WO2024113773A1 - 服务器的供电系统、方法、电子设备及存储介质 - Google Patents

服务器的供电系统、方法、电子设备及存储介质 Download PDF

Info

Publication number
WO2024113773A1
WO2024113773A1 PCT/CN2023/101211 CN2023101211W WO2024113773A1 WO 2024113773 A1 WO2024113773 A1 WO 2024113773A1 CN 2023101211 W CN2023101211 W CN 2023101211W WO 2024113773 A1 WO2024113773 A1 WO 2024113773A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
voltage
battery
battery string
Prior art date
Application number
PCT/CN2023/101211
Other languages
English (en)
French (fr)
Inventor
王令岩
花得阳
吴安
Original Assignee
苏州元脑智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州元脑智能科技有限公司 filed Critical 苏州元脑智能科技有限公司
Publication of WO2024113773A1 publication Critical patent/WO2024113773A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing

Definitions

  • the present application relates to the technical field of server power supply, and in particular to a server power supply system, a server power supply method, an electronic device, and a computer non-volatile readable storage medium.
  • a data center is a globally collaborative network of specific equipment used to transmit, accelerate, display, calculate, and store data information on a network infrastructure.
  • data centers With the widespread application of data centers, more and more telecommunications, Netcom, mobile, dual-line, power, or enterprises have chosen to use data centers to store servers and provide IT (Information Technology) services to users and employees.
  • IT Information Technology
  • UPS Uninterruptible Power System/Supply
  • UPS UPS power supply system
  • the UPS will filter and stabilize the AC power and provide it to the server power supply in the data center, while charging the internal battery components of the UPS.
  • the UPS will immediately convert the DC power in the battery components into AC power through the inverter to supply the server power supply in the data center.
  • the AC/DC (Alternating Current/Direct Current) conversion and DC/AC (Direct Current/Alternating Current) conversion of the UPS are the main links of energy loss in the power transmission of the entire power supply system.
  • the efficiency loss of each conversion between AC and DC is about 5%, and the converted AC power also needs to undergo a PFC (Power Factor Correction) circuit to improve the power factor, which leads to an additional level of conversion loss.
  • PFC Power Factor Correction
  • the UPS power supply is located in the main power path. The heat accumulation caused by high-power and long-term uninterrupted operation greatly increases the power failure rate, thereby seriously affecting the power reliability of the data center server.
  • the embodiments of the present application provide a server power supply system, method, electronic device and computer non-volatile readable storage medium to solve or partially solve the problems of low power efficiency, large heat loss and low power reliability in the existing server power supply system.
  • the present application discloses a power supply system for a server, the power supply system comprising at least one power supply module
  • the power supply module at least includes a high-voltage battery power master control unit, at least one power conversion string control unit, at least one battery string control unit, and a state monitoring management unit respectively connected to the high-voltage battery power master control unit, and a power conversion unit connected to the power conversion string control unit and a battery string unit connected to the battery string control unit; wherein each battery string unit is correspondingly connected to a power conversion unit, and each power conversion unit is connected in parallel and then connected to the state monitoring management unit;
  • a battery string control unit used to send a status information table corresponding to the battery string unit to the high-voltage battery power master control unit, receive a switch control instruction generated by the high-voltage battery power master control unit according to the status information table, and control the switch state of the battery string unit according to the switch control instruction;
  • a power conversion string control unit is used to receive a power control instruction generated by the high-voltage battery power master control unit according to the state information table, and control the power conversion unit to obtain an output voltage from the battery string unit according to the power control instruction;
  • a power conversion unit configured to adjust the output voltage from a first preset voltage range to a second preset voltage range, and transmit the adjusted output voltage to the status monitoring management unit, wherein the second preset voltage range is within the first preset voltage range;
  • the status monitoring management unit is used to calculate the total output power according to the adjusted output voltage and output the total output power to the server.
  • the battery string control unit is used to:
  • the power information of the battery string unit is collected, and the health status of the battery string unit is analyzed using the power information to generate a status information table corresponding to the battery string unit.
  • the power information includes various voltage, current and temperature signals in the battery string unit, and the battery string control unit is used to:
  • the high voltage battery power control unit is used to:
  • Receive the status information table sent by the battery string control unit compare the status information table with the preset total output data, generate switch control instructions and power control instructions, and send the switch control instructions to the battery string control unit, and send the power control instructions to the power conversion string control unit corresponding to the battery string control unit.
  • the battery string control unit is used to:
  • the battery string unit is used for:
  • the power conversion string management unit is used to:
  • the power conversion unit is used for:
  • the unit obtains the output voltage.
  • the power conversion unit is used to:
  • a preset power threshold is used to reallocate power to the battery string units except the faulty battery string unit.
  • the power conversion unit is further used for:
  • the input voltage state and the output voltage state of the power conversion unit are adjusted to adjust the output voltage of the battery cells in the battery string unit corresponding to the power conversion unit from the first preset voltage range to the second preset voltage range, and the second preset voltage range is within the first preset voltage range.
  • the power conversion string management unit is used to:
  • the high voltage battery power control unit is used to:
  • the total output power sent by the status monitoring management unit is received, and the power supply module is controlled to output the total output power to the server as the total power output value of the server.
  • the power supply module is controlled to output a preset total power output value as the total power output value of the server to the server.
  • the high-voltage battery power control unit is further used to:
  • the total output power, or the preset total power output value is evenly distributed to each battery string unit;
  • the power of the abnormal battery string units is determined according to the preset derated output power, and the power corresponding to the remaining battery string units that meet the preset power conditions is determined based on the total output power, or the preset total power output value, and the power of the abnormal battery string units.
  • the battery string control unit is used to:
  • the shutdown control instruction sent by the high-voltage battery power control unit is obtained, and the shutdown operation corresponding to the shutdown control instruction is executed to shut down the power output of the adjusted battery string unit.
  • the high voltage battery power control unit is used to:
  • a discharge control instruction is issued to the power conversion string control unit corresponding to the relatively high-voltage battery string unit to control the relatively high-voltage battery string unit to discharge to the relatively low-voltage battery string unit.
  • the high-voltage battery power master control unit or the battery string control unit corresponding to the relatively high-voltage battery string unit, is used to:
  • a bypass control instruction is sent to the relatively high-voltage battery string unit to control the relatively high-voltage battery string unit to bypass the first battery cell.
  • the high-voltage battery power master control unit or the battery string control unit corresponding to the relatively low-voltage battery string unit, is used to:
  • a bypass control instruction is sent to the relatively low-voltage battery string unit to control the relatively low-voltage battery string unit to bypass the second battery cell.
  • the high voltage battery power control unit is used to:
  • a bypass control instruction is issued to the battery string unit corresponding to the low-voltage battery cell to control the bypass of the low-voltage battery cell;
  • the bypass state of the low voltage battery cell is released to discharge the high voltage battery cell and the low voltage battery cell at the same time.
  • the high voltage battery power control unit is used to:
  • a bypass control instruction is issued to the abnormal battery string unit corresponding to the abnormal battery cell to control the abnormal battery string unit to bypass the abnormal battery cell.
  • the high voltage battery power control unit is used to:
  • a battery string unit having any bypass battery cell is determined as a bypass battery string unit. If the bypass battery string unit is in a discharging state, the health state of the bypassed battery cell in the bypass battery string unit and the health state of other battery string units are analyzed. Based on the analysis result, the total output power is used to adjust the power allocation of the bypass battery string unit.
  • the power conversion unit corresponding to the bypass battery string unit is controlled to continue charging the third battery cell in the bypass battery string unit whose charging value is less than the preset charging threshold, and when the charging value of the third battery cell is greater than or equal to the preset charging threshold, the third battery cell is controlled to be bypassed.
  • the high voltage battery power control unit is used to:
  • the power switch tube of the bypass battery string unit is controlled to be disconnected to release the bypass state of the bypassed battery cell.
  • the high voltage battery power control unit is used to:
  • a charging control instruction is sent to the power conversion string control unit corresponding to the power conversion unit, so that the power conversion string control unit executes the charging control instruction and controls the opening and closing state of the power switch tube of the power conversion unit to control the charging of the battery string unit corresponding to the power conversion unit.
  • the power supply module includes an overall battery pack power unit, the overall battery pack power unit includes a total voltage and current detection unit, at least one power conversion management unit connected in parallel with the total voltage and current detection unit, a voltage and current detection unit connected to the power conversion management unit, and a battery string unit connected to the voltage and current detection unit, wherein each power conversion management unit is connected to a voltage and current detection unit, and each power conversion management unit is composed of a power conversion unit and a corresponding power conversion string control unit.
  • Each battery string unit is composed of multiple battery power combination monomers connected in series.
  • the voltage and current detection unit is used to detect the voltage and current information of the series branches composed of each battery power combination monomer
  • the total voltage and current detection unit is used to detect the total voltage and current information after the series branches are connected in parallel
  • the high-voltage battery power master control unit is used to receive the total voltage and current information and the individual voltage and current information to control the charging and discharging of each battery string unit.
  • the battery power combination cell includes a battery cell CC1, a switching power tube CQ1 and a switching power tube CQ2 connected to the battery cell CC1, a fuse CR1 and a fuse CR2 connected to the switching power tube CQ2, and an impedance matching resistor RR1 connected to the fuse CR2, wherein the fuse CR2 is connected in series with the impedance matching resistor RR1 and then connected in parallel with the fuse CR1.
  • the switch power tube CQ1 and the switch power tube CQ2 are respectively connected to the battery string control unit corresponding to the battery power combination monomer;
  • a voltage monitoring point is set between the drain and source of the switching power tube CQ1, and a temperature collection point is set at the power integration of the switching power tube CQ1 and the battery cell CC1.
  • the battery string control unit is used to collect voltage information from the voltage monitoring point and temperature information from the temperature monitoring point.
  • the battery cell CC1 is the main carrier of output energy
  • the fuse CR1 is used to control the abnormal large current discharge fault of the branch corresponding to the battery cell
  • the series branch of the fuse CR2 and the impedance matching resistor RR1 is used to control the correction of the conductive branch after the branch corresponding to the fuse CR1 is mistakenly blown.
  • the power conversion unit includes a capacitor C1, a power switch tube Q1 and a power switch tube Q2 connected to the capacitor C1, an energy storage inductor L1 connected to the power switch tube Q2, a power switch tube Q3 and a power switch tube Q4 connected to the energy storage inductor L1, and a capacitor C2 connected to the power switch tube Q4, wherein a relay T1 is connected in parallel at both ends of the energy storage inductor L1.
  • the power switch tubes Q1 to Q4 are connected to the power conversion string control unit corresponding to the power conversion unit, and the relay T1 is connected to the power conversion string control unit.
  • the power conversion string control unit is used to control the opening and closing of the power switch tubes Q1 to Q4 and the relay T1.
  • the power supply system includes an external output bus, and the power conversion string control unit is used to:
  • the relay T1 When the external output bus charges the battery string unit through the power conversion unit, if the voltage of the external output bus is higher than the voltage of the battery string unit, the relay T1 is controlled to be disconnected, the power switch tube Q1 is controlled to be normally on, and the power switch tube Q2 is controlled to be normally off, and the power switch tubes Q3 and Q4 are controlled to be alternately turned on, and the power conversion unit is adjusted to a buck topology structure;
  • the power switch tube Q3 is controlled to be normally on, and the power switch tube Q4 is controlled to be normally off, and the power switch tubes Q1 and Q2 are controlled to be alternately turned on, and the power conversion unit is adjusted to a boost topology.
  • the power conversion string management unit is used to:
  • the relay T1 When the battery string unit discharges to the external output bus through the power conversion unit, if the voltage of the external output bus is higher than the voltage of the battery string unit, the relay T1 is controlled to be disconnected, the power switch tube Q1 is controlled to be normally on, and the power switch tube Q2 is controlled to be normally off, and the power switch tubes Q3 and Q4 are controlled to be alternately turned on, and the power conversion unit is adjusted to a boost topology structure;
  • the power switch Q3 is controlled to The power switch tube Q1 and the power switch tube Q2 are controlled to be alternately turned on, and the power conversion unit is adjusted to a buck topology.
  • the power conversion string control unit corresponding to the first target battery string unit is used to control the switch state of the power conversion unit corresponding to the first target battery string unit;
  • the power conversion string control unit corresponding to the second target battery string unit is used to control the switch state of the power conversion unit corresponding to the second target battery string unit and adjust the topology structure corresponding to the power conversion unit.
  • the power conversion string control unit corresponding to the first target battery string unit is used to:
  • the power conversion string control unit corresponding to the second target battery string unit is used for:
  • the switch state of the power conversion unit corresponding to the second target battery string unit is controlled, and the topology structure corresponding to the power conversion unit is adjusted to control the charge and discharge between the first target battery string unit and the second target battery string unit.
  • the state monitoring management unit includes output total voltage detection, output total current detection, and an output switch, wherein the output switch is used to receive a control instruction sent from the high-voltage battery power master control unit.
  • the embodiment of the present application also discloses a power supply method for a server, which is applied to a power supply system of the server, wherein the power supply system includes at least one power supply module, which includes at least a high-voltage battery power master control unit, at least one power conversion string control unit, at least one battery string control unit, and a state monitoring management unit respectively connected to the high-voltage battery power master control unit, and a power conversion unit connected to the power conversion string control unit, and a battery string unit connected to the battery string control unit; wherein each battery string unit is correspondingly connected to a power conversion unit, and each power conversion unit is connected in parallel and then connected to the state monitoring management unit; the method includes:
  • the status information table corresponding to the battery string unit is sent to the high-voltage battery power master control unit through the battery string control unit;
  • the power conversion string control unit receives the power control instruction generated by the high-voltage battery power master control unit according to the state information table, and controls the power conversion unit to obtain the output voltage from the battery string unit according to the power control instruction;
  • the output voltage is adjusted from a first preset voltage range to a second preset voltage range by a power conversion unit, and the adjusted output voltage is transmitted to a state monitoring management unit, wherein the second preset voltage range is within the first preset voltage range;
  • the status monitoring management unit calculates the total output power according to the adjusted output voltage and Power is delivered to the server.
  • the method further comprises:
  • the power information of the battery string units is collected through the battery string control unit, and the health status of the battery string units is analyzed using the power information to generate a status information table corresponding to the battery string units.
  • the power information includes a variety of voltage, current and temperature signals in the battery string unit.
  • the power information of the battery string unit is collected by the battery string control unit, and the health status of the battery string unit is analyzed using the power information to generate a status information table corresponding to the battery string unit, including:
  • the battery string control unit collects various voltage, current and temperature signals of the battery string units, and uses the various voltage, current and temperature signals to analyze the health status of the battery string units to generate a status information table.
  • the method further comprises:
  • the high-voltage battery power master control unit receives the status information table sent by the battery string control unit, compares the status information table with the preset total output data, generates switch control instructions and power control instructions, and sends the switch control instructions to the battery string control unit, and sends the power control instructions to the power conversion string control unit corresponding to the battery string control unit.
  • controlling the switch state of the battery string unit according to the switch control instruction includes:
  • the switch control command is converted into a switch control signal by the battery string control unit, and the switch control signal is sent to the battery string unit;
  • the battery string unit controls the switch power tube in the battery string unit to switch to a switch state corresponding to the switch control signal.
  • controlling the power conversion unit to obtain an output voltage from the battery string unit according to the power control instruction includes:
  • the power control command is converted into a power control signal by the power conversion string control unit, and the power control signal is sent to the power conversion unit;
  • the power conversion unit performs a voltage acquisition operation corresponding to the power control signal, and acquires the output voltage from the battery string unit corresponding to the power conversion unit.
  • the method further comprises:
  • a preset power threshold is used by the power conversion unit to reallocate power to the battery string units other than the faulty battery string unit.
  • the method further comprises:
  • the input voltage state and output voltage state of the power conversion unit are adjusted by the power conversion unit, and the output voltage of the battery cell in the battery string unit corresponding to the power conversion unit is adjusted from the first preset voltage range to the second preset voltage range, and the second preset voltage range is within the first preset voltage range.
  • the power conversion string control unit receives the voltage conversion instruction sent by the high-voltage battery power master control unit, executes the voltage conversion instruction, and controls the voltage conversion between the power conversion units corresponding to the voltage conversion instruction.
  • the method further comprises:
  • the total output power sent by the status monitoring management unit is received through the high-voltage battery power master control unit, and the power supply module is controlled to output the total output power to the server as the total power output value of the server.
  • the power supply module is controlled to output a preset total power output value as the total power output value of the server to the server.
  • the method further comprises:
  • the total output power, or the preset total power output value is evenly distributed to each battery string unit through the high-voltage battery power master control unit;
  • the high-voltage battery power master control unit determines the power of the abnormal battery string unit according to the preset derated output power, and calculates based on the total output power, or the preset total power output value, and the power of the abnormal battery string unit to determine the power corresponding to the remaining battery string units that meet the preset power conditions.
  • the method further comprises:
  • the shutdown control instruction sent by the high-voltage battery power control unit is obtained through the battery string control unit, and the shutdown operation corresponding to the shutdown control instruction is executed to shut down the power output of the adjusted battery string unit.
  • the method further comprises:
  • a discharge control instruction is issued to the power conversion string control unit corresponding to the relatively high-voltage battery string unit to control the relatively high-voltage battery string unit to discharge to the relatively low-voltage battery string unit.
  • the method further comprises:
  • a bypass control instruction is sent to the relatively high-voltage battery string unit through the high-voltage battery power master control unit, or the battery string control unit corresponding to the relatively high-voltage battery string unit, to control the relatively high-voltage battery string unit to bypass the first battery cell.
  • the method further comprises:
  • a bypass control instruction is sent to the relatively low-voltage battery string unit through the high-voltage battery power master control unit, or the battery string control unit corresponding to the relatively low-voltage battery string unit, to control the relatively low-voltage battery string unit to bypass the second battery cell.
  • the method further comprises:
  • a bypass control instruction is sent to the battery string unit corresponding to the low-voltage battery cell through the high-voltage battery power master control unit to control the bypass of the low-voltage battery cell;
  • the high-voltage battery power master control unit controls the bypass state of the low-voltage battery cell to enable the high-voltage battery cell to bypass the bypass state.
  • the high-voltage battery cells and low-voltage battery cells are discharged at the same time.
  • the method further comprises:
  • a bypass control instruction is sent to the abnormal battery string unit corresponding to the abnormal battery cell through the high-voltage battery power control unit to control the abnormal battery string unit to bypass the abnormal battery cell.
  • the method further comprises:
  • a battery string unit having any bypassed battery cell is determined as a bypassed battery string unit by a high-voltage battery power master control unit. If the bypassed battery string unit is in a discharging state, the health state of the bypassed battery cell in the bypassed battery string unit and the health state of other battery string units are analyzed. Based on the analysis result, the total output power is used to adjust the power distribution of the bypassed battery string unit.
  • the power conversion unit corresponding to the bypass battery string unit is controlled to continue charging the third battery cell in the bypass battery string unit whose charging value is less than the preset charging threshold, and when the charging value of the third battery cell is greater than or equal to the preset charging threshold, the third battery cell is controlled to be bypassed.
  • the method further comprises:
  • the high-voltage battery power master control unit controls the power switch tube of the bypass battery string unit to disconnect the bypass state of the bypassed battery cell.
  • the method further comprises:
  • a charging control instruction is sent to the power conversion string control unit corresponding to the power conversion unit through the high-voltage battery power master control unit, so that the power conversion string control unit executes the charging control instruction and controls the opening and closing state of the power switch tube of the power conversion unit to control the charging of the battery string unit corresponding to the power conversion unit.
  • the power supply module includes an overall battery pack power unit, which includes a total voltage and current detection unit, at least one power conversion management unit connected in parallel with the total voltage and current detection unit, a voltage and current detection unit connected to the power conversion management unit, and a battery string unit connected to the voltage and current detection unit, wherein each power conversion management unit is correspondingly connected to a voltage and current detection unit, each power conversion management unit is composed of a power conversion unit and a corresponding power conversion string control unit, and each battery string unit is composed of multiple battery power combination monomers connected in series.
  • the method further comprises:
  • the total voltage and current information after each series branch is connected in parallel is detected by a total voltage and current detection unit;
  • the total voltage and current information as well as individual voltage and current information are received by the high-voltage battery power master control unit to control the charging and discharging of each battery string unit.
  • the battery power combination cell includes a battery cell CC1, a switching power tube CQ1 and a switching power tube CQ2 connected to the battery cell CC1, a fuse CR1 and a fuse CR2 connected to the switching power tube CQ2, and an impedance matching resistor RR1 connected to the fuse CR2, wherein the fuse CR2 is connected in series with the impedance matching resistor RR1 and then connected in parallel with the fuse CR1.
  • the switch power tube CQ1 and the switch power tube CQ2 are respectively connected to the battery string control unit corresponding to the battery power combination monomer; a voltage monitoring point is set between the drain and the source of the switch power tube CQ1, and a temperature collection point is set at the power integration of the switch power tube CQ1 and the battery monomer CC1.
  • the method also includes:
  • the voltage information of the voltage monitoring point and the temperature information of the temperature monitoring point are collected through the battery string control unit.
  • the battery cell CC1 is the main carrier of output energy, and the method further includes:
  • the high current discharge fault abnormality of the branch corresponding to the battery cell is controlled by the fuse CR1, and the conduction branch correction after the branch corresponding to the fuse CR1 is mistakenly blown is controlled by the series branch of the fuse CR2 and the impedance matching resistor RR1.
  • the power conversion unit includes a capacitor C1, a power switch tube Q1 and a power switch tube Q2 connected to the capacitor C1, an energy storage inductor L1 connected to the power switch tube Q2, a power switch tube Q3 and a power switch tube Q4 connected to the energy storage inductor L1, and a capacitor C2 connected to the power switch tube Q4, wherein a relay T1 is connected in parallel at both ends of the energy storage inductor L1.
  • the power switch tubes Q1 to Q4 are connected to the power conversion string control unit corresponding to the power conversion unit, the relay T1 is connected to the power conversion string control unit, and the method further includes:
  • the power conversion string control unit controls the opening and closing of the power switches Q1 to Q4 and the relay T1.
  • the power supply system includes an external output bus, and the method further includes:
  • the power conversion string control unit controls the disconnect relay T1, controls the power switch tube Q1 to be normally on, controls the power switch tube Q2 to be normally off, controls the power switch tube Q3 and the power switch tube Q4 to be alternately turned on, and adjusts the power conversion unit to a buck topology structure;
  • the power conversion string control unit controls the power switch tube Q3 to be normally on, and controls the power switch tube Q4 to be normally off, controls the power switch tube Q1 and the power switch tube Q2 to be alternately turned on, and adjusts the power conversion unit to a boost topology.
  • the method further comprises:
  • the power conversion string control unit controls the disconnect relay T1, controls the power switch tube Q1 to be normally on, controls the power switch tube Q2 to be normally off, controls the power switch tube Q3 and the power switch tube Q4 to be alternately turned on, and adjusts the power conversion unit to a boost topology structure;
  • the power conversion string control unit controls the power switch tube Q3 to be normally on, and controls the power switch tube Q4 to be normally off, controls the power switch tube Q1 and the power switch tube Q2 to be alternately turned on, and adjusts the power conversion unit to a buck topology.
  • the method further comprises:
  • the switch state of the power conversion unit corresponding to the first target battery string unit is controlled by the power conversion string control unit corresponding to the first target battery string unit;
  • the power conversion string control unit corresponding to the second target battery string unit controls the switch state of the power conversion unit corresponding to the second target battery string unit, and adjusts the topology structure corresponding to the power conversion unit.
  • the method further comprises:
  • the power conversion string control unit corresponding to the first target battery string unit controls the switch state of the power conversion unit corresponding to the first target battery string unit to reduce the voltage difference between the first target battery string unit and the second target battery string unit;
  • the power conversion string control unit corresponding to the second target battery string unit controls the switching state of the power conversion unit corresponding to the second target battery string unit, and adjusts the topology structure corresponding to the power conversion unit to control the charging and discharging between the first target battery string unit and the second target battery string unit.
  • the state monitoring management unit includes output total voltage detection, output total current detection and output switch, and the method further includes:
  • the control command sent from the high-voltage battery power control unit is received through the output switch.
  • the embodiment of the present application also discloses an electronic device, including a processor, a communication interface, a memory and a communication bus, wherein the processor, the communication interface and the memory communicate with each other via the communication bus;
  • Memory used to store computer programs
  • the processor is used to implement the method of the embodiment of the present application when executing the program stored in the memory.
  • the embodiment of the present application also discloses a computer non-volatile readable storage medium having instructions stored thereon, which, when executed by one or more processors, enables the processors to execute the method as in the embodiment of the present application.
  • a power supply system and method for a server are provided.
  • main circuit structures such as a high-voltage battery power master control unit, a battery string control unit, and a power conversion string control unit, real-time collection and analysis of power information of each subsystem in the power supply system are achieved.
  • the high-voltage battery power master control unit can also issue corresponding control instructions to each subsystem based on the analysis results to achieve power control of each subsystem, thereby controlling the total output power of the server.
  • the entire main power path is simple and reliable, and there is no need to convert the high-voltage DC power supply on the input side into electric energy.
  • the design structure between the high-voltage DC power supply inlet and the server power inlet is simplified, which can effectively improve the working efficiency of the power supply system and reduce heat loss.
  • the power demand of the server can be ensured, and the conversion efficiency and working reliability of the power supply system can be guaranteed.
  • FIG1 is a schematic diagram of the structure of an existing data center power supply system
  • FIG2 is a circuit structure block diagram of a power supply module in a power supply system of a server provided in an embodiment of the present application;
  • FIG3 is a circuit structure block diagram of an integrated battery pack power unit provided in an embodiment of the present application.
  • FIG4 is a circuit structure block diagram of a battery power combination monomer provided in an embodiment of the present application.
  • FIG5 is a circuit structure block diagram of a power conversion unit provided in an embodiment of the present application.
  • FIG6 is a flowchart of a method for powering a server provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of a computer-readable medium provided in an embodiment of the present application.
  • FIG8 is a block diagram of an electronic device provided in an embodiment of the present application.
  • FIG. 1 a schematic diagram of the structure of an existing data center power supply system is shown:
  • the data center system structure mainly includes two parts: UPS and communication equipment.
  • UPS Uninterruptible Power System/Supply
  • the UPS is equipped with AC/DC (Alternating Current/Direct Current) conversion, DC/AC (Direct Current/Alternating Current) conversion and battery pack.
  • the PDU Power Distribution Unit
  • the 380V high-voltage AC power can be converted into 220V AC power and output to the communication equipment.
  • PSU Power Supply Unit
  • DC/DC Direct Current/Direct Current, converting fixed DC voltage into variable DC voltage
  • the process of realizing uninterruptible power supply of the data center server through UPS involves the conversion of mains power and the charging and discharging of the internal battery.
  • the UPS will filter and stabilize the mains power and provide it to the server power supply of the data center, and charge the internal battery assembly of the UPS at the same time.
  • the UPS will immediately convert the DC power in the battery assembly into AC power through the inverter to supply the server power supply of the data center.
  • the AC/DC conversion and DC/AC conversion of the UPS are the main links of energy loss in the power transmission of the entire power supply system, and the efficiency loss of each conversion between AC and DC is about 5%, and the converted AC power also needs to be PFC circuit to improve the power factor, which leads to an additional level of conversion loss.
  • the multiple losses of energy conversion lead to low power efficiency and large heat loss of the high-power server in the data center.
  • the UPS power supply is located in the main power path, and the heat accumulation caused by high power and long-term uninterrupted operation greatly increases the power failure rate, thereby seriously affecting the power reliability of the data center server.
  • the cost and volume of the data center power supply system will be greatly increased.
  • one of the core inventions of the embodiment of the present application is to provide a simpler and more reliable server power supply system and method, through the coordinated work of the main circuit structures such as the high-voltage battery power master control unit, the battery string control unit and the power conversion string control unit, the power information of each subsystem in the power supply system can be collected and analyzed in real time, and the high-voltage battery power master control unit can also send out control messages to each subsystem according to the analysis results.
  • the corresponding control instructions are used to realize power control of each subsystem, thereby controlling the total output power of the server.
  • the entire main power path is simple and reliable. There is no need to convert the high-voltage DC power supply on the input side into electric energy.
  • the design structure between the high-voltage DC power supply inlet and the server power inlet is simplified, which can effectively improve the working efficiency of the power supply system and reduce heat loss.
  • the main power supply system outside the server works abnormally, it can ensure the power demand of the server and ensure the conversion efficiency and working reliability of the power supply system.
  • the circuit structure block diagram may specifically include:
  • a high-voltage battery power master control unit at least one power conversion string control unit, at least one battery string control unit, and a state monitoring management unit connected to the high-voltage battery power master control unit, and a power conversion unit connected to the power conversion string control unit and a battery string unit connected to the battery string control unit; wherein each battery string unit is correspondingly connected to a power conversion unit, and each power conversion unit is connected in parallel and then connected to the state monitoring management unit;
  • the entire power supply system not only includes one power supply module, but also when one of the power supply modules fails, the power supply system can also use other power supply modules and the external output bus for charging and discharging to achieve power supply redundancy for the server. It can be understood that this application does not impose any restrictions on this.
  • the power supply module in the power supply system may include 1 high-voltage battery master control unit; m battery string units, namely battery string unit 1, battery string unit 2, and so on to battery string unit m; m power conversion units, namely power conversion unit 1, power conversion unit 2, and so on to power unit m; m battery string control units, namely battery string control unit 1, battery string control unit 2, and so on to battery string control unit m; m power conversion string control units, namely power conversion string control unit 1, power conversion string control unit 2, and so on to power conversion string control m.
  • the output of battery string unit 1 is connected to the input of power conversion unit 1, the output of battery string unit 2 is connected to the input of power conversion unit 2, and so on, the output of battery string unit m is connected to power conversion unit m; the outputs of power conversion unit 1 to power conversion unit m are all connected in parallel, and the common end of the parallel connection is connected to the input of the status monitoring management unit, and the output of the status monitoring management unit is connected to the total power output port, wherein the value of m is determined by the total power demand of the data center, the power supply of a single battery string unit, and the derating requirement value.
  • the value of m can be 3, 4, 5, 6 or more. It can be understood that the present application does not impose any restrictions on this.
  • all battery string units can be connected to the battery string control unit through the sampling and control line (battery string unit 1 is connected to the battery string control unit 1, and so on, battery string unit m is connected to the battery string control unit m), and at the same time all battery string control units (battery string control unit 1 to battery string control unit m) can be connected to the communication bus of the high-voltage battery power master control unit through the communication line.
  • the control process of the battery string unit can be specifically as follows: the battery string control unit can collect power information from the battery string unit that reflects the state of charge and charging and discharging working state of each battery cell in the battery pack in real time through the acquisition and control line, such as a variety of voltage, current, and temperature signals.
  • the health status of the battery string unit is analyzed by combining multiple signals, and a status information table that can reflect the health status information of the battery string unit is generated according to the status analysis results, and sent to the high-voltage battery power master control unit.
  • the high-voltage battery power master control unit can compare the status information table with the preset total output data according to the total power supply output status, and further comprehensively judge the real health status of the battery string unit in combination with the battery cell voltage warning value of the battery pack, and generate a switch control instruction.
  • the battery string control unit further converts the switch control instruction into a switch control signal, and sends the switch control signal to the power switch tube in the battery string unit.
  • the battery string unit can control the switch power tube in the battery string unit to switch to a switch state corresponding to the switch control signal, thereby controlling the closed state of the power tube switches in different battery string units to achieve state regulation of each battery string unit in the overall battery pack.
  • the high-voltage battery power master control unit can send the power control instruction to the power conversion string control unit corresponding to the battery string control unit.
  • SOC State of charge
  • All power conversion units can be connected to the power conversion string control unit through the sampling and control line (power conversion unit 1 is connected to the power conversion string control unit 1, and so on, power conversion unit m is connected to the power conversion string control unit m), wherein the power conversion units (power conversion unit 1 to power conversion unit m) are bidirectional power conversion units, and the voltage and current signals on the input and output sides, as well as the temperature signals of the key power hotspots can be transmitted to the power conversion string control unit through the sampling and control line.
  • the main control chip in the power conversion string control unit can calculate and process the collected voltage, current, and temperature data information of the power conversion unit to form the health status information of the power conversion unit.
  • the power conversion string control unit can transmit the control signal to the power switch tube in the power conversion unit through the sampling and control line, so as to realize the voltage and current conversion function between different inputs and outputs of the power conversion unit by controlling the different transient switching states of the power switch tube inside the power conversion unit.
  • the status monitoring management unit can be connected to the communication bus of the high-voltage battery power control unit via a communication line.
  • the status monitoring management unit includes output total voltage detection, total current detection, and an output switch, wherein the output switch is used to receive control instructions sent from the high-voltage battery power control unit.
  • All power conversion string control units can be connected to the communication bus of the high-voltage battery power master control unit through a communication line.
  • the high-voltage battery master control unit can collect data information from each battery string control unit and the status monitoring control unit through the communication bus.
  • the comprehensive processing chip of the high-voltage battery power master control unit can further send power control instructions to the power conversion string control unit through the communication bus after analyzing and processing the received data information, so that the power conversion string control unit obtains the input voltage, input current, output voltage, and output current states that need to be completed, and the power conversion string control unit can convert the received power control instruction into a power control signal, and send the power control signal to the power conversion unit.
  • MCU Micro Controller Unit
  • DSP Digital Signal Processing
  • the conversion unit can perform a voltage acquisition operation corresponding to the power control signal, obtain the corresponding output voltage from the battery string unit corresponding to the power conversion unit, and adjust the output voltage from the first preset voltage range to the second preset voltage range, wherein the second preset voltage range is within the first preset voltage range, that is, the output voltage of the battery string unit with large fluctuations can be adjusted to an output voltage with higher precision to achieve voltage stabilization output, and the adjusted output voltage is transmitted to the status monitoring management unit, the status monitoring management unit can obtain the current in each battery string unit, and use the current and the adjusted output voltage to calculate the total output power, and output the total output power to the server via the high-voltage battery power master control unit, then the high-voltage battery power master control unit can be specifically used to receive the total output power sent by the status monitoring management unit through the communication bus, and control the power supply module in the power supply system to output the total output power to the server as the total power output value of the server, or control the power supply module in the power supply system to output the preset total power output value
  • the different power conversion string control units here can have the same input voltage, input current, output voltage, and output current state, or can have different input voltage, input current, output voltage, and output current states.
  • the battery string unit output and the corresponding power conversion unit input are connected in series. If a fault is detected in the battery string unit, the power conversion unit can also use a preset power threshold to redistribute power to the battery string units other than the faulty battery string unit.
  • the output voltage of the battery cell in the battery string unit corresponding to the power conversion unit can be adjusted from a first preset voltage range to a second preset voltage range by controlling the input voltage and output voltage state of the power conversion unit, wherein the second preset voltage range is within the first preset voltage range, so that the wide range output voltage accuracy of each battery cell in the battery string unit can be converted into a high-precision output voltage, and the high-precision voltages output by a total of m power conversion units (1 to m) are connected in parallel to provide a total output power, wherein, if one or more power conversion units are abnormal, the total voltage will be output to each battery string unit to determine the power bearing capacity of each corresponding power conversion unit, and the remaining m values will be redistributed to the power bearing size of the power conversion units with normal functions.
  • the voltage on the input side of the power conversion unit is determined by the output voltage of the battery string units connected in series, while the power state (including voltage and current values) on the output side of the power conversion unit is controlled by the corresponding power conversion string control unit, and the specific power output value controlled by it is determined by the power control instruction sent by the high-voltage battery power master control unit.
  • the high-voltage battery power master control unit can send specific output power values to m power conversion string control units after comprehensive judgment based on the state information values of each battery string unit collected, and the power output values executed by each power conversion string control unit can be the same or different.
  • the above-mentioned comprehensive judgment process for the status information value of each battery string unit is mainly as follows: determine whether there are abnormal battery cells inside each battery string unit, and compare the total output voltage of the battery string unit with the abnormal cell with the average value of the total voltage of all remaining battery string units. If the comparison result indicates that the total output voltage value is greatly different, it is necessary to reduce the power borne by the battery string unit with the abnormal cell, and redistribute the power according to the total output voltage. In addition, when there are a large number of abnormal cells in a battery string unit and a large number of closed power switch tubes, it is necessary to monitor the battery string unit to further determine whether there is a fault in the battery string unit.
  • any two power conversion units can be connected Voltage conversion, to realize the charging and discharging relationship between different battery string units, such as battery string unit 1, battery string unit 2 or battery string unit m, any two battery string units are charged and discharged.
  • the high-voltage battery power master control unit can send a voltage conversion instruction to the power conversion string control unit, and the power conversion string control unit can receive the voltage conversion instruction sent by the high-voltage battery power master control unit, and execute the voltage conversion instruction to control the voltage conversion between the power conversion units corresponding to the voltage conversion instruction.
  • the high-voltage battery power master control unit can send a voltage conversion instruction to the power conversion string control unit
  • the power conversion string control unit can receive the voltage conversion instruction sent by the high-voltage battery power master control unit, and execute the voltage conversion instruction to control the voltage conversion between the power conversion units corresponding to the voltage conversion instruction.
  • it is determined by the high-voltage battery power master control unit after collecting the data information of each battery string control unit and processing the data.
  • each battery string unit branch can be judged based on the health status information of each battery string unit transmitted from the battery string control unit to the high-voltage battery power control unit, and the health status information of each power conversion unit transmitted from the power conversion string control unit to the high-voltage battery power control unit.
  • the high-voltage battery power master control unit can send the total output power, or the preset total power output value, in the form of a control instruction to each battery string control unit to achieve average distribution to each battery string unit.
  • abnormal battery string units whose power information does not meet the preset power conditions such as abnormal health status of battery string units and power conversion units in a battery string unit branch, for example, low voltage of battery cells in the battery string unit or high temperature of power tube
  • the power of the abnormal battery string unit is determined according to the preset derating output power, and the power corresponding to the remaining battery string units that meet the preset power conditions is calculated based on the total output power, or the preset total power output value, and the power of the abnormal battery string unit, such as reducing the power of the abnormal battery string unit to 80% of the average output power, and the remaining branches shall bear the remaining power on average.
  • the corresponding battery string management and control unit can obtain the shutdown control instruction sent by the high-voltage battery power master control unit, and execute the shutdown operation corresponding to the shutdown control instruction to shut down the power output of the adjusted battery string unit.
  • the data center operator can be informed through the communication bus or panel abnormal display to perform maintenance in a timely manner.
  • the preset power condition can be that the voltage/current of each battery string unit and each power conversion unit is stable and does not exceed the threshold.
  • the peak voltage, minimum voltage, maximum discharge current and charging current of each battery cell in each battery string unit all have standard values. These standard values can be preset as thresholds, and then a critical threshold can be set as an early warning value.
  • the voltage difference between any two battery string units can be evaluated by the high-voltage battery power master control unit. Specifically, the output power of each battery string unit can be analyzed using a status information table and a preset output power, and the voltage difference between any two battery string units can be determined based on the analysis result. The voltage difference between the two battery string units with a voltage difference is then compared with a first preset voltage difference threshold. When the voltage difference is greater than or equal to the first preset voltage difference threshold, it indicates that the voltage difference between the two battery string units is large. At this time, a discharge control instruction can be issued to the power conversion string control unit corresponding to the relatively high-voltage battery string unit to control the relatively high-voltage battery string unit to discharge to the relatively low-voltage battery string unit.
  • the voltage difference between the cells is mainly obtained by comparing and analyzing the total output voltage of the battery pack and the output current value, average output voltage, maximum output voltage and minimum output voltage of each battery string unit.
  • the relatively high-voltage battery string unit here refers to a battery string unit with a higher voltage compared with the two battery string units.
  • the relatively low-voltage battery string unit refers to a battery string unit with a lower voltage compared with the two battery string units. It can be understood that the present application does not impose any restrictions on this.
  • a bypass control instruction can be sent to the relatively high-voltage battery string unit through the high-voltage battery power master control unit, or the battery string control unit corresponding to the relatively high-voltage battery string unit, to control the relatively high-voltage battery string unit to bypass the first battery cell.
  • a bypass control instruction may be issued to the relatively low-voltage battery string unit through the high-voltage battery power master control unit or the battery string control unit corresponding to the relatively low-voltage battery string unit to control the relatively low-voltage battery string unit to bypass the second battery cell.
  • the battery string unit When the battery string unit is discharged, there may be two battery cells with a large voltage difference in the same battery string unit or between any two battery string units.
  • the voltage of one battery cell is 4V and the voltage of the other battery cell is 2V.
  • the voltage difference between the two battery cells is greater than a preset value, such as greater than 5mV, the 2V low-voltage battery cell needs to be bypassed first, and the 4V high-voltage battery cell needs to be discharged first.
  • the bypass state of the low-voltage battery cell is released, so that the two battery cells can be discharged.
  • a bypass control instruction can be issued to the battery string unit corresponding to the low-voltage battery cell through the high-voltage battery power master control unit to control the bypass of the low-voltage battery cell.
  • the high-voltage battery power master control unit can be used to control the release of the bypass state of the low-voltage battery cell, so that the high-voltage battery cell and the low-voltage battery cell can be discharged simultaneously.
  • the high-voltage battery power master control unit or the corresponding battery string control unit can issue a control instruction to control the power switch tubes in parallel of the battery cells in the battery string unit to conduct, bypass the battery cell, and make the battery cell exit the working state.
  • a bypass control instruction can be issued to the abnormal battery string unit corresponding to the abnormal battery cell through the high-voltage battery power master control unit to control the abnormal battery string unit to bypass the abnormal battery cell.
  • the high-voltage battery power master control unit can control the power of the battery string unit according to the health status of the abnormal battery cell in the abnormal battery string unit and the health status of other battery string units in the above-mentioned power distribution.
  • the power distribution mode is to adjust the input voltage and output voltage state of the power conversion unit connected in series with the battery string unit branch, as well as the power distribution of different battery string unit branches. If a battery cell failure continues to occur during the power distribution process, the process is repeated.
  • a battery string unit in which any bypass battery cell exists can be determined as a bypass battery string unit. If the bypass battery string unit is in a discharging state, the health status of the bypassed battery cells and the health status of other battery string units in the bypass battery string unit can be analyzed by the high-voltage battery power master control unit. Based on the analysis result, the power distribution of the bypass battery string unit is adjusted using the total output power.
  • the power conversion unit corresponding to the bypass battery string unit is controlled to continue charging the third battery cell in the bypass battery string unit whose charging value is less than a preset charging threshold, and when the charging value of the third battery cell is greater than or equal to the preset charging threshold, the third battery cell is controlled to be bypassed, so that all battery cells can maintain a good charging and discharging state.
  • the high-voltage battery power control unit can be used to control the power switch tube of the bypassed battery string unit to disconnect, so as to release the bypass state of the bypassed battery cell.
  • the high-voltage battery power master control unit can issue instructions to the power conversion string control unit.
  • the power conversion string control unit controls the opening and closing states of the power switch tube of the power conversion unit through the sampling control line, thereby realizing the charging of the battery string unit by the output bus.
  • a charging control instruction can be sent to the power conversion string control unit corresponding to the power conversion unit through the high-voltage battery power master control unit, so that the power conversion string control unit executes the charging control instruction and controls the opening and closing state of the power switch tube of the power conversion unit to control the charging of the battery string unit corresponding to the power conversion unit.
  • the power supply module in the power supply system includes an integral battery pack power unit.
  • an integral battery pack power unit Referring to FIG. 3 , a circuit structure block diagram of an integral battery pack power unit provided in an embodiment of the present application is shown.
  • the circuit structure block diagram may specifically include:
  • a total voltage and current detection unit at least one power conversion management unit connected in parallel with the total voltage and current detection unit, a voltage and current detection unit connected to the power conversion management unit, and a battery string unit connected to the voltage and current detection unit, wherein each power conversion management unit is correspondingly connected to a voltage and current detection unit, each power conversion management unit is composed of a power conversion unit and a corresponding power conversion string control unit, and each battery string unit is composed of a plurality of battery power combination monomers connected in series.
  • the total voltage and current detection unit is connected to the positive output of the power supply, the total voltage and current detection unit is connected to the common end of each power conversion management unit connected in parallel, each power conversion management unit is connected in series with each voltage and current detection unit, each voltage and current detection unit is connected in series with the output end of each battery string unit, and the common end of each battery string unit connected in parallel is connected to the negative output of the power supply, that is,
  • the overall battery pack power unit can be regarded as consisting of N battery power combination monomers connected in series and then in parallel, with the number of parallel connections being m, where the specific values of N and m are determined according to the power demand and derating requirements of the entire data center application.
  • the positive electrode of the battery power combination monomer n1 is connected in series with the negative electrode of the battery power combination monomer n2, and so on, the negative electrode of the battery power combination monomer nN-1 is connected in series, the positive electrode of the battery power combination monomer nN-1 is connected in series with the negative electrode of the battery power combination monomer nN, and the positive electrode of the battery power combination monomer nN is connected in series to the voltage and current detection unit 1 and then connected in series to the power conversion management unit 1;
  • the positive electrode of the battery power combination monomer 2n1 is connected in series with the negative electrode of the battery power combination monomer 2n2, and so on and so forth, the negative electrode of the battery power combination monomer 2nN-1 is connected in series with the negative electrode of the battery power combination monomer 2nN, and the positive electrode of the battery power combination monomer 2nN is connected in series with the voltage and current detection unit 2 and then connected in series with the power conversion management unit 2;
  • the positive electrode of the battery power combination monomer mn1 is connected in series with the negative electrode of the battery power combination monomer mn2, and by analogy, the negative electrode of the battery power combination monomer mnN-1 is connected in series, the positive electrode of the battery power combination monomer mnN-1 is connected in series with the negative electrode of the battery power combination monomer mnN, and the positive electrode of the battery power combination monomer mnN is connected in series with the voltage and current detection unit m and then connected in series with the power conversion management unit m;
  • the negative electrode of the battery power combination monomer n1 and the negative electrode of the battery power combination monomer 2n1, and so on, the negative electrode of the battery power combination monomer mn1 are connected in parallel to form the output negative electrode of the overall battery pack power unit;
  • the output side of the power conversion management unit 1 and the output side of the power conversion management unit 2 are connected in parallel, and so on to the output side of the power conversion management unit m, and then connected to the total voltage and current detection unit to form the output positive electrode of the overall battery pack power unit.
  • the voltage and current detection unit can be used to detect the voltage and current information of the series branch composed of N battery power combination monomers, and the total voltage and current detection unit can be used to detect the total voltage and current information after the m series branches are connected in parallel.
  • the voltage and current information is finally sent to the high-voltage battery power master control unit through their respective communication buses for comprehensive data processing, battery charging and discharging management and energy flow safety management, etc.
  • the high-voltage battery power master control unit can be used to receive the total voltage and current information and the individual voltage and current information to control the charging and discharging of each battery string unit.
  • each battery string unit includes a plurality of battery power combination monomers.
  • FIG. 4 a circuit structure block diagram of a battery power combination monomer provided in an embodiment of the present application is shown.
  • the circuit structure block diagram may specifically include:
  • the positive electrode of the battery cell CC1 is connected to the drain of the switch power tube CQ2
  • the source of the battery string unit switch power tube CQ2 is connected to one end of the fuse CR1
  • the other end of the battery string unit fuse CR1 is connected to the drain of the switch power tube CQ1
  • the source of the battery string unit switch power tube CQ1 is connected to the negative electrode of the battery string unit battery cell CC1
  • the fuse CR2 is connected in series with the impedance matching resistor RR1 and the battery string unit fuse Breaker CR1 is connected in parallel.
  • the switching power tube CQ1 and the switching power tube CQ2 are respectively connected to the battery string control unit corresponding to the battery power combination monomer.
  • the gate of the switching power tube CQ1 and the gate of the switching power tube CQ2 are respectively connected to the battery string control unit corresponding to the battery string unit to which the battery power combination monomer belongs.
  • the battery string control unit can control the conduction and shutdown of the switching power tube to achieve fault isolation of the battery monomer.
  • the switching power tube CQ1 and the switching power tube CQ2 are in a complementary conduction and shutdown relationship.
  • a voltage monitoring point is set between the drain and source of the switching power tube CQ1, and a temperature collection point is set at the power integration of the switching power tube CQ1 and the battery cell CC1.
  • the battery string control unit can collect voltage information from the voltage monitoring point and temperature information from the temperature monitoring point through the control line.
  • the battery cell CC1 is the main carrier of output energy.
  • the fuse CR1 is used to control the large current discharge fault abnormality of the corresponding branch of the battery cell.
  • the series branch of the fuse CR2 and the impedance matching resistor RR1 is used to control the correction of the conduction branch after the corresponding branch of the fuse CR1 is mistakenly blown, and when the battery cell CC1 has an overcurrent abnormality, when the battery cell CC1 branch is disconnected, it provides sufficient response time for the closing of the switching power tube CQ1.
  • the fusing capacity can be controlled and the on-resistance loss can be appropriately reduced. Since there is an impedance matching resistor in the fuse CR2 branch, when the circuit works normally, the current flows through the branch of the fuse CR1, which can reduce the on-resistance loss.
  • a power switch tube CQ2 is introduced inside the battery power combination monomer, and CQ1 and CQ2 are complementary to each other, so that two fuses are set only to provide an additional limit protection function for the battery, but from the overall point of view, it will lead to an increase in volume. From the perspective of the circuit structure, even if the two fuses are removed, it will not affect the closure of the switch power tube.
  • the fuse CR2 and the impedance matching resistor RR1 branch can be removed, and the fuse CR1 can also be removed, so that the battery cell CC1 is directly connected in series with the switching power tube CQ1 and the switching power tube CQ2, thereby improving the functional density and reducing the space required, optimizing the circuit, and reducing the cost of the power supply system.
  • circuit structure block diagram of a power conversion unit provided in an embodiment of the present application is shown.
  • the circuit structure block diagram may specifically include:
  • Capacitor C1 power switch tube Q1 and power switch tube Q2 connected to capacitor C1, energy storage inductor L1 connected to power switch tube Q2, power switch tube Q3 and power switch tube Q4 connected to energy storage inductor L1, capacitor C2 connected to power switch tube Q4, wherein a relay T1 is connected in parallel at both ends of the energy storage inductor L1.
  • the capacitor C1 can be connected in parallel between the positive power input and the negative power input, the positive power input is connected to the drain of the power switch tube Q1, the source of the power switch tube Q1 is connected to the drain of the power switch tube Q2, the source of the power switch tube Q2 is connected to the negative power input, the source of the power switch tube Q1 is connected to one end of the energy storage inductor L1, and the other end of the energy storage inductor L1 is connected to the drain of the power switch tube Q3, the energy storage inductor L1 is connected in parallel with the relay T1, the source of the power switch tube Q3 is connected to the positive power output, the capacitor C2 is connected in parallel between the positive power output and the negative power output, the negative power output is connected to the source of the power switch tube Q4, the drain of the power switch tube Q4 is connected to the source of the power switch tube Q3, and the negative power input and the negative power output are connected to a common ground.
  • the gates of the power switch tubes Q1 to Q4 can be connected to the power conversion string control unit corresponding to the power conversion unit, and the control end of the relay T1 can be connected to the power conversion string control unit through the sampling and control line.
  • the power switch tubes Q1 to Q4 and the relay T1 can be controlled to be turned on and off through the power conversion string control unit, wherein the power switch tubes Q1 to Q4 are high-frequency controlled, and the control frequency can be as low as several hundred KHz (Kilo Hertz) and as high as MHz (Mega Hertz), wherein the relay T1 is low-frequency controlled, with a maximum of 1KHz.
  • the power supply system may include an external output bus.
  • the power conversion string control unit may be used to control the disconnection relay T1, and control the power switch tube Q1 to be normally on, and control the power switch tube Q2 to be normally off, and control the power switch tube Q3 and the power switch tube Q4 to be alternately turned on in a high-frequency switch control mode, and adjust the power conversion unit to a buck topology structure, so as to realize constant current first and then constant voltage mode to charge the battery string unit.
  • the topology can be adjusted to a buck topology by controlling the opening and closing of relays and power switches to achieve multi-stage voltage reduction during the charging process of the battery string units.
  • the voltage provided by the external output bus may be 500V, and the voltage that the battery string unit can withstand is 180V.
  • the 500V can be first reduced to 220V, and then to 180V, and then the 180V voltage after two-stage voltage reduction is transmitted to the battery string unit to ensure the normal operation of the battery string unit.
  • the power conversion string control unit can be used to control the disconnect relay T1, control the power switch tube Q3 to be normally on, and control the power switch tube Q4 to be normally off.
  • the power switch tube Q1 and the power switch tube Q2 are controlled to be alternately turned on by high-frequency switching control, and the power conversion unit is adjusted to a boost topology structure, so as to realize constant current first and then constant voltage mode to charge the battery string unit.
  • the topology structure can be adjusted to a boost topology structure by controlling the opening and closing of the relay and the power switch tube to realize the boost during the charging process of the battery string unit.
  • the voltage provided by the external output bus may be 180V
  • the voltage of the battery string unit is 220V
  • the 180V can be boosted to 220V in the above manner, and then the 220V voltage is transmitted to the battery string unit.
  • the power conversion string control unit can be used to control the disconnect relay T1, control the power switch tube Q1 to be normally on, and control the power switch tube Q2 to be normally off.
  • the power switch tubes Q3 and Q4 are controlled to be alternately turned on by high-frequency switching control, and the power conversion unit is adjusted to a boost topology structure, thereby realizing constant voltage discharge to the external output bus in constant voltage mode.
  • the power conversion string control unit can be used to control the disconnect relay T1, control the power switch tube Q3 to be normally on, and control the power switch tube Q4 to be normally off.
  • the power switch tube Q1 and the power switch tube Q2 are controlled to be alternately turned on by high-frequency switching control, and the power conversion unit is adjusted to a buck topology structure, thereby realizing constant-voltage discharge of the external output bus in buck mode.
  • the power conversion string control unit can also control the power switch tubes Q1 to Q4 and the relay T1 to achieve charge and discharge balance control between the two battery string units, for example, to achieve battery string unit 1 and battery
  • the battery string units 2 are charged and discharged with each other.
  • the power switches Q1 and Q3 in the power conversion unit 1 can be controlled to be normally on, Q2 and Q4 to be normally off, and the relay T1 to be closed.
  • the switch state of the power conversion unit 2 is controlled by the above-mentioned topological structure control transformation method to realize the charging and discharging between the battery string unit 1 and the battery string unit 2.
  • the switching state of the power conversion unit corresponding to the first target battery string unit can be controlled by the power conversion string control unit corresponding to the first target battery string unit
  • the switching state of the power conversion unit corresponding to the second target battery string unit can be controlled by the power conversion string control unit corresponding to the second target battery string unit
  • the topology structure corresponding to the power conversion unit can be adjusted.
  • the internal switch power tube When a large number of battery power combination monomers in the battery string unit are bypassed by the internal switch power tube, it will cause the voltage difference between the battery string unit 1 and the battery string unit 2 to be too large (for example, when the required conversion voltage difference exceeds the single-stage conversion capacity, the voltage difference is considered to be too large, and its single-stage conversion capacity is specifically evaluated based on the initial design of the circuit, and the evaluation value can be written into the control instruction as a third preset voltage difference threshold as a judgment criterion).
  • the switching state of the power conversion unit 1 can be first controlled by the above-mentioned topology structure control transformation method to increase or decrease its output voltage to reduce the voltage difference between the battery string unit 1 and the battery string unit 2, for example, to reduce the voltage difference between the two battery monomers to between 10 and 50 mv.
  • the switching state of the power conversion unit 2 can be further controlled by the above-mentioned topology structure control transformation method to control the charging and discharging between the battery string unit 1 and the battery string unit 2, so as to achieve directional balancing control of a small number of battery monomers in the battery string unit.
  • the power conversion string control unit corresponding to the first target battery string unit can be used to: control the switch state of the power conversion unit corresponding to the first target battery string unit to reduce the voltage difference between the first target battery string unit and the second target battery string unit;
  • the power conversion string control unit corresponding to the second target battery string unit can be used to: control the switching state of the power conversion unit corresponding to the second target battery string unit, and adjust the topology structure corresponding to the power conversion unit to control the charging and discharging between the first target battery string unit and the second target battery string unit.
  • a power supply system for a server is provided.
  • main circuit structures such as a high-voltage battery power master control unit, a battery string control unit, and a power conversion string control unit, real-time collection and analysis of power information of each subsystem in the power supply system can be achieved.
  • the high-voltage battery power master control unit can also issue corresponding control instructions to each subsystem based on the analysis results to achieve power control of each subsystem, thereby controlling the total output power of the server.
  • the entire main power path is simple and reliable, and there is no need to convert the high-voltage DC power supply on the input side into electric energy.
  • the design structure between the high-voltage DC power supply inlet and the server power inlet is simplified, which can effectively improve the working efficiency of the power supply system and reduce heat loss.
  • the power demand of the server can be ensured, and the conversion efficiency and Working reliability.
  • the power supply system includes at least one power supply module
  • the power supply module includes at least a high-voltage battery power master control unit, at least one power conversion string control unit, at least one battery string control unit, and a state monitoring management unit respectively connected to the high-voltage battery power master control unit, and a power conversion unit connected to the power conversion string control unit, and a battery string unit connected to the battery string control unit; wherein each battery string unit is connected to a power conversion unit, and each power conversion unit is connected in parallel and then connected to the state monitoring management unit; the method may specifically include the following steps:
  • Step 601 sending a status information table corresponding to the battery string unit to the high-voltage battery power master control unit through the battery string control unit;
  • Step 602 receiving a switch control instruction generated by the high-voltage battery power master control unit according to the state information table, and controlling the switch state of the battery string unit according to the switch control instruction;
  • Step 603 receiving a power control instruction generated by the high-voltage battery power master control unit according to the state information table through the power conversion string control unit, and controlling the power conversion unit to obtain an output voltage from the battery string unit according to the power control instruction;
  • Step 604 adjusting the output voltage from the first preset voltage range to the second preset voltage range through the power conversion unit, and transmitting the adjusted output voltage to the status monitoring management unit, wherein the second preset voltage range is within the first preset voltage range;
  • Step 605 The state monitoring management unit calculates the total output power according to the adjusted output voltage, and outputs the total output power to the server.
  • the method further comprises:
  • the power information of the battery string units is collected through the battery string control unit, and the health status of the battery string units is analyzed using the power information to generate a status information table corresponding to the battery string units.
  • the power information includes a variety of voltage, current and temperature signals in the battery string unit.
  • the power information of the battery string unit is collected by the battery string control unit, and the health status of the battery string unit is analyzed using the power information to generate a status information table corresponding to the battery string unit, including:
  • the battery string control unit collects various voltage, current and temperature signals of the battery string units, and uses the various voltage, current and temperature signals to analyze the health status of the battery string units to generate a status information table.
  • the method further comprises:
  • the high-voltage battery power master control unit receives the status information table sent by the battery string control unit, compares the status information table with the preset total output data, generates switch control instructions and power control instructions, and sends the switch control instructions to the battery string control unit, and sends the power control instructions to the power conversion string control unit corresponding to the battery string control unit.
  • controlling the switch state of the battery string unit according to the switch control instruction includes:
  • the switch control command is converted into a switch control signal by the battery string control unit, and the switch control signal is sent to the battery string unit;
  • the battery string unit controls the switch power tube in the battery string unit to switch to a switch state corresponding to the switch control signal.
  • controlling the power conversion unit to obtain an output voltage from the battery string unit according to the power control instruction includes:
  • the power control command is converted into a power control signal by the power conversion string control unit, and the power control signal is sent to the power conversion unit;
  • the power conversion unit performs a voltage acquisition operation corresponding to the power control signal, and acquires the output voltage from the battery string unit corresponding to the power conversion unit.
  • the method further comprises:
  • a preset power threshold is used by the power conversion unit to reallocate power to the battery string units other than the faulty battery string unit.
  • the method further comprises:
  • the input voltage state and output voltage state of the power conversion unit are adjusted by the power conversion unit, and the output voltage of the battery cell in the battery string unit corresponding to the power conversion unit is adjusted from the first preset voltage range to the second preset voltage range, and the second preset voltage range is within the first preset voltage range.
  • the method further comprises:
  • the power conversion string control unit receives the voltage conversion instruction sent by the high-voltage battery power master control unit, executes the voltage conversion instruction, and controls the voltage conversion between the power conversion units corresponding to the voltage conversion instruction.
  • the method further comprises:
  • the total output power sent by the status monitoring management unit is received through the high-voltage battery power master control unit, and the power supply module is controlled to output the total output power to the server as the total power output value of the server.
  • the power supply module is controlled to output a preset total power output value as the total power output value of the server to the server.
  • the method further comprises:
  • the total output power, or the preset total power output value is evenly distributed to each battery string unit through the high-voltage battery power master control unit;
  • the high-voltage battery power master control unit determines the power of the abnormal battery string unit according to the preset derated output power, and calculates based on the total output power, or the preset total power output value, and the power of the abnormal battery string unit to determine the power corresponding to the remaining battery string units that meet the preset power conditions.
  • the method further comprises:
  • the shutdown control instruction sent by the high-voltage battery power control unit is obtained through the battery string control unit, and the shutdown operation corresponding to the shutdown control instruction is executed to shut down the power output of the adjusted battery string unit.
  • the method further comprises:
  • the high-voltage battery power control unit uses the status information table and the preset output power to analyze the output power of each battery string unit, and determines the voltage between any two battery string units based on the analysis results. Difference;
  • a discharge control instruction is issued to the power conversion string control unit corresponding to the relatively high-voltage battery string unit to control the relatively high-voltage battery string unit to discharge to the relatively low-voltage battery string unit.
  • the method further comprises:
  • a bypass control instruction is sent to the relatively high-voltage battery string unit through the high-voltage battery power master control unit, or the battery string control unit corresponding to the relatively high-voltage battery string unit, to control the relatively high-voltage battery string unit to bypass the first battery cell.
  • the method further comprises:
  • a bypass control instruction is sent to the relatively low-voltage battery string unit through the high-voltage battery power master control unit, or the battery string control unit corresponding to the relatively low-voltage battery string unit, to control the relatively low-voltage battery string unit to bypass the second battery cell.
  • the method further comprises:
  • a bypass control instruction is sent to the battery string unit corresponding to the low-voltage battery cell through the high-voltage battery power master control unit to control the bypass of the low-voltage battery cell;
  • the high-voltage battery power control unit controls the bypass state of the low-voltage battery cell to discharge the high-voltage battery cell and the low-voltage battery cell at the same time.
  • the method further comprises:
  • a bypass control instruction is sent to the abnormal battery string unit corresponding to the abnormal battery cell through the high-voltage battery power control unit to control the abnormal battery string unit to bypass the abnormal battery cell.
  • the method further comprises:
  • the battery string unit with any bypass battery cell is determined as a bypass battery string unit by the high-voltage battery power master control unit. If the bypass battery string unit is in a discharge state, the health state of the bypassed battery cell in the bypass battery string unit and the health state of other battery string units are analyzed. Based on the analysis result, the total output power is used to adjust the power distribution of the bypass battery string unit.
  • the power conversion unit corresponding to the bypass battery string unit is controlled to continue charging the third battery cell in the bypass battery string unit whose charging value is less than the preset charging threshold, and when the charging value of the third battery cell is greater than or equal to the preset charging threshold, the third battery cell is controlled to be bypassed.
  • the method further comprises:
  • the high-voltage battery power master control unit controls the power switch tube of the bypass battery string unit to disconnect the bypass state of the bypassed battery cell.
  • the method further comprises:
  • a charging control instruction is sent to the power conversion string control unit corresponding to the power conversion unit through the high-voltage battery power master control unit, so that the power conversion string control unit executes the charging control instruction and controls the opening and closing state of the power switch tube of the power conversion unit to control the charging of the battery string unit corresponding to the power conversion unit.
  • the power supply module includes an overall battery pack power unit, which includes a total voltage and current detection unit, at least one power conversion management unit connected in parallel with the total voltage and current detection unit, a voltage and current detection unit connected to the power conversion management unit, and a battery string unit connected to the voltage and current detection unit, wherein each power conversion management unit is connected to a corresponding voltage and current detection unit, each power conversion management unit is composed of a power conversion unit and a corresponding power conversion string control unit, and each battery string unit is composed of multiple battery power combination monomers connected in series.
  • the method further comprises:
  • the total voltage and current information after each series branch is connected in parallel is detected by a total voltage and current detection unit;
  • the total voltage and current information as well as individual voltage and current information are received by the high-voltage battery power master control unit to control the charging and discharging of each battery string unit.
  • the battery power combination cell includes a battery cell CC1, a switching power tube CQ1 and a switching power tube CQ2 connected to the battery cell CC1, a fuse CR1 and a fuse CR2 connected to the switching power tube CQ2, and an impedance matching resistor RR1 connected to the fuse CR2, wherein the fuse CR2 is connected in series with the impedance matching resistor RR1 and then connected in parallel with the fuse CR1.
  • the switch power tube CQ1 and the switch power tube CQ2 are respectively connected to the battery string control unit corresponding to the battery power combination monomer; a voltage monitoring point is set between the drain and the source of the switch power tube CQ1, and a temperature collection point is set at the power integration of the switch power tube CQ1 and the battery monomer CC1.
  • the method also includes:
  • the voltage information of the voltage monitoring point and the temperature information of the temperature monitoring point are collected through the battery string control unit.
  • the battery cell CC1 is the main carrier of output energy, and the method further includes:
  • the high current discharge fault abnormality of the branch corresponding to the battery cell is controlled by the fuse CR1, and the conduction branch correction after the branch corresponding to the fuse CR1 is mistakenly blown is controlled by the series branch of the fuse CR2 and the impedance matching resistor RR1.
  • the power conversion unit includes a capacitor C1, a power switch tube Q1 and a power switch tube Q2 connected to the capacitor C1, an energy storage inductor L1 connected to the power switch tube Q2, a power switch tube Q3 and a power switch tube Q4 connected to the energy storage inductor L1, and a capacitor C2 connected to the power switch tube Q4, wherein a relay T1 is connected in parallel at both ends of the energy storage inductor L1.
  • the power switch tubes Q1 to Q4 are connected to the power conversion string control unit corresponding to the power conversion unit, the relay T1 is connected to the power conversion string control unit, and the method further includes:
  • the power conversion string control unit controls the opening and closing of the power switches Q1 to Q4 and the relay T1.
  • the power supply system includes an external output bus, and the method further includes:
  • the power conversion string control unit controls the disconnect relay T1, controls the power switch tube Q1 to be normally on, controls the power switch tube Q2 to be normally off, controls the power switch tube Q3 and the power switch tube Q4 to be alternately turned on, and adjusts the power conversion unit to a buck topology structure;
  • the power conversion string control unit controls the power switch tube Q3 to be normally on, and controls the power switch tube Q4 to be normally off, controls the power switch tube Q1 and the power switch tube Q2 to be alternately turned on, and adjusts the power conversion unit to a boost topology.
  • the method further comprises:
  • the power conversion string control unit controls the disconnect relay T1, controls the power switch tube Q1 to be normally on, controls the power switch tube Q2 to be normally off, controls the power switch tube Q3 and the power switch tube Q4 to be alternately turned on, and adjusts the power conversion unit to a boost topology structure;
  • the power conversion string control unit controls the power switch tube Q3 to be normally on, and controls the power switch tube Q4 to be normally off, controls the power switch tube Q1 and the power switch tube Q2 to be alternately turned on, and adjusts the power conversion unit to a buck topology.
  • the method further comprises:
  • the switch state of the power conversion unit corresponding to the first target battery string unit is controlled by the power conversion string control unit corresponding to the first target battery string unit;
  • the power conversion string control unit corresponding to the second target battery string unit controls the switch state of the power conversion unit corresponding to the second target battery string unit, and adjusts the topology structure corresponding to the power conversion unit.
  • the method further comprises:
  • the power conversion string control unit corresponding to the first target battery string unit controls the switch state of the power conversion unit corresponding to the first target battery string unit to reduce the voltage difference between the first target battery string unit and the second target battery string unit;
  • the power conversion string control unit corresponding to the second target battery string unit controls the switching state of the power conversion unit corresponding to the second target battery string unit, and adjusts the topology structure corresponding to the power conversion unit to control the charging and discharging between the first target battery string unit and the second target battery string unit.
  • the state monitoring management unit includes output total voltage detection, output total current detection and output switch, and the method further includes:
  • the control command sent from the high-voltage battery power control unit is received through the output switch.
  • a method for powering a server wherein a high-voltage battery power is controlled
  • the coordinated work of the main circuit structures such as the unit, the battery string control unit and the power conversion string control unit realizes the real-time collection and analysis of the power information of each subsystem in the power supply system.
  • the high-voltage battery power control unit can also issue corresponding control instructions to each subsystem according to the analysis results to realize the power control of each subsystem, thereby controlling the total output power of the server.
  • the entire main power path is simple and reliable.
  • Improvement point 1 The server backup power system and the high-voltage DC power supply system are completely parallel;
  • the main power path of the server power supply architecture is simpler and more reliable. There is no need to perform other DC/AC/DC (direct current-alternating current-direct current) power conversion on the input side of the high-voltage DC power supply due to the existence of a backup power system. This simplifies the design structure from the high-voltage DC power supply inlet to the server power inlet, which can effectively improve the working efficiency of the power supply system and reduce heat loss.
  • DC/AC/DC direct current-alternating current-direct current
  • Improvement 2 Provide a high-reliability backup power system for the server to ensure higher working reliability of a single server node
  • the high-voltage DC backup power supply system forms a redundant power supply structure between the main power paths of the server, which can effectively solve the problem of complex main power path structure of the power supply system when redundant power supply is provided to the data center by external battery energy. This ensures that when the external main power supply system of the server works abnormally, the power demand of the server can still be guaranteed, and the conversion efficiency and working reliability of the power supply system of the data center can be guaranteed.
  • the high-voltage DC backup power supply system has a redundant parallel structure with multiple battery backup branches. It can be expanded according to the user's power requirements and the number of redundant parallel branches can be expanded. It has a health management function. When any power fails, the high-voltage DC backup power supply system can be reconstructed in a healthy way.
  • the single battery backup power path and the energy conversion path have high conversion power, concentrated heat, high design difficulty, and the abnormality of a single power device causes the entire system to work abnormally. Under extremely harsh conditions, it can also effectively solve the abnormal working condition of a single node failure, which causes the corresponding energy supply conversion unit in the DC backup power supply system to work abnormally.
  • the high-voltage DC backup power supply system can be self-redundant and self-reconstructed, and the working level of the backup power system has a health management function. At the same time, the abnormal unit can be removed to ensure that the high-voltage DC backup power system provides efficient and highly reliable backup power requirements for the server.
  • the backup battery charge and discharge conversion unit is a variable structure high frequency bidirectional energy switching structure
  • this energy switching structure the requirements for charging and discharging voltage stabilization of the backup battery can be achieved under one power conversion structure. Compared with the traditional structure in which the charging and discharging powers are separated, this energy switching structure is simpler and has a higher power density. At the same time, when different power conversion structures in the backup power system are redundant, connected in parallel and in series with each other, the required target voltage can be converted more efficiently and reliably.
  • the high-voltage battery power control unit has a more intelligent, autonomous and self-controlled system
  • the high-voltage battery power control unit in the high-voltage DC backup power supply system makes it easier to achieve comprehensive coordination of the entire power supply system. By aggregating the data information of each subsystem to the high-voltage battery power control unit, it is convenient for comprehensive data processing. In addition, it can realize intelligent regulation of energy supply conversion for different application conditions. It can also adjust the number of working branches of the backup battery according to the total backup power demand to ensure higher efficiency of battery backup power conversion. For example, when the output power is very small, only one of the backup battery paths can be allowed to work, and the other paths are in a standby and closed state. Comprehensive data processing through the high-voltage battery power control unit also facilitates fault diagnosis of the entire high-voltage DC backup power supply system, autonomous health management, and system fault reconstruction. It has the ability of high control degree to ensure high reliability of the high-voltage DC backup power supply system.
  • Improvement point 6 It can locate, shield and reconstruct short circuit and open circuit faults of any battery cell
  • a series-parallel structure of battery cells, power switches and fuses is proposed, which can achieve that when a battery cell has an open circuit fault, the redundant parallel connection of the power switch can shield the fault.
  • the short circuit is double-shielded by the fuse and the power switch tube.
  • the impedance of the power switch tube is low, the short circuit fault is automatically shielded.
  • the impedance of the power switch tube is high, the short circuit fault is cut off by the fuse.
  • the double fuse branch design can select the appropriate fuse fusing current to ensure that the short circuit fault is cut off and the battery cell overload fault is allowed.
  • Improvement point 7 When any one or several battery cells in each backup battery branch fail, the normal operation of the backup battery branch will not be affected. At the same time, different backup battery branches can continue to output in parallel in a redundant manner, thus maximizing the energy output of the backup power supply system on the basis of redundant reliability.
  • the fault can be reconstructed autonomously and various failure modes of the faulty cells can be shielded. Even if the total output voltage of the backup battery is reduced, the power conversion unit in series on the output side can convert the wide input voltage into a stable output voltage to continue to ensure redundant parallel connection of different backup battery branches to meet the power demand of the high-voltage power supply output bus.
  • the battery cells in a single branch battery pack can be classified and controlled according to the battery cell voltage value and the battery internal resistance value.
  • the battery cells with low voltage can be charged in a targeted manner.
  • the over-discharged battery cells can be shielded in a targeted manner to ensure the battery cell voltage consistency requirements.
  • the redundant parallel battery groups serve as each other's balancing units, and can realize constant voltage and constant current multi-control modes through the intermediate power conversion unit, and can also realize active balancing of battery cells in the battery string unit.
  • It can control the battery cells with high voltage in a group of battery string units to balance the battery cells with low voltage in any parallel redundant battery string units, and can control the constant current voltage value of the intermediate power conversion unit to control the balancing speed, so as to realize active balancing between battery cells in different battery string units, eliminate the balancing circuit design in the battery string unit, improve the power density, and at the same time have good balancing effect and fast balancing speed.
  • Two redundant parallel battery string units can charge and discharge each other;
  • the two power conversion units connected in series in the middle can achieve a higher degree of freedom when converting one input voltage to another output voltage.
  • the power conversion unit can adjust the topology structure to further improve the conversion efficiency while ensuring the freedom of voltage conversion.
  • the multi-stage conversion of the power conversion unit can achieve a wider range of voltage conversion.
  • the structure of one of the two power conversion units can be changed to reduce the number of voltage conversions, improve conversion efficiency, reduce the complexity of conversion topology, and improve reliability.
  • One fuse is connected in series with another fuse and a low impedance resistor is connected in parallel;
  • the two fuses can serve as redundant backup for each other, ensuring that a single fuse path does not have too much design margin, and can effectively and quickly cut off the fault mode when a battery short circuit occurs.
  • an embodiment of the present application also provides an electronic device, including: a processor, a memory, and a computer program stored in the memory and executable on the processor.
  • a computer program stored in the memory and executable on the processor.
  • the embodiment of the present application further provides a computer non-volatile readable storage medium 701, on which a computer program is stored.
  • a computer program is executed by the processor, each process of the power supply method embodiment of the above-mentioned server is implemented, and the same technical effect can be achieved. To avoid repetition, it is not repeated here.
  • the computer non-volatile readable storage medium 701 is such as a read-only memory (ROM), a random access memory (RAM), a disk or an optical disk, etc.
  • FIG8 is a schematic diagram of the hardware structure of an electronic device implementing various embodiments of the present application.
  • the electronic device 800 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, a processor 810, and a power supply 811.
  • a radio frequency unit 801 includes but is not limited to: a radio frequency unit 801, a network module 802, an audio output unit 803, an input unit 804, a sensor 805, a display unit 806, a user input unit 807, an interface unit 808, a memory 809, a processor 810, and a power supply 811.
  • the electronic device structure involved in the embodiments of the present application does not constitute a limitation on the electronic device, and the electronic device may include more or fewer components than shown, or combine certain components, or arrange components differently.
  • the electronic device includes but is not limited to a mobile phone, a tablet computer, a laptop computer, a PDA, a vehicle-mounted terminal, a wearable device
  • the radio frequency unit 801 can be used for receiving and sending signals during information transmission or calls. Specifically, after receiving downlink data from the base station, it is sent to the processor 810 for processing; in addition, the uplink data is sent to the base station.
  • the radio frequency unit 801 includes but is not limited to an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the radio frequency unit 801 can also communicate with the network and other devices through a wireless communication system.
  • the electronic device provides users with wireless broadband Internet access through the network module 802, such as helping users Users can send and receive emails, browse the web, and access streaming media.
  • the audio output unit 803 can convert the audio data received by the RF unit 801 or the network module 802 or stored in the memory 809 into an audio signal and output it as sound. Moreover, the audio output unit 803 can also provide audio output related to a specific function performed by the electronic device 800 (for example, a call signal reception sound, a message reception sound, etc.).
  • the audio output unit 803 includes a speaker, a buzzer, a receiver, etc.
  • the input unit 804 is used to receive audio or video signals.
  • the input unit 804 may include a graphics processor (GPU) 8041 and a microphone 8042, and the graphics processor 8041 processes the image data of a static picture or video obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the processed image frame can be displayed on the display unit 806.
  • the image frame processed by the graphics processor 8041 can be stored in the memory 809 (or other storage medium) or sent via the radio frequency unit 801 or the network module 802.
  • the microphone 8042 can receive sound and can process such sound into audio data.
  • the processed audio data can be converted into a format output that can be sent to a mobile communication base station via the radio frequency unit 801 in the case of a telephone call mode.
  • the electronic device 800 also includes at least one sensor 805, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor, wherein the ambient light sensor can adjust the brightness of the display panel 8061 according to the brightness of the ambient light, and the proximity sensor can turn off the display panel 8061 and/or the backlight when the electronic device 800 is moved to the ear.
  • the accelerometer sensor can detect the magnitude of acceleration in each direction (generally three axes), and can detect the magnitude and direction of gravity when stationary, which can be used to identify the posture of the electronic device (such as horizontal and vertical screen switching, related games, magnetometer posture calibration), vibration recognition related functions (such as pedometer, tapping), etc.; the sensor 805 can also include a fingerprint sensor, a pressure sensor, an iris sensor, a molecular sensor, a gyroscope, a barometer, a hygrometer, a thermometer, an infrared sensor, etc., which will not be repeated here.
  • the display unit 806 is used to display information input by the user or information provided to the user.
  • the display unit 806 may include a display panel 8061, which may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • LCD liquid crystal display
  • OLED organic light-emitting diode
  • the user input unit 807 can be used to receive input digital or character information, and to generate key signal input related to user settings and function control of the electronic device.
  • the user input unit 807 includes a touch panel 8071 and other input devices 8072.
  • the touch panel 8071 also known as a touch screen, can collect the user's touch operation on or near it (such as the user's operation on the touch panel 8071 or near the touch panel 8071 using any suitable object or accessory such as a finger, stylus, etc.).
  • the touch panel 8071 may include two parts: a touch detection device and a touch controller.
  • the touch detection device detects the user's touch orientation, detects the signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts it into the contact point coordinates, and then sends it to the processor 810, receives the command sent by the processor 810 and executes it.
  • the touch panel 8071 can be implemented using multiple types such as resistive, capacitive, infrared and surface acoustic waves.
  • the user input unit 807 may also include other input devices 8072.
  • other input devices 8072 may include but are not limited to physical The physical keyboard, function keys (such as volume control buttons, power buttons, etc.), trackball, mouse, and joystick are not described in detail here.
  • the touch panel 8071 may be covered on the display panel 8061.
  • the touch panel 8071 detects a touch operation on or near it, it is transmitted to the processor 810 to determine the type of the touch event, and then the processor 810 provides a corresponding visual output on the display panel 8061 according to the type of the touch event.
  • the touch panel 8071 and the display panel 8061 are used as two independent components to implement the input and output functions of the electronic device, but in some embodiments, the touch panel 8071 and the display panel 8061 can be integrated to implement the input and output functions of the electronic device, which is not limited here.
  • the interface unit 808 is an interface for connecting an external device to the electronic device 800.
  • the external device may include a wired or wireless headset port, an external power supply (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, an audio input/output (I/O) port, a video I/O port, a headphone port, etc.
  • the interface unit 808 may be used to receive input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the electronic device 800 or may be used to transmit data between the electronic device 800 and an external device.
  • the memory 809 can be used to store software programs and various data.
  • the memory 809 can mainly include a program storage area and a data storage area, wherein the program storage area can store an operating system, an application required for at least one function (such as a sound playback function, an image playback function, etc.), etc.; the data storage area can store data created according to the use of the mobile phone (such as audio data, a phone book, etc.), etc.
  • the memory 809 can include a high-speed random access memory, and can also include a non-volatile memory, such as at least one disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 810 is the control center of the electronic device. It uses various interfaces and lines to connect various parts of the entire electronic device. It executes various functions of the electronic device and processes data by running or executing software programs and/or modules stored in the memory 809, and calling data stored in the memory 809, so as to monitor the electronic device as a whole.
  • the processor 810 may include one or more processing units; in some embodiments, the processor 810 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, etc., and the modem processor mainly processes wireless communications. It is understandable that the above-mentioned modem processor may not be integrated into the processor 810.
  • the electronic device 800 may also include a power supply 811 (such as a battery) for supplying power to various components.
  • a power supply 811 (such as a battery) for supplying power to various components.
  • the power supply 811 may be logically connected to the processor 810 through a power management system, thereby implementing functions such as managing charging, discharging, and power consumption management through the power management system.
  • the electronic device 800 includes some functional modules not shown, which will not be described in detail here.
  • the technical solution of the present application can be embodied in the form of a software product, which is stored in a storage medium (such as ROM/RAM, a disk, or an optical disk), and includes a number of instructions for a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods of each embodiment of the present application.
  • a storage medium such as ROM/RAM, a disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes several instructions for a computer device (which can be a personal computer, server, or network device, etc.) to execute all or part of the steps of the various embodiments of the present application.
  • the aforementioned storage media include: USB flash drives, mobile hard drives, ROM, Various media that can store program codes, such as RAM, disk or CD.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Health & Medical Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供了一种服务器的供电系统、方法、电子设备及存储介质,通过高压电池功率总控单元、电池组串管控单元以及功率变换串管控单元等主要电路结构的协同工作,实现实时收集并分析供电系统中各子系统的功率信息,高压电池功率总控单元还可以根据分析结果对各子系统下发对应的控制指令,以实现对各子系统的功率控制,进而控制服务器的输出总功率,整个主用电功率通路简单可靠,无需将输入侧高压直流供电进行电能转换,简化了高压直流供电入口至服务器用电入口之间的设计结构,可有效提高供电系统工作效率,降低热损耗,同时在服务器外部主供电系统工作异常时,可以确保服务器用电需求,保证供电系统的转换效率以及工作可靠性。

Description

服务器的供电系统、方法、电子设备及存储介质
相关申请的交叉引用
本申请要求于2022年11月28日提交中国专利局,申请号为202211498135.6,申请名称为“服务器的供电系统、方法、电子设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及服务器供电技术领域,特别是涉及一种服务器的供电系统,一种服务器的供电方法、一种电子设备以及一种计算机非易失性可读存储介质。
背景技术
数据中心是全球协作的特定设备网络,用以在网络基础设施上传递、加速、展示、计算、存储数据信息,随着数据中心应用的广泛化,越来越多电信、网通、移动、双线、电力或者企业等相继选择采用数据中心存放服务器,为用户以及员工提供IT(Information Technology,信息技术)服务,为了实现数据中心服务器的不间断供电,通常需要为数据中心服务器配备可靠供电UPS(Uninterruptible Power System/Supply,不间断电源)。
传统的数据中心大多采用一路或者两路交流供电母线和UPS供电系统架构以实现无间断供电,并提高数据中心用电的可靠性。通过UPS实现数据中心服务器的不间断供电过程中涉及市电转换及内部蓄电池的充放电,在UPS供电系统中,当市电输入正常时,UPS将市电进行滤波并稳压后提供给数据中心的服务器电源,同时向UPS内部蓄电池组件充电,而当市电输入故障时,UPS会立即将蓄电池组件内的直流电能通过逆变器转换成交流电供给数据中心的服务器电源。
在现有技术中,UPS的AC/DC(Alternating Current/Direct Current,交流/直流)转换及DC/AC(Direct Current/Alternating Current,直流/交流)转换是整个供电系统电能传导中能量损耗的主要环节,而交流和直流的每一次转换效率损耗为5%左右,并且转化后的交流电还需要进行PFC(Power Factor Correction功率因数校正)电路以提高功率因数,从而导致再增加一级转换损耗,整个供电过程中,能源转换的多重损耗,导致了数据中心的大功率服务器用电效率低下且热损耗大,同时UPS电源位于主用电功率通路,大功率且长期不间断运行而造成的热累积,大大增加了电源故障率,从而严重影响数据中心服务器的用电可靠性。
发明内容
本申请实施例是提供一种服务器的供电系统、方法、电子设备以及计算机非易失性可读存储介质,以解决或部分解决现有服务器供电系统中,用电效率低下、热损耗大、用电可靠性低的问题。
本申请实施例公开了一种服务器的供电系统,供电系统包括至少一个供电模 块,供电模块至少包括高压电池功率总控单元,分别与高压电池功率总控单元连接的至少一个功率变换串管控单元、至少一个电池组串管控单元、状态监测管理单元,以及与功率变换串管控单元连接的功率变换单元、与电池组串管控单元连接的电池组串单元;其中,每一电池组串单元对应连接有一功率变换单元,且各个功率变换单元并联连接后与状态监测管理单元连接;
电池组串管控单元,用于将电池组串单元对应的状态信息表发送至高压电池功率总控单元,接收高压电池功率总控单元根据状态信息表生成的开关控制指令,并根据开关控制指令控制电池组串单元的开关状态;
功率变换串管控单元,用于接收高压电池功率总控单元根据状态信息表生成的功率控制指令,并根据功率控制指令控制功率变换单元从电池组串单元获取输出电压;
功率变换单元,用于将输出电压从第一预设电压范围调整至第二预设电压范围,并将调整后的输出电压传送至状态监测管理单元,第二预设电压范围处于第一预设电压范围内;
状态监测管理单元,用于根据调整后的输出电压计算总输出功率,并将总输出功率输出至服务器。
在一些实施例中,电池组串管控单元用于:
采集电池组串单元的功率信息,并采用功率信息对电池组串单元的健康状态进行分析,生成电池组串单元对应的状态信息表。
在一些实施例中,功率信息包括电池组串单元内多种电压、电流以及温度信号,电池组串管控单元用于:
采集电池组串单元的多种电压、电流以及温度信号,并采用多种电压、电流以及温度信号对电池组串单元的健康状态进行分析,生成状态信息表。
在一些实施例中,高压电池功率总控单元用于:
接收电池组串管控单元发送的状态信息表,将状态信息表与预设总输出数据进行比较,生成开关控制指令以及功率控制指令,并将开关控制指令发送至电池组串管控单元,将功率控制指令发送至与电池组串管控单元对应的功率变换串管控单元。
在一些实施例中,电池组串管控单元用于:
将开关控制指令转换成开关控制信号,并将开关控制信号发送至电池组串单元;
则电池组串单元用于:
控制电池组串单元内开关功率管切换至与开关控制信号对应的开关状态。
在一些实施例中,功率变换串管控单元用于:
将功率控制指令转换成功率控制信号,并将功率控制信号发送至功率变换单元;
则功率变换单元用于:
执行与功率控制信号对应的电压获取操作,从功率变换单元对应的电池组串 单元获取输出电压。
在一些实施例中,功率变换单元用于:
若检测到电池组串单元存在故障,则采用预设功率阈值对除故障电池组串单元之外的电池组串单元重新分配功率。
在一些实施例中,功率变换单元还用于:
调整功率变换单元的输入电压状态以及输出电压状态,将与功率变换单元对应的电池组串单元内电池单体的输出电压从第一预设电压范围调整至第二预设电压范围,第二预设电压范围处于第一预设电压范围内。
在一些实施例中,功率变换串管控单元用于:
接收高压电池功率总控单元发送的电压转换指令,并执行电压转换指令,控制与电压转换指令对应的功率变换单元之间进行电压转换。
在一些实施例中,高压电池功率总控单元用于:
接收状态监测管理单元发送的总输出功率,并控制供电模块以总输出功率作为服务器的总功率输出值输出至服务器。
或,控制供电模块以预设总功率输出值作为服务器的总功率输出值输出至服务器。
在一些实施例中,高压电池功率总控单元具体还用于:
若各个电池组串单元的功率信息均符合预设功率条件,则将总输出功率,或,预设总功率输出值,平均分发至各个电池组串单元;
若存在功率信息不符合预设功率条件的异常电池组串单元,则按照预设降额输出功率确定异常电池组串单元的功率,并根据总输出功率,或,预设总功率输出值,以及异常电池组串单元的功率进行计算,确定剩余符合预设功率条件的电池组串单元对应的功率。
在一些实施例中,电池组串管控单元用于:
若调整后的电池组串单元的功率信息仍不符合预设功率条件,则获取高压电池功率总控单元发送的关断控制指令,并执行关断控制指令对应的关断操作,关闭调整后的电池组串单元的功率输出。
在一些实施例中,高压电池功率总控单元用于:
采用状态信息表以及预设输出功率分析各个电池组串单元的输出功率,并基于分析结果确定任意两个电池组串单元之间的电压差;
若电压差大于或等于第一预设压差阈值,则对相对高压的电池组串单元对应的功率变换串管控单元发出放电控制指令,以控制相对高压的电池组串单元向相对低压的电池组串单元进行放电。
在一些实施例中,高压电池功率总控单元,或,相对高压的电池组串单元对应的电池组串管控单元,用于:
若相对高压的电池组串单元内存在放电值大于或等于预设放电阈值的第一电池单体,则向相对高压的电池组串单元发出旁路控制指令,以控制相对高压的电池组串单元旁路第一电池单体。
在一些实施例中,高压电池功率总控单元,或,相对低压的电池组串单元对应的电池组串管控单元,用于:
若相对低压的电池组串单元内存在充电值大于或等于预设充电阈值的第二电池单体,则向相对低压的电池组串单元发出旁路控制指令,以控制相对低压的电池组串单元旁路第二电池单体。
在一些实施例中,高压电池功率总控单元用于:
若检测到压差大于或等于第二预设压差阈值的高电压电池单体及低电压电池单体同时放电,则向低电压电池单体对应的电池组串单元发出旁路控制指令,以控制旁路低电压电池单体;
若检测到高电压电池单体与低电压电池单体间压差小于第二预设压差阈值,则控制解除低电压电池单体的旁路状态,以使高电压电池单体及低电压电池单体同时进行放电。
在一些实施例中,高压电池功率总控单元用于:
若检测到任一电池组串单元发生充放电异常的异常电池单体,则向异常电池单体对应的异常电池组串单元发出旁路控制指令,以控制异常电池组串单元旁路异常电池单体。
在一些实施例中,高压电池功率总控单元用于:
将存在任一旁路电池单体的电池组串单元确定为旁路电池组串单元,若旁路电池组串单元处于放电状态,则分析旁路电池组串单元中被旁路的电池单体的健康状态以及其他电池组串单元的健康状态,基于分析结果,采用总输出功率调整旁路电池组串单元的功率分配;
若旁路电池组串单元处于充电状态,则控制与旁路电池组串单元对应的功率变换单元,继续向旁路电池组串单元内充电值小于预设充电阈值的第三电池单体进行充电,并在第三电池单体的充电值大于或等于预设充电阈值时,控制旁路第三电池单体。
在一些实施例中,高压电池功率总控单元用于:
若检测到旁路电池组串单元满足预设充电状态,则控制断开旁路电池组串单元的功率开关管,以解除被旁路电池单体的旁路状态。
在一些实施例中,高压电池功率总控单元用于:
若检测到功率变换单元电压低于预设电压阈值,则向功率变换单元对应的功率变换串管控单元发送充电控制指令,以使功率变换串管控单元执行充电控制指令,控制功率变换单元的功率开关管的开闭状态,以控制对功率变换单元对应的电池组串单元进行充电。
在一些实施例中,供电模块包括整体电池组功率单元,整体电池组功率单元包括总电压电流检测单元,与总电压电流检测单元并联连接的至少一个功率变换管理单元,与功率变换管理单元连接的电压电流检测单元,与电压电流检测单元连接的电池组串单元,其中,每一功率变换管理单元对应连接有一电压电流检测单元,每个功率变换管理单元由一个功率变换单元以及对应的功率变换串管控单 元组成,每个电池组串单元由多个电池功率组合单体串联连接而成。
在一些实施例中,电压电流检测单元用于检测各个电池功率组合单体组成的串联支路的电压电流信息,总电压电流检测单元用于检测各个串联支路并联后的总电压电流信息,高压电池功率总控单元用于接收总电压电流信息以及各个电压电流信息,以控制各个电池组串单元的充放电。
在一些实施例中,电池功率组合单体包括电池单体CC1、与电池单体CC1连接的开关功率管CQ1、开关功率管CQ2,与开关功率管CQ2连接的熔断器CR1、熔断器CR2,与熔断器CR2连接的阻抗匹配电阻RR1,其中,熔断器CR2与阻抗匹配电阻RR1串联后与熔断器CR1并联连接。
在一些实施例中,开关功率管CQ1以及开关功率管CQ2分别连接电池功率组合单体对应的电池组串管控单元;
开关功率管CQ1的漏极与源极之间设置有电压监测点,开关功率管CQ1与电池单体CC1功率集成处设置有温度采集点,电池组串管控单元用于采集电压监测点的电压信息,以及温度监测点的温度信息。
在一些实施例中,电池单体CC1为输出能量主要载体,熔断器CR1用于控制电池单体对应支路的大电流放电故障异常,熔断器CR2与阻抗匹配电阻RR1的串联支路用于控制熔断器CR1对应支路误熔断后的导通支路校正。
在一些实施例中,功率变换单元包括电容C1,与电容C1连接的功率开关管Q1、功率开关管Q2,与功率开关管Q2连接的连接储能电感L1,与储能电感L1连接的功率开关管Q3、功率开关管Q4,与功率开关管Q4连接的电容C2,其中,储能电感L1两端并联一继电器T1。
在一些实施例中,功率开关管Q1至Q4与功率变换单元对应的功率变换串管控单元连接,继电器T1与功率变换串管控单元连接,功率变换串管控单元用于控制功率开关管Q1至Q4以及继电器T1的开通与关断。
在一些实施例中,供电系统包括外部输出母线,功率变换串管控单元用于:
当外部输出母线通过功率变换单元对电池组串单元充电时,若外部输出母线的电压高于电池组串单元的电压,则控制断开继电器T1,控制功率开关管Q1为常通,同时控制功率开关管Q2为常断,控制功率开关管Q3以及功率开关管Q4为交替导通,并将功率变换单元调整为降压拓扑结构;
若外部输出母线的电压低于电池组串单元的电压,则控制功率开关管Q3为常通,同时控制功率开关管Q4为常断,控制功率开关管Q1以及功率开关管Q2为交替导通,并将功率变换单元的调整为升压拓扑结构。
在一些实施例中,功率变换串管控单元用于:
当电池组串单元通过功率变换单元对外部输出母线放电时,若外部输出母线的电压高于电池组串单元的电压,则控制断开继电器T1,控制功率开关管Q1为常通,同时控制功率开关管Q2为常断,控制功率开关管Q3以及功率开关管Q4为交替导通,并将功率变换单元调整为升压拓扑结构;
若外部输出母线的电压低于电池组串单元的电压,则控制功率开关管Q3为 常通,同时控制功率开关管Q4为常断,控制功率开关管Q1以及功率开关管Q2为交替导通,并将功率变换单元调整为降压拓扑结构。
在一些实施例中,若存在需进行互相充放电的第一目标电池组串单元以及第二目标电池组串单元,则第一目标电池组串单元对应的功率变换串管控单元用于控制第一目标电池组串单元对应的功率变换单元的开关状态;
第二目标电池组串单元对应的功率变换串管控单元用于控制第二目标电池组串单元对应的功率变换单元的开关状态,并调整功率变换单元对应的拓扑结构。
在一些实施例中,当第一目标电池组串单元与第二目标电池组串单元之间压差大于第三预设压差阈值时,第一目标电池组串单元对应的功率变换串管控单元用于:
控制第一目标电池组串单元对应的功率变换单元的开关状态,以降低第一目标电池组串单元与第二目标电池组串单元之间的压差;
第二目标电池组串单元对应的功率变换串管控单元用于:
控制第二目标电池组串单元对应的功率变换单元的开关状态,并调整功率变换单元对应的拓扑结构,以控制第一目标电池组串单元与第二目标电池组串单元之间的充放电。
在一些实施例中,状态监测管理单元包括输出总电压检测、输出总电流检测以及输出开关,其中,输出开关用于接收从高压电池功率总控单元发送的控制指令。
本申请实施例还公开了一种服务器的供电方法,方法应用于服务器的供电系统,供电系统包括至少一个供电模块,供电模块至少包括高压电池功率总控单元,分别与高压电池功率总控单元连接的至少一个功率变换串管控单元、至少一个电池组串管控单元、状态监测管理单元,以及与功率变换串管控单元连接的功率变换单元、与电池组串管控单元连接的电池组串单元;其中,每一电池组串单元对应连接有一功率变换单元,且各个功率变换单元并联连接后与状态监测管理单元连接;方法包括:
通过电池组串管控单元将电池组串单元对应的状态信息表发送至高压电池功率总控单元;
接收高压电池功率总控单元根据状态信息表生成的开关控制指令,并根据开关控制指令控制电池组串单元的开关状态;
通过功率变换串管控单元接收高压电池功率总控单元根据状态信息表生成的功率控制指令,并根据功率控制指令控制功率变换单元从电池组串单元获取输出电压;
通过功率变换单元将输出电压从第一预设电压范围调整至第二预设电压范围,并将调整后的输出电压传送至状态监测管理单元,第二预设电压范围处于第一预设电压范围内;
通过状态监测管理单元根据调整后的输出电压计算输出总功率,并将输出总 功率输出至服务器。
在一些实施例中,方法还包括:
通过电池组串管控单元采集电池组串单元的功率信息,并采用功率信息对电池组串单元的健康状态进行分析,生成电池组串单元对应的状态信息表。
在一些实施例中,功率信息包括电池组串单元内多种电压、电流以及温度信号,通过电池组串管控单元采集电池组串单元的功率信息,并采用功率信息对电池组串单元的健康状态进行分析,生成电池组串单元对应的状态信息表,包括:
通过电池组串管控单元采集电池组串单元的多种电压、电流以及温度信号,并采用多种电压、电流以及温度信号对电池组串单元的健康状态进行分析,生成状态信息表。
在一些实施例中,方法还包括:
通过高压电池功率总控单元接收电池组串管控单元发送的状态信息表,将状态信息表与预设总输出数据进行比较,生成开关控制指令以及功率控制指令,并将开关控制指令发送至电池组串管控单元,将功率控制指令发送至与电池组串管控单元对应的功率变换串管控单元。
在一些实施例中,根据开关控制指令控制电池组串单元的开关状态,包括:
通过电池组串管控单元将开关控制指令转换成开关控制信号,并将开关控制信号发送至电池组串单元;
通过电池组串单元控制电池组串单元内开关功率管切换至与开关控制信号对应的开关状态。
在一些实施例中,根据功率控制指令控制功率变换单元从电池组串单元获取输出电压,包括:
通过功率变换串管控单元将功率控制指令转换成功率控制信号,并将功率控制信号发送至功率变换单元;
通过功率变换单元执行与功率控制信号对应的电压获取操作,从功率变换单元对应的电池组串单元获取输出电压。
在一些实施例中,方法还包括:
若检测到电池组串单元存在故障,则通过功率变换单元采用预设功率阈值对除故障电池组串单元之外的电池组串单元重新分配功率。
在一些实施例中,方法还包括:
通过功率变换单元调整功率变换单元的输入电压状态以及输出电压状态,将与功率变换单元对应的电池组串单元内电池单体的输出电压从第一预设电压范围调整至第二预设电压范围,第二预设电压范围处于第一预设电压范围内。
在一些实施例中,方法还包括:
通过功率变换串管控单元接收高压电池功率总控单元发送的电压转换指令,并执行电压转换指令,控制与电压转换指令对应的功率变换单元之间进行电压转换。
在一些实施例中,方法还包括:
通过高压电池功率总控单元接收状态监测管理单元发送的总输出功率,并控制供电模块以总输出功率作为服务器的总功率输出值输出至服务器。
或,控制供电模块以预设总功率输出值作为服务器的总功率输出值输出至服务器。
在一些实施例中,方法还包括:
若各个电池组串单元的功率信息均符合预设功率条件,则通过高压电池功率总控单元将总输出功率,或,预设总功率输出值,平均分发至各个电池组串单元;
若存在功率信息不符合预设功率条件的异常电池组串单元,则通过高压电池功率总控单元按照预设降额输出功率确定异常电池组串单元的功率,并根据总输出功率,或,预设总功率输出值,以及异常电池组串单元的功率进行计算,确定剩余符合预设功率条件的电池组串单元对应的功率。
在一些实施例中,方法还包括:
若调整后的电池组串单元的功率信息仍不符合预设功率条件,则通过电池组串管控单元获取高压电池功率总控单元发送的关断控制指令,并执行关断控制指令对应的关断操作,关闭调整后的电池组串单元的功率输出。
在一些实施例中,方法还包括:
通过高压电池功率总控单元采用状态信息表以及预设输出功率分析各个电池组串单元的输出功率,并基于分析结果确定任意两个电池组串单元之间的电压差;
若电压差大于或等于第一预设压差阈值,则对相对高压的电池组串单元对应的功率变换串管控单元发出放电控制指令,以控制相对高压的电池组串单元向相对低压的电池组串单元进行放电。
在一些实施例中,方法还包括:
若相对高压的电池组串单元内存在放电值大于或等于预设放电阈值的第一电池单体,则通过高压电池功率总控单元,或,相对高压的电池组串单元对应的电池组串管控单元,向相对高压的电池组串单元发出旁路控制指令,以控制相对高压的电池组串单元旁路第一电池单体。
在一些实施例中,方法还包括:
若相对低压的电池组串单元内存在充电值大于或等于预设充电阈值的第二电池单体,则通过高压电池功率总控单元,或,相对低压的电池组串单元对应的电池组串管控单元,向相对低压的电池组串单元发出旁路控制指令,以控制相对低压的电池组串单元旁路第二电池单体。
在一些实施例中,方法还包括:
若检测到压差大于或等于第二预设压差阈值的高电压电池单体及低电压电池单体同时放电,则通过高压电池功率总控单元向低电压电池单体对应的电池组串单元发出旁路控制指令,以控制旁路低电压电池单体;
若检测到高电压电池单体与低电压电池单体间压差小于第二预设压差阈值,通过高压电池功率总控单元控制解除低电压电池单体的旁路状态,以使高电压电 池单体及低电压电池单体同时进行放电。
在一些实施例中,方法还包括:
若检测到任一电池组串单元发生充放电异常的异常电池单体,则通过高压电池功率总控单元向异常电池单体对应的异常电池组串单元发出旁路控制指令,以控制异常电池组串单元旁路异常电池单体。
在一些实施例中,方法还包括:
通过高压电池功率总控单元将存在任一旁路电池单体的电池组串单元确定为旁路电池组串单元,若旁路电池组串单元处于放电状态,则分析旁路电池组串单元中被旁路的电池单体的健康状态以及其他电池组串单元的健康状态,基于分析结果,采用总输出功率调整旁路电池组串单元的功率分配;
若旁路电池组串单元处于充电状态,则控制与旁路电池组串单元对应的功率变换单元,继续向旁路电池组串单元内充电值小于预设充电阈值的第三电池单体进行充电,并在第三电池单体的充电值大于或等于预设充电阈值时,控制旁路第三电池单体。
在一些实施例中,方法还包括:
若检测到旁路电池组串单元满足预设充电状态,则通过高压电池功率总控单元控制断开旁路电池组串单元的功率开关管,以解除被旁路电池单体的旁路状态。
在一些实施例中,方法还包括:
若检测到功率变换单元电压低于预设电压阈值,则通过高压电池功率总控单元向功率变换单元对应的功率变换串管控单元发送充电控制指令,以使功率变换串管控单元执行充电控制指令,控制功率变换单元的功率开关管的开闭状态,以控制对功率变换单元对应的电池组串单元进行充电。
在一些实施例中,供电模块包括整体电池组功率单元,整体电池组功率单元包括总电压电流检测单元,与总电压电流检测单元并联连接的至少一个功率变换管理单元,与功率变换管理单元连接的电压电流检测单元,与电压电流检测单元连接的电池组串单元,其中,每一功率变换管理单元对应连接有一电压电流检测单元,每个功率变换管理单元由一个功率变换单元以及对应的功率变换串管控单元组成,每个电池组串单元由多个电池功率组合单体串联连接而成。
在一些实施例中,方法还包括:
通过电压电流检测单元检测各个电池功率组合单体组成的串联支路的电压电流信息;
通过总电压电流检测单元检测各个串联支路并联后的总电压电流信息;
通过高压电池功率总控单元接收总电压电流信息以及各个电压电流信息,以控制各个电池组串单元的充放电。
在一些实施例中,电池功率组合单体包括电池单体CC1、与电池单体CC1连接的开关功率管CQ1、开关功率管CQ2,与开关功率管CQ2连接的熔断器CR1、熔断器CR2,与熔断器CR2连接的阻抗匹配电阻RR1,其中,熔断器CR2与阻抗匹配电阻RR1串联后与熔断器CR1并联连接。
在一些实施例中,开关功率管CQ1以及开关功率管CQ2分别连接电池功率组合单体对应的电池组串管控单元;开关功率管CQ1的漏极与源极之间设置有电压监测点,开关功率管CQ1与电池单体CC1功率集成处设置有温度采集点,方法还包括:
通过电池组串管控单元采集电压监测点的电压信息,以及温度监测点的温度信息。
在一些实施例中,电池单体CC1为输出能量主要载体,方法还包括:
通过熔断器CR1控制电池单体对应支路的大电流放电故障异常,通过熔断器CR2与阻抗匹配电阻RR1的串联支路控制熔断器CR1对应支路误熔断后的导通支路校正。
在一些实施例中,功率变换单元包括电容C1,与电容C1连接的功率开关管Q1、功率开关管Q2,与功率开关管Q2连接的连接储能电感L1,与储能电感L1连接的功率开关管Q3、功率开关管Q4,与功率开关管Q4连接的电容C2,其中,储能电感L1两端并联一继电器T1。
在一些实施例中,功率开关管Q1至Q4与功率变换单元对应的功率变换串管控单元连接,继电器T1与功率变换串管控单元连接,方法还包括:
通过功率变换串管控单元控制功率开关管Q1至Q4以及继电器T1的开通与关断。
在一些实施例中,供电系统包括外部输出母线,方法还包括:
当外部输出母线通过功率变换单元对电池组串单元充电时,若外部输出母线的电压高于电池组串单元的电压,则通过功率变换串管控单元控制断开继电器T1,控制功率开关管Q1为常通,同时控制功率开关管Q2为常断,控制功率开关管Q3以及功率开关管Q4为交替导通,并将功率变换单元调整为降压拓扑结构;
若外部输出母线的电压低于电池组串单元的电压,则通过功率变换串管控单元控制功率开关管Q3为常通,同时控制功率开关管Q4为常断,控制功率开关管Q1以及功率开关管Q2为交替导通,并将功率变换单元的调整为升压拓扑结构。
在一些实施例中,方法还包括:
当电池组串单元通过功率变换单元对外部输出母线放电时,若外部输出母线的电压高于电池组串单元的电压,则通过功率变换串管控单元控制断开继电器T1,控制功率开关管Q1为常通,同时控制功率开关管Q2为常断,控制功率开关管Q3以及功率开关管Q4为交替导通,并将功率变换单元调整为升压拓扑结构;
若外部输出母线的电压低于电池组串单元的电压,则通过功率变换串管控单元控制功率开关管Q3为常通,同时控制功率开关管Q4为常断,控制功率开关管Q1以及功率开关管Q2为交替导通,并将功率变换单元调整为降压拓扑结构。
在一些实施例中,方法还包括:
若存在需进行互相充放电的第一目标电池组串单元以及第二目标电池组串单元,则通过第一目标电池组串单元对应的功率变换串管控单元控制第一目标电池组串单元对应的功率变换单元的开关状态;
通过第二目标电池组串单元对应的功率变换串管控单元控制第二目标电池组串单元对应的功率变换单元的开关状态,并调整功率变换单元对应的拓扑结构。
在一些实施例中,方法还包括:
当第一目标电池组串单元与第二目标电池组串单元之间压差大于第三预设压差阈值时,通过第一目标电池组串单元对应的功率变换串管控单元控制第一目标电池组串单元对应的功率变换单元的开关状态,以降低第一目标电池组串单元与第二目标电池组串单元之间的压差;
通过第二目标电池组串单元对应的功率变换串管控单元控制第二目标电池组串单元对应的功率变换单元的开关状态,并调整功率变换单元对应的拓扑结构,以控制第一目标电池组串单元与第二目标电池组串单元之间的充放电。
在一些实施例中,状态监测管理单元包括输出总电压检测、输出总电流检测以及输出开关,方法还包括:
通过输出开关接收从高压电池功率总控单元发送的控制指令。
本申请实施例还公开了一种电子设备,包括处理器、通信接口、存储器和通信总线,其中,处理器、通信接口以及存储器通过通信总线完成相互间的通信;
存储器,用于存放计算机程序;
处理器,用于执行存储器上所存放的程序时,实现如本申请实施例的方法。
本申请实施例还公开了一种计算机非易失性可读存储介质,其上存储有指令,当由一个或多个处理器执行时,使得处理器执行如本申请实施例的方法。
本申请实施例包括以下优点:
在本申请实施例中,提供了一种服务器的供电系统及方法,通过高压电池功率总控单元、电池组串管控单元以及功率变换串管控单元等主要电路结构的协同工作,实现实时收集并分析供电系统中各子系统的功率信息,高压电池功率总控单元还可以根据分析结果对各子系统下发对应的控制指令,以实现对各子系统的功率控制,进而控制服务器的输出总功率,整个主用电功率通路简单可靠,无需将输入侧高压直流供电进行电能转换,简化了高压直流供电入口至服务器用电入口之间的设计结构,可有效提高供电系统工作效率,降低热损耗,同时在服务器外部主供电系统工作异常时,可以确保服务器用电需求,保证供电系统的转换效率以及工作可靠性。
附图说明
图1是一种现有数据中心供电系统结构示意图;
图2是本申请实施例中提供的一种服务器的供电系统中供电模块的电路结构框图;
图3是本申请实施例中提供的一种整体电池组功率单元的电路结构框图;
图4是本申请实施例中提供的一种电池功率组合单体的电路结构框图;
图5是本申请实施例中提供的一种功率变换单元的电路结构框图;
图6是本申请实施例中提供的一种服务器的供电方法的步骤流程图;
图7是本申请实施例中提供的一种计算机可读介质的示意图;
图8是本申请实施例中提供的一种电子设备的框图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
作为一种示例,参照图1,示出了一种现有数据中心供电系统结构示意图:
传统的数据中心大多采用一路或者两路交流供电母线和UPS(Uninterruptible Power System/Supply,不间断电源)供电系统架构以实现无间断供电,并提高数据中心用电的可靠性。由图1可知,数据中心系统结构中主要包含UPS及通信设备两部分,其中,在UPS中设有AC/DC(Alternating Current/Direct Current,交流/直流)转换、DC/AC(Direct Current/Alternating Current,直流/交流)转换以及电池组,结合UPS外的PDU(Power Distribution Unit,电源分配单元),可以将380V的高压交流电转换为220V的交流电输出至通信设备,在通信设备中的PSU(Power Supply Unit,电源单元)中经过PFC(Power Factor Correction功率因数校正)以及DC/DC(Direct Current/Direct Current,将固定直流电压变换为可变直流电压)进一步转换成可变直流电,并可以通过VR(Variable Resistor,可变电阻器)或者直接输出至通信设备主板的负载。
通过UPS实现数据中心服务器的不间断供电过程中涉及市电转换及内部蓄电池的充放电,在UPS供电系统中,当市电输入正常时,UPS将市电进行滤波并稳压后提供给数据中心的服务器电源,同时向UPS内部蓄电池组件充电,而当市电输入故障时,UPS会立即将蓄电池组件内的直流电能通过逆变器转换成交流电供给数据中心的服务器电源。在上述现有数据中心供电系统中,UPS的AC/DC转换及DC/AC转换是整个供电系统电能传导中能量损耗的主要环节,而交流和直流的每一次转换效率损耗为5%左右,并且转化后的交流电还需要进行PFC电路以提高功率因数,从而导致再增加一级转换损耗,整个供电过程中,能源转换的多重损耗,导致了数据中心的大功率服务器用电效率低下且热损耗大,同时UPS电源位于主用电功率通路,大功率且长期不间断运行而造成的热累积,大大增加了电源故障率,从而严重影响数据中心服务器的用电可靠性。但如果对UPS增加复杂结构实现其供电的冗余配置,将导致大大增加数据中心供电系统的成本以及体积。
对此,本申请实施例的核心发明点之一在于:提供一种更简单可靠的服务器的供电系统及方法,通过高压电池功率总控单元、电池组串管控单元以及功率变换串管控单元等主要电路结构的协同工作,实现实时收集并分析供电系统中各子系统的功率信息,高压电池功率总控单元还可以根据分析结果对各子系统下发对 应的控制指令,以实现对各子系统的功率控制,进而控制服务器的输出总功率,整个主用电功率通路简单可靠,无需将输入侧高压直流供电进行电能转换,简化高压直流供电入口至服务器用电入口之间的设计结构,可有效提高供电系统工作效率,降低热损耗,同时在服务器外部主供电系统工作异常时,可以确保服务器用电需求,保证供电系统的转换效率以及工作可靠性。
参照图2,示出了本申请实施例中提供的一种服务器的供电系统中供电模块的电路结构框图,电路结构框图具体可以包括:
高压电池功率总控单元,分别与高压电池功率总控单元连接的至少一个功率变换串管控单元、至少一个电池组串管控单元、状态监测管理单元,以及与功率变换串管控单元连接的功率变换单元、与电池组串管控单元连接的电池组串单元;其中,每一电池组串单元对应连接有一功率变换单元,且各个功率变换单元并联连接后与状态监测管理单元连接;
需要指出的是,为方便说明,本实施例中仅给出了供电系统中其中一个供电模块作为示例,但实际上在设计供电系统框架时,整个供电系统不仅包含一个供电模块,从而当其中一个供电模块出现异常时,供电系统还能利用其他供电模块与外部输出母线之间进行充放电,以实现对于服务器的供电备电冗余,可以理解的是,本申请对此不作限制。
具体地,供电系统中供电模块可以包括1个高压电池总控单元;m个电池组串单元,分别为电池组串单元1,电池组串单元2,以此类推到电池组串单元m;m个功率变换单元,分别为功率变换单元1,功率变换单元2,以此类推到功率单元m;m个电池组串管控单元,分别为电池组串管控单元1,电池组串管控单元2,以此类推到电池组串管控单元m;m个功率变换串管控单元,分别为功率变换串管控单元1,功率变换串管控单元2,以此类推到功率变换串管控m。
其中,电池组串单元1输出连接功率变换单元1的输入,电池组串单元2输出连接功率变换单元2输入,以此类推,电池组串单元m输出连接功率变换单元m;功率变换单元1至功率变换单元m的输出全部并联连接,并联的公共端连接至状态监测管理单元的输入,状态监测管理单元的输出则连接功率总输出端口,其中,m值大小由数据中心用电总功率需求、单个电池组串单元供电功率大小以及降额要求值决定,作为一种示例,m值可为3、4、5、6或更大,可以理解的是,本申请对此不作限制。
具体地,所有电池组串单元可以通过采控线连接至电池组串管控单元(电池组串单元1连接电池组串管控单元1,以此类推,电池组串单元m连接电池组串管控单元m),同时所有电池组串管控单元(电池组串管控单元1至电池组串管控单元m)可以通过通信线连接到高压电池功率总控单元的通信总线上。
基于上述电路连接,对于电池组串单元的控制过程,具体可以为:电池组串管控单元可以通过采控线采集电池组串单元中实时反映电池组内各电池单体的荷电状态和充放电工作状态的功率信息,如多种电压、电流、温度信号,具体可 以为电池单体最高电压、电池单体最低电压、输出总电压、输出电流、以及最高温度值和最低温度值多个数据值,接着综合多种信号对电池组串单元进行健康状态分析,并根据状态分析结果生成可以反映电池组串单元健康状态信息的状态信息表,发送至高压电池功率总控单元,而高压电池功率总控单元接收到状态信息表后,可以根据供电总输出状态,将状态信息表与预设总输出数据进行比较,同时结合电池组电池单体电压预警值进一步综合判断电池组串单元的真实健康状态,生成开关控制指令以及功率控制指令,并将开关控制指令发送至电池组串管控单元,电池组串管控单元进一步将开关控制指令转换成开关控制信号,并将开关控制信号发送至电池组串单元内的功率开关管,电池组串单元则可以控制电池组串单元内开关功率管切换至与开关控制信号对应的开关状态,从而通过控制不同电池组串单元内的功率管开关闭合状态,以实现整体电池组内各电池组串单元的状态调控,同时高压电池功率总控单元可以将功率控制指令发送至与电池组串管控单元对应的功率变换串管控单元。
荷电状态(State Of Charge,SOC),指蓄电池使用一段时间或长期搁置不用后的剩余容量与其完全充电状态的容量的比值,常用百分数表示,其取值范围为0~1,当SOC=0时表示电池放电完全,当SOC=1时表示电池完全充满。
所有功率变换单元可以通过采控线连接到功率变换串管控单元(功率变换单元1连接功率变换串管控单元1,以此类推,功率变换单元m连接功率变换串管控单元m),其中,功率变换单元(功率变换单元1至功率变换单元m)为双向功率变换单元,其输入侧和输出侧的电压、电流信号,以及关键功率热点的温度信号可以通过采控线传送至功率变换串管控单元,同时功率变换串管控单元内的主控芯片可以将采集的功率变换单元的电压、电流、温度数据信息进行运算处理,形成功率变换单元的健康状态信息,同时功率变换串管控单元可以将控制信号经采控线传送至功率变换单元内的功率开关管,从而可以通过控制功率变换单元内部的功率开关管不同的瞬态开关状态,实现功率变换单元不同输入输出之间的电压电流转换功能。
状态监测管理单元可以经通信线连接至高压电池功率总控单元的通信总线上,状态监测管理单元内部包括输出总电压检测、总电流检测,以及输出开关,其中,输出开关用于接收从高压电池功率总控单元发送的控制指令。
所有功率变换串管控单元(功率变换串管控单元1至功率变换串管控单元m)可以通过通信线连接至高压电池功率总控单元的通信总线上,高压电池总控单元可以通过通信总线采集到各电池组串管控单元以及状态监测管控单元的数据信息,其中,高压电池功率总控单元的综合处理芯片,如MCU(Micro Controller Unit,微控制单元)以及DSP(Digital Signal Processing,数字信号处理),对接收的数据信息进行分析处理后,可以进一步通过通信总线对功率变换串管控单元发送功率控制指令,以使功率变换串管控单元获取需要具体完成的输入电压、输入电流、输出电压、输出电流状态,而功率变换串管控单元可以将接收的功率控制指令转换成功率控制信号,并将功率控制信号发送至功率变换单元,功率变 换单元可以执行与功率控制信号对应的电压获取操作,从功率变换单元对应的电池组串单元获取对应的输出电压,将输出电压从第一预设电压范围调整至第二预设电压范围,其中,第二预设电压范围处于第一预设电压范围内,即可以将电池组串单元波动较大的输出电压调整为精度较高的输出电压,以实现电压的稳压输出,并将调整后的输出电压传送至状态监测管理单元,状态监测管理单元则可以获取各个电池组串单元内的电流,并采用电流以及调整后的输出电压计算总输出功率,并将总输出功率经高压电池功率总控单元输出至服务器,则高压电池功率总控单元具体可以用于通过通信总线接收状态监测管理单元发送的总输出功率,并控制供电系统中供电模块以总输出功率作为服务器的总功率输出值输出至服务器,或,控制供电系统中供电模块以预设总功率输出值作为服务器的总功率输出值输出至服务器。
需要说明的是,此处不同功率变换串管控单元可以为相同的输入电压、输入电流、输出电压、输出电流状态,也可以为不同的输入电压、输入电流、输出电压、输出电流状态。
其中,电池组串单元输出和对应的功率变换单元输入串联连接,若检测到电池组串单元存在故障,还可以通过功率变换单元采用预设功率阈值对除故障电池组串单元之外的电池组串单元重新分配功率。具体地,可以通过控制功率变换单元的输入电压、输出电压状态,将与功率变换单元对应的电池组串单元内电池单体的输出电压从第一预设电压范围调整至第二预设电压范围,其中,第二预设电压范围处于第一预设电压范围内,从而可以实现将电池组串单元内各个电池单体的宽范围输出电压精度变换为一个高精度输出电压,总共m个功率变换单元(1~m)输出的高精度电压并联后提供输出总功率,其中,如有一路或几路功率变换单元异常,会对每个电池组串单元输出总电压以判断各个对应的功率变换单元的功率承受能力,以及所剩m值重新分配功能正常的功率变换单元的承担功率大小。
功率变换单元输入侧的电压由串联的电池组串单元的输出电压决定,而功率变换单元输出侧的功率状态(包括电压、电流值)由对应的功率变换串管控单元控制,其控制的具体功率输出值由高压电池功率总控单元发送的功率控制指令决定,高压电池功率总控单元可以根据采集到的各个电池组串单元的状态信息值,经综合判断后对m个功率变换串管控单元发送具体输出功率值,而各个功率变换串管控单元执行的功率输出值可以相同,也可以不同。
上述对各个电池组串单元的状态信息值的综合判断过程主要为:判断每个电池组串单元内部是否存在异常的电池单体,将存在异常单体的电池组串单元输出总电压,与剩余所有电池组串单元总电压相加后的平均值做对比,如果比对结果表征输出总电压值相差大,则需要降低存在异常单体的电池组串单元所承担功率,并重新根据输出总电压进行功率分配,此外,当某一电池组串单元内异常单体数量较多,所闭合的功率开关管数量较多时,则需要监测该电池组串单元,以进一步判断该电池组串单元是否存在故障。
m个功率变换单元输出并联连接,其中任意两个功率变换单元之间可以进行 电压转换,实现不同电池组串单元之间的充电和放电关系,例如电池组串单元1、电池组串单元2或电池组串单元m,任意两个电池组串单元之间进行充放电,具体地,可以由高压电池功率总控单元对功率变换串管控单元发送电压转换指令,功率变换串管控单元可以接收高压电池功率总控单元发送的电压转换指令,并执行电压转换指令,控制与电压转换指令对应的功率变换单元之间进行电压转换。至于具体执行哪两个电池组串单元之间的充放电,以及充放电的电压电流值大小,是由高压电池功率总控单元采集到各电池组串管控单元数据信息并进行数据处理后决定的。
同时,可以根据电池组串管控单元传送至高压电池功率总控单元的各电池组串单元的健康状态信息,以及功率变换串管控单元传送至高压电池功率总控单元的各功率变换单元的健康状态信息,判断各电池组串单元支路所承担的功率。
若各个电池组串单元以及各个功率变换单元状态良好,如各个电池组串单元的功率信息均符合预设功率条件,则高压电池功率总控单元可以将总输出功率,或,预设总功率输出值,以控制指令形式发送至各个电池组串管控单元,实现平均分发至各个电池组串单元。
若存在功率信息不符合预设功率条件的异常电池组串单元,如某一条电池组串单元支路的电池组串单元以及功率变换单元的健康状态存在异常,例如电池组串单元内的电池单体电压低或功率管温度高,则按照预设降额输出功率确定异常电池组串单元的功率,并根据总输出功率,或,预设总功率输出值,以及异常电池组串单元的功率进行计算,确定剩余符合预设功率条件的电池组串单元对应的功率,如将该异常电池组串单元的功率降至平均输出功率的80%,剩余支路则平均承担剩余功率。
若调整后的电池组串单元的功率信息仍不符合预设功率条件,如调整后的电池组串单元仍存在健康状态异常情况,则对应的电池组串管控单元可以获取高压电池功率总控单元发送的关断控制指令,并执行关断控制指令对应的关断操作,关闭调整后的电池组串单元的功率输出,同时可以通过通信总线或面板异常显示等形式告知数据中心运营人员,及时进行维护。
预设功率条件可以为各个电池组串单元以及各个功率变换单元的电压/电流处于稳定且不超阈值情况,具体地,每个电池组串单元中每个电池单体的电压峰值电压、最低电压、最大放电电流以及充电电流均具有标准值,可以将这些标准值预设为阈值,接着可以再设置一个临界阈值作为提前告警值。
可以通过高压电池功率总控单元评估任意两个电池组串单元之间的电压差,具体地,可以采用状态信息表以及预设输出功率分析各个电池组串单元的输出功率,并基于分析结果确定任意两个电池组串单元之间的电压差,接着将存在电压差的两个电池组串单元的电压差与第一预设压差阈值进行比对,当电压差大于或等于第一预设压差阈值时,说明两个电池组串单元间压差较大,此时可以对相对高压的电池组串单元对应的功率变换串管控单元发出放电控制指令,以控制相对高压的电池组串单元向相对低压的电池组串单元进行放电。具体地,电池组串单 元之间的电压差主要通过电池组的输出总电压以及各个电池组串单元的输出电流值、输出电压平均值、输出电压最大值、输出电压最小值进行对比分析得出,需要说明的是,此处相对高压的电池组串单元指两个电池组串单元相比之下电压较高的电池组串单元,同样地,相对低压的电池组串单元指两个电池组串单元相比之下电压较低的电池组串单元,可以理解的是,本申请对此不作限制。
进一步地,若相对高压的电池组串单元内存在放电值大于或等于预设放电阈值的第一电池单体,说明该第一电池单体放电量过大,短时间内不宜再多放电,避免过放造成器件损坏,则可以通过高压电池功率总控单元,或,相对高压的电池组串单元对应的电池组串管控单元,向相对高压的电池组串单元发出旁路控制指令,以控制相对高压的电池组串单元旁路第一电池单体。
若相对低压的电池组串单元内存在充电值大于或等于预设充电阈值的第二电池单体,说明该第二电池单体放电量过大,短时间内不宜再多充电,避免过充造成器件损坏,则可以通过高压电池功率总控单元,或,相对低压的电池组串单元对应的电池组串管控单元,向相对低压的电池组串单元发出旁路控制指令,以控制相对低压的电池组串单元旁路第二电池单体。
在电池组串单元进行放电的时候,在同一个电池组串单元内,或任意两个电池组串单元之间,可能存在两个压差较大的电池单体,如其中一个电池单体的电压为4V,另一个电池单体的电压为2V,同时进行放电,当两个电池单体间的压差大于某个预设数值,如大于5mV时,此时则需要先旁路2V的低电压电池单体,先使4V的高电压电池单体进行放电,当进行放电后的高电压电池单体与低电压电池单体的压差小于5mV时,再解除低电压电池单体的旁路状态,使两个电池单体同时进行放电,在具体的实现中,若检测到压差大于或等于第二预设压差阈值的高电压电池单体及低电压电池单体同时放电,则可以通过高压电池功率总控单元向低电压电池单体对应的电池组串单元发出旁路控制指令,以控制旁路低电压电池单体,当高电压电池单体放电一段时间后,若检测到高电压电池单体与低电压电池单体间压差小于第二预设压差阈值,则可以通过高压电池功率总控单元控制解除低电压电池单体的旁路状态,以使高电压电池单体及低电压电池单体同时进行放电。
当监测到某电池组串单元内任意电池单体的健康状态发生异常,例如出现过充和过放的故障,高压电池功率总控单元或者对应的电池组串管控单元都可以发出控制指令,以控制电池组串单元内电池单体并联的功率开关管导通,旁路该电池单体,使该电池单体退出工作状态,具体地,若检测到任一电池组串单元发生充放电异常的异常电池单体,则可以通过高压电池功率总控单元向异常电池单体对应的异常电池组串单元发出旁路控制指令,以控制异常电池组串单元旁路异常电池单体。
上述异常电池组串单元内的异常电池单体被旁路后,当该异常电池组串单元处于放电状态时,高压电池功率总控单元可以根据异常电池组串单元内的异常电池单体的健康状态,以及其他电池组串单元的健康状态,以前述内容中的功率分 配方式,调整电池组串单元支路串联的功率变换单元的输入电压、输出电压状态,以及不同电池组串单元支路的功率分配情况,若功率分配过程中继续发生某电池单体故障,则重复该过程。
具体地,可以将存在任一旁路电池单体的电池组串单元确定为旁路电池组串单元,若旁路电池组串单元处于放电状态,则可以通过高压电池功率总控单元分析旁路电池组串单元中被旁路的电池单体的健康状态以及其他电池组串单元的健康状态,基于分析结果,采用总输出功率调整旁路电池组串单元的功率分配,若旁路电池组串单元处于充电状态,则控制与旁路电池组串单元对应的功率变换单元,继续向旁路电池组串单元内充电值小于预设充电阈值的第三电池单体进行充电,并在第三电池单体的充电值大于或等于预设充电阈值时,控制旁路第三电池单体,使所有电池单体都能保持良好的充电放电状态。
当上述被旁路的电池单体对应的电池组串单元进入下一工作状态或者满足高压电池功率总控单元内预设的可以在此进入工作状态的判据时,例如当电池单体电压充电状态达到电池组串单元内电池单体电压平均值时,则断开功率开关管,使被旁路的电池单体能够继续工作。也就是说,若检测到旁路电池组串单元满足预设充电状态,则可以通过高压电池功率总控单元控制断开旁路电池组串单元的功率开关管,以解除被旁路电池单体的旁路状态。
当功率变换单元的输入侧电压(即电池组串单元的输出侧电压)低时,此时说明该电池组串单元需要充电,则高压电池功率总控单元可以对功率变换串管控单元发出指令,功率变换串管控单元通过采控线控制功率变换单元的功率开关管的开通和闭合状态,实现输出母线对该电池组串单元的充电。
具体地,若检测到功率变换单元电压低于预设电压阈值,则可以通过高压电池功率总控单元向功率变换单元对应的功率变换串管控单元发送充电控制指令,以使功率变换串管控单元执行充电控制指令,控制功率变换单元的功率开关管的开闭状态,以控制对功率变换单元对应的电池组串单元进行充电。
在一些实施例中,供电系统中供电模块包括整体电池组功率单元,参照图3,示出了本申请实施例中提供的一种整体电池组功率单元的电路结构框图,电路结构框图具体可以包括:
总电压电流检测单元,与总电压电流检测单元并联连接的至少一个功率变换管理单元,与功率变换管理单元连接的电压电流检测单元,与电压电流检测单元连接的电池组串单元,其中,每一功率变换管理单元对应连接有一电压电流检测单元,每个功率变换管理单元由一个功率变换单元以及对应的功率变换串管控单元组成,每个电池组串单元由多个电池功率组合单体串联连接而成。
具体地,总电压电流检测单元与电源输出正连接,总电压电流检测单元与由各个功率变换管理单元并联连接的公共端连接,每一功率变换管理单元与每一电压电流检测单元对应串联连接,每一电压电流检测单元与每一电池组串单元的输出端对应串联连接,各个电池组串单元并联连接的公共端与电源输出负连接,即 整体电池组功率单元可以看做是由N个电池功率组合单体串联后再并联组成,并联数为m,其中N和m的具体数值根据整个数据中心应用的功率需求及降额要求决定。
作为一种示例,电池功率组合单体n1正极串联电池功率组合单体n2负极,以此类推串联电池功率组合单体nN-1负极,电池功率组合单体nN-1正极串联电池功率组合单体nN负极,电池功率组合单体nN正极串联接入电压电流检测单元1后串联至功率变换管理单元1;
电池功率组合单体2n1正极串联电池功率组合单体2n2负极,以此类推串联电池功率组合单体2nN-1负极,电池功率组合单体2nN-1正极串联电池功率组合单体2nN负极,电池功率组合单体2nN正极串联接入电压电流检测单元2后串联至功率变换管理单元2;
以此类推,电池功率组合单体mn1正极串联电池功率组合单体mn2负极,以此类推串联电池功率组合单体mnN-1负极,电池功率组合单体mnN-1正极串联电池功率组合单体mnN负极,电池功率组合单体mnN正极串联接入电压电流检测单元m后串联至功率变换管理单元m;
电池功率组合单体n1负极以及电池功率组合单体2n1负极,以此类推至电池功率组合单体mn1负极并联组成整体电池组功率单元的输出负极;
功率变换管理单元1的输出侧以及功率变换管理单元2输出侧,以此类推至功率变换管理单元m输出侧并联连接,并联后接入总电压电流检测单元,组成整体电池组功率单元的输出正极。
其中,电压电流检测单元可以用于检测N个电池功率组合单体组成的串联支路的电压电流信息,总电压电流检测单元可以用于检测由m个串联支路并联后的总电压电流信息,该电压电流信息最终通过各自通信总线一并送入高压电池功率总控单元,用于综合数据处理、电池充放电管控以及能量流安全管控等,则高压电池功率总控单元可以用于接收总电压电流信息以及各个电压电流信息,以控制各个电池组串单元的充放电。
在一些实施例中,每个电池组串单元中包括多个电池功率组合单体,参照图4,示出了本申请实施例中提供的一种电池功率组合单体的电路结构框图,电路结构框图具体可以包括:
电池单体CC1、与电池单体CC1连接的开关功率管CQ1、开关功率管CQ2,与开关功率管CQ2连接的熔断器CR1、熔断器CR2,与熔断器CR2连接的阻抗匹配电阻RR1,其中,熔断器CR2与阻抗匹配电阻RR1串联后与熔断器CR1并联连接。
具体地,电池单体CC1的正极连接开关功率管CQ2的漏极,电池组串单元开关功率管CQ2的源极连接熔断器CR1一端,电池组串单元熔断器CR1另一端连接开关功率管CQ1的漏极,电池组串单元开关功率管CQ1的源极连接电池组串单元电池单体CC1的负极,熔断器CR2与阻抗匹配电阻RR1串联后与电池组串单元熔 断器CR1并联连接。
其中,开关功率管CQ1以及开关功率管CQ2分别连接电池功率组合单体对应的电池组串管控单元,具体地,开关功率管CQ1的栅极以及开关功率管CQ2的栅极分别连接电池功率组合单体所属电池组串单元所对应的电池组串管控单元,电池组串管控单元可以控制开关功率管的导通及关断,实现对电池单体的故障隔离,其中,开关功率管CQ1与开关功率管CQ2为互补导通关断关系。
同时,开关功率管CQ1的漏极与源极之间设置有电压监测点,开关功率管CQ1与电池单体CC1功率集成处设置有温度采集点,电池组串管控单元可以通过采控线采集电压监测点的电压信息,以及温度监测点的温度信息。
电池单体CC1为输出能量主要载体,熔断器CR1用于控制电池单体对应支路的大电流放电故障异常,熔断器CR2与阻抗匹配电阻RR1的串联支路用于控制熔断器CR1对应支路误熔断后的导通支路校正,以及当电池单体CC1发生过电流异常时,在电池单体CC1支路断开时为开关功率管CQ1的闭合提供充足响应时间。
通过调整阻抗匹配电阻RR1与熔断器CR2之间的比值,如将阻抗匹配电阻RR1与熔断器CR2之间的比值设置在20倍至100倍之间,可以控制其熔断能力并适当降低导通电阻损耗,由于熔断器CR2支路存在阻抗匹配电阻,因此当电路正常工作时,电流流过熔断器CR1的支路,可降低导通电阻损耗。
上述电池功率组合单体的电路结构中,在电池功率组合单体的内部引入了功率开关管CQ2,且CQ1与CQ2互补导通,从而设置两个熔断器只是为了对电池多一重极限保护功能,但从整体来看,会导致体积增加,从电路结构来看,即使将两个熔断器去掉,也并不影响开关功率管的闭合。
在一些实施例中,可以将熔断器CR2与阻抗匹配电阻RR1支路去掉,同时也可以去掉熔断器CR1,变成电池单体CC1直接与开关功率管CQ1、开关功率管CQ2串联连接,从而提高了功能密度较小占空体积,优化了电路,也降低了供电系统的成本。
在一些实施例中,参照图5,示出了本申请实施例中提供的一种功率变换单元的电路结构框图,电路结构框图具体可以包括:
电容C1,与电容C1连接的功率开关管Q1、功率开关管Q2,与功率开关管Q2连接的连接储能电感L1,与储能电感L1连接的功率开关管Q3、功率开关管Q4,与功率开关管Q4连接的电容C2,其中,储能电感L1两端并联一继电器T1。
具体地,电容C1可以并联在电源输入正以及输入负之间,电源输入正连接功率开关管Q1的漏极,功率开关管Q1的源极连接功率开关管Q2的漏极,功率开关管Q2的源极连接电源输入负,功率开关管Q1的源极连接储能电感L1一端,储能电感L1另一端连接功率开关管Q3的漏极,储能电感L1与继电器T1并联连接,功率开关管Q3的源极连接电源输出正,电容C2并联在电源输出正以及输出负之间,电源输出负连接功率开关管Q4的源极,功率开关管Q4的漏极连接功率开关管Q3源极,电源输入负以及电源输出负之间共地连接。
功率开关管Q1至Q4的栅级可以与功率变换单元对应的功率变换串管控单元连接,继电器T1的控制端可以通过采控线与功率变换串管控单元连接,则可以通过功率变换串管控单元控制功率开关管Q1至Q4以及继电器T1的开通与关断,其中功率开关管Q1至Q4为高频控制,控制频率最低可为几百KHz(Kilo Hertz,千赫兹),最高可达MHz(Mega Hertz,兆赫兹),其中继电器T1为低频控制,最高为1KHz。
供电系统可以包括外部输出母线,当外部输出母线通过功率变换单元对电池组串单元充电时,若外部输出母线的电压高于电池组串单元的电压,则可以通过功率变换串管控单元控制断开继电器T1,以及控制功率开关管Q1为常通,同时控制功率开关管Q2为常断,以高频开关控制方式控制功率开关管Q3以及功率开关管Q4为交替导通,并将功率变换单元调整为降压拓扑结构,从而实现先恒流,再恒压模式对电池组串单元充电,从而当外部输出母线对多个电池组串单元进行充电时,可以通过控制继电器以及功率开关管的开闭,调整拓扑结构至降压拓扑结构,以实现对电池组串单元充电过程中的多级降压,如外部输出母线提供的电压可能为500V,而电池组串单元可以承受的电压为180V,则可以先通过上述方式将500V先降至220V,再降至180V,再将经两级降压的180V电压传输至电池组串单元,以保证电池组串单元的正常工作。
若外部输出母线的电压低于电池组串单元的电压,则可以通过功率变换串管控单元控制断开继电器T1,以及控制功率开关管Q3为常通,同时控制功率开关管Q4为常断,以高频开关控制方式控制功率开关管Q1以及功率开关管Q2为交替导通,并将功率变换单元的调整为升压拓扑结构,从而实现先恒流,再恒压模式对电池组串单元充电,同理,如果外部输出母线的电压低于电池组串单元电压,则为了提高电压传输效率,可以通过控制继电器以及功率开关管的开闭,调整拓扑结构至升压拓扑结构,以实现对电池组串单元充电过程中的升压,如外部输出母线提供的电压可能为180V,而电池组串单元的电压为220V,则可以通过上述方式将180V升压至220V,再将220V电压传输至电池组串单元。
而当电池组串单元通过功率变换单元对外部输出母线放电时,若外部输出母线的电压高于电池组串单元的电压,则可以通过功率变换串管控单元控制断开继电器T1,以及控制功率开关管Q1为常通,同时控制功率开关管Q2为常断,以高频开关控制方式控制功率开关管Q3以及功率开关管Q4为交替导通,并将功率变换单元调整为升压拓扑结构,从而实现恒压模式对外部输出母线恒压放电。
若外部输出母线的电压低于电池组串单元的电压,则可以通过功率变换串管控单元控制断开继电器T1,以及控制功率开关管Q3为常通,同时控制功率开关管Q4为常断,以高频开关控制方式控制功率开关管Q1以及功率开关管Q2为交替导通,并将功率变换单元调整为降压拓扑结构,从而实现降压模式对外部输出母线恒压放电。
同时,还可以通过功率变换串管控单元控制功率开关管Q1至Q4以及继电器T1,实现两个电池组串单元之间充放电均衡控制,例如实现电池组串单元1与电 池组串单元2之间相互充放电,具体地,在进行电池单体均衡控制时,可以通过控制功率变换单元1中功率开关管Q1、Q3常通,Q2、Q4常断,继电器T1闭合,同时根据电池组串单元1与电池组串单元2之间电压高低关系,通过上述拓扑结构控制变换方式控制功率变换单元2的开关状态,实现电池组串单元1与电池组串单元2之间的充电和放电。
在具体的实现中,若存在需进行互相充放电的第一目标电池组串单元以及第二目标电池组串单元,则可以通过第一目标电池组串单元对应的功率变换串管控单元控制第一目标电池组串单元对应的功率变换单元的开关状态,可以通过第二目标电池组串单元对应的功率变换串管控单元控制第二目标电池组串单元对应的功率变换单元的开关状态,并调整功率变换单元对应的拓扑结构,具体的拓扑结构调整方式因前面进行了详细描述,此处不再赘述。
而当电池组串单元内电池功率组合单体被内部开关功率管旁路的数量较多时,会导致电池组串单元1与电池组串单元2之间压差过大(例如,当所需变换压差超过单级变换能力时认为压差过大,其单级变换能力根据电路的初始设计具体评估,可以将评估值作为第三预设压差阈值写入控制指令中作为评判标准),可以通过上述拓扑结构控制变换方式先控制功率变换单元1的开关状态,将其输出电压升高或降低,减小电池组串单元1与电池组串单元2之间压差,例如降低到两个电池单体之间压差在10~50mv之间,同时进一步通过上述拓扑结构控制变换方式控制功率变换单元2的开关状态,以控制电池组串单元1和电池组串单元2之间的充电和放电,实现对电池组串单元内少量电池单体的定向均衡控制。
在具体的实现中,当第一目标电池组串单元与第二目标电池组串单元之间压差大于第三预设压差阈值时,第一目标电池组串单元对应的功率变换串管控单元可以用于:控制第一目标电池组串单元对应的功率变换单元的开关状态,以降低第一目标电池组串单元与第二目标电池组串单元之间的压差;
第二目标电池组串单元对应的功率变换串管控单元可以用于:控制第二目标电池组串单元对应的功率变换单元的开关状态,并调整功率变换单元对应的拓扑结构,以控制第一目标电池组串单元与第二目标电池组串单元之间的充放电。
需要说明的是,本申请实施例包括但不限于上述示例,可以理解的是,本领域技术人员在本申请实施例的思想指导下,还可以根据实际需求进行设置,本申请对此不作限制。
在本申请实施例中,提供了一种服务器的供电系统,通过高压电池功率总控单元、电池组串管控单元以及功率变换串管控单元等主要电路结构的协同工作,实现实时收集并分析供电系统中各子系统的功率信息,高压电池功率总控单元还可以根据分析结果对各子系统下发对应的控制指令,以实现对各子系统的功率控制,进而控制服务器的输出总功率,整个主用电功率通路简单可靠,无需将输入侧高压直流供电进行电能转换,简化了高压直流供电入口至服务器用电入口之间的设计结构,可有效提高供电系统工作效率,降低热损耗,同时在服务器外部主供电系统工作异常时,可以确保服务器用电需求,保证供电系统的转换效率以及 工作可靠性。
参照图6,示出了本申请实施例中提供的一种服务器的供电方法的步骤流程图,方法应用于服务器的供电系统,供电系统包括至少一个供电模块,供电模块至少包括高压电池功率总控单元,分别与高压电池功率总控单元连接的至少一个功率变换串管控单元、至少一个电池组串管控单元、状态监测管理单元,以及与功率变换串管控单元连接的功率变换单元、与电池组串管控单元连接的电池组串单元;其中,每一电池组串单元对应连接有一功率变换单元,且各个功率变换单元并联连接后与状态监测管理单元连接;方法具体可以包括如下步骤:
步骤601,通过电池组串管控单元将电池组串单元对应的状态信息表发送至高压电池功率总控单元;
步骤602,接收高压电池功率总控单元根据状态信息表生成的开关控制指令,并根据开关控制指令控制电池组串单元的开关状态;
步骤603,通过功率变换串管控单元接收高压电池功率总控单元根据状态信息表生成的功率控制指令,并根据功率控制指令控制功率变换单元从电池组串单元获取输出电压;
步骤604,通过功率变换单元将输出电压从第一预设电压范围调整至第二预设电压范围,并将调整后的输出电压传送至状态监测管理单元,第二预设电压范围处于第一预设电压范围内;
步骤605,通过状态监测管理单元根据调整后的输出电压计算输出总功率,并将输出总功率输出至服务器。
在一些实施例中,方法还包括:
通过电池组串管控单元采集电池组串单元的功率信息,并采用功率信息对电池组串单元的健康状态进行分析,生成电池组串单元对应的状态信息表。
在一些实施例中,功率信息包括电池组串单元内多种电压、电流以及温度信号,通过电池组串管控单元采集电池组串单元的功率信息,并采用功率信息对电池组串单元的健康状态进行分析,生成电池组串单元对应的状态信息表,包括:
通过电池组串管控单元采集电池组串单元的多种电压、电流以及温度信号,并采用多种电压、电流以及温度信号对电池组串单元的健康状态进行分析,生成状态信息表。
在一些实施例中,方法还包括:
通过高压电池功率总控单元接收电池组串管控单元发送的状态信息表,将状态信息表与预设总输出数据进行比较,生成开关控制指令以及功率控制指令,并将开关控制指令发送至电池组串管控单元,将功率控制指令发送至与电池组串管控单元对应的功率变换串管控单元。
在一些实施例中,根据开关控制指令控制电池组串单元的开关状态,包括:
通过电池组串管控单元将开关控制指令转换成开关控制信号,并将开关控制信号发送至电池组串单元;
通过电池组串单元控制电池组串单元内开关功率管切换至与开关控制信号对应的开关状态。
在一些实施例中,根据功率控制指令控制功率变换单元从电池组串单元获取输出电压,包括:
通过功率变换串管控单元将功率控制指令转换成功率控制信号,并将功率控制信号发送至功率变换单元;
通过功率变换单元执行与功率控制信号对应的电压获取操作,从功率变换单元对应的电池组串单元获取输出电压。
在一些实施例中,方法还包括:
若检测到电池组串单元存在故障,则通过功率变换单元采用预设功率阈值对除故障电池组串单元之外的电池组串单元重新分配功率。
在一些实施例中,方法还包括:
通过功率变换单元调整功率变换单元的输入电压状态以及输出电压状态,将与功率变换单元对应的电池组串单元内电池单体的输出电压从第一预设电压范围调整至第二预设电压范围,第二预设电压范围处于第一预设电压范围内。
在一些实施例中,方法还包括:
通过功率变换串管控单元接收高压电池功率总控单元发送的电压转换指令,并执行电压转换指令,控制与电压转换指令对应的功率变换单元之间进行电压转换。
在一些实施例中,方法还包括:
通过高压电池功率总控单元接收状态监测管理单元发送的总输出功率,并控制供电模块以总输出功率作为服务器的总功率输出值输出至服务器。
或,控制供电模块以预设总功率输出值作为服务器的总功率输出值输出至服务器。
在一些实施例中,方法还包括:
若各个电池组串单元的功率信息均符合预设功率条件,则通过高压电池功率总控单元将总输出功率,或,预设总功率输出值,平均分发至各个电池组串单元;
若存在功率信息不符合预设功率条件的异常电池组串单元,则通过高压电池功率总控单元按照预设降额输出功率确定异常电池组串单元的功率,并根据总输出功率,或,预设总功率输出值,以及异常电池组串单元的功率进行计算,确定剩余符合预设功率条件的电池组串单元对应的功率。
在一些实施例中,方法还包括:
若调整后的电池组串单元的功率信息仍不符合预设功率条件,则通过电池组串管控单元获取高压电池功率总控单元发送的关断控制指令,并执行关断控制指令对应的关断操作,关闭调整后的电池组串单元的功率输出。
在一些实施例中,方法还包括:
通过高压电池功率总控单元采用状态信息表以及预设输出功率分析各个电池组串单元的输出功率,并基于分析结果确定任意两个电池组串单元之间的电压 差;
若电压差大于或等于第一预设压差阈值,则对相对高压的电池组串单元对应的功率变换串管控单元发出放电控制指令,以控制相对高压的电池组串单元向相对低压的电池组串单元进行放电。
在一些实施例中,方法还包括:
若相对高压的电池组串单元内存在放电值大于或等于预设放电阈值的第一电池单体,则通过高压电池功率总控单元,或,相对高压的电池组串单元对应的电池组串管控单元,向相对高压的电池组串单元发出旁路控制指令,以控制相对高压的电池组串单元旁路第一电池单体。
在一些实施例中,方法还包括:
若相对低压的电池组串单元内存在充电值大于或等于预设充电阈值的第二电池单体,则通过高压电池功率总控单元,或,相对低压的电池组串单元对应的电池组串管控单元,向相对低压的电池组串单元发出旁路控制指令,以控制相对低压的电池组串单元旁路第二电池单体。
在一些实施例中,方法还包括:
若检测到压差大于或等于第二预设压差阈值的高电压电池单体及低电压电池单体同时放电,则通过高压电池功率总控单元向低电压电池单体对应的电池组串单元发出旁路控制指令,以控制旁路低电压电池单体;
若检测到高电压电池单体与低电压电池单体间压差小于第二预设压差阈值,通过高压电池功率总控单元控制解除低电压电池单体的旁路状态,以使高电压电池单体及低电压电池单体同时进行放电。
在一些实施例中,方法还包括:
若检测到任一电池组串单元发生充放电异常的异常电池单体,则通过高压电池功率总控单元向异常电池单体对应的异常电池组串单元发出旁路控制指令,以控制异常电池组串单元旁路异常电池单体。
在一些实施例中,方法还包括:
通过高压电池功率总控单元将存在任一旁路电池单体的电池组串单元确定为旁路电池组串单元,若旁路电池组串单元处于放电状态,则分析旁路电池组串单元中被旁路的电池单体的健康状态以及其他电池组串单元的健康状态,基于分析结果,采用总输出功率调整旁路电池组串单元的功率分配;
若旁路电池组串单元处于充电状态,则控制与旁路电池组串单元对应的功率变换单元,继续向旁路电池组串单元内充电值小于预设充电阈值的第三电池单体进行充电,并在第三电池单体的充电值大于或等于预设充电阈值时,控制旁路第三电池单体。
在一些实施例中,方法还包括:
若检测到旁路电池组串单元满足预设充电状态,则通过高压电池功率总控单元控制断开旁路电池组串单元的功率开关管,以解除被旁路电池单体的旁路状态。
在一些实施例中,方法还包括:
若检测到功率变换单元电压低于预设电压阈值,则通过高压电池功率总控单元向功率变换单元对应的功率变换串管控单元发送充电控制指令,以使功率变换串管控单元执行充电控制指令,控制功率变换单元的功率开关管的开闭状态,以控制对功率变换单元对应的电池组串单元进行充电。
在一些实施例中,供电模块包括整体电池组功率单元,整体电池组功率单元包括总电压电流检测单元,与总电压电流检测单元并联连接的至少一个功率变换管理单元,与功率变换管理单元连接的电压电流检测单元,与电压电流检测单元连接的电池组串单元,其中,每一功率变换管理单元对应连接有一电压电流检测单元,每个功率变换管理单元由一个功率变换单元以及对应的功率变换串管控单元组成,每个电池组串单元由多个电池功率组合单体串联连接而成。
在一些实施例中,方法还包括:
通过电压电流检测单元检测各个电池功率组合单体组成的串联支路的电压电流信息;
通过总电压电流检测单元检测各个串联支路并联后的总电压电流信息;
通过高压电池功率总控单元接收总电压电流信息以及各个电压电流信息,以控制各个电池组串单元的充放电。
在一些实施例中,电池功率组合单体包括电池单体CC1、与电池单体CC1连接的开关功率管CQ1、开关功率管CQ2,与开关功率管CQ2连接的熔断器CR1、熔断器CR2,与熔断器CR2连接的阻抗匹配电阻RR1,其中,熔断器CR2与阻抗匹配电阻RR1串联后与熔断器CR1并联连接。
在一些实施例中,开关功率管CQ1以及开关功率管CQ2分别连接电池功率组合单体对应的电池组串管控单元;开关功率管CQ1的漏极与源极之间设置有电压监测点,开关功率管CQ1与电池单体CC1功率集成处设置有温度采集点,方法还包括:
通过电池组串管控单元采集电压监测点的电压信息,以及温度监测点的温度信息。
在一些实施例中,电池单体CC1为输出能量主要载体,方法还包括:
通过熔断器CR1控制电池单体对应支路的大电流放电故障异常,通过熔断器CR2与阻抗匹配电阻RR1的串联支路控制熔断器CR1对应支路误熔断后的导通支路校正。
在一些实施例中,功率变换单元包括电容C1,与电容C1连接的功率开关管Q1、功率开关管Q2,与功率开关管Q2连接的连接储能电感L1,与储能电感L1连接的功率开关管Q3、功率开关管Q4,与功率开关管Q4连接的电容C2,其中,储能电感L1两端并联一继电器T1。
在一些实施例中,功率开关管Q1至Q4与功率变换单元对应的功率变换串管控单元连接,继电器T1与功率变换串管控单元连接,方法还包括:
通过功率变换串管控单元控制功率开关管Q1至Q4以及继电器T1的开通与关断。
在一些实施例中,供电系统包括外部输出母线,方法还包括:
当外部输出母线通过功率变换单元对电池组串单元充电时,若外部输出母线的电压高于电池组串单元的电压,则通过功率变换串管控单元控制断开继电器T1,控制功率开关管Q1为常通,同时控制功率开关管Q2为常断,控制功率开关管Q3以及功率开关管Q4为交替导通,并将功率变换单元调整为降压拓扑结构;
若外部输出母线的电压低于电池组串单元的电压,则通过功率变换串管控单元控制功率开关管Q3为常通,同时控制功率开关管Q4为常断,控制功率开关管Q1以及功率开关管Q2为交替导通,并将功率变换单元的调整为升压拓扑结构。
在一些实施例中,方法还包括:
当电池组串单元通过功率变换单元对外部输出母线放电时,若外部输出母线的电压高于电池组串单元的电压,则通过功率变换串管控单元控制断开继电器T1,控制功率开关管Q1为常通,同时控制功率开关管Q2为常断,控制功率开关管Q3以及功率开关管Q4为交替导通,并将功率变换单元调整为升压拓扑结构;
若外部输出母线的电压低于电池组串单元的电压,则通过功率变换串管控单元控制功率开关管Q3为常通,同时控制功率开关管Q4为常断,控制功率开关管Q1以及功率开关管Q2为交替导通,并将功率变换单元调整为降压拓扑结构。
在一些实施例中,方法还包括:
若存在需进行互相充放电的第一目标电池组串单元以及第二目标电池组串单元,则通过第一目标电池组串单元对应的功率变换串管控单元控制第一目标电池组串单元对应的功率变换单元的开关状态;
通过第二目标电池组串单元对应的功率变换串管控单元控制第二目标电池组串单元对应的功率变换单元的开关状态,并调整功率变换单元对应的拓扑结构。
在一些实施例中,方法还包括:
当第一目标电池组串单元与第二目标电池组串单元之间压差大于第三预设压差阈值时,通过第一目标电池组串单元对应的功率变换串管控单元控制第一目标电池组串单元对应的功率变换单元的开关状态,以降低第一目标电池组串单元与第二目标电池组串单元之间的压差;
通过第二目标电池组串单元对应的功率变换串管控单元控制第二目标电池组串单元对应的功率变换单元的开关状态,并调整功率变换单元对应的拓扑结构,以控制第一目标电池组串单元与第二目标电池组串单元之间的充放电。
在一些实施例中,状态监测管理单元包括输出总电压检测、输出总电流检测以及输出开关,方法还包括:
通过输出开关接收从高压电池功率总控单元发送的控制指令。
需要说明的是,本申请实施例包括但不限于上述示例,可以理解的是,本领域技术人员在本申请实施例的思想指导下,还可以根据实际需求进行设置,本申请对此不作限制。
在本申请实施例中,提供了一种服务器的供电方法,通过高压电池功率总控 单元、电池组串管控单元以及功率变换串管控单元等主要电路结构的协同工作,实现实时收集并分析供电系统中各子系统的功率信息,高压电池功率总控单元还可以根据分析结果对各子系统下发对应的控制指令,以实现对各子系统的功率控制,进而控制服务器的输出总功率,整个主用电功率通路简单可靠,无需将输入侧高压直流供电进行电能转换,简化了高压直流供电入口至服务器用电入口之间的设计结构,可有效提高供电系统工作效率,降低热损耗,同时在服务器外部主供电系统工作异常时,可以确保服务器用电需求,保证供电系统的转换效率以及工作可靠性。
通过上述实施例,可以总结得出,相较于现有数据中心供电系统,本申请的技术方案具有如下改进点:
改进点1:服务器备电系统与高压直流供电系统完全并行关系;
服务器供电架构主用电功率通路更简单可靠,无需因备电系统的存在,将输入侧的高压直流供电进行其他DC/AC/DC(直流-交流-直流)电能转换,简化了高压直流供电入口至服务器用电入口之间的设计结构,可有效提高供电系统工作效率,降低热损耗。
改进点2:为服务器提供高可靠备电系统,确保服务器单节点更高工作可靠性;
在不增加服务器供电系统主功率通路结构复杂性的同时,本申请所提供的高压直流备电供电系统在服务器供电主通路之间形成了冗余供电结构,可有效解决由外部电池能源提供数据中心输入冗余供电时,导致供电系统主功率通路结构复杂的问题,从而可以确保服务器外部主供电系统工作异常时,依然可以保证服务器用电需求,保证数据中心供电系统的转换效率以及工作可靠性。
改进点3:高压直流备电供电系统内部为多电池备电支路冗余并联结构,可根据用户功率要求扩容,扩充冗余并联支路数量,具备健康管理功能,当任一功率故障时,高压直流备电供电系统可自健康重构;
可有效解决当功率需求或备电需求特别大时,单一电池备电通路与能量变换通路转换功率大、发热集中、设计难度大、单一功率器件异常导致整个系统工作异常的问题,且在极端恶劣条件下,还可有效解决发生单节点故障的异常工况,导致直流备电供电系统内相应能量供给转换单元工作异常的问题,采用本申请所提出的方案,高压直流备电供电系统内部可自冗余自重构,备电系统工作层次具备健康管理功能,同时可以切除异常单元,确保高压直流备电系统为服务器提供高效且高可靠备电需求。
改进点4:备电电池充放电变换单元为变结构式高频双向能量切换结构;
通过该能量切换结构,在一个功率变换结构下可实现备电电池充电和放电稳压的需求,相比传统充电和放电功率分开的结构,该能量切换结构更简单、功率密度更高,同时当备电系统内不同功率变换结构相互冗余、并联和串联变换时,可以更高效、更可靠地变换出所需的目标电压。
改进点5:高压电池功率总控单元具备更智能、自主、自管控度;
通过高压直流备电供电系统内的高压电池功率总控单元更易于实现整个供电系统的综合调配,通过将各子系统数据信息汇总到高压电池功率总控单元,便于数据综合处理,且针对不同的应用工况,可以实现能量供给转换的智能调控,还可以根据备电总功率需求,调控备电电池工作支路数,确保电池备电转换效率更高,例如当输出功率很小时,可只让其中一个备电电池通路工作,其他通路处于待机关闭的状态,而通过高压电池功率总控单元进行数据综合处理,也便于对整个高压直流备电供电系统进行故障诊断,自主健康管控,进行系统故障重构,具备高管控度的能力,确保高压直流备电供电系统的工作高可靠性。
改进点6:可针对任意电池单体短路和断路故障定位、故障屏蔽、故障重构;
提出电池单体和功率开关和熔断器串并联结构,可实现当电池单体发生断路故障时,功率开关冗余并联屏蔽故障,当电池单体发生短路故障时,通过熔断器与功率开关管双层屏蔽短路,当功率开关管阻抗低时,自动屏蔽短路故障,当功率开关管阻抗高时,通过熔断器切断短路故障,通过双熔断器支路设计可对熔断器熔断电流选择适当,确保切断短路故障并让电池单体过负荷故障。
改进点7:各备电电池支路中任意一个或几个电池单体故障时,不会影响该备电电池支路正常工作,同时可实现不同备电电池支路继续冗余并联输出,在冗余可靠性基础上最大限度保证备电供电系统全部能量输出;
当任意电池支路中任意一个或几个电池单体故障时,可自主故障重构、屏蔽故障单体的多种故障模式,即使备电电池输出总电压降低,但输出侧串联的功率变换单元可实现将宽输入电压变换至稳定输出电压,以继续确保不同备电电池支路冗余并联,以满足高压供电输出母线的用电需求。
改进点8:可根据电池监控反馈实时数据,按照电池单体电压值与电池内阻值对单一支路电池组内电池单体分类控制,充电时可实现针对性地对电压低的电池单体定向充电,放电时可针对性地对过放的电池单体进行定向屏蔽,确保电池单体电压一致性要求。
改进点9:高压直流备电供电系统内的电池组无需其他均衡电路;
冗余并联的电池组之间互为彼此的均衡单元,且可通过中间的功率变换单元实现恒压、恒流的多控制模式,同时可实现电池组串单元内电池单体的主动均衡。
可以控制一组电池组串单元内电压高的电池单体,向并联冗余的任意电池组串单元内电压低的电池单体进行均衡充电,并可控制中间功率变换单元的恒流电压值控制均衡速度,实现不同电池组串单元内电池单体之间的主动均衡,省去电池组串单元内的均衡电路设计,提高了功率密度,同时均衡效果好、均衡速度快。
改进点10:两个冗余并联电池组串单元之间可以相互充放电;
中间串联的两个功率变换单元可实现一个输入电压变换至另一个输出电压时自由度更高,同时功率变换单元可调整拓扑结构,进一步在确保变换电压自由度的同时,提高转换效率。
可有效解决当充电、放电的两个电池组串单元之间压差大的问题,可通过两 个功率变换单元的多级次变换实现更宽范围的电压变换。
而当充电、放电的两个电池组串单元之间压差小时,可对两个功率变换单元的其中一个功率变换单元变换结构,减少电压转换次数,提高转换效率,降低转换拓扑复杂度,提高可靠性。
改进点11:一个熔断器与另一个熔断器串联低阻抗电阻并联设计;
两个熔断器之间可以互为冗余备份,可确保单熔断器通路不留有太大设计余量,当发生电池短路故障时可有效快速切断故障模式。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于本申请的实施例之一,所涉及的动作并不一定是本申请实施例所必须的。
另外,本申请实施例还提供了一种电子设备,包括:处理器,存储器,存储在存储器上并可在处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述服务器的供电方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
如图7所示,本申请实施例还提供了一种计算机非易失性可读存储介质701,计算机非易失性可读存储介质701上存储有计算机程序,计算机程序被处理器执行时实现上述服务器的供电方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,的计算机非易失性可读存储介质701,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
图8为实现本申请各个实施例的一种电子设备的硬件结构示意图。
该电子设备800包括但不限于:射频单元801、网络模块802、音频输出单元803、输入单元804、传感器805、显示单元806、用户输入单元807、接口单元808、存储器809、处理器810、以及电源811等部件。本领域技术人员可以理解,本申请实施例中所涉及的电子设备结构并不构成对电子设备的限定,电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本申请实施例中,电子设备包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
应理解的是,本申请实施例中,射频单元801可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器810处理;另外,将上行的数据发送给基站。通常,射频单元801包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元801还可以通过无线通信系统与网络和其他设备通信。
电子设备通过网络模块802为用户提供了无线的宽带互联网访问,如帮助用 户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元803可以将射频单元801或网络模块802接收的或者在存储器809中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元803还可以提供与电子设备800执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元803包括扬声器、蜂鸣器以及受话器等。
输入单元804用于接收音频或视频信号。输入单元804可以包括图形处理器(Graphics Processing Unit,GPU)8041和麦克风8042,图形处理器8041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元806上。经图形处理器8041处理后的图像帧可以存储在存储器809(或其它存储介质)中或者经由射频单元801或网络模块802进行发送。麦克风8042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元801发送到移动通信基站的格式输出。
电子设备800还包括至少一种传感器805,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板8061的亮度,接近传感器可在电子设备800移动到耳边时,关闭显示面板8061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别电子设备姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器805还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元806用于显示由用户输入的信息或提供给用户的信息。显示单元806可包括显示面板8061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板8061。
用户输入单元807可用于接收输入的数字或字符信息,以及产生与电子设备的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元807包括触控面板8071以及其他输入设备8072。触控面板8071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板8071上或在触控面板8071附近的操作)。触控面板8071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器810,接收处理器810发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板8071。除了触控面板8071,用户输入单元807还可以包括其他输入设备8072。具体地,其他输入设备8072可以包括但不限于物 理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板8071可覆盖在显示面板8061上,当触控面板8071检测到在其上或附近的触摸操作后,传送给处理器810以确定触摸事件的类型,随后处理器810根据触摸事件的类型在显示面板8061上提供相应的视觉输出。可以理解的是,在一种实施例中,触控面板8071与显示面板8061是作为两个独立的部件来实现电子设备的输入和输出功能,但是在某些实施例中,可以将触控面板8071与显示面板8061集成而实现电子设备的输入和输出功能,具体此处不做限定。
接口单元808为外部装置与电子设备800连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元808可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到电子设备800内的一个或多个元件或者可以用于在电子设备800和外部装置之间传输数据。
存储器809可用于存储软件程序以及各种数据。存储器809可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器809可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器810是电子设备的控制中心,利用各种接口和线路连接整个电子设备的各个部分,通过运行或执行存储在存储器809内的软件程序和/或模块,以及调用存储在存储器809内的数据,执行电子设备的各种功能和处理数据,从而对电子设备进行整体监控。处理器810可包括一个或多个处理单元;在一些实施例中,处理器810可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器810中。
电子设备800还可以包括给各个部件供电的电源811(比如电池),在一些实施例中,电源811可以通过电源管理系统与处理器810逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,电子设备800包括一些未示出的功能模块,在此不再赘述。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
本领域普通技术人员可以意识到,结合本申请实施例中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、 RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (35)

  1. 一种服务器的供电系统,其特征在于,所述供电系统包括至少一个供电模块,所述供电模块至少包括高压电池功率总控单元,分别与所述高压电池功率总控单元连接的至少一个功率变换串管控单元、至少一个电池组串管控单元、状态监测管理单元,以及与所述功率变换串管控单元连接的功率变换单元、与所述电池组串管控单元连接的电池组串单元;其中,每一所述电池组串单元对应连接有一所述功率变换单元,且各个所述功率变换单元并联连接后与所述状态监测管理单元连接;
    所述电池组串管控单元,用于将所述电池组串单元对应的状态信息表发送至所述高压电池功率总控单元,接收所述高压电池功率总控单元根据所述状态信息表生成的开关控制指令,并根据所述开关控制指令控制所述电池组串单元的开关状态;
    所述功率变换串管控单元,用于接收所述高压电池功率总控单元根据所述状态信息表生成的功率控制指令,并根据所述功率控制指令控制所述功率变换单元从所述电池组串单元获取输出电压;
    所述功率变换单元,用于将所述输出电压从第一预设电压范围调整至第二预设电压范围,并将调整后的输出电压传送至所述状态监测管理单元,所述第二预设电压范围处于所述第一预设电压范围内;
    所述状态监测管理单元,用于根据调整后的输出电压计算总输出功率,并将所述总输出功率输出至服务器。
  2. 根据权利要求1所述的供电系统,其特征在于,所述电池组串管控单元用于:
    采集所述电池组串单元的功率信息,并采用所述功率信息对所述电池组串单元的健康状态进行分析,生成所述电池组串单元对应的状态信息表。
  3. 根据权利要求2所述的供电系统,其特征在于,所述功率信息包括电池组串单元内多种电压、电流以及温度信号,所述电池组串管控单元用于:
    采集所述电池组串单元的多种电压、电流以及温度信号,并采用多种电压、电流以及温度信号对所述电池组串单元的健康状态进行分析,生成状态信息表。
  4. 根据权利要求3所述的供电系统,其特征在于,所述高压电池功率总控单元用于:
    接收所述电池组串管控单元发送的状态信息表,将所述状态信息表与预设总输出数据进行比较,生成开关控制指令以及功率控制指令,并将所述开关控制指令发送至所述电池组串管控单元,将所述功率控制指令发送至与所述电池组串管控单元对应的功率变换串管控单元。
  5. 根据权利要求1所述的供电系统,其特征在于,所述电池组串管控单元用于:
    将所述开关控制指令转换成开关控制信号,并将所述开关控制信号发送至所述电池组串单元;
    则所述电池组串单元用于:
    控制所述电池组串单元内开关功率管切换至与所述开关控制信号对应的开关状态。
  6. 根据权利要求1所述的供电系统,其特征在于,所述功率变换串管控单元用于:
    将所述功率控制指令转换成功率控制信号,并将所述功率控制信号发送至所述功率变换单元;
    则所述功率变换单元用于:
    执行与所述功率控制信号对应的电压获取操作,从所述功率变换单元对应的电池组串单元获取输出电压。
  7. 根据权利要求1所述的供电系统,其特征在于,所述功率变换单元用于:
    若检测到电池组串单元存在故障,则采用预设功率阈值对除故障电池组串单元之外的电池组串单元重新分配功率。
  8. 根据权利要求1所述的供电系统,其特征在于,所述功率变换单元还用于:
    调整所述功率变换单元的输入电压状态以及输出电压状态,将与所述功率变换单元对应的电池组串单元内电池单体的输出电压从第一预设电压范围调整至第二预设电压范围。
  9. 根据权利要求1或8所述的供电系统,其特征在于,所述功率变换串管控单元用于:
    接收所述高压电池功率总控单元发送的电压转换指令,并执行所述电压转换指令,控制与所述电压转换指令对应的功率变换单元之间进行电压转换。
  10. 根据权利要求8所述的供电系统,其特征在于,所述高压电池功率总控单元用于:
    接收所述状态监测管理单元发送的总输出功率,并控制所述供电模块以所述总输出功率作为服务器的总功率输出值输出至服务器;
    或,控制所述供电模块以预设总功率输出值作为服务器的总功率输出值输出至服务器。
  11. 根据权利要求10所述的供电系统,其特征在于,所述高压电池功率总控单元具体还用于:
    若各个所述电池组串单元的功率信息均符合预设功率条件,则将所述总输出功率,或,预设总功率输出值,平均分发至各个所述电池组串单元;
    若存在功率信息不符合预设功率条件的异常电池组串单元,则按照预设降额输出功率确定所述异常电池组串单元的功率,并根据所述总输出功率,或,预设总功率输出值,以及所述异常电池组串单元的功率进行计算,确定剩余符合预设功率条件的电池组串单元对应的功率。
  12. 根据权利要求11所述的供电系统,其特征在于,所述电池组串管控单元用于:
    若调整后的电池组串单元的功率信息仍不符合预设功率条件,则获取所述高压电池功率总控单元发送的关断控制指令,并执行所述关断控制指令对应的关断操作,关闭所述调整后的电池组串单元的功率输出。
  13. 根据权利要求9所述的供电系统,其特征在于,所述高压电池功率总控单元用于:
    采用所述状态信息表以及预设输出功率分析各个所述电池组串单元的输出功率,并基于分析结果确定任意两个所述电池组串单元之间的电压差;
    若所述电压差大于或等于第一预设压差阈值,则对相对高压的电池组串单元对应的功率变换串管控单元发出放电控制指令,以控制所述相对高压的电池组串单元向相对低压的电池组串单元进行放电。
  14. 根据权利要求13所述的供电系统,其特征在于,所述高压电池功率总控单元,或,所述相对高压的电池组串单元对应的电池组串管控单元,用于:
    若所述相对高压的电池组串单元内存在放电值大于或等于预设放电阈值的第一电池单体,则向所述相对高压的电池组串单元发出旁路控制指令,以控制所述相对高压的电池组串单元旁路所述第一电池单体。
  15. 根据权利要求13所述的供电系统,其特征在于,所述高压电池功率总控单元,或,所述相对低压的电池组串单元对应的电池组串管控单元,用于:
    若所述相对低压的电池组串单元内存在充电值大于或等于预设充电阈值的第二电池单体,则向所述相对低压的电池组串单元发出旁路控制指令,以控制所述相对低压的电池组串单元旁路所述第二电池单体。
  16. 根据权利要求13至15任一项所述的方法,其特征在于,所述高压电池功率总控单元用于:
    若检测到压差大于或等于第二预设压差阈值的高电压电池单体及低电压电池单体同时放电,则向所述低电压电池单体对应的电池组串单元发出旁路控制指令,以控制旁路所述低电压电池单体;
    若检测到所述高电压电池单体与所述低电压电池单体间压差小于第二预设压差阈值,则控制解除所述低电压电池单体的旁路状态,以使所述高电压电池单体及所述低电压电池单体同时进行放电。
  17. 根据权利要求13所述的供电系统,其特征在于,所述高压电池功率总控单元用于:
    若检测到任一电池组串单元发生充放电异常的异常电池单体,则向所述异常电池单体对应的异常电池组串单元发出旁路控制指令,以控制所述异常电池组串单元旁路所述异常电池单体。
  18. 根据权利要求14或15或17所述的供电系统,其特征在于,所述高压电池功率总控单元用于:
    将存在任一旁路电池单体的电池组串单元确定为旁路电池组串单元,若所述旁路电池组串单元处于放电状态,则分析所述旁路电池组串单元中被旁路的电池 单体的健康状态以及其他电池组串单元的健康状态,基于分析结果,采用所述总输出功率调整所述旁路电池组串单元的功率分配;
    若所述旁路电池组串单元处于充电状态,则控制与所述旁路电池组串单元对应的功率变换单元,继续向所述旁路电池组串单元内充电值小于预设充电阈值的第三电池单体进行充电,并在所述第三电池单体的充电值大于或等于预设充电阈值时,控制旁路所述第三电池单体。
  19. 根据权利要求14或15或17所述的供电系统,其特征在于,所述高压电池功率总控单元用于:
    若检测到所述旁路电池组串单元满足预设充电状态,则控制断开所述旁路电池组串单元的功率开关管,以解除被旁路电池单体的旁路状态。
  20. 根据权利要求1所述的供电系统,其特征在于,所述高压电池功率总控单元用于:
    若检测到所述功率变换单元电压低于预设电压阈值,则向所述功率变换单元对应的功率变换串管控单元发送充电控制指令,以使所述功率变换串管控单元执行所述充电控制指令,控制所述功率变换单元的功率开关管的开闭状态,以控制对所述功率变换单元对应的电池组串单元进行充电。
  21. 根据权利要求1所述的供电系统,其特征在于,所述供电模块包括整体电池组功率单元,所述整体电池组功率单元包括总电压电流检测单元,与所述总电压电流检测单元并联连接的至少一个功率变换管理单元,与所述功率变换管理单元连接的电压电流检测单元,与所述电压电流检测单元连接的电池组串单元,其中,每一所述功率变换管理单元对应连接有一所述电压电流检测单元,每个所述功率变换管理单元由一个功率变换单元以及对应的功率变换串管控单元组成,每个所述电池组串单元由多个电池功率组合单体串联连接而成。
  22. 根据权利要求21所述的供电系统,其特征在于,所述电压电流检测单元用于检测各个所述电池功率组合单体组成的串联支路的电压电流信息,所述总电压电流检测单元用于检测各个串联支路并联后的总电压电流信息,所述高压电池功率总控单元用于接收总电压电流信息以及各个所述电压电流信息,以控制各个所述电池组串单元的充放电。
  23. 根据权利要求21所述的供电系统,其特征在于,所述电池功率组合单体包括电池单体CC1、与所述电池单体CC1连接的开关功率管CQ1、开关功率管CQ2,与所述开关功率管CQ2连接的熔断器CR1、熔断器CR2,与所述熔断器CR2连接的阻抗匹配电阻RR1,其中,所述熔断器CR2与所述阻抗匹配电阻RR1串联后与所述熔断器CR1并联连接。
  24. 根据权利要求21所述的供电系统,其特征在于,所述开关功率管CQ1以及所述开关功率管CQ2分别连接所述电池功率组合单体对应的电池组串管控单元;
    所述开关功率管CQ1的漏极与源极之间设置有电压监测点,所述开关功率管CQ1与所述电池单体CC1功率集成处设置有温度采集点,所述电池组串管控单元用于采集所述电压监测点的电压信息,以及所述温度监测点的温度信息。
  25. 根据权利要求23或24所述的供电系统,其特征在于,所述电池单体CC1为输出能量主要载体,所述熔断器CR1用于控制所述电池单体对应支路的大电流放电故障异常,所述熔断器CR2与所述阻抗匹配电阻RR1的串联支路用于控制所述熔断器CR1对应支路误熔断后的导通支路校正。
  26. 根据权利要求21所述的供电系统,其特征在于,所述功率变换单元包括电容C1,与所述电容C1连接的功率开关管Q1、功率开关管Q2,与所述功率开关管Q2连接的连接储能电感L1,与所述储能电感L1连接的功率开关管Q3、功率开关管Q4,与所述功率开关管Q4连接的电容C2,其中,所述储能电感L1两端并联一继电器T1。
  27. 根据权利要求26所述的供电系统,其特征在于,所述功率开关管Q1至Q4与所述功率变换单元对应的功率变换串管控单元连接,所述继电器T1与所述功率变换串管控单元连接,所述功率变换串管控单元用于控制所述功率开关管Q1至Q4以及所述继电器T1的开通与关断。
  28. 根据权利要求27所述的供电系统,其特征在于,所述供电系统包括外部输出母线,所述功率变换串管控单元用于:
    当所述外部输出母线通过所述功率变换单元对所述电池组串单元充电时,若所述外部输出母线的电压高于所述电池组串单元的电压,则控制断开所述继电器T1,控制所述功率开关管Q1为常通,同时控制所述功率开关管Q2为常断,控制所述功率开关管Q3以及所述功率开关管Q4为交替导通,并将所述功率变换单元调整为降压拓扑结构;
    若所述外部输出母线的电压低于所述电池组串单元的电压,则控制所述功率开关管Q3为常通,同时控制所述功率开关管Q4为常断,控制所述功率开关管Q1以及所述功率开关管Q2为交替导通,并将所述功率变换单元的调整为升压拓扑结构。
  29. 根据权利要求28所述的供电系统,其特征在于,所述功率变换串管控单元用于:
    当所述电池组串单元通过所述功率变换单元对所述外部输出母线放电时,若所述外部输出母线的电压高于所述电池组串单元的电压,则控制断开所述继电器T1,控制所述功率开关管Q1为常通,同时控制所述功率开关管Q2为常断,控制所述功率开关管Q3以及所述功率开关管Q4为交替导通,并将所述功率变换单元调整为升压拓扑结构;
    若所述外部输出母线的电压低于所述电池组串单元的电压,则控制所述功率开关管Q3为常通,同时控制所述功率开关管Q4为常断,控制所述功率开关管Q1以及所述功率开关管Q2为交替导通,并将所述功率变换单元调整为降压拓扑结构。
  30. 根据权利要求27至29任一项所述的供电系统,其特征在于,若存在需进行互相充放电的第一目标电池组串单元以及第二目标电池组串单元,则所述第一目标电池组串单元对应的功率变换串管控单元用于控制所述第一目标电池组串单元对应的功率变换单元的开关状态;
    所述第二目标电池组串单元对应的功率变换串管控单元用于控制所述第二目标电池组串单元对应的功率变换单元的开关状态,并调整功率变换单元对应的拓扑结构。
  31. 根据权利要求30所述的供电系统,其特征在于,当所述第一目标电池组串单元与所述第二目标电池组串单元之间压差大于第三预设压差阈值时,所述第一目标电池组串单元对应的功率变换串管控单元用于:
    控制所述第一目标电池组串单元对应的功率变换单元的开关状态,以降低所述第一目标电池组串单元与所述第二目标电池组串单元之间的压差;
    所述第二目标电池组串单元对应的功率变换串管控单元用于:
    控制所述第二目标电池组串单元对应的功率变换单元的开关状态,并调整功率变换单元对应的拓扑结构,以控制所述第一目标电池组串单元与所述第二目标电池组串单元之间的充放电。
  32. 根据权利要求1所述的供电系统,其特征在于,所述状态监测管理单元包括输出总电压检测、输出总电流检测以及输出开关,其中,所述输出开关用于接收从所述高压电池功率总控单元发送的控制指令。
  33. 一种服务器的供电方法,其特征在于,应用于服务器的供电系统,所述供电系统至少一个供电模块,所述供电模块至少包括包括高压电池功率总控单元,分别与所述高压电池功率总控单元连接的至少一个功率变换串管控单元、至少一个电池组串管控单元、状态监测管理单元,以及与所述功率变换串管控单元连接的功率变换单元、与所述电池组串管控单元连接的电池组串单元;其中,每一所述电池组串单元对应连接有一所述功率变换单元,且各个所述功率变换单元并联连接后与所述状态监测管理单元连接;所述方法包括:
    通过所述电池组串管控单元将所述电池组串单元对应的状态信息表发送至所述高压电池功率总控单元;
    接收所述高压电池功率总控单元根据所述状态信息表生成的开关控制指令,并根据所述开关控制指令控制所述电池组串单元的开关状态;
    通过所述功率变换串管控单元接收所述高压电池功率总控单元根据所述状态信息表生成的功率控制指令,并根据所述功率控制指令控制所述功率变换单元从所述电池组串单元获取输出电压;
    通过所述功率变换单元将所述输出电压从第一预设电压范围调整至第二预设电压范围,并将调整后的输出电压传送至所述状态监测管理单元,所述第二预设电压范围处于所述第一预设电压范围内;
    通过所述状态监测管理单元根据调整后的输出电压计算输出总功率,并将所述输出总功率输出至服务器。
  34. 一种电子设备,其特征在于,包括处理器、通信接口、存储器和通信总线,其中,所述处理器、所述通信接口以及所述存储器通过所述通信总线完成相互间的通信;
    所述存储器,用于存放计算机程序;
    所述处理器,用于执行存储器上所存放的程序时,实现如权利要求33所述的方法。
  35. 一种计算机非易失性可读存储介质,其上存储有指令,当由一个或多个处理器执行时,使得所述处理器执行如权利要求33所述的方法。
PCT/CN2023/101211 2022-11-28 2023-06-20 服务器的供电系统、方法、电子设备及存储介质 WO2024113773A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211498135.6A CN115603431B (zh) 2022-11-28 2022-11-28 服务器的供电系统、方法、电子设备及存储介质
CN202211498135.6 2022-11-28

Publications (1)

Publication Number Publication Date
WO2024113773A1 true WO2024113773A1 (zh) 2024-06-06

Family

ID=84853667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101211 WO2024113773A1 (zh) 2022-11-28 2023-06-20 服务器的供电系统、方法、电子设备及存储介质

Country Status (2)

Country Link
CN (1) CN115603431B (zh)
WO (1) WO2024113773A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115603431B (zh) * 2022-11-28 2023-03-10 苏州浪潮智能科技有限公司 服务器的供电系统、方法、电子设备及存储介质
CN117648127B (zh) * 2024-01-29 2024-04-23 深圳市创义信光电科技有限公司 驱动主板放电控制方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130181526A1 (en) * 2010-10-15 2013-07-18 Sanyo Electric Co., Ltd. Power supply system
US20170187207A1 (en) * 2015-07-21 2017-06-29 Bsb Power Company Ltd Collecting module, new lead-acid battery, charge and discharge control device and intelligent battery
US20190123368A1 (en) * 2016-01-25 2019-04-25 Microsoft Technology Licensing, Llc Power Modulation for Fuel Cell Powered Datacenters
CN110854954A (zh) * 2019-11-20 2020-02-28 江西赣锋电池科技有限公司 一种储能系统电池簇智能调度系统及调度方法
CN113922438A (zh) * 2021-08-23 2022-01-11 国网辽宁省电力有限公司营口供电公司 一种大功率主动均衡电池管理系统
CN114530898A (zh) * 2020-11-09 2022-05-24 南京中兴软件有限责任公司 功率管理设备、电源设备、供电控制方法及存储介质
CN115603431A (zh) * 2022-11-28 2023-01-13 苏州浪潮智能科技有限公司(Cn) 服务器的供电系统、方法、电子设备及存储介质

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11218006B2 (en) * 2017-04-13 2022-01-04 Enphase Energy, Inc. Method and system for an AC battery
CN109830974B (zh) * 2019-01-15 2020-12-01 国网山东省电力公司电力科学研究院 一种电池动态成组系统及其运行控制方法
CN113489080B (zh) * 2021-05-31 2023-05-30 南方电网调峰调频发电有限公司 电池电量均衡方法、装置、设备及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130181526A1 (en) * 2010-10-15 2013-07-18 Sanyo Electric Co., Ltd. Power supply system
US20170187207A1 (en) * 2015-07-21 2017-06-29 Bsb Power Company Ltd Collecting module, new lead-acid battery, charge and discharge control device and intelligent battery
US20190123368A1 (en) * 2016-01-25 2019-04-25 Microsoft Technology Licensing, Llc Power Modulation for Fuel Cell Powered Datacenters
CN110854954A (zh) * 2019-11-20 2020-02-28 江西赣锋电池科技有限公司 一种储能系统电池簇智能调度系统及调度方法
CN114530898A (zh) * 2020-11-09 2022-05-24 南京中兴软件有限责任公司 功率管理设备、电源设备、供电控制方法及存储介质
CN113922438A (zh) * 2021-08-23 2022-01-11 国网辽宁省电力有限公司营口供电公司 一种大功率主动均衡电池管理系统
CN115603431A (zh) * 2022-11-28 2023-01-13 苏州浪潮智能科技有限公司(Cn) 服务器的供电系统、方法、电子设备及存储介质

Also Published As

Publication number Publication date
CN115603431A (zh) 2023-01-13
CN115603431B (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2024113773A1 (zh) 服务器的供电系统、方法、电子设备及存储介质
US10797493B2 (en) Battery, terminal, and charging system
WO2021190196A1 (zh) 并联电池组充放电管理方法、电子装置及电气系统
CN203312887U (zh) 一种直流备用电源
CN103887834B (zh) 一种蓄电池组柔性均衡充放电管理整流模块、装置及系统
CN104333111B (zh) 直流不断电系统及装置
CN111786455A (zh) 一种用于ups的正负锂电池并机系统
KR20150069613A (ko) 무정전 전원 공급 장치(ups)를 활용한 에너지 저장 시스템
WO2021227083A1 (zh) 不间断电源系统及其驱动方法
CN103403643A (zh) 充放电管理装置及移动终端
CN103312024A (zh) 一种机房分布式后备直流供电系统
CN116667482A (zh) 采用直流输入的电池装置和供电系统
CN115589060A (zh) 一种站用直流系统备用装置
TW201724635A (zh) 主動式平衡充電裝置
CN211351805U (zh) 交直流一体储能设备和系统
CN107612104A (zh) U盘充电宝充电时的控制方法及装置
KR20180099277A (ko) 에너지 저장 장치를 포함하는 무정전 전원 공급 시스템
CN112713611A (zh) 并离网自动切换方法、系统、装置、电子设备及电柜
CN201450358U (zh) 应急移动直流供电装置
WO2024138575A1 (zh) 一种自适应电源管理系统、方法以及储能电源
CN205283239U (zh) 一种通信电源系统
CN203086206U (zh) 一种具有网络管理功能的电源系统
CN112952971B (zh) 一种充电器系统架构
CN219065706U (zh) 一种共享按摩椅软硬件结合断电检测上报系统
CN103064495A (zh) 一种微服务器及其供电系统