WO2024106532A1 - Carbon-dioxide-reducing interior accessory - Google Patents

Carbon-dioxide-reducing interior accessory Download PDF

Info

Publication number
WO2024106532A1
WO2024106532A1 PCT/JP2023/041421 JP2023041421W WO2024106532A1 WO 2024106532 A1 WO2024106532 A1 WO 2024106532A1 JP 2023041421 W JP2023041421 W JP 2023041421W WO 2024106532 A1 WO2024106532 A1 WO 2024106532A1
Authority
WO
WIPO (PCT)
Prior art keywords
algae
culture solution
wall
culture
carbon dioxide
Prior art date
Application number
PCT/JP2023/041421
Other languages
French (fr)
Japanese (ja)
Inventor
矢野昭彦
小口美津夫
角田隆志
Original Assignee
株式会社シェルタージャパン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シェルタージャパン filed Critical 株式会社シェルタージャパン
Publication of WO2024106532A1 publication Critical patent/WO2024106532A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/04Apparatus for enzymology or microbiology with gas introduction means
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the present invention relates to a carbon dioxide reduction interior that can be used as interior décor while reducing carbon dioxide in the outside air through the photosynthetic action of algae.
  • Patent Document 1 the inventor provides an air purifier that uses spirulina, a type of algae, to effectively purify the air while also achieving a good appearance.
  • the air purifying device previously proposed by the inventor uses a display container as part of a circulation system that circulates spirulina and spirulina culture fluid, and is equipped with an intake port for taking in outside air into this circulation system, and an oxygen separation device for separating oxygen.
  • a light-emitting body is inserted into the display container. Outside air is taken in through the intake port, and the carbon dioxide contained in the outside air is converted into oxygen, while pollutants are dissolved in the culture fluid. Therefore, the gas separated by the oxygen separation device is one in which pollutants have been removed and carbon dioxide has been converted into oxygen.
  • the previously proposed air purifying device not only purifies air, but also looks nice, as the light-emitting body emits light inside the display container.
  • an optical fiber with a light source at the end and scratches on the surface is passed through a transparent tube as an illuminant to promote photosynthesis by spirulina in the circulatory system.
  • the light from the light source is scattered by the optical fiber with scratches on the surface and illuminates the inside of the display container.
  • This configuration makes it difficult to increase the intensity of the light emitted.
  • there is a restriction on the amount of light emitted it is difficult to make the external dimensions larger than a certain size in order to ensure the light necessary to promote photosynthesis. In other words, there are design restrictions in order to ensure functionality.
  • the structure is complicated, so it is time-consuming to change the culture solution, etc.
  • the present invention was made with an eye on these issues, and provides a carbon dioxide reducing interior that allows for a high degree of freedom in design and is easy to maintain.
  • the invention for solving the above problem is a carbon dioxide reducing interior, comprising: a culture vessel having an inner wall arranged in a ring shape and an outer wall arranged in a ring shape on the outer region of the inner wall, and having an opening formed therein; an algae culture liquid stored in the culture vessel; an outside air introduction nozzle attached to the culture vessel; and a light source device that irradiates light toward the inner wall, the light source device having a hollow tube arranged in the inner region of the inner wall and extending along the direction in which the inner wall extends, and a light source arranged in a ring shape in the circumferential direction, the light source having a plurality of rows of LED light sources extending along the direction in which the hollow tube extends, the light emitted from the light source device is visible as it passes through the inner wall, the algae culture liquid, and the outer wall, and the air bubbles blown into the algae culture liquid from the outside air introduction nozzle are characterized in that as they rise through the algae culture liquid, carbon dioxide is reduced and the air
  • the light irradiated from the light source device toward the inner wall can be seen as it passes through the inner wall, the algae culture solution, and the outer wall, so a desired amount of light can be seen by appropriately selecting the outer shapes of the light source device, inner wall, and outer wall.
  • the inner wall and outer wall larger in diameter, and the distance between the inner wall and the outer wall can be selected as desired.
  • the light source device is provided in the internal area of the inner wall, it is possible to avoid submersion in the algae culture solution.
  • the light source device has a hollow tube that extends along the direction in which the inner wall extends, and a light source that is provided in a ring shape in the circumferential direction of the outer surface of the hollow tube, so it is possible to irradiate light uniformly over almost the entire range of the inner wall. This enhances the interior design and enables efficient photosynthesis of algae.
  • the device is characterized by having a culture solution circulation nozzle that is attached to the culture vessel and generates a swirling water current in the algae culture solution.
  • the air bubbles blown into the algae culture solution from the outside air intake nozzle rise in a spiral shape in sync with the swirling water flow, lengthening the time they stay in the algae culture solution. This allows for more efficient photosynthesis by the algae. Also, the swirling air bubbles are visible, further enhancing the interior design appeal.
  • the device is equipped with a circulation device that circulates the algae culture solution, and a through-pipe that is connected to the culture vessel and passes through the inside of the hollow cylinder, and the circulation device is characterized in that one end is detachably connected to the culture vessel via the through-pipe, and the other end is detachably connected to the culture solution circulation nozzle.
  • the penetration tube penetrates the inside of the hollow cylinder, making it possible to make it invisible.
  • one end of the circulation device is detachably connected to the culture vessel via the penetration tube, and the other end is detachably connected to the culture medium circulation nozzle, so it can be easily connected to and separated from the culture vessel while the culture vessel and penetration tube are integrated. This makes it easy to separate and remove the culture vessel from the circulation device, and perform maintenance such as replacing the algae culture medium and cleaning the culture vessel.
  • the circulation device is characterized by having a collection container for collecting the algae culture solution containing a high concentration of algae, and a culture solution bottle for supplying the culture solution to the culture container.
  • the circulation device has a collection container that collects the algae culture solution containing a high concentration of algae, and a culture solution bottle that supplies the culture solution to the culture container, so the concentration of algae in the algae culture solution can be maintained at a predetermined concentration for a predetermined period of time. In addition, a good growth environment for the algae can be maintained for a long period of time.
  • the opening is covered with a removable lid, and the lid is provided with an outlet for discharging the oxygen-rich bubbles.
  • the opening is covered with a removable lid, so that the algae culture medium can be easily flowed into and discharged from the culture container by removing the lid.
  • the algae culture medium is characterized by having spirulina, which is an algae, and a culture medium for culturing spirulina.
  • the algae is spirulina, which grows well in alkaline culture medium, so contamination with other algae that can grow in acidic culture medium can be prevented.
  • FIG. 2 is a block diagram of a carbon dioxide reducing interior in accordance with the present embodiment.
  • FIG. FIG. 2 is a plan cross-sectional view of the light source device.
  • the culture vessel 10 in which the algae culture solution L1 is stored is detachably connected to two devices, a circulation device 30 and an air supply device 40, via connectors C1, C2, and C3.
  • the algae in the algae culture solution L1 is exemplified as spirulina.
  • examples of components of the culture solution for culturing spirulina include, but are not limited to, those shown in Table 1.
  • the A5-solution in the table means that 1 mL of A5-solution, which contains the components from boric acid to molybdenum oxide in the amounts shown in the table, is contained in 1 L of algae culture solution.
  • the culture medium shown in Table 1 is alkaline, so it easily absorbs acidic pollutants in the air, such as nitrates and sulfates, and is effective at removing pollutants.
  • Spirulina is cultivated optimally in an alkaline culture medium, which creates an environment in which other algae that grow in acidic liquids have a hard time growing. This helps to prevent contamination by other algae.
  • the light emitted from the light source device 20 is configured to pass through the culture vessel 10 and the algal culture solution L1 and be visible. Irradiating the algal culture solution L1 promotes photosynthesis in the algae. Also, visually seeing the algal culture solution L1 emitting green light can enhance the relaxing effect.
  • the circulation device 30 is a device that operates the circulation pump P1 to circulate the algae culture solution L1 stored in the culture vessel 10, and one end is detachably connected to the through-pipe 50 via a connector C1. The other end is detachably connected to the culture solution circulation nozzle 35 via a connector C2.
  • the circulation pump P1 When the circulation pump P1 is operated, the algae culture solution L1 stored in the culture vessel 10 is taken into the through-pipe 50, and the algae culture solution L1 taken into the through-pipe 50 is sprayed from the culture solution circulation nozzle 35 to the algae culture solution L1 via the connector C1, the circulation pump P1, the switching valve V1, the heater 34, and the connector C2.
  • the spray direction for example, spraying upward along the circumferential direction
  • a spiral flow is formed in the algae culture solution L1 in the culture vessel 10.
  • the circulation device 30 is equipped with a temperature sensor S1 that measures the temperature of the algae culture solution L1, and a pH sensor S2 that measures the pH of the algae culture solution L1. It is also equipped with a heater 34 for raising the temperature of the algae culture solution L1. When the temperature of the algae culture solution L1 measured by the temperature sensor S1 falls below a predetermined threshold temperature, the heater 34 operates to keep the algae culture solution L1 within a predetermined temperature range. This helps to maintain the survival of the algae and creates an appropriate growth environment.
  • An outside air introduction nozzle 41 is attached to the tip of the air supply device 40.
  • the outside air introduction nozzle 41 is attached to the culture vessel 10.
  • outside air that has passed through the air filter 42 passes through the outside air introduction nozzle 41 and turns into fine bubbles that are blown into the algae culture solution L1, where they diffuse and rise.
  • the bubbles rise along a spiral flow. This allows the bubbles to remain in the algae culture solution L1 for a longer period of time.
  • the algae in the algae culture solution L1 grow and their concentration increases as they photosynthesize. At the same time, the culture solution gradually becomes depleted of the nutrients necessary for the algae to grow. To avoid this, the system is designed to operate the liquid delivery pump P3 to replenish the algae culture solution L1 with fresh culture solution stored in the culture solution bottle 32.
  • the collection container 31 is a container for storing the highly concentrated algae culture solution L1. By operating the switching valve V1, the circulating highly concentrated algae culture solution L1 can be taken into the collection container 31.
  • the capacity of the culture medium bottle 32 is 2 liters, and the capacity of the collection container 31 is 2 liters, but this is not limited to this.
  • the culture vessel 10 has an inner wall 11, an outer wall 12, a bottom plate 13, and an upper plate 14, and has an opening 15a that opens upward at the upper end.
  • the lower end penetrates into the base 60 in a sliding manner.
  • the inner wall 11 and the outer wall 12 are transparent cylinders, and the outer wall 12 is arranged concentrically in the outer area of the inner wall 11.
  • the algae culture liquid L1 is stored in the space defined by the inner wall 11, the outer wall 12, and the bottom plate 13.
  • a lid 15 for closing the opening 15a is attached to the upper end.
  • the lid 15 is detachably connected to the culture vessel 10 via an O-ring 16.
  • the capacity of the culture vessel 10 is exemplified as 6 to 8 liters, but is not limited thereto.
  • the base 60 is provided with a storage space 60a, which stores the circulation device 30 (see FIG. 1) and the air pump P2 (see FIG. 1).
  • the circulation device 30 and the air pump P2 are configured so that they cannot be seen from the outside. This allows the design variations of the carbon dioxide reduction interior 1 to be determined by appropriately selecting the external shapes of the base 60, the culture vessel 10, the light source device 20, etc.
  • the lid 15 is provided with an exhaust port 17. Air bubbles diffused from the outside air intake nozzle 41 rise in the algae culture solution L1 and are discharged to the outside space via the exhaust port 17. An oxygen concentration meter S3 (see Figure 1) is attached to the exhaust port 17 to measure the oxygen concentration of the exhausted gas. The measured oxygen concentration value is displayed on a display screen (not shown).
  • the light source device 20 is slidably inserted into the base 60 and is disposed in the internal space 10a.
  • the light source device 20 may also be fixed to the base 60 by fitting and gluing.
  • the internal space 10a refers to the space defined by the base 60, the inner wall 11, and the lid 15, and is a space that is not filled with the algae culture solution L1.
  • the light emitted from the light source device 20 passes through the inner wall 11, the algae culture solution L1, and the outer wall 12, and is visible as a green illuminant, which is also aesthetically pleasing.
  • the visible green color is the color of algae, and green is a color that has psychological effects such as healing, regeneration, recovery, health, relaxation, and security, so a pleasant aesthetic appearance can be obtained.
  • the light source device 20 has a hollow cylinder 21 and a light source 22.
  • the hollow cylinder 21 is cylindrical, and its lower end is fixed in a state where it penetrates into the base 60.
  • the mounting position is concentric with the inner wall 11 and the outer wall 12.
  • the light source 22 is composed of eight strip-shaped LED light sources 23 that extend along the direction in which the hollow cylinder 21 extends.
  • the LED light sources 23 are attached at a predetermined interval around the circumference of the hollow cylinder 21 (see Figure 3). Eight is given as an example of the number of LED light sources 23, but this is not limited to this number.
  • the penetration tube 50 is a tube with a circular cross section that extends inside the hollow tube 21 in the same direction as the hollow tube 21 and penetrates the hollow tube 21, with one end connected to the upper end of the inner wall 11 and structurally integrated with the culture vessel 10. The other end is connected to the circulation device 30 via a connector C1.
  • the penetration tube 50 By placing the penetration tube 50 inside the hollow tube 21, the penetration tube 50 is not visible. This makes it possible to achieve a state in which only the color of the algae can be seen.
  • the algae culture solution L1 stored in the culture vessel 10 passes through the through pipe 50, passes through the circulation device 30 and the culture solution circulation nozzle 35, and is circulated back to the culture vessel 10.
  • the culture solution circulation nozzle 35 is attached to the bottom plate 13 at an angle that allows it to be sprayed in the circumferential direction so that a circumferential water flow can be generated.
  • the algae culture solution L1 returned from the culture solution circulation nozzle 35 is sprayed in the circumferential direction onto the algae culture solution L1, forming a swirling water flow in the algae culture solution L1 stored in the culture vessel 10. This swirling flow allows for homogenization of the algae contained in the algae culture solution L1 and more effective carbon dioxide reduction.
  • the algae culture solution L1 circulates between the culture vessel 10 and the circulation device 30. At this time, the algae culture solution L1 sprayed from the culture solution circulation nozzle 35 creates a swirling water current in the algae culture solution L1 present in the culture vessel 10.
  • the outside air EA passes through the air filter 42 and is pressurized and sent to the outside air introduction nozzle 41.
  • fine particles such as viruses and pollen contained in the outside air EA are removed.
  • the outside air EA pressurized and sent to the outside air introduction nozzle 41 is clean, with fine particles such as viruses and pollen removed.
  • the pressurized outside air EA is diffused into the algae culture solution L1 in the form of bubbles by the outside air intake nozzle 41.
  • the bubbles diffused into the algae culture solution L1 rise in a spiral shape within the algae culture solution L1.
  • the way the bubbles rise in a spiral shape is visually beautiful, further enhancing the decorative effect.
  • Light is irradiated onto the algae culture solution L1 from the light source device 20.
  • the light irradiation promotes photosynthesis in the algae, and the carbon dioxide contained in the air bubbles is taken up by the algae as it rises through the algae culture solution L1, while oxygen is generated from the algae.
  • the oxygen-rich air bubbles are released to the outside via the exhaust port 17.
  • acidic pollutants such as nitrates and sulfates contained in the air bubbles are absorbed by the algae culture solution L1.
  • the oxygen in the gas discharged from the outlet 17 is not artificially generated, but is generated by the photosynthesis of the algae, so it can help create a pleasant environment similar to forest bathing. Furthermore, a relaxing effect can be obtained by visually observing the sight of air bubbles rising in a spiral shape in the green-glowing algae culture solution L1.
  • the circulation device 30 is equipped with a collection container 31 and a culture solution bottle 32, with the aim of reducing the burden of maintenance on the user by ensuring good visibility for a specified period of time.
  • the specified period envisaged in this embodiment is a period during which the user does not feel that the maintenance work is a burden, for example, one month.
  • the algae culture solution L1 flowing through the circulation device 30 is returned to the culture vessel 10 via the switching valve V1. In this state, the algae culture solution L1 is not stored in the collection vessel 31.
  • the switching valve V1 When it is determined that the algae have proliferated through photosynthesis and the algae concentration in the algae culture solution L1 has become high, or when it is determined that the oxygen generation capacity is below a predetermined capacity, the switching valve V1 is switched to store a predetermined amount of culture solution containing a high concentration of algae in the collection container 31.
  • the switching valve V1 is a three-way valve, and may be either electromagnetic or manual.
  • the liquid delivery pump P3 is operated to supply a new predetermined amount of culture solution from the culture solution bottle 32 to the culture container 10. Note that in order to avoid mixing of the culture solution stored in the algae culture bottle 32 with the algae culture solution L1, it is preferable to attach a check valve (not shown) to the liquid delivery pump P3.
  • the culture vessel 10, which is detachably connected to the circulation device 30, can be separated and removed from the base 60, and the removable lid 15 can be removed, making it easy to replace the algae culture liquid L1 and clean the culture vessel 10, if necessary.
  • the carbon dioxide reduction interior of the present invention can be used effectively as a purification device to purify the air inside structures that require the formation of sealed spaces, such as nuclear shelters, and therefore has great potential for industrial use.
  • Reference Signs List 1 Carbon dioxide reduction interior 10: Culture vessel 11: Inner wall 12: Outer wall 15: Lid 15a: Opening 20: Light source device 21: Hollow tube 22: Light source 30: Circulation device 31: Collection vessel 32: Culture solution bottle 35: Culture solution circulation nozzle 41: Outside air introduction nozzle 50: Through pipe L1: Algae culture solution

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Sustainable Development (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

Provided is a carbon-dioxide-reducing interior accessory that is easy to maintain and manage and has a high degree of design freedom. A culture vessel 10 in which an algal culture broth L1 is stored has an inner wall provided in a ring shape and an outer wall provided in a ring shape in a region outside the inner wall, an opening also being formed in the culture vessel. The culture vessel 10 also comprises a light source device 20 that irradiates the inner wall with light, the light emitted from the light source device 20 being visible through the inner wall, the algal culture broth L1, and the outer wall. External air EA that is blown into the algal culture broth L1 from an external air introduction nozzle 41, in the process of rising through the algal culture broth L1, reduces carbon dioxide and generates oxygen, which is discharged from the opening, through the effect of photosynthesis by algae present in the algal culture broth L1.

Description

二酸化炭素削減インテリアCarbon dioxide reducing interior
 本発明は、藻類の光合成の作用によって外気の二酸化炭素を削減するとともに、インテリアとして使用できる二酸化炭素削減インテリアに関する。 The present invention relates to a carbon dioxide reduction interior that can be used as interior décor while reducing carbon dioxide in the outside air through the photosynthetic action of algae.
 発明者は、特許文献1で、藻類の一種であるスピルリナを利用して、効果的に空気浄化が行え、かつ良好な外観を得ることができる空気浄化装置を提供している。 In Patent Document 1, the inventor provides an air purifier that uses spirulina, a type of algae, to effectively purify the air while also achieving a good appearance.
 発明者が以前に提供した空気浄化装置は、スピルリナ、およびスピルリナの培養液を循環する循環系の一部を陳列用容器とし、この循環系に外気を取り込む取込み口、および酸素を分離する酸素分離装置を設けている。陳列用容器内には発光体が挿入されている。取込み口から取り込まれた外気は、当該外気中に含まれる二酸化炭素が酸素に変換されると共に汚染物質が培養液中に溶解する。従って、酸素分離装置から分離される気体は、汚染物質が除去され且つ二酸化炭素が酸素に変換されたものとなる。以前に提案した、空気浄化装置は、空気浄化作用ばかりでなく、発光体が陳列用容器内で発光することにより見た目もきれいなものである。 The air purifying device previously proposed by the inventor uses a display container as part of a circulation system that circulates spirulina and spirulina culture fluid, and is equipped with an intake port for taking in outside air into this circulation system, and an oxygen separation device for separating oxygen. A light-emitting body is inserted into the display container. Outside air is taken in through the intake port, and the carbon dioxide contained in the outside air is converted into oxygen, while pollutants are dissolved in the culture fluid. Therefore, the gas separated by the oxygen separation device is one in which pollutants have been removed and carbon dioxide has been converted into oxygen. The previously proposed air purifying device not only purifies air, but also looks nice, as the light-emitting body emits light inside the display container.
特開平8-206434号公報Japanese Patent Application Laid-Open No. 8-206434
 しかしながら、発明はそれがなされたからといって終わりではなく、よりよいものを求めるために改良がくわえられるべきものである。 However, an invention is not finished once it has been made; improvements should be made in the pursuit of making something even better.
 例えば、循環系内のスピルリナによる光合成を促進する発光体として、末尾に光源が設けられて表面には傷が付けられた光ファイバーが透明なチューブに通されたものを用いている。光源からの光は、表面には傷が付けられた光ファイバーで散乱されて陳列用容器内を照射する構成となっていた。このような構成であるため、照射する光を強くすることは困難であった。また、照射する光量に制約を受けることから、光合成を促進するために必要な光を確保するために、外形寸法等については、所定の大きさ以上とすることは困難であった。すなわち機能を確保するためにデザイン上の制約を受けるものとなっていた。さらに、構造が複雑となることから、培養液の取り替え等に手間取っていた。 For example, an optical fiber with a light source at the end and scratches on the surface is passed through a transparent tube as an illuminant to promote photosynthesis by spirulina in the circulatory system. The light from the light source is scattered by the optical fiber with scratches on the surface and illuminates the inside of the display container. This configuration makes it difficult to increase the intensity of the light emitted. Also, since there is a restriction on the amount of light emitted, it is difficult to make the external dimensions larger than a certain size in order to ensure the light necessary to promote photosynthesis. In other words, there are design restrictions in order to ensure functionality. Furthermore, the structure is complicated, so it is time-consuming to change the culture solution, etc.
 本発明はこれらの問題点に着目してなされたものであり、デザインの自由度が高く、維持管理が簡単となる二酸化炭素削減インテリアを提供するものである。 The present invention was made with an eye on these issues, and provides a carbon dioxide reducing interior that allows for a high degree of freedom in design and is easy to maintain.
 上記課題を解決するための発明は、二酸化炭素削減インテリアであって、環状に設けられる内壁と、内壁の外部領域に環状に設けられる外壁と、を有するとともに、開口部が形成される培養容器と、培養容器に貯留される藻類培養液と、培養容器に装着される外気導入ノズルと、内壁に向かって光を照射する光源装置と、を備え、光源装置は、内壁の内部領域に配置されるとともに内壁が延びる方向に沿って延びる中空筒と、周方向に環状に設けられる光源と、を有し、光源は、中空筒が延びる方向に沿って延びる複数の列状のLED光源を有し、光源装置から発せられる光は、内壁、藻類培養液、および外壁を透過して視認することができ、外気導入ノズルから藻類培養液に吹き込まれる気泡は、藻類培養液の中を上昇する過程で、藻類培養液に存する藻類の光合成の効果によって、二酸化炭素が削減されるとともに酸素に変換されて、開口部から排出されることを特徴とする。 The invention for solving the above problem is a carbon dioxide reducing interior, comprising: a culture vessel having an inner wall arranged in a ring shape and an outer wall arranged in a ring shape on the outer region of the inner wall, and having an opening formed therein; an algae culture liquid stored in the culture vessel; an outside air introduction nozzle attached to the culture vessel; and a light source device that irradiates light toward the inner wall, the light source device having a hollow tube arranged in the inner region of the inner wall and extending along the direction in which the inner wall extends, and a light source arranged in a ring shape in the circumferential direction, the light source having a plurality of rows of LED light sources extending along the direction in which the hollow tube extends, the light emitted from the light source device is visible as it passes through the inner wall, the algae culture liquid, and the outer wall, and the air bubbles blown into the algae culture liquid from the outside air introduction nozzle are characterized in that as they rise through the algae culture liquid, carbon dioxide is reduced and the air is converted to oxygen due to the effect of photosynthesis by the algae present in the algae culture liquid, and the air is discharged from the opening.
 この構成によれば、光源装置から内壁に向かって照射された光は、内壁、藻類培養液、外壁を透過して視認できるので、光源装置、内壁、外壁の外形を適宜に選択することで所定の光量を視認できる。すなわち、径の大きな内壁、外壁とすることも可能であり、内壁と外壁の離隔距離を任意に選定することもできる。また、光源装置は内壁の内部領域に設けられているので、藻類培養液に水没することを回避できる。光源装置は、内壁が延びる方向に沿って延びる中空筒と、中空筒の外面の周方向に環状に設けられる光源と、を有するので、内壁のほぼ全範囲に渡って均一に光を照射することができる。これにより、インテリア性を高めることができるとともに、藻類の効率的な光合成が可能となる。 With this configuration, the light irradiated from the light source device toward the inner wall can be seen as it passes through the inner wall, the algae culture solution, and the outer wall, so a desired amount of light can be seen by appropriately selecting the outer shapes of the light source device, inner wall, and outer wall. In other words, it is possible to make the inner wall and outer wall larger in diameter, and the distance between the inner wall and the outer wall can be selected as desired. In addition, since the light source device is provided in the internal area of the inner wall, it is possible to avoid submersion in the algae culture solution. The light source device has a hollow tube that extends along the direction in which the inner wall extends, and a light source that is provided in a ring shape in the circumferential direction of the outer surface of the hollow tube, so it is possible to irradiate light uniformly over almost the entire range of the inner wall. This enhances the interior design and enables efficient photosynthesis of algae.
 好ましくは、培養容器に装着されて、藻類培養液に渦巻き状の水流を発生させるための培養液循環ノズルを備えることを特徴とする。 Preferably, the device is characterized by having a culture solution circulation nozzle that is attached to the culture vessel and generates a swirling water current in the algae culture solution.
 この構成によれば、外気導入ノズルから藻類培養液に吹き込まれる気泡は渦巻き状の水流に同期して渦巻き状に藻類培養液中を上昇するので、藻類培養液中の滞留時間を長くすることができる。これにより、藻類のより一層の効率的な光合成が可能となる。また、渦巻き状の気泡が視認できることからインテリア性をより一層高めることができる。 With this configuration, the air bubbles blown into the algae culture solution from the outside air intake nozzle rise in a spiral shape in sync with the swirling water flow, lengthening the time they stay in the algae culture solution. This allows for more efficient photosynthesis by the algae. Also, the swirling air bubbles are visible, further enhancing the interior design appeal.
 好ましくは、藻類培養液を循環させる循環装置と、培養容器に接続して中空筒の内部を貫通する貫通管と、を備え、循環装置は、一端が貫通管を介して培養容器に着脱可能に接続し、他端が培養液循環ノズルに着脱可能に接続することを特徴とする。 Preferably, the device is equipped with a circulation device that circulates the algae culture solution, and a through-pipe that is connected to the culture vessel and passes through the inside of the hollow cylinder, and the circulation device is characterized in that one end is detachably connected to the culture vessel via the through-pipe, and the other end is detachably connected to the culture solution circulation nozzle.
 この構成によれば、貫通管は中空筒の内部を貫通するので、視認できない構成とすることができる。また、循環装置は、一端が貫通管を介して培養容器に着脱可能に接続し、他端が培養液循環ノズルに着脱可能に接続するので、培養容器および貫通管を一体化した状態で、容易に、培養容器と接続、分離することができる。これにより、培養容器を循環装置と分離して取り外し、藻類培養液を入れ替える、培養容器を清掃する等のメンテナンスが容易になる。 With this configuration, the penetration tube penetrates the inside of the hollow cylinder, making it possible to make it invisible. In addition, one end of the circulation device is detachably connected to the culture vessel via the penetration tube, and the other end is detachably connected to the culture medium circulation nozzle, so it can be easily connected to and separated from the culture vessel while the culture vessel and penetration tube are integrated. This makes it easy to separate and remove the culture vessel from the circulation device, and perform maintenance such as replacing the algae culture medium and cleaning the culture vessel.
 好ましくは、循環装置は、高濃度の藻類を含む藻類培養液を回収する回収容器と、培養液を培養容器に供給する培養液ボトルと、を有することを特徴とする。 Preferably, the circulation device is characterized by having a collection container for collecting the algae culture solution containing a high concentration of algae, and a culture solution bottle for supplying the culture solution to the culture container.
 この構成によれば、循環装置は、高濃度の藻類を含む藻類培養液を回収する回収容器と、培養液を培養容器に供給する培養液ボトルと、を有するので、藻類培養液中の藻類の濃度を所定期間、所定濃度に維持できる。また、長期間にわたって藻類の良好な生育環境を維持できる。 With this configuration, the circulation device has a collection container that collects the algae culture solution containing a high concentration of algae, and a culture solution bottle that supplies the culture solution to the culture container, so the concentration of algae in the algae culture solution can be maintained at a predetermined concentration for a predetermined period of time. In addition, a good growth environment for the algae can be maintained for a long period of time.
 好ましくは、開口部は、着脱可能な蓋で塞がれており、蓋は酸素リッチな気泡を排出するための排出口が設けられることを特徴とする。 Preferably, the opening is covered with a removable lid, and the lid is provided with an outlet for discharging the oxygen-rich bubbles.
 この構成によれば、開口部は、着脱可能な蓋で塞がれているので、蓋を外すことで藻類培養液を培養容器に、容易に流入、排出することができる。 In this configuration, the opening is covered with a removable lid, so that the algae culture medium can be easily flowed into and discharged from the culture container by removing the lid.
 好ましくは、藻類培養液は、藻類であるスピルリナと、スピルリナを培養するための培養液と、を有することを特徴とする。 Preferably, the algae culture medium is characterized by having spirulina, which is an algae, and a culture medium for culturing spirulina.
 この構成によれば、藻類をアルカリ性の培養液で好適に増殖するスピルリナとしているので、酸性の培養液で生育できる他の藻類の混入を防止できる。 With this configuration, the algae is spirulina, which grows well in alkaline culture medium, so contamination with other algae that can grow in acidic culture medium can be prevented.
本実施形態における二酸化炭素削減インテリアのブロック図である。FIG. 2 is a block diagram of a carbon dioxide reducing interior in accordance with the present embodiment. 同、部分正面断面図である。FIG. 光源装置の平面断面図である。FIG. 2 is a plan cross-sectional view of the light source device.
 以下、図1~3を参照して本発明の二酸化炭素削減インテリア1の実施形態を詳述する。 Below, an embodiment of the carbon dioxide reduction interior 1 of the present invention will be described in detail with reference to Figures 1 to 3.
 図1に示す通り、藻類培養液L1が貯留される培養容器10は、循環装置30、および送気装置40の二つの装置が、コネクタC1、C2、C3を介して着脱可能に接続されている。 As shown in FIG. 1, the culture vessel 10 in which the algae culture solution L1 is stored is detachably connected to two devices, a circulation device 30 and an air supply device 40, via connectors C1, C2, and C3.
 本実施形態では、藻類培養液L1中の、藻類はスピルリナが例示される。また、スピルリナを培養するための培養液の成分として、例えば、表1に示すものが例示されるが、これに限られるものではない。 In this embodiment, the algae in the algae culture solution L1 is exemplified as spirulina. In addition, examples of components of the culture solution for culturing spirulina include, but are not limited to, those shown in Table 1.
 表中のA5-solutionについては、ホウ酸から酸化モリブデンまでの成分を表に示す含有量で含むA5-solutionが、藻類培養液1L中に1mL含まれることを意味する。 The A5-solution in the table means that 1 mL of A5-solution, which contains the components from boric acid to molybdenum oxide in the amounts shown in the table, is contained in 1 L of algae culture solution.
 表1で例示する培養液はアルカリ性であるため、硝酸塩や硫酸塩などの空気中の酸性汚染物質を吸収し易く、汚染物質の除去に効果的である。スピルリナはアルカリ性の培養液で好適に培養されるため、酸性の液中で増殖する他の藻類は生育し難い環境となる。そのため、他の藻類の混入を回避できる。 The culture medium shown in Table 1 is alkaline, so it easily absorbs acidic pollutants in the air, such as nitrates and sulfates, and is effective at removing pollutants. Spirulina is cultivated optimally in an alkaline culture medium, which creates an environment in which other algae that grow in acidic liquids have a hard time growing. This helps to prevent contamination by other algae.
 光源装置20から発せられる光は、培養容器10、藻類培養液L1を通過して視認できる構成となっている。藻類培養液L1に照射されることで、藻類の光合成が促進される。また、緑色に発光する藻類培養液L1を視認することで、リラックス効果を高めることができる。 The light emitted from the light source device 20 is configured to pass through the culture vessel 10 and the algal culture solution L1 and be visible. Irradiating the algal culture solution L1 promotes photosynthesis in the algae. Also, visually seeing the algal culture solution L1 emitting green light can enhance the relaxing effect.
 循環装置30は、循環ポンプP1を動作して、培養容器10に貯留される藻類培養液L1を循環させる装置であり、一端がコネクタC1を介して貫通管50に着脱可能に接続している。また、他端はコネクタC2を介して培養液循環ノズル35に着脱可能に接続している。循環ポンプP1を動作すると、培養容器10に貯留されている藻類培養液L1は、貫通管50に取込まれ、貫通管50に取込まれた藻類培養液L1はコネクタC1、循環ポンプP1、切替バルブV1、ヒーター34、コネクタC2を経由して培養液循環ノズル35から藻類培養液L1に噴射される。噴射方向を適宜に選択(例えば周方向に沿って上方に噴射する)することで、培養容器10の中の藻類培養液L1は、渦巻き状の流れが形成される。 The circulation device 30 is a device that operates the circulation pump P1 to circulate the algae culture solution L1 stored in the culture vessel 10, and one end is detachably connected to the through-pipe 50 via a connector C1. The other end is detachably connected to the culture solution circulation nozzle 35 via a connector C2. When the circulation pump P1 is operated, the algae culture solution L1 stored in the culture vessel 10 is taken into the through-pipe 50, and the algae culture solution L1 taken into the through-pipe 50 is sprayed from the culture solution circulation nozzle 35 to the algae culture solution L1 via the connector C1, the circulation pump P1, the switching valve V1, the heater 34, and the connector C2. By appropriately selecting the spray direction (for example, spraying upward along the circumferential direction), a spiral flow is formed in the algae culture solution L1 in the culture vessel 10.
 循環装置30は、藻類培養液L1の温度を測定する温度センサーS1、藻類培養液L1のpHを測定するpHセンサーS2が取付けられている。また、藻類培養液L1の温度を上昇させるためのヒーター34が装着されている。温度センサーS1で測定された藻類培養液L1の温度が所定の閾温度を下回るとき、ヒーター34は動作して藻類培養液L1を所定範囲の温度に保つ。これにより、藻類の生存を維持するとともに、適正な生育環境を形成し得る。 The circulation device 30 is equipped with a temperature sensor S1 that measures the temperature of the algae culture solution L1, and a pH sensor S2 that measures the pH of the algae culture solution L1. It is also equipped with a heater 34 for raising the temperature of the algae culture solution L1. When the temperature of the algae culture solution L1 measured by the temperature sensor S1 falls below a predetermined threshold temperature, the heater 34 operates to keep the algae culture solution L1 within a predetermined temperature range. This helps to maintain the survival of the algae and creates an appropriate growth environment.
 送気装置40の先端に外気導入ノズル41が取付けられている。外気導入ノズル41は、培養容器10に装着されている。エアポンプP2を動作することで、エアフィルター42を通過した外気は、外気導入ノズル41を経由して、微細な気泡となって藻類培養液L1に吹き込まれ、拡散し、上昇する。気泡は渦巻き状の流れに沿って上昇する。これにより、気泡が藻類培養液L1に滞留する時間をより長くすることができる。 An outside air introduction nozzle 41 is attached to the tip of the air supply device 40. The outside air introduction nozzle 41 is attached to the culture vessel 10. By operating the air pump P2, outside air that has passed through the air filter 42 passes through the outside air introduction nozzle 41 and turns into fine bubbles that are blown into the algae culture solution L1, where they diffuse and rise. The bubbles rise along a spiral flow. This allows the bubbles to remain in the algae culture solution L1 for a longer period of time.
 藻類培養液L1中の藻類は、光合成をする中で増殖し濃度が上昇する。同時に、培養液は、藻類が増殖するために必要となる栄養成分が次第に枯渇してくる。これを回避するために、送液ポンプP3を動作して培養液ボトル32に貯留される新鮮な培養液を藻類培養液L1に補充する構成としている。 The algae in the algae culture solution L1 grow and their concentration increases as they photosynthesize. At the same time, the culture solution gradually becomes depleted of the nutrients necessary for the algae to grow. To avoid this, the system is designed to operate the liquid delivery pump P3 to replenish the algae culture solution L1 with fresh culture solution stored in the culture solution bottle 32.
 回収容器31は、高濃度化した藻類培養液L1を貯留するための容器である。切替バルブV1を動作することで、循環している高濃度化した藻類培養液L1を回収容器31に取込むことができる。 The collection container 31 is a container for storing the highly concentrated algae culture solution L1. By operating the switching valve V1, the circulating highly concentrated algae culture solution L1 can be taken into the collection container 31.
 本実施形態では、培養液ボトル32の容量として2リットル、回収容器31の容量として2リットルが例示されるが、これに限定されるわけではない。 In this embodiment, the capacity of the culture medium bottle 32 is 2 liters, and the capacity of the collection container 31 is 2 liters, but this is not limited to this.
 図2に示す通り、光源装置20、培養容器10はそれぞれ別々に台座60と嵌合している。培養容器10は、内壁11、外壁12、底板13および上板14を有しており、上端部に上方に向かって開口する開口部15aが設けられている。下端部は、台座60にスライドできる状態で貫入している。内壁11および外壁12は、透明の円筒であり、外壁12は内壁11の外部領域に同心に配置されている。内壁11、外壁12、および底板13で画定される空間に藻類培養液L1が貯留されている。また、上端部は、開口部15aを塞ぐための蓋15が取付けられている。蓋15は、Oリング16を介して培養容器10に着脱可能に接続している。培養容器10の容量として6~8リットルが例示されるが限定されるわけではない。 As shown in FIG. 2, the light source device 20 and the culture vessel 10 are each separately fitted to the base 60. The culture vessel 10 has an inner wall 11, an outer wall 12, a bottom plate 13, and an upper plate 14, and has an opening 15a that opens upward at the upper end. The lower end penetrates into the base 60 in a sliding manner. The inner wall 11 and the outer wall 12 are transparent cylinders, and the outer wall 12 is arranged concentrically in the outer area of the inner wall 11. The algae culture liquid L1 is stored in the space defined by the inner wall 11, the outer wall 12, and the bottom plate 13. In addition, a lid 15 for closing the opening 15a is attached to the upper end. The lid 15 is detachably connected to the culture vessel 10 via an O-ring 16. The capacity of the culture vessel 10 is exemplified as 6 to 8 liters, but is not limited thereto.
 台座60に収容空間60aが設けられ、循環装置30(図1参照)、およびエアポンプP2(図1参照)が収容されている。すなわち、循環装置30、およびエアポンプP2は外部から視認できない構成となっている。これにより、台座60、培養容器10、光源装置20などの外形を適宜に選択することで、二酸化炭素削減インテリア1のデザインバリエーションを決定づけることができる。 The base 60 is provided with a storage space 60a, which stores the circulation device 30 (see FIG. 1) and the air pump P2 (see FIG. 1). In other words, the circulation device 30 and the air pump P2 are configured so that they cannot be seen from the outside. This allows the design variations of the carbon dioxide reduction interior 1 to be determined by appropriately selecting the external shapes of the base 60, the culture vessel 10, the light source device 20, etc.
 蓋15は、排出口17が設けられている。外気導入ノズル41から拡散される気泡は、藻類培養液L1を上昇し、排出口17を経由して外部空間に排出される。排出口17には、排出される気体の酸素濃度を測定する酸素濃度計S3(図1参照)が取付けられている。計測した酸素濃度の値は、表示スクリーン(図示略)に表示される。 The lid 15 is provided with an exhaust port 17. Air bubbles diffused from the outside air intake nozzle 41 rise in the algae culture solution L1 and are discharged to the outside space via the exhaust port 17. An oxygen concentration meter S3 (see Figure 1) is attached to the exhaust port 17 to measure the oxygen concentration of the exhausted gas. The measured oxygen concentration value is displayed on a display screen (not shown).
 光源装置20は台座60にスライドできる状態で貫入しており、内部空間10aに配置されている。また、光源装置20は台座60に嵌合接着で固定されていてもよい。ここで内部空間10aとは、台座60、内壁11、および蓋15で画定される空間であって、藻類培養液L1は充填されていない空間である。光源装置20から発せられる光は内壁11、藻類培養液L1、および外壁12を透過することで、緑の発光体として視認でき、見た目も美しいものとなる。なお、視認できる緑色は藻類の色であり、緑色は癒し、再生、回復、健康、リラックス、安心という心理効果のある色であるため、心地よい美観を得ることができる。 The light source device 20 is slidably inserted into the base 60 and is disposed in the internal space 10a. The light source device 20 may also be fixed to the base 60 by fitting and gluing. Here, the internal space 10a refers to the space defined by the base 60, the inner wall 11, and the lid 15, and is a space that is not filled with the algae culture solution L1. The light emitted from the light source device 20 passes through the inner wall 11, the algae culture solution L1, and the outer wall 12, and is visible as a green illuminant, which is also aesthetically pleasing. The visible green color is the color of algae, and green is a color that has psychological effects such as healing, regeneration, recovery, health, relaxation, and security, so a pleasant aesthetic appearance can be obtained.
 光源装置20は、中空筒21と光源22を有している。中空筒21は、円筒であり、下端部が台座60に貫入した状態で固定されている。また、取付位置は、内壁11、外壁12と同心となっている。光源22は、中空筒21が延びる方向に沿って延びる8個の帯状のLED光源23で構成されている、LED光源23は、中空筒21の周方向に所定の間隔で取り付けられている(図3参照)。LED光源23の個数として、8個が例示されるが、これに限定されるわけではない。 The light source device 20 has a hollow cylinder 21 and a light source 22. The hollow cylinder 21 is cylindrical, and its lower end is fixed in a state where it penetrates into the base 60. The mounting position is concentric with the inner wall 11 and the outer wall 12. The light source 22 is composed of eight strip-shaped LED light sources 23 that extend along the direction in which the hollow cylinder 21 extends. The LED light sources 23 are attached at a predetermined interval around the circumference of the hollow cylinder 21 (see Figure 3). Eight is given as an example of the number of LED light sources 23, but this is not limited to this number.
 貫通管50は、中空筒21の内部を中空筒21が延びる方向に延びるとともに中空筒21を貫通する断面が円環状の管であり、一端は内壁11の上端部に接続して、培養容器10と構造的に一体化している。また、他端はコネクタC1を介して、循環装置30に接続している。貫通管50が中空筒21の内部に配置されることで、貫通管50が視認されることはない。これにより、藻類のみの色が視認できる状態を実現できる。 The penetration tube 50 is a tube with a circular cross section that extends inside the hollow tube 21 in the same direction as the hollow tube 21 and penetrates the hollow tube 21, with one end connected to the upper end of the inner wall 11 and structurally integrated with the culture vessel 10. The other end is connected to the circulation device 30 via a connector C1. By placing the penetration tube 50 inside the hollow tube 21, the penetration tube 50 is not visible. This makes it possible to achieve a state in which only the color of the algae can be seen.
 循環装置30を動作することで、培養容器10に貯留される藻類培養液L1は、貫通管50を通過し、循環装置30、培養液循環ノズル35を経由して、再び培養容器10に循環する。培養液循環ノズル35は、周方向の水流を発生できるように、周方向に噴射できる角度で底板13に取り付けられている。培養液循環ノズル35から還流される藻類培養液L1が周方向に沿って藻類培養液L1に噴出されることで、培養容器10に貯留される藻類培養液L1に渦巻き状の水流が形成される。この渦巻き流によって藻類培養液L1中に含まれる藻類の均質化と、より効果的な二酸化炭素削減を図ることができる。 By operating the circulation device 30, the algae culture solution L1 stored in the culture vessel 10 passes through the through pipe 50, passes through the circulation device 30 and the culture solution circulation nozzle 35, and is circulated back to the culture vessel 10. The culture solution circulation nozzle 35 is attached to the bottom plate 13 at an angle that allows it to be sprayed in the circumferential direction so that a circumferential water flow can be generated. The algae culture solution L1 returned from the culture solution circulation nozzle 35 is sprayed in the circumferential direction onto the algae culture solution L1, forming a swirling water flow in the algae culture solution L1 stored in the culture vessel 10. This swirling flow allows for homogenization of the algae contained in the algae culture solution L1 and more effective carbon dioxide reduction.
 図1を参照して、本実施形態における二酸化炭素削減インテリア1の外気に含まれる二酸化炭素の削減メカニズムを説明する。 The mechanism by which the carbon dioxide reduction interior 1 of this embodiment reduces the amount of carbon dioxide contained in the outside air will be described with reference to FIG. 1.
 循環装置30を動作することで、藻類培養液L1は培養容器10と循環装置30との間を循環する。このとき、培養液循環ノズル35から噴出する藻類培養液L1によって、培養容器10に存する藻類培養液L1は、渦巻き状の水流が形成される。 By operating the circulation device 30, the algae culture solution L1 circulates between the culture vessel 10 and the circulation device 30. At this time, the algae culture solution L1 sprayed from the culture solution circulation nozzle 35 creates a swirling water current in the algae culture solution L1 present in the culture vessel 10.
 エアポンプP2を動作することで、外気EAは、エアフィルター42を通過して外気導入ノズル41に圧送される。外気EAがエアフィルター42を通過する過程で、外気EAに含まれるウイルス、花粉等の微細な物質が除去される。すなわち、外気導入ノズル41に圧送される外気EAはウイルス、花粉等の微細な物質が除去されたクリーンなものとなる。 By operating the air pump P2, the outside air EA passes through the air filter 42 and is pressurized and sent to the outside air introduction nozzle 41. As the outside air EA passes through the air filter 42, fine particles such as viruses and pollen contained in the outside air EA are removed. In other words, the outside air EA pressurized and sent to the outside air introduction nozzle 41 is clean, with fine particles such as viruses and pollen removed.
 圧送された外気EAは、外気導入ノズル41によって気泡となった状態で藻類培養液L1に拡散される。藻類培養液L1に拡散された気泡は、渦巻き状に拡散した状態で、藻類培養液L1の中を上昇する。気泡が渦巻きを描いて上昇していく様子は、外観的に美しいものとなり、装飾効果をより一層高めることができる。 The pressurized outside air EA is diffused into the algae culture solution L1 in the form of bubbles by the outside air intake nozzle 41. The bubbles diffused into the algae culture solution L1 rise in a spiral shape within the algae culture solution L1. The way the bubbles rise in a spiral shape is visually beautiful, further enhancing the decorative effect.
 藻類培養液L1は、光源装置20から光が照射されている。光の照射によって、藻類の光合成は促進され、気泡に含まれる二酸化炭素は、藻類培養液L1の中を上昇する過程で、藻類に取込まれ、同時に藻類から酸素が発生する。酸素リッチとなった気泡は、排出口17を経由して外部に放出される。同時に、気泡に含まれる硝酸塩や硫酸塩などの酸性汚染物質は、藻類培養液L1に吸収される。 Light is irradiated onto the algae culture solution L1 from the light source device 20. The light irradiation promotes photosynthesis in the algae, and the carbon dioxide contained in the air bubbles is taken up by the algae as it rises through the algae culture solution L1, while oxygen is generated from the algae. The oxygen-rich air bubbles are released to the outside via the exhaust port 17. At the same time, acidic pollutants such as nitrates and sulfates contained in the air bubbles are absorbed by the algae culture solution L1.
 排出口17から排出された気体中の酸素は、人工的に発生したものではなく、藻類の光合成によって発生したものであることから、森林浴のような良好な環境を形成する一助になり得る。さらに、緑色に発光する藻類培養液L1の中を気泡が渦巻き状に上昇する光景を視認することによって、リラックス効果を得ることができる。 The oxygen in the gas discharged from the outlet 17 is not artificially generated, but is generated by the photosynthesis of the algae, so it can help create a pleasant environment similar to forest bathing. Furthermore, a relaxing effect can be obtained by visually observing the sight of air bubbles rising in a spiral shape in the green-glowing algae culture solution L1.
 藻類の光合成が促進され続けると、藻類培養液L1中の藻類濃度が増加して、視認性が悪くなることが懸念される。良好な視認性を確保するために、培養液を入れ替える等の維持管理上の対策が必要となる。このような作業を頻繁に行うことは、使用者にとって大きな負担となる。本実施形態では、所定期間にわたって良好な視認性を確保することで、使用者の維持管理のための負担を軽減する観点から、循環装置30に、回収容器31、および培養液ボトル32を装備している。なお、本実施形態で想定する所定期間は、使用者が維持管理作業を負担に感じない期間、例えば1か月を想定している。 If the photosynthesis of the algae continues to be promoted, there is a concern that the algae concentration in the algae culture solution L1 will increase, resulting in poor visibility. In order to ensure good visibility, maintenance measures such as replacing the culture solution will be necessary. Performing such work frequently places a heavy burden on the user. In this embodiment, the circulation device 30 is equipped with a collection container 31 and a culture solution bottle 32, with the aim of reducing the burden of maintenance on the user by ensuring good visibility for a specified period of time. Note that the specified period envisaged in this embodiment is a period during which the user does not feel that the maintenance work is a burden, for example, one month.
 所定期間にわたって、良好な視認性を確保するためのシステムについて、図1を参照して説明する。 The system for ensuring good visibility for a specified period of time is described below with reference to Figure 1.
 循環装置30を流通する藻類培養液L1は、切替バルブV1を経由して、培養容器10に還流される。この状態で、回収容器31に藻類培養液L1が貯留されることはない。 The algae culture solution L1 flowing through the circulation device 30 is returned to the culture vessel 10 via the switching valve V1. In this state, the algae culture solution L1 is not stored in the collection vessel 31.
 光合成によって藻類が増殖し、藻類培養液L1の藻類濃度が高濃度となったと判断したとき、あるいは酸素発生能力が所定の能力を下回ると判断されたとき、切替バルブV1を切り替えて、高濃度の藻類を含む所定量の培養液を回収容器31に貯留する。切替バルブV1は三方弁であり、電磁式、手動式のいずれであってもよい。 When it is determined that the algae have proliferated through photosynthesis and the algae concentration in the algae culture solution L1 has become high, or when it is determined that the oxygen generation capacity is below a predetermined capacity, the switching valve V1 is switched to store a predetermined amount of culture solution containing a high concentration of algae in the collection container 31. The switching valve V1 is a three-way valve, and may be either electromagnetic or manual.
 高濃度の藻類を含む所定量の培養液が回収容器31に貯留されたことが確認された後に、送液ポンプP3を動作して培養液ボトル32から新しい所定量の培養液を培養容器10に供給する。なお、藻類培養ボトル32に貯留される培養液と、藻類培養液L1の混合を回避するために、送液ポンプP3に、逆止弁(図示略)を装着することが好ましい。 After it has been confirmed that a predetermined amount of culture solution containing a high concentration of algae has been stored in the collection container 31, the liquid delivery pump P3 is operated to supply a new predetermined amount of culture solution from the culture solution bottle 32 to the culture container 10. Note that in order to avoid mixing of the culture solution stored in the algae culture bottle 32 with the algae culture solution L1, it is preferable to attach a check valve (not shown) to the liquid delivery pump P3.
 所定期間経過後、上記システムでは十分な視認性の確保ができなくなったときなどは、必要に応じて、循環装置30と着脱可能に接続された培養容器10を分離して台座60から取り外し、さらに着脱可能な蓋15を取り外すことで、藻類培養液L1の入れ替えや培養容器10の清掃を容易に行うことができる。 If, after a certain period of time has passed, the above system is no longer able to provide sufficient visibility, the culture vessel 10, which is detachably connected to the circulation device 30, can be separated and removed from the base 60, and the removable lid 15 can be removed, making it easy to replace the algae culture liquid L1 and clean the culture vessel 10, if necessary.
 本実施形態は例示であり、本発明の技術的思想を逸脱しない範囲で改変できることは勿論である。 This embodiment is merely an example, and can of course be modified without departing from the technical spirit of the present invention.
 本発明に係る二酸化炭素削減インテリアは、密閉空間を形成する必要がある構造物、例えば核シェルターの内部の空気浄化をする浄化装置としても好適に使用できることから、産業用の利用可能性は大である。 The carbon dioxide reduction interior of the present invention can be used effectively as a purification device to purify the air inside structures that require the formation of sealed spaces, such as nuclear shelters, and therefore has great potential for industrial use.
1       :二酸化炭素削減インテリア
10      :培養容器
11      :内壁
12      :外壁
15      :蓋
15a     :開口部
20      :光源装置
21      :中空筒
22      :光源
30      :循環装置
31      :回収容器
32      :培養液ボトル
35      :培養液循環ノズル
41      :外気導入ノズル
50      :貫通管
L1      :藻類培養液
Reference Signs List 1: Carbon dioxide reduction interior 10: Culture vessel 11: Inner wall 12: Outer wall 15: Lid 15a: Opening 20: Light source device 21: Hollow tube 22: Light source 30: Circulation device 31: Collection vessel 32: Culture solution bottle 35: Culture solution circulation nozzle 41: Outside air introduction nozzle 50: Through pipe L1: Algae culture solution

Claims (6)

  1.  環状に設けられる内壁と、前記内壁の外部領域に環状に設けられる外壁と、を有するとともに、開口部が形成される培養容器と、
     前記培養容器に貯留される藻類培養液と、
     前記培養容器に装着される外気導入ノズルと、
     前記内壁に向かって光を照射する光源装置と、を備え、
     前記光源装置は、前記内壁の内部領域に配置されるとともに前記内壁が延びる方向に沿って延びる中空筒と、周方向に環状に設けられる光源と、を有し、
     前記光源は、前記中空筒が延びる方向に沿って延びる複数の列状のLED光源を有し、
     前記光は、前記内壁、前記藻類培養液、および前記外壁を透過して視認することができ、
     前記外気導入ノズルから前記藻類培養液に吹き込まれる気泡は、前記藻類培養液の中を上昇する過程で、前記藻類培養液に存する藻類の光合成の効果によって、二酸化炭素が削減されるとともに酸素が発生して、前記開口部から排出されることを特徴とする二酸化炭素削減インテリア。
    A culture vessel having an inner wall provided in a ring shape and an outer wall provided in a ring shape in an outer region of the inner wall, and having an opening formed therein;
    An algae culture solution stored in the culture vessel;
    An outside air introduction nozzle attached to the culture vessel;
    A light source device that irradiates light toward the inner wall,
    The light source device includes a hollow cylinder disposed in an internal region of the inner wall and extending along a direction in which the inner wall extends, and a light source provided annularly in a circumferential direction,
    The light source includes a plurality of LED light sources arranged in a row extending along a direction in which the hollow cylinder extends,
    The light can be seen through the inner wall, the algae culture medium, and the outer wall;
    This carbon dioxide reducing interior is characterized in that as the air bubbles blown into the algae culture solution from the outside air intake nozzle rise through the algae culture solution, carbon dioxide is reduced and oxygen is generated due to the effects of photosynthesis by the algae present in the algae culture solution, and oxygen is then discharged through the opening.
  2.  前記培養容器に装着されて、前記藻類培養液に渦巻き状の水流を発生させるための培養液循環ノズルを備えることを特徴とする請求項1に記載の二酸化炭素削減インテリア。 The carbon dioxide reduction interior according to claim 1, characterized in that it is equipped with a culture solution circulation nozzle that is attached to the culture vessel and generates a swirling water current in the algae culture solution.
  3.  前記藻類培養液を循環させる循環装置と、
     前記培養容器に接続して前記中空筒の内部を貫通する貫通管と、を備え、
     前記循環装置は、一端が前記貫通管を介して前記培養容器に着脱可能に接続し、他端が前記培養液循環ノズルに着脱可能に接続することを特徴とする請求項2に記載の二酸化炭素削減インテリア。
    A circulation device for circulating the algae culture solution;
    A through tube connected to the culture vessel and penetrating the inside of the hollow cylinder,
    The carbon dioxide reduction interior according to claim 2, characterized in that one end of the circulation device is detachably connected to the culture vessel via the through pipe, and the other end is detachably connected to the culture medium circulation nozzle.
  4.  前記循環装置は、高濃度の藻類を含む藻類培養液を回収する回収容器と、培養液を前記培養容器に供給する培養液ボトルと、を有することを特徴とする請求項3に記載の二酸化炭素削減インテリア。 The carbon dioxide reduction interior according to claim 3, characterized in that the circulation device has a collection container for collecting algae culture solution containing a high concentration of algae, and a culture solution bottle for supplying the culture solution to the culture container.
  5.  前記開口部は、着脱可能な蓋で塞がれており、前記蓋は酸素リッチな気泡を排出するための排出口が設けられることを特徴とする請求項1に記載の二酸化炭素削減インテリア。 The carbon dioxide reducing interior of claim 1, characterized in that the opening is covered with a removable lid, and the lid is provided with an exhaust port for discharging oxygen-rich bubbles.
  6.  前記藻類培養液は、藻類であるスピルリナと、前記スピルリナを培養するための培養液と、を有することを特徴とする請求項1~5のいずれか1項に記載の二酸化炭素削減インテリア。 The carbon dioxide reducing interior according to any one of claims 1 to 5, characterized in that the algae culture solution contains spirulina, which is an algae, and a culture solution for cultivating the spirulina.
PCT/JP2023/041421 2022-11-18 2023-11-17 Carbon-dioxide-reducing interior accessory WO2024106532A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-184812 2022-11-18
JP2022184812A JP2024073860A (en) 2022-11-18 2022-11-18 Carbon dioxide reducing interior

Publications (1)

Publication Number Publication Date
WO2024106532A1 true WO2024106532A1 (en) 2024-05-23

Family

ID=91084572

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041421 WO2024106532A1 (en) 2022-11-18 2023-11-17 Carbon-dioxide-reducing interior accessory

Country Status (2)

Country Link
JP (1) JP2024073860A (en)
WO (1) WO2024106532A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305800A (en) * 1992-04-30 1993-11-19 Misawa Homes Co Ltd Cylindrical water tank
JPH0646457U (en) * 1992-12-03 1994-06-28 株式会社 ソーケン Fish tank appreciation aquarium device
JPH06305703A (en) * 1993-04-23 1994-11-01 Emushiki Suiko Kenkyusho:Kk Oxygen generator
JPH07274746A (en) * 1994-04-04 1995-10-24 Jiyareko:Kk Apparatus for diffusing carbon dioxide into water
JPH08206434A (en) * 1995-02-03 1996-08-13 Japan Ecological Kaunseru:Kk Decorative air cleaner
JPH09131999A (en) * 1995-11-08 1997-05-20 Suikoushiya:Kk Method and apparatus for generating display vortex
JPH11226351A (en) * 1998-02-12 1999-08-24 Spirulina Kenkyusho:Kk Production of cleaned air and apparatus for cleaning air
JP2002000116A (en) * 2000-04-19 2002-01-08 Yoshikatsu Nakajima Aquarium
WO2010058607A1 (en) * 2008-11-21 2010-05-27 国立大学法人徳島大学 Ultraviolet sterilization device for outdoor water
CN208222236U (en) * 2018-05-22 2018-12-11 四川省浓雨生物科技有限公司 Modularization built-in light source formula cultivation apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05305800A (en) * 1992-04-30 1993-11-19 Misawa Homes Co Ltd Cylindrical water tank
JPH0646457U (en) * 1992-12-03 1994-06-28 株式会社 ソーケン Fish tank appreciation aquarium device
JPH06305703A (en) * 1993-04-23 1994-11-01 Emushiki Suiko Kenkyusho:Kk Oxygen generator
JPH07274746A (en) * 1994-04-04 1995-10-24 Jiyareko:Kk Apparatus for diffusing carbon dioxide into water
JPH08206434A (en) * 1995-02-03 1996-08-13 Japan Ecological Kaunseru:Kk Decorative air cleaner
JPH09131999A (en) * 1995-11-08 1997-05-20 Suikoushiya:Kk Method and apparatus for generating display vortex
JPH11226351A (en) * 1998-02-12 1999-08-24 Spirulina Kenkyusho:Kk Production of cleaned air and apparatus for cleaning air
JP2002000116A (en) * 2000-04-19 2002-01-08 Yoshikatsu Nakajima Aquarium
WO2010058607A1 (en) * 2008-11-21 2010-05-27 国立大学法人徳島大学 Ultraviolet sterilization device for outdoor water
CN208222236U (en) * 2018-05-22 2018-12-11 四川省浓雨生物科技有限公司 Modularization built-in light source formula cultivation apparatus

Also Published As

Publication number Publication date
JP2024073860A (en) 2024-05-30

Similar Documents

Publication Publication Date Title
JPH11226351A (en) Production of cleaned air and apparatus for cleaning air
US20200360856A1 (en) Air purifying photobioreactor to improve indoor air quality
CN101966347B (en) Light source special for livestock and poultry building
CN204682200U (en) A kind of plant fish jar with ecological air-cleaning function
KR20170088361A (en) Bioreactor using macroalgae
US9523069B2 (en) Photobioreactor for microalgae cultivation having arc-type partition structure for forming vortices
JP2018094543A (en) Function liquid manufacturing device and function liquid manufacturing method
CN201398376Y (en) Fish fry hatching device with function of biological purification
CN105494225A (en) Indoor recirculating aquaculture system
WO2024106532A1 (en) Carbon-dioxide-reducing interior accessory
JP3283982B2 (en) Culture device for photosynthetic organisms
WO2024122313A1 (en) Algae-activation-state-sustaining device
WO2024111528A1 (en) Algae propagation control device
JP2003169566A (en) Lighting apparatus for aquarium and aquarium furnished with lighting apparatus
KR100810996B1 (en) Fishbowl comprising water-purifying device
KR102324510B1 (en) Air purification device using microalgae
TW202421257A (en) Decorations that reduce carbon dioxide
CN209563355U (en) Ornamental plank road formula circulating water culture system
JP5378262B2 (en) Hydroponics equipment
CN206517931U (en) A kind of family fishes and shrimps symbiotic fish (shrimp)-vegetable system
TW201811169A (en) Algae culture system and the air mixture device of the same
KR102524411B1 (en) A Green alga culture medium
TW202421210A (en) Algae growth control device
CN203087290U (en) Novel aquatilia growing device
CN208418256U (en) A kind of medical LED desk lamp with air-cleaning function