WO2024113079A1 - 显示面板及显示装置 - Google Patents

显示面板及显示装置 Download PDF

Info

Publication number
WO2024113079A1
WO2024113079A1 PCT/CN2022/134623 CN2022134623W WO2024113079A1 WO 2024113079 A1 WO2024113079 A1 WO 2024113079A1 CN 2022134623 W CN2022134623 W CN 2022134623W WO 2024113079 A1 WO2024113079 A1 WO 2024113079A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
substrate
angle
substructure
liquid crystal
Prior art date
Application number
PCT/CN2022/134623
Other languages
English (en)
French (fr)
Inventor
武晓娟
陈翠玉
王家星
柳峰
冯大伟
段金帅
于志强
侯丹星
王宁
张宜驰
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280004657.8A priority Critical patent/CN118511120A/zh
Priority to PCT/CN2022/134623 priority patent/WO2024113079A1/zh
Publication of WO2024113079A1 publication Critical patent/WO2024113079A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent

Definitions

  • the present disclosure belongs to the field of display technology, and particularly relates to a display panel and a display device.
  • Total reflection display technology uses ambient light as the light source, which can truly eliminate blue light to achieve the effect of eye protection. It mainly uses color total reflection liquid crystal technology and color electrophoretic display technology (i.e. electronic paper). Among them, color total reflection liquid crystal technology requires the use of color film to achieve color display, and also requires polarizers, which have low reflectivity, high power consumption, high cost, and cannot be seen in the sun, and the actual experience is poor; color electrophoretic display technology also requires the use of color film, which has low reflectivity. In addition, due to the divergence of ambient light, most of the ambient light is reflected and emitted from the side perspective, and will not enter the user's central perspective, resulting in poor front-view display effect, which seriously reduces the user's experience.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art and provide a display panel and a display device.
  • an embodiment of the present disclosure provides a display panel, wherein the display panel comprises: a first substrate and a second substrate arranged opposite to each other and a liquid crystal layer located between the first substrate and the second substrate; the material of the liquid crystal layer comprises: cholesteric liquid crystal; the display panel further comprises: a microstructure optical film layer located on a side of the second substrate away from the first substrate; incident light is incident from the side of the microstructure optical film layer, is reflected by the cholesteric liquid crystal, and then is emitted from the microstructure optical film layer;
  • the microstructure optical film layer includes: a plurality of wedge-shaped structures; at least some of the wedge-shaped structures have different angles and sizes, so that light emitted from a side viewing angle and having different angles can be adjusted to a central viewing angle.
  • the wedge-shaped structure includes: an inclined substructure and a horizontal substructure; an angle between an inclined surface of the inclined substructure and a horizontal surface of the horizontal substructure is greater than 90 degrees and less than 180 degrees.
  • is the complementary angle of the angle between the inclined surface of the inclined substructure and the horizontal plane
  • ⁇ incident is the angle between the incident light and the normal of the display panel
  • ⁇ exit is the angle between the exiting light and the normal of the display panel
  • nfilm is the refractive index of the wedge structure.
  • is the complementary angle of the angle between the inclined surface of the inclined substructure and the horizontal surface
  • w1 is the width of the inclined substructure
  • w2 is the width of the horizontal substructure
  • d1 is the height of the inclined substructure above the horizontal substructure
  • d2 is the height of the horizontal substructure
  • ⁇ 1 is the angle between the refracted light after the incident light passes through the inclined substructure and the normal of the display panel
  • ⁇ 2 is the angle between the incident light in the second substrate and the normal of the display panel after the incident light passes through the wedge-shaped structure and the second substrate
  • ⁇ 3 is the angle between the incident light in the liquid crystal layer and the normal of the display panel after the incident light passes through the wedge-shaped structure
  • P is the width of the pixel area
  • n is the number of wedge structures in each pixel area
  • t is the thickness of the second substrate
  • d is the thickness of the liquid crystal layer.
  • the incident light is incident from the inclined substructure and is emitted from the horizontal substructure.
  • the complementary angle between the inclined surface of the inclined substructure and the horizontal plane gradually increases.
  • the wedge-shaped structures are arranged in concentric circles with the center of the display panel as the center.
  • the difference between any two of the refractive indices of the microstructured optical film layer, the second substrate, and the liquid crystal layer is less than a preset value.
  • the first substrate includes: a first base, a plurality of pixel electrodes, a driving circuit layer, and a first alignment layer;
  • the plurality of pixel electrodes are located on the first substrate;
  • the driving circuit layer is located on a side of the pixel electrode close to the first substrate;
  • the first alignment layer is located on a side of the pixel electrode facing away from the first substrate.
  • the second substrate includes: a second base, a common electrode layer, and a second alignment layer;
  • the common electrode layer is located on a side of the second substrate close to the first substrate;
  • the second alignment layer is located on a side of the common electrode layer away from the second substrate.
  • the alignment directions of the first alignment layer and the second alignment layer are anti-parallel.
  • the display panel further includes: a support located between the first alignment layer and the second alignment layer;
  • the cholesteric liquid crystal is filled between adjacent supports.
  • an embodiment of the present disclosure provides a display device, wherein the display device includes a display panel as provided above.
  • FIG. 1 is a schematic structural diagram of a display panel provided in an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of the light reflection principle of the display panel shown in FIG. 1 .
  • FIG. 3 is a diagram showing a reflection light path in a preferred direction in the display panel shown in FIG. 1 .
  • FIG. 4 is a schematic diagram showing how the color gamut of the reflected light of the display panel shown in FIG. 1 changes with the incident angle and the emergent angle.
  • FIG. 5 is a schematic diagram of the structure of another display panel provided in an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a wedge-shaped structure in the display panel shown in FIG. 5 .
  • FIG. 7 is a curve showing the variation of the included angle between the inclined surface of the inclined substructure and the horizontal surface with the incident light angle and the emergent light angle.
  • FIG. 8 is a schematic diagram of the light reflection principle of the display panel shown in FIG. 5 .
  • FIG. 9 is a schematic diagram of a top view of the structure of the display panel shown in FIG. 5 .
  • FIG. 10 a is a schematic diagram of a first alignment layer in a display panel provided in an embodiment of the present disclosure.
  • FIG. 10 b is a schematic diagram of a second alignment layer in a display panel provided in an embodiment of the present disclosure.
  • FIG1 is a schematic diagram of the structure of a display panel provided by an embodiment of the present disclosure.
  • the display panel includes: a first substrate 10 and a second substrate 20 arranged opposite to each other and a liquid crystal layer 30 located between the first substrate 10 and the second substrate 20; the material of the liquid crystal layer 30 includes: cholesteric liquid crystal.
  • FIG2 is a schematic diagram of the light reflection principle of the display panel shown in FIG1 .
  • the conical spiral cholesteric liquid crystal presents a focal conic texture, which can scatter the incident light;
  • the conical spiral cholesteric liquid crystal is transformed from a focal conic texture to a conical spiral texture, and at this time, visible light matching its pitch can be reflected.
  • Applying different driving voltages can cause the cholesteric liquid crystals in different regions to deflect at different angles, so that visible light of different colors can be reflected, thereby achieving color display.
  • FIG3 is a reflection light path diagram of the preferred direction in the display panel shown in FIG1, wherein ⁇ incident is the angle between the incident light and the normal of the display panel, ⁇ refracted is the angle between the refracted light after the incident light passes through the second substrate and the normal of the display panel, and ⁇ exit is the angle between the exit light and the normal of the display panel.
  • the refractive index of the liquid crystal layer 30 is similar to or equal to that of the second substrate 20, the light is incident to the liquid crystal layer 30 with ⁇ refracted , and is emitted again through the second substrate 20.
  • the exit light presents a reverse light path with the incident optical fiber, that is, ⁇ incident is equal to ⁇ exit , so that the cholesteric liquid crystal in the liquid crystal layer 30 can achieve total reflection display with the help of ambient light.
  • the display panel provided by the embodiment of the present disclosure can realize full reflection color display without using color film, polarizer and other structures, thus avoiding the damage of blue light to human eyes.
  • the display panel does not need to use color film, polarizer and other devices, which can improve the reflection efficiency of light, enhance the display effect of the display panel, and reduce the thickness of the display panel, which is conducive to the thinness of the display panel.
  • FIG4 is a schematic diagram showing the change of the color gamut of the reflected light of the display panel shown in FIG1 with the incident angle and the exit angle. It can be seen from FIG4 that when the incident angle of the ambient light is 30°, the maximum color gamut can be achieved at an exit angle of about 30°, that is, the human eye can observe the maximum color gamut and the image with the best optical effect at the mirror reflection angle of the incident light. Similarly, when the incident angle of the ambient light is 45°, the maximum color gamut can be achieved at an exit angle of about 45°, and when the incident angle of the ambient light is 60°, the maximum color gamut can be achieved at an exit angle of about 60°.
  • FIG5 is a schematic diagram of the structure of another display panel provided by the embodiment of the present disclosure.
  • the difference between the display panel shown in FIG5 and the display panel shown in FIG1 is that the display panel shown in FIG5 adds a microstructure optical film layer 40 to the display panel shown in FIG1.
  • the incident light can be incident from the side of the microstructure optical film layer 40, reflected by the cholesteric liquid crystal, and then emitted from the microstructure optical film layer 40.
  • the microstructure optical film layer 40 is located on the side of the second substrate 20 away from the first substrate 10, and the microstructure optical film layer 40 includes: a plurality of wedge-shaped structures 401; at least some of the wedge-shaped structures 401 have different angles and sizes, so that the light emitted from the side viewing angle and with different angles is adjusted to the central viewing angle.
  • the wedge-shaped structure 401 can refract the incident light. Since the wedge-shaped structure 401 has an inclined surface intersecting with the horizontal plane, the wedge-shaped structure 401 can adjust the propagation direction of the light during the propagation process, so that the light is emitted from the central viewing angle. At the same time, the angles and sizes of the multiple wedge-shaped structures 401 are different, and the light emitted from the side viewing angle and with different emission angles can be adjusted to the central viewing angle, thereby increasing the intensity of the light emitted from the central viewing angle, thereby improving the optical characteristics of the central viewing angle, thereby achieving a display effect with a high color gamut and high reflection efficiency, and improving the user experience.
  • the central viewing angle may be a viewing angle where the angle between the user's sight line and the normal line of the display panel is less than 60 degrees
  • the side viewing angle may be a viewing angle where the angle between the user's sight line and the normal line of the display panel is greater than or equal to 60 degrees.
  • the ranges of the central viewing angle and the side viewing angle may also be adjusted according to actual needs, and are not limited here.
  • FIG6 is a schematic structural diagram of a wedge-shaped structure in the display panel shown in FIG5 .
  • the wedge-shaped structure includes an inclined substructure 401a and a horizontal substructure 401b .
  • the angle between the inclined surface of the inclined substructure 401a and the horizontal surface of the horizontal substructure 401b is greater than 90 degrees and less than 180 degrees.
  • the angle between the inclined surface of the inclined substructure 401a and the horizontal surface of the horizontal substructure 401b is an obtuse angle, which can ensure that the incident light is irradiated to the inclined surface of the inclined substructure 401a and emitted from the horizontal surface of the horizontal structure 401b, thereby improving the utilization rate of the light.
  • the incident light is irradiated to the inclined surface of the inclined substructure 401a and emitted from the horizontal surface of the horizontal structure 401b, due to the angle between the incident surface and the emission surface, the propagation direction of the light can be changed, breaking the original propagation path of the mirror reflection, so that the emitted light is adjusted to the central viewing angle.
  • the light with different incident angles can be adjusted to the central viewing angle, thereby improving the intensity of the light emitted from the central viewing angle.
  • the angle ⁇ between the inclined surface of the inclined substructure 401a and the horizontal surface can be set according to the angle of the incident light and the angle of the required outgoing light.
  • the specific calculation process is as follows:
  • is the complementary angle of the angle between the inclined surface of the inclined substructure and the horizontal plane
  • ⁇ incident is the angle between the incident light and the normal of the display panel
  • ⁇ exit is the angle between the exiting light and the normal of the display panel
  • ⁇ 1 is the angle between the refracted light after the incident light passes through the inclined substructure and the normal of the display panel
  • nfilm is the refractive index of the wedge-shaped structure
  • nair is the refractive index of air.
  • the positive viewing angle optical effect is the best, but if the light rays passing through the inclined substructure 401a are vertically incident on the liquid crystal layer 30, based on the mirror reflection of the liquid crystal layer 30, the reflected light rays will coincide with the optical path of the incident light rays, and then after refraction by the second substrate 20 and the microstructure optical film layer 40 again, the outgoing light rays will enter the human eye in the direction of the incident light, that is, the optical properties of the central viewing angle cannot be enhanced. Therefore, in the design, ⁇ 1 is adjusted to a smaller angle, and after the mirror reflection of the liquid crystal layer 30, the reflected light rays will enter the horizontal substructure 401b, thereby exiting and entering the human eye at a smaller angle ⁇ .
  • the calculation formula for the angle ⁇ between the inclined surface of the inclined substructure 401 b and the horizontal plane is simplified to:
  • the included angle ⁇ between the inclined surface of the inclined substructure 401 b and the horizontal surface required for adjusting incident light at different angles to the set angle of the emitted light can be calculated.
  • FIG7 is a curve showing the variation of the angle between the inclined surface and the horizontal surface of the inclined substructure with the incident light angle and the outgoing light angle.
  • ⁇ out
  • n air 1
  • ⁇ 1
  • the included angle ⁇ between the inclined surface of the inclined substructure 401 b and the horizontal plane corresponding to different incident angles can be calculated.
  • the incident light in a specific direction matching therewith will be modulated to be emitted from the horizontal substructure 401b at a smaller angle, thereby adjusting the angle of the reflected light corresponding to the light at this angle to be closer to the central viewing angle; when light with different incident angles is respectively incident on the inclined substructure 401a matching therewith, the reflected light will be emitted at a smaller angle, thereby enhancing the optical properties of the central viewing angle.
  • the outgoing light When light is incident on the horizontal substructure 401b of the wedge-shaped structure 401, the outgoing light will be emitted at an angle of mirror reflection with the incident light; when light at different angles is incident on the horizontal structure 401b of the wedge-shaped structure 401, the reflected light will be emitted at their respective mirror reflection angles, that is, emitted from all directions, thereby enhancing the viewing angle and achieving a wide viewing angle display effect.
  • FIG8 is a schematic diagram of the light reflection principle of the display panel shown in FIG5.
  • the sizes of the inclined substructure 401a and the horizontal substructure 401b are set according to the angle of the incident light, the angle of the required outgoing light, the thickness of the second substrate and the liquid crystal layer, the width of the pixel area, and the number of wedge structures.
  • the specific calculation process is as follows:
  • is the complementary angle of the angle between the inclined surface of the inclined substructure and the horizontal surface
  • w1 is the width of the inclined substructure
  • w2 is the width of the horizontal substructure
  • d1 is the height of the inclined substructure above the horizontal substructure
  • d2 is the height of the horizontal substructure
  • ⁇ 1 is the angle between the refracted light after the incident light passes through the inclined substructure and the normal of the display panel
  • ⁇ 2 is the angle between the incident light in the second substrate and the normal of the display panel after the incident light passes through the wedge-shaped structure and the second substrate
  • ⁇ 3 is the angle between the incident light in the liquid crystal layer and the normal of the display panel after the incident light passes through the wedge-shaped structure
  • P is the width of the pixel area
  • n is the number of wedge structures in each pixel area
  • t is the thickness of the second substrate
  • d is the thickness of the liquid crystal layer.
  • the incident light is incident from the inclined substructure 401 a and is emitted from the horizontal substructure 401 b .
  • the size and angle of the inclined substructure 401a and the horizontal substructure 401b can be controlled so that when the incident light is incident from the inclined substructure 401a, it can be emitted from the horizontal substructure 401b, which can change the propagation direction of the light, break the original propagation path of the mirror reflection, adjust the emitted light to the central viewing angle, and improve the utilization rate of the light.
  • the complementary angle between the inclined surface of the inclined substructure 401a and the horizontal plane gradually increases.
  • the complementary angle of the angle between the inclined surface of the inclined substructure 401a of each wedge-shaped structure 401 and the horizontal plane is different, and is set according to the incident angle of the incident light. For example, along the edge of the display panel toward the center, as the angle between the incident light and the normal of the display panel gradually decreases, the complementary angle of the angle between the inclined surface of the inclined substructure 401a and the horizontal plane gradually increases, so that the incident light can be reflected more evenly to the central viewing angle, thereby improving the display effect of the display panel.
  • the inclined substructure 401a has a first boundary and a second boundary arranged in sequence along the direction of the incident light
  • the horizontal substructure 401b has a third boundary and a fourth boundary arranged in sequence along the direction of the outgoing light; the incident light incident at the first boundary is emitted at the third boundary; the incident light incident at the second boundary is emitted at the fourth boundary.
  • the incident light incident from the first boundary is emitted from the third boundary; the incident light incident from the second boundary is emitted from the fourth boundary, ensuring that all the light incident from the inclined substructure 401a is emitted from the horizontal substructure 401b, thereby improving the utilization rate of light.
  • the angle between different outgoing light rays passing through the inclined substructure 401a and the horizontal substructure 401b and the normal of the display panel is less than the target value.
  • Light rays of different angles are incident from the inclined surface of the inclined substructure 401a, and are reflected back to the second substrate 20 after passing through the second substrate 20 and the liquid crystal layer 30, and are emitted from the horizontal surface of the horizontal substructure 401b.
  • the outgoing angles of the outgoing light rays can be similar and all less than a certain target value, for example, all less than 5 degrees.
  • the outgoing angles of light rays of different angles emitted from the horizontal substructure 401b are equal.
  • the incident light incident from the horizontal substructure 401 b is emitted at an emission angle of specular reflection.
  • the outgoing light When light is incident on the horizontal substructure 401b of the wedge-shaped structure 401, the outgoing light will be emitted at an angle of mirror reflection with the incident light; when light at different angles is incident on the horizontal structure 401b of the wedge-shaped structure 401, the reflected light will be emitted at their respective mirror reflection angles, that is, emitted from all directions, thereby enhancing the viewing angle and achieving a wide viewing angle display effect.
  • the number of the inclined substructures 401 a and the number of the horizontal substructures 401 b are the same and are both integers.
  • the inclined substructure 401a and the horizontal substructure 401b are arranged in pairs, which can ensure that the light incident from the inclined substructure 401a is emitted from the horizontal substructure 401b.
  • the number of each inclined substructure 401a and horizontal substructure 401b is an integer, which ensures that the light of the same color is emitted in the respective pixel area, avoiding crosstalk between adjacent lights of different colors, and improving the display effect.
  • FIG. 9 is a schematic diagram of a top view of the display panel shown in FIG. 5 . As shown in FIG. 9 , the wedge-shaped structures 401 are arranged in concentric circles with the center of the display panel as the center.
  • the wedge-shaped structures 401 can be arranged in concentric circles, so that the entire display panel can achieve a more uniform optical effect and improve the user experience.
  • the difference between any two of the refractive indices of the microstructured optical film layer 40 , the second substrate 20 , and the liquid crystal layer 30 is less than a preset value.
  • the refractive indexes of the microstructure optical film layer 40, the second substrate 20 and the liquid crystal layer 30 are similar, and the total reflection caused by the difference in the refractive index of each film layer can be avoided during the propagation of light, which affects the utilization rate of light.
  • the difference between any two of the refractive indices of the microstructure optical film layer 40, the second substrate 20 and the liquid crystal layer 30 is less than 0.2, so that when the light passes through two adjacent film layers, the refraction effect of the light has little effect on the propagation direction of the light, ensuring that the light enters the central viewing angle in the expected direction.
  • the refractive indices of the microstructure optical film layer 40, the second substrate 20 and the liquid crystal layer 30 are equal.
  • the first substrate 10 includes: a first base 101, a plurality of pixel electrodes 102, a driving circuit layer 103 and a first alignment layer 104; the plurality of pixel electrodes 102 are located on the base 101; the driving circuit layer 103 is located on a side of the pixel electrode 102 close to the first base 101; and the first alignment layer 104 is located on a side of the pixel electrode 102 away from the first base 101.
  • a plurality of pixel electrodes 102 are located on the first substrate 101. Different pixel electrodes can drive cholesteric liquid crystals in different pixel regions respectively. By applying different voltages, the cholesteric liquid crystals in different pixel regions reflect light of different colors respectively, thereby realizing color display. When realizing white display, different voltages can be applied to the pixel electrodes 102 in three adjacent pixel regions to realize reflection of red, green and blue light, and different color lights are mixed to form white light.
  • the driving circuit layer 103 may be composed of a plurality of pixel driving circuits, and the pixel driving circuits may be formed by conventional structures such as 2T1C, 3T1C, and 5T2C in the related art, which are not listed here one by one.
  • the driving circuit layer 103 may provide a pixel driving voltage to each pixel electrode 102 to drive the cholesteric liquid crystal in the liquid crystal layer 30 to deflect, thereby realizing a color display function.
  • the first alignment layer 104 may have a fixed alignment direction, as shown in FIG. 10a , which may fix the cholesteric liquid crystal along the alignment direction in the initial state, thereby ensuring that the cholesteric liquid crystal is regularly arranged and avoiding problems such as light leakage.
  • the second substrate 20 includes: a second base 201, a common electrode layer 202 and a second orientation layer 203; the common electrode layer 202 is located on a side of the second base 201 close to the first base 101; the second orientation layer 203 is located on a side of the common electrode layer 202 away from the second base 201.
  • the common electrode 202 can form an electric field with the pixel electrode 102 to drive the cholesteric liquid crystal in the liquid crystal layer 30 to deflect, thereby realizing a color display function.
  • the second alignment layer 203 may have a fixed alignment direction, and its alignment direction may be as shown in FIG. 10b, so that the cholesteric liquid crystal can be fixed along the alignment direction in the initial state, ensuring that the cholesteric liquid crystal is arranged regularly, and avoiding problems such as light leakage.
  • the alignment directions of the first alignment layer 104 and the second alignment layer 203 are antiparallel.
  • the display panel further includes: a support 204 located between the first alignment layer 104 and the second alignment layer 203 ; and cholesteric liquid crystals are filled between adjacent supports 204 .
  • the supports 204 can support the first substrate 10 and the second substrate 20 as a whole to form a liquid crystal box to maintain the thickness of the liquid crystal box so that the cholesteric liquid crystal is filled between adjacent supports 204, that is, to ensure that the cholesteric liquid crystal is filled in the formed liquid crystal box.
  • an embodiment of the present disclosure provides a display device, which includes a display panel as provided in any of the above embodiments.
  • the display device can specifically be an electronic device with a display function, such as a tablet computer, a computer monitor, or a laptop computer. Its specific implementation principles and beneficial effects are the same as the implementation principles and beneficial effects of the display panel provided above, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示面板及显示装置,属于显示技术领域,其可解决现有的显示面板的反射效率较低,中心视角光学效果较差的问题。显示面板包括:相对设置的第一基板(10)和第二基板(20)及位于第一基板(10)和第二基板(20)之间的液晶层(30);液晶层(30)的材料包括:胆甾相液晶;显示面板还包括:位于第二基板(20)背离第一基板(10)一侧的微结构光学膜层(40);入射光线由微结构光学膜层(40)侧入射经胆甾相液晶反射后再由微结构光学膜层(40)出射;微结构光学膜层(40)包括:多个楔形结构(401);至少部分楔形结构(401)的角度及尺寸均不同,以使得由侧视角出射且出射角度不同的光线调整至中心视角。

Description

显示面板及显示装置 技术领域
本公开属于显示技术领域,具体涉及一种显示面板及显示装置。
背景技术
随着互联网技术的不断发展,显示电子产品已经全面应用到各个领域。传统带有背光模组的液晶显示产品中,蓝光对人眼的伤害已经引起人们的广泛关注。消除蓝光对于人眼的伤害已经成为当前人们的强烈需求,尤其是近年来新冠肺炎(COVID-19)的流行,进一步推动了这种需求。
全反射显示技术以环境光线为光源,可以做到真正的消除蓝光达到护眼的效果,主要采用彩色全反射液晶技术和彩色电泳显示技术(即电子纸)两种。其中,彩色全反射液晶技术需要借助彩膜实现彩色显示,同时需要偏光片,反射率低,功耗高,成本高,且阳光下不可视,实际体验较差;彩色电泳显示技术也需借助彩膜,反射率低。并且,由于环境光线的发散性,大部分环境光线被反射后由侧视角出射,不会进入用户的中心视角,导致正视显示效果较差,严重降低了用户的使用体验。
发明内容
本公开旨在至少解决现有技术中存在的技术问题之一,提供一种显示面板及显示装置。
第一方面,本公开实施例提供了一种显示面板,其中,所述显示面板包括:相对设置的第一基板和第二基板及位于所述第一基板和所述第二基板之间的液晶层;所述液晶层的材料包括:胆甾相液晶;所述显示面板还包括:位于所述第二基板背离所述第一基板一侧的微结构光学膜层;入射光线由所 述微结构光学膜层侧入射经所述胆甾相液晶反射后再由所述微结构光学膜层出射;
所述微结构光学膜层包括:多个楔形结构;至少部分所述楔形结构的角度及尺寸均不同,以使得由侧视角出射且出射角度不同的光线调整至中心视角。
在一些示例中,所述楔形结构包括:倾斜子结构和水平子结构;所述倾斜子结构的倾斜面与所述水平子结构的水平面之间的夹角大于90度且小于180度。
在一些示例中,其中,
Figure PCTCN2022134623-appb-000001
其中,θ为倾斜子结构的倾斜面和水平面之间的夹角的互补角,θ 入射为入射光线和显示面板的法线之间的夹角,θ 出射为出射光线和显示面板的法线之间的夹角,n film为楔形结构的折射率。
在一些示例中,其中,
Figure PCTCN2022134623-appb-000002
Figure PCTCN2022134623-appb-000003
d 1=w 1tanθ
Figure PCTCN2022134623-appb-000004
其中,θ为倾斜子结构的倾斜面和水平面之间的夹角的互补角,w 1为倾斜子结构的宽度,w 2为水平子结构的宽度,d 1为倾斜子结构高出水平子结构 的高度,d 2为水平子结构的高度,θ 1为入射光线经过倾斜子结构后的折射光线与显示面板的法线之间的夹角,θ 2为入射光线经过楔形结构和第二基板的折射后,在第二基板中与显示面板的法线之间的夹角,θ 3为入射光线经过楔形结构、第二基板和液晶层的折射后,在液晶层中与显示面板的法线之间的夹角,P为像素区域的宽度,n为每个像素区域内楔形结构的数量,t为第二基板的厚度,d为液晶层的厚度。
在一些示例中,在同一所述楔形结构中,入射光线由所述倾斜子结构入射,且由所述水平子结构出射。
在一些示例中,沿着所述显示面板的边缘向中心方向,随着入射光线和显示面板的法线之间的夹角逐渐减小,所述倾斜子结构的倾斜面和水平面之间的夹角的互补角逐渐增大。
在一些示例中,在同一像素区域内,所述倾斜子结构和所述水平子结构的数量相同,且均为整数个。
在一些示例中,以所述显示面板的中心为中心,各个所述楔形结构成同心圆排布。
在一些示例中,所述微结构光学膜层、所述第二基板和所述液晶层的折射率中,任意两者的差值小于预设值。
在一些示例中,所述第一基板包括:第一基底、多个像素电极、驱动电路层和第一取向层;
所述多个像素电极位于所述第一基底上;
所述驱动电路层位于所述像素电极靠近所述第一基底的一侧;
所述第一取向层位于所述像素电极背离所述第一基底的一侧。
在一些示例中,所述第二基板包括:第二基底、公共电极层和第二取向层;
所述公共电极层位于所述第二基底靠近所述第一基底的一侧;
所述第二取向层位于所述公共电极层背离所述第二基底的一侧。
在一些示例中,所述第一取向层和所述第二取向层的取向方向反向平行。
在一些示例中,所述显示面板还包括:位于所述第一取向层和所述第二取向层之间的支撑物;
所述胆甾相液晶填充于相邻的所述支撑物之间。
第二方面,本公开实施例提供了一种显示装置,其中,所述显示装置包括如上述提供的显示面板。
附图说明
图1为本公开实施例提供的一种显示面板的结构示意图。
图2为图1所示的显示面板的光线反射原理示意图。
图3为图1所示的显示面板中较优方向的反射光路图。
图4为图1所示的显示面板的反射光线色域随入射角和出射角的变化示意图。
图5为本公开实施例提供的另一种显示面板的结构示意图。
图6为图5所示的显示面板中楔形结构的结构示意图。
图7为倾斜子结构的倾斜面和水平面的夹角随入射光角度和出射光角度的变化曲线。
图8为图5所示的显示面板的光线反射原理示意图。
图9为图5所示的显示面板的俯视结构示意图。
图10a为本公开实施例提供的显示面板中的第一取向层的示意图。
图10b为本公开实施例提供的显示面板中的第二取向层的示意图。
具体实施方式
为使本领域技术人员更好地理解本公开的技术方案,下面结合附图和具体实施方式对本公开作进一步详细描述。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”、“一”或者“该”等类似词语也不表示数量限制,而是表示存在至少一个。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
第一方面,本公开实施例提供了一种显示面板,图1为本公开实施例提供的一种显示面板的结构示意图,如图1所示,该显示面板包括:相对设置的第一基板10和第二基板20及位于第一基板10和第二基板20之间的液晶层30;液晶层30的材料包括:胆甾相液晶。
图2为图1所示的显示面板的光线反射原理示意图,如图2所示,第一基板10与第二基板20之间不施加驱动电压时,锥形螺旋胆甾相液晶呈现焦锥织构,可以将入射光线进行散射;第一基板10与第二基板20之间施加驱动电压时,锥形螺旋胆甾相液晶由焦锥织构转变为锥形螺旋织构,此时可以反射与其螺距匹配的可见光,施加不同的驱动电压可以是的不同区域的胆甾相液晶发生不同角度的偏转,这样可以反射不同颜色的可见光,从而实现彩色显示。
胆甾相液晶由于特殊的锥形螺旋结构,当光线倾斜入射时,在与入射光 线角度呈现镜面反射的角度方向具有最优的反射率和颜色,而其他角度的反射光线较差于镜面反射角度的光学性能。图3为图1所示的显示面板中较优方向的反射光路图,其中,θ 入射为入射光线和显示面板的法线之间的夹角,θ 折射为入射光线经过第二基板后折射光线和显示面板的法线之间的夹角,θ 出射为出射光线和显示面板的法线之间的夹角。如果液晶层30与第二基板20的折射率相近或者相等,则光线以θ 折射入射到液晶层30,同时经过第二基板20再次出射,出射光线与入射光纤呈现逆光路,即θ 入射等于θ 出射,这样液晶层30中的胆甾相液晶可以借助于环境光线实现全反射显示。
本公开实施例提供的显示面板可以不必采用彩膜、偏光片等结构即可实现全反射彩色显示,避免蓝光对人眼的伤害。同时该显示面板中可以不必采用彩膜、偏光片等器件,可以提高光线的反射效率,提升显示面板的显示效果,并且可以降低显示面板的厚度,有利于显示面板的轻薄化。
用户在直视观看过程中,会将大部分的显示面板正面的环境光线挡住,故大部分环境光线由显示面板的侧面入射,即与显示面板的法线方向呈一定的夹角入射,结合上述镜面反射的出射光线的光学效果最优,故在中心视角内人眼无法观察到最优光学效果的显示图像。
图4为图1所示的显示面板的反射光线色域随入射角和出射角的变化示意图,由图4中可以看出,当环境光线的入射角为30°时,出射角在30°左右可以达成最大色域,即人眼在入射光线的镜面反射角度可以观察到最大色域,最优光学效果的图像。同样地,当环境光线的入射角为45°时,出射角在45°左右可以达成最大色域,当环境光线的入射角为60°时,出射角在60°左右可以达成最大色域。
为了保证显示面板的中心视角内具有最优的光学效果,本公开实施例提供了另一种显示面板,图5为本公开实施例提供的另一种显示面板的结构示意图,图5所示的显示面板与图1所示的显示面板的不同之处在于,图5所 示的显示面板在图1所示的显示面板的增加了微结构光学膜层40。入射光线可以由微结构光学膜层40侧入射经胆甾相液晶反射后再由微结构光学膜层40出射,如图5所示,该微结构光学膜层40位于第二基板20背离第一基板10的一侧,微结构光学膜层40包括:多个楔形结构401;至少部分楔形结构401的角度及尺寸均不同,以使得由侧视角出射且出射角度不同的光线调整至中心视角。
本公开实施例提供的显示面板中,楔形结构401可以对入射光线进行折射,由于楔形结构401具有与水平面相交的倾斜面,光线在传播过程中,楔形结构401可以对光线的传播方向进行调整,使得光线由中心视角出射。同时,多个楔形结构401的角度及尺寸均不相同,可以将由侧视角出射且出射角度不同的光线均调整至中心视角,提升中心视角出射光线的强度,因此可以提升中心视角的光学特性,从而可以达到高色域高反射效率的显示效果,提升用户使用体验。
在此需要说明的是,中心视角可以为用户视线与显示面板的法线之间的夹角小于60度的视角,侧视角可以为用户视线与显示面板的法线之间的夹角大于或等于60度的视角。当然,也可以根据实际需要调整中心视角与侧视角的范围,在此不再进行限定。
图6为图5所示的显示面板中楔形结构的结构示意图,如图6所示,楔形结构包括:倾斜子结构401a和水平子结构401b;倾斜子结构401a的倾斜面与水平子结构401b的水平面之间的夹角大于90度且小于180度。
倾斜子结构401a的倾斜面与水平子结构401b的水平面之间的夹角成钝角,可以保证入射光线照射至倾斜子结构401a的倾斜面,并由水平结构401b的水平面出射,提高光线的利用率。入射光线照射至倾斜子结构401a的倾斜面,并由水平结构401b的水平面出射时,由于入射面与出射面之间的夹角,可以改变光线的传播方向,打破原有的镜面反射的传播路径,使得出射 光线调整至中心视角内。可以通过设置各个楔形结构401内的入射面与出射面之间的夹角不同,可以将不同入射角度的光线均调整至中心视角,提升中心视角出射光线的强度。
以图6所示的楔形结构为例,倾斜子结构401a的倾斜面和水平面之间的夹角θ可以根据入射光线的角度,以及所需要的出射光线的角度来进行设置。具体计算过程如下,
Figure PCTCN2022134623-appb-000005
Figure PCTCN2022134623-appb-000006
其中,θ为倾斜子结构的倾斜面和水平面之间的夹角的互补角,θ 入射为入射光线和显示面板的法线之间的夹角,θ 出射为出射光线和显示面板的法线之间的夹角,θ 1为入射光线经过倾斜子结构后的折射光线与显示面板的法线之间的夹角,n film为楔形结构的折射率,n 空气为空气的折射率。
为了提升中心视角的光学特性,需要增加接近显示面板的法线方向出射光线的数量,故设计不同的楔形结构将入射光线经过微结构光学膜层40、第二基板20及液晶层30后的出射光线角度调整到接近法线方向。在实际效果中,如果出射光线完全平行于法线方向,则正视角光学效果最好,但如果经过倾斜子结构401a的光线垂直入射到液晶层30中,基于液晶层30的镜面 反射,反射光线将和入射光线光路重合,则再次经过第二基板20和微结构光学膜层40的折射后,出射光线将以入射光方向进入人眼,即无法增强中心视角的光学特性。故设计中将θ 1调整到较小的角度,则经过液晶层30的镜面反射后,反射光线将射入水平子结构401b,从而以较小的角度θ 出射进入人眼。
优选地,微结构光学膜层40和第二基板20的折射率相同,则进入液晶层30的入射光线与显示面板的法线之间的夹角同样为θ 1,反射光线和显示面板的法线之间的夹角也为θ 1,则n 空气*sinθ 出射=n film*sinθ 1
假设第二基板20的平均折射率为1.5,同时设计n film=1.5,则倾斜子结构401b的倾斜面和水平面的夹角θ的计算公式简化为:
Figure PCTCN2022134623-appb-000007
从而可以计算出将不同角度的入射光调整到设定出射光角度时需要的倾斜子结构401b的倾斜面和水平面的夹角θ。
图7为倾斜子结构的倾斜面和水平面的夹角随入射光角度和出射光角度的变化曲线,如图7所示,如当需要出射光线以与显示面板的法线呈3°出射时,即θ 出射=3°,根据公式n 空气*sinθ 出射=n film*sinθ 1,及n film=1.5,n 空气=1,得出θ 1=2°,再根据
Figure PCTCN2022134623-appb-000008
即可计算出不同入射角度对应的倾斜子结构401b的倾斜面和水平面的夹角θ。
当需要出射光线以与显示面板的法线呈7.5°出射时,即θ 出射=7.5°,根据公式n 空气*sinθ 出射=n film*sinθ 1,及n film=1.5,n 空气=1,得出θ 1=5°,进而计算出不同入射角度对应的倾斜子结构401b的倾斜面和水平面的夹角θ。
当需要光线以与显示器法线呈15°出射时,即θ 出射=15°,根据公式 n 空气*sinθ 出射=n film*sinθ 1,及n film=1.5,n 空气=1,得出θ 1=10°,进而计算出不同入射角度对应的倾斜子结构401b的倾斜面和水平面的夹角θ。
基于以上,当光线入射到楔形结构401的倾斜子结构401b上时,根据倾斜子结构401b的倾斜面和水平面的夹角θ,与之相匹配的特定方向的入射光将被调制为从水平子结构401b以较小的角度出射,从而将与此角度光线对应的反射光线角度调整到更接近中心视角;当不同入射角度的光线分别入射到与之相匹配的倾斜子结构401a上时,反射光线都将以较小的角度出射,从而增强中心视角的光学特性。
当光线入射到楔形结构401的水平子结构401b上时,出射光线将以与入射光线成镜面反射的角度出射;当不同角度的光线入射到楔形结构401的水平结构401b上时,反射光线将以各自的镜面反射角度出射,即从各个方向出射,从而增强视角,达到宽视角的显示效果。
在一些实施例中,图8为图5所示的显示面板的光线反射原理示意图,如图8所示,倾斜子结构401a和水平子结构401b的尺寸根据入射光线的角度、所需要的出射光线的角度、第二基板和液晶层的厚度、像素区域的宽度,楔形结构的数量来进行设置。具体计算过程如下,
Figure PCTCN2022134623-appb-000009
Figure PCTCN2022134623-appb-000010
w 1=x 1+2x 2+2x 3+x 4=(d 1+d 2)tanθ 1+2t tanθ 2+d tanθ 3+d 2tanθ 1
w 2=2x 2+2x 3+2x 4=2t tanθ 2+d tanθ 3+2d 2tanθ 1
w 1-w 2=x 1-x 4=d 1tanθ 1=w 1tanθtanθ 1
Figure PCTCN2022134623-appb-000011
Figure PCTCN2022134623-appb-000012
Figure PCTCN2022134623-appb-000013
Figure PCTCN2022134623-appb-000014
Figure PCTCN2022134623-appb-000015
其中,θ为倾斜子结构的倾斜面和水平面之间的夹角的互补角,w 1为倾斜子结构的宽度,w 2为水平子结构的宽度,d 1为倾斜子结构高出水平子结构的高度,d 2为水平子结构的高度,θ 1为入射光线经过倾斜子结构后的折射光线与显示面板的法线之间的夹角,θ 2为入射光线经过楔形结构和第二基板的折射后,在第二基板中与显示面板的法线之间的夹角,θ 3为入射光线经过楔形结构、第二基板和液晶层的折射后,在液晶层中与显示面板的法线之间的夹角,P为像素区域的宽度,n为每个像素区域内楔形结构的数量,t为第二基板的厚度,d为液晶层的厚度。
在一些实施例中,在同一楔形结构401中,入射光线由倾斜子结构401a入射,且由水平子结构401b出射。
在实际应用中,可以通过控制倾斜子结构401a和水平子结构401b的尺寸及角度,使得入射光线由倾斜子结构401a入射时,可以通过水平子结构401b出射,可以改变光线的传播方向,打破原有的镜面反射的传播路径,使得出射光线调整至中心视角内,并且可以提高光线的利用率。
在一些实施例中,沿着显示面板的边缘向中心方向,随着入射光线和显 示面板的法线之间的夹角逐渐减小,倾斜子结构401a的倾斜面和水平面之间的夹角的互补角逐渐增大。
各个楔形结构401的倾斜子结构401a的倾斜面和水平面之间的夹角的互补角是不同的,其根据入射光线的入射角度进行设置,例如,沿着显示面板的边缘向中心方向,随着入射光线和显示面板的法线之间的夹角逐渐减小,倾斜子结构401a的倾斜面和水平面之间的夹角的互补角逐渐增大,可以将入射光线更加均匀反射至中心视角,提高显示面板的显示效果。
在一些实施例中,倾斜子结构401a具有沿入射光线方向依次设置的第一边界和第二边界,水平子结构401b具有沿着出射光线方向依次设置的第三边界和第四边界;由第一边界处入射的入射光线,在第三边界处出射;由第二边界处入射的入射光线,在第四边界处出射。
由第一边界处入射的入射光线,在第三边界处出射;由第二边界处入射的入射光线,在第四边界处出射,保证从倾斜子结构401a入射的光线全部从水平子结构401b出射,提高光线的利用率。
在一些实施例中,经过倾斜子结构401a和水平子结构401b的不同的出射光线与显示面板的法线之间的夹角度数小于目标值。不同角度的光线由倾斜子结构401a的倾斜面入射,经过第二基板20、液晶层30后再反射回第二基板20,由水平子结构401b的水平面出射,可以通过设置不同的倾斜子结构401a的尺寸和角度,使得出射的光线的出射角相近,均小于某一目标值,例如均小于5度,这样可以保证大部分光线可以进入用户的中心视角,从而提高中心视角的光学效果,提升用户的使用体验。优选地,不同角度的光线由水平子结构401b出射的光线的出射角均相等。
在一些实施例中,由水平子结构401b入射的入射光线以镜面反射的出射角度出射。
当光线入射到楔形结构401的水平子结构401b上时,出射光线将以与入射光线成镜面反射的角度出射;当不同角度的光线入射到楔形结构401的水平结构401b上时,反射光线将以各自的镜面反射角度出射,即从各个方向出射,从而增强视角,达到宽视角的显示效果。
在一些实施例中,在同一像素区域内,倾斜子结构401a和水平子结构401b的数量相同,且均为整数个。
在实际应用中,倾斜子结构401a和水平子结构401b是成对设置的,可以保证由倾斜子结构401a入射的光线均由水平子结构401b出射,同时,各个倾斜子结构401a和水平子结构401b的数量均为整数个,保证同一颜色的光线在各自的像素区域内出射,避免相邻的不同颜色的光线相互串扰,提高显示效果。
图9为图5所示的显示面板的俯视结构示意图,如图9所示,以显示面板的中心为中心,各个楔形结构401成同心圆排布。
以显示面板的中心为中心,各个楔形结构401可以成同心圆排布,可以使得整个显示面板达到较均匀的光学效果,提高用户使用体验。
在一些实施例中,微结构光学膜层40、第二基板20和液晶层30的折射率中,任意两者的差值小于预设值。
微结构光学膜层40、第二基板20和液晶层30的折射率相近,在光线传播过程中可以避免各个膜层折射率差异造成全反射,影响光线的利用率。例如,微结构光学膜层40、第二基板20和液晶层30的折射率中,任意两者的差值小于0.2,这样可以保证光线经过相邻的两个膜层时,光线的折射效果对光线的传播方向的影响较小,保证光线朝着预期的方向进入中心视角。可以理解的是,微结构光学膜层40、第二基板20和液晶层30的折射率中,任意两者的差值越小对光线的传播方向影响越小,优选地,微结构光学膜层40、 第二基板20和液晶层30的折射率均相等。
在一些实施例中,如图1和图5所示,第一基板10包括:第一基底101、多个像素电极102、驱动电路层103和第一取向层104;多个像素电极102位于基底101上;驱动电路层103位于像素电极102靠近第一基底101的一侧;第一取向层104位于像素电极102背离第一基底101的一侧。
多个像素电极102位于第一基底101上,不同的像素电极可以对不同像素区域内的胆甾相液晶分别进行驱动,通过施加不同电压使得不同像素区域内的胆甾相液晶分别反射不同颜色的光线,实现彩色显示。当实现白色显示时,可以将相邻的三个像素区域中的像素电极102施加不同的电压,实现红色、绿色和蓝色的光线的反射,已将不同的颜色光线进行混合形成白色光线。
驱动电路层103可以由多个像素驱动电路构成,像素驱动电路可以采用相关技术中的2T1C、3T1C、5T2C等常规的结构形成,在此不再进行一一列举。可以通过驱动电路层103为各个像素电极102提供像素驱动电压,以驱动液晶层30中的胆甾相液晶发生偏转,实现彩色显示功能。
第一取向层104可以具有固定的取向方向,其取向方向可以如图10a所示,可以使得胆甾相液晶在初始状态沿着该取向方向固定,保证胆甾相液晶规则排布,避免造成漏光等问题。
在一些实施例中,如图1和图5所示,第二基板20包括:第二基底201、公共电极层202和第二取向层203;公共电极层202位于第二基底201靠近第一基底101的一侧;第二取向层203位于公共电极层202背离第二基底201的一侧。
公共电极202可以与像素电极102之间形成电场以驱动液晶层30中的胆甾相液晶发生偏转,实现彩色显示功能。
第二取向层203可以具有固定的取向方向,其取向方向可以如图10b所 示,可以使得胆甾相液晶在初始状态沿着该取向方向固定,保证胆甾相液晶规则排布,避免造成漏光等问题。具体地,第一取向层104和第二取向层203的取向方向反向平行。
在一些实施例中,如图1和图5所示,显示面板还包括:位于第一取向层104和第二取向层203之间的支撑物204;胆甾相液晶填充于相邻的支撑物204之间。
支撑物204可以支撑整体的第一基板10和第二基板20,形成液晶盒,来维持液晶盒的盒厚,使得胆甾相液晶填充于相邻的支撑物204之间,即保证胆甾相液晶填充于形成的液晶盒中。
第二方面,本公开实施例提供了一种显示装置,该显示装置包括如上述任一实施例提供的显示面板,该显示装置具体可以为平板电脑、电脑显示器、笔记本电脑等具有显示功能的电子设备,其具体实现原理及有益效果与上述提供的显示面板的实现原理及有益效果相同,在此不再进行赘述。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (13)

  1. 一种显示面板,其中,所述显示面板包括:相对设置的第一基板和第二基板及位于所述第一基板和所述第二基板之间的液晶层;所述液晶层的材料包括:胆甾相液晶;所述显示面板还包括:位于所述第二基板背离所述第一基板一侧的微结构光学膜层;入射光线由所述微结构光学膜层侧入射经所述胆甾相液晶反射后再由所述微结构光学膜层出射;
    所述微结构光学膜层包括:多个楔形结构;至少部分所述楔形结构的角度及尺寸均不同,以使得由侧视角出射且出射角度不同的光线调整至中心视角。
  2. 根据权利要求1所述的显示面板,其中,所述楔形结构包括:倾斜子结构和水平子结构;所述倾斜子结构的倾斜面与所述水平子结构的水平面之间的夹角大于90度且小于180度。
  3. 根据权利要求2所述的显示面板,其中,
    Figure PCTCN2022134623-appb-100001
    其中,θ为倾斜子结构的倾斜面和水平面之间的夹角的互补角,θ 入射为入射光线和显示面板的法线之间的夹角,θ 出射为出射光线和显示面板的法线之间的夹角,n film为楔形结构的折射率。
  4. 根据权利要求2所述的显示面板,其中,
    Figure PCTCN2022134623-appb-100002
    Figure PCTCN2022134623-appb-100003
    d 1=w 1tanθ
    Figure PCTCN2022134623-appb-100004
    其中,θ为倾斜子结构的倾斜面和水平面之间的夹角的互补角,w 1为倾斜子结构的宽度,w 2为水平子结构的宽度,d 1为倾斜子结构高出水平子结构的高度,d 2为水平子结构的高度,θ 1为入射光线经过倾斜子结构后的折射光线与显示面板的法线之间的夹角,θ 2为入射光线经过楔形结构和第二基板的折射后,在第二基板中与显示面板的法线之间的夹角,θ 3为入射光线经过楔形结构、第二基板和液晶层的折射后,在液晶层中与显示面板的法线之间的夹角,P为像素区域的宽度,n为每个像素区域内楔形结构的数量,t为第二基板的厚度,d为液晶层的厚度。
  5. 根据权利要求4所述的显示面板,其中,在同一所述楔形结构中,入射光线由所述倾斜子结构入射,且由所述水平子结构出射。
  6. 根据权利要求4所述的显示面板,其中,沿着所述显示面板的边缘向中心方向,随着入射光线和显示面板的法线之间的夹角逐渐减小,所述倾斜子结构的倾斜面和水平面之间的夹角的互补角逐渐增大。7、根据权利要求4所述的显示面板,其中,在同一像素区域内,所述倾斜子结构和所述水平子结构的数量相同,且均为整数个。
  7. 根据权利要求1所述的显示面板,其中,以所述显示面板的中心为中心,各个所述楔形结构成同心圆排布。
  8. 根据权利要求1所述的显示面板,其中,所述微结构光学膜层、所述第二基板和所述液晶层的折射率中,任意两者的差值小于预设值。
  9. 根据权利要求1所述的显示面板,其中,所述第一基板包括:第一 基底、多个像素电极、驱动电路层和第一取向层;
    所述多个像素电极位于所述第一基底上;
    所述驱动电路层位于所述像素电极靠近所述第一基底的一侧;
    所述第一取向层位于所述像素电极背离所述第一基底的一侧。
  10. 根据权利要求10所述的显示面板,其中,所述第二基板包括:第二基底、公共电极层和第二取向层;
    所述公共电极层位于所述第二基底靠近所述第一基底的一侧;
    所述第二取向层位于所述公共电极层背离所述第二基底的一侧。
  11. 根据权利要求11所述的显示面板,其中,所述第一取向层和所述第二取向层的取向方向反向平行。
  12. 根据权利要求11所述的显示面板,其中,所述显示面板还包括:位于所述第一取向层和所述第二取向层之间的支撑物;
    所述胆甾相液晶填充于相邻的所述支撑物之间。
  13. 一种显示装置,其中,所述显示装置包括如权利要求1至13任一项所述的显示面板。
PCT/CN2022/134623 2022-11-28 2022-11-28 显示面板及显示装置 WO2024113079A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280004657.8A CN118511120A (zh) 2022-11-28 2022-11-28 显示面板及显示装置
PCT/CN2022/134623 WO2024113079A1 (zh) 2022-11-28 2022-11-28 显示面板及显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/134623 WO2024113079A1 (zh) 2022-11-28 2022-11-28 显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2024113079A1 true WO2024113079A1 (zh) 2024-06-06

Family

ID=91322613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134623 WO2024113079A1 (zh) 2022-11-28 2022-11-28 显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN118511120A (zh)
WO (1) WO2024113079A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010040717A1 (en) * 2000-03-31 2001-11-15 Kiyoshi Minoura Reflective display device and retro-reflector used therefor
CN2814453Y (zh) * 2005-08-09 2006-09-06 比亚迪股份有限公司 反射型彩色液晶显示器
CN101772726A (zh) * 2007-08-09 2010-07-07 夏普株式会社 液晶显示装置
CN102411225A (zh) * 2010-09-17 2012-04-11 上海天马微电子有限公司 液晶显示装置及其驱动模式
CN102629063A (zh) * 2011-08-02 2012-08-08 京东方科技集团股份有限公司 胆甾液晶显示器及其制备方法
CN110109310A (zh) * 2019-06-25 2019-08-09 京东方科技集团股份有限公司 一种显示面板及其制备方法
CN111025720A (zh) * 2019-12-16 2020-04-17 北京小米移动软件有限公司 显示屏、显示装置及显示方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010040717A1 (en) * 2000-03-31 2001-11-15 Kiyoshi Minoura Reflective display device and retro-reflector used therefor
CN2814453Y (zh) * 2005-08-09 2006-09-06 比亚迪股份有限公司 反射型彩色液晶显示器
CN101772726A (zh) * 2007-08-09 2010-07-07 夏普株式会社 液晶显示装置
CN102411225A (zh) * 2010-09-17 2012-04-11 上海天马微电子有限公司 液晶显示装置及其驱动模式
CN102629063A (zh) * 2011-08-02 2012-08-08 京东方科技集团股份有限公司 胆甾液晶显示器及其制备方法
CN110109310A (zh) * 2019-06-25 2019-08-09 京东方科技集团股份有限公司 一种显示面板及其制备方法
CN111025720A (zh) * 2019-12-16 2020-04-17 北京小米移动软件有限公司 显示屏、显示装置及显示方法

Also Published As

Publication number Publication date
CN118511120A (zh) 2024-08-16

Similar Documents

Publication Publication Date Title
US11126022B2 (en) Display device and display method thereof
TW588171B (en) Liquid crystal display device
US5359691A (en) Backlighting system with a multi-reflection light injection system and using microprisms
TWI321683B (en) Polarized light source system and liquid crystal display using the same
WO2017148024A1 (zh) 液晶显示器以及电子设备
WO2017148010A1 (zh) 液晶显示器以及电子设备
WO2020007181A1 (zh) 显示面板及显示装置
US10684529B2 (en) Display panel, method for adjusting grayscale of the same, and display device
US11287688B2 (en) Display apparatus
WO2020042891A1 (zh) 显示装置
US9494724B2 (en) Liquid crystal display device
TWI344562B (zh)
WO2021068661A1 (zh) 液晶显示面板及其驱动方法、显示装置
US20210181580A1 (en) Backlight module and display apparatus
TW201915982A (zh) 拼接顯示裝置
US20180107059A1 (en) Liquid crystal display module and liquid crystal display
US8253888B2 (en) Liquid crystal display device
CN115016156A (zh) 宽窄视角可切换的显示装置及驱动方法
CN107505794A (zh) 一种显示装置及背光源
US10969634B2 (en) Liquid crystal display panel, liquid crystal display device and method of controlling gray scale of liquid crystal display device
CN215729193U (zh) 背光模组及显示装置
CN106847208A (zh) 一种液晶显示器及其驱动方法
WO2024113079A1 (zh) 显示面板及显示装置
CN114624906A (zh) 宽窄视角区域可调的液晶显示装置及驱动方法
TW201229638A (en) Pixel structure and display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22966684

Country of ref document: EP

Kind code of ref document: A1