WO2024113911A1 - 空调系统、空调机组及控制方法 - Google Patents

空调系统、空调机组及控制方法 Download PDF

Info

Publication number
WO2024113911A1
WO2024113911A1 PCT/CN2023/109324 CN2023109324W WO2024113911A1 WO 2024113911 A1 WO2024113911 A1 WO 2024113911A1 CN 2023109324 W CN2023109324 W CN 2023109324W WO 2024113911 A1 WO2024113911 A1 WO 2024113911A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
refrigerant
liquid separator
compressor
opening
Prior art date
Application number
PCT/CN2023/109324
Other languages
English (en)
French (fr)
Inventor
张仕强
吴晓曼
陈敏
袁帆
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Publication of WO2024113911A1 publication Critical patent/WO2024113911A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present disclosure relates to the technical field of air-conditioning systems, and in particular to an air-conditioning system, an air-conditioning unit and a control method for realizing liquid refrigerant transfer.
  • the outdoor side is the evaporation side.
  • the refrigerant evaporates and absorbs heat
  • the temperature of the outdoor pipe decreases, and the surface of the outdoor heat exchanger gradually frosts.
  • a four-way valve is generally used to switch the refrigerant flow direction to the refrigeration cycle, and the high-temperature gaseous refrigerant enters the outdoor heat exchanger.
  • the frost layer on the surface of the outdoor heat exchanger absorbs heat to achieve defrosting.
  • the four-way valve switches the refrigerant flow direction to the heating cycle, and the air conditioning system resumes heating mode operation.
  • the technical solution adopted by the present invention is to design an air-conditioning system, including: a compressor, a four-way valve, an outdoor heat exchanger, a throttling component and an indoor heat exchange module which are connected in sequence to form a refrigerant circulation loop, and the refrigerant circulation loop is provided with a storage area for temporarily storing liquid refrigerant; the storage area is connected between the indoor heat exchange module and the four-way valve, and is switched to the suction side or the exhaust side of the compressor through the four-way valve.
  • the refrigerant circulation loop is also provided with a refrigerant transfer branch with controllable on/off status.
  • the inlet end of the refrigerant transfer pipeline is connected to the outlet side of the outdoor heat exchanger in the refrigeration cycle, and the outlet end of the refrigerant transfer pipeline is connected to the inner cavity of the gas-liquid separator.
  • the storage area is a low-pressure side piping in a refrigerant circulation loop
  • the low-pressure side piping includes: a connecting pipeline between the indoor heat exchange module and the four-way valve.
  • the air conditioning unit is a multi-split unit, and the indoor heat exchange module includes more than two indoor heat exchangers.
  • the present disclosure also proposes a control method for an air-conditioning system, which is applicable to an embodiment in which the storage area is the inner cavity of a gas-liquid separator.
  • the control method includes: obtaining the refrigerant superheat at the outlet end of the gas-liquid separator after the refrigerant circulation loop runs a defrost cycle; judging whether the refrigerant superheat exceeds a set value; if so, maintaining the opening of the throttling component; if not, reducing the opening of the throttling component.
  • control method further includes: before obtaining the refrigerant superheat at the outlet of the gas-liquid separator, timing the actual defrost time of the defrost cycle of the refrigerant circulation loop, and if the actual defrost time reaches a set time threshold t c , obtaining the refrigerant superheat at the outlet of the gas-liquid separator; wherein the set time threshold t c ⁇ set total defrost time.
  • the throttling component includes an outdoor throttle valve and an indoor throttle valve; when it is determined that the throttling component maintains an opening, the openings of the outdoor throttle valve and the indoor throttle valve remain unchanged; when it is determined that the throttling component reduces an opening, the opening of the outdoor throttle valve remains unchanged, and the opening of the indoor throttle valve decreases.
  • control method also includes: during the defrost cycle, determining whether the operating parameters of the refrigerant circulation loop reach the set defrost exit conditions; if so, exiting the defrost cycle, stopping the compressor, maintaining the on state of the defrost cycle by the four-way valve, closing the throttling component, connecting the refrigerant transfer branch between the outdoor heat exchanger and the gas-liquid separator, until the operating parameters of the refrigerant circulation loop reach the set four-way valve reversing conditions; if not, maintaining the defrost cycle.
  • the present disclosure proposes a control method for an air conditioning system, which is applicable to an embodiment in which a storage area is a low-pressure side pipe in a refrigerant circulation loop.
  • the control method includes: obtaining the suction superheat of the compressor after the refrigerant circulation loop runs a defrosting cycle; adjusting the opening of the throttling component according to the suction superheat of the compressor; if the suction superheat is high If the suction air superheat is within the target range, the throttling component increases the opening; if the suction air superheat is within the target range, the throttling component maintains the opening; if the suction air superheat is lower than the target range, the throttling component reduces the opening.
  • the range above the target interval is divided into at least two upper limit intervals, each upper limit interval is set with a corresponding opening adjustment range, and the upper limit interval with a higher value has a larger opening adjustment range; and/or the range below the target interval is divided into at least two lower limit intervals, each upper limit interval is set with a corresponding opening adjustment range, and the lower limit interval with a lower value has a larger opening adjustment range.
  • the throttling component includes an outdoor throttle valve and an indoor throttle valve; after the refrigerant circulation loop runs a defrost cycle, the outdoor throttle valve is opened to a set maximum opening; when it is determined that the throttling component maintains an opening, the openings of the outdoor throttle valve and the indoor throttle valve remain unchanged; when it is determined that the throttling component reduces an opening, the opening of the outdoor throttle valve remains unchanged, and the opening of the indoor throttle valve decreases; when it is determined that the throttling component increases an opening, the opening of the outdoor throttle valve remains unchanged, and the opening of the indoor throttle valve increases.
  • control method also includes: during the defrost cycle, determining whether the operating parameters of the refrigerant circulation loop reach the set defrost exit conditions; if so, exiting the defrost cycle, the compressor shuts down, the four-way valve maintains the on state of the defrost cycle, and the throttling component is opened to the set maximum opening until the operating parameters of the refrigerant circulation loop reach the set four-way valve switching conditions; if not, maintaining the defrost cycle.
  • the present disclosure also proposes a control method for an air-conditioning system, which is applicable to an embodiment in which a gas-liquid separator is connected between a four-way valve and an outdoor heat exchanger, and the control method includes: after the refrigerant circulation loop runs a refrigeration cycle or a defrost cycle, connecting the transfer section and the first end of the gas-liquid separator, and closing the second end of the gas-liquid separator; timing the actual liquid storage time of the refrigerant circulation loop running the refrigeration cycle; if the actual liquid storage time is greater than the set liquid storage time, only connecting the transfer section, and closing the first end and the second end of the gas-liquid separator.
  • FIG1 is a connection diagram of a first embodiment of the present disclosure
  • FIG1a is a schematic diagram of the flow direction of the first embodiment of the present disclosure during a refrigeration cycle or a defrosting cycle;
  • FIG1b is a schematic diagram of the flow direction of the first embodiment of the present disclosure during a heating cycle
  • FIG2 is a connection diagram of a second embodiment of the present disclosure.
  • FIG2a is a schematic diagram of the flow direction of the second embodiment of the present disclosure during a refrigeration cycle or a defrosting cycle;
  • FIG2b is a schematic diagram of the flow direction of the refrigerant when the machine is shut down and the refrigerant is transferred in the second embodiment of the present disclosure
  • FIG2c is a schematic diagram of the flow direction of the second embodiment of the present disclosure during the heating cycle
  • FIG3 is a connection diagram of a third embodiment of the present disclosure.
  • FIG3a is a schematic diagram of flow direction of the third embodiment of the present disclosure during a refrigeration cycle or a defrosting cycle
  • FIG3 b is a schematic diagram of the flow direction of the refrigerant when the machine is shut down and the refrigerant is transferred in the third embodiment of the present disclosure
  • FIG3c is a schematic diagram of the flow direction of the third embodiment of the present disclosure during the heating cycle
  • FIG4 is a connection diagram of a fourth embodiment of the present disclosure.
  • FIG4a is a schematic diagram of the flow direction of the fourth embodiment of the present disclosure during a refrigeration cycle or a defrosting cycle;
  • FIG4b is a schematic diagram of the flow direction of the fourth embodiment of the present disclosure during the heating cycle
  • FIG5 is a connection diagram of a fifth embodiment of the present disclosure.
  • FIG5a is a schematic diagram of the flow direction of the fifth embodiment of the present disclosure during a refrigeration cycle or a defrosting cycle;
  • FIG5 b is a schematic diagram of the flow direction of the fifth embodiment of the present disclosure during a heating cycle
  • FIG6 is a connection diagram of a sixth embodiment of the present disclosure.
  • FIG6a is a schematic diagram of flow direction of the sixth embodiment of the present disclosure during a refrigeration cycle or a defrosting cycle
  • FIG6b is a schematic diagram of the flow direction of the refrigerant when the machine is shut down and the refrigerant is transferred according to the sixth embodiment of the present disclosure
  • FIG. 6 c is a schematic diagram of the flow direction of the sixth embodiment of the present disclosure during a heating cycle.
  • the air-conditioning system has the problem of large differences in the refrigerant circulation volume required for cooling mode and heating mode.
  • the refrigerant circulation volume meets the requirements of the heating mode, the refrigerant circulation volume is too high in the cooling mode, resulting in a large high and low pressure difference in the system, a large load on the compressor, and poor energy-saving effects.
  • the air-conditioning system proposed in the present invention can solve the problem of liquid refrigerant accumulating in the outdoor heat exchanger after defrosting.
  • the defrosting is completed and the mode is switched to heating mode, the accumulated liquid refrigerant is vaporized and brought into the heating cycle by the high-temperature and high-pressure refrigerant discharged by the compressor, thereby achieving the effect of rapid heating after defrosting.
  • the air-conditioning system includes: a compressor 1, a four-way valve 4, an outdoor heat exchanger 5, a throttling component and an indoor heat exchange module which are connected in sequence to form a refrigerant circulation loop, the outdoor heat exchanger is equipped with an outdoor fan 6, the indoor heat exchange module includes at least one indoor heat exchanger, and the refrigerant circulation loop is provided with a storage area for temporarily storing liquid refrigerant, the storage area is connected between the indoor heat exchange module and the four-way valve 4, and the storage area is switched to the suction side or the exhaust side of the compressor 1 through the four-way valve 4.
  • the storage area When the refrigerant circulation loop is operating in a refrigeration cycle or a defrost cycle, the storage area is connected to the suction side of compressor 1, and the refrigerant is sent back to the suction side of compressor 1 through the storage area. Liquid refrigerant is stored in the storage area to prevent liquid refrigerant from accumulating in the outdoor heat exchanger.
  • the refrigerant circulation loop is switched to a heating cycle, the storage area is connected to the exhaust side of compressor 1, and the high-temperature refrigerant discharged by compressor 1 passes through the storage area. The liquid refrigerant in the storage area is heated and vaporized by the high-temperature refrigerant and then brought into the refrigeration cycle, thereby achieving the effect of rapid heating after defrosting.
  • the refrigerant flow direction of the "defrosting cycle” and the "refrigeration cycle” mentioned above is the same, and the refrigerant flow direction in the refrigerant circulation loop is the exhaust port of the compressor 1 ⁇ four-way valve 4 ⁇ outdoor heat exchanger 5 ⁇ throttling component ⁇ indoor heat exchange module ⁇ air intake port of the compressor 1.
  • the refrigerant flow direction in the refrigerant circulation loop of the "heating cycle” mentioned above is the exhaust port of the compressor 1 ⁇ four-way valve 4 ⁇ indoor heat exchange module ⁇ throttling component ⁇ outdoor heat exchanger 5 ⁇ air intake port of the compressor 1.
  • other components are designed in the refrigerant circulation loop, but the refrigerant circulation loop is different.
  • the order in which the refrigerant flows through the compressor 1, the four-way valve 4, the outdoor heat exchanger 5, the throttling component and the indoor heat exchange module and other main components should follow the corresponding flow direction.
  • the storage area is described below by way of examples in combination with different embodiments.
  • the storage area is the inner cavity of the gas-liquid separator 10, and the gas-liquid separator 10 has a first end 101 and a second end 102, one of the first end 101 and the second end 102 serves as an inlet and the other serves as an outlet, the C end of the four-way valve 4 is connected to the outdoor heat exchanger 5, the D end is connected to the exhaust side of the compressor 1 through the oil separator 3, the E end is connected to the second end of the gas-liquid separator 10, and the S end is connected to the suction side of the compressor 1, the bottom of the oil separator 3 is connected back to the suction side of the compressor 1 through the capillary 2, and the first end of the gas-liquid separator 10 is connected to the outlet side of the indoor heat exchange module under the refrigeration cycle.
  • the refrigerant circulation loop runs a defrost cycle or a refrigeration cycle
  • the refrigerant is discharged from the compressor 1, enters the outdoor heat exchanger 5 for condensation and heat exchange through the oil separator 3 and the four-way valve 4, enters the indoor heat exchange module for heat exchange through the throttling component, enters the inner cavity from the first end 101 of the gas-liquid separator 10, and then flows out from the second end 102 of the gas-liquid separator 10, returns to the suction side of the compressor 1 through the four-way valve 4, and stores the liquid refrigerant flowing out of the indoor heat exchange module through the gas-liquid separator 10.
  • the refrigerant circulation loop runs a heating cycle
  • the refrigerant is discharged from the compressor 1, enters the gas-liquid separator 10 through the oil separator 3 and the four-way valve 4, enters from the second end 102 of the gas-liquid separator 10, flows out from the first end 101 of the gas-liquid separator 10, enters the indoor heat exchange module, and is sent to the outdoor heat exchanger 5 for evaporation and heat exchange, and returns to the suction side of the compressor 1 through the four-way valve 4.
  • the high-temperature refrigerant discharged by the compressor 1 gasifies the liquid refrigerant stored in the gas-liquid separator 10, thereby improving the heating efficiency and restoring the refrigerant circulation volume required by the heating mode.
  • the second embodiment has the same connection structure as the first embodiment, except that the refrigerant circulation circuit is further provided with a refrigerant transfer branch whose on-off state can be controlled, the inlet end of the refrigerant transfer pipeline is connected to the outlet side of the outdoor heat exchanger 5 under the refrigeration cycle, and the outlet end of the refrigerant transfer pipeline is connected to the inner cavity of the gas-liquid separator 10.
  • the refrigerant transfer branch is installed with a refrigerant transfer valve 13, and the on-off state of the refrigerant transfer branch is controlled by the refrigerant transfer valve 13.
  • the operating state of the refrigerant circulation circuit of the second embodiment is the same as that of the first embodiment.
  • the difference is that when the refrigerant circulation circuit is in a shutdown state between the end of the defrosting cycle and the entry into the heating cycle, the refrigerant transfer valve 13 is opened to connect the refrigerant transfer pipeline, and the pressure difference between the high-pressure side and the low-pressure side of the refrigerant circulation circuit is used to transfer the liquid refrigerant of the outdoor heat exchanger 5 to the gas-liquid separator 10 through the refrigerant transfer pipeline, thereby reducing the liquid refrigerant in the outdoor heat exchanger 5 and ensuring the reliability of the four-way valve 4 when switching.
  • the storage area is a low-pressure side distribution area in the refrigerant circulation loop.
  • the C end of the four-way valve 4 is connected to the outdoor heat exchanger 5, the D end is connected to the exhaust side of the compressor through the oil separator 3, the E end is connected to the indoor heat exchange module, and the S end is connected to the suction side of the compressor 1.
  • the bottom of the oil separator 3 is connected back to the suction side of the compressor 1 through the capillary tube 2.
  • the low-pressure side piping includes: a connecting pipeline between the E end of the four-way valve 4 and the indoor heat exchange module.
  • the refrigerant circulation loop runs a defrost cycle or a refrigeration cycle
  • the refrigerant is discharged from the compressor, enters the outdoor heat exchanger 5 through the oil separator 3 and the four-way valve 4 for condensation and heat exchange, enters the indoor heat exchange module through the throttling component for heat exchange, flows into the low-pressure side piping, and returns to the suction side of the compressor 1 through the four-way valve 4.
  • the refrigerant circulation loop runs a heating cycle
  • the refrigerant is discharged from the compressor 1, enters the low-pressure side piping through the oil separator 3 and the four-way valve 4, flows out of the low-pressure side piping and enters the indoor heat exchange module, and is then sent to the outdoor heat exchanger 5 for evaporation and heat exchange, and returns to the suction side of the compressor 1 through the four-way valve 4.
  • the high-temperature refrigerant discharged by the compressor vaporizes the liquid refrigerant accumulated in the low-pressure side piping, thereby improving the heating efficiency and restoring the refrigerant circulation volume required by the heating mode.
  • the air-conditioning system proposed in the present invention can also solve the problem of excessive refrigerant circulation under the refrigeration cycle.
  • part of the refrigerant is sent to the gas-liquid separator to achieve the effect of reducing the refrigerant circulation volume of the refrigeration cycle.
  • the C end of the four-way valve 4 is connected to the outdoor heat exchanger, the D end is connected to the exhaust side of the compressor 1 through the oil separator 3, the E end is connected to the indoor heat exchange module, and the S end is connected to the suction side of the compressor 1.
  • the connecting pipeline between the C end of the four-way valve 4 and the outdoor heat exchanger 5 is provided with a switching section.
  • the bottom of the oil separator 3 is connected back to the suction side of the compressor 1 through the capillary 2.
  • the switching section is connected to a gas-liquid separator 10.
  • the gas-liquid separator 10 has a first end 101 and a second end 102.
  • One of the first end 101 and the second end 102 serves as an inlet and the other serves as an outlet.
  • the first end 101 of the gas-liquid separator 10 is connected to one end of the switching section close to the four-way valve 4, and the second end 102 of the gas-liquid separator 10 is connected to the other end of the switching section close to the outdoor heat exchanger 5, that is, the second end 102 of the gas-liquid separator 10 is connected to the inlet side of the outdoor heat exchanger 5 under the refrigeration cycle.
  • the first end 101 of the gas-liquid separator 10 is provided with a first switch valve 14, the second end 102 is provided with a second switch valve 16, and the transition section is provided with a third switch valve 15.
  • the first to third switch valves are used to control the on-off states of the first end 101, the second end 102 and the transition section of the gas-liquid separator 10.
  • the first switch valve 14 and the second switch valve 16 are opened, and the third switch valve 15 is closed.
  • the refrigerant is discharged from the compressor 1, enters the indoor heat exchange module through the oil separator 3 and the four-way valve 4, and is then sent to the outdoor heat exchanger 5 for evaporation and heat exchange, enters the gas-liquid separator through the second end 102 of the gas-liquid separator 10, and then flows out from the first end 101 of the gas-liquid separator 10, and returns to the suction side of the compressor 1 through the four-way valve 4.
  • the gas-liquid separator 10 in order to better return oil to the system, is provided with an oil return structure.
  • the oil return structure is designed as an oil return hole and/or an oil return branch. The lubricating oil in the gas-liquid separator 10 is returned to the compressor through the oil return structure to ensure the reliability of the compressor.
  • the first end 101 of the gas-liquid separator 10 extends upward from the bottom of the inner cavity, and the second end 102 of the gas-liquid separator 10 extends downward from the top of the inner cavity, bends at the bottom of the inner cavity, and then extends upward.
  • the first end 101 and the second end 102 of the gas-liquid separator 10 are both provided with an oil return hole 103, and the oil return hole 103 is close to the bottom of the inner cavity.
  • the refrigerant is sent out of the gas-liquid separator 10 from the second end 102.
  • the lubricating oil entering the pipeline from the oil return hole of the second end 102 is brought back to the compressor 1.
  • the refrigerant is sent out of the gas-liquid separator 10 from the first end 101.
  • the lubricating oil entering the pipeline from the oil return hole of the first end 101 is brought to the indoor heat exchange module, and then returns to the compressor 1 through the outdoor heat exchanger 5.
  • the oil return of the gas-liquid separator 10 can be achieved without changing the current operating mode.
  • the oil return is fast and efficient, which can greatly improve the operating reliability and user comfort of the compressor 1.
  • the first end 101 of the gas-liquid separator 10 extends downward from the top of the inner cavity, and the second end 102 of the gas-liquid separator 10 extends downward from the top of the inner cavity, bends at the bottom of the inner cavity, and then extends upward.
  • the second end 102 of the gas-liquid separator 10 is provided with an oil return hole 103, and the oil return hole 103 is close to the inner cavity. Bottom of the inner cavity.
  • the refrigerant is sent out of the gas-liquid separator 10 from the second end 102.
  • the lubricating oil entering the pipeline from the oil return hole of the second end 102 is brought back to the compressor 1. Since the oil return hole 103 is only designed at the second end of the gas-liquid separator 10, only the refrigerant flow direction of the refrigeration cycle or defrost cycle is supported to realize oil return, and the heating cycle cannot realize oil return. It is necessary to control the air conditioning system to enter the oil return mode and switch the refrigerant circulation loop to the refrigeration cycle to realize the oil return of the gas-liquid separator 10.
  • the second end 102 of the gas-liquid separator 10 extends downward from the top of the inner cavity, and the first end 101 of the gas-liquid separator 10 extends downward from the top of the inner cavity, bends at the bottom of the inner cavity, and then extends upward.
  • the first end 101 of the gas-liquid separator 10 is provided with an oil return hole 103, and the oil return hole 103 is close to the bottom of the inner cavity.
  • the refrigerant is sent out of the gas-liquid separator 10 from the first end 101.
  • the lubricating oil entering the pipeline from the oil return hole 103 of the first end 101 is brought back to the compressor 1. Since in the fourth embodiment, the second end 102 of the gas-liquid separator 10 is closed during the refrigeration cycle or the defrosting cycle, the second end 102 of the gas-liquid separator 10 is not designed with the oil return hole 103, and only supports the refrigerant flow direction of the heating cycle to realize oil return.
  • the fifth embodiment has the same connection structure as the first embodiment, and the operation state of the refrigerant circulation circuit of the fifth embodiment is also the same as the first embodiment, except that an oil return branch is also provided at the bottom of the inner cavity of the gas-liquid separator 10, and the oil return branch is connected to the suction side of the compressor 1, and the oil return branch is provided with an oil return valve 11 and an oil return throttling member 12, where the oil return throttling member 12 generally refers to a capillary tube.
  • the oil return valve 11 is opened, the lubricating oil in the inner cavity of the gas-liquid separator 10 returns to the compressor 1 through the oil return throttling member 12, thereby ensuring the operating reliability of the compressor 1.
  • connection structure of the sixth embodiment is the same as that of the second embodiment, and the operation state of the refrigerant circulation circuit of the sixth embodiment is also the same as that of the second embodiment, except that an oil return branch is also provided at the bottom of the inner cavity of the gas-liquid separator, and the oil return branch is connected to the suction side of the compressor, and the oil return branch is provided with an oil return valve 11 and an oil return throttling member 12, where the oil return throttling member 12 generally refers to a capillary tube.
  • the oil return valve 11 When the oil return valve 11 is opened, the lubricating oil in the inner cavity of the gas-liquid separator 10 returns to the compressor 1 through the oil return throttling member 12, thereby ensuring the operating reliability of the compressor 1.
  • the present disclosure also proposes a control method for the above-mentioned air-conditioning system, and the process of the control method is described in detail below in combination with various embodiments.
  • the process of the control method is as follows.
  • the refrigerant superheat at the outlet end of the gas-liquid separator 10, namely the second end 102, is obtained to determine whether the refrigerant superheat exceeds the set value. If so, it means that the temperature inside the gas-liquid separator 10 is relatively high, and the refrigerant in the gas-liquid separator 10 is in an evaporating state, which can ensure that the refrigerant liquid height inside the gas-liquid separator during defrosting does not exceed the maximum capacity of the gas-liquid separator, so the throttling component maintains the opening.
  • the throttling component reduces the opening to reduce the amount of liquid stored in the gas-liquid separator 10.
  • the refrigerant superheat is calculated as T outlet pipe temperature - T low pressure saturation temperature , where T outlet pipe temperature is the actual temperature at the outlet end of the gas-liquid separator, and T low pressure saturation temperature is the saturation temperature corresponding to the suction side pressure of the compressor. Comparing the actual outlet temperature of the gas-liquid separator 10 with the saturation temperature on the low pressure side of the system can accurately reflect the refrigerant state in the gas-liquid separator.
  • the control method further includes: after the refrigerant circulation loop runs the defrost cycle, timing the actual defrost time of the refrigerant circulation loop running the defrost cycle, if the actual defrost time reaches the set time threshold tc , then obtaining the refrigerant superheat at the outlet end of the gas-liquid separator 10, that is, the second end 102.
  • the set time threshold tc ⁇ set total defrost time.
  • control method is to detect the refrigerant superheat of the gas-liquid separator 10 when the refrigerant circulation loop runs for a period of time, that is, the set time threshold tc , and predict whether the liquid stored in the gas-liquid separator 10 will exceed the limit capacity according to the refrigerant superheat, and the throttling component operates according to the judgment result until the defrost is completed.
  • the throttling assembly includes an outdoor throttle valve 7 and an indoor throttle valve.
  • the outdoor throttle valve 7 is installed on the outlet side of the outdoor heat exchanger 5 under the refrigeration cycle, and the indoor throttle valve is installed on the inlet side of the indoor heat exchange module under the refrigeration cycle.
  • the throttling assembly maintains the opening, the openings of the outdoor throttle valve 7 and the indoor throttle valve remain unchanged until the defrosting is completed; when it is determined that the throttling assembly reduces the opening, the opening of the outdoor throttle valve 7 remains unchanged, and the opening of the indoor throttle valve is reduced until the defrosting is completed.
  • the opening is controlled according to the adjustment method of the indoor throttle valve described above.
  • the defrost cycle it is determined whether the operating parameters of the refrigerant circulation loop have reached the set defrost exit conditions; if so, the defrost cycle is exited, the compressor 1 is shut down, and the four-way valve 4 remains in the on state of the defrost cycle until the operating parameters of the refrigerant circulation loop reach the set four-way valve switching conditions, and the four-way valve 4 is switched to the on state of the heating cycle; if not, the defrost cycle is maintained.
  • the "set value”, “set time threshold t c " and the like are obtained through experimental statistics.
  • the set value is a constant above 0° C., such as 3° C.
  • the defrost exit condition is set to be when the actual defrost time reaches the set total defrost time, that is, when the actual defrost time reaches the set total defrost time, the refrigerant circulation loop exits the defrost cycle.
  • the four-way valve reversing condition is set to be when the difference between the exhaust side pressure and the suction side pressure of the compressor drops to the set pressure difference, that is, when the difference between the exhaust side pressure and the suction side pressure of the compressor drops to the set pressure difference, the four-way valve is powered on and switched to the on state of the heating cycle, the compressor is turned on, and the refrigerant circulation loop runs the heating cycle.
  • the process of the control method is as follows.
  • the refrigerant superheat at the outlet end of the gas-liquid separator 10 - the second end 102 is obtained to determine whether the refrigerant superheat exceeds the set value. If so, it means that the temperature inside the gas-liquid separator 10 is relatively high, and the refrigerant in the gas-liquid separator 10 is in an evaporating state, which can ensure that the refrigerant liquid height inside the gas-liquid separator 10 during the defrost period will not exceed the maximum capacity of the gas-liquid separator 10, so the throttling component maintains the opening.
  • the throttling component reduces the opening to reduce the amount of liquid stored in the gas-liquid separator 10.
  • the refrigerant superheat is calculated as T outlet pipe temperature - T low pressure saturation temperature , where T outlet pipe temperature is the actual temperature at the outlet end of the gas-liquid separator, and T low pressure saturation temperature is the saturation temperature corresponding to the suction side pressure of the compressor. Comparing the actual temperature at the outlet end of the gas-liquid separator with the saturation temperature on the low pressure side of the system can accurately reflect the refrigerant state in the gas-liquid separator.
  • the control method further includes: after the refrigerant circulation loop runs the defrost cycle, timing the actual defrost time of the refrigerant circulation loop running the defrost cycle, if the actual defrost time reaches the set time threshold t c , then obtaining the refrigerant superheat at the outlet of the gas-liquid separator 10.
  • the set time threshold t c ⁇ the set total defrost time.
  • control method is to detect the refrigerant superheat of the gas-liquid separator 10 when the refrigerant circulation loop runs for a period of time - the set time threshold t c , predict whether the liquid stored in the gas-liquid separator 10 will exceed the limit capacity based on the refrigerant superheat, and the throttling component operates according to the judgment result until the defrost is completed.
  • the throttling assembly includes an outdoor throttle valve 7 and an indoor throttle valve.
  • the outdoor throttle valve 7 is installed on the outlet side of the outdoor heat exchanger 5 under the refrigeration cycle, and the indoor throttle valve is installed on the inlet side of the indoor heat exchange module under the refrigeration cycle.
  • the throttling assembly maintains the opening, the openings of the outdoor throttle valve 7 and the indoor throttle valve remain unchanged until the defrosting is completed; when it is determined that the throttling assembly reduces the opening, the opening of the outdoor throttle valve 7 remains unchanged, and the opening of the indoor throttle valve is reduced until the defrosting is completed.
  • the opening is controlled according to the adjustment method of the indoor throttle valve described above.
  • the defrost cycle determine whether the operating parameters of the refrigerant circulation loop have reached the set defrost exit conditions; if so, exit the defrost cycle, the compressor 1 is shut down, the four-way valve 4 maintains the on state of the defrost cycle, the throttling component is closed, the refrigerant transfer branch between the outdoor heat exchanger 5 and the gas-liquid separator 10 is connected, and the liquid refrigerant of the outdoor heat exchanger 5 flows to the gas-liquid separator 10 through the refrigerant transfer branch until the operating parameters of the refrigerant circulation loop reach the set four-way valve reversing conditions, the four-way valve 4 is switched to the on state of the heating cycle, the throttling component is opened, and the refrigerant transfer branch is closed; if not, maintain the defrost cycle.
  • the "set value”, “set time threshold t c " and the like mentioned above are obtained through experimental statistics.
  • the set value is a constant above 0°C, such as 3°C.
  • the defrost exit condition is set to when the actual defrost time reaches the set total defrost time, that is, when the actual defrost time reaches the set total defrost time, the refrigerant circulation loop exits the defrost cycle.
  • the four-way valve reversing condition is set to when the difference between the exhaust side pressure and the suction side pressure of the compressor drops to the set pressure difference, that is, when the difference between the exhaust side pressure and the suction side pressure of the compressor drops to the set pressure difference, the four-way valve is powered on and switched to the on state of the heating cycle, the compressor is turned on, and the refrigerant circulation loop runs the heating cycle.
  • the process of the control method is as follows.
  • the suction superheat of compressor 1 is obtained, and the opening of the throttling component is adjusted according to the suction superheat of compressor 1. If the suction superheat is higher than the target range, it means that the suction side temperature of compressor 1 is high, and the refrigerant flowing through the indoor heat exchange module is insufficient, so the throttling component increases the opening; if the suction superheat is in the target range, it means that the operating state of compressor 1 is moderate, and the throttling component maintains the opening; if the suction superheat is lower than the target range, it means that the suction side temperature of compressor 1 is low, and the refrigerant flowing through the indoor heat exchange module is more, and there is a risk of liquid hammer in compressor 1, so the throttling component reduces the opening.
  • the range above the target interval is divided into at least two upper limit intervals, each upper limit interval is set with a corresponding opening adjustment amplitude, and the upper limit interval with a higher value has a larger opening adjustment amplitude; and/or the range below the target interval is divided into at least two lower limit intervals, each upper limit interval is set with a corresponding opening adjustment amplitude, and the lower limit interval with a lower value has a larger opening adjustment amplitude.
  • the throttling assembly includes an outdoor throttle valve 7 and an indoor throttle valve.
  • the outdoor throttle valve 7 is installed on the outlet side of the outdoor heat exchanger in the refrigeration cycle, and the indoor throttle valve is installed on the inlet side of the indoor heat exchange module in the refrigeration cycle.
  • the outdoor throttle valve 7 is opened to the set maximum opening; when it is determined that the throttling assembly maintains the opening, the openings of the outdoor throttle valve 7 and the indoor throttle valve remain unchanged; when it is determined that the throttling assembly reduces the opening, the opening of the outdoor throttle valve 7 remains unchanged, and the opening of the indoor throttle valve decreases; when it is determined that the throttling assembly increases the opening, the opening of the outdoor throttle valve 7 remains unchanged, and the opening of the indoor throttle valve increases. Increase the opening of the internal throttle valve.
  • the defrost cycle it is determined whether the operating parameters of the refrigerant circulation loop have reached the set defrost exit conditions; if so, the defrost cycle is exited, the compressor 1 is shut down, the four-way valve 4 maintains the on state of the defrost cycle, the throttling component is opened to the set maximum opening, and the pressure difference between the high-pressure side and the low-pressure side of the system is used to allow the refrigerant to continue to transfer from the high-pressure side where the outdoor heat exchanger 5 is located to the low-pressure side piping, until the operating parameters of the refrigerant circulation loop reach the set four-way valve switching conditions, and the four-way valve 4 is switched to the on state of the heating cycle; if not, the defrost cycle is maintained.
  • the "target interval”, "upper limit interval” and the like mentioned above are obtained through experimental statistics. For example, when the suction superheat is greater than 5°C, the indoor throttle valve is increased by 15 pls per cycle; when the suction superheat is between 2 and 5°C, the indoor throttle valve is increased by 10 pls per cycle; when the suction superheat is equal to 1°C, the indoor throttle valve is maintained at the lower opening; when the suction superheat is between -1 and 0°C, the indoor throttle valve is decreased by 10 pls per cycle; when the suction superheat is less than 1°C, the indoor throttle valve is decreased by 20 pls per cycle.
  • the set value is a constant above 0°C, such as 3°C.
  • the defrost exit condition is designed to be designed so that when the actual defrost time reaches the set total defrost time, that is, when the actual defrost time reaches the set total defrost time, the refrigerant circulation loop exits the defrost cycle.
  • the four-way valve switching condition is designed to set the difference between the exhaust side pressure and the suction side pressure of the compressor to drop to the set pressure difference, that is, when the difference between the exhaust side pressure and the suction side pressure of the compressor drops to the set pressure difference, the four-way valve is powered on and switched to the on state of the heating cycle, the compressor is turned on, and the refrigerant circulation loop runs the heating cycle.
  • the process of the control method is as follows.
  • the switching section and the first end 101 of the gas-liquid separator 10 are connected, and the second end 102 of the gas-liquid separator 10 is closed.
  • Part of the refrigerant discharged from the compressor 1 enters the gas-liquid separator 10 for natural condensation.
  • the actual liquid storage time of the refrigerant circulation loop running the refrigeration cycle is timed. If the actual liquid storage time is greater than the set liquid storage time, it means that the refrigerant circulation amount in the refrigerant circulation loop has matched the current mode, and the liquid storage in the gas-liquid separator 10 is completed. Only the switching section is connected, and the first end 101 and the second end 102 of the gas-liquid separator 10 are closed.
  • the liquid storage time is set to a first liquid storage time and/or a second liquid storage time.
  • a correspondence between the actual operating frequency of the compressor and the limit liquid storage time is established in advance through experiments.
  • the actual operating frequency of the compressor is detected and the corresponding limit liquid storage time is obtained from the correspondence.
  • the limit liquid storage time is subtracted from the set surplus time to obtain the first liquid storage time.
  • the surplus time is set to 30 seconds, etc.
  • the second liquid storage time is calculated based on the performance parameters of the air-conditioning system.
  • t storage time storage capacity of the gas-liquid separator ⁇ (compressor displacement ⁇ operating frequency ⁇ gas-liquid separator inlet pipe cross-sectional area).
  • the compressor displacement and the gas-liquid separator inlet pipe cross-sectional area are fixed values, and the gas-liquid separator
  • the storage capacity is the maximum refrigerant amount A required for the heating cycle of the refrigerant circulation loop minus the maximum refrigerant amount B required for the refrigeration cycle of the refrigerant circulation loop
  • the operating frequency is the target liquid storage frequency of the compressor in the initial stage of the refrigeration cycle or defrost cycle of the refrigerant circulation loop.
  • the compressor 1 After the refrigerant circulation loop enters the refrigeration cycle or the defrost cycle, the compressor 1 operates at the target liquid storage frequency, connects the switching section and the first end 101 of the gas-liquid separator 10, closes the second end 102 of the gas-liquid separator 10, and times the actual liquid storage time of the refrigerant circulation loop running the refrigeration cycle, and compares the actual liquid storage time with the first liquid storage time and the second liquid storage time in real time.
  • the gas-liquid separator ends liquid storage, and only connects the switching section, closes the first end 101 and the second end 102 of the gas-liquid separator 10, and the operating frequency of the compressor 1 is controlled according to the conventional refrigeration cycle or the defrost cycle.
  • a gas-liquid separator that matches the target liquid storage volume should be selected during the selection stage of the air-conditioning system.
  • the target liquid storage frequency of the refrigeration cycle or defrost cycle under different working conditions is designed separately.
  • the compressor operates according to the target liquid storage frequency corresponding to the current working condition to store liquid.
  • the first liquid storage time and the second liquid storage time are determined according to the target liquid storage frequency.
  • the compressor maintains the target frequency unchanged.
  • the air conditioning system proposed in the present disclosure is applicable to air conditioning units, including but not limited to multi-split units, in which the indoor heat exchange module includes more than two indoor heat exchangers.
  • the outdoor heat exchanger 5 is connected to the indoor heat exchange module through a liquid side pipe, and the liquid side pipe is equipped with a liquid pipe stop valve 8, and the indoor heat exchange module is connected to the four-way valve 4 through a gas side pipe, and the gas side pipe is equipped with a gas pipe stop valve 9.
  • the first end 101 of the gas-liquid separator 10 is connected to the outlet side of the gas pipe stop valve 9 under the refrigeration cycle, that is, under the refrigeration cycle or the defrosting cycle, the refrigerant flowing out of the outdoor heat exchanger 5 first flows through the liquid pipe stop valve 8 and then enters the indoor heat exchange module, and the refrigerant flowing out of the indoor heat exchange module first flows through the gas pipe stop valve 9 and then enters the gas-liquid separator 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Human Computer Interaction (AREA)
  • Fluid Mechanics (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调系统、空调机组及控制方法,空调系统包括:依次连接形成冷媒循环回路的压缩机(1)、四通阀(4)、室外换热器(5)、节流组件以及室内换热模块,冷媒循环回路设有用于暂存液态冷媒的储存区;储存区连接于室内换热模块与四通阀(4)之间,并且通过四通阀(4)切换接在压缩机(1)的吸气侧或者排气侧。

Description

空调系统、空调机组及控制方法
相关申请的交叉引用
本申请是以CN申请号为202211542791.1,申请日为2022年12月2日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及空调系统技术领域,尤其涉及实现液态冷媒转移的空调系统、空调机组及控制方法。
背景技术
目前空调系统制热运行时,室外侧为蒸发侧,随着冷媒蒸发吸热,室外侧管路温度降低,室外换热器的表面逐渐结霜。当空调系统化霜运行时,一般采用四通阀切换冷媒流向为制冷循环,利用高温气态冷媒进入室外换热器,室外换热器表面的霜层吸热以实现化霜。化霜结束后,四通阀切换冷媒流向为制热循环,空调系统恢复制热模式运行。
发明内容
本公开采用的技术方案是,设计空调系统,包括:依次连接形成冷媒循环回路的压缩机、四通阀、室外换热器、节流组件以及室内换热模块,冷媒循环回路设有用于暂存液态冷媒的储存区;储存区连接于室内换热模块与四通阀之间,并且通过四通阀切换接在压缩机的吸气侧或者排气侧。
在一些实施例中,储存区为气液分离器的内腔,气液分离器的第一端连接于室内换热模块处于制冷循环下的出口侧,气液分离器的第二端连接于四通阀。
在一些实施例中,冷媒循环回路还设有通断状态可控的冷媒转移支路,冷媒转移管路的进口端连接在室外换热器处于制冷循环下的出口侧,冷媒转移管路的出口端连通到气液分离器的内腔。
在一些实施例中,储存区为冷媒循环回路中的低压侧配管,低压侧配管包括:室内换热模块与四通阀之间的连接管路。
在一些实施例中,四通阀和室外换热器之间的连接管路设有转接段,转接段连接 有气液分离器,气液分离器的第一端连接于转接段靠近四通阀的一端,气液分离器的第二端连接于转接段靠近室外换热器的另一端;其中,气液分离器的第一端和第二端、以及转接段的通断状态均可控。
在一些实施例中,气液分离器的第一端和第二端之中连接四通阀的一端设有回油孔、或者第一端和第二端均设有回油孔,回油孔靠近气液分离器的内腔底部。
在一些实施例中,气液分离器的内腔底部设有连接到压缩机的吸气侧的回油支路,回油支路设有回油阀和回油节流件。
本公开还提出了空调机组,该空调机组采用上述的空调系统。
在一些实施例中,空调机组为多联机,室内换热模块包含两个以上的室内换热器。
本公开还提出了空调系统的控制方法,该控制方法适用于储存区为气液分离器的内腔的实施例中,控制方法包括:冷媒循环回路运行化霜循环之后,获取气液分离器的出口端的冷媒过热度;判断冷媒过热度是否超过设定值;若是,则节流组件维持开度;若否,则节流组件减小开度。
在一些实施例中,控制方法还包括:获取气液分离器的出口端的冷媒过热度之前,计时冷媒循环回路运行化霜循环的实际化霜时长,若实际化霜时长达到设定时长阈值tc,则获取气液分离器的出口端的冷媒过热度;其中,设定时长阈值tc<设定化霜总时长。
在一些实施例中,节流组件包含室外节流阀和室内节流阀;当判定节流组件维持开度时,室外节流阀和室内节流阀的开度均维持不变;当判定节流组件减小开度时,室外节流阀的开度维持不变,室内节流阀的减小开度。
在一些实施例中,冷媒过热度为T出管温度-T低压饱和温度,T出管温度为气液分离器的出口端实际温度,T低压饱和温度为压缩机的吸气侧压力对应的饱和温度。
在一些实施例中,控制方法还包括:在化霜循环的过程中,判断冷媒循环回路的运行参数是否达到设定化霜退出条件;若是,则退出化霜循环,压缩机停机,四通阀保持化霜循环的接通状态,关闭节流组件,接通室外换热器与气液分离器之间的冷媒转移支路,直至冷媒循环回路的运行参数达到设定四通阀换向条件;若否,则维持化霜循环。
本公开提出了空调系统的控制方法,该控制方法适用于储存区为冷媒循环回路中的低压侧配管的实施例中,控制方法包括:冷媒循环回路运行化霜循环之后,获取压缩机的吸气过热度;根据压缩机的吸气过热度调节节流组件的开度;若吸气过热度高 于目标区间,则节流组件加大开度;若吸气过热度处于目标区间,则节流组件维持开度;若吸气过热度低于目标区间,则节流组件减小开度。
在一些实施例中,将高于目标区间的范围划分为至少两个的上限区间,每个上限区间设置有对应的开度调节幅度,数值越高的上限区间的开度调节幅度越大;和/或将低于目标区间的范围划分为至少两个的下限区间,每个上限区间设置有对应的开度调节幅度,数值越低的下限区间的开度调节幅度越大。
在一些实施例中,节流组件包含室外节流阀和室内节流阀;当冷媒循环回路运行化霜循环之后,室外节流阀打开至设定最大开度;当判定节流组件维持开度时,室外节流阀和室内节流阀的开度均维持不变;当判定节流组件减小开度时,室外节流阀的开度维持不变,室内节流阀的减小开度;当判定节流组件加大开度时,室外节流阀的开度维持不变,室内节流阀的加大开度。
在一些实施例中,控制方法还包括:在化霜循环的过程中,判断所述冷媒循环回路的运行参数是否达到设定化霜退出条件;若是,则退出化霜循环,压缩机停机,四通阀保持化霜循环的接通状态,将所述节流组件打开至设定最大开度,直至所述冷媒循环回路的运行参数达到设定四通阀换向条件;若否,则维持化霜循环。
本公开还提出了空调系统的控制方法,该控制方法适用于四通阀和室外换热器之间连接有气液分离器的实施例中,控制方法包括:冷媒循环回路运行制冷循环或者化霜循环之后,接通转接段和气液分离器的第一端,关闭气液分离器的第二端;计时冷媒循环回路运行制冷循环的实际存液时长;若实际存液时长大于设定存液时长,则仅接通转接段,关闭气液分离器的第一端和第二端。
在一些实施例中,设定存液时长为压缩机的实际运行频率对应的第一存液时长和/或根据空调系统的性能参数计算得到的第二存液时长,第二存液时长t储存时间的计算公式为:t储存时间=气液分离器的储存量÷(压缩机排量×运行频率×气液分离器的入管截面积);其中,气液分离器的储存量为冷媒循环回路制热循环所需的最大冷媒量减去冷媒循环回路制冷循环所需的最大冷媒量,运行频率为冷媒循环回路运行制冷循环或者化霜循环初期压缩机的目标存液频率。
附图说明
下面结合实施例和附图对本公开进行详细说明,其中:
图1是本公开第一实施例的连接示意图;
图1a是本公开第一实施例在制冷循环或者化霜循环时的流向示意图;
图1b是本公开第一实施例在制热循环时的流向示意图;
图2是本公开第二实施例的连接示意图;
图2a是本公开第二实施例在制冷循环或者化霜循环时的流向示意图;
图2b是本公开第二实施例在停机转移冷媒时的流向示意图;
图2c是本公开第二实施例在制热循环时的流向示意图;
图3是本公开第三实施例的连接示意图;
图3a是本公开第三实施例在制冷循环或者化霜循环时的流向示意图;
图3b是本公开第三实施例在停机转移冷媒时的流向示意图;
图3c是本公开第三实施例在制热循环时的流向示意图;
图4是本公开第四实施例的连接示意图;
图4a是本公开第四实施例在制冷循环或者化霜循环时的流向示意图;
图4b是本公开第四实施例在制热循环时的流向示意图;
图5是本公开第五实施例的连接示意图;
图5a是本公开第五实施例在制冷循环或者化霜循环时的流向示意图;
图5b是本公开第五实施例在制热循环时的流向示意图;
图6是本公开第六实施例的连接示意图;
图6a是本公开第六实施例在制冷循环或者化霜循环时的流向示意图;
图6b是本公开第六实施例在停机转移冷媒时的流向示意图;
图6c是本公开第六实施例在制热循环时的流向示意图。
具体实施方式
为了使本公开所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本公开,并不用于限定本公开。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适 当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为使本公开的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本公开进一步详细说明。
相关技术中,由于化霜后制热低压侧的室外换热器内冷媒未能及时转移,大量液态冷媒积存在室外低压侧,导致化霜后制热效果慢、换热效率差。
同时,空调系统存在制冷模式、制热模式需求冷媒循环量差异大的问题,在满足制热模式需求的冷媒循环量下,制冷模式时冷媒循环量过多,导致系统高低压差大,压缩机负载大,节能效果差。
如图1所示,本公开提出的空调系统能够解决化霜后液态冷媒囤积在室外换热器的问题,在化霜结束切换为制热模式时,依靠压缩机排出的高温高压冷媒将囤积的液态冷媒气化带入到制热循环中,最终达到化霜后快速制热的效果。
在一些实施例中,空调系统包括:依次连接形成冷媒循环回路的压缩机1、四通阀4、室外换热器5、节流组件以及室内换热模块,室外换热器配置有室外风机6,室内换热模块包含至少一个室内换热器,冷媒循环回路设有用于暂存液态冷媒的储存区,储存区连接于室内换热模块与四通阀4之间,储存区通过四通阀4切换接在压缩机1的吸气侧或者排气侧。
当冷媒循环回路运行在制冷循环或者化霜循环时,储存区接在压缩机1的吸气侧,冷媒经过储存区送回压缩机1的吸气侧,通过储存区储存液态冷媒,防止液态冷媒堆积在室外换热器中;当冷媒循环回路切换到制热循环时,储存区接在压缩机1的排气侧,压缩机1排出的高温冷媒经过储存区,通过高温冷媒加热气化储存区的液态冷媒,随后带入到制冷循环中,达到化霜后快速制热的效果。
应当理解的是,上文中“化霜循环”和“制冷循环”的冷媒流向相同,冷媒循环回路中的冷媒流向为压缩机1的排气口→四通阀4→室外换热器5→节流组件→室内换热模块→压缩机1的吸气口。上文中“制热循环”的冷媒循环回路中的冷媒流向为压缩机1的排气口→四通阀4→室内换热模块→节流组件→室外换热器5→压缩机1的吸气口。在一些实施例中,冷媒循环回路中设计其他部件,但冷媒循环回路在不同 循环状态下,冷媒流经压缩机1、四通阀4、室外换热器5、节流组件以及室内换热模块等主要部件的顺序应当遵循对应的流向。
以下结合不同的实施例对储存区进行举例说明。
如图1所示,在本公开的第一实施例中,储存区为气液分离器10的内腔,气液分离器10具有第一端101和第二端102,第一端101和第二端102之中的一个作为进口、另一个作为出口,四通阀4的C端连接室外换热器5、D端通过油分离器3连接压缩机1的排气侧、E端连接气液分离器10的第二端、S端连接压缩机1的吸气侧,油分离器3的底部通过毛细管2接回压缩机1的吸气侧,气液分离器10的第一端连接室内换热模块处于制冷循环下的出口侧。
如图1a所示,冷媒循环回路运行化霜循环或者制冷循环时,冷媒从压缩机1排出,通过油分离器3、四通阀4进入室外换热器5冷凝换热,通过节流组件进入室内换热模块换热后,从气液分离器10的第一端101进入内腔,再从气液分离器10的第二端102流出,经四通阀4回到压缩机1的吸气侧,通过气液分离器10储存室内换热模块流出的液态冷媒。
如图1b所示,冷媒循环回路运行制热循环时,冷媒从压缩机1排出,通过油分离器3、四通阀4进入气液分离器10,从气液分离器10的第二端102进入、气液分离器10的第一端101流出,进入室内换热模块后,送到室外换热器5蒸发换热,经四通阀4回到压缩机1的吸气侧,通过压缩机1排出的高温冷媒气化气液分离器10储存的液态冷媒,提升制热效率的同时恢复制热模式需求的冷媒循环量。
如图2所示,在本公开的第二实施例中,该第二实施例与第一实施例的连接结构相同,区别是冷媒循环回路还设有通断状态可控的冷媒转移支路,冷媒转移管路的进口端连接在室外换热器5处于制冷循环下的出口侧,冷媒转移管路的出口端连通到气液分离器10的内腔。冷媒转移支路安装有冷媒转移阀13,通过冷媒转移阀13控制冷媒转移支路的通断状态。
如图2a至2c所示,第二实施例的冷媒循环回路运行状态与第一实施例相同,区别是在冷媒循环回路结束化霜循环至进入制热循环之间的停机状态下,开启冷媒转移阀13以接通冷媒转移管路,利用冷媒循环回路的高压侧与低压侧之间的压差,将室外换热器5的液态冷媒通过冷媒转移管路移至气液分离器10,减少室外换热器5内的液态冷媒,保证四通阀4切换时的可靠性。
如图3所示,在本公开的第三个实施例中,储存区为冷媒循环回路中的低压侧配 管,四通阀4的C端连接室外换热器5、D端通过油分离器3连接压缩机的排气侧、E端连接室内换热模块、S端连接压缩机1的吸气侧,油分离器3的底部通过毛细管2接回压缩机1的吸气侧,低压侧配管包括:四通阀4的E端与室内换热模块之间的连接管路。
如图3a所示,冷媒循环回路运行化霜循环或者制冷循环时,冷媒从压缩机排出,通过油分离器3、四通阀4进入室外换热器5冷凝换热,通过节流组件进入室内换热模块换热后,流入低压侧配管中,经四通阀4回到压缩机1的吸气侧。
如图3b所示,冷媒循环回路退出化霜循环或者制冷循环时,压缩机停机,四通阀保持化霜循环或者制冷循环的接通状态,节流组件的开度打开至设定最大开度,冷媒在空调系统的高压侧和低压侧之间的压差下,从室外换热器5转移到低压侧配管中。
如图3c所示,冷媒循环回路运行制热循环时,冷媒从压缩机1排出,通过油分离器3、四通阀4进入低压侧配管,从低压侧配管流出后进入室内换热模块,再送到室外换热器5蒸发换热,经四通阀4回到压缩机1的吸气侧,通过压缩机排出的高温冷媒气化低压侧配管积存的液态冷媒,提升制热效率的同时恢复制热模式需求的冷媒循环量。
由于空调系统的制冷模式和制热模式需求的冷媒循环量存在较大差异,本公开提出的空调系统还能够解决制冷循环下冷媒循环量过多的问题,在制冷循环时,将部分冷媒送到气液分离器内,以达到减少制冷循环的冷媒循环量的效果。
以下结合实施例对冷媒循环量的调节结构进行举例说明。
如图4所示,在本公开的第四个实施例中,四通阀4的C端连接室外换热器、D端通过油分离器3连接压缩机1的排气侧、E端连接室内换热模块、S端连接压缩机1的吸气侧,四通阀4的C端和室外换热器5之间的连接管路设有转接段,油分离器3的底部通过毛细管2接回压缩机1的吸气侧,转接段连接有气液分离器10,气液分离器10具有第一端101和第二端102,第一端101和第二端102之中的一个作为进口、另一个作为出口,气液分离器10的第一端101连接于转接段靠近四通阀4的一端,气液分离器10的第二端102连接于转接段靠近室外换热器5的另一端,即气液分离器10的第二端102连接室外换热器5处于制冷循环下的进口侧。气液分离器10的第一端101设有第一开关阀14、第二端102设有第二开关阀16,转接段设有第三开关阀15,通过第一至第三开关阀控制气液分离器10的第一端101、第二端102以及转接段的通断状态。
如图4a所示,冷媒循环回路运行化霜循环或者制冷循环时,第一开关阀14和第三开关阀15打开,第二开关阀16关闭,冷媒从压缩机1排出,通过油分离器3和四通阀4之后,一部分通过气液分离器10的第一端101进入气液分离器10自然冷凝存液,另一部分通过转接段进入室外换热器5冷凝换热,通过节流组件进入室内换热模块换热后,经四通阀4回到压缩机1的吸气侧,通过气液分离器10储存化霜循环或者制冷循环多余的冷媒,避免大量液态冷媒进入压缩机1,降低压缩机1功耗的同时,提高系统可靠性。
如图4b所示,冷媒循环回路运行制热循环时,第一开关阀14和第二开关阀16打开,第三开关阀15关闭,冷媒从压缩机1排出,通过油分离器3和四通阀4进入室内换热模块,再送到室外换热器5蒸发换热,经气液分离器10的第二端102进入气液分离器,再从气液分离器10的第一端101流出,经四通阀4回到压缩机1的吸气侧。
在上述设计有气液分离器的实施例中,为了系统更好的回油,气液分离器10设有回油结构,在一些实施例中,回油结构设计为回油孔和/或回油支路,通过回油结构将气液分离器10中的润滑油送回压缩机,保证压缩机的可靠性。
以下结合实施例对回油结构进行举例说明。
如图1所示,在本公开的第一实施例中,气液分离器10的第一端101从内腔底部向上延伸,气液分离器10的第二端102从内腔顶部向下延伸,在内腔底部折弯之后再向上延伸。气液分离器10的第一端101和第二端102均设有回油孔103,而且回油孔103靠近内腔底部。
在制冷循环或者化霜循环下,冷媒从第二端102送出气液分离器10,在冷媒流经第二端102的过程中,将从第二端102的回油孔进入管路内的润滑油带回压缩机1。在制热循环下,冷媒从第一端101送出气液分离器10,在冷媒流经第一端101的过程中,将从第一端101的回油孔进入管路内的润滑油带到室内换热模块,继而经过室外换热器5回到压缩机1中。由于气液分离器10的第一端101和第二端102均设计回油孔103,无需改变当下运行模式即可实现气液分离器10回油,回油快速高效,可大幅提升压缩机1运行可靠性与用户舒适度。
如图2所示,在本公开的第二实施例中,气液分离器10的第一端101从内腔顶部向下伸入,气液分离器10的第二端102从内腔顶部向下延伸,在内腔底部折弯之后再向上延伸。气液分离器10的第二端102均设有回油孔103,而且回油孔103靠近 内腔底部。
在制冷循环或者化霜循环下,冷媒从第二端102送出气液分离器10,在冷媒流经第二端102的过程中,将从第二端102的回油孔进入管路内的润滑油带回压缩机1。由于仅在气液分离器10的第二端设计回油孔103,只支持制冷循环或者化霜循环的冷媒流向实现回油,制热循环无法实现回油,需要控制空调系统进入回油模式,将冷媒循环回路切换为制冷循环,才可实现气液分离器10的回油。
如图4所示,本公开的第四实施例中,气液分离器10的第二端102从内腔顶部向下伸入,气液分离器10的第一端101从内腔顶部向下延伸,在内腔底部折弯之后再向上延伸。气液分离器10的第一端101设有回油孔103,而且回油孔103靠近内腔底部。
在制热循环下,冷媒从第一端101送出气液分离器10,在冷媒流经第一端101的过程中,将从第一端101的回油孔103进入管路内的润滑油带回压缩机1。由于在第四实施例中,气液分离器10的第二端102在制冷循环或者化霜循环时被关闭,因此气液分离器10的第二端102未设计回油孔103,只支持制热循环的冷媒流向实现回油。
如图5至5b所示,在本公开的第五实施例中,该第五实施例与第一实施例的连接结构相同,第五实施例的冷媒循环回路运行状态与第一实施例也相同,区别是气液分离器10的内腔底部还设有回油支路,该回油支路连接到压缩机1的吸气侧,回油支路设有回油阀11和回油节流件12,此处的回油节流件12通常是指毛细管。开启回油阀11时,气液分离器10内腔中的润滑油通过回油节流件12回到压缩机1,保证压缩机1运行可靠性。
如图6至6c所示,在本公开的第六实施例中,该第六实施例与第二实施例的连接结构相同,第六实施例的冷媒循环回路运行状态与第二实施例也相同,区别是气液分离器的内腔底部还设有回油支路,该回油支路连接到压缩机的吸气侧,回油支路设有回油阀11和回油节流件12,此处的回油节流件12通常是指毛细管。开启回油阀11时,气液分离器10内腔中的润滑油通过回油节流件12回到压缩机1,保证压缩机1运行可靠性。
为实现不同实施例的精准调控,本公开还提出了上述空调系统的控制方法,以下结合各个实施例详细说明控制方法的过程。
如图1、5所示,针对第一实施例、第五实施例来说,控制方法的过程如下。
冷媒循环回路运行化霜循环之后,获取气液分离器10的出口端——第二端102的冷媒过热度,判断冷媒过热度是否超过设定值,若是,则说明气液分离器10内部的温度较高,气液分离器10的冷媒处于蒸发状态,能够确保化霜期间气液分离器内部冷媒存液高度不会超过气液分离器的极限容量,因此节流组件维持开度,若否,则说明气液分离器10内部的温度较低,气液分离器10的冷媒冷凝液化的可能性较高,因此节流组件减小开度,以减少气液分离器10的存液量。
在一些实施例中,冷媒过热度的计算方式为T出管温度-T低压饱和温度,T出管温度为气液分离器的出口端实际温度,T低压饱和温度为压缩机的吸气侧压力对应的饱和温度,将气液分离器10的出口端实际温度与系统低压侧的饱和温度进行对比,能够准确反映气液分离器内冷媒状态。
为提高节流组件开度调节的准确性,控制方法还包括:在冷媒循环回路运行化霜循环之后,计时冷媒循环回路运行化霜循环的实际化霜时长,若实际化霜时长达到设定时长阈值tc,则获取气液分离器10的出口端——第二端102的冷媒过热度。在一些实施例中,设定时长阈值tc<设定化霜总时长。也就是说,控制方法是在冷媒循环回路运行一段时间——设定时长阈值tc时,对气液分离器10的冷媒过热度进行检测,根据冷媒过热度预测气液分离器10存液是否会超过极限容量,节流组件按照判断结果运行,直至化霜结束。
在一些实施例中,节流组件包含室外节流阀7和室内节流阀,室外节流阀7安装在室外换热器5处于制冷循环下的出口侧,室内节流阀安装在室内换热模块处于制冷循环下的进口侧。在判定节流组件维持开度的情况下,室外节流阀7和室内节流阀的开度均维持不变,直至化霜结束;在判定节流组件减小开度的情况下,室外节流阀7的开度维持不变,室内节流阀的减小开度,直至化霜结束。当然,实际应用中,若室外换热器和室内换热模块之间仅设有一个节流阀,则按照上文中室内节流阀的调节方式进行开度控制。
在上述化霜循环的过程中,判断冷媒循环回路的运行参数是否达到设定化霜退出条件;若是,则退出化霜循环,压缩机1停机,四通阀4保持化霜循环的接通状态,直至冷媒循环回路的运行参数达到设定四通阀换向条件,四通阀4切换到制热循环的接通状态;若否,则维持化霜循环。
需要指出的是,在一些实施例中,上文中“设定值”、“设定时长阈值tc”等通过实验统计得到,在一些实施例中,设定值取0℃以上的常数,例如3℃。在一些实施 例中,设定化霜退出条件设计为际化霜时长达到设定化霜总时长,即实际化霜时长达到设定化霜总时长时,冷媒循环回路退出化霜循环。在一些实施例中,设定四通阀换向条件设计为压缩机的排气侧压力与吸气侧压力之差降至设定压差,即压缩机的排气侧压力与吸气侧压力之差降至设定压差时,四通阀上电,切换到制热循环的接通状态,压缩机开启,冷媒循环回路运行制热循环。
如图2、6所示,针对第二实施例、第六实施例来说,控制方法的过程如下。
冷媒循环回路运行化霜循环之后,获取气液分离器10的出口端—第二端102的冷媒过热度,判断冷媒过热度是否超过设定值,若是,则说明气液分离器10内部的温度较高,气液分离器10的冷媒处于蒸发状态,能够确保化霜期间气液分离器10内部冷媒存液高度不会超过气液分离器10的极限容量,因此节流组件维持开度,若否,则说明气液分离器10内部的温度较低,气液分离器10的冷媒冷凝液化的可能性较高,因此节流组件减小开度,以减少气液分离器10的存液量。
在一些实施例中,冷媒过热度的计算方式为T出管温度-T低压饱和温度,T出管温度为气液分离器的出口端实际温度,T低压饱和温度为压缩机的吸气侧压力对应的饱和温度,将气液分离器的出口端实际温度与系统低压侧的饱和温度进行对比,能够准确反映气液分离器内冷媒状态。
为提高节流组件开度调节的准确性,控制方法还包括:在冷媒循环回路运行化霜循环之后,计时冷媒循环回路运行化霜循环的实际化霜时长,若实际化霜时长达到设定时长阈值tc,则获取气液分离器10的出口端的冷媒过热度。在一些实施例中,设定时长阈值tc<设定化霜总时长。也就是说,控制方法是在冷媒循环回路运行一段时间——设定时长阈值tc时,对气液分离器10的冷媒过热度进行检测,根据冷媒过热度预测气液分离器10存液是否会超过极限容量,节流组件按照判断结果运行,直至化霜结束。
在一些实施例中,节流组件包含室外节流阀7和室内节流阀,室外节流阀7安装在室外换热器5处于制冷循环下的出口侧,室内节流阀安装在室内换热模块处于制冷循环下的进口侧。在判定节流组件维持开度的情况下,室外节流阀7和室内节流阀的开度均维持不变,直至化霜结束;在判定节流组件减小开度的情况下,室外节流阀7的开度维持不变,室内节流阀的减小开度,直至化霜结束。当然,实际应用中,若室外换热器和室内换热模块之间仅设有一个节流阀,则按照上文中室内节流阀的调节方式进行开度控制。
在上述化霜循环的过程中,判断冷媒循环回路的运行参数是否达到设定化霜退出条件;若是,则退出化霜循环,压缩机1停机,四通阀4保持化霜循环的接通状态,关闭节流组件,接通室外换热器5与气液分离器10之间的冷媒转移支路,室外换热器5的液态冷媒通过冷媒转移支路流向气液分离器10,直至冷媒循环回路的运行参数达到设定四通阀换向条件,四通阀4切换到制热循环的接通状态,节流组件打开,冷媒转移支路关闭;若否,则维持化霜循环。
需要指出的是,在一些实施例中,上文中“设定值”、“设定时长阈值tc”等通过实验统计得到,在一些实施例张,设定值取0℃以上的常数,例如3℃。在一些实施例中,设定化霜退出条件设计为际化霜时长达到设定化霜总时长,即实际化霜时长达到设定化霜总时长时,冷媒循环回路退出化霜循环。在一些实施例中,设定四通阀换向条件设计为压缩机的排气侧压力与吸气侧压力之差降至设定压差,即压缩机的排气侧压力与吸气侧压力之差降至设定压差时,四通阀上电,切换到制热循环的接通状态,压缩机开启,冷媒循环回路运行制热循环。
如图3所示,针对第三实施例来说,控制方法的过程如下。
冷媒循环回路运行化霜循环之后,获取压缩机1的吸气过热度,根据压缩机1的吸气过热度调节节流组件的开度,若吸气过热度高于目标区间,则说明压缩机1的吸气侧温度较高,流经室内换热模块的冷媒不足,因此节流组件加大开度,若吸气过热度处于目标区间,则说明压缩机1的运行状态适中,节流组件维持开度,若吸气过热度低于目标区间,则说明压缩机1的吸气侧温度较低,流经室内换热模块的冷媒较多,压缩机1存在液击风险,因此节流组件减小开度。
为提高节流组件开度调节的准确性,将高于目标区间的范围划分为至少两个的上限区间,每个上限区间设置有对应的开度调节幅度,数值越高的上限区间的开度调节幅度越大;和/或将低于目标区间的范围划分为至少两个的下限区间,每个上限区间设置有对应的开度调节幅度,数值越低的下限区间的开度调节幅度越大。
在一些实施例中,节流组件包含室外节流阀7和室内节流阀,室外节流阀7安装在室外换热器处于制冷循环下的出口侧,室内节流阀安装在室内换热模块处于制冷循环下的进口侧。当冷媒循环回路运行化霜循环之后,室外节流阀7打开至设定最大开度;在判定节流组件维持开度的情况下,室外节流阀7和室内节流阀的开度均维持不变;在判定节流组件减小开度的情况下,室外节流阀7的开度维持不变,室内节流阀的减小开度;在判定节流组件加大开度的情况下,室外节流阀7的开度维持不变,室 内节流阀的加大开度。
在上述化霜循环的过程中,判断冷媒循环回路的运行参数是否达到设定化霜退出条件;若是,则退出化霜循环,压缩机1停机,四通阀4保持化霜循环的接通状态,将节流组件打开至设定最大开度,利用系统高压侧和低压侧的压差,使得冷媒从室外换热器5所在的高压侧继续转移到低压侧配管中,直至冷媒循环回路的运行参数达到设定四通阀换向条件,四通阀4切换到制热循环的接通状态;若否,则维持化霜循环。
需要指出的是,在一些实施例中,上文中“目标区间”、“上限区间”等通过实验统计得到,例如,当吸气过热度大于5℃时,室内节流阀按照每周期15pls上调;吸气过热度处于2~5℃,室内节流阀按照每周期10pls上调;吸气过热度等于1℃,维持室内节流阀当下开度;吸气过热度处于-1~0℃,室内节流阀按照每周期10pls下调;吸气过热度小于1℃,室内节流阀按照每周期20pls下调。在一些实施例中,设定值取0℃以上的常数,例如3℃。在一些实施例中,设定化霜退出条件设计为际化霜时长达到设定化霜总时长,即实际化霜时长达到设定化霜总时长时,冷媒循环回路退出化霜循环。在一些实施例中,设定四通阀换向条件设计为压缩机的排气侧压力与吸气侧压力之差降至设定压差,即压缩机的排气侧压力与吸气侧压力之差降至设定压差时,四通阀上电,切换到制热循环的接通状态,压缩机开启,冷媒循环回路运行制热循环。
如图4所示,针对第四实施例来说,控制方法的过程如下。
冷媒循环回路运行制冷循环或者化霜循环之后,接通转接段和气液分离器10的第一端101,关闭气液分离器10的第二端102,压缩机1排出的部分冷媒进入气液分离器10内进行自然冷凝,计时冷媒循环回路运行制冷循环的实际存液时长,若实际存液时长大于设定存液时长,则说明冷媒循环回路中的冷媒循环量已经与当前模式匹配,气液分离器10存液完成,仅接通转接段,关闭气液分离器10的第一端101和第二端102。
在一些实施例中,设定存液时长为第一存液时长和/或第二存液时长。预先通过实验建立压缩机的实际运行频率与极限存液时长之间的对应关系,在制冷循环或者化霜循环过程中,检测压缩机的实际运行频率并从对应关系中获取对应的极限存液时长,将该极限存液时长减去设定余量时长以得到第一存液时长,在一些实施例中,设定余量时长为30秒等。第二存液时长根据空调系统的性能参数计算得到,第二存液时长t储存时间的计算公式为:t储存时间=气液分离器的储存量÷(压缩机排量×运行频率×气液分离器的入管截面积)。压缩机排量和气液分离器的入管截面积为固定值,气液分离器 的储存量为冷媒循环回路制热循环所需的最大冷媒量A减去冷媒循环回路制冷循环所需的最大冷媒量B,运行频率为冷媒循环回路运行制冷循环或者化霜循环初期压缩机的目标存液频率。
在冷媒循环回路进入制冷循环或者化霜循环之后,压缩机1运行目标存液频率,接通转接段和气液分离器10的第一端101,关闭气液分离器10的第二端102,计时冷媒循环回路运行制冷循环的实际存液时长,实时比较实际存液时长与第一存液时长以及第二存液时长,在实际存液时长大于第一存液时长和第一存液时长之中的任意一个的情况下,气液分离器结束存液,仅接通转接段,关闭气液分离器10的第一端101和第二端102,压缩机1的运行频率按照常规制冷循环或者化霜循环进行控制。
需要指出的是,为避免气液分离器存液过多,在空调系统的选型阶段,应当选择与目标存液量匹配的气液分离器。另外,在实际应用中,在一些实施例中,不同工况下的制冷循环或者化霜循环的目标存液频率区分设计,在制冷循环或者化霜循环的初期,压缩机按照当前工况对应的目标存液频率运行进行存液,第一存液时长和第二存液时长根据目标存液频率确定,在气液分离器存液完成之前,压缩机维持目标频率不变。
本公开提出的空调系统适用于空调机组,空调机组包括但不限于多联机,在多联机中,室内换热模块包含两个以上的室内换热器。为提高空调系统的可控性,室外换热器5通过液侧管连接室内换热模块,液侧管安装有液管截止阀8,室内换热模块通过气侧管连接四通阀4,气侧管安装有气管截止阀9。在储存区为气液分离器10的内腔的实施例中,气液分离器10的第一端101连接于气管截止阀9处于制冷循环下的出口侧,即制冷循环或者化霜循环下,室外换热器5流出的冷媒先流经液管截止阀8再进入室内换热模块,室内换热模块流出的冷媒先流经气管截止阀9再进入气液分离器10。
需要注意的是,上述所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合,使用“第一”、“第二”等词语来限定部件,为了便于对相应部件进行区别。上文中的“开关阀”、“回油阀”等可以采用电磁阀,“节流阀”可以采用电子膨胀阀。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨 论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本公开的保护范围之内。

Claims (20)

  1. 一种空调系统,包括:依次连接形成冷媒循环回路的压缩机、四通阀、室外换热器、节流组件以及室内换热模块;其中,所述冷媒循环回路设有用于暂存液态冷媒的储存区,所述储存区连接于所述室内换热模块与所述四通阀之间,并且通过所述四通阀切换接在压缩机的吸气侧或者排气侧。
  2. 根据权利要求1所述的空调系统,其中,所述储存区为气液分离器的内腔,所述气液分离器的第一端连接于所述室内换热模块处于制冷循环下的出口侧,所述气液分离器的第二端连接于所述四通阀。
  3. 根据权利要求2所述的空调系统,其中,所述冷媒循环回路还设有通断状态可控的冷媒转移支路,所述冷媒转移管路的进口端连接在所述室外换热器处于制冷循环下的出口侧,所述冷媒转移管路的出口端连通到所述气液分离器的内腔。
  4. 根据权利要求1所述的空调系统,其中,所述储存区为所述冷媒循环回路中的低压侧配管,所述低压侧配管包括:所述室内换热模块与所述四通阀之间的连接管路。
  5. 根据权利要求1所述的空调系统,其中,所述四通阀和所述室外换热器之间的连接管路设有转接段,所述转接段连接有气液分离器,所述气液分离器的第一端连接于所述转接段靠近所述四通阀的一端,所述气液分离器的第二端连接于所述转接段靠近所述室外换热器的另一端;其中,所述气液分离器的第一端和第二端、以及所述转接段的通断状态均可控。
  6. 根据权利要求2或3或5所述的空调系统,其中,所述气液分离器的第一端和第二端之中连接所述四通阀的一端设有回油孔、或者第一端和第二端均设有回油孔,所述回油孔靠近所述气液分离器的内腔底部。
  7. 根据权利要求2或3或5所述的空调系统,其中,所述气液分离器的内腔底部设有连接到所述压缩机的吸气侧的回油支路,所述回油支路设有回油阀和回油节流件。
  8. 一种空调机组,包括权利要求1至7任一项所述的空调系统。
  9. 根据权利要求8所述的空调机组,其中,所述空调机组为多联机,所述室内换热模块包含两个以上的室内换热器。
  10. 一种空调系统的控制方法,所述控制方法应用于权利要求2或3所述的空调系统中,其中,所述控制方法包括:
    所述冷媒循环回路运行化霜循环之后,获取所述气液分离器的出口端的冷媒过热 度;
    判断所述冷媒过热度是否超过设定值;
    在所述冷媒过热度超过所述设定值的情况下,所述节流组件维持开度;
    在所述冷媒过热度小于或等于所述设定值的情况下,所述节流组件减小开度。
  11. 根据权利要求10所述的控制方法,还包括:获取所述气液分离器的出口端的冷媒过热度之前,计时所述冷媒循环回路运行化霜循环的实际化霜时长,在所述实际化霜时长达到设定时长阈值tc的情况下,获取所述气液分离器的出口端的冷媒过热度;其中,设定时长阈值tc<设定化霜总时长。
  12. 根据权利要求10所述的控制方法,其中,所述节流组件包含室外节流阀和室内节流阀;
    在判定所述节流组件维持开度的情况下,所述室外节流阀和所述室内节流阀的开度均维持不变;
    在判定所述节流组件减小开度的情况下,所述室外节流阀的开度维持不变,所述室内节流阀的减小开度。
  13. 根据权利要求10所述的控制方法,其中,所述冷媒过热度为T出管温度-T低压饱和 温度,T出管温度为所述气液分离器的出口端实际温度,T低压饱和温度为所述压缩机的吸气侧压力对应的饱和温度。
  14. 根据权利要求10所述的控制方法,还包括:
    在化霜循环的过程中,判断所述冷媒循环回路的运行参数是否达到设定化霜退出条件;
    在所述运行参数达到所述设定化霜退出条件的情况下,退出化霜循环,所述压缩机停机,所述四通阀保持化霜循环的接通状态,关闭所述节流组件,接通所述室外换热器与所述气液分离器之间的冷媒转移支路,直至所述冷媒循环回路的运行参数达到设定四通阀换向条件;
    在所述运行参数未达到所述设定化霜退出条件的情况下,维持化霜循环。
  15. 一种空调系统的控制方法,所述控制方法应用于权利要求4所述的空调系统中,其中,所述控制方法包括:
    所述冷媒循环回路运行化霜循环之后,获取所述压缩机的吸气过热度;
    根据所述压缩机的吸气过热度调节所述节流组件的开度;
    在所述吸气过热度高于目标区间的情况下,所述节流组件加大开度;
    在所述吸气过热度处于目标区间的情况下,所述节流组件维持开度;
    在所述吸气过热度低于目标区间的情况下,所述节流组件减小开度。
  16. 根据权利要求15所述的控制方法,还包括以下至少一项:
    将高于所述目标区间的范围划分为至少两个的上限区间,每个所述上限区间设置有对应的开度调节幅度,数值越高的上限区间的开度调节幅度越大;
    将低于所述目标区间的范围划分为至少两个的下限区间,每个所述上限区间设置有对应的开度调节幅度,数值越低的下限区间的开度调节幅度越大。
  17. 根据权利要求15所述的控制方法,其中,所述节流组件包含室外节流阀和室内节流阀;
    在所述冷媒循环回路运行化霜循环之后,所述室外节流阀打开至设定最大开度;
    在判定所述节流组件维持开度的情况下,所述室外节流阀和所述室内节流阀的开度均维持不变;
    在判定所述节流组件减小开度的情况下,所述室外节流阀的开度维持不变,所述室内节流阀的减小开度;
    在判定所述节流组件加大开度的情况下,所述室外节流阀的开度维持不变,所述室内节流阀的加大开度。
  18. 根据权利要求15所述的控制方法,还包括:
    在化霜循环的过程中,判断所述冷媒循环回路的运行参数是否达到设定化霜退出条件;
    在所述运行参数达到所述设定化霜退出条件的情况下,退出化霜循环,所述压缩机停机,所述四通阀保持化霜循环的接通状态,将所述节流组件打开至设定最大开度,直至所述冷媒循环回路的运行参数达到设定四通阀换向条件;
    在所述运行参数未达到所述设定化霜退出条件的情况下,则维持化霜循环。
  19. 一种空调系统的控制方法,所述控制方法应用于权利要求5所述的空调系统中,其中,所述控制方法包括:
    所述冷媒循环回路运行制冷循环或者化霜循环之后,接通所述转接段和所述气液分离器的第一端,关闭所述气液分离器的第二端;
    计时所述冷媒循环回路运行制冷循环的实际存液时长;
    在所述实际存液时长大于设定存液时长的情况下,仅接通所述转接段,关闭所述气液分离器的第一端和第二端。
  20. 根据权利要求19所述的控制方法,还包括以下至少一项:
    所述设定存液时长为所述压缩机的实际运行频率对应的第一存液时长;
    根据所述空调系统的性能参数计算得到的第二存液时长,所述第二存液时长t储存 时间的计算公式为:t储存时间=气液分离器的储存量÷(压缩机排量×运行频率×气液分离器的入管截面积);
    其中,所述气液分离器的储存量为所述冷媒循环回路制热循环所需的最大冷媒量减去所述冷媒循环回路制冷循环所需的最大冷媒量,所述运行频率为所述冷媒循环回路运行制冷循环或者化霜循环初期压缩机的目标存液频率。
PCT/CN2023/109324 2022-12-02 2023-07-26 空调系统、空调机组及控制方法 WO2024113911A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211542791.1A CN115993016A (zh) 2022-12-02 2022-12-02 空调系统、空调机组及控制方法
CN202211542791.1 2022-12-02

Publications (1)

Publication Number Publication Date
WO2024113911A1 true WO2024113911A1 (zh) 2024-06-06

Family

ID=85994618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109324 WO2024113911A1 (zh) 2022-12-02 2023-07-26 空调系统、空调机组及控制方法

Country Status (2)

Country Link
CN (1) CN115993016A (zh)
WO (1) WO2024113911A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115993016A (zh) * 2022-12-02 2023-04-21 珠海格力电器股份有限公司 空调系统、空调机组及控制方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353189A (zh) * 2011-08-04 2012-02-15 广东美的电器股份有限公司 空调器及其快速启动控制方法
CN102419041A (zh) * 2011-12-13 2012-04-18 Tcl空调器(中山)有限公司 变频空调器节流开度控制方法
KR20120047677A (ko) * 2010-11-04 2012-05-14 엘지전자 주식회사 공기조화기
CN103743171A (zh) * 2013-12-27 2014-04-23 宁波奥克斯空调有限公司 一种热泵空调器制冷剂质量补偿方法及其空调器
CN104879940A (zh) * 2015-05-14 2015-09-02 珠海格力电器股份有限公司 空调系统及其控制方法
CN105402963A (zh) * 2015-12-21 2016-03-16 重庆美的通用制冷设备有限公司 制冷系统及气液分离器
CN106352624A (zh) * 2016-08-19 2017-01-25 重庆美的通用制冷设备有限公司 热泵机组
CN111023271A (zh) * 2019-12-31 2020-04-17 宁波奥克斯电气股份有限公司 多联机冷媒的调节装置、系统及其控制方法和空调器
CN111023360A (zh) * 2019-12-10 2020-04-17 青岛海信日立空调系统有限公司 一种空气源热泵机组
CN113203169A (zh) * 2021-05-10 2021-08-03 宁波奥克斯电气股份有限公司 一种冷媒循环量调节方法及空调器
CN114264092A (zh) * 2022-01-04 2022-04-01 珠海格力电器股份有限公司 冷媒循环设备及系统、控制方法、控制器和存储介质
CN115371308A (zh) * 2022-08-18 2022-11-22 南京天加环境科技有限公司 一种防回液空调系统及控制方法
CN115993016A (zh) * 2022-12-02 2023-04-21 珠海格力电器股份有限公司 空调系统、空调机组及控制方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120047677A (ko) * 2010-11-04 2012-05-14 엘지전자 주식회사 공기조화기
CN102353189A (zh) * 2011-08-04 2012-02-15 广东美的电器股份有限公司 空调器及其快速启动控制方法
CN102419041A (zh) * 2011-12-13 2012-04-18 Tcl空调器(中山)有限公司 变频空调器节流开度控制方法
CN103743171A (zh) * 2013-12-27 2014-04-23 宁波奥克斯空调有限公司 一种热泵空调器制冷剂质量补偿方法及其空调器
CN104879940A (zh) * 2015-05-14 2015-09-02 珠海格力电器股份有限公司 空调系统及其控制方法
CN105402963A (zh) * 2015-12-21 2016-03-16 重庆美的通用制冷设备有限公司 制冷系统及气液分离器
CN106352624A (zh) * 2016-08-19 2017-01-25 重庆美的通用制冷设备有限公司 热泵机组
CN111023360A (zh) * 2019-12-10 2020-04-17 青岛海信日立空调系统有限公司 一种空气源热泵机组
CN111023271A (zh) * 2019-12-31 2020-04-17 宁波奥克斯电气股份有限公司 多联机冷媒的调节装置、系统及其控制方法和空调器
CN113203169A (zh) * 2021-05-10 2021-08-03 宁波奥克斯电气股份有限公司 一种冷媒循环量调节方法及空调器
CN114264092A (zh) * 2022-01-04 2022-04-01 珠海格力电器股份有限公司 冷媒循环设备及系统、控制方法、控制器和存储介质
CN115371308A (zh) * 2022-08-18 2022-11-22 南京天加环境科技有限公司 一种防回液空调系统及控制方法
CN115993016A (zh) * 2022-12-02 2023-04-21 珠海格力电器股份有限公司 空调系统、空调机组及控制方法

Also Published As

Publication number Publication date
CN115993016A (zh) 2023-04-21

Similar Documents

Publication Publication Date Title
CN109282545B (zh) 低温型直流变频热泵系统的补气增焓控制方法
CN110332635B (zh) 一种双级压缩多补气制冷热泵系统、控制方法和空调器
WO2024113911A1 (zh) 空调系统、空调机组及控制方法
CN111692708B (zh) 具有抑制结霜功能的空调系统及抑制结霜的控制方法
CN110762872A (zh) 一种交替除霜的冷风机系统
US20040098993A1 (en) Air conditioner and method for controlling the same
CN112665226B (zh) 一种空调系统及其控制方法
KR101161381B1 (ko) 냉동 사이클 장치
CN211552102U (zh) 一种多联式空调系统
CN110940136B (zh) 冰箱制冷系统及其化霜控制方法
CN210374250U (zh) 冷藏冷冻装置
CN212274309U (zh) 一种冷藏车及其制冷系统
CN214665390U (zh) 一种空调系统
CN219160659U (zh) 空调系统及空调机组
KR20090069694A (ko) 다로형 교축밸브-구비 다단 압축방식 터보냉동기
CN111595047A (zh) 一种冷藏车的制冷系统及其控制方法
CN110793246A (zh) 一种热气融霜系统及热气融霜方法
CN218210162U (zh) 一种空调系统
CN113685916A (zh) 一种空调系统及其控制方法
CN111623555A (zh) 基于低品位热源的制冷剂有源喷射热泵及其控制方法
CN221055345U (zh) 制冷系统及冷藏设备
CN211120083U (zh) 一种交替除霜的冷风机系统
CN219494283U (zh) 空调系统、空调机组
KR100588846B1 (ko) 히트펌프 공기조화기
CN113720057B (zh) 制冷机组、控制方法及制冷设备