WO2024111528A1 - Algae propagation control device - Google Patents
Algae propagation control device Download PDFInfo
- Publication number
- WO2024111528A1 WO2024111528A1 PCT/JP2023/041538 JP2023041538W WO2024111528A1 WO 2024111528 A1 WO2024111528 A1 WO 2024111528A1 JP 2023041538 W JP2023041538 W JP 2023041538W WO 2024111528 A1 WO2024111528 A1 WO 2024111528A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- algae
- culture solution
- carbon dioxide
- value
- concentration
- Prior art date
Links
- 241000195493 Cryptophyta Species 0.000 title claims abstract description 122
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims abstract description 114
- 239000001569 carbon dioxide Substances 0.000 claims abstract description 57
- 229910002092 carbon dioxide Inorganic materials 0.000 claims abstract description 57
- 239000007789 gas Substances 0.000 claims abstract description 37
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 32
- 239000001301 oxygen Substances 0.000 claims abstract description 32
- 230000020477 pH reduction Effects 0.000 claims abstract description 24
- 239000007788 liquid Substances 0.000 claims description 37
- 230000005791 algae growth Effects 0.000 claims description 20
- 230000012010 growth Effects 0.000 claims description 14
- 230000029553 photosynthesis Effects 0.000 claims description 10
- 238000010672 photosynthesis Methods 0.000 claims description 10
- 238000005259 measurement Methods 0.000 claims description 9
- 230000009467 reduction Effects 0.000 claims description 8
- 230000000694 effects Effects 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 239000001963 growth medium Substances 0.000 abstract description 8
- 239000000243 solution Substances 0.000 description 87
- 235000016425 Arthrospira platensis Nutrition 0.000 description 11
- 240000002900 Arthrospira platensis Species 0.000 description 11
- 229940082787 spirulina Drugs 0.000 description 11
- 238000000034 method Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 239000003344 environmental pollutant Substances 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 101001084266 Homo sapiens Parathyroid hormone 2 receptor Proteins 0.000 description 4
- 101000589873 Homo sapiens Parathyroid hormone/parathyroid hormone-related peptide receptor Proteins 0.000 description 4
- 102100030869 Parathyroid hormone 2 receptor Human genes 0.000 description 4
- 102100032256 Parathyroid hormone/parathyroid hormone-related peptide receptor Human genes 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000035515 penetration Effects 0.000 description 3
- 241000700605 Viruses Species 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 150000002823 nitrates Chemical class 0.000 description 2
- 230000002040 relaxant effect Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000003287 bathing Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 235000012489 doughnuts Nutrition 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 230000004800 psychological effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/04—Apparatus for enzymology or microbiology with gas introduction means
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M3/00—Tissue, human, animal or plant cell, or virus culture apparatus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/12—Unicellular algae; Culture media therefor
Definitions
- the present invention relates to an algae growth control device that reduces carbon dioxide in the outside air through the photosynthesis of algae and controls the growth of algae in carbon dioxide-reducing interior items that can be used as interior décor.
- Patent Document 1 the inventor provides an air purifier that uses spirulina, a type of algae, to effectively purify the air while also achieving a good appearance.
- the air purifying device previously proposed by the inventor uses a display container as part of a circulation system that circulates spirulina and spirulina culture solution, and is equipped with an intake port for taking in outside air into this circulation system, and an oxygen separation device for separating oxygen.
- a light-emitting body is inserted into the display container. Outside air is taken in through the intake port, and the carbon dioxide contained in the outside air is converted into oxygen, while pollutants are dissolved in the culture solution. Therefore, the gas separated by the oxygen separation device is one in which pollutants have been removed and carbon dioxide has been converted into oxygen.
- the previously proposed air purifying device not only purifies air, but also looks nice, as the light-emitting body emits light inside the display container.
- the present invention was made with an eye on these problems, and provides an algae growth control device that controls the growth of algae in carbon dioxide reduction interiors.
- the invention for solving the above problem is an algae growth control device that controls the growth of algae in an algae culture solution in a carbon dioxide reduction interior, comprising a culture vessel in which an algae culture solution is stored, an outside air introduction nozzle attached to the culture vessel, and a light source device that irradiates light toward the culture vessel, and the light irradiated toward the culture vessel is visible as it passes through the culture vessel, and the outside air blown into the algae culture solution from the outside air introduction nozzle reduces carbon dioxide and is converted into oxygen due to the effect of photosynthesis by the algae in the algae culture solution as it rises through the algae culture solution, and is discharged from an opening provided in the culture vessel.
- the device comprises a pH sensor that measures the pH value of the algae culture solution, an oxygen concentration sensor that measures the oxygen concentration of the exhaust gas discharged from the culture vessel, and a pH reduction device that reduces and controls the pH value of the algae culture solution, and is characterized in that it executes pH reduction control when the measurement value of the pH sensor exceeds a first threshold value and it is determined that the measurement value of the oxygen concentration sensor has exceeded the first threshold value, and stops execution of pH reduction control when it is determined that the measurement value of the pH sensor falls below a second threshold value, which is a pH value lower than the first threshold value.
- the algae present in the algae culture medium are species whose growth is promoted in an alkaline solution, and a specific example is spirulina.
- pH reduction control is executed when the measurement value of the pH sensor exceeds the first threshold value and it is determined that the measurement value of the oxygen concentration sensor exceeds the first threshold concentration, so that an increase in the pH value of the algae culture liquid can be suppressed. This makes it possible to suppress the growth speed of the algae. Furthermore, since execution of pH reduction control is stopped when the measurement value of the pH sensor falls below a second threshold value, which is a pH concentration lower than the first threshold value, excessive suppression of the growth speed of the algae can be prevented.
- the pH reduction device is characterized by having a collection container for collecting the algae culture solution, and a replenishment liquid bottle for replenishing the algae culture solution with a replenishment liquid for reducing the pH of the algae culture solution.
- the pH reduction device has a collection container for collecting the algal culture solution and a replenishment liquid bottle for replenishing the algal culture solution with replenishment liquid for reducing the pH of the algal culture solution, so that it is possible to reduce the pH value of the algal culture solution and also reduce the algae concentration in the algal culture solution.
- the culture vessel is filled with an algae culture solution, and the pH value of the replenisher is lower than the initial pH value of the algae culture solution.
- the pH value of the replenisher liquid is lower than the initial pH value of the algal culture liquid, so by adding the replenisher liquid to the algal culture liquid, the effect of reducing the pH value of the algal culture liquid is even greater.
- the pH reduction device is characterized by having a carbon dioxide introduction device that separates outside air into high-concentration carbon dioxide gas containing a higher concentration of carbon dioxide than the outside air and low-concentration carbon dioxide gas containing a lower concentration of carbon dioxide than the outside air, and injects the high-concentration carbon dioxide gas into the algae culture solution via an outside air introduction nozzle while discharging the low-concentration carbon dioxide gas to the outside.
- a carbon dioxide introduction device that separates outside air into high-concentration carbon dioxide gas containing a higher concentration of carbon dioxide than the outside air and low-concentration carbon dioxide gas containing a lower concentration of carbon dioxide than the outside air
- FIG. 1 is a block diagram of an algae growth control device according to an embodiment of the present invention.
- FIG. 2 is a partial front cross-sectional view of the carbon dioxide reduction interior of the vehicle.
- FIG. 2 is a plan cross-sectional view of the light source device.
- 2 is a diagram showing the configuration of a control device in the algae growth inhibition device.
- FIG. 11 is a flowchart illustrating the process of algae growth control.
- the culture vessel 10 in which the algae culture solution L1 is stored is connected to the algae growth control device 2.
- the algae growth control device 2 has a pH sensor SE1, an oxygen concentration sensor SE2, a pH reduction device 3, etc.
- the pH reduction device 3 is composed of two devices, a first control device 30 and a second control device 40, and is detachably connected to the culture vessel 10 via connectors C1, C2, and C3.
- the algae in the algae culture solution L1 is exemplified as spirulina.
- examples of components of the culture solution for culturing spirulina include, but are not limited to, those shown in Table 1.
- the A5-solution in the table means that 1 mL of A5-solution, which contains the components from boric acid to molybdenum oxide in the amounts shown in the table, is contained in 1 L of algae culture solution.
- the culture medium shown in Table 1 is alkaline, so it easily absorbs acidic pollutants in the air, such as nitrates and sulfates, and is effective at removing pollutants.
- Spirulina is cultivated optimally in an alkaline culture medium, which creates an environment in which other algae that grow in acidic liquids have a hard time growing. This helps to prevent contamination by other algae.
- the light emitted from the light source device 20 is configured to pass through the culture vessel 10 and the algal culture solution L1 and be visible. Irradiating the algal culture solution L1 promotes photosynthesis in the algae. Also, visually seeing the algal culture solution L1 emitting green light can enhance the relaxing effect.
- the first control device 30 has a collection container 31, a refill bottle 32, and is equipped with a pH sensor SE1 that measures the pH value of the algae culture solution L1. It is also preferable to provide a heater (not shown) to maintain the temperature of the algae culture solution L1 within a predetermined range. This maintains the activity of the algae and creates an appropriate growth environment.
- the collection vessel 31 is a vessel for collecting the algae culture solution L1 with a pH above a predetermined value, and is connected to the culture vessel 10 via a switching valve V1.
- the switching valve V1 is an electromagnetic three-way valve.
- the algae culture solution L1 stored in the culture vessel 10 is taken into the through pipe 50 and passes through the connector C1, the circulation pump P1, the switching valve V1, and the connector C2, before being sprayed from the culture solution circulation nozzle 35 into the algae culture solution L1.
- the spray direction for example, spraying along the circumferential direction
- a spiral flow is formed in the algae culture solution L1 in the culture vessel 10.
- the replenishment liquid bottle 32 stores replenishment liquid L2.
- the pH value of the replenishment liquid L2 is preferably lower than the pH value of the algae culture liquid L1 in the initial state.
- the replenishment liquid L2 is pumped into the culture vessel 10 by the liquid delivery pump P3.
- a check valve B1 is provided to prevent the algae culture liquid L1 circulating through the first control device 30 from flowing back into the replenishment liquid bottle 32.
- the capacity of the refill bottle 32 is 2 liters, and the capacity of the collection container 31 is 2 liters, but this is not limited to this.
- the second control device 40 has an outside air intake nozzle 41 connected to its tip.
- outside air EA that has passed through the air filter 42 passes through the outside air intake nozzle 41 and turns into fine, swirling bubbles that are blown into the algae culture solution L1, where they diffuse and rise.
- the bubbles rise along the swirling flow. This allows the bubbles to remain in the algae culture solution L1 for a longer period of time.
- the carbon dioxide introduction device 80 separates the carbon dioxide into high-concentration carbon dioxide gas A1 (hereafter referred to as high-concentration gas A1), which contains a higher concentration of carbon dioxide than the outside air EA, and low-concentration carbon dioxide gas A2 (hereafter referred to as low-concentration gas A2), which contains a lower concentration of carbon dioxide than the outside air EA, and sends the high-concentration gas A1 to the air filter 42 while discharging the low-concentration gas A2 to the outside.
- high-concentration gas A1 hereafter referred to as high-concentration gas A1
- low-concentration gas A2 low-concentration carbon dioxide gas A2
- the outside air EA sent to the carbon dioxide separation ceramic membrane 82 is separated into high-concentration gas A1 and low-concentration gas A2 as it passes through the carbon dioxide separation ceramic membrane 82.
- the low-concentration gas A2 is released to the outside, and the high-concentration gas A1 is sent to the algae culture liquid L1.
- the outside air switching valve V2 can be switched to send the outside air EA taken in through the intake port 43 to the outside air introduction nozzle 41.
- the culture vessel 10 has an inner wall 11, an outer wall 12, a bottom plate 13, and an upper plate 14, and has an opening 15a that opens upward at the upper end.
- the lower end penetrates into the base 60 in a sliding manner.
- the inner wall 11 and the outer wall 12 are transparent cylinders, and the outer wall 12 is arranged concentrically in the outer area of the inner wall 11.
- the algae culture liquid L1 is stored in the space defined by the inner wall 11, the outer wall 12, and the bottom plate 13.
- a lid 15 for closing the opening 15a is attached to the upper end.
- the lid 15 is detachably connected to the culture vessel 10 via an O-ring 16.
- the capacity of the culture vessel 10 is exemplified as 6 to 8 liters, but is not limited thereto.
- the base 60 is provided with a storage space 60a, in which the first control device 30 (see FIG. 1) and the second control device 40 (see FIG. 1) are stored.
- the first control device 30 and the second control device 40 are configured so that they cannot be seen from the outside. This allows the design variations of the carbon dioxide reduction interior 1 to be determined by appropriately selecting the external shapes of the base 60, the culture vessel 10, the light source device 20, etc.
- the lid 15 is provided with an exhaust port 17.
- the outside air EA diffused from the outside air intake nozzle 41 rises through the algae culture solution L1 and is exhausted to the outside space via the exhaust port 17.
- An oxygen concentration sensor SE2 (see Figure 1) is attached to the exhaust port 17 to measure the oxygen concentration of the exhausted gas. The measured oxygen concentration value is displayed on a display screen (not shown).
- the light source device 20 is slidably inserted into the base 60 and is disposed in the internal space 10a.
- the light source device 20 may also be fixed to the base 60 by fitting and adhesive.
- the internal space 10a refers to the space defined by the base 60, the inner wall 11, and the top plate 14, and is a space that is not filled with the algae culture solution L1.
- the light emitted from the light source device 20 passes through the inner wall 11, the algae culture solution L1, and the outer wall 12, and is visible as a green illuminant, which is also aesthetically pleasing.
- the visible green color is the color of algae, and green is a color that has psychological effects such as healing, regeneration, recovery, health, relaxation, and security, so a pleasant aesthetic appearance can be obtained.
- the light source device 20 has a hollow cylinder 21 and a light source 22.
- the hollow cylinder 21 is cylindrical, and its lower end is fixed in a state where it penetrates into the base 60.
- the mounting position is concentric with the inner wall 11 and the outer wall 12.
- the light source 22 is composed of eight strip-shaped LED light sources 23 that extend along the direction in which the hollow cylinder 21 extends.
- the LED light sources 23 are attached at a predetermined interval around the circumference of the hollow cylinder 21 (see Figure 3). Eight is given as an example of the number of LED light sources 23, but this is not limited to this.
- the penetration tube 50 is a tube with a circular cross section that penetrates the inside of the hollow tube 21 in the direction in which the hollow tube 21 extends, and one end is connected to the upper end of the inner wall 11, making it structurally integrated with the culture vessel 10. The other end is connected to the first control device 30 via a connector C1. By placing the penetration tube 50 inside the hollow tube 21, the penetration tube 50 is not visible. This makes it possible to achieve a state in which only the color of the algae can be seen.
- the algae culture solution L1 stored in the culture vessel 10 passes through the through pipe 50 and circulates back to the culture vessel 10 via the culture solution circulation nozzle 35.
- the culture solution circulation nozzle 35 is attached to the bottom plate 13 at an angle that allows it to spray in the circumferential direction so that a circumferential water flow can be generated.
- the algae culture solution L1 returned from the culture solution circulation nozzle 35 is sprayed circumferentially onto the algae culture solution L1, forming a swirling water flow in the algae culture solution L1 stored in the culture vessel 10. This swirling flow homogenizes the algae contained in the algae culture solution L1 and more effectively reduces carbon dioxide emissions.
- the algae culture solution L1 circulates between the culture vessel 10 and the first control device 30. At this time, the algae culture solution L1 sprayed from the culture solution circulation nozzle 35 causes a swirling water flow to form in the algae culture solution L1 present in the culture vessel 10.
- the outside air EA taken in from the intake port 43 passes through the air filter 42 and is pressurized and sent to the outside air introduction nozzle 41.
- minute substances such as viruses and pollen contained in the outside air EA are removed.
- the outside air EA pressurized and sent to the outside air introduction nozzle 41 is clean, with viruses, pollen, and other minute substances removed.
- the pressurized outside air EA is diffused into the algae culture solution L1 in the form of bubbles by the outside air intake nozzle 41.
- the bubbles diffused into the algae culture solution L1 rise in a spiral shape within the algae culture solution L1.
- the way the bubbles rise in a spiral shape is visually beautiful, further enhancing the decorative effect.
- Light is irradiated onto the algae culture solution L1 from the light source device 20.
- the light irradiation promotes photosynthesis in the algae, and the carbon dioxide contained in the air bubbles is taken up by the algae as it rises through the algae culture solution L1, while oxygen is generated from the algae.
- the oxygen-rich air bubbles are released to the outside as exhaust gas A3 via the exhaust port 17.
- acidic pollutants such as nitrates and sulfates contained in the air bubbles are absorbed by the algae culture solution L1.
- the oxygen in the exhaust gas A3 discharged from the exhaust port 17 is not artificially generated, but is generated by the photosynthesis of the algae, so it can help create a good environment similar to forest bathing. Furthermore, a relaxing effect can be obtained by visually observing the sight of air bubbles rising in a spiral shape in the green-glowing algae culture solution L1.
- the algae will grow.
- the growth of the algae will increase the pH value of the algae culture solution L1, and as the pH value increases, the algae will grow more actively.
- the visibility of the light emitted from the light source device 20 will deteriorate, and the algae culture solution L1 will need to be replaced. Frequent replacement of the algae culture solution L1 will impose a large burden on the user.
- one possible maintenance measure is to install a pH reduction device 3 that suppresses the increase in the pH value of the algae culture solution L1 in order to ensure good visibility for a specified period of time.
- the specified period assumed in this embodiment is a period during which the user will not feel burdened by replacing the algae culture solution L1, for example, one month.
- FIG. 4 shows the control configuration of the algae growth inhibition device.
- the electronic control unit (hereinafter referred to as ECU) is composed of a microcomputer consisting of a CPU, RAM, ROM, and an I/O interface (all not shown).
- the ECU 5 is connected to a pH sensor SE1 that detects the pH value of the algae culture liquid L1, an oxygen concentration sensor SE2 that detects the oxygen concentration of the gas released into the external space, and other sensors, and these detection signals are input sequentially.
- the output side of the ECU 5 is connected to a switching valve V1, a liquid delivery pump P3, a compressor 81, an outside air switching valve V2, and other sensors.
- FIG. 5 is a flowchart explaining the process of algae growth control in this embodiment. This process is continuously and repeatedly executed by the ECU 5.
- step 1 it is determined whether the oxygen concentration MO of the exhaust gas A3 detected by the oxygen concentration sensor SE2 exceeds a first threshold concentration OTHR, and whether the pH value MP of the algae culture solution detected by the pH sensor SE1 exceeds a first threshold value PTHR1.
- the first threshold concentration OTHR is 40-50%.
- the first threshold value PTHR1 is set to a value that does not promote algae growth more than a specified level under certain conditions (for example, in an environment where the temperature of the algae culture solution is maintained within a specified range), such as 10.5.
- step 2 If the result is YES, and the oxygen concentration MO exceeds the first threshold concentration OTHR, and the pH value MP exceeds the first threshold value PTHR1, proceed to step 2. If the result is NO, continue detection.
- the algae culture solution L1 stored in the culture vessel 10 passes through the through-pipe 50 and flow paths R1 and R2 and flows back to the culture vessel 10.
- the outside air EA does not pass through the carbon dioxide introduction device 80, but passes through the air filter 42, is blown into the outside air introduction nozzle 41, and is sprayed into the algae culture solution L1.
- step 2 pH reduction control is executed.
- the pH reduction control is composed of two controls: a first control and a second control.
- the switching valve V1 operates to change the flow path of the algae culture solution L1. Specifically, the algae culture solution L1 stored in the culture vessel 10 passes through the through pipe 50, the flow path R1, the switching valve V1, and the flow path R3, and is stored in the collection vessel 31. As a result, the water surface height H1 of the algae culture solution L1 stored in the culture vessel 10 is lowered.
- the switching valve V1 is operated again to change the path for returning the algal culture solution L1 to the culture vessel 10.
- the liquid supply pump P3 is operated to send the replenishment liquid L2 stored in the replenishment liquid bottle 32 to the culture vessel 10.
- the pH value of the replenishment liquid L2 is set to be lower than the initial pH value of the algal culture solution L1.
- the initial pH value of the algal culture solution L1 is 8.8 to 9.2
- the pH value of the replenishment liquid L2 is 8.5, but this is not limited to these.
- the pH value of the algal culture solution L1 is reduced.
- the recovery of the algal culture solution L1 into the recovery vessel 31 may be performed by flowing the algal culture solution L1 back in the direction from flow path R2 to flow path R3. This can improve the efficiency of the recovery.
- a new pump may be installed to reverse the flow of the algae culture solution L1.
- the compressor 81 and the outside air switching valve V2 are operated.
- the operation of the outside air switching valve V2 allows the outside air EA to pass through the carbon dioxide introduction device 80.
- the path through which the outside air EA is directly taken in is closed.
- the operation of the compressor 81 causes the outside air EA to pass through the carbon dioxide separation ceramic membrane 82, and in the process, it is separated into low-concentration carbon dioxide gas A2, which has reduced carbon dioxide, and high-concentration carbon dioxide gas A1, which has a high concentration of carbon dioxide.
- the high-concentration carbon dioxide gas A1 is sprayed from the outside air introduction nozzle 41 into the algae culture solution L1.
- the low-concentration carbon dioxide gas A1 is released to the outside.
- the pH value MP of the algae culture solution L1 decreases. As the pH value MP decreases, the growth of the algae is suppressed.
- step 3 it is determined whether the pH value MP of the algae culture solution L1 detected by the pH sensor SE1 has fallen below the second threshold value PTHR2.
- the second threshold value PTHR2 is set to 9.0 as an example, and is set to a value that does not cause the algae growth to fall below a predetermined level under certain conditions. If the result of this determination is YES, that is, the pH value MP is below the second threshold value PTHR2, the process proceeds to step 4 and the pH reduction control is stopped. If the result of the determination is NO, the pH reduction control is continued.
- the culture vessel has a so-called donut shape with inner and outer walls, but it may also be bowl-shaped.
- the light source device is provided in the internal region, but it may also be provided in the external region of the culture vessel.
- the algae growth control device of the present invention enables continuous algae photosynthesis in a closed growth space. Therefore, it can be suitably used as a purification device for purifying the air inside structures that require the formation of sealed spaces, such as nuclear shelters, and has great potential for industrial use.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Medicinal Chemistry (AREA)
- Virology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Tropical Medicine & Parasitology (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Provided is an algae propagation control device for controlling the propagation of algae in a carbon-dioxide-reduced interior. This algae propagation control device 2 for controlling the propagation of algae existing in an algae culture medium L1 in a carbon-dioxide-reduced interior 1 comprises: a pH sensor SE1 which measures the pH of the algae culture medium L1; an oxygen concentration sensor SE2 which measures the oxygen concentration of a discharge gas A3 discharged from a culture vessel 10; and a pH reduction device 3 for reducing the pH of the algae culture medium. When it is determined that the measured value from the pH sensor SE1 has exceeded a first threshold, and the measured value from the oxygen concentration sensor SE2 has exceeded a first concentration threshold, pH reduction control is executed. When the measured value from the pH sensor SE1 is determined to have fallen below a second threshold, which is a pH lower than the first threshold, the execution of the pH reduction control is stopped.
Description
本発明は、藻類の光合成の作用によって外気の二酸化炭素を削減するとともに、インテリアとして使用できる二酸化炭素削減インテリアの藻類の増殖を制御する藻類増殖制御装置に関する。
The present invention relates to an algae growth control device that reduces carbon dioxide in the outside air through the photosynthesis of algae and controls the growth of algae in carbon dioxide-reducing interior items that can be used as interior décor.
発明者は、特許文献1で、藻類の一種であるスピルリナを利用して、効果的に空気浄化が行え、かつ良好な外観を得ることができる空気浄化装置を提供している。
In Patent Document 1, the inventor provides an air purifier that uses spirulina, a type of algae, to effectively purify the air while also achieving a good appearance.
発明者が以前に提供した空気浄化装置は、スピルリナ、およびスピルリナの培養液を循環する循環系の一部を陳列用容器とし、この循環系に外気を取り込む取込み口、および酸素を分離する酸素分離装置を設けている。陳列用容器内には発光体が挿入されている。取込み口から取り込まれた外気は、当該外気中に含まれる二酸化炭素が酸素に変換されると共に汚染物質が培養液中に溶解する。従って、酸素分離装置から分離される気体は、汚染物質が除去され且つ二酸化炭素が酸素に変換されたものとなる。以前に提案した、空気浄化装置は、空気浄化作用ばかりでなく、発光体が陳列用容器内で発光することにより見た目もきれいなものである。
The air purifying device previously proposed by the inventor uses a display container as part of a circulation system that circulates spirulina and spirulina culture solution, and is equipped with an intake port for taking in outside air into this circulation system, and an oxygen separation device for separating oxygen. A light-emitting body is inserted into the display container. Outside air is taken in through the intake port, and the carbon dioxide contained in the outside air is converted into oxygen, while pollutants are dissolved in the culture solution. Therefore, the gas separated by the oxygen separation device is one in which pollutants have been removed and carbon dioxide has been converted into oxygen. The previously proposed air purifying device not only purifies air, but also looks nice, as the light-emitting body emits light inside the display container.
しかしながら、発明はそれがなされたからといって終わりではなく、よりよいものを求めるために改良がくわえられるべきものである。
However, an invention is not finished once it has been made; improvements should be made in the pursuit of making it even better.
例えば、光合成の促進に伴ってスピルリナは増殖し続けて、培養液のpH値は上昇する。培養液のpH値の上昇は、スピルリナの増殖に必要な栄養成分の不足を意味し、スピルリナのスピードは次第に低下する。すなわちスピルリナの増殖のコントロールは極めて困難であった。
For example, as photosynthesis is promoted, Spirulina continues to grow and the pH value of the culture medium rises. An increase in the pH value of the culture medium means a lack of the nutrients necessary for Spirulina growth, and the growth rate of Spirulina gradually decreases. In other words, it has been extremely difficult to control the growth of Spirulina.
本発明はこれらの問題点に着目してなされたものであり、二酸化炭素削減インテリアの藻類の増殖を制御する藻類増殖制御装置を提供するものである。
The present invention was made with an eye on these problems, and provides an algae growth control device that controls the growth of algae in carbon dioxide reduction interiors.
上記課題を解決するための発明は、藻類培養液が貯留される培養容器と、培養容器に装着される外気導入ノズルと、培養容器に向かって光を照射する光源装置と、を備え、培養容器に向かって照射される光は、培養容器を透過して視認することができ、外気導入ノズルから藻類培養液に吹き込まれる外気は、藻類培養液の中を上昇する過程で、藻類培養液に存する藻類の光合成の効果によって、二酸化炭素が削減されるとともに酸素に変換されて、培養容器に設けられた開口部から排出される二酸化炭素削減インテリアにおける、藻類培養液に存する藻類の増殖を制御する藻類増殖制御装置であって、藻類培養液のpH値を測定するpHセンサーと、培養容器から排出される排出気体の酸素濃度を測定する酸素濃度センサーと、藻類培養液のpH値を低減制御するためのpH低減装置と、を備え、pHセンサーの測定値が第1閾値を超えるとともに、酸素濃度センサーの測定値が第1閾濃度を超えたと判定されたきpH低減制御を実行し、pHセンサーの測定値が第1閾値よりも低いpH値である第2閾値を下回ると判定されたときpH低減制御の実行を停止することを特徴とする。
The invention for solving the above problem is an algae growth control device that controls the growth of algae in an algae culture solution in a carbon dioxide reduction interior, comprising a culture vessel in which an algae culture solution is stored, an outside air introduction nozzle attached to the culture vessel, and a light source device that irradiates light toward the culture vessel, and the light irradiated toward the culture vessel is visible as it passes through the culture vessel, and the outside air blown into the algae culture solution from the outside air introduction nozzle reduces carbon dioxide and is converted into oxygen due to the effect of photosynthesis by the algae in the algae culture solution as it rises through the algae culture solution, and is discharged from an opening provided in the culture vessel. The device comprises a pH sensor that measures the pH value of the algae culture solution, an oxygen concentration sensor that measures the oxygen concentration of the exhaust gas discharged from the culture vessel, and a pH reduction device that reduces and controls the pH value of the algae culture solution, and is characterized in that it executes pH reduction control when the measurement value of the pH sensor exceeds a first threshold value and it is determined that the measurement value of the oxygen concentration sensor has exceeded the first threshold value, and stops execution of pH reduction control when it is determined that the measurement value of the pH sensor falls below a second threshold value, which is a pH value lower than the first threshold value.
藻類培養液に存する藻類は、アルカリ性の溶液で増殖が促進される種であり、具体的にはスピルリナが例示される。
The algae present in the algae culture medium are species whose growth is promoted in an alkaline solution, and a specific example is spirulina.
この構成によれば、pHセンサーの測定値が第1閾値を超えるとともに、酸素濃度センサーの測定値が第1閾濃度を超えたと判定されるときpH低減制御を実行するので、藻類培養液のpH値の上昇を抑制できる。これにより、藻類の増殖スピードを抑制できる。さらに、pHセンサーの測定値が第1閾値よりも低いpH濃度である第2閾値を下回るときpH低減制御の実行を停止するので、藻類の増殖スピードの過度な抑制を防止できる。
With this configuration, pH reduction control is executed when the measurement value of the pH sensor exceeds the first threshold value and it is determined that the measurement value of the oxygen concentration sensor exceeds the first threshold concentration, so that an increase in the pH value of the algae culture liquid can be suppressed. This makes it possible to suppress the growth speed of the algae. Furthermore, since execution of pH reduction control is stopped when the measurement value of the pH sensor falls below a second threshold value, which is a pH concentration lower than the first threshold value, excessive suppression of the growth speed of the algae can be prevented.
好ましくは、pH低減装置は、藻類培養液を回収する回収容器と、藻類培養液のpHを低減させるための補充液を藻類培養液に補充する補充液ボトルとを有することを特徴とする。
Preferably, the pH reduction device is characterized by having a collection container for collecting the algae culture solution, and a replenishment liquid bottle for replenishing the algae culture solution with a replenishment liquid for reducing the pH of the algae culture solution.
この構成によれば、pH低減装置は、藻類培養液を回収する回収容器と、藻類培養液のpHを低減させるための補充液を藻類培養液に補充する補充液ボトルとを有するので、藻類培養液のpH値を低減するとともに、藻類培養液中の藻類濃度の低減を図ることができる。
With this configuration, the pH reduction device has a collection container for collecting the algal culture solution and a replenishment liquid bottle for replenishing the algal culture solution with replenishment liquid for reducing the pH of the algal culture solution, so that it is possible to reduce the pH value of the algal culture solution and also reduce the algae concentration in the algal culture solution.
好ましくは、培養容器に充填される藻類培養液を備え、補充液のpH値は、藻類培養液の初期pH値よりも小さいことを特徴とする。
Preferably, the culture vessel is filled with an algae culture solution, and the pH value of the replenisher is lower than the initial pH value of the algae culture solution.
この構成によれば、補充液のpH値は、藻類培養液の初期pH値よりも小さいので、補充液を藻類培養液に補充することで、藻類培養液のpH値の低減効果はより一層大きくなる。
With this configuration, the pH value of the replenisher liquid is lower than the initial pH value of the algal culture liquid, so by adding the replenisher liquid to the algal culture liquid, the effect of reducing the pH value of the algal culture liquid is even greater.
好ましくは、pH低減装置は、外気を、外気に比べて高濃度の二酸化炭素を含む高濃度二酸化炭素気体と、外気に比べて低濃度の二酸化炭素を含む低濃度二酸化炭素気体とに分離して、高濃度二酸化炭素気体を、外気導入ノズルを経由して藻類培養液に吹き込むとともに、低濃度二酸化炭素気体を外部に排出することができる二酸化炭素導入装置を有することを特徴とする。
Preferably, the pH reduction device is characterized by having a carbon dioxide introduction device that separates outside air into high-concentration carbon dioxide gas containing a higher concentration of carbon dioxide than the outside air and low-concentration carbon dioxide gas containing a lower concentration of carbon dioxide than the outside air, and injects the high-concentration carbon dioxide gas into the algae culture solution via an outside air introduction nozzle while discharging the low-concentration carbon dioxide gas to the outside.
この構成によれば、高濃度二酸化炭素気体を藻類培養液に吹き込むことで、藻類培養液のpH値は低下する。また、高濃度二酸化炭素気体は藻類培養液を上昇する過程で、藻類培養液に存する藻類の光合成の効果によって、二酸化炭素が削減されるとともに酸素に変換されて、外部に排出されるとともに、低濃度二酸化炭素気体が外部に放出されるので、外部空気の二酸化炭素濃度を効率的に低減できる。
With this configuration, by blowing high-concentration carbon dioxide gas into the algae culture solution, the pH value of the algae culture solution is lowered. In addition, as the high-concentration carbon dioxide gas rises through the algae culture solution, the carbon dioxide is reduced and converted into oxygen due to the effects of photosynthesis by the algae present in the algae culture solution, and is discharged to the outside, while low-concentration carbon dioxide gas is released to the outside, so the carbon dioxide concentration in the outside air can be efficiently reduced.
以下、図1~5を参照して本発明の二酸化炭素削減インテリア1の実施形態を説明したうえで、藻類増殖制御装置2について詳述する。
Below, we will explain an embodiment of the carbon dioxide reduction interior 1 of the present invention with reference to Figures 1 to 5, and then provide a detailed description of the algae growth control device 2.
図1に示す通り、藻類培養液L1が貯留される培養容器10は、藻類増殖制御装置2に接続している。藻類増殖制御装置2は、pHセンサーSE1、酸素濃度センサーSE2、pH低減装置3などを有している。pH低減装置3は、第1制御装置30、および第2制御装置40の二つの装置で構成されており、コネクタC1、C2、C3を介して培養容器10に着脱可能に接続されている。
As shown in FIG. 1, the culture vessel 10 in which the algae culture solution L1 is stored is connected to the algae growth control device 2. The algae growth control device 2 has a pH sensor SE1, an oxygen concentration sensor SE2, a pH reduction device 3, etc. The pH reduction device 3 is composed of two devices, a first control device 30 and a second control device 40, and is detachably connected to the culture vessel 10 via connectors C1, C2, and C3.
本実施形態では、藻類培養液L1中の、藻類はスピルリナが例示される。また、スピルリナを培養するための培養液の成分として、例えば、表1に示すものが例示されるが、これに限られるものではない。
In this embodiment, the algae in the algae culture solution L1 is exemplified as spirulina. In addition, examples of components of the culture solution for culturing spirulina include, but are not limited to, those shown in Table 1.
表中のA5-solutionについては、ホウ酸から酸化モリブデンまでの成分を表に示す含有量で含むA5-solutionが、藻類培養液1L中に1mL含まれることを意味する。
The A5-solution in the table means that 1 mL of A5-solution, which contains the components from boric acid to molybdenum oxide in the amounts shown in the table, is contained in 1 L of algae culture solution.
表1で例示する培養液はアルカリ性であるため、硝酸塩や硫酸塩などの空気中の酸性汚染物質を吸収し易く、汚染物質の除去に効果的である。スピルリナはアルカリ性の培養液で好適に培養されるため、酸性の液中で増殖する他の藻類は生育し難い環境となる。そのため、他の藻類の混入を回避できる。
The culture medium shown in Table 1 is alkaline, so it easily absorbs acidic pollutants in the air, such as nitrates and sulfates, and is effective at removing pollutants. Spirulina is cultivated optimally in an alkaline culture medium, which creates an environment in which other algae that grow in acidic liquids have a hard time growing. This helps to prevent contamination by other algae.
光源装置20から発せられる光は、培養容器10、藻類培養液L1を通過して視認できる構成となっている。藻類培養液L1に照射されることで、藻類の光合成が促進される。また、緑色に発光する藻類培養液L1を視認することで、リラックス効果を高めることができる。
The light emitted from the light source device 20 is configured to pass through the culture vessel 10 and the algal culture solution L1 and be visible. Irradiating the algal culture solution L1 promotes photosynthesis in the algae. Also, visually seeing the algal culture solution L1 emitting green light can enhance the relaxing effect.
第1制御装置30は、回収容器31、補充液ボトル32、を有しており、藻類培養液L1のpH値を測定するpHセンサーSE1が取付けられている。また、藻類培養液L1の温度を所定範囲に維持するためのヒーター(図示略)を設けることが好ましい。これにより、藻類の活性を維持するとともに、適正な生育環境を形成し得る。
The first control device 30 has a collection container 31, a refill bottle 32, and is equipped with a pH sensor SE1 that measures the pH value of the algae culture solution L1. It is also preferable to provide a heater (not shown) to maintain the temperature of the algae culture solution L1 within a predetermined range. This maintains the activity of the algae and creates an appropriate growth environment.
回収容器31は、所定値を上回るpHの藻類培養液L1を回収するための容器であり、切替バルブV1を介して培養容器10に接続している。切替バルブV1は電磁式の三方弁である。
The collection vessel 31 is a vessel for collecting the algae culture solution L1 with a pH above a predetermined value, and is connected to the culture vessel 10 via a switching valve V1. The switching valve V1 is an electromagnetic three-way valve.
循環ポンプP1を動作すると、培養容器10に貯留されている藻類培養液L1は、貫通管50に取込まれ、コネクタC1、循環ポンプP1、切替バルブV1、コネクタC2を経由して培養液循環ノズル35から藻類培養液L1に噴射される。噴射方向を適宜に選択(例えば周方向に沿って噴射する)することで、培養容器10の中の藻類培養液L1は、渦巻き状の流れが形成される。
When the circulation pump P1 is operated, the algae culture solution L1 stored in the culture vessel 10 is taken into the through pipe 50 and passes through the connector C1, the circulation pump P1, the switching valve V1, and the connector C2, before being sprayed from the culture solution circulation nozzle 35 into the algae culture solution L1. By appropriately selecting the spray direction (for example, spraying along the circumferential direction), a spiral flow is formed in the algae culture solution L1 in the culture vessel 10.
補充液ボトル32は、補充液L2が貯留されている。補充液L2のpH値は、初期状態の藻類培養液L1のpH値よりも小さいことが好ましい。補充液L2は、送液ポンプP3によって培養容器10に送り込まれる。また、第1制御装置30を循環する藻類培養液L1が補充液ボトル32に逆流しないように逆止弁B1が設けられている。
The replenishment liquid bottle 32 stores replenishment liquid L2. The pH value of the replenishment liquid L2 is preferably lower than the pH value of the algae culture liquid L1 in the initial state. The replenishment liquid L2 is pumped into the culture vessel 10 by the liquid delivery pump P3. A check valve B1 is provided to prevent the algae culture liquid L1 circulating through the first control device 30 from flowing back into the replenishment liquid bottle 32.
本実施形態では、補充液ボトル32の容量として2リットル、回収容器31の容量として2リットルが例示されるが、これに限定されるわけではない。
In this embodiment, the capacity of the refill bottle 32 is 2 liters, and the capacity of the collection container 31 is 2 liters, but this is not limited to this.
第2制御装置40は、先端部に外気導入ノズル41が接続している。エアポンプP2を動作することで、エアフィルター42を通過した外気EAは、外気導入ノズル41を経由して、微細な渦巻き状の気泡となって藻類培養液L1に吹き込まれ、拡散し、上昇する。気泡は渦巻き状の流れに沿って上昇する。これにより、気泡が藻類培養液L1に滞留する時間をより長くすることができる。
The second control device 40 has an outside air intake nozzle 41 connected to its tip. By operating the air pump P2, outside air EA that has passed through the air filter 42 passes through the outside air intake nozzle 41 and turns into fine, swirling bubbles that are blown into the algae culture solution L1, where they diffuse and rise. The bubbles rise along the swirling flow. This allows the bubbles to remain in the algae culture solution L1 for a longer period of time.
二酸化炭素導入装置80は、外気EAに比べて高濃度の二酸化炭素を含む高濃度二酸化炭素気体A1(以後、高濃度気体A1と呼ぶ。)と、外気EAに比べて低濃度の二酸化炭素を含む低濃度二酸化炭素気体A2(以後、低濃度気体A2と呼ぶ。)に分離して、高濃度気体A1を、エアフィルター42に送り込むとともに、低濃度気体A2を外部に排出する装置である。
The carbon dioxide introduction device 80 separates the carbon dioxide into high-concentration carbon dioxide gas A1 (hereafter referred to as high-concentration gas A1), which contains a higher concentration of carbon dioxide than the outside air EA, and low-concentration carbon dioxide gas A2 (hereafter referred to as low-concentration gas A2), which contains a lower concentration of carbon dioxide than the outside air EA, and sends the high-concentration gas A1 to the air filter 42 while discharging the low-concentration gas A2 to the outside.
コンプレッサー81を動作したとき、二酸化炭素分離セラミック膜82に送り込まれた外気EAは、二酸化炭素分離セラミック膜82を通過する過程で、高濃度気体A1と、低濃度気体A2に分離される。低濃度気体A2は外部に放出するとともに、高濃度気体A1は藻類培養液L1に送り込まれる。
When the compressor 81 is operated, the outside air EA sent to the carbon dioxide separation ceramic membrane 82 is separated into high-concentration gas A1 and low-concentration gas A2 as it passes through the carbon dioxide separation ceramic membrane 82. The low-concentration gas A2 is released to the outside, and the high-concentration gas A1 is sent to the algae culture liquid L1.
また、コンプレッサー81を動作しないときは、外気切替バルブV2を切り替えて、取込口43から取込んだ外気EAを外気導入ノズル41に送り込むことができる。
In addition, when the compressor 81 is not in operation, the outside air switching valve V2 can be switched to send the outside air EA taken in through the intake port 43 to the outside air introduction nozzle 41.
図2に示す通り、光源装置20、培養容器10はそれぞれ別々に台座60と嵌合している。培養容器10は、内壁11、外壁12、底板13および上板14を有しており、上端部に上方に向かって開口する開口部15aが設けられている。下端部は、台座60にスライドできる状態で貫入している。内壁11および外壁12は、透明の円筒であり、外壁12は内壁11の外部領域に同心に配置されている。内壁11、外壁12、および底板13で画定される空間に藻類培養液L1が貯留されている。また、上端部は、開口部15aを塞ぐための蓋15が取付けられている。蓋15は、Oリング16を介して培養容器10に着脱可能に接続している。培養容器10の容量として6~8リットルが例示されるが限定されるわけではない。
As shown in FIG. 2, the light source device 20 and the culture vessel 10 are each separately fitted to the base 60. The culture vessel 10 has an inner wall 11, an outer wall 12, a bottom plate 13, and an upper plate 14, and has an opening 15a that opens upward at the upper end. The lower end penetrates into the base 60 in a sliding manner. The inner wall 11 and the outer wall 12 are transparent cylinders, and the outer wall 12 is arranged concentrically in the outer area of the inner wall 11. The algae culture liquid L1 is stored in the space defined by the inner wall 11, the outer wall 12, and the bottom plate 13. In addition, a lid 15 for closing the opening 15a is attached to the upper end. The lid 15 is detachably connected to the culture vessel 10 via an O-ring 16. The capacity of the culture vessel 10 is exemplified as 6 to 8 liters, but is not limited thereto.
台座60に収容空間60aが設けられ、第1制御装置30(図1参照)、および第2制御装置40(図1参照)が収容されている。すなわち、第1制御装置30、および第2制御装置40は、外部から視認できない構成となっている。これにより、台座60、培養容器10、光源装置20などの外形を適宜に選択することで、二酸化炭素削減インテリア1のデザインバリエーションを決定づけることができる。
The base 60 is provided with a storage space 60a, in which the first control device 30 (see FIG. 1) and the second control device 40 (see FIG. 1) are stored. In other words, the first control device 30 and the second control device 40 are configured so that they cannot be seen from the outside. This allows the design variations of the carbon dioxide reduction interior 1 to be determined by appropriately selecting the external shapes of the base 60, the culture vessel 10, the light source device 20, etc.
蓋15は、排出口17が設けられている。外気導入ノズル41から拡散される外気EAは、藻類培養液L1を上昇し、排出口17を経由して外部空間に排出される。排出口17には、排出される気体の酸素濃度を測定する酸素濃度センサーSE2(図1参照)が取付けられている。酸素濃度の計測値は、表示スクリーン(図示略)に表示される。
The lid 15 is provided with an exhaust port 17. The outside air EA diffused from the outside air intake nozzle 41 rises through the algae culture solution L1 and is exhausted to the outside space via the exhaust port 17. An oxygen concentration sensor SE2 (see Figure 1) is attached to the exhaust port 17 to measure the oxygen concentration of the exhausted gas. The measured oxygen concentration value is displayed on a display screen (not shown).
光源装置20は、台座60にスライドできる状態で貫入しており、内部空間10aに配置されている。また、光源装置20は台座60に嵌合接着で固定されていてもよい。ここで内部空間10aとは、台座60、内壁11、および上板14で画定される空間であって、藻類培養液L1は充填されていない空間である。光源装置20から発せられる光は内壁11、藻類培養液L1、および外壁12を透過することで、緑の発光体として視認でき、見た目も美しいものとなる。なお、視認できる緑色は藻類の色であり、緑色は癒し、再生、回復、健康、リラックス、安心という心理効果のある色であるため、心地よい美観を得ることができる。
The light source device 20 is slidably inserted into the base 60 and is disposed in the internal space 10a. The light source device 20 may also be fixed to the base 60 by fitting and adhesive. Here, the internal space 10a refers to the space defined by the base 60, the inner wall 11, and the top plate 14, and is a space that is not filled with the algae culture solution L1. The light emitted from the light source device 20 passes through the inner wall 11, the algae culture solution L1, and the outer wall 12, and is visible as a green illuminant, which is also aesthetically pleasing. The visible green color is the color of algae, and green is a color that has psychological effects such as healing, regeneration, recovery, health, relaxation, and security, so a pleasant aesthetic appearance can be obtained.
光源装置20は、中空筒21と光源22を有している。中空筒21は、円筒であり、下端部が台座60に貫入した状態で固定されている。また、取付位置は、内壁11、外壁12と同心となっている。光源22は、中空筒21が延びる方向に沿って延びる8個の帯状のLED光源23で構成されている、LED光源23は、中空筒21の周方向に所定の間隔で取り付けられている(図3参照)。LED光源23の個数として、8個が例示されるが、これに限定されるわけではない。
The light source device 20 has a hollow cylinder 21 and a light source 22. The hollow cylinder 21 is cylindrical, and its lower end is fixed in a state where it penetrates into the base 60. The mounting position is concentric with the inner wall 11 and the outer wall 12. The light source 22 is composed of eight strip-shaped LED light sources 23 that extend along the direction in which the hollow cylinder 21 extends. The LED light sources 23 are attached at a predetermined interval around the circumference of the hollow cylinder 21 (see Figure 3). Eight is given as an example of the number of LED light sources 23, but this is not limited to this.
貫通管50は、中空筒21の内部を中空筒21が延びる方向に貫通する断面が円環状の管であり、一端は内壁11の上端部に接続して、培養容器10と構造的に一体化している。また、他端はコネクタC1を介して、第1制御装置30に接続している。貫通管50が中空筒21の内部に配置されることで、貫通管50が視認されることはない。これにより、藻類のみの色が視認できる状態を実現できる。
The penetration tube 50 is a tube with a circular cross section that penetrates the inside of the hollow tube 21 in the direction in which the hollow tube 21 extends, and one end is connected to the upper end of the inner wall 11, making it structurally integrated with the culture vessel 10. The other end is connected to the first control device 30 via a connector C1. By placing the penetration tube 50 inside the hollow tube 21, the penetration tube 50 is not visible. This makes it possible to achieve a state in which only the color of the algae can be seen.
循環ポンプP1を動作することで、培養容器10に貯留される藻類培養液L1は、貫通管50を通過し、培養液循環ノズル35を経由して、再び培養容器10に循環する。培養液循環ノズル35は、周方向の水流を発生できるように、周方向に噴射できる角度で底板13に取り付けられている。培養液循環ノズル35から還流される藻類培養液L1が周方向に沿って藻類培養液L1に噴出されることで、培養容器10に貯留される藻類培養液L1に渦巻き状の水流が形成される。この渦巻き流によって藻類培養液L1中に含まれる藻類の均質化と、より効果的な二酸化炭素削減を図ることができる。
By operating the circulation pump P1, the algae culture solution L1 stored in the culture vessel 10 passes through the through pipe 50 and circulates back to the culture vessel 10 via the culture solution circulation nozzle 35. The culture solution circulation nozzle 35 is attached to the bottom plate 13 at an angle that allows it to spray in the circumferential direction so that a circumferential water flow can be generated. The algae culture solution L1 returned from the culture solution circulation nozzle 35 is sprayed circumferentially onto the algae culture solution L1, forming a swirling water flow in the algae culture solution L1 stored in the culture vessel 10. This swirling flow homogenizes the algae contained in the algae culture solution L1 and more effectively reduces carbon dioxide emissions.
図1を参照して、本実施形態における二酸化炭素削減インテリア1の外気EAに含まれる二酸化炭素の削減メカニズムを説明する。
The mechanism for reducing the amount of carbon dioxide contained in the outside air EA of the carbon dioxide reduction interior 1 in this embodiment will be described with reference to FIG. 1.
第1制御装置30を動作することで、藻類培養液L1は培養容器10と第1制御装置30との間を循環する。このとき、培養液循環ノズル35から噴出する藻類培養液L1によって、培養容器10に存する藻類培養液L1は、渦巻き状の水流が形成される。
By operating the first control device 30, the algae culture solution L1 circulates between the culture vessel 10 and the first control device 30. At this time, the algae culture solution L1 sprayed from the culture solution circulation nozzle 35 causes a swirling water flow to form in the algae culture solution L1 present in the culture vessel 10.
エアポンプP2を動作することで、取込口43から取込まれた外気EAは、エアフィルター42を通過して外気導入ノズル41に圧送される。外気EAがエアフィルター42を通過する過程で、外気EAに含まれるウイルス、花粉等の微細な物質が除去される。すなわち、外気導入ノズル41に圧送される外気EAはウイルス、花粉等の微細な物質が除去されたクリーンなものとなる。
By operating the air pump P2, the outside air EA taken in from the intake port 43 passes through the air filter 42 and is pressurized and sent to the outside air introduction nozzle 41. As the outside air EA passes through the air filter 42, minute substances such as viruses and pollen contained in the outside air EA are removed. In other words, the outside air EA pressurized and sent to the outside air introduction nozzle 41 is clean, with viruses, pollen, and other minute substances removed.
圧送された外気EAは、外気導入ノズル41によって気泡となった状態で藻類培養液L1に拡散される。藻類培養液L1に拡散された気泡は、渦巻き状に拡散した状態で、藻類培養液L1の中を上昇する。気泡が渦巻きを描いて上昇していく様子は、外観的に美しいものとなり、装飾効果をより一層高めることができる。
The pressurized outside air EA is diffused into the algae culture solution L1 in the form of bubbles by the outside air intake nozzle 41. The bubbles diffused into the algae culture solution L1 rise in a spiral shape within the algae culture solution L1. The way the bubbles rise in a spiral shape is visually beautiful, further enhancing the decorative effect.
藻類培養液L1は、光源装置20から光が照射されている。光の照射によって、藻類の光合成は促進され、気泡に含まれる二酸化炭素は、藻類培養液L1の中を上昇する過程で、藻類に取込まれ、同時に藻類から酸素が発生する。酸素リッチとなった気泡は、排出口17を経由して排出気体A3として外部に放出される。同時に、気泡に含まれる硝酸塩や硫酸塩などの酸性汚染物質は、藻類培養液L1に吸収される。
Light is irradiated onto the algae culture solution L1 from the light source device 20. The light irradiation promotes photosynthesis in the algae, and the carbon dioxide contained in the air bubbles is taken up by the algae as it rises through the algae culture solution L1, while oxygen is generated from the algae. The oxygen-rich air bubbles are released to the outside as exhaust gas A3 via the exhaust port 17. At the same time, acidic pollutants such as nitrates and sulfates contained in the air bubbles are absorbed by the algae culture solution L1.
排出口17から排出された排出気体A3の気体中の酸素は、人工的に発生したものではなく、藻類の光合成によって発生したものであることから、森林浴のような良好な環境を形成する一助になり得る。さらに、緑色に発光する藻類培養液L1の中を気泡が渦巻き状に上昇する光景を視認することによって、リラックス効果を得ることができる。
The oxygen in the exhaust gas A3 discharged from the exhaust port 17 is not artificially generated, but is generated by the photosynthesis of the algae, so it can help create a good environment similar to forest bathing. Furthermore, a relaxing effect can be obtained by visually observing the sight of air bubbles rising in a spiral shape in the green-glowing algae culture solution L1.
光合成が促進され続けると、藻類は増殖する。藻類の増殖によって、藻類培養液L1のpH値は上昇し、pH値の上昇に伴って藻類の増殖はさらに活発となる。藻類が増殖し続けると光源装置20から発せられる光の視認性が悪化し、藻類培養液L1の入れ替え作業が必要となる。藻類培養液L1を頻繁に入れ替えることは使用者に大きな負担を負わせることとなる。このような観点から、所定期間にわたって良好な視認性を確保する目的で、藻類培養液L1のpH値の上昇を抑制するpH低減装置3を装着することも、維持管理上の対策の一つとして考えられる。なお、本実施形態で想定する所定期間は、使用者が藻類培養液L1の入れ替え作業を負担に感じない期間、例えば1か月を想定している。
As photosynthesis continues to be promoted, the algae will grow. The growth of the algae will increase the pH value of the algae culture solution L1, and as the pH value increases, the algae will grow more actively. As the algae continue to grow, the visibility of the light emitted from the light source device 20 will deteriorate, and the algae culture solution L1 will need to be replaced. Frequent replacement of the algae culture solution L1 will impose a large burden on the user. From this perspective, one possible maintenance measure is to install a pH reduction device 3 that suppresses the increase in the pH value of the algae culture solution L1 in order to ensure good visibility for a specified period of time. Note that the specified period assumed in this embodiment is a period during which the user will not feel burdened by replacing the algae culture solution L1, for example, one month.
図4は、藻類増殖抑制装置における制御の構成を表している。電子制御ユニット(以下、ECUという。)は、CPU、RAM、ROM、およびI/Oインターフェイス(いずれも図示略)などからなるマイクロコンピューターで構成されている。ECU5には、藻類培養液L1のpH値を検出するpHセンサーSE1、外部空間に放出される気体の酸素濃度を検出する酸素濃度センサーSE2などが接続されており、それらの検出信号が逐次、入力される。ECU5の出力側には、切替バルブV1、送液ポンプP3、コンプレッサー81、外気切替バルブV2などが接続されている。
Figure 4 shows the control configuration of the algae growth inhibition device. The electronic control unit (hereinafter referred to as ECU) is composed of a microcomputer consisting of a CPU, RAM, ROM, and an I/O interface (all not shown). The ECU 5 is connected to a pH sensor SE1 that detects the pH value of the algae culture liquid L1, an oxygen concentration sensor SE2 that detects the oxygen concentration of the gas released into the external space, and other sensors, and these detection signals are input sequentially. The output side of the ECU 5 is connected to a switching valve V1, a liquid delivery pump P3, a compressor 81, an outside air switching valve V2, and other sensors.
図5は、本実施形態における藻類増殖制御の処理を説明するフローチャートである。本処理はECU5において、継続して繰り返されて実行される。
FIG. 5 is a flowchart explaining the process of algae growth control in this embodiment. This process is continuously and repeatedly executed by the ECU 5.
本処理では、ステップ1(「S1」と図示する。以下同じ。)において、酸素濃度センサーSE2で検出された排出気体A3の酸素濃度MOが、第1閾濃度OTHRを超えたか否かを判別するとともに、pHセンサーSE1で検知された藻類培養液のpH値MPが、第1閾値PTHR1を超えたか否かを判別する。具体的には、第1閾濃度OTHRは40~50%であることが好ましい。また、第1閾値PTHR1は、一定要件下(例えば、藻類培養液の温度が所定範囲に維持される環境下)で、藻類の増殖が所定以上に促進しない値、例えば10.5に設定されている。
In this process, in step 1 (illustrated as "S1"; the same applies below), it is determined whether the oxygen concentration MO of the exhaust gas A3 detected by the oxygen concentration sensor SE2 exceeds a first threshold concentration OTHR, and whether the pH value MP of the algae culture solution detected by the pH sensor SE1 exceeds a first threshold value PTHR1. Specifically, it is preferable that the first threshold concentration OTHR is 40-50%. Furthermore, the first threshold value PTHR1 is set to a value that does not promote algae growth more than a specified level under certain conditions (for example, in an environment where the temperature of the algae culture solution is maintained within a specified range), such as 10.5.
判別結果がYESで、酸素濃度MOが第1閾濃度OTHRを超えたとともに、pH値MPが第1閾値PTHR1を超えた場合は、ステップ2に進む。判別結果がNOの場合は、検出を継続する。
If the result is YES, and the oxygen concentration MO exceeds the first threshold concentration OTHR, and the pH value MP exceeds the first threshold value PTHR1, proceed to step 2. If the result is NO, continue detection.
pH低減制御が実行されない状況下では、培養容器10に貯留される藻類培養液L1は、貫通管50,流路R1、R2を通過して培養容器10に還流している。また、外気EAは二酸化炭素導入装置80を通過することなく、エアフィルター42を経由して、外気導入ノズル41に吹き込こまれ、藻類培養液L1に噴射される。
Under circumstances where pH reduction control is not being performed, the algae culture solution L1 stored in the culture vessel 10 passes through the through-pipe 50 and flow paths R1 and R2 and flows back to the culture vessel 10. In addition, the outside air EA does not pass through the carbon dioxide introduction device 80, but passes through the air filter 42, is blown into the outside air introduction nozzle 41, and is sprayed into the algae culture solution L1.
ステップ2では、pH低減制御を実行する。pH低減制御は、第1制御と、第2制御の二つの制御で構成される。
In step 2, pH reduction control is executed. The pH reduction control is composed of two controls: a first control and a second control.
第1制御について説明する。
Explain the first control.
第1制御が実行されると、切替バルブV1が動作して、藻類培養液L1の流通経路が変更される。具体的には、培養容器10に貯留される藻類培養液L1は、貫通管50、流路R1、切替バルブV1、流路R3を経由して回収容器31に貯留される。これにより、培養容器10に貯留される藻類培養液L1の水面高H1は、低下する。
When the first control is executed, the switching valve V1 operates to change the flow path of the algae culture solution L1. Specifically, the algae culture solution L1 stored in the culture vessel 10 passes through the through pipe 50, the flow path R1, the switching valve V1, and the flow path R3, and is stored in the collection vessel 31. As a result, the water surface height H1 of the algae culture solution L1 stored in the culture vessel 10 is lowered.
レベルセンサーSE3で検知された水面高H1が、一定値以上低下したとき、切替バルブV1を再度、動作して、藻類培養液L1が培養容器10に還流する経路に変更する。同時に、送液ポンプP3を動作して、補充液ボトル32に貯留される補充液L2を培養容器10に送り込む。補充液L2のpH値は、藻類培養液L1の初期pH値よりも小さく設定されている。本実施形態では、藻類培養液L1の初期pH値として8.8~9.2、また補充液L2のpH値として8.5が例示されるが、これに限定されるわけではない。補充液L2を高いpH値となった藻類培養液L1に充填することで、藻類培養液L1のpH値は低下する。なお、藻類培養液L1の回収容器31への回収は、藻類培養液L1を流路R2→流路R3の方向に逆流させて実行してもよい。これにより、回収の効率化を図り得る。また、更なる回収能率の向上を目指して、藻類培養液L1を逆流させるためのポンプを新たに設けてもよい。
When the water surface height H1 detected by the level sensor SE3 drops by a certain value or more, the switching valve V1 is operated again to change the path for returning the algal culture solution L1 to the culture vessel 10. At the same time, the liquid supply pump P3 is operated to send the replenishment liquid L2 stored in the replenishment liquid bottle 32 to the culture vessel 10. The pH value of the replenishment liquid L2 is set to be lower than the initial pH value of the algal culture solution L1. In this embodiment, the initial pH value of the algal culture solution L1 is 8.8 to 9.2, and the pH value of the replenishment liquid L2 is 8.5, but this is not limited to these. By filling the algal culture solution L1 with the replenishment liquid L2, which has a high pH value, the pH value of the algal culture solution L1 is reduced. The recovery of the algal culture solution L1 into the recovery vessel 31 may be performed by flowing the algal culture solution L1 back in the direction from flow path R2 to flow path R3. This can improve the efficiency of the recovery. In addition, in order to further improve the recovery efficiency, a new pump may be installed to reverse the flow of the algae culture solution L1.
第2制御について説明する。
Explain the second control.
第2制御が実行されると、コンプレッサー81、外気切替バルブV2が動作する。外気切替バルブV2が動作することで、外気EAは二酸化炭素導入装置80を通過できるようになる。同時に、外気EAが直接に取込まれる経路は閉鎖される。コンプレッサー81の動作によって、外気EAは、二酸化炭素分離セラミック膜82を通過し、その過程で、二酸化炭素が低減された低濃度二酸化炭素気体A2と、二酸化炭素の濃度が高い高濃度二酸化炭素気体A1に分離される。高濃度二酸化炭素気体A1は、外気導入ノズル41から藻類培養液L1に噴射される。また、低濃度二酸化炭素気体A1は、外部に放出される。
When the second control is executed, the compressor 81 and the outside air switching valve V2 are operated. The operation of the outside air switching valve V2 allows the outside air EA to pass through the carbon dioxide introduction device 80. At the same time, the path through which the outside air EA is directly taken in is closed. The operation of the compressor 81 causes the outside air EA to pass through the carbon dioxide separation ceramic membrane 82, and in the process, it is separated into low-concentration carbon dioxide gas A2, which has reduced carbon dioxide, and high-concentration carbon dioxide gas A1, which has a high concentration of carbon dioxide. The high-concentration carbon dioxide gas A1 is sprayed from the outside air introduction nozzle 41 into the algae culture solution L1. The low-concentration carbon dioxide gas A1 is released to the outside.
第1制御、第2制御を継続して実行することで、藻類培養液L1のpH値MPは低減する。pH値MPの低減に伴って、藻類の増殖は抑制される。
By continuously executing the first control and the second control, the pH value MP of the algae culture solution L1 decreases. As the pH value MP decreases, the growth of the algae is suppressed.
ステップ3では、pHセンサーSE1で検知された藻類培養液L1のpH値MPが、第2閾値PTHR2を下回ったか否かを判別する。具体的には第2閾値PTHR2は9.0を例示しており、一定要件下、藻類の増殖が所定以下に低下しない値に設定されている。この判別結果がYESで、pH値MPが第2閾値PTHR2を下回る場合は、ステップ4に進み、pH低減制御を停止する。判別結果がNOの場合は、pH低減制御を継続する。
In step 3, it is determined whether the pH value MP of the algae culture solution L1 detected by the pH sensor SE1 has fallen below the second threshold value PTHR2. Specifically, the second threshold value PTHR2 is set to 9.0 as an example, and is set to a value that does not cause the algae growth to fall below a predetermined level under certain conditions. If the result of this determination is YES, that is, the pH value MP is below the second threshold value PTHR2, the process proceeds to step 4 and the pH reduction control is stopped. If the result of the determination is NO, the pH reduction control is continued.
本実施形態は例示であり、本発明の技術的思想を逸脱しない範囲で改変できることは勿論である。例えば、本実施形態では、培養容器は、内壁と外壁を有するいわゆるドーナツ形状となっているが、椀形状であってもよい。また、光源装置は内部領域に設けられているが、培養容器の外部領域に設けてもよい。
This embodiment is merely an example, and can of course be modified without departing from the technical concept of the present invention. For example, in this embodiment, the culture vessel has a so-called donut shape with inner and outer walls, but it may also be bowl-shaped. Also, the light source device is provided in the internal region, but it may also be provided in the external region of the culture vessel.
本発明に係る藻類増殖制御装置は、閉鎖増殖空間において継続的な藻類の光合成が可能となる。そのため、密閉空間を形成する必要がある構造物、例えば核シェルターの内部の空気浄化をする浄化装置としても好適に使用できることから、産業用の利用可能性は大である。
The algae growth control device of the present invention enables continuous algae photosynthesis in a closed growth space. Therefore, it can be suitably used as a purification device for purifying the air inside structures that require the formation of sealed spaces, such as nuclear shelters, and has great potential for industrial use.
1 :二酸化炭素削減インテリア
2 :藻類増殖制御装置
3 :pH低減装置
10 :培養容器
15a :開口部
20 :光源装置
30 :第1制御装置
31 :回収容器
32 :補充液ボトル
41 :外気導入ノズル
L1 :藻類培養液
L2 :補充液
EA :外気
A1 :高濃度二酸化炭素気体
A2 :低濃度二酸化炭素気体
A3 :排出気体
SE1 :pHセンサー
SE2 :酸素濃度センサー
PTHR1 :第1閾値
PTHR2 :第2閾値
OTHR :第1閾濃度
MP :pH値
MO :酸素濃度 1: Carbon dioxide reduction interior 2: Algae growth control device 3: pH reduction device 10:Culture vessel 15a: Opening 20: Light source device 30: First control device 31: Collection vessel 32: Replenishment liquid bottle 41: Outside air introduction nozzle L1: Algae culture liquid L2: Replenishment liquid EA: Outside air A1: High concentration carbon dioxide gas A2: Low concentration carbon dioxide gas A3: Exhaust gas SE1: pH sensor SE2: Oxygen concentration sensor PTHR1: First threshold value PTHR2: Second threshold value OTHR: First threshold concentration MP: pH value MO: Oxygen concentration
2 :藻類増殖制御装置
3 :pH低減装置
10 :培養容器
15a :開口部
20 :光源装置
30 :第1制御装置
31 :回収容器
32 :補充液ボトル
41 :外気導入ノズル
L1 :藻類培養液
L2 :補充液
EA :外気
A1 :高濃度二酸化炭素気体
A2 :低濃度二酸化炭素気体
A3 :排出気体
SE1 :pHセンサー
SE2 :酸素濃度センサー
PTHR1 :第1閾値
PTHR2 :第2閾値
OTHR :第1閾濃度
MP :pH値
MO :酸素濃度 1: Carbon dioxide reduction interior 2: Algae growth control device 3: pH reduction device 10:
Claims (4)
- 藻類培養液が貯留される培養容器と、前記培養容器に装着される外気導入ノズルと、前記培養容器に向かって光を照射する光源装置と、を備え、前記光は、前記培養容器を透過して視認することができ、前記外気導入ノズルから前記藻類培養液に吹き込まれる外気は、前記藻類培養液の中を上昇する過程で、前記藻類培養液に存する藻類の光合成の効果によって、二酸化炭素が削減されるとともに酸素に変換されて、前記培養容器に設けられた開口部から排出される二酸化炭素削減インテリアにおける、前記藻類培養液に存する藻類の増殖を制御する藻類増殖制御装置であって、
前記藻類培養液のpH値を測定するpHセンサーと、
前記培養容器から排出される排出気体の酸素濃度を測定する酸素濃度センサーと、
前記藻類培養液のpH値を低減制御するためのpH低減装置と、を備え、
前記pHセンサーの測定値が第1閾値を超えるとともに、前記酸素濃度センサーの測定値が第1閾濃度を超えたと判定されたときpH低減制御を実行し、前記pHセンサーの測定値が前記第1閾値よりも低いpH値である第2閾値を下回ると判定されたとき前記pH低減制御の実行を停止することを特徴とする藻類増殖制御装置。 An algae growth control device for controlling the growth of algae present in the algae culture solution in a carbon dioxide reducing interior, comprising a culture vessel in which an algae culture solution is stored, an outside air introduction nozzle attached to the culture vessel, and a light source device for irradiating light toward the culture vessel, the light being visible as it passes through the culture vessel, and the outside air blown into the algae culture solution from the outside air introduction nozzle reduces carbon dioxide and is converted into oxygen due to the effect of photosynthesis of the algae present in the algae culture solution as it rises through the algae culture solution, and the carbon dioxide reduction effect is exhausted from an opening provided in the culture vessel.
A pH sensor for measuring the pH value of the algae culture solution;
an oxygen concentration sensor for measuring the oxygen concentration of the exhaust gas discharged from the culture vessel;
A pH reducing device for reducing and controlling the pH value of the algae culture solution;
An algae growth control device characterized by executing pH reduction control when the measurement value of the pH sensor exceeds a first threshold value and the measurement value of the oxygen concentration sensor is determined to exceed a first threshold concentration, and stopping the execution of the pH reduction control when the measurement value of the pH sensor is determined to fall below a second threshold value, which is a pH value lower than the first threshold value. - 前記pH低減装置は、前記藻類培養液を回収する回収容器と、前記藻類培養液のpH値を低減させるための補充液を前記藻類培養液に補充する補充液ボトルと、を有することを特徴とする請求項1に記載の藻類増殖制御装置。 The algae growth control device according to claim 1, characterized in that the pH reduction device has a collection container for collecting the algae culture solution, and a replenishment liquid bottle for replenishing the algae culture solution with a replenishment liquid for reducing the pH value of the algae culture solution.
- 前記培養容器に充填される前記藻類培養液を備え、
前記補充液のpH値は、前記藻類培養液の初期pH値よりも小さいことを特徴とする請求項2に記載の藻類増殖制御装置。 The algae culture solution is filled in the culture vessel,
The algae growth control device according to claim 2 , wherein the pH value of the replenisher liquid is lower than the initial pH value of the algae culture liquid. - 前記pH低減装置は、前記外気を、前記外気に比べて高濃度の二酸化炭素を含む高濃度二酸化炭素気体と、前記外気に比べて低濃度の二酸化炭素を含む低濃度二酸化炭素気体とに分離して、前記高濃度二酸化炭素気体を、前記外気導入ノズルを経由して前記藻類培養液に吹き込むとともに、前記低濃度二酸化炭素気体を外部に排出することができる二酸化炭素導入装置を有することを特徴とする請求項1~3のいずれか1項に記載の藻類増殖制御装置。 The algae growth control device according to any one of claims 1 to 3, characterized in that the pH reduction device has a carbon dioxide introduction device that separates the outside air into a high-concentration carbon dioxide gas containing a higher concentration of carbon dioxide than the outside air and a low-concentration carbon dioxide gas containing a lower concentration of carbon dioxide than the outside air, and blows the high-concentration carbon dioxide gas into the algae culture liquid via the outside air introduction nozzle, while discharging the low-concentration carbon dioxide gas to the outside.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-187005 | 2022-11-24 | ||
JP2022187005A JP7430005B1 (en) | 2022-11-24 | 2022-11-24 | Algae growth control device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024111528A1 true WO2024111528A1 (en) | 2024-05-30 |
Family
ID=89806740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/041538 WO2024111528A1 (en) | 2022-11-24 | 2023-11-17 | Algae propagation control device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7430005B1 (en) |
TW (1) | TW202421210A (en) |
WO (1) | WO2024111528A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05305800A (en) * | 1992-04-30 | 1993-11-19 | Misawa Homes Co Ltd | Cylindrical water tank |
JPH06305703A (en) * | 1993-04-23 | 1994-11-01 | Emushiki Suiko Kenkyusho:Kk | Oxygen generator |
JPH0731466A (en) * | 1993-07-02 | 1995-02-03 | Ebara Corp | Method for environmental control and apparatus therefor |
JP2008283946A (en) * | 2007-05-21 | 2008-11-27 | Yanmar Co Ltd | Method for measuring proliferation activity of microalgae, and apparatus for measuring proliferation activity of microalgae |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5305800B2 (en) | 2008-09-17 | 2013-10-02 | 三洋電機株式会社 | Air conditioner |
JP6305703B2 (en) | 2013-08-07 | 2018-04-04 | 東芝メモリ株式会社 | Image acquisition apparatus, image acquisition method, and defect inspection apparatus |
-
2022
- 2022-11-24 JP JP2022187005A patent/JP7430005B1/en active Active
-
2023
- 2023-11-17 WO PCT/JP2023/041538 patent/WO2024111528A1/en unknown
- 2023-11-24 TW TW112145682A patent/TW202421210A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05305800A (en) * | 1992-04-30 | 1993-11-19 | Misawa Homes Co Ltd | Cylindrical water tank |
JPH06305703A (en) * | 1993-04-23 | 1994-11-01 | Emushiki Suiko Kenkyusho:Kk | Oxygen generator |
JPH0731466A (en) * | 1993-07-02 | 1995-02-03 | Ebara Corp | Method for environmental control and apparatus therefor |
JP2008283946A (en) * | 2007-05-21 | 2008-11-27 | Yanmar Co Ltd | Method for measuring proliferation activity of microalgae, and apparatus for measuring proliferation activity of microalgae |
Also Published As
Publication number | Publication date |
---|---|
JP2024075823A (en) | 2024-06-05 |
JP7430005B1 (en) | 2024-02-09 |
TW202421210A (en) | 2024-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103266328B (en) | A kind of device utilizing electrolysis ozone generator can manufacture ozone water and hydrogen water at any time | |
CN104023753A (en) | Purification device and purification method | |
WO2024111528A1 (en) | Algae propagation control device | |
CN109882959A (en) | A kind of concealed indoor air cleaner | |
KR102488365B1 (en) | Indoor air sterilizing device with air purification and perfume diffusion function | |
CN2906409Y (en) | Air purifying and oxygen producing dual-purpose machine | |
CN202232302U (en) | Water storage flowerpot for enhancing air purification function | |
WO2024122313A1 (en) | Algae-activation-state-sustaining device | |
WO2024106532A1 (en) | Carbon-dioxide-reducing interior accessory | |
CN205912704U (en) | Multi -functional aquarium creature cultivates system | |
CN209406048U (en) | It is a kind of can the uniformly distributed bio-trickling filter of exhaust gas | |
CN209968010U (en) | Liquid phase circulation air purification device using nano titanium dioxide photocatalyst as consumable | |
CN210993732U (en) | Air purifying device | |
CN209563355U (en) | Ornamental plank road formula circulating water culture system | |
CN207671841U (en) | A kind of industrial waste water purifying device | |
CN109028387A (en) | A kind of Household Air Purifier based on multi-level filtering, purification techniques | |
CN105333519A (en) | Annular filtering structure for filtering and decomposing harmful substances in air | |
CN205717641U (en) | A kind of air purifier being provided with water filter module | |
CN205460043U (en) | Outdoor filtration environment -friendly device | |
CN205907115U (en) | Reliable industrial sewage treatment equipment | |
CN205759011U (en) | A kind of novel intelligent Ozone Water Disinfector | |
CN217451252U (en) | Purifier belt cleaning device | |
CN205402928U (en) | Room air composite Biological clean system | |
CN207085677U (en) | A kind of device removed for high concentration foul smell | |
CN104433392B (en) | Improved landscape seat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23894536 Country of ref document: EP Kind code of ref document: A1 |