JPH0731466A - Method for environmental control and apparatus therefor - Google Patents

Method for environmental control and apparatus therefor

Info

Publication number
JPH0731466A
JPH0731466A JP18864393A JP18864393A JPH0731466A JP H0731466 A JPH0731466 A JP H0731466A JP 18864393 A JP18864393 A JP 18864393A JP 18864393 A JP18864393 A JP 18864393A JP H0731466 A JPH0731466 A JP H0731466A
Authority
JP
Japan
Prior art keywords
oxygen
carbon dioxide
air
concentration
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18864393A
Other languages
Japanese (ja)
Inventor
Akiko Miya
晶子 宮
Tadashi Adachi
正 足立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP18864393A priority Critical patent/JPH0731466A/en
Publication of JPH0731466A publication Critical patent/JPH0731466A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/06Means for regulation, monitoring, measurement or control, e.g. flow regulation of illumination
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To provide a method for the environmental control in which evolved gaseous carbon dioxide in a closed space can economically be recovered and oxygen can be generated to control the gaseous carbon dioxide and oxygen in air to constant concentrations. CONSTITUTION:This environmental controller is equipped with a photosynthetic reactional vessel 6 for culturing an oxygen generating type photosynthetic organism, a light source 21 for feeding light thereto, a feeding system 1 for air to be treated and a discharging system 2 for the treated air. In the controller, a mechanism 8 for changing the amount of energy is installed in the light source for feeding the light and devices 5 and 7 for measuring the gaseous carbon dioxide and oxygen concentrations in air are provided in the feeding system for the air to be treated and/or the discharging system for the treated air. Furthermore, a controller 9 for controlling the mechanism 8 for changing the amount of the light energy by values measured with the devices for measurement is installed to change the amount of the light energy to be fed to the oxygen generating type photosynthetic organism and modulate the rate of conversion from gaseous carbon dioxide into oxygen. Thereby, the control is performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大気環境を制御する方
法と装置に係り、特に閉鎖的な空間において空気中の炭
酸ガス濃度と酸素濃度を酸素発生型光合成生物によって
制御する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for controlling the atmospheric environment, and more particularly to a technique for controlling the carbon dioxide concentration and oxygen concentration in the air by an oxygen-producing photosynthetic organism in a closed space.

【0002】[0002]

【従来の技術】宇宙船、潜水艦、海洋開発などの閉鎖的
な空間や、地上やビル内の住居空間あるいは地下駐車場
などの準閉鎖的な空間においては、人間の呼気あるいは
燃焼排ガス中の炭酸ガスを除去し、呼吸あるいは燃焼に
使用された酸素を補給して空気中の炭酸ガス濃度及び酸
素濃度を一定濃度に保つ大気環境制御が必須である。ビ
ル内の住居空間あるいは地下駐車場などの準閉鎖的な空
間においては、通常外気との換気によってこれを達成し
てきた。一方宇宙船や潜水艦では、閉鎖空間内の発生炭
酸ガスを薬剤を用いて吸収、分離して船外に排出し、水
の電気分解あるいはあらかじめ持ち込んだ液体酸素によ
って酸素ガスを補給することで空間内の空気中の炭酸ガ
ス濃度及び酸素濃度を一定濃度に制御する方法が採用さ
れている。
2. Description of the Related Art In a closed space such as a spacecraft, a submarine, or an ocean development space, or in a quasi-closed space such as a residential space on the ground or in a building, or an underground parking lot, carbon dioxide in human breath or combustion exhaust gas It is essential to control the atmospheric environment by removing the gas and supplementing the oxygen used for breathing or combustion to keep the carbon dioxide concentration and oxygen concentration in the air at a constant concentration. In a residential space in a building or a semi-closed space such as an underground parking lot, this is usually achieved by ventilation with outside air. On the other hand, in spacecraft and submarines, the carbon dioxide gas generated in the closed space is absorbed and separated using chemicals and discharged to the outside of the space, and the oxygen gas is supplied by electrolysis of water or liquid oxygen brought in beforehand to replenish the space. The method of controlling the concentration of carbon dioxide gas and the concentration of oxygen in the air is adopted.

【0003】しかし、近年の都市部では大気汚染がます
ます進行しているため換気を目的に導入する外気の清浄
化が必要となり、換気による大気環境制御コストが上昇
しつつある。また地下空間の利用においても、今後大深
度地下開発が進むのに従って、換気に必要なエネルギー
及びコストが増加すると予想される。さらに炭酸ガスは
地球規模の環境問題の中でも最も影響が大きい地球温暖
化の主たる原因物質であり、発生した炭酸ガスをそのま
ま大気中に放出する換気方式は見直しを迫られることが
必至と考えられている。
However, since the air pollution is progressing more and more in urban areas in recent years, it is necessary to clean the outside air introduced for the purpose of ventilation, and the cost of controlling the atmospheric environment by ventilation is rising. Also in the use of underground space, it is expected that the energy and cost required for ventilation will increase as deep underground development progresses. Furthermore, carbon dioxide is the main causative agent of global warming, which has the greatest impact among global environmental problems, and it is considered necessary to review the ventilation system that releases the generated carbon dioxide into the atmosphere. There is.

【0004】一方宇宙船や潜水艦で採用されている炭酸
ガス除去・酸素供給方式では、炭酸ガス除去に伴い廃棄
物が発生することや多量のエネルギーを要する等の問題
がある。特に惑星探査のような長期有人飛行を行なう宇
宙船では、必要な薬剤や液体酸素の輸送コストが膨大な
額に達すると試算されている。また、化学的酸素供給方
法においては、逆に酸素過多による障害も懸念される。
これに対して、閉鎖空間内の発生炭酸ガスを経済的に回
収し、それを有効に利用して酸素を発生する方法として
は、光合成能力を持つ植物細胞又は微細藻類を利用する
方法が既に提唱されている(特願平1−155858
号)。
On the other hand, the carbon dioxide removal / oxygen supply system adopted in spacecraft and submarines has problems that waste is generated along with the removal of carbon dioxide and a large amount of energy is required. It is estimated that the cost of transporting necessary chemicals and liquid oxygen will reach enormous amounts, especially for spacecraft that carry out long-term manned flights such as planetary exploration. Further, in the chemical oxygen supply method, on the contrary, there is a concern that there may be damage due to excess oxygen.
On the other hand, as a method for economically recovering the carbon dioxide gas generated in the closed space and effectively utilizing it to generate oxygen, a method using plant cells or microalgae having photosynthetic ability has already been proposed. (Japanese Patent Application No. 1-155858)
issue).

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記酸素発
生型光合成生物を利用する方法の改良に関し、閉鎖的空
間内の発生炭酸ガスを経済的に回収し、酸素を発生し、
空気中の炭酸ガス濃度及び酸素濃度を一定濃度に制御す
ることができる環境の制御方法及び装置を提供すること
を課題とする。
DISCLOSURE OF THE INVENTION The present invention relates to an improvement in the method of utilizing the above oxygen-producing photosynthetic organisms, wherein carbon dioxide gas generated in a closed space is economically recovered to generate oxygen,
It is an object of the present invention to provide an environment control method and device capable of controlling the concentration of carbon dioxide gas and the concentration of oxygen in air to constant concentrations.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、空気中の炭酸ガス濃度及び/又は酸素
濃度を酸素発生型光合成生物によって調整する環境の制
御方法において、前記炭酸ガス濃度及び/又は酸素濃度
は、酸素発生型光合成生物に供給する光エネルギーの量
を変化させ、炭酸ガスから酸素への変換速度を調整する
ことにより制御することとしたものである。
In order to solve the above problems, the present invention provides a method for controlling an environment in which the concentration of carbon dioxide and / or oxygen in the air is adjusted by an oxygen-producing photosynthetic organism. The concentration and / or the oxygen concentration is controlled by changing the amount of light energy supplied to the oxygen-generating photosynthetic organism and adjusting the conversion rate of carbon dioxide gas to oxygen.

【0007】前記制御方法において、酸素発生型光合成
生物に供給する光エネルギーの量の変化は、該酸素発生
型光合成生物の光合成活性が良好に維持される照射強度
範囲で照射強度を調節するか、又は、該酸素発生型光合
成生物の光合成活性が良好な強度に維持される照射強度
で照射時間を調節することにより、単位時間あたりの光
エネルギー供給量を変化させて行うのがよい。
In the above control method, the change in the amount of light energy supplied to the oxygen-producing photosynthetic organism is adjusted by adjusting the irradiation intensity within the irradiation intensity range in which the photosynthetic activity of the oxygen-producing photosynthetic organism is favorably maintained. Alternatively, the amount of light energy supplied per unit time may be changed by adjusting the irradiation time with an irradiation intensity that maintains the photosynthetic activity of the oxygen-producing photosynthetic organism at a good intensity.

【0008】また、前記酸素発生型光合成生物に供給す
る光エネルギーの量の変化は、被処理空気中の炭酸ガス
濃度及び/又は酸素濃度と、処理空気中の炭酸ガス濃度
及び/又は酸素濃度から、前記酸素発生型光合成生物の
単位時間あたりの炭酸ガスから酸素への変換能力を検知
し、処理空気中又は処理対象空間の空気中の炭酸ガス濃
度及び酸素濃度が所定の値に維持されるように該光合成
生物に供給する光エネルギーの量を変化させて行うのが
よい。
The change in the amount of light energy supplied to the oxygen-generating photosynthetic organisms is determined by the concentration of carbon dioxide and / or oxygen in the air to be treated and the concentration of carbon dioxide and / or oxygen in the treated air. Detecting the ability of the oxygen-generating photosynthetic organism to convert carbon dioxide gas to oxygen per unit time so that the carbon dioxide concentration and the oxygen concentration in the treated air or the air in the treatment target space are maintained at predetermined values. It is preferable to change the amount of light energy supplied to the photosynthetic organism.

【0009】また、本発明では、酸素発生型光合成生物
を培養する光合成反応槽と、それに光を供給する光源及
び被処理空気供給系、処理空気排出系を有する環境制御
装置において、前記光を供給する光源に光エネルギーの
量を変化させる機構を設けると共に、被処理空気供給系
及び/又は処理空気排出系に空気中の炭酸ガス濃度及び
酸素濃度を測定する装置を設け、該測定装置の測定値に
より光エネルギー量を変化させる機構を制御する制御装
置を設けることとしたものである。
Further, according to the present invention, the photosynthetic reaction tank for culturing the oxygen-producing photosynthetic organism, the light source for supplying light to the photosynthetic reaction tank, the treated air supply system, and the treated air discharge system are provided in the environment control device, and the light is supplied. The light source is provided with a mechanism for changing the amount of light energy, and a device for measuring the carbon dioxide concentration and oxygen concentration in the air is provided in the air supply system for treatment and / or the exhaust system for treatment air, and the measurement value of the measurement device is provided. Therefore, a control device for controlling a mechanism for changing the amount of light energy is provided.

【0010】前記装置において、光エネルギーの量を変
化させる機構としては、照射強度の調節及び/又は照射
時間の調節をすることができる機構がよい。また、光合
成反応槽は多段に設けることにより、被処理空気を連続
的に処理して空気中の炭酸ガス濃度と酸素濃度を精密に
制御することができる。上記したように、本発明は、炭
酸ガスから酸素への変換速度あるいは酸素から炭酸ガス
への変換速度の変化と酸素発生型光合成生物に供給する
光エネルギーの量の変化との間に顕著な関係があること
を見いだしなされたものである。
In the above apparatus, the mechanism for changing the amount of light energy is preferably a mechanism capable of adjusting the irradiation intensity and / or the irradiation time. Further, by providing the photosynthesis reaction tanks in multiple stages, the air to be treated can be continuously treated to precisely control the carbon dioxide concentration and the oxygen concentration in the air. As described above, the present invention has a remarkable relationship between the change in the conversion rate of carbon dioxide gas to oxygen or the conversion rate of oxygen to carbon dioxide gas and the change in the amount of light energy supplied to the oxygen-producing photosynthetic organism. It was discovered that there is.

【0011】以下、本発明の環境制御方法及び装置につ
いてさらに詳細に説明する。本発明の環境制御装置は酸
素発生型光合成生物を培養する光合成反応槽と、それに
光を供給する光源及び被処理空気供給系、処理空気排出
系、培地供給系、余剰藻体回収系及び計測制御系からな
る。本発明の光合成反応槽において培養する酸素発生型
光合成生物としては、中温から高温域で生育するもので
あればどのようなものでも利用でき、具体的な例として
は緑藻、藍藻、珪藻、ミドリムシ藻、炎色藻、真正眼点
藻、プリムネシオ藻、クリプト藻、紅藻等の微細藻類が
好ましいが、更に、酸素発生型光合成細菌や海藻類、一
般植物も適用することができる。
The environment control method and apparatus of the present invention will be described in more detail below. The environmental control device of the present invention is a photosynthetic reaction tank for culturing oxygen-producing photosynthetic organisms, a light source for supplying light thereto and a treated air supply system, a treated air discharge system, a medium supply system, a surplus algal cell recovery system and measurement control. It consists of a system. As the oxygen-producing photosynthetic organism to be cultured in the photosynthetic reaction tank of the present invention, any one can be used as long as it grows in a medium to high temperature range, and specific examples include green algae, cyanobacteria, diatoms and Euglena. Microalgae such as flame-colored algae, true-eye spot algae, primesio algae, cryptoalgae, and red algae are preferable, but oxygen-producing photosynthetic bacteria, seaweeds, and general plants can also be applied.

【0012】光合成反応に用いる光源としては酸素発生
型光合成生物が光合成を行なうものであればいずれでも
よく、具体的な例としては太陽光、白色光、蛍光等があ
る。また、光合成反応槽への光導入方法としては光透過
性の反応槽外壁を通して外部から照射する方式でも、光
源の光を集光し光ファイバーで伝送して光拡散体を通し
て培養液中に拡散する内部照射方式あるいは光源を培養
槽内に設置する内部照射方式のいずれでもよい。光エネ
ルギーの供給制御は光源のON−OFFによっても強弱
によってもよい。更に培養液等を循環式とし明所と暗所
を循環させ、その循環速度によって制御してもよく、そ
の他の方法でもよい。本発明の環境制御装置は閉鎖空間
内の空気中の炭酸ガス濃度の変動に応じて酸素発生量を
調節し、炭酸ガス及び酸素濃度を一定濃度に制御するこ
とができる。
The light source used for the photosynthetic reaction may be any one as long as the oxygen-producing photosynthetic organism photosynthesizes, and specific examples thereof include sunlight, white light, fluorescence and the like. As a method of introducing light into the photosynthetic reaction tank, the method of irradiating from outside through the outer wall of the light-transmitting reaction tank can also be used to collect light from the light source, transmit it with an optical fiber, and diffuse it into the culture solution through the light diffuser. Either an irradiation method or an internal irradiation method in which a light source is installed in the culture tank may be used. The control of the supply of the light energy may be performed by turning the light source on and off or by the strength. Further, the culture solution or the like may be circulated in a light place and a dark place, and the circulation rate may be controlled, or another method may be used. The environmental control device of the present invention can adjust the amount of oxygen generated according to the fluctuation of the carbon dioxide concentration in the air in the closed space, and can control the carbon dioxide and oxygen concentrations to be constant.

【0013】[0013]

【作用】植物や藻類などの酸素発生型光合成生物は、光
エネルギーを利用して式(1)に示すように、炭酸ガス
と水から炭水化物のような有機物と酸素を生産する。 6CO2 +12H2 O → 6O2 +C6 126 +6H2 O (1) すなわち、これら光合成生物を利用すれば、一つの反応
槽で炭酸ガス(CO2)の除去と酸素(O2 )の発生を
同時に達成することができる。特に、微細藻類は高い光
合成活性を持ち、単位体積あたりの生物量が高等植物に
比べて多いため、本反応を利用して炭酸ガスを経済的に
回収し、酸素を発生するシステムの構築に最も適するも
のである。また、酸素と同時に生産される有機物は、藻
体あるいは多糖や有機酸などの有用な有機物として回収
され、藻体は食糧や飼料、餌料あるいは肥料として、多
糖や有機酸などは工業原料として有効に利用することが
できる。また、上記式(1)より理解されるように、系
内へのO2 供給量はCO2減少量に相当するので、O2
又はCO2 濃度いずれかをモニタすることで光合成生物
の活性を把握できる。
[Function] Oxygen-producing photosynthetic organisms such as plants and algae use light energy to produce organic substances such as carbohydrates and oxygen from carbon dioxide and water as shown in formula (1). 6CO 2 + 12H 2 O → 6O 2 + C 6 H 12 O 6 + 6H 2 O (1) In other words, if use of these photosynthetic organisms, removal and oxygen a carbon dioxide gas in the reaction vessel (CO 2) of the (O 2) Occurrence can be achieved at the same time. In particular, since microalgae have high photosynthetic activity and the amount of biomass per unit volume is higher than that of higher plants, this reaction is most useful for economically recovering carbon dioxide and generating oxygen. It is suitable. In addition, organic matter produced at the same time as oxygen is recovered as useful organic matter such as algal cells or polysaccharides and organic acids. Algal cells are effectively used as food and feed, feed or fertilizer, and polysaccharides and organic acids are effectively used as industrial raw materials. Can be used. Further, as it is understood from the above equation (1), since the O 2 feed to the system is equivalent to the CO 2 reduction, O 2
Alternatively, the activity of the photosynthetic organism can be grasped by monitoring either the CO 2 concentration.

【0014】光合成反応槽の光合成活性、すなわち炭酸
ガス吸収及び酸素発生速度は藻体濃度、細胞あたりの光
合成活性及び光エネルギー供給量によって決定される。
細胞あたりの光合成活性は全クロロフィル含有量、クロ
ロフィルa/クロロフィルb又はc比等によって決定さ
れるが、この値は培養温度、pH条件、光照射条件等の
種々の培養条件の複合的作用によって決定されるので、
細胞あたりの光合成活性を操作因子として、光合成反応
槽の炭酸ガス吸収及び酸素発生速度を制御することは実
際的ではない。
The photosynthetic activity of the photosynthetic reaction tank, that is, the rate of carbon dioxide absorption and oxygen generation is determined by the concentration of algal cells, the photosynthetic activity per cell and the amount of light energy supplied.
The photosynthetic activity per cell is determined by the total chlorophyll content, chlorophyll a / chlorophyll b or c ratio, etc., but this value is determined by the combined action of various culture conditions such as culture temperature, pH conditions, and light irradiation conditions. Because it is done
It is not practical to control the carbon dioxide absorption and oxygen generation rate in the photosynthetic reaction tank by using the photosynthetic activity per cell as an operation factor.

【0015】また、藻体濃度を変動させることにより、
光合成反応槽の炭酸ガス吸収及び酸素発生速度を制御す
る方式では、藻体濃度の調整に時間がかかる上、光合成
反応槽から引き抜いた藻体を光合成活性を維持しつつ貯
蔵する槽が必要になり、装置が複雑化する等の問題があ
る。従って、光合成反応槽の炭酸ガス吸収及び酸素発生
速度を制御するには、反応槽に供給する光エネルギーの
量を調整する方法が最も優れている。したがって、本発
明では、O2 又はCO2 ガス濃度を入力変数とし、光エ
ネルギー供給量を出力変数とする制御系により光合成生
物活性を制御する。
By changing the algal cell concentration,
In the method of controlling the carbon dioxide absorption and oxygen generation rate of the photosynthesis reaction tank, it takes time to adjust the concentration of algal cells, and it is necessary to have a tank that stores algal cells withdrawn from the photosynthetic reaction tank while maintaining photosynthetic activity. However, there is a problem that the device becomes complicated. Therefore, the method of adjusting the amount of light energy supplied to the reaction tank is the best method for controlling the carbon dioxide absorption and the oxygen generation rate of the photosynthesis reaction tank. Therefore, in the present invention, the photosynthetic biological activity is controlled by the control system having the O 2 or CO 2 gas concentration as the input variable and the light energy supply amount as the output variable.

【0016】一般に光合成生物には、光合成を行なうの
に最適な光の照射強度範囲が存在する。照射強度が一定
値を越えると細胞は強光阻害を起こし、死滅することは
良く知られているが、光エネルギー供給量を低減させる
にあたり、照射強度を弱める方法では照射強度が一定値
に達しない場合には、細胞あたりの光合成活性が著しく
低下するのに対し、照射強度を当該藻類にとって適当な
強度を維持して照射時間を調節することによって、光エ
ネルギー供給量を低減させる場合には、細胞あたりの光
合成活性が高いまま維持される。
In general, a photosynthetic organism has an optimum irradiation intensity range of light for performing photosynthesis. It is well known that when the irradiation intensity exceeds a certain value, cells undergo strong light inhibition and die, but in reducing the light energy supply, the irradiation intensity does not reach a certain value by reducing the irradiation intensity. In this case, the photosynthetic activity per cell is remarkably reduced, whereas when the light energy supply is reduced by adjusting the irradiation time while maintaining the irradiation intensity at an intensity suitable for the algae, The photosynthetic activity around the area remains high.

【0017】光照射条件による微細藻類(クロレラ)の
光合成活性を表1に示す。
Table 1 shows the photosynthetic activity of microalgae (chlorella) under light irradiation conditions.

【表1】 [Table 1]

【0018】このように、照射時間の調節により光エネ
ルギー供給量を調製すると、光合成活性は高いまま維持
されるのである。さらに、本発明においては被処理空気
中の炭酸ガス濃度変動が急速かつ大幅な場合には光合成
反応槽を複数設置し、被処理空気をこれらの反応槽で多
段に処理することにより処理空気中の炭酸ガス及び酸素
濃度を精密に制御することが可能である。ここでは、微
細藻類によって説明したが、本発明は対象生物をこれに
限定しない。
As described above, when the amount of light energy supplied is adjusted by adjusting the irradiation time, the photosynthetic activity remains high. Further, in the present invention, when the carbon dioxide concentration fluctuation in the air to be treated is rapid and significant, a plurality of photosynthetic reaction tanks are installed, and the air to be treated is treated in multiple stages in these reaction tanks to obtain It is possible to precisely control the carbon dioxide and oxygen concentrations. Although the description has been given here using the microalgae, the present invention does not limit the target organisms to this.

【0019】[0019]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれに限定されるものではない。 実施例1 図1は光合成反応槽を組み込んだ環境制御装置のフロー
シートである。図1において、処理対象の閉鎖系空間か
ら送られる被処理空気1は除菌フィルタ3で除菌及び微
細粒子除去処理後、光合成反応槽6に供給される。被処
理空気はガス循環系15を通り光合成反応槽内へ繰り返
し導入されるため、培養液中への炭酸ガス溶解効率が著
しく高められる。光合成反応槽内の空気の一部は処理空
気2として除菌フィルタを通して処理対象の閉鎖系空間
16へ送還される。この時制御装置により、気体中のO
2 濃度が例えば21%となれば、フローメータバルブ4
は開となり、それ以下となれば閉となり、更にシステム
内でのガス循環を行う。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Example 1 FIG. 1 is a flow sheet of an environment control device incorporating a photosynthetic reaction tank. In FIG. 1, the air to be treated 1 sent from the closed space to be treated is sterilized by a sterilization filter 3 and fine particles are removed, and then supplied to a photosynthesis reaction tank 6. Since the air to be treated is repeatedly introduced into the photosynthesis reaction tank through the gas circulation system 15, the efficiency of dissolving carbon dioxide gas in the culture solution is significantly enhanced. A part of the air in the photosynthetic reaction tank is returned to the closed system space 16 to be treated as treated air 2 through the sterilization filter. At this time, the controller controls the O in the gas.
2 If the concentration becomes 21%, flow meter valve 4
Is open and below that, gas is circulated in the system.

【0020】被処理空気及び処理空気あるいは処理対象
の閉鎖系空間の空気中の炭酸ガス濃度及び/又は酸素濃
度は、ガス分析装置5及び7で分析し、分析値を計測制
御用コンピュータ9で取り込んで解析する。この解析に
基づき、光合成反応槽の光源点灯及び消灯時間、光源点
灯本数、被処理空気供給量、処理空気排出量、ガス循環
量を制御し、被処理空気中の炭酸ガス濃度及び/又は酸
素濃度が変動しても、被処理空気あるいは処理対象の閉
鎖系空間の空気中の炭酸ガス濃度及び/又は酸素濃度を
所定の範囲内に制御することができる。
The carbon dioxide concentration and / or the oxygen concentration in the air to be treated and the treated air or the air in the closed system space to be treated are analyzed by the gas analyzers 5 and 7, and the analyzed values are taken in by the measurement control computer 9. Analyze with. Based on this analysis, the light source turn-on / off time of the photosynthesis reaction tank, the number of light sources turned on, the amount of treated air supplied, the amount of treated air discharged, and the amount of gas circulated are controlled, and the concentration of carbon dioxide and / or oxygen in the treated air is controlled. Even if fluctuates, the carbon dioxide concentration and / or the oxygen concentration in the air to be treated or the air in the closed space to be treated can be controlled within a predetermined range.

【0021】培養液の水温、pH、吸光度等はセンサー
8で常時計測し、分析値を計測制御用コンピュータで取
り込み、水温調節装置、pH調節装置等を制御すること
ができる。また、培養液の吸光度を一定になるように培
養液を余剰藻体14として適宜引き抜き、同量の培地1
0を供給することで光合成反応槽内の微細藻類濃度を一
定に維持することができる。光合成反応槽6において、
光源は複数の蛍光燈21を用い、それぞれ独立に点灯、
消灯が制御でき、光源からの光はガラス22を通して微
細藻類培養液23に供給され、蛍光燈から発生する熱は
排熱ファン24によって槽外に排出され、槽底部の通風
孔25から冷却用の空気が供給されるように構成されて
いる。
The water temperature, pH, absorbance, etc. of the culture solution can be constantly measured by the sensor 8 and the analysis value can be taken in by the measurement control computer to control the water temperature adjusting device, the pH adjusting device and the like. Further, the culture solution is appropriately withdrawn as the surplus algal cells 14 so that the absorbance of the culture solution becomes constant, and the same amount of the medium 1
By supplying 0, the concentration of microalgae in the photosynthesis reaction tank can be maintained constant. In the photosynthesis reaction tank 6,
As a light source, a plurality of fluorescent lamps 21 are used, and they are turned on independently
The light can be controlled to be turned off, the light from the light source is supplied to the microalgae culture liquid 23 through the glass 22, the heat generated from the fluorescent lamp is discharged to the outside of the tank by the exhaust heat fan 24, and the cooling air is supplied from the ventilation hole 25 at the bottom of the tank. It is configured to be supplied with air.

【0022】実施例2 図2は図1に示した環境制御装置において、光合成反応
槽を複数設置し、被処理空気の多段処理を行なう場合の
装置の概要を、被処理空気の処理工程のみを抜粋して示
した説明図である。本装置では被処理空気中の炭酸ガス
濃度及び/又は酸素濃度が大きく変動しても複数の反応
槽で変動を吸収すればよいため、被処理空気あるいは処
理対象の閉鎖系空間の空気中の炭酸ガス濃度及び/又は
酸素濃度をさらに精密に所定の範囲内に制御することが
できる。図2の各符号は図1と同じである。
Example 2 FIG. 2 is a schematic view of the environment control apparatus shown in FIG. 1 in which a plurality of photosynthetic reaction tanks are installed and multi-stage treatment of air to be treated is performed. It is explanatory drawing which was excerpted and shown. In this device, even if the carbon dioxide concentration and / or the oxygen concentration in the air to be treated fluctuate greatly, it is sufficient to absorb the fluctuations in a plurality of reaction tanks. The gas concentration and / or the oxygen concentration can be controlled more precisely within a predetermined range. Reference numerals in FIG. 2 are the same as those in FIG.

【0023】実施例3 図1に示した構成を持つ環境制御実験装置(光合成反応
槽有効容積10リットル)を用いて処理実験を行なっ
た。被処理空気は空気に炭酸ガスボンベから供給した炭
酸ガスを所定の炭酸ガス濃度になるようにマスフローメ
ーターを用いて混合したものを用いた。また光合成反応
を担う微細藻類としては緑藻の一種であるクロレラを用
いた。実験は被処理空気の炭酸ガス濃度を一定にした場
合(RUNI及びRUN2)と被処理空気の炭酸ガス濃
度に変動を与えた場合(RUN3及びRUN4)の4条
件で行なった。
Example 3 A treatment experiment was conducted using an environment control experimental apparatus (photosynthesis reaction tank effective volume 10 liters) having the configuration shown in FIG. The air to be treated was a mixture of air and carbon dioxide gas supplied from a carbon dioxide gas cylinder using a mass flow meter so that the concentration of carbon dioxide gas was predetermined. Chlorella, a kind of green algae, was used as the microalgae responsible for the photosynthetic reaction. The experiment was carried out under four conditions in which the concentration of carbon dioxide in the air to be treated was constant (RUNI and RUN2) and when the concentration of carbon dioxide in the air to be treated was varied (RUN3 and RUN4).

【0024】いずれの実験条件においても、被処理空気
の炭酸ガス濃度を原ガス濃度測定系5で、また処理空気
の炭酸ガス濃度を排ガス濃度測定系7で測定し、測定デ
ータをコンピュータ9で取り込み、単位時間当たりの炭
酸ガス減少量に応じた蛍光燈21の点灯本数を変化さ
せ、処理空気の炭酸ガス濃度が0.05%以下になるよ
うに光合成速度を制御した。なお、培養液23のpHは
一定に制御した。被処理空気の炭酸ガス濃度を一定にし
た実験の結果を表2に、また被処理空気の炭酸ガス濃度
に変動を与えた実験の結果を表3に示す。いずれの場合
も処理空気中の炭酸ガス濃度を低濃度に維持することが
できた。
Under any of the experimental conditions, the concentration of carbon dioxide gas in the air to be treated was measured by the raw gas concentration measuring system 5 and the concentration of carbon dioxide gas in the treated air was measured by the exhaust gas concentration measuring system 7, and the measurement data was taken in by the computer 9. The number of lit fluorescent lamps 21 was changed according to the amount of carbon dioxide gas reduction per unit time, and the photosynthetic rate was controlled so that the carbon dioxide concentration of the treated air was 0.05% or less. The pH of the culture solution 23 was controlled to be constant. Table 2 shows the results of the experiment in which the carbon dioxide concentration of the air to be treated was kept constant, and Table 3 shows the results of the experiment in which the carbon dioxide concentration of the air to be treated was varied. In either case, the concentration of carbon dioxide in the treated air could be kept low.

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【表3】 [Table 3]

【0027】[0027]

【発明の効果】本発明の方法によれば、閉鎖空間内の発
生炭酸ガスを経済的に回収し、酸素を発生し、空気中の
炭酸ガス濃度及び酸素濃度を一定濃度に制御することが
でき、閉鎖空間における環境制御に要するエネルギーコ
ストを簡易な操作で大幅に改善することができる。また
閉鎖空間の生命維持システムに適用すれば、光合成反応
槽から回収される余剰藻体は食糧や飼料あるいは餌料と
して、多糖や有機酸などのような光合成生産物は食品原
料として有効に利用することができるため、環境制御と
食糧生産を同時に達成することができ、生命維持システ
ムにおけるエネルギー消費を削減することができる。
According to the method of the present invention, the carbon dioxide gas generated in the closed space can be economically recovered, oxygen can be generated, and the carbon dioxide concentration and the oxygen concentration in the air can be controlled to a constant concentration. The energy cost required for environmental control in a closed space can be greatly improved by a simple operation. When applied to a life-supporting system in a closed space, surplus algal cells recovered from the photosynthetic reaction tank should be effectively used as food, feed or feed, and photosynthetic products such as polysaccharides and organic acids should be effectively used as food ingredients. Therefore, environmental control and food production can be achieved at the same time, and energy consumption in the life support system can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の環境制御装置のフローシート。FIG. 1 is a flow sheet of an environment control device of the present invention.

【図2】本発明に用いる多段型光合成反応槽の概略構成
図。
FIG. 2 is a schematic configuration diagram of a multistage photosynthetic reaction tank used in the present invention.

【符号の説明】[Explanation of symbols]

1:被処理空気、2:処理空気、3:除菌フィルタ、
4:フローメーターバルブ、5:原ガス濃度測定系、
6:光合成反応槽、7:排ガス濃度測定系、8:各種セ
ンサー、9:計測制御用コンピュータ、10:培地、1
1:ポンプ、12:冷却器、13:除湿器、14:余剰
藻体、15:ガス循環系、16:閉鎖空間、21:蛍光
燈、22:ガラス、23:微細藻類培養液、24:排熱
ファン、25:通風孔
1: treated air, 2: treated air, 3: sterilizing filter,
4: Flow meter valve, 5: Raw gas concentration measurement system,
6: Photosynthesis reaction tank, 7: Exhaust gas concentration measurement system, 8: Various sensors, 9: Computer for measurement control, 10: Medium, 1
1: Pump, 12: Cooler, 13: Dehumidifier, 14: Excess algal cells, 15: Gas circulation system, 16: Closed space, 21: Fluorescent lamp, 22: Glass, 23: Microalgal culture solution, 24: Exhaust Heat fan, 25: ventilation hole

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 空気中の炭酸ガス濃度及び/又は酸素濃
度を酸素発生型光合成生物によって調整する大気環境の
制御方法において、前記炭酸ガス濃度及び/又は酸素濃
度は、酸素発生型光合成生物に供給する光エネルギーの
量を変化させ、炭酸ガスから酸素への変換速度を調整す
ることにより制御することを特徴とする環境制御方法。
1. A method for controlling an atmospheric environment, wherein the carbon dioxide concentration and / or oxygen concentration in the air is adjusted by an oxygen-producing photosynthetic organism, wherein the carbon dioxide concentration and / or oxygen concentration is supplied to the oxygen-producing photosynthetic organism. An environmental control method comprising controlling by changing the amount of light energy to be generated and adjusting the conversion rate of carbon dioxide gas to oxygen.
【請求項2】 前記酸素発生型光合成生物に供給する光
エネルギーの量の変化は、該酸素発生型光合成生物の光
合成活性が良好に維持される照射強度範囲で照射強度を
調節するか、又は、該酸素発生型光合成生物の光合成活
性が良好な強度に維持される照射強度で照射時間を調節
することにより、単位時間あたりの光エネルギー供給量
を変化させて行うことを特徴とする請求項1記載の環境
制御方法。
2. The change in the amount of light energy supplied to the oxygen-producing photosynthetic organism is adjusted by adjusting the irradiation intensity within the irradiation intensity range in which the photosynthetic activity of the oxygen-producing photosynthetic organism is favorably maintained, or 2. The amount of light energy supplied per unit time is changed by adjusting the irradiation time with an irradiation intensity at which the photosynthetic activity of the oxygen-producing photosynthetic organism is maintained at a good intensity. Environmental control method.
【請求項3】 前記酸素発生型光合成生物に供給する光
エネルギーの量の変化は、被処理空気中の炭酸ガス濃度
及び/又は酸素濃度と、処理空気中の炭酸ガス濃度及び
/又は酸素濃度から、前記光合成生物の単位時間あたり
の炭酸ガスから酸素への変換能力を検知し、処理空気中
又は処理対象空間の空気中の炭酸ガス濃度及び酸素濃度
が所定の値に維持されるように該光合成生物に供給する
光エネルギーの量を変化させて行うことを特徴とする請
求項1記載の環境制御方法。
3. The change in the amount of light energy supplied to the oxygen-generating photosynthetic organism is determined from the carbon dioxide concentration and / or oxygen concentration in the air to be treated and the carbon dioxide concentration and / or oxygen concentration in the treated air. Detecting the ability of the photosynthetic organism to convert carbon dioxide gas to oxygen per unit time so that the carbon dioxide concentration and the oxygen concentration in the treated air or the air in the treated space are maintained at predetermined values. The environment control method according to claim 1, wherein the method is performed by changing the amount of light energy supplied to the living thing.
【請求項4】 酸素発生型光合成生物を培養する光合成
反応槽と、それに光を供給する光源及び被処理空気供給
系、処理空気排出系を有する環境制御装置において、前
記光を供給する光源に光エネルギーの量を変化させる機
構を設けると共に、被処理空気供給系及び/又は処理空
気排出系に空気中の炭酸ガス濃度及び酸素濃度を測定す
る装置を設け、該測定装置の測定値により光エネルギー
量を変化させる機構を制御する制御装置を設けたことを
特徴とする環境制御装置。
4. A photosynthetic reaction vessel for culturing an oxygen-producing photosynthetic organism, an environment control device having a light source for supplying light thereto, a treated air supply system, and a treated air discharge system, wherein light is supplied to the light source. A mechanism for changing the amount of energy is provided, and a device for measuring the concentration of carbon dioxide gas and oxygen concentration in the air is provided in the treated air supply system and / or the treated air discharge system, and the amount of light energy is measured by the measurement value of the measurement device. An environment control device comprising a control device for controlling a mechanism for changing the temperature.
【請求項5】 前記光エネルギーの量を変化させる機構
が、照射強度の調節及び/又は照射時間の調節機構であ
ることを特徴とする請求項4記載の環境制御装置。
5. The environment control apparatus according to claim 4, wherein the mechanism for changing the amount of light energy is an irradiation intensity adjusting mechanism and / or an irradiation time adjusting mechanism.
【請求項6】 前記光合成反応槽は多段に設けることを
特徴とする請求項4記載の環境制御装置。
6. The environment control device according to claim 4, wherein the photosynthesis reaction tanks are provided in multiple stages.
JP18864393A 1993-07-02 1993-07-02 Method for environmental control and apparatus therefor Pending JPH0731466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18864393A JPH0731466A (en) 1993-07-02 1993-07-02 Method for environmental control and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18864393A JPH0731466A (en) 1993-07-02 1993-07-02 Method for environmental control and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH0731466A true JPH0731466A (en) 1995-02-03

Family

ID=16227308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18864393A Pending JPH0731466A (en) 1993-07-02 1993-07-02 Method for environmental control and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0731466A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154093A (en) * 2016-03-03 2017-09-07 東京電力ホールディングス株式会社 Exhaust purification system and exhaust purification method
CN111133094A (en) * 2017-08-08 2020-05-08 前光股份有限公司 Photosynthetic bioreactor for converting electricity and fertilizer into biomass
EP3788133A4 (en) * 2018-05-03 2022-01-19 Vaxa Technologies Ltd. Device and method for storing live microalgae
WO2024111528A1 (en) * 2022-11-24 2024-05-30 株式会社シェルタージャパン Algae propagation control device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017154093A (en) * 2016-03-03 2017-09-07 東京電力ホールディングス株式会社 Exhaust purification system and exhaust purification method
CN111133094A (en) * 2017-08-08 2020-05-08 前光股份有限公司 Photosynthetic bioreactor for converting electricity and fertilizer into biomass
JP2020530312A (en) * 2017-08-08 2020-10-22 フォアライト,インコーポレーテッド Photosynthetic bioreactor for converting electricity and fertilizer into biomass
US12060547B2 (en) 2017-08-08 2024-08-13 Forelight, Inc. Photosynthetic bioreactor for the conversion of electricity and fertilizer into biomass
EP3788133A4 (en) * 2018-05-03 2022-01-19 Vaxa Technologies Ltd. Device and method for storing live microalgae
JP2022514721A (en) * 2018-05-03 2022-02-15 バクサ テクノロジーズ リミテッド Equipment and methods for storing live microalgae
WO2024111528A1 (en) * 2022-11-24 2024-05-30 株式会社シェルタージャパン Algae propagation control device

Similar Documents

Publication Publication Date Title
Yue et al. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae
Keffer et al. Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor
Travieso et al. A helical tubular photobioreactor producing Spirulina in a semicontinuous mode
Cheng et al. Improving growth rate of microalgae in a 1191 m2 raceway pond to fix CO2 from flue gas in a coal-fired power plant
ES2645251T3 (en) Continuous or discontinuous flow photobioreactor and use procedure
US5846816A (en) Apparatus for biomass production
CN1668185A (en) Photobioreactor and process for biomass production and mitigation of pollutants in flue gases
WO2009077087A1 (en) Process for the production of algal biomass with a high lipid content
AU2007336141A1 (en) Electromagnetic bioaccelerator
Karube et al. Biotechnological reduction of CO 2 emissions
US20140186931A1 (en) Process of Operating a Plurality of Photobioreactors
Markov et al. Using immobilized cyanobacteria and culture medium contaminated with ammonium for H2 production in a hollow-fiber photobioreactor
JPH0731466A (en) Method for environmental control and apparatus therefor
Torzillo et al. Effect of plate distance on light conversion efficiency of a Synechocystis culture grown outdoors in a multiplate photobioreactor
JP3181237B2 (en) Microalgae chlorella and method for immobilizing CO2 using microalgae chlorella
Ramirez-Perez et al. Impact of salinity on the kinetics of CO2 fixation by Spirulina platensis cultivated in semi-continuous photobioreactors
KR102324510B1 (en) Air purification device using microalgae
CN210736727U (en) Plasma anaerobic microorganism breeding device
ES2909891B2 (en) PHOTOBIOREACTORS FOR CULTIVATION OF MICROALGAE, DESTINED TO DIFFERENT APPLICATIONS, RELATED TO THE RECOVERY OF NATURAL RESOURCES, WITHIN A CELLULAR ECONOMY MODEL
JPH0884983A (en) Method and device for accelerating environmental revival
EP3884032B1 (en) Apparatus and method for the growth of photosynthetic microorganisms and the biofixation of carbon dioxide through a high- efficiency optical diffuser with variable spectrum and intensity
CN109692558A (en) The biological treatment device of the pollutant of organic volatile containing chlorine and application
RU2797838C1 (en) Method for utilization of carbon dioxide using microalgae chlorella
CN215161927U (en) Microalgae photobioreactor for treating biogas slurry in pig farm
CN217732908U (en) Environment-friendly microalgae biological sewage treatment reactor