WO2024113373A1 - 发射系统、探测装置、雷达、终端设备及车端 - Google Patents

发射系统、探测装置、雷达、终端设备及车端 Download PDF

Info

Publication number
WO2024113373A1
WO2024113373A1 PCT/CN2022/136345 CN2022136345W WO2024113373A1 WO 2024113373 A1 WO2024113373 A1 WO 2024113373A1 CN 2022136345 W CN2022136345 W CN 2022136345W WO 2024113373 A1 WO2024113373 A1 WO 2024113373A1
Authority
WO
WIPO (PCT)
Prior art keywords
signals
frequency
detection device
transmitting
transmission
Prior art date
Application number
PCT/CN2022/136345
Other languages
English (en)
French (fr)
Inventor
程治文
常广弘
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/136345 priority Critical patent/WO2024113373A1/zh
Publication of WO2024113373A1 publication Critical patent/WO2024113373A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Definitions

  • the present application relates to the field of millimeter wave radar technology, and in particular to a transmitting system, a detection device, a radar, a terminal device and a vehicle terminal.
  • Millimeter wave radar is a radar that works in the millimeter wave band. It measures the distance, speed, direction (angle) and other information of the target by emitting electromagnetic wave signals and listening to the reflected signals of the electromagnetic wave signals from the environment.
  • the virtual aperture is often used to utilize multiple transmitting antennas, multiple receiving antennas, and multiple analog-to-digital converter (ADC) channels to achieve multi-antenna multi-input multi-output (MIMO) transmission.
  • ADC analog-to-digital converter
  • the embodiments of the present application provide a transmission system, a detection device, a radar, a terminal device and a vehicle end, which can reduce the sampling capability requirements of the multi-transmission channel-MIMO radar on the ADC and reduce the implementation cost.
  • an embodiment of the present application provides a transmission system, the transmission system comprising:
  • M transmitting antennas, where M is an integer greater than 2;
  • the M transmitting antennas are respectively used to transmit M transmitting signals, and the M transmitting signals are used to detect targets;
  • the M transmission signals have M different central frequency points, and among the M transmission signals, the frequency differences between the transmission signals corresponding to adjacent central frequency points are different.
  • a transmitting system in which the frequency differences between the transmitting signals corresponding to adjacent center frequency points are different among the M transmitting signals transmitted by the transmitting system. It can be understood that the transmitting system divides the spectrum sampling resources of the transmitting signals into M parts non-uniformly, corresponding to the M transmitting signals respectively.
  • the frequency difference between the transmitting signals corresponding to different transmitting antennas can realize more accurate identification of the antennas of the echo signals corresponding to these transmitting signals, so the sampling rate requirements can be reduced in the distance diversity, allowing the distance ambiguity, and combined with the receiving end, the distance deambiguation is performed according to the echo signals corresponding to the M transmitting signals received, so that the sampling capacity requirements of the transmitting system for ADC can be reduced.
  • the frequency of the transmitting signals of different transmitting antennas is non-uniformly designed, and the antennas of the echo signals corresponding to these transmitting signals can be more accurately identified, so that the effective detection distance of the transmitting system can be increased under the same sampling rate conditions, which is equivalent to reducing the sampling capacity requirements for ADC under the same detection distance requirements.
  • the M transmission signals are obtained by performing frequency shift processing on M-path sub-signals by M frequency shifters respectively.
  • the M transmission signals can be obtained by M frequency shifters performing frequency shift processing on M-path sub-signals respectively.
  • the frequency shift values of the M frequency shifters for frequency shifting the M-path sub-signals are not completely the same, so that the frequency differences between the transmission signals corresponding to adjacent center frequency points in the obtained M transmission signals are different, and the frequency difference between the transmission signals corresponding to different transmission antennas can achieve more accurate identification of the antennas of the echo signals corresponding to these transmission signals, so the sampling rate requirements can be reduced in the case of distance diversity, allowing distance ambiguity, and combined with the receiving end to perform distance deambiguation according to the echo signals corresponding to the M transmission signals received, so as to reduce the sampling capacity requirements of the transmission system for the ADC.
  • an embodiment of the present application provides a detection device, the detection device comprising: a frequency shift unit, and a transmitting system as described in the first aspect or any possible implementation manner of the first aspect, wherein:
  • the frequency shift unit is used to perform frequency shift processing on M-path signals to obtain M transmission signals.
  • a detection device in which a frequency shift unit is used to perform frequency shift processing on M-path sub-signals to obtain M transmission signals, and the M transmission signals can be transmitted through the transmission system described in the first aspect or any possible implementation method of the first aspect, and used to detect targets.
  • the frequency shift values of the frequency shift unit for frequency shifting the M-path sub-signals are not completely the same, so that the frequency differences between the transmission signals corresponding to adjacent center frequency points in the obtained M transmission signals are different, and the frequency difference between the transmission signals corresponding to different transmitting antennas can achieve more accurate identification of the antennas of the echo signals corresponding to these transmission signals, so that the sampling rate requirements can be reduced in the case of distance diversity, allowing distance ambiguity, and combined with the receiving end to perform distance deambiguation based on the echo signals corresponding to the M transmission signals received, the sampling capacity requirements of the transmission system for the ADC can be reduced.
  • the frequencies of the transmitted signals of different transmitting antennas are designed in a non-uniform frequency manner, so that the antennas of the echo signals corresponding to these transmitted signals can be more accurately identified, thereby increasing the effective detection distance of the detection device under the same sampling rate conditions, which is equivalent to reducing the sampling capability requirements of the ADC under the same detection distance requirements.
  • the frequency shift unit includes:
  • the M frequency shifters are respectively used to perform frequency shift processing on the M path signals to obtain the M transmission signals.
  • the frequency shifting unit includes M frequency shifters, which are respectively used to perform frequency shifting processing on M-path signals. It can be understood that the frequency shifting values of the M frequency shifters for shifting the M-path signals are not completely the same, so that after the frequency shifting processing, M transmission signals with different frequency differences between the transmission signals corresponding to adjacent center frequency points can be obtained.
  • the detection device further includes:
  • N receiving antennas where N is an integer greater than 2;
  • the N receiving antennas are respectively used to receive echo signals corresponding to the M transmitting signals.
  • the detection device also includes N receiving antennas, which are respectively used to receive echo signals corresponding to M transmitted signals.
  • the echo signals corresponding to the M transmitted signals can be used for distance deambiguation, thereby reducing the detection device's requirements on the sampling capability of the ADC.
  • the detection device further includes:
  • the mixing unit is used to perform mixing processing on the M echo signals and one of the M sub-signals respectively to obtain M mixed signals, and the M mixed signals are used to determine the distance of the target.
  • the detection device also includes a mixing unit, which is used to perform mixing processing on the M mixed echo signals and the original signal without frequency shifting (i.e., one of the M sub-signals mentioned above) received by the receiving end, so as to obtain M mixed signals.
  • the M mixed signals can determine the true distance of the target, thereby increasing the effective detection distance of the detection device under the same sampling rate conditions, or achieving the sampling capability requirements of the ADC under the same detection distance requirements.
  • the frequency mixing unit includes:
  • the N mixers are used to perform mixing processing on the M echo signals and one of the M sub-signals, respectively, to obtain the M mixed signals.
  • the mixing unit includes N mixers, which are respectively used to perform mixing processing on M mixed echo signals and original signals that have not been frequency shifted (i.e., one of the M sub-signals mentioned above) received at the receiving end, so that after the mixing processing, M mixed signals for determining the actual distance of the target can be obtained.
  • the detection device further includes:
  • the processing unit is used to determine the corresponding relationship between the M echo signals and the M transmission signals according to the frequency difference between the M transmission signals.
  • the detection device also includes a processing unit, which is used to determine the correspondence between M echo signals and M transmission signals according to the frequency difference between the above-mentioned M transmission signals.
  • a processing unit which is used to determine the correspondence between M echo signals and M transmission signals according to the frequency difference between the above-mentioned M transmission signals.
  • the processing unit is further configured to determine the distance of the target according to a correspondence between the M echo signals and the M transmission signals.
  • the processing unit can also be used to determine the real distance of the target according to the correspondence between M echo signals and M transmission signals. It can be understood that, compared with the original signal without frequency shift (i.e., one of the M sub-signals), the distance value corresponding to the echo signal corresponding to the transmission signal with no frequency shift or the smallest frequency shift on the distance image formed by the M echo signals is the real distance of the target.
  • the real distance of the target can be determined, so that the effective detection distance of the detection device can be increased under the same sampling rate conditions, or the sampling capacity requirements of the ADC can be achieved under the same detection distance requirements.
  • the detection device further includes:
  • the filtering unit is used to perform filtering processing on the M mixed frequency signals
  • the sampling unit is used to sample the M mixed frequency signals after filtering to obtain M digital signals, and the M digital signals are used to determine the distance of the target.
  • a possible specific implementation of a detection device is provided, specifically, a filtering unit in the detection device is used to perform filtering processing on M mixed signals, and a sampling unit in the detection device is used to sample the M mixed signals after filtering processing to obtain M digital signals, and the M digital signals can be used for distance deambiguation, thereby reducing the detection device's requirements on the sampling capability of the ADC.
  • a filtering bandwidth of the filtering unit is at least twice as large as a sampling bandwidth of the sampling unit.
  • the filtering bandwidth of the filtering unit is at least twice the sampling bandwidth of the sampling unit, so that all echo signals after M transmitted signals pass through the target can be received losslessly to perform distance deambiguation.
  • the filtering unit includes:
  • the N intermediate frequency filters are respectively used to perform filtering processing on the M mixed signals.
  • the sampling unit includes:
  • the N analog-to-digital converters are respectively used to sample the M mixed signals after filtering to obtain the M digital signals.
  • an embodiment of the present application provides a transmission system, the transmission system comprising:
  • M transmitting antennas, where M is an integer greater than 2;
  • the M transmitting antennas are respectively used to transmit M transmitting signals, and the M transmitting signals are used to detect targets;
  • the central frequency points of the M transmission signals are located on M frequency bands among W equally spaced frequency bands, where W is an integer greater than M.
  • a transmission system wherein the center frequency points of the M transmission signals transmitted by the transmission system are located on M frequency bands among W equally spaced frequency bands. It can be understood that the transmission system evenly divides the spectrum sampling resources of the transmission signal into W parts, but only transmits the M transmission signals corresponding to any M parts of the spectrum sampling resources through M transmission antennas, and the transmission signals corresponding to the remaining W-M parts of the spectrum resources are not transmitted.
  • the spectrum sampling resources corresponding to the W equally spaced frequency bands are evenly distributed, the unoccupied frequency bands among the W equally spaced frequency bands can realize more accurate identification of the antennas of the echo signals corresponding to these transmission signals, so the sampling rate requirements can be reduced in the case of distance diversity, allowing distance ambiguity, and combined with the receiving end to perform distance deambiguation according to the echo signals corresponding to the M transmission signals received, the sampling capacity requirements of the transmission system for the ADC can be reduced.
  • the frequency design of the spectrum sampling resources is evenly divided, but the total number of divisions is greater than the number of transmitting antennas, and the transmitting signals corresponding to the frequencies of the number of antennas are selected for transmission.
  • the antennas of the echo signals corresponding to these transmitting signals can be more accurately identified, thereby increasing the effective detection distance of the transmitting system under the same sampling rate conditions, which is equivalent to reducing the sampling capability requirements of the ADC under the same detection distance requirements.
  • the M transmission signals are obtained by performing frequency shift processing on M-path sub-signals by M frequency shifters respectively.
  • the M transmission signals can be obtained by M frequency shifters performing frequency shift processing on M-path sub-signals respectively.
  • the frequency shift values of the M frequency shifters for frequency shifting the M-path sub-signals are integer multiples of a certain value, so that the center frequency points of the obtained M transmission signals are located on M frequency bands among W equally spaced frequency bands, and the unoccupied frequency bands among the W equally spaced frequency bands can achieve more accurate identification of the antennas of the echo signals corresponding to these transmission signals, so that the sampling rate requirements can be reduced in the case of distance diversity, allowing distance ambiguity, and combined with the receiving end to perform distance deambiguation according to the echo signals corresponding to the M transmission signals received, so as to reduce the sampling capacity requirements of the transmission system for the ADC.
  • an embodiment of the present application provides a detection device, the detection device comprising: a frequency shift unit, and a transmitting system as described in the third aspect or any possible implementation manner of the third aspect, wherein:
  • the frequency shift unit is used to perform frequency shift processing on M-path signals to obtain M transmission signals.
  • a detection device in which a frequency shift unit is used to perform frequency shift processing on M-path sub-signals to obtain M transmission signals, and the M transmission signals can be transmitted through the transmission system described in the third aspect or any possible implementation method of the third aspect, for detecting targets.
  • the frequency shift value of the frequency shift unit for frequency shifting the M-path sub-signals is an integer multiple of a certain value, so that the center frequency points of the obtained M transmission signals are located on M frequency bands among W equally spaced frequency bands, and the unoccupied frequency bands among the W equally spaced frequency bands can achieve more accurate identification of the antennas of the echo signals corresponding to these transmission signals, so that the sampling rate requirements can be reduced in the case of distance diversity, allowing distance ambiguity, and combined with the receiving end to perform distance deambiguation according to the echo signals corresponding to the M transmission signals received, the sampling capacity requirements of the transmission system for the ADC can be reduced.
  • the frequency design of the spectrum sampling resources is evenly divided, but the total number of divisions is greater than the number of transmitting antennas, and the transmitting signals corresponding to the frequencies of the number of antennas are selected for transmission.
  • the antennas of the echo signals corresponding to these transmitting signals can be more accurately identified, thereby increasing the effective detection distance of the detection device under the same sampling rate conditions, which is equivalent to reducing the sampling capability requirements of the ADC under the same detection distance requirements.
  • the frequency shift unit includes:
  • the M frequency shifters are respectively used to perform frequency shift processing on the M-path signals to obtain the M transmission signals.
  • the frequency shifting unit includes M frequency shifters, which are respectively used to perform frequency shifting processing on M-path signals.
  • the frequency shifting values of the M frequency shifters for shifting the M-path signals are integer multiples of a certain value, so that after the frequency shifting processing, M transmission signals with center frequencies located in M frequency bands among W equally spaced frequency bands can be obtained.
  • the detection device further includes:
  • N receiving antennas where N is an integer greater than 2;
  • the N receiving antennas are respectively used to receive echo signals corresponding to the M transmitting signals.
  • the detection device also includes N receiving antennas, which are respectively used to receive echo signals corresponding to M transmitted signals.
  • the echo signals corresponding to the M transmitted signals can be used for distance deambiguation, thereby reducing the detection device's requirements on the sampling capability of the ADC.
  • the detection device further includes:
  • the mixing unit is used to perform mixing processing on the M echo signals and one of the M sub-signals respectively to obtain M mixed signals, and the M mixed signals are used to determine the distance of the target.
  • the detection device also includes a mixing unit, which is used to perform mixing processing on the M mixed echo signals and the original signal without frequency shifting (i.e., one of the M sub-signals mentioned above) received by the receiving end, so as to obtain M mixed signals.
  • the M mixed signals can determine the true distance of the target, thereby increasing the effective detection distance of the detection device under the same sampling rate conditions, or achieving the sampling capability requirements of the ADC under the same detection distance requirements.
  • the frequency mixing unit includes:
  • the N mixers are used to perform mixing processing on the M echo signals and one of the M sub-signals, respectively, to obtain the M mixed signals.
  • the mixing unit includes N mixers, which are respectively used to perform mixing processing on M mixed echo signals and original signals that have not been frequency shifted (i.e., one of the M sub-signals mentioned above) received at the receiving end, so that after the mixing processing, M mixed signals for determining the actual distance of the target can be obtained.
  • the detection device further includes:
  • the processing unit is used to determine the corresponding relationship between the M echo signals and the M transmission signals according to the unoccupied frequency bands in the W equally spaced frequency bands.
  • the detection device also includes a processing unit, which is used to determine the correspondence between M echo signals and M transmission signals according to the unoccupied frequency bands in the above-mentioned W equally spaced frequency bands.
  • a processing unit which is used to determine the correspondence between M echo signals and M transmission signals according to the unoccupied frequency bands in the above-mentioned W equally spaced frequency bands.
  • the processing unit is further configured to determine the distance of the target according to a correspondence between the M echo signals and the M transmission signals.
  • the processing unit can also be used to determine the real distance of the target according to the corresponding relationship between M echo signals and M transmission signals. It can be understood that, compared with the original signal without frequency shift (i.e., one of the M sub-signals), the distance value corresponding to the echo signal corresponding to the transmission signal with no frequency shift or the smallest frequency shift on the distance image formed by the M echo signals is the real distance of the target.
  • the real distance of the target can be determined, so that the effective detection distance of the detection device can be increased under the same sampling rate conditions, or the sampling capacity requirements of the ADC can be achieved under the same detection distance requirements.
  • the detection device further includes:
  • the filtering unit is used to perform filtering processing on the M mixed frequency signals
  • the sampling unit is used to sample the M mixed frequency signals after filtering to obtain M digital signals, and the M digital signals are used to determine the distance of the target.
  • a possible specific implementation of a detection device is provided, specifically, a filtering unit in the detection device is used to perform filtering processing on M mixed signals, and a sampling unit in the detection device is used to sample the M mixed signals after filtering processing to obtain M digital signals, and the M digital signals can be used for distance deambiguation, thereby reducing the detection device's requirements on the sampling capability of the ADC.
  • a filtering bandwidth of the filtering unit is at least twice as large as a sampling bandwidth of the sampling unit.
  • the filtering bandwidth of the filtering unit is at least twice the sampling bandwidth of the sampling unit, so that all echo signals after M transmitted signals pass through the target can be received losslessly to perform distance deambiguation.
  • the filtering unit includes:
  • the N intermediate frequency filters are respectively used to perform filtering processing on the M mixed signals.
  • the sampling unit includes:
  • the N analog-to-digital converters are respectively used to sample the M mixed signals after filtering to obtain the M digital signals.
  • an embodiment of the present application provides a chip, which includes the transmission system described in the first aspect or any possible embodiment of the first aspect, or includes the detection device described in the second aspect or any possible embodiment of the second aspect, or includes the transmission system described in the third aspect or any possible embodiment of the third aspect, or includes the detection device described in the fourth aspect or any possible embodiment of the fourth aspect.
  • an embodiment of the present application provides a radar or a radar system, which includes the transmitting system described in the first aspect or any possible implementation of the first aspect, or includes the detection device described in the second aspect or any possible implementation of the second aspect, or includes the transmitting system described in the third aspect or any possible implementation of the third aspect, or includes the detection device described in the fourth aspect or any possible implementation of the fourth aspect, or includes the chip described in the fifth aspect.
  • a radar or a radar system which includes the transmitting system described in the first aspect or any possible implementation of the first aspect, or includes the detection device described in the second aspect or any possible implementation of the second aspect, or includes the transmitting system described in the third aspect or any possible implementation of the third aspect, or includes the detection device described in the fourth aspect or any possible implementation of the fourth aspect, or includes the chip described in the fifth aspect.
  • the smart sensor may also be called a millimeter wave radar or a millimeter wave radar system.
  • an embodiment of the present application provides a terminal device, which includes the transmission system described in the first aspect or any possible implementation of the first aspect, or includes the detection device described in the second aspect or any possible implementation of the second aspect, or includes the transmission system described in the third aspect or any possible implementation of the third aspect, or includes the detection device described in the fourth aspect or any possible implementation of the fourth aspect, or includes the chip described in the fifth aspect, or includes the radar or radar system described in the sixth aspect.
  • an embodiment of the present application provides a vehicle side, which includes the transmitting system described in the first aspect or any possible embodiment of the first aspect, or includes the detection device described in the second aspect or any possible embodiment of the second aspect, or includes the transmitting system described in the third aspect or any possible embodiment of the third aspect, or includes the detection device described in the fourth aspect or any possible embodiment of the fourth aspect, or includes the chip described in the fifth aspect, or includes the radar or radar system described in the sixth aspect, or includes the terminal device described in the seventh aspect.
  • the spectrum sampling resources of the transmitted signal are unevenly divided into M parts, which correspond to M transmitted signals respectively transmitted through M transmitting antennas, or the spectrum sampling resources of the transmitted signal are evenly divided into W parts, but only the M transmitted signals corresponding to any M parts of the spectrum sampling resources are respectively transmitted through M transmitting antennas, and the remaining W-M parts of the spectrum resources corresponding to the transmitted signals are not transmitted, which can achieve more accurate identification of the antennas of the echo signals corresponding to these transmitted signals.
  • the sampling rate requirements can be reduced in the case of distance diversity, allowing distance ambiguity, and combined with the receiving end, the distance is deambiguated according to the echo signals corresponding to the M transmitted signals received, so that the sampling capacity requirements of the transmitting system for the ADC can be reduced. It can be seen that through the embodiment of the present application, it is possible to increase the effective detection distance of the transmitting system under the same sampling rate conditions, which is equivalent to reducing the sampling capacity requirements for the ADC under the same detection distance requirements.
  • FIG1 is a schematic diagram of a radar distribution provided in an embodiment of the present application.
  • FIG2 is a schematic diagram of the architecture of a radar provided in an embodiment of the present application.
  • FIG3 is a schematic diagram of the architecture of a radar provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of a transmitting system provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of spectrum sampling resource allocation provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of a one-dimensional image of a signal provided in an embodiment of the present application.
  • FIG7 is a schematic diagram of spectrum sampling resource allocation provided in an embodiment of the present application.
  • FIG8A is a schematic diagram of a one-dimensional image of a signal provided in an embodiment of the present application.
  • FIG8B is a schematic diagram of a one-dimensional image of a signal provided in an embodiment of the present application.
  • FIG9 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • FIG10 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • FIG12 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • FIG14 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • FIG15 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • FIG16 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • FIG17A is a schematic diagram of a one-dimensional image of a signal provided in an embodiment of the present application.
  • FIG17B is a schematic diagram of a one-dimensional image of a signal provided in an embodiment of the present application.
  • FIG18 is a schematic diagram of a one-dimensional image of a signal provided in an embodiment of the present application.
  • At least one (item) means one or more, “more than one” means two or more, “at least two (items)” means two or three and more than three, and "and/or” is used to describe the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can mean: only A exists, only B exists, and A and B exist at the same time, where A and B can be singular or plural.
  • the character “/” generally indicates that the objects associated before and after are in an “or” relationship.
  • At least one of the following items” or similar expressions refers to any combination of these items, including any combination of single items or plural items.
  • At least one of a, b or c can mean: a, b, c, "a and b", “a and c", “b and c", or "a and b and c", where a, b, c can be single or multiple.
  • the present application provides a transmission system, a detection device, a radar, a terminal device, and a vehicle terminal, which relate to the field of millimeter wave radar technology, and can reduce the multi-transmit channel-MIMO radar's requirements for ADC sampling capabilities and reduce the implementation cost.
  • Radar is the transliteration of the English word Radar, which is derived from the abbreviation of "radio detection and ranging", meaning “radio detection and ranging”. It uses radio methods to detect targets and determine the target's spatial position.
  • the detection medium of radar is electromagnetic waves. It uses the emission and reception of electromagnetic waves to detect targets, for example, distance measurement, speed measurement, or azimuth measurement. Radar can measure the distance of targets based on the flight time of electromagnetic waves. The flight time is the time difference between the transmission and reception of electromagnetic waves. The radar transmits an electromagnetic wave signal and receives the echo signal of the electromagnetic wave signal. The distance of the target can be measured based on the time difference between the received echo signal and the transmitted electromagnetic wave signal and the propagation speed of the electromagnetic wave.
  • Radar measures the speed of a target based on the Doppler effect.
  • the principle of the Doppler effect is as follows: when a vibration source such as sound, light, and radio waves moves relative to an observer at a relative speed, the vibration frequency received by the observer is different from the frequency emitted by the vibration source.
  • the frequency of the echo signal will be different from the frequency of the emitted electromagnetic wave signal.
  • the frequency of the echo signal will be higher than the frequency of the emitted electromagnetic wave signal; conversely, when the target moves away from the radar antenna, the frequency of the echo signal will be lower than the frequency of the emitted electromagnetic wave signal.
  • the frequency change caused by the Doppler effect is called the Doppler shift, which is proportional to the relative speed and inversely proportional to the vibration frequency. Therefore, by detecting the frequency difference between the emitted electromagnetic wave signal and the echo signal, the moving speed of the target relative to the radar, that is, the relative speed between the target and the radar, can be measured.
  • the Radar can use amplitude method, phase method and other methods to measure azimuth.
  • the amplitude method uses the amplitude value of the echo signal received by the antenna to measure the angle.
  • the changing pattern of the amplitude value depends on the antenna radiation pattern and the antenna scanning method.
  • the phase method uses the phase difference between the echo signals received by multiple antenna units to measure the angle. For example, the radar receives the echo signal reflected by the same target through the antenna array, and calculates the azimuth of the target based on the phase difference of the echo signal.
  • the detection medium of millimeter wave radar is electromagnetic waves within a certain wavelength range, such as microwaves.
  • millimeter waves and centimeter waves adjacent to millimeter wave bands are more commonly used.
  • Millimeter waves are electromagnetic waves with a wavelength of 1 to 10 millimeters (mm), and the wavelength of electromagnetic waves in the 24GHz band is slightly greater than 10mm. Since the wavelength of the detection medium of millimeter wave radar is in the wavelength range where microwaves and far-infrared waves overlap, it has the characteristics of both spectra.
  • the detection medium of millimeter wave radar has high resolution, good directivity, strong anti-interference ability and good detection performance.
  • the detection medium of millimeter wave radar has low atmospheric attenuation, better penetration of smoke and dust, and is less affected by weather. Therefore, millimeter-wave radar has been increasingly widely used in many fields such as smart vehicles, drones, smart transportation, and industrial automation.
  • LRR long-range radar
  • MRR medium-range radar
  • SRR short-range radar
  • the detection range of LRR can reach more than 200 meters, and the angular width can be ⁇ 15°; the detection range of MRR can be within 100 meters, and the angular width can be ⁇ 45°; the detection range of SRR can be within 60 meters, and the angular width can be ⁇ 80°.
  • different types of Radar can be installed at different positions of the vehicle body according to the functional requirements of autonomous driving and the use of other sensors. The number and type of Radar can be selected as needed.
  • FIG. 1 is a schematic diagram of a radar distribution provided in an embodiment of the present application.
  • FIG. 1 shows possible installation locations of several types of Radars, which are only examples. In actual use, more or less numbers of Radars may be selected, and the types may also be adjusted.
  • LRR can be installed in front of the vehicle body as a forward radar
  • MRR can be installed in front of and behind the vehicle body as a forward radar and a rear radar
  • SRR can be installed on the side of the vehicle body or at the four corners of the vehicle body as a side radar and a corner radar.
  • MRR can also be installed on the side of the vehicle body or at the four corners of the vehicle body
  • SRR can also be installed in front of or behind the vehicle body.
  • Radar can be classified according to the modulation method (or radiation method) of its electromagnetic wave.
  • the modulation method of Radar's electromagnetic wave includes pulse method and continuous wave method, so Radar can be divided into pulse radar and continuous wave radar.
  • the continuous wave method can be further divided into frequency shift keying (FSK), phase shift keying (PSK), constant frequency/single frequency continuous wave (continuous wave CW), frequency modulated continuous wave (FMCW), multiple frequency shift keying (MFSK), phase modulated continuous wave (PMCW) and other methods.
  • FMCW has become the mainstream radar modulation method because it can detect multiple targets, has high resolution and low cost.
  • FIG. 2 is a schematic diagram of the architecture of a radar provided in an embodiment of the present application.
  • the Radar includes a control circuit 110, a signal generator 120, a power amplifier (PA) 130, a low noise amplifier (LNA) 140, a mixer 150, a filter 160, an analog-to-digital converter (ADC) 170, and a signal processor 180.
  • the signal processor is usually used to process digital signals, such as a digital signal processor (DSP).
  • the signal generator 120 generates an electromagnetic wave signal (also called a radar signal) waveform under the control of the control circuit 110.
  • a Radar using FMCW modulation generates a sawtooth wave or a triangle wave under the control of the control circuit 110.
  • the signal generator 120 is, for example, a voltage-controlled oscillator, and the control circuit 110 is used to generate a control voltage.
  • the generated electromagnetic wave signal waveform is frequency modulated to the required frequency band, for example, between 76 GHz and 77 GHz. After being amplified by PA 130, it is radiated into space through the transmitting antenna (TX).
  • TX transmitting
  • the electromagnetic wave signal radiated by the transmitting antenna is reflected into space after irradiating the target, and is received by the receiving antenna (RX) of the Radar.
  • RX receiving antenna
  • the reference signal can usually use the electromagnetic wave signal generated above.
  • the mixer 150 can obtain an analog baseband signal, and the digital baseband signal is obtained by sampling through the ADC 170.
  • the digital baseband signal is processed in the signal processor 180 to obtain the distance, speed, and angle information of the target. In addition, the obtained information can be used for clustering and/or tracking, etc., to further obtain the trajectory, size, type and other information of the target.
  • the various components of the above Radar can be integrated as needed to achieve the miniaturization of the radar.
  • the control circuit 110, the signal generator 120, the power amplifier (PA) 130, the low noise amplifier (LNA) 140, the mixer 150, the filter 160, the analog-to-digital converter (ADC) 170 and other components can be integrated on at least one chip, for example, integrated into a monolithic microwave integrated circuit (MMIC).
  • MMIC monolithic microwave integrated circuit
  • FIG3 is a schematic diagram of the architecture of a radar provided in an embodiment of the present application.
  • the Radar includes MMIC, a microcontroller unit (MCU), and a power management integrated circuit (PMIC).
  • MMIC can integrate the functions of the RF part
  • MCU can integrate the functions of the above baseband part, such as integrating the functions of the above signal processor.
  • PMIC is a chip that supplies power to the radar hardware system.
  • the present application provides a transmission system, a detection device, a radar, a terminal equipment and a vehicle terminal, involving the field of millimeter wave radar technology, which can reduce the multi-transmit channel-MIMO radar's requirements for ADC sampling capability and reduce implementation costs.
  • FIG. 4 is a schematic diagram of the structure of a transmitting system provided in an embodiment of the present application.
  • the launch system includes:
  • M transmit antennas (e.g., Tx1, Tx2, ..., TxM), where M is an integer greater than 2;
  • the M transmitting antennas are respectively used to transmit M transmitting signals, and the M transmitting signals are used to detect targets;
  • the M transmission signals have M different center frequencies.
  • the center frequency of the transmission signal of the transmitting antenna Tx1 may be fc+ ⁇ f1
  • the center frequency of the transmission signal of the transmitting antenna Tx2 may be fc+ ⁇ f2
  • the center frequency of the transmission signal of the transmitting antenna Tx3 may be fc+ ⁇ f3
  • the center frequency of the transmission signal of the transmitting antenna TxM may be fc+ ⁇ fM, and so on.
  • the above fc represents the center frequency of the original signal
  • ⁇ f1, ⁇ f2, ⁇ f3, ..., ⁇ fM respectively represent the frequency deviations of the above M transmission signals relative to the original signal (the center frequency is fc).
  • the transmission signal of the transmitting antenna Tx1 does not have a frequency deviation compared to the original signal (fc), or it can be understood that the transmission signal of the transmitting antenna Tx1 at this time is the original signal.
  • ⁇ f1, ⁇ f2, ⁇ f3, ..., ⁇ fM are only exemplary aliases for frequency deviation values, and their specific values may be multiple, and the present application does not impose any restrictions on this. It is only necessary that the M transmitted signals have M different center frequencies.
  • the M transmission signals need to meet the following conditions:
  • the sampling rate requirement can be lowered in range diversity, allowing range ambiguity, and the receiving end performs range deambiguation based on the echo signals corresponding to the M received transmission signals, thereby reducing the sampling capacity requirement of the transmission system for the ADC.
  • the transmission system divides the spectrum sampling resources of the transmission signal into M parts non-uniformly, corresponding to the M transmission signals respectively.
  • FIG. 5 is a schematic diagram of spectrum sampling resource allocation provided in an embodiment of the present application.
  • the spectrum sampling resources (usable frequency range fs) are unevenly distributed into M parts, so that compared with the above-mentioned original signal (center frequency point is fc), the frequency deviation of each transmission channel is arranged from small to large as 0, ⁇ f1, ⁇ f2, ..., ⁇ f(M-1), respectively, corresponding to M transmission signals, and the center frequencies of the M transmission signals are fc, fc+ ⁇ f1, fc+ ⁇ f2, ..., fc+ ⁇ f(M-1), respectively.
  • the M transmission signals are respectively transmitted by the transmitting antennas (Tx1, Tx2, ..., TxM) corresponding to each transmission channel for detecting targets.
  • the transmitting antenna Tx1 transmits a transmitting signal corresponding to a frequency deviation of 0, and the center frequency of the transmitting signal is fc;
  • the transmitting antenna Tx2 transmits a transmitting signal corresponding to a frequency deviation of ⁇ f1, and the center frequency of the transmitting signal is fc+ ⁇ f1;
  • the transmitting antenna Tx3 transmits a transmitting signal corresponding to a frequency deviation of ⁇ f2, and the center frequency of the transmitting signal is fc+ ⁇ f2;
  • the transmitting antenna TxM transmits a transmitting signal corresponding to a frequency deviation of ⁇ f(M-1), and the center frequency of the transmitting signal is fc+ ⁇ f(M-1), and so on.
  • a specific design is to design the frequency offset of each transmission channel so that the frequency offsets between two adjacent groups of transmission channels are different, for example, the difference between frequency offset 0 and frequency offset ⁇ f1 is different from the difference between frequency offset ⁇ f1 and frequency offset ⁇ f2.
  • the above frequency offset 0, frequency offset ⁇ f1, and frequency offset ⁇ f2 are only exemplary frequency offsets corresponding to two adjacent groups of transmission channels, and may also be frequency offset ⁇ f1, frequency offset ⁇ f2, frequency offset ⁇ f3, etc., which is not limited in the embodiments of the present application.
  • FIG6 is a schematic diagram of a one-dimensional image of a signal provided in an embodiment of the present application.
  • the one-dimensional image of the echo signal corresponding to the M transmission signals will generate echoes of different transmission signals at different distances, and its distance diversity corresponds to the frequency difference design of the transmission signal.
  • the horizontal coordinate f(R) of the one-dimensional image represents the frequency diversity
  • the vertical coordinate I represents the signal strength corresponding to each frequency in the frequency diversity.
  • the interval between the one-dimensional image of the echo signal corresponding to the signal transmitted by the transmitting antenna Tx1 and the one-dimensional image of the echo signal corresponding to the signal transmitted by the transmitting antenna Tx2 is different from the interval between the one-dimensional image of the echo signal corresponding to the signal transmitted by the transmitting antenna Tx2 and the one-dimensional image of the echo signal corresponding to the signal transmitted by the transmitting antenna Tx3.
  • the difference between the frequency offset corresponding to the transmitted signal of the transmitting antenna Tx1 and the frequency offset corresponding to the transmitted signal of the transmitting antenna Tx2 is different from the difference between the frequency offset corresponding to the transmitted signal of the transmitting antenna Tx2 and the frequency offset corresponding to the transmitted signal of the transmitting antenna Tx3.
  • the spectrum sampling resources corresponding to the M transmission signals are unevenly distributed, the frequency difference between the transmission signals corresponding to different transmitting antennas makes it possible to reduce the sampling rate requirements during distance diversity, allowing distance ambiguity, and combining with the receiving end to perform distance deambiguation based on the echo signals corresponding to the M transmission signals received, the sampling capability requirements of the transmitting system for the ADC can be reduced.
  • the central frequency points of the M transmission signals transmitted by the transmission system are located on M frequency bands among W equally spaced frequency bands, where W is an integer greater than M.
  • the transmission system evenly divides the spectrum sampling resources of the transmission signal into W parts, but only transmits M transmission signals corresponding to any M parts of the spectrum sampling resources through M transmitting antennas, and the transmission signals corresponding to the remaining W-M parts of the spectrum resources are not transmitted.
  • FIG. 7 is a schematic diagram of spectrum sampling resource allocation provided in an embodiment of the present application.
  • the spectrum sampling resources (usable frequency range fs) are evenly distributed into W parts.
  • the spectrum sampling resources fs are evenly distributed into M+1 parts here, so that compared with the above original signal (the center frequency point is fc), the frequency deviation of each transmission channel is 0, fs/(M+1), 2fs/(M+1), ..., (M)fs/(M+1), respectively, corresponding to M+1 transmission signals, respectively.
  • the center frequencies of the M transmission signals are fc, fc+fs/(M+1), fc+2fs/(M+1), ..., fc+(M)fs/(M+1), respectively.
  • M transmission signals are arbitrarily selected from them and transmitted by the transmitting antennas (Tx1, Tx2, ..., TxM) corresponding to each transmission channel for detecting targets, and the remaining transmission signal is not transmitted.
  • the transmitting antenna Tx1 transmits a transmitting signal corresponding to a frequency deviation of 0, and the center frequency of the transmitting signal is fc
  • the transmitting antenna Tx2 transmits a transmitting signal corresponding to a frequency deviation of fs/(M+1)
  • the center frequency of the transmitting signal is fc+fs/(M+1)
  • the transmitting antenna Tx3 transmits a transmitting signal corresponding to a frequency deviation of 2fs/(M+1)
  • the center frequency of the transmitting signal is fc+2fs/(M+1
  • the transmitting antenna TxM transmits a transmitting signal corresponding to a frequency deviation of (M-1)fs/(M+1)
  • the center frequency of the transmitting signal is fc+(M-1)fs/(M+1), etc.
  • the transmitting signal corresponding to the frequency deviation of (M)fs/(M+1) is not transmitted (as shown by the dotted line in FIG7).
  • the above-mentioned spectrum sampling resource fs is evenly distributed into M+1 parts, and is designed so that the center frequency points of the M transmission signals transmitted by the transmission system are located on M frequency bands among M+1 equally spaced frequency bands.
  • the specific design is that the difference between the frequency offsets of each transmission channel is an integer multiple relationship.
  • the difference between the frequency offset corresponding to the transmission signal of the transmitting antenna Tx3 and the frequency offset corresponding to the transmission signal of the transmitting antenna Tx1 is an integer multiple of the difference between the frequency offset corresponding to the transmission signal of the transmitting antenna Tx2 and the frequency offset corresponding to the transmission signal of the transmitting antenna Tx1.
  • FIGS. 8A and 8B are schematic diagrams of two one-dimensional images of signals provided in an embodiment of the present application.
  • the one-dimensional image of the echo signal corresponding to the M transmission signals will generate echoes of different transmission signals at different distances, and its distance diversity corresponds to the frequency difference design of the transmission signal.
  • the horizontal coordinate f(R) of the one-dimensional image represents the frequency diversity
  • the vertical coordinate I represents the signal strength corresponding to each frequency in the frequency diversity.
  • a one-dimensional image of the echo of the target in the first free distance interval is shown. That is, from the spectrum sampling resource fs uniformly distributed M+1 parts, the one-dimensional image of the echo signal formed by the M transmission signals corresponding to the first M parts is selected. It can be seen that the energy of the transmission signal is distributed in the first M intervals.
  • the interval between the one-dimensional image of the echo signal corresponding to the signal transmitted by the transmitting antenna Tx1 and the one-dimensional image of the echo signal corresponding to the signal transmitted by the transmitting antenna Tx2 is the same as the interval between the one-dimensional image of the echo signal corresponding to the signal transmitted by the transmitting antenna Tx2 and the one-dimensional image of the echo signal corresponding to the signal transmitted by the transmitting antenna Tx3.
  • the difference between the frequency offset corresponding to the transmission signal of the transmitting antenna Tx1 and the frequency offset corresponding to the transmission signal of the transmitting antenna Tx2 is the same as the difference between the frequency offset corresponding to the transmission signal of the transmitting antenna Tx2 and the frequency offset corresponding to the transmission signal of the transmitting antenna Tx3.
  • the one-dimensional image of the echo of the target in the second free distance interval is shown. That is, the one-dimensional image of the echo signal formed by the M transmission signals corresponding to the last M parts are selected from the spectrum sampling resource fs evenly distributed M+1 parts. It can be seen that the energy of the transmission signal is distributed in the last M intervals, that is, the 2nd to M+1 intervals, and there is no energy distribution of the transmission signal in the first interval (as shown by the dotted arrow in Figure 8B).
  • the unoccupied frequency bands among the W equally spaced frequency bands can achieve more accurate identification of the antennas of the echo signals corresponding to the transmitted signals.
  • the unoccupied frequency bands among the W equally spaced frequency bands result in a larger frequency difference between the transmission signals corresponding to the two transmission antennas, so the corresponding relationship between the M echo signals and the M transmission antennas can be determined based on the unoccupied frequency bands among the W equally spaced frequency bands.
  • the frequency band with a frequency offset of (M)fs/(M+1) to fs is not occupied, indicating that there is no transmission signal on the frequency band, and when transmitting the M transmission signals, the first M transmission signals are selected, and the transmission signal Tx(M+1) corresponding to the frequency offset of (M)fs/(M+1) is not transmitted.
  • the transmission signal TxM corresponding to the frequency offset of (M-1)fs/(M+1) is transmitted on the first frequency band of the frequency offset of (M)fs/(M+1) to fs, and so on, the corresponding relationship between the M echo signals and the M transmission antennas can be obtained.
  • the correspondence between the M echo signals and the M transmitting antennas can determine the real distance of the target. Specifically, compared with the original signal without frequency shift (i.e., one of the M sub-signals), the distance value corresponding to the echo signal corresponding to the transmitting signal without frequency shift or with the smallest frequency shift on the distance image formed by the M echo signals is the real distance of the target.
  • the unoccupied frequency bands among the above-mentioned W equally spaced frequency bands can reduce the sampling rate requirements during distance diversity, allow distance ambiguity, and combine with the receiving end to perform distance deambiguation based on the echo signals corresponding to the M transmitted signals received, thereby reducing the transmitting system's requirements on the sampling capability of the ADC.
  • the frequency design of the spectrum sampling resources is evenly divided, but the total number of divisions is greater than the number of transmitting antennas, and the transmitting signals corresponding to the frequencies of the number of antennas are selected for transmission.
  • This can increase the effective detection distance of the transmitting system under the same sampling rate conditions, which is equivalent to reducing the sampling capability requirements of the ADC under the same detection distance requirements.
  • the present application also provides a detection device for realizing target detection in a MIMO transmission scenario.
  • FIG. 9 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • the detection device includes a frequency shift unit 10 and the transmitting system as shown in FIG. 4 above.
  • the frequency shift unit 10 in the detection device is used to perform frequency shift processing on the M-path sub-signals (fc) to obtain M transmission signals.
  • the M transmission signals can be transmitted through the transmission system shown in FIG. 4 to detect the target.
  • the frequency shifting unit 10 shifts the M sub-signals by different frequency shift values, so that the frequency differences between the transmitted signals corresponding to adjacent center frequency points in the obtained M transmitted signals are different, namely, the M transmitted signals in the above-mentioned solution one.
  • the frequency difference between the transmission signals corresponding to different transmitting antennas makes it possible to reduce the sampling rate requirements during distance diversity, allowing distance ambiguity, and combining the receiving end to perform distance deambiguation based on the echo signals corresponding to the M received transmission signals, thereby reducing the transmission system's requirements on the ADC's sampling capability.
  • the frequencies of the transmitted signals of different transmitting antennas are designed in a non-uniform frequency manner, so that the effective detection distance of the detection device can be increased under the same sampling rate conditions, which is equivalent to reducing the sampling capability requirements of the ADC under the same detection distance requirements.
  • the frequency shift value of the frequency shift unit 10 for the M-path sub-signals is an integer multiple of a certain value, so that the center frequencies of the obtained M transmission signals are located on M frequency bands among W equally spaced frequency bands, namely the M transmission signals in the above-mentioned scheme 2.
  • the unoccupied frequency bands among the W equally spaced frequency bands make it possible to reduce the sampling rate requirements during distance diversity, allowing distance ambiguity, and combining the receiving end with distance deambiguation based on the echo signals corresponding to the M transmitted signals received, thereby reducing the sampling capability requirements of the transmitting system for the ADC.
  • the frequency design of evenly dividing the spectrum sampling resources is performed, but the total number of divisions is greater than the number of transmitting antennas, and the transmitting signals corresponding to the frequencies of the number of antennas are selected for transmission.
  • This can increase the effective detection distance of the detection device under the same sampling rate conditions, which is equivalent to reducing the sampling capability requirements for the ADC under the same detection distance requirements.
  • FIG. 10 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • the detection device in the embodiment of the present application can be regarded as a variation or supplement of the detection device shown in FIG. 9 above, or can be regarded as a separate solution implementation.
  • the detection device includes a frequency shift unit 10 and the transmitting system as shown in FIG. 4 above.
  • the frequency shift unit 10 comprises:
  • the M frequency shifters are used to perform frequency shift processing on the M-path signal (fc) (frequency shifting by ⁇ f1, ⁇ f2, ⁇ f3, ..., ⁇ fM respectively) to obtain M transmission signals (fc+ ⁇ f1, fc+ ⁇ f2, fc+ ⁇ f3, ..., fc+ ⁇ fM respectively).
  • the frequency shifting process performed by the M frequency shifters in the embodiment of the present application is similar to the frequency shifting process performed by the frequency shifting unit 10 shown in FIG. 9 .
  • the frequency shifting process performed by the frequency shifting unit 10 shown in FIG. 9 please refer to the above text and will not be described again here.
  • FIG. 11 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • the detection device in the embodiment of the present application can be regarded as a variation or supplement of the detection device shown in Figures 9 to 10 above, or can be regarded as a separate solution implementation.
  • the detection device includes M frequency shifters and the transmitting system as shown in FIG. 4 above.
  • the connection relationship, signal flow and functional description thereof can be found in the descriptions in FIG. 4 , FIG. 9 to FIG. 10 above, and will not be repeated here.
  • the detection device in the embodiment of the present application further includes:
  • N receiving antennas e.g., Rx1, Rx2, Rx3, ..., RxN
  • N is an integer greater than 2;
  • the N receiving antennas are respectively used to receive echo signals corresponding to the M transmitting signals.
  • the echo signals corresponding to the M transmission signals can be used for distance deambiguation, thereby reducing the sampling capability requirements of the detection device on the ADC.
  • FIG. 12 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • the detection device in the embodiment of the present application can be regarded as a variation or supplement of the detection device shown in Figures 9 to 11 above, and can also be regarded as a separate solution implementation.
  • the detection device includes M frequency shifters, N receiving antennas, and the transmitting system as shown in FIG4 above.
  • the connection relationship, signal flow and functional description can be found in the descriptions in FIG4 , 9 to 11 above, and will not be repeated here.
  • the detection device in the embodiment of the present application further includes:
  • a mixing unit 20 ;
  • the mixing unit 20 is used to perform mixing processing on the M echo signals and one of the M sub-signals (with a center frequency point of fc) to obtain M mixed signals, and the M mixed signals are used to determine the distance of the target.
  • the mixing unit 20 is used to perform mixing processing on the M mixed echo signals and the original signal without frequency shifting (i.e., one of the M sub-signals mentioned above) received by the receiving end, respectively, to obtain M mixed signals.
  • the M mixed signals can determine the true distance of the target, thereby increasing the effective detection distance of the detection device under the same sampling rate conditions, or achieving the sampling capability requirements of the ADC under the same detection distance requirements.
  • FIG. 13 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • the detection device in the embodiment of the present application can be regarded as a variation or supplement of the detection device shown in Figures 9 to 12 above, and can also be regarded as a separate solution implementation.
  • the detection device includes M frequency shifters, N receiving antennas, a mixing unit 20, and a transmitting system as shown in Figure 4 above.
  • the connection relationship, signal flow and functional description can all be found in the descriptions in Figures 4, 9 to 12 above, and will not be repeated here.
  • the frequency mixing unit 20 includes:
  • the N mixers are used to perform mixing processing on the M echo signals and one of the M sub-signals (with a center frequency point of fc) to obtain M mixed signals.
  • the frequency shifting processing performed by the N frequency shifters in the embodiment of the present application is similar to the frequency mixing processing performed by the frequency mixing unit 20 shown in FIG. 12 , and details thereof may be found above and will not be repeated here.
  • FIG. 14 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • the detection device in the embodiment of the present application can be regarded as a variation or supplement of the detection device shown in Figures 9 to 13 above, and can also be regarded as a separate solution implementation.
  • the detection device includes M frequency shifters, N receiving antennas, N mixers, and the transmitting system shown in Figure 4 above.
  • the connection relationship, signal flow and functional description can be found in the descriptions in Figures 4, 9 to 13 above, and will not be repeated here.
  • the detection device in the embodiment of the present application further includes:
  • the filtering unit 30 is used to perform filtering processing on the M mixed signals
  • the sampling unit 40 is used to sample the M mixed signals after filtering to obtain M digital signals, and the M digital signals are used to determine the distance of the target.
  • the filtering unit in the detection device is used to perform filtering processing on the M mixed signals
  • the sampling unit in the detection device is used to sample the M mixed signals after filtering processing to obtain M digital signals
  • the M digital signals can be used for distance deambiguation, thereby reducing the detection device's requirements on the sampling capability of the ADC.
  • the filtering bandwidth of the filtering unit 30 is at least twice greater than the sampling bandwidth of the sampling unit 40 , so that all echo signals of the M transmitted signals after passing through the target can be received losslessly to perform distance deambiguation.
  • FIG. 15 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • the detection device in the embodiment of the present application can be regarded as a variation or supplement of the detection device shown in Figures 9 to 14 above, or can be regarded as a separate solution implementation.
  • the detection device includes M frequency shifters, N receiving antennas, a mixing unit 20, a filtering unit 30, a sampling unit 40, and a transmitting system as shown in Figure 4 above.
  • M frequency shifters N receiving antennas
  • N receiving antennas N receiving antennas
  • a mixing unit 20 N receiving antennas
  • a filtering unit 30 a sampling unit 40
  • a transmitting system as shown in Figure 4 above.
  • the connection relationship, signal flow and functional description can all be found in the descriptions in Figures 4, 9 to 14 above, and will not be repeated here.
  • the filtering unit 30 includes:
  • the N intermediate frequency filters are respectively used to perform filtering processing on the M mixed frequency signals.
  • the sampling unit 40 comprises:
  • the N analog-to-digital converters are respectively used to sample the M mixed frequency signals after filtering to obtain M digital signals.
  • the filtering processing performed by the N intermediate frequency filters in the embodiment of the present application is similar to the filtering processing performed by the filtering unit 30 shown in the above Figure 14, and the sampling processing performed by the N analog-to-digital converters in the embodiment of the present application is similar to the sampling processing performed by the sampling unit 40 shown in the above Figure 14.
  • the sampling processing performed by the N analog-to-digital converters in the embodiment of the present application is similar to the sampling processing performed by the sampling unit 40 shown in the above Figure 14.
  • FIG. 16 is a schematic diagram of the structure of a detection device provided in an embodiment of the present application.
  • the detection device in the embodiment of the present application can be regarded as a variation or supplement of the detection device shown in Figures 9 to 15 above, and can also be regarded as a separate solution implementation.
  • the detection device includes M frequency shifters, N receiving antennas, N mixers, N intermediate frequency filters, N analog-to-digital converters, and the transmitting system shown in Figure 4 above.
  • the connection relationship, signal flow and functional description can be found in the descriptions in Figures 4, 9 to 15 above, and will not be repeated here.
  • the detection device in the embodiment of the present application further includes:
  • the processing unit 50 is used to determine the corresponding relationship between the M echo signals and the M transmission signals according to the frequency differences between the M transmission signals.
  • the correspondence between the M echo signals and the M transmitting antennas can be determined based on the frequency differences between the M transmitted signals.
  • the correspondence between M echo signals and M transmission signals is determined, and distance deambiguation can be achieved, thereby reducing the sampling capability requirements of the transmission system for the ADC.
  • the processing unit 50 may also be used to determine the distance of the target according to the correspondence between the M echo signals and the M transmission signals.
  • the distance value corresponding to the echo signal corresponding to the transmitted signal without frequency shift or with the smallest frequency shift on the distance image formed by the M echo signals is the actual distance of the target.
  • the real distance of the target can be determined, so that the effective detection distance of the detection device can be increased under the same sampling rate conditions, or the sampling capacity requirements of the ADC can be achieved under the same detection distance requirements.
  • the processing unit 50 is used to determine the correspondence between the M echo signals and the M transmission signals according to the unoccupied frequency bands in the W equally spaced frequency bands.
  • the correspondence between the M echo signals and the M transmitting antennas can be determined based on the unoccupied frequency bands among the W equally spaced frequency bands.
  • the correspondence between M echo signals and M transmission signals is determined, and distance deambiguation can be achieved, thereby reducing the sampling capability requirements of the transmission system for the ADC.
  • the processing unit 50 may also be used to determine the distance of the target according to the correspondence between the M echo signals and the M transmission signals.
  • the distance value corresponding to the echo signal corresponding to the transmitted signal without frequency shift or with the smallest frequency shift on the distance image formed by the M echo signals is the actual distance of the target.
  • the real distance of the target can be determined, so that the effective detection distance of the detection device can be increased under the same sampling rate conditions, or the sampling capacity requirements of the ADC can be achieved under the same detection distance requirements.
  • this application will also provide several examples in MIMO detection scenarios based on the transmission system shown in Figure 4 above, the detection devices in Figures 9 to 16 above, and the frequency difference design schemes described in Scheme 1 and Scheme 2.
  • FIG. 17A , FIG. 17B and FIG. 18 The following description will be given in conjunction with FIG. 17A , FIG. 17B and FIG. 18 .
  • FIG. 17A is a schematic diagram of a one-dimensional image of a signal provided in an embodiment of the present application.
  • FIG17A a schematic diagram of the one-dimensional image of the signal corresponding to two targets at 50 m and 300 m respectively is shown.
  • a transmitting system or detection device with four transmitting antennas transmits corresponding transmitting signals according to the frequency difference design in the above scheme one, that is, the spectrum sampling resources are unevenly divided into four parts, corresponding to the four transmitting signals respectively, and transmitted through the four transmitting antennas.
  • the inherent maximum unambiguous distance of the target is 400m.
  • the 50m target is in the first unambiguous interval (0-100m), and the 300m target is at the edge of the third unambiguous interval (200-300m) and the fourth unambiguous interval (300-400m).
  • the distance value of the echo signal corresponding to the transmitting antenna Tx1 in the one-dimensional image of the signal is 50m
  • the distance value of the echo signal corresponding to the transmitting antenna Tx2 in the one-dimensional image of the signal is 190m
  • the distance value of the echo signal corresponding to the transmitting antenna Tx3 in the one-dimensional image of the signal is 290m
  • the distance value of the echo signal corresponding to the transmitting antenna Tx4 in the one-dimensional image of the signal is 10m.
  • the distance value 50m corresponding to Tx1 is the actual distance of the target.
  • the echo signals of other antennas need to be jointly processed to determine the actual distance of the target.
  • the transmitting antennas "Tx1, Tx2, Tx3, Tx4" marked in Figure 17A do not actually exist, and are only marked for the convenience of explanation.
  • the distance value corresponding to the echo information of the transmitting antenna Tx1 in the one-dimensional image of the signal is 300m
  • the distance value corresponding to the echo signal of the transmitting antenna Tx2 in the one-dimensional image of the signal is 40m
  • the distance value corresponding to the echo signal of the transmitting antenna Tx3 in the one-dimensional image of the signal is 140m
  • the distance value corresponding to the echo signal of the transmitting antenna Tx4 in the one-dimensional image of the signal is 260m.
  • the distance value 300m corresponding to Tx1 is the real distance of the target.
  • the transmitting antennas "Tx1, Tx2, Tx3, Tx4" marked in Figure 17A do not actually exist, and are only marked for the convenience of explanation.
  • FIG. 17B is a schematic diagram of a one-dimensional image of a signal provided in an embodiment of the present application.
  • M ⁇ N equivalent antenna arrays and M ⁇ N equivalent ADC channels can be realized to obtain M ⁇ N echo signal arrays.
  • the M ⁇ N echo signal array can obtain the schematic diagram of the one-dimensional image of the signal shown in Figure 17B.
  • the signal energies corresponding to the positions of 50 m and 300 m have high peak values, indicating that the actual distances of the two targets are respectively 50 m and 300 m.
  • FIG. 18 is a schematic diagram of a one-dimensional image of a signal provided in an embodiment of the present application.
  • FIG18 a schematic diagram of the one-dimensional signal images corresponding to the three targets at 50 m, 120 m, and 300 m is shown.
  • a transmitting system or detection device with 4 transmitting antennas transmits corresponding transmitting signals according to the frequency difference design in the above scheme 2, that is, the spectrum sampling resources are evenly divided into 5 parts, corresponding to 5 transmitting signals respectively, but only 4 transmitting signals corresponding to any 4 parts of the spectrum sampling resources are transmitted through 4 transmitting antennas respectively, and the transmitting signal corresponding to the remaining 1 part of the spectrum resources is not transmitted.
  • the inherent maximum unambiguous distance of the target is 400m.
  • the 50m target is in the first unambiguous interval (0-100m)
  • the 120m target is in the second unambiguous interval (100-200m)
  • the 300m target is at the edge of the third unambiguous interval (200-300m) and the fourth unambiguous interval (300-400m).
  • the distance value of the echo signal corresponding to the transmitting antenna Tx1 in the one-dimensional image of the signal is 50m
  • the distance value of the echo signal corresponding to the transmitting antenna Tx2 in the one-dimensional image of the signal is 130m
  • the distance value of the echo signal corresponding to the transmitting antenna Tx3 in the one-dimensional image of the signal is 210m
  • the distance value of the echo signal corresponding to the transmitting antenna Tx4 in the one-dimensional image of the signal is 290m.
  • the distance value of 50m corresponding to Tx1 is the real distance of the target.
  • the transmitting antennas "Tx1, Tx2, Tx3, Tx4" marked in Figure 18 do not actually exist, and are only marked for the convenience of explanation.
  • the distance value of the echo signal corresponding to the transmitting antenna Tx1 in the one-dimensional image of the signal is 120m
  • the distance value of the echo signal corresponding to the transmitting antenna Tx2 in the one-dimensional image of the signal is 200m
  • the distance value of the echo signal corresponding to the transmitting antenna Tx3 in the one-dimensional image of the signal is 280m
  • the distance value of the echo signal corresponding to the transmitting antenna Tx4 in the one-dimensional image of the signal is 360m.
  • the distance value of 120m corresponding to Tx1 is the real distance of the target.
  • the transmitting antennas "Tx1, Tx2, Tx3, Tx4" marked in Figure 18 do not actually exist, and are only marked for the convenience of explanation.
  • the distance value corresponding to the echo information of the transmitting antenna Tx1 in the one-dimensional image of the signal is 300m
  • the distance value corresponding to the echo signal of the transmitting antenna Tx2 in the one-dimensional image of the signal is 380m
  • the distance value corresponding to the echo signal of the transmitting antenna Tx3 in the one-dimensional image of the signal is 60m
  • the distance value corresponding to the echo signal of the transmitting antenna Tx4 in the one-dimensional image of the signal is 140m.
  • the distance value 300m corresponding to Tx1 is the real distance of the target.
  • the transmitting antennas "Tx1, Tx2, Tx3, Tx4" marked in Figure 18 do not actually exist, and are only marked for the convenience of explanation.
  • the present application provides a chip, which includes the transmitting system or detection device provided in the present application.
  • the present application provides a radar or radar system, which includes the transmitting system or detection device or the above chip provided in the present application. It should be noted that there may be a variety of intelligent sensors integrated with sensors. When the above intelligent sensor includes a millimeter wave detection function, the above intelligent sensor can also be called a millimeter wave radar or a millimeter wave radar system.
  • the present application provides a terminal device, which includes the transmitting system or detection device provided by the present application.
  • the terminal device can be a transportation tool, such as a car, a truck, an aircraft, a drone, a slow transport vehicle, a spacecraft, or a ship, etc., and can also be any device that can carry a millimeter wave detection device, such as a surveying and mapping device.
  • a transportation tool such as a car, a truck, an aircraft, a drone, a slow transport vehicle, a spacecraft, or a ship, etc.
  • a millimeter wave detection device such as a surveying and mapping device.
  • One or more transmitting systems or detection devices provided by the present application are deployed on the terminal device.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种发射系统、探测装置、雷达、终端设备及车端,涉及毫米波雷达技术领域。发射系统包括:M个发射天线,M为大于2的整数;M个发射天线分别用于发射M个发射信号,M个发射信号用于探测目标;M个发射信号具有M个互不相同的中心频点,M个发射信号中存在相邻中心频点对应的发射信号之间的频差不同。这种发射系统将发射信号的频谱采样资源非均匀的分为M份,分别对应于M个发射信号通过M个发射天线发射出去,可以使得在距离分集时降低采样率要求,允许距离模糊,并结合接收端根据接收到的M个发射信号对应的回波信号进行距离解模糊,从而可以降低发射系统对ADC的采样能力要求。

Description

发射系统、探测装置、雷达、终端设备及车端 技术领域
本申请涉及毫米波雷达技术领域,尤其涉及一种发射系统、探测装置、雷达、终端设备及车端。
背景技术
毫米波雷达,是工作在毫米波波段探测的雷达。毫米波雷达通过发射电磁波信号,并侦听来自环境中该电磁波信号经过目标的反射信号,来测量目标的距离、速度、方位(角度)等信息。
目前,为了提高毫米波雷达的角度分辨率,常采用虚拟孔径的形式,利用多根发射天线、多根接收天线以及多个模数转换器(analog-to-digital converter,ADC)通道,实现多天线的多输入多输出(multi input multi output,MIMO)发送。
但是,目前一般的多发射通道-MIMO雷达需要依赖于较高的ADC的采样能力,实现成本较高。
发明内容
本申请实施例提供了一种发射系统、探测装置、雷达、终端设备及车端,可以降低多发射通道-MIMO雷达对ADC的采样能力要求,降低实现成本。
第一方面,本申请实施例提供了一种发射系统,该发射系统包括:
M个发射天线,所述M为大于2的整数;
所述M个发射天线分别用于发射M个发射信号,所述M个发射信号用于探测目标;
所述M个发射信号具有M个互不相同的中心频点,所述M个发射信号中存在相邻中心频点对应的发射信号之间的频差不同。
本申请实施例中,提供了一种发射系统,该发射系统发射的M个发射信号中存在相邻中心频点对应的发射信号之间的频差不同,可以理解为,该发射系统将发射信号的频谱采样资源非均匀的分为M份,分别对应于M个发射信号。由于该M个发射信号对应的频谱采样资源是非均匀分配的,不同发射天线对应的发射信号之间的频差可以对这些发射信号对应的回波信号的天线实现更准确的识别,因此在距离分集时可以降低采样率要求,允许距离模糊,并结合接收端根据接收到的该M个发射信号对应的回波信号进行距离解模糊,从而可以降低发射系统对ADC的采样能力要求。由此可知,通过本申请实施例,对不同发射天线的发射信号的频率进行非均匀的频率设计,可以对这些发射信号对应的回波信号的天线实现更准确的识别,从而可以实现在相同采样率条件下,增大发射系统的有效探测距离,等效于在相同探测距离的要求下,可以实现降低对ADC的采样能力要求。
在一种可能的实施方式中,所述M个发射信号是由M个移频器对M路子信号分别执行移频处理得到的。
在本申请实施方式中,提供了一种M个发射信号的可能的具体实施方式,具体为,该M个发射信号可以是由M个移频器对M路子信号分别执行移频处理得到的。可以理解的是, 该M个移频器对M路子信号进行移频的移频值不完全相同,使得到的M个发射信号中存在相邻中心频点对应的发射信号之间的频差不同,而不同发射天线对应的发射信号之间的频差可以对这些发射信号对应的回波信号的天线实现更准确的识别,因此在距离分集时可以降低采样率要求,允许距离模糊,并结合接收端根据接收到的该M个发射信号对应的回波信号进行距离解模糊,从而可以降低发射系统对ADC的采样能力要求。
第二方面,本申请实施例提供了一种探测装置,该探测装置包括:移频单元,和如上述第一方面或上述第一方面任意可能的实施方式所述的发射系统,其中:
所述移频单元,用于对M路子信号执行移频处理,得到M个发射信号。
本申请实施例中,提供了一种探测装置,该探测装置中的移频单元,用于对M路子信号执行移频处理,得到M个发射信号,该M个发射信号可以通过上述第一方面或上述第一方面任意可能的实施方式所述的发射系统发射出去,用于探测目标。可以理解的是,该移频单元对M路子信号进行移频的移频值不完全相同,使得到的M个发射信号中存在相邻中心频点对应的发射信号之间的频差不同,而不同发射天线对应的发射信号之间的频差可以对这些发射信号对应的回波信号的天线实现更准确的识别,因此在距离分集时可以降低采样率要求,允许距离模糊,并结合接收端根据接收到的该M个发射信号对应的回波信号进行距离解模糊,从而可以降低发射系统对ADC的采样能力要求。由此可知,通过本申请实施例,对不同发射天线的发射信号的频率进行非均匀的频率设计,可以对这些发射信号对应的回波信号的天线实现更准确的识别,从而可以实现在相同采样率条件下,增大探测装置的有效探测距离,等效于在相同探测距离的要求下,可以实现降低对ADC的采样能力要求。
在一种可能的实施方式中,所述移频单元包括:
M个移频器;
所述M个移频器,分别用于对所述M路子信号执行移频处理,得到所述M个发射信号。
在本申请实施方式中,提供了一种移频单元的可能的实施方式,具体为,该移频单元包括M个移频器,分别用于对M路子信号执行移频处理,可以理解的是,该M个移频器对M路子信号进行移频的移频值不完全相同,使移频处理后可以得到存在相邻中心频点对应的发射信号之间的频差不同的M个发射信号。
在一种可能的实施方式中,所述探测装置还包括:
N个接收天线,所述N为大于2的整数;
所述N个接收天线,分别用于接收所述M个发射信号对应的回波信号。
在本申请实施方式中,提供了一种探测装置的可能的具体实施方式,具体为,该探测装置还包括N个接收天线,分别用于接收M个发射信号对应的回波信号,该M个发射信号对应的回波信号可以用于进行距离解模糊,从而可以降低探测装置对ADC的采样能力要求。
在一种可能的实施方式中,所述探测装置还包括:
混频单元;
所述混频单元,用于对M个回波信号和所述M路子信号中的一路子信号分别执行混频处理,得到M个混频信号,所述M个混频信号用于确定目标的距离。
在本申请实施方式中,提供了一种探测装置的可能的具体实施方式,具体为,该探测装置还包括混频单元,用于对接收端接收到混合后的M个回波信号和未进行移频的原始信号(即上述M路子信号中的一路子信号)分别执行混频处理,得到M个混频信号,该M个混频信号可以确定目标的真实距离,从而可以实现在相同采样率条件下,增大探测装置的有效探测 距离,或者在相同探测距离的要求下,可以实现对ADC的采样能力要求。
在一种可能的实施方式中,所述混频单元包括:
N个混频器;
所述N个混频器,分别用于对所述M个回波信号和所述M路子信号中的一路子信号执行混频处理,得到所述M个混频信号。
在本申请实施方式中,提供了一种混频单元的可能的具体实施方式,具体为,该混频单元包括N个混频器,分别用于对接收端接收到混合后的M个回波信号和未进行移频的原始信号(即上述M路子信号中的一路子信号)执行混频处理,使混频处理后可以得到用于确定目标真实距离的M个混频信号。
在一种可能的实施方式中,所述探测装置还包括:
处理单元;
所述处理单元,用于根据所述M个发射信号之间的频差,确定所述M个回波信号与所述M个发射信号的对应关系。
在本申请实施方式中,提供了一种探测装置的可能的具体实施方式,具体为,该探测装置还包括处理单元,用于根据上述M个发射信号之间的频差确定M个回波信号与M个发射信号之间的对应关系,可以理解的是,由于该M个发射信号对应的频谱采样资源是非均匀分配的,不同发射天线对应的发射信号之间的频差不同,因此可以根据M个发射信号之间的频差确定M个回波信号与M个发射天线之间的对应关系。通过本申请实施例,确定M个回波信号与M个发射信号之间的对应关系,可以实现距离解模糊,从而可以降低发射系统对ADC的采样能力要求。
在一种可能的实施方式中,所述处理单元,还用于根据所述M个回波信号与所述M个发射信号的对应关系,确定所述目标的距离。
在本申请实施方式中,提供了一种处理单元的可能的具体实施方式,具体为,该处理单元还可以用于根据M个回波信号与M个发射信号的对应关系确定目标的真实距离,可以理解的是,与未进行移频的原始信号(即上述M路子信号中的一路子信号)相比,未发生频移或发生频移量最小的发射信号所对应的回波信号在M个回波信号形成的距离像上对应的距离值,即为目标的真实距离。通过本申请实施例,可以确定目标的真实距离,从而可以实现在相同采样率条件下,增大探测装置的有效探测距离,或者在相同探测距离的要求下,可以实现对ADC的采样能力要求。
在一种可能的实施方式中,所述探测装置还包括:
滤波单元,采样单元;
所述滤波单元,用于对所述M个混频信号执行滤波处理;
所述采样单元,用于对经过滤波处理后的所述M个混频信号采样,得到M个数字信号,所述M个数字信号用于确定所述目标的距离。
在本申请实施方式中,提供了一种探测装置的可能的具体实施方式,具体为,该探测装置中的滤波单元用于对M个混频信号执行滤波处理,该探测装置中的采样单元用于对经过滤波处理后的M个混频信号采样,得到M个数字信号,该M个数字信号可以用于进行距离解模糊,从而可以降低探测装置对ADC的采样能力要求。
在一种可能的实施方式中,所述滤波单元的滤波带宽大于至少两倍的所述采样单元的采样带宽。
在本申请实施方式中,提供了一种滤波单元和采样单元的可能的具体实施方式,具体为, 滤波单元的滤波带宽大于至少两倍的采样单元的采样带宽,可以使得M个发射信号经过目标后的所有回波信号被无损的接收,以进行距离解模糊。
在一种可能的实施方式中,所述滤波单元包括:
N个中频滤波器;
所述N个中频滤波器,分别用于对所述M个混频信号执行滤波处理。
在一种可能的实施方式中,所述采样单元包括:
N个模数转换器;
所述N个模数转换器,分别用于对经过滤波处理后的所述M个混频信号采样,得到所述M个数字信号。
第三方面,本申请实施例提供了一种发射系统,该发射系统包括:
M个发射天线,所述M为大于2的整数;
所述M个发射天线分别用于发射M个发射信号,所述M个发射信号用于探测目标;
所述M个发射信号的中心频点位于W个等间隔的频带中的M个频带上,所述W为大于所述M的整数。
本申请实施例中,提供了一种发射系统,该发射系统发射的M个发射信号的中心频点位于W个等间隔的频带中的M个频带上,可以理解为,该发射系统将发射信号的频谱采样资源均匀的分为W份,但只通过M个发射天线分别发射其中任意M份频谱采样资源所对应的M个发射信号,剩余的W-M份频谱资源所对应的发射信号不发射。由于该W个等间隔的频带对应的频谱采样资源是均匀分配的,W个等间隔的频带中未被占用的频带可以对这些发射信号对应的回波信号的天线实现更准确的识别,因此在距离分集时可以降低采样率要求,允许距离模糊,并结合接收端根据接收到的该M个发射信号对应的回波信号进行距离解模糊,从而可以降低发射系统对ADC的采样能力要求。由此可知,通过本申请实施例,对频谱采样资源进行均匀划分的频率设计,但总划分数量多于发射天线数量,并从中选出天线数量个频率所对应的发射信号进行发射,可以对这些发射信号对应的回波信号的天线实现更准确的识别,从而可以实现在相同采样率条件下,增大发射系统的有效探测距离,等效于在相同探测距离的要求下,可以实现降低对ADC的采样能力要求。
在一种可能的实施方式中,所述M个发射信号由M个移频器对M路子信号分别执行移频处理得到的。
在本申请实施方式中,提供了一种M个发射信号的可能的具体实施方式,具体为,该M个发射信号可以是由M个移频器对M路子信号分别执行移频处理得到的。可以理解的是,该M个移频器对M路子信号进行移频的移频值为某个值的整数倍,使得到的M个发射信号的中心频点位于W个等间隔的频带中的M个频带上,而W个等间隔的频带中未被占用的频带可以对这些发射信号对应的回波信号的天线实现更准确的识别,因此在距离分集时可以降低采样率要求,允许距离模糊,并结合接收端根据接收到的该M个发射信号对应的回波信号进行距离解模糊,从而可以降低发射系统对ADC的采样能力要求。
第四方面,本申请实施例提供了一种探测装置,该探测装置包括:移频单元,和如上述第三方面或上述第三方面任意可能的实施方式所述的发射系统,其中:
所述移频单元,用于对M路子信号执行移频处理,得到M个发射信号。
本申请实施例中,提供了一种探测装置,该探测装置中的移频单元,用于对M路子信号 执行移频处理,得到M个发射信号,该M个发射信号可以通过上述第三方面或上述第三方面任意可能的实施方式所述的发射系统发射出去,用于探测目标。可以理解的是,该移频单元对M路子信号进行移频的移频值为某个值的整数倍,使得到的M个发射信号的中心频点位于W个等间隔的频带中的M个频带上,而W个等间隔的频带中未被占用的频带可以对这些发射信号对应的回波信号的天线实现更准确的识别,因此在距离分集时可以降低采样率要求,允许距离模糊,并结合接收端根据接收到的该M个发射信号对应的回波信号进行距离解模糊,从而可以降低发射系统对ADC的采样能力要求。由此可知,通过本申请实施例,对频谱采样资源进行均匀划分的频率设计,但总划分数量多于发射天线数量,并从中选出天线数量个频率所对应的发射信号进行发射,可以对这些发射信号对应的回波信号的天线实现更准确的识别,从而可以实现在相同采样率条件下,增大探测装置的有效探测距离,等效于在相同探测距离的要求下,可以实现降低对ADC的采样能力要求。
在一种可能的实施方式中,所述移频单元包括:
M个移频器;
所述M个移频器,分别用于对所述M路子信号执行移频处理,得到所述M个发射信号。
在本申请实施方式中,提供了一种移频单元的可能的实施方式,具体为,该移频单元包括M个移频器,分别用于对M路子信号执行移频处理,可以理解的是,该M个移频器对M路子信号进行移频的移频值为某个值的整数倍,使移频处理后可以得到中心频点位于W个等间隔的频带中的M个频带上的M个发射信号。
在一种可能的实施方式中,所述探测装置还包括:
N个接收天线,所述N为大于2的整数;
所述N个接收天线,分别用于接收所述M个发射信号对应的回波信号。
在本申请实施方式中,提供了一种探测装置的可能的具体实施方式,具体为,该探测装置还包括N个接收天线,分别用于接收M个发射信号对应的回波信号,该M个发射信号对应的回波信号可以用于进行距离解模糊,从而可以降低探测装置对ADC的采样能力要求。
在一种可能的实施方式中,所述探测装置还包括:
混频单元;
所述混频单元,用于对M个回波信号和所述M路子信号中的一路子信号分别执行混频处理,得到M个混频信号,所述M个混频信号用于确定目标的距离。
在本申请实施方式中,提供了一种探测装置的可能的具体实施方式,具体为,该探测装置还包括混频单元,用于对接收端接收到混合后的M个回波信号和未进行移频的原始信号(即上述M路子信号中的一路子信号)分别执行混频处理,得到M个混频信号,该M个混频信号可以确定目标的真实距离,从而可以实现在相同采样率条件下,增大探测装置的有效探测距离,或者在相同探测距离的要求下,可以实现对ADC的采样能力要求。
在一种可能的实施方式中,所述混频单元包括:
N个混频器;
所述N个混频器,分别用于对所述M个回波信号和所述M路子信号中的一路子信号执行混频处理,得到所述M个混频信号。
在本申请实施方式中,提供了一种混频单元的可能的具体实施方式,具体为,该混频单元包括N个混频器,分别用于对接收端接收到混合后的M个回波信号和未进行移频的原始信号(即上述M路子信号中的一路子信号)执行混频处理,使混频处理后可以得到用于确定目标真实距离的M个混频信号。
在一种可能的实施方式中,所述探测装置还包括:
处理单元;
所述处理单元,用于根据所述W个等间隔的频带中未被占用的频带,确定所述M个回波信号与所述M个发射信号的对应关系。
在本申请实施方式中,提供了一种探测装置的可能的具体实施方式,具体为,该探测装置还包括处理单元,用于根据上述W个等间隔的频带中未被占用的频带确定M个回波信号与M个发射信号之间的对应关系,可以理解的是,由于该W个等间隔的频带对应的频谱采样资源是均匀分配的,W个等间隔的频带中未被占用的频带导致存在两个发射天线对应的发射信号之间的频差更大,因此可以根据W个等间隔的频带中未被占用的频带确定M个回波信号与M个发射天线之间的对应关系。通过本申请实施例,确定M个回波信号与M个发射信号之间的对应关系,可以实现距离解模糊,从而可以降低发射系统对ADC的采样能力要求。
在一种可能的实施方式中,所述处理单元,还用于根据所述M个回波信号与所述M个发射信号的对应关系,确定所述目标的距离。
在本申请实施方式中,提供了一种处理单元的可能的具体实施方式,具体为,该处理单元还可以用于根据M个回波信号与M个发射信号的对应关系确定目标的真实距离,可以理解的是,与未进行移频的原始信号(即上述M路子信号中的一路子信号)相比,未发生频移或发生频移量最小的发射信号所对应的回波信号在M个回波信号形成的距离像上对应的距离值,即为目标的真实距离。通过本申请实施例,可以确定目标的真实距离,从而可以实现在相同采样率条件下,增大探测装置的有效探测距离,或者在相同探测距离的要求下,可以实现对ADC的采样能力要求。
在一种可能的实施方式中,所述探测装置还包括:
滤波单元,采样单元;
所述滤波单元,用于对所述M个混频信号执行滤波处理;
所述采样单元,用于对经过滤波处理后的所述M个混频信号采样,得到M个数字信号,所述M个数字信号用于确定所述目标的距离。
在本申请实施方式中,提供了一种探测装置的可能的具体实施方式,具体为,该探测装置中的滤波单元用于对M个混频信号执行滤波处理,该探测装置中的采样单元用于对经过滤波处理后的M个混频信号采样,得到M个数字信号,该M个数字信号可以用于进行距离解模糊,从而可以降低探测装置对ADC的采样能力要求。
在一种可能的实施方式中,所述滤波单元的滤波带宽大于至少两倍的所述采样单元的采样带宽。
在本申请实施方式中,提供了一种滤波单元和采样单元的可能的具体实施方式,具体为,滤波单元的滤波带宽大于至少两倍的采样单元的采样带宽,可以使得M个发射信号经过目标后的所有回波信号被无损的接收,以进行距离解模糊。
在一种可能的实施方式中,所述滤波单元包括:
N个中频滤波器;
所述N个中频滤波器,分别用于对所述M个混频信号执行滤波处理。
在一种可能的实施方式中,所述采样单元包括:
N个模数转换器;
所述N个模数转换器,分别用于对经过滤波处理后的所述M个混频信号采样,得到所述M个数字信号。
第五方面,本申请实施例提供了一种芯片,该芯片包括上述第一方面或上述第一方面任意可能的实施方式所述的发射系统,或者包括上述第二方面或上述第二方面任意可能的实施方式所述的探测装置,或者包括上述第三方面或上述第三方面任意可能的实施方式所述的发射系统,或者包括上述第四方面或上述第四方面任意可能的实施方式所述的探测装置。
第六方面,本申请实施例提供了一种雷达或雷达系统,该雷达或雷达系统包括上述第一方面或上述第一方面任意可能的实施方式所述的发射系统,或者包括上述第二方面或上述第二方面任意可能的实施方式所述的探测装置,或者包括上述第三方面或上述第三方面任意可能的实施方式所述的发射系统,或者包括上述第四方面或上述第四方面任意可能的实施方式所述的探测装置,或者包括上述第五方面所述的芯片。需要说明的是,可能存在多种传感器集成的智能传感器,在上述智能传感器包含毫米波探测功能的情况下,上述智能传感器也可以称为毫米波雷达或毫米波雷达系统。
第七方面,本申请实施例提供了一种终端设备,该终端设备包括上述第一方面或上述第一方面任意可能的实施方式所述的发射系统,或者包括上述第二方面或上述第二方面任意可能的实施方式所述的探测装置,或者包括上述第三方面或上述第三方面任意可能的实施方式所述的发射系统,或者包括上述第四方面或上述第四方面任意可能的实施方式所述的探测装置,或者包括上述第五方面所述的芯片,或者包括上述第六方面所述的雷达或雷达系统。
第八方面,本申请实施例提供了一种车端,该车端包括上述第一方面或上述第一方面任意可能的实施方式所述的发射系统,或者包括上述第二方面或上述第二方面任意可能的实施方式所述的探测装置,或者包括上述第三方面或上述第三方面任意可能的实施方式所述的发射系统,或者包括上述第四方面或上述第四方面任意可能的实施方式所述的探测装置,或者包括上述第五方面所述的芯片,或者包括上述第六方面所述的雷达或雷达系统,或者包括上述第七方面所述的终端设备。
本申请实施例,将发射信号的频谱采样资源非均匀的分为M份,分别对应于M个发射信号通过M个发射天线发射出去,或者,将发射信号的频谱采样资源均匀的分为W份,但只通过M个发射天线分别发射其中任意M份频谱采样资源所对应的M个发射信号,剩余的W-M份频谱资源所对应的发射信号不发射,均可以对这些发射信号对应的回波信号的天线实现更准确的识别,因此在距离分集时可以降低采样率要求,允许距离模糊,并结合接收端根据接收到的该M个发射信号对应的回波信号进行距离解模糊,从而可以降低发射系统对ADC的采样能力要求。由此可知,通过本申请实施例,可以实现在相同采样率条件下,增大发射系统的有效探测距离,等效于在相同探测距离的要求下,可以实现降低对ADC的采样能力要求。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种雷达分布的示意图;
图2为本申请实施例提供的一种雷达的架构示意图;
图3为本申请实施例提供的一种雷达的架构示意图;
图4为本申请实施例提供的一种发射系统的结构示意图;
图5为本申请实施例提供的一种频谱采样资源分配的示意图;
图6为本申请实施例提供的一种信号一维像的示意图;
图7为本申请实施例提供的一种频谱采样资源分配的示意图;
图8A为本申请实施例提供的一种信号一维像的示意图;
图8B为本申请实施例提供的一种信号一维像的示意图;
图9为本申请实施例提供的一种探测装置的结构示意图;
图10为本申请实施例提供的一种探测装置的结构示意图;
图11为本申请实施例提供的一种探测装置的结构示意图;
图12为本申请实施例提供的一种探测装置的结构示意图;
图13为本申请实施例提供的一种探测装置的结构示意图;
图14为本申请实施例提供的一种探测装置的结构示意图;
图15为本申请实施例提供的一种探测装置的结构示意图;
图16为本申请实施例提供的一种探测装置的结构示意图;
图17A为本申请实施例提供的一种信号一维像的示意图;
图17B为本申请实施例提供的一种信号一维像的示意图;
图18为本申请实施例提供的一种信号一维像的示意图。
具体实施方式
为了使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图对本申请实施例进行描述。
本申请的说明书、权利要求书及附图中的术语“第一”和“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备等,没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元等,或可选地还包括对于这些过程、方法、产品或设备等固有的其它步骤或单元。
在本文中提及的“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
应当理解,在本申请中,“至少一个(项)”是指一个或者多个,“多个”是指两个或两个以上,“至少两个(项)”是指两个或三个及三个以上,“和/或”,用于描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:只存在A,只存在B以及同时存在A和B三种情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a,b,c,“a和b”,“a和c”,“b和c”,或“a和b和c”,其中a,b,c可以是单个,也可以是多个。
如背景技术部分所述,目前一般的多发射通道-MIMO雷达需要依赖于较高的ADC的采样能力,实现成本较高。本申请提供了一种发射系统、探测装置、雷达、终端设备及车端,涉及毫米波雷达技术领域,可以降低多发射通道-MIMO雷达对ADC的采样能力要求,降低 实现成本。
为了更清楚地描述本申请的方案,下面先介绍一些与雷达相关的知识。
雷达是英文Radar的音译,源于“radio detection and ranging”的缩写,意思为“无线电探测和测距”,其用无线电的方法发现目标并测定目标的空间位置。
雷达的探测介质为电磁波,其利用电磁波的发射与接收,实现对目标的探测,例如,测距、测速、或方位角的测量等。雷达可以基于电磁波的飞行时间实现对目标的测距,飞行时间即电磁波收发的时间差。雷达发射电磁波信号,并接收该电磁波信号的回波信号,根据接收的回波信号与发射的电磁波信号的时间差和电磁波的传播速度可以实现对目标的测距。确定雷达与目标之间距离可以基于以下公式实现:s=c*t/2,其中s为目标的距离,t为飞行时间,即电磁波信号从雷达发射出去到接收到回波信号的时间,c为光速。
雷达基于多普勒效应(Doppler effect)实现对目标的测速。多普勒效应原理如下:当声音,光和无线电波等振动源与观测者以相对速度相对运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。当雷达发射的电磁波和被探测目标有相对移动、回波信号的频率会和发射的电磁波信号的频率不同。当目标向雷达天线靠近时,回波信号的频率将高于发射的电磁波信号的频率;反之,当目标远离雷达天线而去时,回波信号的频率将低于发射的电磁波信号的频率。由多普勒效应所形成的频率变化叫做多普勒频移,它与相对速度成正比,与振动频率成反比。所以,通过检测发射的电磁波信号与回波信号的频率差,可以测得目标相对于雷达的移动速度,也就是目标与雷达的相对速度。
雷达可以采用振幅法、相位法等方式实现对方位角的测量,振幅法测角是用天线收到的回波信号幅度值来做角度测量的,该幅度值的变化规律取决于天线方向图以及天线扫描方式;相位法测角是利用多个天线单元所接收的回波信号之间的相位差来做角度测量的,例如,雷达通过天线阵列收到同一目标反射的回波信号,根据回波信号的相位差计算得到目标的方位角。
毫米波雷达的探测介质为一定波长范围内的电磁波,例如微波,目前采用比较多的为毫米波(millimeter wave)以及与毫米波波段相邻近的厘米波(例如,24GHz频段的厘米波),毫米波是波长为1~10毫米(mm)的电磁波,24GHz频段的电磁波的波长略大于10mm。由于毫米波雷达的探测介质的波长位于微波与远红外波相交叠的波长范围,因而兼有两种波谱的特点。根据波的传播理论,频率越高,波长越短,分辨率越高,穿透能力越强,但在传播过程的损耗也越大,传输距离越短;相对地,频率越低,波长越长,绕射能力越强,传输距离越远。所以与微波相比,毫米波雷达的探测介质的分辨率高、指向性好、抗干扰能力强和探测性能好。与红外相比,毫米波雷达的探测介质的大气衰减小、对烟雾灰尘等有更好的穿透性、受天气影响小。因此,毫米波雷达在智能车辆、无人机、智能交通、工业自动化等多个领域获得了越来越广泛的应用。
Radar根据其探测距离的远近可以分为长距雷达(long range radar,LRR)、中距雷达(mid/medium range radar,MRR)以及短距雷达(short range radar,SRR)。LRR对探测距离要求较高,但对探测的角域宽度要求相对较低。SRR对探测距离要求相对较低,但对探测的角域宽度要求较高。MRR对探测距离和角域宽度的要求可以理解为介于LRR和SRR之间。例如,LRR的探测距离可以达到200米以上,角域宽度可以为±15°;MRR的探测距离可以为100米以内,角域宽度可以为±45°;SRR的探测距离可以为60米以内,角域宽度可以为±80°。在使用中,可以根据自动驾驶的功能需求以及其它传感器的使用情况,在车身的不同位置安装不同类型的Radar,Radar的数量和类型可以根据需要进行选择。
请参阅图1,图1为本申请实施例提供的一种雷达分布的示意图。
图1给出了几种类型Radar的可能安装位置,其仅为示例,实际使用中可以选择更多或更少数量的Radar,类型也可以调整。
如图1所示,LRR可以安装于车身前方,作为前向雷达;MRR可以安装于对车身前方、后方,作为前向雷达、后向雷达;SRR可以安装在车身侧方、车身的四个角,作为侧向雷达、角雷达。此外,MRR也可以安装于车身侧方或车身的四个角,SRR也可以安装于车身的前方或后方。
Radar可以根据其电磁波的调制方式(或辐射方式)进行分类,其中Radar的电磁波的调制方式包括脉冲方式和连续波方式,则Radar可以分为脉冲雷达和连续波雷达。连续波方式进一步可以分为频移键控(frequency shift keying,FSK)、相移键控(phase shift keying,PSK)、恒频/单频连续波(continuous wave CW)、调频连续波(frequency modulated continuous wave,FMCW)、多频移键控(multiple frequency shift keying,MFSK)、调相连续波(phase modulated continuous wave,PMCW)等方式。FMCW方式由于可以检测多个目标、分辨率较高、成本较低,成为了主流的雷达调制方式。
请参阅图2,图2为本申请实施例提供的一种雷达的架构示意图。
如图2所示,该Radar包括控制电路110、信号发生器120、功率放大器(power amplifier,PA)130、低噪声放大器(low noise amplifier,LNA)140、混频器150、滤波器160、模数转换器(analog-to-digital converter,ADC)170、以及信号处理器180,该信号处理器通常用于处理数字信号,例如为数字信号处理器(digital signal processor,DSP)。信号发生器120在控制电路110的控制下产生电磁波信号(又称为雷达信号)波形,例如,例如采用FMCW调制方式的Radar,在控制电路110的控制下产生锯齿波或三角波,信号发生器120例如为压控振荡器,控制电路110用于产生控制电压。产生的电磁波信号波形经过变频调制处理,调制到所需频段,例如76GHz~77GHz之间,经过PA 130放大之后,经发射天线(TX)辐射到空间中去。
由发射天线辐射的电磁波信号照射到目标之后向空间反射,被Radar的接收天线(RX)接收,经过LNA 140放大之后,由混频器150将其与参考信号进行混频,参考信号通常可以采用以上产生的电磁波信号。混频器150经滤波器160的滤波之后,可以得到模拟基带信号,通过ADC 170采样得到数字基带信号。数字基带信号在信号处理器180中完成信号处理,得到目标的距离、速度、和角度信息,此外,可以利用得到的信息进行聚类和/或跟踪等处理,进一步得到目标的轨迹、尺寸、类型等信息。
以上Radar的各个器件可以根据需要进行集成,实现雷达的小型化。例如,控制电路110、信号发生器120、功率放大器(power amplifier,PA)130、低噪声放大器(low noise amplifier,LNA)140、混频器150、滤波器160、模数转换器(analog-to-digital converter,ADC)170等器件可以集成在至少一个芯片上,例如集成为单片微波集成电路(monolithic microwave integrated circuit,MMIC)。
具体可参阅图3,图3为本申请实施例提供的一种雷达的架构示意图。
如图3所示,该Radar包括MMIC、微控制单元(microcontroller unit,MCU),以及电源管理集成电路(power management integrated circuit,PMIC),MMIC可以集成射频部分的功能,MCU可以集成以上基带部分的功能,例如集成以上信号处理器的功能,此外还可以提供与车载其它设备通信的通信接口,PMIC是给雷达硬件系统供电的芯片。
针对目前一般的多发射通道-MIMO雷达需要依赖于较高的ADC的采样能力,实现成本 较高的问题,本申请提供了一种发射系统、探测装置、雷达、终端设备及车端,涉及毫米波雷达技术领域,可以降低多发射通道-MIMO雷达对ADC的采样能力要求,降低实现成本。
下面结合本申请实施例中的附图对本申请实施例提供的发射系统和探测装置进行描述。
请参阅图4,图4为本申请实施例提供的一种发射系统的结构示意图。
如图4所示,发射系统包括:
M个发射天线(比如,Tx1、Tx2、……、TxM),M为大于2的整数;
该M个发射天线分别用于发射M个发射信号,该M个发射信号用于探测目标;
其中,该M个发射信号具有M个互不相同的中心频点。比如,发射天线Tx1的发射信号的中心频点可以是fc+Δf1,发射天线Tx2的发射信号的中心频点可以是fc+Δf2,发射天线Tx3的发射信号的中心频点可以是fc+Δf3,发射天线TxM的发射信号的中心频点可以是fc+ΔfM,等等。上述fc表示原始信号的中心频点,Δf1、Δf2、Δf3、……、ΔfM分别表示上述M个发射信号相对于该原始信号(中心频点为fc)的频偏。
可选的,上述Δf1、Δf2、Δf3、……、ΔfM中还可以存在某一项频偏值为0的情况,例如,Δf1的值为0,此时,发射天线Tx1的发射信号相比于该原始信号(fc)并未发生频偏,或者可以理解为此时发射天线Tx1的发射信号即为该原始信号。
可以理解的是,上述Δf1、Δf2、Δf3、……、ΔfM仅作为频偏值的一种示例性的代称,其具体取值可以是多种可能的,本申请对此不做限制,只需满足该M个发射信号具有M个互不相同的中心频点即可。
并且,为了解决目前的MIMO雷达需要依赖于较高的ADC的采样能力的技术问题,该M个发射信号需要满足以下条件:
可以使得在距离分集时可以降低采样率要求,允许距离模糊,结合接收端根据接收到的该M个发射信号对应的回波信号进行距离解模糊,从而降低发射系统对ADC的采样能力要求。
为了得到满足上述条件的M个发射信号,本申请实施例提供以下几种设计方案:
方案一:
该发射系统发射的M个发射信号中存在相邻中心频点对应的发射信号之间的频差不同。
可以理解为,该发射系统将发射信号的频谱采样资源非均匀的分为M份,分别对应于M个发射信号。
示例性的,可参阅图5,图5为本申请实施例提供的一种频谱采样资源分配的示意图。
如图5所示,将频谱采样资源(可使用的频率范围fs)非均匀的分配为M份,使得与上述原始信号(中心频点为fc)相比,各发射通道的频偏从小到大排列分别为0、Δf1、Δf2、……、Δf(M-1),分别对应于M个发射信号,该M个发射信号的中心频点分别为fc、fc+Δf1、fc+Δf2、……、fc+Δf(M-1),该M个发射信号分别由各发射通道对应的发射天线(Tx1、Tx2、……、TxM)发射出去,用于探测目标。
例如,发射天线Tx1发射频偏为0对应的发射信号,该发射信号的中心频点为fc,发射天线Tx2发射频偏为Δf1对应的发射信号,该发射信号的中心频点为fc+Δf1,发射天线Tx3发射频偏为Δf2对应的发射信号,该发射信号的中心频点为fc+Δf2,发射天线TxM发射频偏为Δf(M-1)对应的发射信号,该发射信号的中心频点为fc+Δf(M-1),等等。
可以理解的是,上述将频谱采样资源(可使用的频率范围fs)非均匀的分配为M份,设计为该发射系统发射的M个发射信号中存在相邻中心频点对应的发射信号之间的频差不同。
具体的一种设计为,通过设计各发射通道的频偏使得存在相邻的两组发射通道之间的频 偏不同,例如,频偏0和频偏Δf1的差值,与频偏Δf1和频偏Δf2的差值不同。应理解,上述频偏0、频偏Δf1、频偏Δf2仅为示例性的相邻的两组发射通道对应的频偏,还可以是频偏Δf1、频偏Δf2、频偏Δf3,等等,本申请实施例对此不做限制。
应理解,上述列出的可能的设计,仅作为将频谱采用资源(可使用的频率范围fs)非均匀的分配为M份,通过频差设计得到上述M个发射信号的示例性的描述,还可能有其他得到上述M个发射信号的设计方案,本申请实施例对此不做限制,只需满足得到的M个发射信号中存在相邻中心频点对应的发射信号之间的频差不同即可。
相应的,通过图5所示的频谱采样资源分配方式设计的M个发射信号,其对应的回波信号一维像可以参阅图6,图6为本申请实施例提供的一种信号一维像的示意图。
如图6所示,上述M个发射信号对应的回波信号一维像会在距离上产生不同发射信号的回波,其距离分集与发射信号的频差设计相对应。其中,该一维像的横坐标f(R)表示频率分集,纵坐标I表示频率分集中的各个频率对应的信号强度。
例如,发射天线Tx1发射的信号对应的回波信号一维像和发射天线Tx2发射的信号对应的回波信号一维像之间的间隔,与发射天线Tx2发射的信号对应的回波信号一维像和发射天线Tx3发射的信号对应的回波信号一维像之间的间隔不同。与之对应的是,发射天线Tx1的发射信号对应的频偏和发射天线Tx2的发射信号对应的频偏之间的差值,与发射天线Tx2的发射信号对应的频偏和发射天线Tx3的发射信号对应的频偏之间的差值不同。
可以理解的是,由于该M个发射信号对应的频谱采样资源是非均匀分配的,不同发射天线对应的发射信号之间的频差使得在距离分集时可以降低采样率要求,允许距离模糊,并结合接收端根据接收到的该M个发射信号对应的回波信号进行距离解模糊,从而可以降低发射系统对ADC的采样能力要求。
由此可知,通过本申请实施例,对不同发射天线的发射信号的频率进行非均匀的频率设计,可以实现在相同采样率条件下,增大发射系统的有效探测距离,等效于在相同探测距离的要求下,可以实现降低对ADC的采样能力要求。
方案二:
该发射系统发射的M个发射信号的中心频点位于W个等间隔的频带中的M个频带上,W为大于M的整数。
可以理解为,该发射系统将发射信号的频谱采样资源均匀的分为W份,但只通过M个发射天线分别发射其中任意M份频谱采样资源所对应的M个发射信号,剩余的W-M份频谱资源所对应的发射信号不发射。
示例性的,可参阅图7,图7为本申请实施例提供的一种频谱采样资源分配的示意图。
如图7所示,将频谱采样资源(可使用的频率范围fs)均匀的分配为W份,为了使说明更为简洁明了,可选的,此处将频谱采样资源fs均匀的分配为M+1份,使得与上述原始信号(中心频点为fc)相比,各发射通道的频偏分别为0、fs/(M+1)、2fs/(M+1)、……、(M)fs/(M+1),分别对应于M+1个发射信号,该M个发射信号的中心频点分别为fc、fc+fs/(M+1)、fc+2fs/(M+1)、……、fc+(M)fs/(M+1),从中任意选择M个发射信号分别由各发射通道对应的发射天线(Tx1、Tx2、……、TxM)发射出去,用于探测目标,剩下的一个发射信号不发射。
例如,发射天线Tx1发射频偏为0对应的发射信号,该发射信号的中心频点为fc,发射天线Tx2发射频偏为fs/(M+1)对应的发射信号,该发射信号的中心频点为fc+fs/(M+1),发射天线Tx3发射频偏为2fs/(M+1)对应的发射信号,该发射信号的中心频点为fc+2fs/(M+1),发射天线TxM发射频偏为(M-1)fs/(M+1)对应的发射信号,该发射信号的中心频点为 fc+(M-1)fs/(M+1),等等。频偏为(M)fs/(M+1)对应的发射信号不发射(如图7中虚线所示)。
可以理解的是,上述将频谱采样资源fs均匀的分配为M+1份,设计为该发射系统发射的M个发射信号的中心频点位于M+1个等间隔的频带中的M个频带上,具体设计为,各发射通道的频偏之间的差值为整数倍关系,例如,发射天线Tx3发射信号对应的频偏和发射天线Tx1发射信号对应的频偏的差值,为发射天线Tx2发射信号对应的频偏和发射天线Tx1发射信号对应的频偏的差值的整数倍。
相应的,通过图7所示的频谱采样资源分配方式设计的M个发射信号,其对应的回波信号一维像可以参阅图8A和图8B,图8A和图8B为本申请实施例提供的两种信号一维像的示意图。
如图8A和图8B所示,上述M个发射信号对应的回波信号一维像会在距离上产生不同发射信号的回波,其距离分集与发射信号的频差设计相对应。其中,该一维像的横坐标f(R)表示频率分集,纵坐标I表示频率分集中的各个频率对应的信号强度。
具体的,如图8A所示,展示了目标在第一个自由距离区间时回波的一维像。即从频谱采样资源fs均匀分配M+1份中,选择前M份对应的M个发射信号所形成的回波信号一维像。可以看出,发射信号的能量分布在前M个区间,例如,发射天线Tx1发射的信号对应的回波信号一维像和发射天线Tx2发射的信号对应的回波信号一维像之间的间隔,与发射天线Tx2发射的信号对应的回波信号一维像和发射天线Tx3发射的信号对应的回波信号一维像之间的间隔相同。与之对应的是,发射天线Tx1的发射信号对应的频偏和发射天线Tx2的发射信号对应的频偏之间的差值,与发射天线Tx2的发射信号对应的频偏和发射天线Tx3的发射信号对应的频偏之间的差值相同。并且,第M+1个区间没有发射信号的能量分布,频偏为(M)fs/(M+1)对应的发射信号Tx(M+1)不发射(如图8A中虚线箭头所示)。
如图8B所示,展示了目标在第二个自由距离区间时回波的一维像。即从频谱采样资源fs均匀分配M+1份中,选择后M份对应的M个发射信号所形成的回波信号一维像。可以看出,发射信号的能量分布在后M个区间,即第2至M+1个区间,并且,第1个区间没有发射信号的能量分布(如图8B中虚线箭头所示)。
可以理解的是,由于该W个等间隔的频带对应的频谱采样资源是均匀分配的,W个等间隔的频带中未被占用的频带可以对这些发射信号对应的回波信号的天线实现更准确的识别。
具体的,W个等间隔的频带中未被占用的频带导致存在两个发射天线对应的发射信号之间的频差更大,因此可以根据W个等间隔的频带中未被占用的频带确定M个回波信号与M个发射天线之间的对应关系。例如,在图8A中,频偏为(M)fs/(M+1)至fs的频带未被占用,说明该频带上没有发射信号,而发射M个发射信号时选择的是前M份发射信号,频偏为(M)fs/(M+1)对应的发射信号Tx(M+1)不发射,可以得出,频偏为(M)fs/(M+1)至fs的频带的前一段频带上发射的是频偏为(M-1)fs/(M+1)对应的发射信号TxM,以此类推,可以得到M个回波信号与M个发射天线之间的对应关系。
进一步的,上述M个回波信号与M个发射天线之间的对应关系可以确定目标的真实距离。具体为,与未进行移频的原始信号(即上述M路子信号中的一路子信号)相比,未发生频移或发生频移量最小的发射信号所对应的回波信号在M个回波信号形成的距离像上对应的距离值,即为目标的真实距离。
因此,上述W个等间隔的频带中未被占用的频带可以使得在距离分集时可以降低采样率要求,允许距离模糊,并结合接收端根据接收到的该M个发射信号对应的回波信号进行距离解模糊,从而可以降低发射系统对ADC的采样能力要求。
由此可知,通过本申请实施例,对频谱采样资源进行均匀划分的频率设计,但总划分数量多于发射天线数量,并从中选出天线数量个频率所对应的发射信号进行发射,可以实现在相同采样率条件下,增大发射系统的有效探测距离,等效于在相同探测距离的要求下,可以实现降低对ADC的采样能力要求。
基于上述图4所示的发射系统,以及上述方案一和方案二所述的发射信号的频率设计方案,本申请还提供了一种探测装置,用于实现MIMO发送场景下的目标探测。
下面结合图9至图16对本申请提供的探测装置进行说明。
请参阅图9,图9为本申请实施例提供的一种探测装置的结构示意图。
如图9所示,该探测装置包括移频单元10,和如上述图4所示的发射系统。
该探测装置中的移频单元10,用于对M路子信号(fc)执行移频处理,得到M个发射信号,该M个发射信号可以通过上述图4所示的发射系统发射出去,用于探测目标。
可选的,该移频单元10对M路子信号进行移频的移频值不完全相同,使得到的M个发射信号中存在相邻中心频点对应的发射信号之间的频差不同,即为上述方案一中的M个发射信号。
可以理解的是,不同发射天线对应的发射信号之间的频差使得在距离分集时可以降低采样率要求,允许距离模糊,并结合接收端根据接收到的该M个发射信号对应的回波信号进行距离解模糊,从而可以降低发射系统对ADC的采样能力要求。
由此可知,通过本申请实施例,对不同发射天线的发射信号的频率进行非均匀的频率设计,可以实现在相同采样率条件下,增大探测装置的有效探测距离,等效于在相同探测距离的要求下,可以实现降低对ADC的采样能力要求。
可选的,该移频单元10对M路子信号进行移频的移频值为某个值的整数倍,使得到的M个发射信号的中心频点位于W个等间隔的频带中的M个频带上,即为上述方案二中的M个发射信号。
可以理解的是,W个等间隔的频带中未被占用的频带使得在距离分集时可以降低采样率要求,允许距离模糊,并结合接收端根据接收到的该M个发射信号对应的回波信号进行距离解模糊,从而可以降低发射系统对ADC的采样能力要求。
由此可知,通过本申请实施例,对频谱采样资源进行均匀划分的频率设计,但总划分数量多于发射天线数量,并从中选出天线数量个频率所对应的发射信号进行发射,可以实现在相同采样率条件下,增大探测装置的有效探测距离,等效于在相同探测距离的要求下,可以实现降低对ADC的采样能力要求。
请参阅图10,图10为本申请实施例提供的一种探测装置的结构示意图。
可以理解的是,本申请实施例中的探测装置,可以视为是上述图9所示探测装置的变形或补充,也可以视为一个单独的方案实施。
如图10所示,该探测装置包括移频单元10,和如上述图4所示的发射系统。
其中,该移频单元10包括:
M个移频器;
该M个移频器,分别用于对M路子信号(fc)执行移频处理(分别移频Δf1、Δf2、Δf3、……、ΔfM),得到M个发射信号(分别为fc+Δf1、fc+Δf2、fc+Δf3、……、fc+ΔfM)。
可选的,本申请实施例中的M个移频器执行的移频处理,与上述图9所示的移频单元10所执行的移频处理类似,具体可参阅上文,此处不再赘述。
请参阅图11,图11为本申请实施例提供的一种探测装置的结构示意图。
可以理解的是,本申请实施例中的探测装置,可以视为是上述图9至图10所示探测装置的变形或补充,也可以视为一个单独的方案实施。
如图11所示,该探测装置包括M个移频器,和如上述图4所示的发射系统,其连接关系、信号流向以及功能描述均可参阅上述图4、图9至图10中的说明,此处不再赘述。
此外,本申请实施例中的探测装置还包括:
N个接收天线(比如,Rx1、Rx2、Rx3、……、RxN),N为大于2的整数;
该N个接收天线,分别用于接收上述M个发射信号对应的回波信号。
其中,该M个发射信号对应的回波信号可以用于进行距离解模糊,从而可以降低探测装置对ADC的采样能力要求。
请参阅图12,图12为本申请实施例提供的一种探测装置的结构示意图。
可以理解的是,本申请实施例中的探测装置,可以视为是上述图9至图11所示探测装置的变形或补充,也可以视为一个单独的方案实施。
如图12所示,该探测装置包括M个移频器、N个接收天线,和如上述图4所示的发射系统,其连接关系、信号流向以及功能描述均可参阅上述图4、图9至图11中的说明,此处不再赘述。
此外,本申请实施例中的探测装置还包括:
混频单元20;
该混频单元20,用于对M个回波信号和M路子信号(中心频点为fc)中的一路子信号分别执行混频处理,得到M个混频信号,该M个混频信号用于确定目标的距离。
可以理解的是,混频单元20用于对接收端接收到混合后的M个回波信号和未进行移频的原始信号(即上述M路子信号中的一路子信号)分别执行混频处理,得到M个混频信号,该M个混频信号可以确定目标的真实距离,从而可以实现在相同采样率条件下,增大探测装置的有效探测距离,或者在相同探测距离的要求下,可以实现对ADC的采样能力要求。
请参阅图13,图13为本申请实施例提供的一种探测装置的结构示意图。
可以理解的是,本申请实施例中的探测装置,可以视为是上述图9至图12所示探测装置的变形或补充,也可以视为一个单独的方案实施。
如图13所示,该探测装置包括M个移频器、N个接收天线、混频单元20,和如上述图4所示的发射系统,其连接关系、信号流向以及功能描述均可参阅上述图4、图9至图12中的说明,此处不再赘述。
其中,该混频单元20包括:
N个混频器;
该N个混频器,分别用于对上述M个回波信号和M路子信号(中心频点为fc)中的一路子信号执行混频处理,得到M个混频信号。
可选的,本申请实施例中的N个移频器执行的移频处理,与上述图12所示的混频单元20所执行的混频处理类似,具体可参阅上文,此处不再赘述。
请参阅图14,图14为本申请实施例提供的一种探测装置的结构示意图。
可以理解的是,本申请实施例中的探测装置,可以视为是上述图9至图13所示探测装置的变形或补充,也可以视为一个单独的方案实施。
如图14所示,该探测装置包括M个移频器、N个接收天线、N个混频器,和如上述图4所示的发射系统,其连接关系、信号流向以及功能描述均可参阅上述图4、图9至图13中的说明,此处不再赘述。
此外,本申请实施例中的探测装置还包括:
滤波单元30,采样单元40;
该滤波单元30,用于对上述M个混频信号执行滤波处理;
该采样单元40,用于对经过滤波处理后的M个混频信号采样,得到M个数字信号,该M个数字信号用于确定目标的距离。
可以理解的是,该探测装置中的滤波单元用于对M个混频信号执行滤波处理,该探测装置中的采样单元用于对经过滤波处理后的M个混频信号采样,得到M个数字信号,该M个数字信号可以用于进行距离解模糊,从而可以降低探测装置对ADC的采样能力要求。
在一种可能的实施例中,滤波单元30的滤波带宽大于至少两倍的采样单元40的采样带宽,可以使得M个发射信号经过目标后的所有回波信号被无损的接收,以进行距离解模糊。
请参阅图15,图15为本申请实施例提供的一种探测装置的结构示意图。
可以理解的是,本申请实施例中的探测装置,可以视为是上述图9至图14所示探测装置的变形或补充,也可以视为一个单独的方案实施。
如图15所示,该探测装置包括M个移频器、N个接收天线、混频单元20、滤波单元30、采样单元40,和如上述图4所示的发射系统,其连接关系、信号流向以及功能描述均可参阅上述图4、图9至图14中的说明,此处不再赘述。
其中,该滤波单元30包括:
N个中频滤波器;
该N个中频滤波器,分别用于对上述M个混频信号执行滤波处理。
该采样单元40包括:
N个模数转换器;
该N个模数转换器,分别用于对经过滤波处理后的M个混频信号采样,得到M个数字信号。
可选的,本申请实施例中的N个中频滤波器执行的滤波处理,与上述图14所示的滤波单元30所执行的滤波处理类似,本申请实施例中的N个模数转换器执行的采样处理,与上述图14所示的采样单元40所执行的采样处理类似,具体可参阅上文,此处不再赘述。
请参阅图16,图16为本申请实施例提供的一种探测装置的结构示意图。
可以理解的是,本申请实施例中的探测装置,可以视为是上述图9至图15所示探测装置的变形或补充,也可以视为一个单独的方案实施。
如图16所示,该探测装置包括M个移频器、N个接收天线、N个混频器、N个中频滤波器、N个模数转换器,和如上述图4所示的发射系统,其连接关系、信号流向以及功能描述均可参阅上述图4、图9至图15中的说明,此处不再赘述。
此外,本申请实施例中的探测装置还包括:
处理单元50;
一方面:
该处理单元50,用于根据上述M个发射信号之间的频差,确定M个回波信号与M个发射信号的对应关系。
可以理解的是,由于该M个发射信号对应的频谱采样资源是非均匀分配的,不同发射天线对应的发射信号之间的频差不同,因此可以根据M个发射信号之间的频差确定M个回波信号与M个发射天线之间的对应关系。
通过本申请实施例,确定M个回波信号与M个发射信号之间的对应关系,可以实现距 离解模糊,从而可以降低发射系统对ADC的采样能力要求。
该处理单元50,还可以用于根据M个回波信号与M个发射信号的对应关系,确定目标的距离。
可以理解的是,与未进行移频的原始信号(即上述M路子信号中的一路子信号)相比,未发生频移或发生频移量最小的发射信号所对应的回波信号在M个回波信号形成的距离像上对应的距离值,即为目标的真实距离。
通过本申请实施例,可以确定目标的真实距离,从而可以实现在相同采样率条件下,增大探测装置的有效探测距离,或者在相同探测距离的要求下,可以实现对ADC的采样能力要求。
另一方面:
该处理单元50,用于根据上述W个等间隔的频带中未被占用的频带,确定M个回波信号与M个发射信号的对应关系。
可以理解的是,由于该W个等间隔的频带对应的频谱采样资源是均匀分配的,W个等间隔的频带中未被占用的频带导致存在两个发射天线对应的发射信号之间的频差更大,因此可以根据W个等间隔的频带中未被占用的频带确定M个回波信号与M个发射天线之间的对应关系。
通过本申请实施例,确定M个回波信号与M个发射信号之间的对应关系,可以实现距离解模糊,从而可以降低发射系统对ADC的采样能力要求。
该处理单元50,还可以用于根据M个回波信号与M个发射信号的对应关系,确定目标的距离。
可以理解的是,与未进行移频的原始信号(即上述M路子信号中的一路子信号)相比,未发生频移或发生频移量最小的发射信号所对应的回波信号在M个回波信号形成的距离像上对应的距离值,即为目标的真实距离。
通过本申请实施例,可以确定目标的真实距离,从而可以实现在相同采样率条件下,增大探测装置的有效探测距离,或者在相同探测距离的要求下,可以实现对ADC的采样能力要求。
可以理解的是,上述图9至图16中的探测装置,仅作为几种示例性的探测装置进行说明,不应以此对本申请构成限定。基于上述图9至图16中任一项所示的探测装置的结构的合理变形,所得到的探测装置的组合结构,均属于本申请保护的范畴。
此外,本申请还将基于上述图4所示的发射系统、上述图9至图16中的探测装置,以及方案一和方案二所述的频差设计方案,给出几个MIMO探测场景下的实例。
下面将结合图17A、图17B以及图18进行说明。
请参阅图17A,图17A为本申请实施例提供的一种信号一维像的示意图。
如图17A所示,展示了两个目标分别在50m和300m对应的信号一维像的示意图。
为了探测上述两个目标,具有4个发射天线的发射系统或探测装置根据上述方案一中的频差设计发射相应的发射信号,即把频谱采样资源非均匀的分为4份,分别对应于4个发射信号,通过4个发射天线发射出去。
目标的固有最大不模糊距离为400m,50m的目标处在第一不模糊区间(0-100m),300m的目标处在第三不模糊区间(200-300m)和第四不模糊区间(300-400m)的边缘。
根据4个发射信号之间的频差大小,以及图17A所示的信号一维像中的距离间隔大小, 可以看出回波信号与4个发射信号的对应关系,以及各个发射信号对应的回波信号在信号一维像中对应的距离值。
示例性的,对于处在50m处的目标,发射天线Tx1对应的回波信号在信号一维像中对应的距离值为50m,发射天线Tx2对应的回波信号在信号一维像中对应的距离值为190m,发射天线Tx3对应的回波信号在信号一维像中对应的距离值为290m,发射天线Tx4对应的回波信号在信号一维像中对应的距离值为10m。可以看出Tx1对应的距离值50m即为目标的真实距离。此时,需要对其他天线的回波信号进行联合处理后,确定目标的实际距离。需要注意的是,图17A中标注的发射天线“Tx1、Tx2、Tx3、Tx4”实际是不存在的,仅作为说明更为方便而进行的标注。
示例性的,对于处在300m处的目标,发射天线Tx1对应的回波信息在信号一维像中对应的距离值为300m,发射天线Tx2对应的回波信号在信号一维像中对应的距离值为40m,发射天线Tx3对应的回波信号在信号一维像中对应的距离值为140m,发射天线Tx4对应的回波信号在信号一维像中对应的距离值为260m。可以看出Tx1对应的距离值300m即为目标的真实距离。此时,需要对其他天线的回波信号进行联合处理后,确定目标的实际距离。需要注意的是,图17A中标注的发射天线“Tx1、Tx2、Tx3、Tx4”实际是不存在的,仅作为说明更为方便而进行的标注。
通过本申请实施例,利用一个原本对应400/4=100m的不模糊距离的ADC采样能力实现了400m的不模糊测量距离,从而实现在相同采样率条件下,增大探测装置的有效探测距离,等效于在相同探测距离的要求下,可以实现降低对ADC的采样能力要求。
请参阅图17B,图17B为本申请实施例提供的一种信号一维像的示意图。
如图17B所示,在上述图17A的探测场景下,利用M个发射天线、N个接收天线以及N个ADC通道,便可实现M·N个等效的天线阵列以及M·N个等效的ADC通道,得到M·N的回波信号阵列,该M·N的回波信号阵列经过匹配处理后可以得到图17B所示的信号一维像的示意图。
由图17B可以看出,在50m处和300m处对应的信号能量出现了高峰值,表示两个目标的真实距离分别位于50m和300m处。
请参阅图18,图18为本申请实施例提供的一种信号一维像的示意图。
如图18所示,展示了三个目标分别在50m、120m和300m对应的信号一维像的示意图。
为了探测上述三个目标,具有4个发射天线的发射系统或探测装置根据上述方案二中的频差设计发射相应的发射信号,即把频谱采样资源均匀的分为5份,分别对应于5个发射信号,但只通过4个发射天线分别发射其中任意4份频谱采样资源所对应的4个发射信号,剩余的1份频谱资源所对应的发射信号不发射。
目标的固有最大不模糊距离为400m,50m的目标处在第一不模糊区间(0-100m),120m的目标处在第二不模糊区间(100-200m),300m的目标处在第三不模糊区间(200-300m)和第四不模糊区间(300-400m)的边缘。
根据5个等间隔的频带中未被占用的频带,以及图18所示的信号一维像中的距离间隔大小,可以看出回波信号与4个发射信号的对应关系,以及各个发射信号对应的回波信号在信号一维像中对应的距离值。
示例性的,对于处在50m处的目标,发射天线Tx1对应的回波信号在信号一维像中对应的距离值为50m,发射天线Tx2对应的回波信号在信号一维像中对应的距离值为130m,发射天线Tx3对应的回波信号在信号一维像中对应的距离值为210m,发射天线Tx4对应的回 波信号在信号一维像中对应的距离值为290m,第四不模糊区间(300-400m)内无信号能量分布。可以看出Tx1对应的距离值50m即为目标的真实距离。需要注意的是,图18中标注的发射天线“Tx1、Tx2、Tx3、Tx4”实际是不存在的,仅作为说明更为方便而进行的标注。
示例性的,对于处在120m处的目标,发射天线Tx1对应的回波信号在信号一维像中对应的距离值为120m,发射天线Tx2对应的回波信号在信号一维像中对应的距离值为200m,发射天线Tx3对应的回波信号在信号一维像中对应的距离值为280m,发射天线Tx4对应的回波信号在信号一维像中对应的距离值为360m,第一不模糊区间(0-100m)内无信号能量分布。可以看出Tx1对应的距离值120m即为目标的真实距离。需要注意的是,图18中标注的发射天线“Tx1、Tx2、Tx3、Tx4”实际是不存在的,仅作为说明更为方便而进行的标注。
示例性的,对于处在300m处的目标,发射天线Tx1对应的回波信息在信号一维像中对应的距离值为300m,发射天线Tx2对应的回波信号在信号一维像中对应的距离值为380m,发射天线Tx3对应的回波信号在信号一维像中对应的距离值为60m,发射天线Tx4对应的回波信号在信号一维像中对应的距离值为140m,第三不模糊区间(200-300m)内无信号能量分布。可以看出Tx1对应的距离值300m即为目标的真实距离。需要注意的是,图18中标注的发射天线“Tx1、Tx2、Tx3、Tx4”实际是不存在的,仅作为说明更为方便而进行的标注。
通过本申请实施例,利用一个原本对应400/4=100m的不模糊距离的ADC采样能力实现了400m的不模糊测量距离,从而实现在相同采样率条件下,增大探测装置的有效探测距离,等效于在相同探测距离的要求下,可以实现降低对ADC的采样能力要求。
本申请提供了一种芯片,该芯片包括本申请提供的发射系统或探测装置。
本申请提供了一种雷达或雷达系统,该雷达或雷达系统包括本申请提供的发射系统或探测装置或上述芯片。需要说明的是,可能存在多种传感器集成的智能传感器,在上述智能传感器包含毫米波探测功能的情况下,上述智能传感器也可以称为毫米波雷达或毫米波雷达系统。
本申请提供了一种终端设备,该终端设备包括本申请提供的发射系统或探测装置。举例来说,终端设备可以为交通运输工具,例如汽车、卡车、飞行器、无人机、慢速运输车、太空器、或者船舶等任意可能的场景使用的交通工具,还可以为测绘设备等任意可以搭载毫米波探测装置的设备。该终端设备上部署有一个或多个本申请提供的发射系统或探测装置。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种发射系统,其特征在于,所述发射系统包括M个发射天线,所述M为大于2的整数;
    所述M个发射天线分别用于发射M个发射信号,所述M个发射信号用于探测目标;
    所述M个发射信号具有M个互不相同的中心频点,所述M个发射信号中存在相邻中心频点对应的发射信号之间的频差不同。
  2. 根据权利要求1所述的发射系统,其特征在于,所述M个发射信号是由M个移频器对M路子信号分别执行移频处理得到的。
  3. 一种探测装置,其特征在于,包括:移频单元,和如权利要求1至2中任一项所述的发射系统,其中:
    所述移频单元,用于对M路子信号执行移频处理,得到M个发射信号。
  4. 根据权利要求3所述的探测装置,其特征在于,所述移频单元包括:
    M个移频器;
    所述M个移频器,分别用于对所述M路子信号执行移频处理,得到所述M个发射信号。
  5. 根据权利要求3或4所述的探测装置,其特征在于,所述探测装置还包括:
    N个接收天线,所述N为大于2的整数;
    所述N个接收天线,分别用于接收所述M个发射信号对应的回波信号。
  6. 根据权利要求5所述的探测装置,其特征在于,所述探测装置还包括:
    混频单元;
    所述混频单元,用于对M个回波信号和所述M路子信号中的一路子信号分别执行混频处理,得到M个混频信号,所述M个混频信号用于确定目标的距离。
  7. 根据权利要求6所述的探测装置,其特征在于,所述混频单元包括:
    N个混频器;
    所述N个混频器,分别用于对所述M个回波信号和所述M路子信号中的一路子信号执行混频处理,得到所述M个混频信号。
  8. 根据权利要求6或7所述的探测装置,其特征在于,所述探测装置还包括:
    处理单元;
    所述处理单元,用于根据所述M个发射信号之间的频差,确定所述M个回波信号与所述M个发射信号的对应关系。
  9. 根据权利要求8所述的探测装置,其特征在于,所述处理单元,还用于根据所述M个回波信号与所述M个发射信号的对应关系,确定所述目标的距离。
  10. 根据权利要求6至9中任一项所述的探测装置,其特征在于,所述探测装置还包括:
    滤波单元,采样单元;
    所述滤波单元,用于对所述M个混频信号执行滤波处理;
    所述采样单元,用于对经过滤波处理后的所述M个混频信号采样,得到M个数字信号,所述M个数字信号用于确定所述目标的距离。
  11. 根据权利要求10所述的探测装置,其特征在于,所述滤波单元的滤波带宽大于至少两倍的所述采样单元的采样带宽。
  12. 根据权利要求11所述的探测装置,其特征在于,所述滤波单元包括:
    N个中频滤波器;
    所述N个中频滤波器,分别用于对所述M个混频信号执行滤波处理。
  13. 根据权利要求10至12中任一项所述的探测装置,其特征在于,所述采样单元包括:
    N个模数转换器;
    所述N个模数转换器,分别用于对经过滤波处理后的所述M个混频信号采样,得到所述M个数字信号。
  14. 一种发射系统,其特征在于,所述发射系统包括M个发射天线,所述M为大于2的整数;
    所述M个发射天线分别用于发射M个发射信号,所述M个发射信号用于探测目标;
    所述M个发射信号的中心频点位于W个等间隔的频带中的M个频带上,所述W为大于所述M的整数。
  15. 根据权利要求14所述的探测装置,其特征在于,所述M个发射信号由M个移频器对M路子信号分别执行移频处理得到的。
  16. 一种探测装置,其特征在于,包括:移频单元,和如权利要求14至15中任一项所述的发射系统,其中:
    所述移频单元,用于对M路子信号执行移频处理,得到M个发射信号。
  17. 根据权利要求16所述的探测装置,其特征在于,所述移频单元包括:
    M个移频器;
    所述M个移频器,分别用于对所述M路子信号执行移频处理,得到所述M个发射信号。
  18. 根据权利要求16或17所述的探测装置,其特征在于,所述探测装置还包括:
    N个接收天线,所述N为大于2的整数;
    所述N个接收天线,分别用于接收所述M个发射信号对应的回波信号。
  19. 根据权利要求18所述的探测装置,其特征在于,所述探测装置还包括:
    混频单元;
    所述混频单元,用于对M个回波信号和所述M路子信号中的一路子信号分别执行混频 处理,得到M个混频信号,所述M个混频信号用于确定目标的距离。
  20. 根据权利要求19所述的探测装置,其特征在于,所述混频单元包括:
    N个混频器;
    所述N个混频器,分别用于对所述M个回波信号和所述M路子信号中的一路子信号执行混频处理,得到所述M个混频信号。
  21. 根据权利要求19或20所述的探测装置,其特征在于,所述探测装置还包括:
    处理单元;
    所述处理单元,用于根据所述W个等间隔的频带中未被占用的频带,确定所述M个回波信号与所述M个发射信号的对应关系。
  22. 根据权利要求21所述的探测装置,其特征在于,所述处理单元,还用于根据所述M个回波信号与所述M个发射信号的对应关系,确定所述目标的距离。
  23. 根据权利要求19至22中任一项所述的探测装置,其特征在于,所述探测装置还包括:
    滤波单元,采样单元;
    所述滤波单元,用于对所述M个混频信号执行滤波处理;
    所述采样单元,用于对经过滤波处理后的所述M个混频信号采样,得到M个数字信号,所述M个数字信号用于确定所述目标的距离。
  24. 根据权利要求23所述的探测装置,其特征在于,所述滤波单元的滤波带宽大于至少两倍的所述采样单元的采样带宽。
  25. 根据权利要求24所述的探测装置,其特征在于,所述滤波单元包括:
    N个中频滤波器;
    所述N个中频滤波器,分别用于对所述M个混频信号执行滤波处理。
  26. 根据权利要求23至25中任一项所述的探测装置,其特征在于,所述采样单元包括:
    N个模数转换器;
    所述N个模数转换器,分别用于对经过滤波处理后的所述M个混频信号采样,得到所述M个数字信号。
  27. 一种雷达,其特征在于,所述雷达包括权利要求1至2中任一项所述的发射系统,或权利要求3至13中任一项所述的探测装置,或权利要求14至15中任一项所述的发射系统,或权利要求16至26中任一项所述的探测装置。
  28. 一种终端设备,其特征在于,所述终端设备包括权利要求1至2中任一项所述的发射系统,或权利要求3至13中任一项所述的探测装置,或权利要求14至15中任一项所述的发射系统,或权利要求16至26中任一项所述的探测装置,或权利要求27所述的雷达。
  29. 一种车端,其特征在于,所述车端包括权利要求1至2中任一项所述的发射系统,或权利要求3至13中任一项所述的探测装置,或权利要求14至15中任一项所述的发射系统,或权利要求16至26中任一项所述的探测装置,或权利要求27所述的雷达,或权利要求28所述的终端设备。
PCT/CN2022/136345 2022-12-02 2022-12-02 发射系统、探测装置、雷达、终端设备及车端 WO2024113373A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/136345 WO2024113373A1 (zh) 2022-12-02 2022-12-02 发射系统、探测装置、雷达、终端设备及车端

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/136345 WO2024113373A1 (zh) 2022-12-02 2022-12-02 发射系统、探测装置、雷达、终端设备及车端

Publications (1)

Publication Number Publication Date
WO2024113373A1 true WO2024113373A1 (zh) 2024-06-06

Family

ID=91322834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136345 WO2024113373A1 (zh) 2022-12-02 2022-12-02 发射系统、探测装置、雷达、终端设备及车端

Country Status (1)

Country Link
WO (1) WO2024113373A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991577A (zh) * 2019-04-15 2019-07-09 西安电子科技大学 基于fda-ofdm的低截获发射信号设计方法
CN112394326A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种信号发射方法及装置
CN112505675A (zh) * 2021-02-08 2021-03-16 网络通信与安全紫金山实验室 目标角度和距离定位方法、装置、雷达和存储介质
CN112534299A (zh) * 2020-08-05 2021-03-19 华为技术有限公司 一种基于雷达信号的发射方法和装置
CN112748428A (zh) * 2019-10-31 2021-05-04 泰勒斯公司 利用ddma波形的相干mimo雷达处理方法
US20210173042A1 (en) * 2019-12-09 2021-06-10 Nxp Usa, Inc. Method and System for Frequency Offset Modulation Range Division MIMO Automotive Radar
CN114746767A (zh) * 2019-11-26 2022-07-12 珠海微度芯创科技有限责任公司 一种多输入多输出的雷达和移动工具
CN115166682A (zh) * 2022-09-08 2022-10-11 南京安麦森电子科技有限公司 一种手持便携式雷达目标散射特性检测方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109991577A (zh) * 2019-04-15 2019-07-09 西安电子科技大学 基于fda-ofdm的低截获发射信号设计方法
CN112394326A (zh) * 2019-08-16 2021-02-23 华为技术有限公司 一种信号发射方法及装置
CN112748428A (zh) * 2019-10-31 2021-05-04 泰勒斯公司 利用ddma波形的相干mimo雷达处理方法
CN114746767A (zh) * 2019-11-26 2022-07-12 珠海微度芯创科技有限责任公司 一种多输入多输出的雷达和移动工具
US20210173042A1 (en) * 2019-12-09 2021-06-10 Nxp Usa, Inc. Method and System for Frequency Offset Modulation Range Division MIMO Automotive Radar
CN112534299A (zh) * 2020-08-05 2021-03-19 华为技术有限公司 一种基于雷达信号的发射方法和装置
CN112505675A (zh) * 2021-02-08 2021-03-16 网络通信与安全紫金山实验室 目标角度和距离定位方法、装置、雷达和存储介质
CN115166682A (zh) * 2022-09-08 2022-10-11 南京安麦森电子科技有限公司 一种手持便携式雷达目标散射特性检测方法

Similar Documents

Publication Publication Date Title
EP3499264B1 (en) Radar unit and method for cascading integrated circuits in a radar unit
CN107526063B (zh) 雷达设备和处理雷达信号的方法
US10823819B2 (en) Radar system including an antenna array for transmitting and receiving electromagnetic radiation
EP2669700B1 (en) Electronic counter measure system
US8405541B2 (en) Multi-range radar system
JP2567332B2 (ja) 時分割型レーダシステム
US7994969B2 (en) OFDM frequency scanning radar
US6940447B2 (en) Radar device and method for operating a radar device
US10627503B2 (en) Combined degraded visual environment vision system with wide field of regard hazardous fire detection system
US11567170B2 (en) Calibration of a radar system using plurality of phase shifted oscillator signals
CN102680963A (zh) 支持近程和远程雷达操作的雷达装置
US20110309981A1 (en) Combined direction finder and radar system, method and computer program product
KR101167906B1 (ko) 차량용 레이더시스템 및 차량용 레이더 시스템의 표적탐지 방법
WO2024113373A1 (zh) 发射系统、探测装置、雷达、终端设备及车端
KR20210136629A (ko) 차량용 레이더 장치 및 제어방법
CN217846611U (zh) 雷达传感器及电子设备
KR20120106567A (ko) 단거리 및 장거리 레이더 기능을 동시에 지원하는 레이더 장치
WO2024113318A1 (zh) 信号处理系统及相关装置
US20110032151A1 (en) Monostatic Multi-beam Radar Sensor, as Well as Method
Maresca et al. Coherent dual-band 2x4 MIMO radar experiment exploiting photonics
JP2964947B2 (ja) 時分割型レーダシステム
WO2024113319A1 (zh) 天线装置、雷达、终端设备及车端
CN115372906B (zh) 基于漏波天线的微波光子雷达系统及目标物体检测方法
Schwarz et al. Improving the Short-Range Perception of MIMO Radars with LO Feedthrough Topologies by Complex Sampling
Bogoni et al. Microwave photonics in radar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22966959

Country of ref document: EP

Kind code of ref document: A1