为Mesh测试带来了很大的挑战。比如Mesh组网自愈测试的场地资源受限、无缝漫游测试需要测试人员抱着大量的手机终端进行来回的走动,从而带来了大量的资源重复浪费。本申请提供一种Mesh组网的测试系统、一种Mesh组网的测试方法及、一种控制终端、一种计算机可读存储介质。
图1为本申请实施例提供的一种Mesh组网的测试系统的结构图,如图1所示,该Mesh组网的测试系统包括:控制终端、交换机、主网关屏蔽箱、第一从网关屏蔽箱和第二从网关屏蔽箱;所述控制终端与所述交换机通信连接。
本申请实施例中,交换机可以与控制终端通信连接,由控制终端控制交换机的各交换机端口开启或关闭,进而控制待测Mesh设备中主网关、第一从网关和第二从网关的有线组网方式的切换,在一些实施方式中,控制终端可以为包含能够运行自动化测试程序的处理器且能够与交换机等设备通信的终端设备,如:PC机等,控制终端内预置有用于该Mesh组网的测试系统的自动化测试程序。
图1中,交换机的第一交换机端口和第三交换机端口对应同一广播域,第二交换机端口、第四交换机端口和第五交换机端口对应同一广播域。
所述主网关屏蔽箱的第一端口与所述交换机的第一交换机端口通信连接,所述主网关屏蔽箱的第二端口与所述交换机的第二交换机端口通信连接,所述主网关屏蔽箱的第一端口用于与位于所述主网关屏蔽箱中的待测Mesh设备中主网关的第一端口通信连接,所述主网关屏蔽箱的第二端口用于与位于所述主网关屏蔽箱中的待测Mesh设备的主网关的第二端口通信连接。
在第一交换机端口开启时,交换机可以通过第一交换机端口与待测Mesh设备中主网关的第一端口传输数据,在第一交换机端口关闭时,交换机不可以通过第一交换机端口与待测Mesh设备中主网关的第一端口传输数据;在第二交换机端口开启时,交换机可以通过第二交换机端口与待测Mesh设备中的主网关的第二端口传输数据,在第二交换机端口关闭时,交换机不可以通过第二交换机端口与待测Mesh设备中的主网关的第二端口传输数据。
所述第一从网关屏蔽箱的第一端口与所述交换机的第三交换机端口通信连接,所述第一从网关屏蔽箱的第二端口与所述交换机的第四交换机端口通信连接,第一从网关屏蔽箱的第一端口用于与位于所述第一从网关屏蔽箱中的待测Mesh设备中第一从网关的第一端口通信连接,第一从网关屏蔽箱的第二端口用于与位于所述第一从网关屏蔽箱中的待测Mesh设备的第一从网关的第二端口通信连接。
在第三交换机端口开启时,交换机可以通过第三交换机端口与待测Mesh设备中第一从网关的第一端口传输数据,在第三交换机端 口关闭时,交换机不可以通过第三交换机端口与待测Mesh设备中第一从网关的第一端口传输数据;在第四交换机端口开启时,交换机可以通过第四交换机端口与待测Mesh设备中的第一从网关的第二传输数据,在第四交换机端口关闭时,交换机不可以通过第四交换机端口与待测Mesh设备中的第一从网关的第二端口传输数据。
所述第二从网关屏蔽箱的第一端口与所述交换机的第五交换机端口通信连接,所述第二从网关屏蔽箱的第一端口用于与位于所述第二从网关屏蔽箱内的待测Mesh设备的第二从网关的第一端口通信连接。
在第五交换机端口开启时,交换机可以通过第五交换机端口与待测Mesh设备中第二从网关的第一端口传输数据,在第五交换机端口关闭时,交换机不可以通过第五交换机端口与待测Mesh设备中第二从网关的第一端口传输数据。
本申请实施例提供的Mesh组网的测试系统,通过在内部设置交换机、主网关屏蔽箱、第一从网关屏蔽箱和第二从网关屏蔽箱,可以实现自动化组网的测试仿真,测试流程简单,结果明确,大大减少了测试所需的人力物力。
在一些实施方式中,如图2所示,所述测试系统还包括:第一衰减器、第二衰减器和第三衰减器。
所述主网关屏蔽箱中的第一天线通过所述第二衰减器与所述第一从网关屏蔽箱中的第二天线通信连接;通过第一天线和第二天线,可以实现主网关和第一从网关以无线通信方式连接。
所述第一从网关屏蔽箱的第三天线通过所述第一衰减器与所述第二从网关屏蔽箱中的第四天线通信连接;通过第三天线和第四天线,可以实现第一从网关和第二从网关以无线通信方式连接。
所述主网关屏蔽箱中的第五天线通过所述第三衰减器与所述第二从网关屏蔽箱中的第六天线通信连接;通过第五天线和第六天线,可以实现主网关和第二从网关以无线通信方式连接。
本申请实施例中,控制终端分别与所述第一衰减器、所述第二衰减器和所述第三衰减器通信连接,控制终端可以控制第一衰减器、 第二衰减器和第三衰减器的衰减值的大小,进而控制待测Mesh设备中主网关、第一从网关和第二从网关的无线组网方式的切换。
在一些实施方式中,如图3所示,所述测试系统还包括:光阻断器和光分路器。
所述光阻断器的输入端与光纤通信连接,所述光阻断器的输出端与所述光分路器的输入端通信连接,所述光分路器的三个输出端分别与所述主网关、第一从网关和第二从网关通信连接。
本申请实施例中,控制终端与所述光阻断器通信连接,控制终端可以控制光阻断器的开启与关闭,进而控制光纤组网的开启与关闭。
在一些实施方式中,如图2所示,所述测试系统还包括:漫游屏蔽箱、第四衰减器、第五衰减器和第六衰减器,所述主网关屏蔽箱中还用于放置测试用的第一模组设备,所述第一从网关屏蔽箱中还用于放置测试用的第二模组设备,所述第二从网关屏蔽箱中还用于放置测试用的第三模组设备,第一模组设备、第二模组设备和第三模组设备用于进行多用户模拟。
所述漫游屏蔽箱中的第七天线通过所述第六衰减器与所述主网关屏蔽箱中的第八天线通信连接,所述漫游屏蔽箱用于放置测试用的用户终端;通过第七天线和第八天线,可以实现用户终端和主网关以无线通信方式连接。
所述漫游屏蔽箱中的第九天线通过所述第五衰减器与所述第一从网关屏蔽箱中的第十天线通信连接;通过第九天线和第十天线,可以实现用户终端和第一从网关以无线通信方式连接。
所述漫游屏蔽箱中的第十一天线通过所述第四衰减器与所述第二从网关屏蔽箱中的第十二天线通信连接;通过第十一天线和第十二天线,可以实现用户终端和第二从网关以无线通信方式连接。
本申请实施例中,控制终端分别与所述用户终端、所述第四衰减器、所述第五衰减器、所述第六衰减器、所述第一模组设备、所述第二模组设备和所述第三模组设备通信连接,控制终端可以控制用户终端接入或者退出Mesh网络,并基于所述Mesh网络进行业务仿真测试;还可以控制第一模组设备、第二模组设备和第三模组设备所模拟 的多个模拟终端接入或者退出Mesh网络,并基于所述Mesh网络进行流量仿真测试;还可以控制第四衰减器、第五衰减器和第六衰减器的衰减值,进而进行用户终端的漫游模拟测试。
在本申请的实施例中,还提供一种Mesh组网的测试方法,该Mesh组网的测试方法可以应用于如前所述的控制终端中,用于控制前述的Mesh组网的测试系统进行Mesh组网测试,控制终端可以为包含能够运行自动化测试程序的处理器且能够与交换机等设备通信的终端设备,如:PC机等。
在进行Mesh组网的测试时,将用户终端放入漫游屏蔽箱、待测Mesh设备的主网关放入主网关屏蔽箱、第一从网关放入第一从网关屏蔽箱、第二从网关放入第二从网关屏蔽箱,第一模组设备放入主网关屏蔽箱、第二模组设备放入第一从网关屏蔽箱,第三模组设备放入第二从网关屏蔽箱;
图1中,默认情况下,交换机的第一交换机端口、第二交换机端口、第三交换机端口、第四交换机端口和第五交换机端口处于关闭状态,该Mesh组网的测试方法包括:向所述交换机发送第一控制指令,所述第一控制指令用于指示所述第一交换机端口、所述第三交换机端口、所述第四交换机端口和所述第五交换机端口开启,以及,指示所述第二交换机端口关闭,以模拟有线链式的Mesh组网方式;或者,向所述交换机发送第二控制指令,所述第二控制指令用于指示所述第一交换机端口、所述第二交换机端口、所述第三交换机端口和所述第五交换机端口开启,以及,指示所述第四交换机端口关闭,以模拟有线星式的Mesh组网方式。
本申请实施例能够通过控制各交换机端口的开启与关闭,模拟有线链式的Mesh组网方式或者有线星式的Mesh组网方式,实现自动化组网的测试仿真,测试流程简单,结果明确,大大减少了测试所需的人力物力。
在一些实施方式中,默认情况下,第一衰减器、第二衰减器和第三衰减器为关闭状态,所述Mesh组网的测试方法还包括:向所述交换机发送第三控制指令,所述第三控制指令用于指示所述第一交换 机端口、第二交换机端口、第三交换机端口、第四交换机端口和第五交换机端口关闭;控制第二衰减器和第一衰减器的衰减值减小,控制第三衰减器的衰减值增大,以模拟无线链式的Mesh组网方式;或者,控制所述第一衰减器的衰减值增大,控制所述第二衰减器和所述第三衰减器的衰减值减小,以模拟无线星式的Mesh组网方式。
本申请实施例能够通过控制各交换机端口的开启与关闭,以及,控制第一衰减器、第二衰减器和第三衰减器的衰减值,模拟无线链式的Mesh组网方式或者无线星式的Mesh组网方式,实现自动化组网的测试仿真,测试流程简单,结果明确,大大减少了测试所需的人力物力。
在一些实施方式中,默认情况下,第一衰减器、第二衰减器和第三衰减器为关闭状态,所述Mesh组网的测试方法还包括:向所述交换机发送第四控制指令,所述第四控制指令用于指示第一交换机端口和第三交换机端口开启,以及,第四交换机端口和第五交换机端口关闭;控制第一衰减器的衰减值减小,控制第三衰减器的衰减值增大,以模拟有线和无线的混合链式的Mesh组网;或者,向所述交换机发送第五控制指令,所述第五控制指令用于指示第一交换机端口和第三交换机端口开启;控制第一衰减器的衰减值增大,控制第二衰减器和第三衰减器的衰减值减小,以模拟有线和无线的混合星式的Mesh组网。
本申请实施例能够通过控制各交换机端口的开启与关闭,以及,控制第一衰减器、第二衰减器和第三衰减器的衰减值,模拟有线和无线的混合链式的Mesh组网或者有线和无线的混合星式的Mesh组网,实现自动化组网的测试仿真,测试流程简单,结果明确,大大减少了测试所需的人力物力。
在一些实施方式中,默认情况下,可控光阻断器为关闭状态,所述Mesh组网的测试方法还包括:控制光阻断器关闭,以模拟光纤到房间(Fiber to The Room,FTTR)的光纤组网;控制所述光阻断器开启,以模拟FTTR的有线组网、无线组网或混合式组网。也就是说,在光阻断器开启,未接入光纤信号时,可以通过前述的方式,模拟 FTTR的有线组网、无线组网或混合式组网。
本申请实施例能够通过控制光阻断器开启与关闭,模拟FTTR的各种组网方式,实现自动化组网的测试仿真,测试流程简单,结果明确,大大减少了测试所需的人力物力。
在一些实施方式中,所述Mesh组网的测试方法还包括:控制用户终端接入或者退出Mesh网络,并基于所述Mesh网络进行业务仿真测试;或者,控制第一模组设备、第二模组设备和第三模组设备所模拟的多个模拟终端接入或者退出Mesh网络,并基于所述Mesh网络进行流量仿真测试。
本申请实施例能够控制用户终端接入或者退出Mesh网络,并基于所述Mesh网络进行业务仿真测试,或者,控制第一模组设备、第二模组设备和第三模组设备所模拟的多个模拟终端接入或者退出Mesh网络,并基于Mesh网络进行流量仿真测试,实现自动化组网的测试仿真,测试流程简单,结果明确,大大减少了测试所需的人力物力。
在一些实施方式中,默认情况下,第四衰减器、第五衰减器和第六衰减器为关闭状态,所述Mesh组网的测试方法还包括:在任一组网方式下,控制第四衰减器的衰减值为远距离衰减值,控制第五衰减器的衰减值为中距离衰减值,控制第六衰减器的衰减值为近距离衰减值;按照各衰减器对应的预设衰减步长,依次调节所述第四衰减器、所述第五衰减器和所述第六衰减器的衰减值,直至所述第四衰减器的衰减值为中距离衰减值、所述第五衰减器的衰减值为近距离衰减值且所述第六衰减器的衰减值为中距离衰减值,确定用户终端是否漫游到第一从网关上;若所述用户终端已漫游到所述第一从网关上,按照各衰减器对应的预设衰减步长,依次调节所述第四衰减器、所述第五衰减器和所述第六衰减器的衰减值,直至所述第四衰减器的衰减值为近距离衰减值、所述第五衰减器的衰减值为中距离衰减值且所述第六衰减器的衰减值为远距离衰减值,确定用户终端是否漫游到第二从网关上;若所述用户终端已漫游到所述第二从网关上,确定本次单方向漫游模拟测试结束。
基于以上,本申请提供的Mesh组网的测试系统及方法可以至少实现接入仿真功能、场景仿真功能、业务仿真功能和自动化测试功能。
1)接入仿真功能:主要指的是接入测试系统的客户端系统,包括真实的客户端,即用户终端(如智能手机)和多客户端模拟设备(支持64、128用户模拟)两个部分。接入仿真功能既可以测试Mesh系统对客户端的兼容性,也可以测试Mesh系统对多用户接入场景的稳定性和健壮性。接入多客户端后,可以通过自动化系统,对接入的客户端进行漫游测试、客户端上下线测试以及其他各种业务测试;
进一步地,接入仿真功能包括:第一步至第四步。
第一步:将多部真实手机STAs置于漫游屏蔽箱中。
第二步:将模组设备(支持64、128用户模拟)分别置于主网关和从网关(包括第一从网关和第二从网关)对应的屏蔽箱中。
第三步:所有真实手机STAs通过USB连接线与代理PC机相连,代理PC机可以通过检测发现各个手机的唯一标识devices_id信息来控制相应的手机,并可以通过命令模拟的方式操作各个手机上的APP应用,包括打开在线视频应用、直播应用、测速软件等,如图4,多个代理PC可以由一个主控PC控制。
第四步:模组设备置于主网关和从网关(包括第一从网关和第二从网关)对应的屏蔽箱,一台模组设备可以模拟出64/128个模拟用户设备,代理PC机可以通过命令方式对多用户进行关联/去关联操作,来控制模组设备的模拟用户设备加入/退出Mesh网络,并可以在代理PC上部署流量模拟测试工具,这样对多用户进行各种流量仿真测试,包括IPTV、语音流量。
2)场景仿真功能:主要指的是整个Mesh仿真系统可以模拟不同的Mesh组网场景、以及不同的测试场景。通过光纤的接入,可以实现FTTR组网;通过网线和千兆交换机的接入可以实现有线的星型、链型组网;通过对衰减器的调节可以实现无线的星型、链型组网;以上部分通过自动化模拟的方式可以覆盖各种组网的组合以及灵活切换,比如通过调整千兆交换端口的开关和衰减器的衰减值大小可以实现有线和无线混合组网场景;多径模拟可以通过设定相对距离/频率/ 衰落类型/延迟类型等参数,模拟真实无线空间的传输特性,以构造不同的家居环境测试场景。
进一步地,场景方针功能包括:第一步至第九步。
第一步:可以将三个Mesh产品的主网关和从网关分别置于系统中,默认状态下,交换机和可控光阻断器的状态都为关闭状态,衰减器也处于未加衰减状态。
第二步:将第一交换机端口、第三交换机端口、第四交换机端口和第五交换机端口开启,以及,将第二交换机端口关闭,就完成了有线链式的Mesh组网方式。
第三步:将第一交换机端口、第二交换机端口、第三交换机端口和第五交换机端口开启,以及,将第四交换机端口关闭,就完成了有线星式的Mesh组网方式。
第四步:将交换机端口全部关闭,通过调节主网关和从网关的衰减值,可以完成无线的星式或链式组网。
第五步:将第一交换机端口和第三交换机端口开启,以及,第四交换机端口和第五交换机端口关闭;将第一衰减器的衰减值减小,控制第三衰减器的衰减值增大,可以实现有线和无线的混合链式组网。
第六步:FTTR产品可以实现光纤组网、有线组网、无线组网的灵活切换。
第七步:通过自动化模拟主网关设备和从网关设备重启,待设备重新启动之后,Mesh组网完成自愈恢复。
第八步:通过可控电源开关模拟主网关设备和从网关设备断电,一段时间后,再模拟主网关设备和从网关设备重新上电,可以测试Mesh组网自愈和组网优化功能。
第九步:在完成特定组网场景的基础上,通过设定相对距离/频率/衰落类型/延迟类型等参数可以完成测试环境的部署设定。
3)业务仿真功能:主要指的是整个Mesh测试仿真系统的业务流量接入模型,可以通过真实的客户端接入视频业务、直播业务;也可以通过多客户端模拟设备接入脚本仿真流量模型。通过不同的流量模型的接入测试,可以很好的测试Mesh系统对不同流量模型的处理 能力。
4)自动化测试功能:主要指的是整体Mesh测试仿真系统的自动化接入,可以通过自动化的方式实现,并部署完整的故障诊断工具,对问题方便定位。
在本申请的实施例中,还提供一种控制终端,如图5所示,包括处理器1110、通信接口1120、存储器1130和通信总线1140,处理器1110,通信接口1120,存储器1130通过通信总线1140完成相互间的通信,存储器1110配置为存储计算机程序,处理器1130配置为执行存储器1110所存储的计算机程序以实现前述应用于控制终端的Mesh组网的测试方法。
本申请实施例提供的控制终端中,处理器1130通过执行存储器1110上所存储的计算机程序控制前述Mesh的测试系统的各交换机端口的开启与关闭,模拟有线链式的Mesh组网方式或者有线星式的Mesh组网方式,实现自动化组网的测试仿真,测试流程简单,结果明确,大大减少了测试所需的人力物力。
上述控制终端提到的通信总线1140可以是外设部件互连标准(PeripheralComponentInterconnect,简称PCI)总线或扩展工业标准结构(ExtendedIndustryStandardArchitecture,简称EISA)总线等。该通信总线1140可以分为地址总线、数据总线、控制总线等。为便于表示,图5中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
通信接口1120用于上述控制终端与其他设备之间的通信。
存储器1130可以包括随机存取存储器(RandomAccessMemory,简称RAM),也可以包括非易失性存储器(non-volatilememory),例如至少一个磁盘存储器。存储器还可以是至少一个位于远离前述处理器的存储装置。
上述的处理器1110可以是通用处理器,包括中央处理器(CentralProcessingUnit,简称CPU)、网络处理器(NetworkProcessor,简称NP)等;还可以是数字信号处理器(DigitalSignalProcessing,简称DSP)、专用集成电路 (ApplicationSpecificIntegratedCircuit,简称ASIC)、现场可编程门阵列(Field-ProgrammableGateArray,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
在本申请的实施例中,还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行使得处理器实现前述应用于控制终端的Mesh组网的测试方法。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,使本领域技术人员能够理解或实现本申请。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本申请的精神或范围的情况下,在其它实施例中实现。因此,本申请将不会被限制于本文所示的这些实施例,而是要符合与本文所申请的原理和新颖特点相一致的最宽的范围。

Claims (12)

  1. 一种Mesh组网的测试系统,包括:控制终端、交换机、主网关屏蔽箱、第一从网关屏蔽箱和第二从网关屏蔽箱;
    所述控制终端与所述交换机通信连接;
    所述主网关屏蔽箱的第一端口与所述交换机的第一交换机端口通信连接,所述主网关屏蔽箱的第二端口与所述交换机的第二交换机端口通信连接,其中,所述主网关屏蔽箱的第一端口用于与位于所述主网关屏蔽箱中的待测Mesh设备中主网关的第一端口通信连接,所述主网关屏蔽箱的第二端口用于与位于所述主网关屏蔽箱中的待测Mesh设备的主网关的第二端口通信连接;
    所述第一从网关屏蔽箱的第一端口与所述交换机的第三交换机端口通信连接,所述第一从网关屏蔽箱的第二端口与所述交换机的第四交换机端口通信连接,其中,所述第一从网关屏蔽箱的第一端口用于与位于所述第一从网关屏蔽箱中的待测Mesh设备中第一从网关的第一端口通信连接,所述第一从网关屏蔽箱的第二端口用于与位于所述第一从网关屏蔽箱中的待测Mesh设备的第一从网关的第二端口通信连接;
    所述第二从网关屏蔽箱的第一端口与所述交换机的第五交换机端口通信连接,所述第二从网关屏蔽箱的第一端口用于与位于所述第二从网关屏蔽箱内的待测Mesh设备的第二从网关的第一端口通信连接。
  2. 根据权利要求1所述的测试系统,还包括:第一衰减器、第二衰减器和第三衰减器;
    所述主网关屏蔽箱中的第一天线通过所述第二衰减器与所述第一从网关屏蔽箱中的第二天线通信连接;
    所述第一从网关屏蔽箱的第三天线通过所述第一衰减器与所述第二从网关屏蔽箱中的第四天线通信连接;
    所述主网关屏蔽箱中的第五天线通过所述第三衰减器与所述第 二从网关屏蔽箱中的第六天线通信连接;
    所述控制终端分别与所述第一衰减器、所述第二衰减器和所述第三衰减器通信连接。
  3. 根据权利要求1所述的测试系统,还包括:光阻断器和光分路器;
    所述光阻断器的输入端与光纤通信连接,所述光阻断器的输出端与所述光分路器的输入端通信连接,所述光分路器的三个输出端分别与所述主网关、所述第一从网关和所述第二从网关通信连接;
    所述控制终端与所述光阻断器通信连接。
  4. 根据权利要求1所述的测试系统,还包括:漫游屏蔽箱、第四衰减器、第五衰减器和第六衰减器,所述主网关屏蔽箱中还用于放置测试用的第一模组设备,所述第一从网关屏蔽箱中还用于放置测试用的第二模组设备,所述第二从网关屏蔽箱中还用于放置测试用的第三模组设备;
    所述漫游屏蔽箱中的第七天线通过所述第六衰减器与所述主网关屏蔽箱中的第八天线通信连接,所述漫游屏蔽箱用于放置测试用的用户终端;
    所述漫游屏蔽箱中的第九天线通过所述第五衰减器与所述第一从网关屏蔽箱中的第十天线通信连接;
    所述漫游屏蔽箱中的第十一天线通过所述第四衰减器与所述第二从网关屏蔽箱中的第十二天线通信连接;
    所述控制终端分别与所述用户终端、所述第四衰减器、所述第五衰减器、所述第六衰减器、所述第一模组设备、所述第二模组设备和所述第三模组设备通信连接。
  5. 一种Mesh组网的测试方法,应用于如权利要求1至4中任一所述的控制终端,包括:
    向所述交换机发送第一控制指令,所述第一控制指令用于指示 所述第一交换机端口、所述第三交换机端口、所述第四交换机端口和所述第五交换机端口开启,以及,指示所述第二交换机端口关闭,以模拟有线链式的Mesh组网方式;或者,
    向所述交换机发送第二控制指令,所述第二控制指令用于指示所述第一交换机端口、所述第二交换机端口、所述第三交换机端口和所述第五交换机端口开启,以及,指示所述第四交换机端口关闭,以模拟有线星式的Mesh组网方式。
  6. 根据权利要求5所述的测试方法,还包括:
    向所述交换机发送第三控制指令,所述第三控制指令用于指示所述第一交换机端口、所述第二交换机端口、所述第三交换机端口、所述第四交换机端口和所述第五交换机端口关闭;以及
    控制第二衰减器和第一衰减器的衰减值减小,控制第三衰减器的衰减值增大,以模拟无线链式的Mesh组网方式;或者,控制所述第一衰减器的衰减值增大,控制所述第二衰减器和所述第三衰减器的衰减值减小,以模拟无线星式的Mesh组网方式。
  7. 根据权利要求5所述的测试方法,还包括:
    向所述交换机发送第四控制指令,所述第四控制指令用于指示所述第一交换机端口和所述第三交换机端口开启,以及,所述第四交换机端口和所述第五交换机端口关闭;
    控制第一衰减器的衰减值减小,控制第三衰减器的衰减值增大,以模拟有线和无线的混合链式的Mesh组网;
    或者,向所述交换机发送第五控制指令,所述第五控制指令用于指示第一交换机端口和第三交换机端口开启;
    控制第一衰减器的衰减值增大,控制第二衰减器和第三衰减器的衰减值减小,以模拟有线和无线的混合星式的Mesh组网。
  8. 根据权利要求5所述的测试方法,还包括:
    控制光阻断器关闭,以模拟FTTR的光纤组网;
    控制所述光阻断器开启,以模拟FTTR的有线组网、无线组网或混合式组网。
  9. 根据权利要求5所述的测试方法,还包括:
    控制用户终端接入或者退出Mesh网络,并基于所述Mesh网络进行业务仿真测试;
    或者,控制第一模组设备、第二模组设备和第三模组设备所模拟的多个模拟终端接入或者退出Mesh网络,并基于所述Mesh网络进行流量仿真测试。
  10. 根据权利要求5所述的测试方法,还包括:
    在任一组网方式下,控制第四衰减器的衰减值为远距离衰减值,控制第五衰减器的衰减值为中距离衰减值,控制第六衰减器的衰减值为近距离衰减值;
    按照各衰减器对应的预设衰减步长,依次调节所述第四衰减器、所述第五衰减器和所述第六衰减器的衰减值,直至所述第四衰减器的衰减值为中距离衰减值、所述第五衰减器的衰减值为近距离衰减值且所述第六衰减器的衰减值为中距离衰减值,确定用户终端是否漫游到第一从网关上;
    若所述用户终端已漫游到所述第一从网关上,按照各衰减器对应的预设衰减步长,依次调节所述第四衰减器、所述第五衰减器和所述第六衰减器的衰减值,直至所述第四衰减器的衰减值为近距离衰减值、所述第五衰减器的衰减值为中距离衰减值且所述第六衰减器的衰减值为远距离衰减值,确定用户终端是否漫游到第二从网关上;
    若所述用户终端已漫游到所述第二从网关上,确定本次单方向漫游模拟测试结束。
  11. 一种控制终端,包括处理器、通信接口、存储器和通信总线,其中,所述处理器、所述通信接口和所述存储器通过通信总线完成相互间的通信,
    所述存储器配置为存储计算机程序;
    所述处理器配置为执行存储器所存储的计算机程序以实现权利要求5至10中任一所述的Mesh组网的测试方法。
  12. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行使得处理器实现权利要求5至10中任一所述的Mesh组网的测试方法。
PCT/CN2023/132865 2022-11-30 2023-11-21 Mesh组网的测试系统及测试方法、控制终端、存储介质 WO2024114439A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211528500.3 2022-11-30
CN202211528500.3A CN118158713A (zh) 2022-11-30 2022-11-30 Mesh组网的测试系统、测试方法及控制终端

Publications (1)

Publication Number Publication Date
WO2024114439A1 true WO2024114439A1 (zh) 2024-06-06

Family

ID=91283881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/132865 WO2024114439A1 (zh) 2022-11-30 2023-11-21 Mesh组网的测试系统及测试方法、控制终端、存储介质

Country Status (2)

Country Link
CN (1) CN118158713A (zh)
WO (1) WO2024114439A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130188504A1 (en) * 2011-10-19 2013-07-25 Atc & Logistics & Electronics, Inc. Test fixture and method for securing and testing network devices
CN111741487A (zh) * 2020-05-11 2020-10-02 深圳市共进电子股份有限公司 无线网格网络路由选择的测试方法、装置和终端设备
CN111787561A (zh) * 2020-08-13 2020-10-16 深圳市吉祥腾达科技有限公司 一种基于EasyMesh组网测试验证的系统及方法
CN113613277A (zh) * 2021-09-22 2021-11-05 深圳创维数字技术有限公司 Mesh系统性能的测试方法、装置、设备及存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130188504A1 (en) * 2011-10-19 2013-07-25 Atc & Logistics & Electronics, Inc. Test fixture and method for securing and testing network devices
CN111741487A (zh) * 2020-05-11 2020-10-02 深圳市共进电子股份有限公司 无线网格网络路由选择的测试方法、装置和终端设备
CN111787561A (zh) * 2020-08-13 2020-10-16 深圳市吉祥腾达科技有限公司 一种基于EasyMesh组网测试验证的系统及方法
CN113613277A (zh) * 2021-09-22 2021-11-05 深圳创维数字技术有限公司 Mesh系统性能的测试方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN118158713A (zh) 2024-06-07

Similar Documents

Publication Publication Date Title
CN103618645A (zh) 智能模拟复杂网络环境的测试系统及其方法
Chan et al. OpenNet: A simulator for software-defined wireless local area network
TWI244295B (en) Method and system for simulating multiple independent client devices in a wired or wireless network
CN108667638B (zh) 一种网络业务配置方法及网络管理设备
RU2533638C2 (ru) Способ и устройство для конфигурирования данных
WO2020207043A1 (zh) 基站开站方法、装置、计算机存储介质及设备
CN105704226A (zh) 智能终端及其网络配置方法
CN113473486B (zh) 一种端边协同的网络覆盖增强系统及方法
KR20100126494A (ko) 비접촉식 플러그 앤 플레이 송수신 기지국
CN111263388B (zh) 移动网络环境测试方法、装置、计算机设备及存储介质
CN100396031C (zh) 一种对通信设备进行功能测试的系统及方法
WO2024114439A1 (zh) Mesh组网的测试系统及测试方法、控制终端、存储介质
WO2024045932A1 (zh) 一种资源调度方法、装置、系统、存储介质及电子系统
CN108574602B (zh) 一种自组网拓扑模拟系统
CN109873716A (zh) 数据的处理方法、装置和存储介质
CN112422154B (zh) Hplc台区识别的测试系统、测试方法和测试装置
JP7154591B2 (ja) 通信エミュレーション方法、通信エミュレーションシステム、制御ノード装置、および、送信ノード装置
CN108965047B (zh) 一种基于路由器设备的测试方法
CN112468555A (zh) 基于云手机的宏命令群控方案
US20210328910A1 (en) Traffic Splitting Device
CN105142178B (zh) 一种ap及sta的仿真模拟系统和方法
CN114374999B (zh) 一种测试方法、装置、电子设备及存储介质
CN116389188B (zh) 一种数据传输方法和相关装置
US20070243902A1 (en) Configuration containing at least two radio sections and method for operating the configuration
WO2020001142A1 (zh) 通信设备开站方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23896591

Country of ref document: EP

Kind code of ref document: A1