WO2024111466A1 - Photosensitive resin composition, cured product, organic el display device, electronic component, and semiconductor device - Google Patents

Photosensitive resin composition, cured product, organic el display device, electronic component, and semiconductor device Download PDF

Info

Publication number
WO2024111466A1
WO2024111466A1 PCT/JP2023/040893 JP2023040893W WO2024111466A1 WO 2024111466 A1 WO2024111466 A1 WO 2024111466A1 JP 2023040893 W JP2023040893 W JP 2023040893W WO 2024111466 A1 WO2024111466 A1 WO 2024111466A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
photosensitive resin
resin composition
mass
Prior art date
Application number
PCT/JP2023/040893
Other languages
French (fr)
Japanese (ja)
Inventor
昭典 佐伯
聡 亀本
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024111466A1 publication Critical patent/WO2024111466A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks

Definitions

  • the present invention relates to a photosensitive resin composition, a cured product, an organic electroluminescence display device, an electronic component, and a semiconductor device.
  • Polyimide resins have excellent heat resistance, electrical insulation, and mechanical properties, and are therefore widely used in applications such as pixel dividing layers in organic electroluminescence (EL) display devices and interlayer insulating films in semiconductors.
  • EL organic electroluminescence
  • an organic EL display device has a driving circuit, a planarization layer, a first electrode, an insulating layer, a light-emitting layer, and a second electrode on a substrate, and can emit light by applying a voltage between the opposing first and second electrodes or by passing a current between them.
  • photosensitive resin compositions that can be patterned by ultraviolet irradiation and that produce a cured product with good chemical resistance after curing are generally used as the materials for the planarization layer and the insulating layer.
  • Photosensitive resin compositions using polyimide-based or polybenzoxazole-based resins are preferably used because they have high heat resistance and generate little gaseous components from the cured product, making them capable of producing highly reliable organic EL display devices (see, for example, Patent Document 1).
  • photosensitive resin compositions containing phenolic compounds with specific structures have been proposed for the purpose of improving reliability and chemical resistance (see, for example, Patent Document 2).
  • Patent Document 2 which contains a phenolic compound with a specific structure, provides good luminescence reliability and chemical resistance, but has issues such as slightly low sensitivity and a tendency to leave residues during patterning.
  • the present invention aims to provide a photosensitive resin composition that has good sensitivity, leaves little residue after development, and has good luminescence properties even after a reliability test when cured, as well as an organic EL display device, electronic component, and semiconductor device that include a cured product of the photosensitive resin composition.
  • the present invention has the following configuration.
  • a photosensitive resin composition comprising a resin (A), a photosensitizer (B), and a compound (C) which is a compound represented by formula (1) and/or a compound represented by formula (2).
  • R 1 and R 2 each independently represent a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms.
  • R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms.
  • R 6 and R 7 each independently represent a hydrogen atom, a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms, or a monovalent hydroxyalkyl group having 1 to 10 carbon atoms.
  • a represents 0 or 1.
  • a compound (D) that has a boiling point at atmospheric pressure of 100°C or more and 170°C or less and does not fall under any of the resin (A), the photosensitizer (B), and the compound (C).
  • the alkali-soluble resin (A1) contains one or more resins selected from the group consisting of polyimide resin (A1-1), polybenzoxazole resin (A1-2), and copolymer resin (A1-3) of repeating units of polyimide resin and repeating units of polybenzoxazole resin.
  • X 3 and X 4 each independently represent a direct bond, —SO 2 —, —C(CH 3 ) 2 —, a divalent organic group represented by formula (12), —CH(CF 3 )—, or —C(CF 3 ) 2 —.
  • R 1 and R 2 each independently represent a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms.
  • R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms.
  • R 6 and R 7 each independently represent a hydrogen atom, a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms, or a monovalent hydroxyalkyl group having 1 to 10 carbon atoms.
  • a represents 0 or 1.
  • the present invention provides a photosensitive resin composition that has good sensitivity, produces little residue after development, and has good luminescence properties even after a reliability test when cured, as well as an organic EL display device, electronic component, and semiconductor device that include the cured product of the photosensitive resin composition.
  • FIGS. 1A to 1C are schematic diagrams illustrating a method for producing an organic EL display device having a pixel division layer in an example.
  • a numerical range expressed using “ ⁇ ” means a range that includes the numerical values written before and after " ⁇ " as the lower and upper limits.
  • Visible light refers to light with wavelengths in the range of 380 nm to less than 780 nm
  • near-infrared light refers to light with wavelengths in the range of 780 nm to 1,000 nm.
  • Light-blocking properties refer to the ability to reduce the intensity of transmitted light compared to the intensity of light incident perpendicularly to the cured product.
  • the alkaline developer refers to an organic alkaline aqueous solution.
  • the photosensitive resin composition of the present invention contains a resin (A).
  • the resin (A) include resins that are soluble in organic developers such as ketone-based solvents, ester-based solvents, and amide-based solvents, and alkali-soluble resins that are soluble in alkaline developers.
  • the resin (A) contains an alkali-soluble resin (A1) and the photosensitive resin composition can be developed using an alkali developer.
  • the alkali-soluble resin referred to here means a resin whose dissolution rate is 50 nm/min or more, calculated from the decrease in film thickness when a solution of the resin dissolved in ⁇ -butyrolactone is applied onto a silicon wafer and prebaked at 120°C for 4 minutes to form a prebaked film with a film thickness of 10 ⁇ m ⁇ 0.5 ⁇ m, the prebaked film is immersed in a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23 ⁇ 1°C for 1 minute, and then rinsed with deionized water.
  • the alkali dissolution rate of the alkali-soluble resin (A1) is preferably 100 nm/min or more from the viewpoint of reducing development residue, and is preferably 15,000 nm/min or less from the viewpoint of improving the linearity of the obtained pattern.
  • alkali-soluble resin (A1) examples include polyimide resins, polybenzoxazole resins, polyamideimide resins, polyamide resins, polymers containing radically polymerizable monomers, polysiloxane resins, cardo resins, phenolic resins, acrylic resins, and copolymers thereof. Two or more types of the alkali-soluble resins (A1) may be used in combination.
  • alkali-soluble resins (A1) those that have excellent heat resistance, a small amount of outgassing at high temperatures, and excellent film properties such as chemical resistance are preferred.
  • the composition contains a total of 50 mass % or more of one or more resins selected from the group consisting of the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3).
  • the alkali-soluble resin (A1) contains the polyimide resin (A1-1) and/or the copolymer resin (A1-3), and that the polyimide resin (A1-1) and/or the copolymer resin (A1-3) contains a residue of an acid dianhydride represented by any one of formulas (3) to (6).
  • X1 in formula (5) represents a divalent organic group represented by any one of formulas (7) to (9).
  • X2 represents a direct bond or an oxygen atom. * represents a bonding point.
  • the polyimide resin (A1-1) and/or the copolymer resin (A1-3) contain the acid dianhydride residue, which improves the transmittance of the resin to ultraviolet rays such as i-line, thereby enabling the photosensitive resin composition to have a high sensitivity.
  • the acid dianhydride residue represented by any one of formulas (3) to (6) suppresses intermolecular packing of the polyimide resin (A1-1) and the copolymer resin (A1-3), improves the solvent solubility and alkali solubility of the resin, and effectively suppresses the residue after development.
  • the content of the acid dianhydride residue represented by any one of formulas (3) to (6) is preferably 30 mol% to 100 mol%, more preferably 45 mol% to 100 mol%, and particularly preferably 55 mol% to 100 mol%, based on the total amount of the acid dianhydride residues in the polyimide resin (A1-1) and the copolymer resin (A1-3) (100 mol%).
  • the polyimide resin (A1-1) and the copolymer resin (A1-3) may contain, in addition to the above-mentioned acid dianhydride residues, acid dianhydride residues derived from the following acid dianhydrides:
  • the other acid dianhydride residues include: Residues of alicyclic tetracarboxylic dianhydrides such as 1,2-dimethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2,4,5-cyclohexane tetracarboxylic dianhydride, 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, 2,3,5-tricarboxy-2-cyclopentane acetic dianhydride, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 2,3,4,5-tetrahydrofuran tetracarboxylic dianhydride, and 3,5,6-tricarboxy-2-
  • one or more resins selected from the group consisting of the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) contain a residue of a diamine represented by formula (10) and/or a residue of a diamine represented by formula (11).
  • X 3 and X 4 represent a direct bond, —SO 2 —, —C(CH 3 ) 2 —, a divalent organic group represented by formula (12), —CH(CF 3 )—, or —C(CF 3 ) 2 —.
  • both of the diamine residues represented by formula (10) and formula (11) have a phenolic hydroxyl group, they can impart solubility in an alkaline developer and reduce development residues.
  • the diamine residue represented by formula (10) or formula (11) contains a structure of -C( CF3 ) 2- , -C( CH3 ) 2- , a divalent organic group represented by formula (12), or -CH( CF3 )-, intermolecular packing is suppressed and solvent solubility can be improved, which is preferable.
  • the total amount of all diamine residues contained in the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) is taken as 100 mol%
  • the total content of the diamine residues represented by formula (10) and the diamine residues represented by formula (11) is preferably 10 to 100 mol%, more preferably 30 to 100 mol%, and even more preferably 50 to 100 mol%.
  • diamine residues represented by formula (10) or formula (11) include residues of diamines such as 2,2-bis[3-(3-aminobenzamido)-4-hydroxyphenyl]hexafluoropropane (HA), 2,2-bis[3-(3-aminobenzamido)-4-hydroxyphenyl]propane (HB), 2,2-bis[3-(3-aminobenzamido)-4-hydroxyphenyl]-1,1,1-trifluoroethane, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (BAHF), bis(3-amino-4-hydroxyphenyl)sulfone, 9,9-bis(3-amino-4-hydroxyphenyl)fluorene (AZ-FDA), 2,2-bis(3-amino-4-hydroxyphenyl)propane (BAP), and 1,1,1-trifluoro-2,2-bis(3-amino-4-hydroxyphenyl)ethane
  • the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) may also have other diamine residues in addition to the diamine residues described above.
  • aliphatic diamine residues include aliphatic diamine residues and aromatic diamine residues.
  • An aliphatic diamine residue means a residue of a diamine that does not have an aromatic ring.
  • Examples of aliphatic diamine residues include residues of aliphatic alkyl diamines containing alkylene ether groups such as alkylene groups, polyethylene ether groups, polyoxypropylene groups, and tetramethylene ether groups, alicyclic diamines, and aliphatic diamines having a siloxane structure.
  • Examples of the aliphatic alkylenediamine residue include Polymethylenediamines: tetramethylenediamine, hexamethylenediamine, octamethylenediamine, decamethylenediamine, dodecamethylenediamine, Diamines containing polyethylene ether groups, such as Jeffamine KH-511, Jeffamine ED-600, Jeffamine ED-900, Jeffamine ED-2003, Jeffamine EDR-148, and Jeffamine EDR-176; Polyoxypropylene diamines D-200, D-400, D-2000, D-4000, RP-409, RP-2009, Tetramethylene ether group-containing diamines RT-1000 and HT-1100, and amino group-containing alkylene ether diamines HT-1000 and HE-1000 (all trade names, manufactured by HUNTSMAN Co., Ltd.) Residues such as:
  • Examples of alicyclic diamine residues include residues of cyclohexyldiamine and methylenebiscyclohexylamine.
  • Examples of aliphatic diamine residues having a siloxane structure include residues of bis(3-aminopropyl)tetramethyldisiloxane and bis(p-aminophenyl)octamethylpentasiloxane.
  • aromatic diamine residues include: Hydroxyl group-containing diamine residues such as 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, bis(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(3-amino-4-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)methylene, bis(3-amino-4,
  • the polybenzoxazole resin (A1-2) and the copolymer resin (A1-3) preferably have a dicarboxylic acid residue and a bisaminophenol residue.
  • the dicarboxylic acid residue here refers to a residue obtained by removing two carboxyl groups from a dicarboxylic acid compound
  • the bisaminophenol residue refers to a residue obtained by removing two amino groups and two phenolic hydroxyl groups from a bisaminophenol compound.
  • dicarboxylic acid residue examples include residues of phthalic acid, terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, bis(carboxyphenyl)hexafluoropropane, biphenyl dicarboxylic acid, benzophenone dicarboxylic acid, triphenyl dicarboxylic acid, 2,5-furandicarboxylic acid, 2,5-thiophenedicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 2-fluoroterephthalic acid, 2-methoxyterephthalic acid, 2-phenoxyterephthalic acid, etc. These compounds may be used alone or in combination of two or more.
  • Examples of the bisaminophenol residue include, but are not limited to, residues of 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'-diamino-3,3'-dihydroxybiphenyl, bis(3-amino-4-hydroxyphenyl)propane, bis(4-amino-3-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(4-amino-3-hydroxyphenyl)sulfone, 2,2-bis(3-amino-4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane, 2,2-bis(4-amino-3-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane, 9,9-bis(3-amino-4-hydroxyphenyl)fluorene, etc. These compounds may be used alone or in combination of two or more.
  • the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) may be end-capped with an end-capping agent such as a monoamine, an acid anhydride, a monoacid chloride, a monocarboxylic acid, or a monoactive ester.
  • an end-capping agent such as a monoamine, an acid anhydride, a monoacid chloride, a monocarboxylic acid, or a monoactive ester.
  • the resin is made alkaline soluble, making it possible to reduce residues.
  • an end-capping agent having a crosslinkable group By using an end-capping agent having a crosslinkable group, a crosslinking reaction proceeds during the heat curing process, making it possible to obtain a cured product with excellent chemical resistance.
  • Specific examples of the monoamines mentioned above that have a phenolic hydroxyl group include 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 3-amino-4,6-dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, and 4-aminophenol.
  • examples of those having a photocrosslinkable group include 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 2-aminostyrene, 3-aminostyrene, and 4-aminostyrene, and others include aniline, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 2-aminobenzenesulfonic acid, 3-aminobenzenesulfonic acid, and 4-aminobenzenesulfonic acid. Two or more of these may be used.
  • those having a phenolic hydroxyl group include 3-hydroxyphthalic anhydride, 3-carboxyphenol, 4-carboxyphenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1-hydroxy-5-carboxynaphthalene, etc.
  • Those having a photocrosslinkable group include maleic anhydride, nadic anhydride, maleic acid, itaconic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, 3-methyl-4-cyclohexene-1,2-dicarboxylic anhydride, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, etc.
  • acetic anhydride succinic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride, 3-carboxythiophenol, 4-carboxythiophenol, 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene, 3-carboxybenzenesulfonic acid, 4-carboxybenzenesulfonic acid, terephthalic acid, phthalic acid, cyclohexanedicarboxylic acid, 1,5-dicarboxynaphthalene, 1,6-dicarboxynaphthalene, 1,7-dicarboxynaphthalene, 2,6-dicarboxynaphthalene, trimellitic anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, and benzoic acid.
  • monoacid chloride compounds in which the carboxyl groups of these are converted to acid chlorides may be used, monoacid chloride compounds in which only one of the carboxyl groups of the above dicarboxylic acids is converted to acid chlorides may be used, and active ester compounds obtained by reacting a monoacid chloride compound with N-hydroxybenzotriazole or N-hydroxy-5-norbornene-2,3-dicarboximide may be used. Two or more of these may be used.
  • multiple different end groups may be introduced by reacting multiple end-capping agents.
  • the introduction ratio is preferably 1 mol% or more and 60 mol% or less, based on 100 mol% of all amine compounds contained in the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3).
  • the introduction ratio of the monoamine is preferably 1 mol% or more, more preferably 5 mol% or more, it is possible to effectively reduce the residue after development.
  • the introduction ratio of the monoamine to preferably 60 mol% or less, more preferably 50 mol% or less, it is possible to maintain a high molecular weight of the resin and maintain high chemical resistance and mechanical strength.
  • the total introduction ratio thereof is preferably 1 mol part or more and 100 mol parts or less per 100 mol parts of all amine compounds contained in the polyimide resin (A1-1), the polybenzoxazole resin (A1-2) and the copolymer resin (A1-3).
  • the introduction ratio is preferably 1 mol part or more, more preferably 5 mol parts or more.
  • the introduction ratio is preferably 100 mol parts or less, more preferably 90 mol parts or less, the molecular weight of the resin can be maintained high and high chemical resistance and mechanical strength can be maintained.
  • Total amine compounds here refers to the total content of compounds that have amino groups, such as monoamines, diamines, and triamines.
  • the weight average molecular weight of the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) is preferably 3,000 to 100,000 in terms of polystyrene by gel permeation chromatography.
  • the weight average molecular weight 100,000 or less, more preferably 80,000 or less, and even more preferably 60,000 or less good solvent solubility and good solubility in a developer can be effectively obtained.
  • the weight average molecular weight 3,000 or more, more preferably 5,000 or more, and even more preferably 7,000 or more high mechanical strength can be effectively obtained.
  • the weight average molecular weight is determined by the method described below.
  • the polyimide resin (A1-1) may be, for example, a reaction product obtained by reacting a tetracarboxylic acid, a corresponding tetracarboxylic dianhydride, or a tetracarboxylic diester dichloride with a diamine, a corresponding diisocyanate compound, or a trimethylsilylated diamine. These reaction products may also be dehydrated and cyclized by heating or by reaction with an acid or a base.
  • a preferred embodiment of the polyimide resin (A1-1) has a tetracarboxylic acid and/or a derivative residue thereof, and a diamine and/or a derivative residue thereof.
  • the polyimide resin (A1-1) preferably has one or more repeating units selected from the group consisting of repeating units represented by formula (13), repeating units represented by formula (14), and repeating units represented by formula (15).
  • R8 represents an acid dianhydride residue
  • R9 represents a diamine residue
  • R10 each independently represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. * represents a bonding point.
  • the repeating unit represented by formula (13) represents a repeating unit in which all of the amic acid structures or amic acid ester structures in the repeating unit have been cyclically closed and imidized.
  • Formula (14) represents a repeating unit in which some of the amic acid structures or amic acid ester structures in the repeating unit have been cyclically closed and imidized, with some remaining as amic acid structures or amic acid ester structures.
  • Formula (15) represents a repeating unit in which none of the amic acid structures or amic acid ester structures in the repeating unit have been cyclically closed and all remain as amic acid structures or amic acid ester structures.
  • the number of repeating units represented by formula (13), the number of repeating units represented by formula (14), and the number of repeating units represented by formula (15) are p, q, and r, respectively, where p, q, and r are integers of 0 or more.
  • the imide ring closure rate of the polyimide resin (A1-1) is preferably 2% or more, more preferably 5% or more, and even more preferably 10% or more.
  • An imide ring closure rate of 2% or more is preferable because it improves the dispersion stability when mixed with a pigment dispersion liquid, and it is possible to reduce the amount of outgassing at high temperatures, thereby improving the reliability of organic EL display devices.
  • the imide ring closure rate of polyimide resin (A1-1) can be determined by the method described below.
  • the monovalent organic group having 1 to 20 carbon atoms in R 10 can be a monovalent hydrocarbon group having 1 to 20 carbon atoms.
  • the monovalent hydrocarbon group include an alkyl group having 1 to 20 carbon atoms. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, and a hexyl group.
  • each R 10 is independently any one of a hydrogen atom, a methyl group, and an ethyl group.
  • the polyimide resin (A1-1) may also be a copolymer having one or more repeating units selected from the group consisting of repeating units represented by formula (13), repeating units represented by formula (14), and repeating units represented by formula (15), and a repeating unit other than the repeating units represented by formula (13), repeating units represented by formula (14), and repeating units represented by formula (15).
  • a copolymer it is preferable to use a copolymer with a repeating unit of polybenzoxazole described below.
  • a preferred embodiment of the polybenzoxazole resin (A1-2) is, for example, one that can be obtained by reacting a bisaminophenol compound with a dicarboxylic acid or the corresponding dicarboxylic acid chloride or dicarboxylic acid activated ester, and has a dicarboxylic acid residue and a bisaminophenol residue.
  • the reaction product thus obtained may be dehydrated and ring-closed by heating or by reaction with an acid, a base, acetic anhydride, a carbodiimide compound, or the like.
  • the polybenzoxazole resin (A1-2) preferably has one or more repeating units selected from the group consisting of repeating units represented by formula (16), repeating units represented by formula (17), and repeating units represented by formula (18).
  • R11 represents a dicarboxylic acid residue
  • R12 represents a bisaminophenol residue.
  • the dicarboxylic acid residue is a structure obtained by removing two carboxyl groups from a dicarboxylic acid compound.
  • the bisaminophenol residue is a structure obtained by removing two amino groups and two hydroxyl groups from a bisaminophenol compound.
  • the repeating unit represented by formula (16) represents a repeating unit in which all of the hydroxyamide structures in the repeating unit have been ring-closed to form oxazole.
  • Formula (17) represents a repeating unit in which some of the hydroxyamide structures in the repeating unit have been ring-closed to form oxazole, with some remaining as hydroxyamide structures.
  • Formula (18) represents a repeating unit in which the hydroxyamide structures in the repeating unit have not been ring-closed, and all remain as hydroxyamide structures.
  • the number of repeating units represented by formula (16), the number of repeating units represented by formula (17), and the number of repeating units represented by formula (18) are s, t, and u, respectively, where s, t, and u are integers of 0 or more.
  • the oxazole ring closure rate of the polybenzoxazole resin (A1-2) is preferably 0% or more and 95% or less, more preferably 0% or more and 85% or less, and even more preferably 0% or more and 75% or less.
  • the oxazole ring closure rate of the polybenzoxazole resin (A1-2) is determined by the following method.
  • GBL ⁇ -butyrolactone
  • This wafer with the resin film is divided into two, and one of the two is cured in a clean oven (CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.) at 140°C for 30 minutes under a nitrogen stream (oxygen concentration 20 ppm or less), and then further heated to 370°C for 1 hour to completely close the oxazole ring.
  • a clean oven CSH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.
  • the infrared transmission absorption spectra of the resin film before and after curing are measured using an infrared spectrophotometer (FT-720, manufactured by Horiba, Ltd.), and the intensities of the absorption peaks (near 1,050 cm -1 ) due to the C-O stretching vibration of oxazole (before curing: U, after curing: W) are determined.
  • the peak intensity ratio is calculated by dividing the peak intensity (U) by the peak intensity (W), and the content of oxazole groups in the polymer before heat treatment, i.e., the oxazole ring closure rate, is determined.
  • R OX (%) (U/W) ⁇ 100.
  • the polybenzoxazole resin (A1-2) may be a copolymer having one or more repeating units selected from the group consisting of repeating units represented by formula (16), repeating units represented by formula (17), and repeating units represented by formula (18), and a repeating unit other than the repeating units represented by formula (16), repeating units represented by formula (17), and repeating units represented by formula (18).
  • a copolymer it is preferable to use a copolymer with the repeating unit of the polyimide described above.
  • the copolymer resin (A1-3) can be obtained, for example, as a random copolymer by reacting the raw materials for the polyimide resin (A1-1) and the raw materials for the polybenzoxazole resin (A1-2) at once, or as a block copolymer having polyimide repeating units and polybenzoxazole repeating units by synthesizing the polyimide repeating units and the polybenzoxazole repeating units separately and then reacting the respective repeating units.
  • the copolymer resin (A1-3) preferably has both, for example, one or more repeating units of polyimide selected from the group consisting of repeating units represented by formula (13), repeating units represented by formula (14), and repeating units represented by formula (15), and one or more repeating units of polybenzoxazole selected from the group consisting of repeating units represented by formula (16), repeating units represented by formula (17), and repeating units represented by formula (18).
  • the resin (A) can be synthesized by a known method. Below, examples of the synthesis methods for the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) are described.
  • the polyimide resin (A1-1) can be synthesized, for example, by reacting a tetracarboxylic dianhydride with a diamine compound in a polymerization solvent at low temperature, by obtaining a diester from a tetracarboxylic dianhydride with an alcohol and then reacting it with an amine in the presence of a condensing agent, or by obtaining a diester from a tetracarboxylic dianhydride with an alcohol and then converting the remaining dicarboxylic acid into an acid chloride and reacting it with an amine.
  • the resin obtained by the above method may also be dehydrated and ring-closed by heating or chemical treatment with an acid or base.
  • the polybenzoxazole resin (A1-2) can be produced, for example, by a condensation reaction of a bisaminophenol compound with a dicarboxylic acid in a polymerization solvent. Specifically, a method of reacting a dehydrating condensing agent such as dicyclohexylcarbodiimide (DCC) with an acid and then adding a bisaminophenol compound to the reaction, or a method of dripping a solution of a dicarboxylic acid dichloride into a solution of a bisaminophenol compound to which a tertiary amine such as pyridine has been added, can be used.
  • a dehydrating condensing agent such as dicyclohexylcarbodiimide (DCC)
  • DCC dicyclohexylcarbodiimide
  • the copolymer resin (A1-3) can be synthesized, for example, by combining the synthesis method of the polyimide resin (A1-1) and the synthesis method of the polybenzoxazole resin (A1-2).
  • the resin (A) polymerized by the above method is preferably poured into a large amount of water or a mixture of methanol and water, precipitated, filtered, dried, and isolated. This precipitation process removes unreacted monomers and oligomer components such as dimers and trimers, improving the film properties and chemical resistance after thermal curing.
  • the polymerization solvent is not particularly limited as long as it can dissolve the raw material monomers such as acid dianhydrides and diamines.
  • amides such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, and N,N'-dimethylpropyleneurea (DMPU), cyclic compounds such as ⁇ -butyrolactone (GBL), ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -caprolactone, and ⁇ -methyl- ⁇ -butyrolactone, and cyclic compounds such as ⁇ -butyrolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolact
  • esters examples include esters, carbonates such as ethylene carbonate and propylene carbonate, glycols such as triethylene glycol, phenols such as m-cresol and p-cresol, esters such as methyl levulinate, ethyl levulinate, propyl levulinate, butyl levulinate, ethyl levulinate propylene glycol ketal, and ethyl levulinate glycerol ketal, acetophenone, sulfolane, dimethyl sulfoxide, and dihydrolevoglucosenone (Cyrene, manufactured by Circa), etc.
  • esters such as ethylene carbonate and propylene carbonate
  • glycols such as triethylene glycol
  • phenols such as m-cresol and p-cresol
  • esters such as methyl levulinate, ethyl levulinate, propyl levulinate, butyl levulinate, ethyl levulinate propylene glyco
  • the amount of the polymerization solvent used is preferably 100 to 1900 parts by mass, and more preferably 150 to 950 parts by mass, per 100 parts by mass of the resin (A).
  • the photosensitive resin composition of the present invention contains a photosensitizer (B).
  • the photosensitizer (B) include a photoacid generator (B1) and a photopolymerization initiator (B2).
  • a photoacid generator (B1) By containing the photoacid generator (B1), an acid is generated in the light-irradiated portion, increasing the solubility of the light-irradiated portion in an alkaline aqueous solution, and a positive-type relief pattern in which the light-irradiated portion is dissolved can be obtained.
  • the acid generated in the light-irradiated portion promotes the crosslinking reaction of the crosslinking agent (I), and a negative-type relief pattern in which the light-irradiated portion is insolubilized can be obtained.
  • the photopolymerization initiator (B2) and the radical polymerizable compound (H) the active radical generated in the light-irradiated portion advances the radical polymerization of the ethylenically unsaturated bond in the radical polymerizable compound, and a negative-type relief pattern in which the light-irradiated portion is insolubilized can be obtained.
  • the photosensitizer (B) contains the photoacid generator (B1) and exhibits positive photosensitivity.
  • the photosensitizer (B) contains the photoacid generator (B1) and exhibits positive photosensitivity, which makes it easier to reduce variation in the opening dimensions of the pattern due to the processing process.
  • Examples of the photoacid generator (B1) include quinone diazide compounds, sulfonium salts, phosphonium salts, diazonium salts, and iodonium salts.
  • the quinone diazide compound may be a polyhydroxy compound to which a sulfonic acid of quinone diazide is bonded via an ester bond, a polyamino compound to which a sulfonic acid of quinone diazide is bonded via a sulfonamide bond, or a polyhydroxy polyamino compound to which a sulfonic acid of quinone diazide is bonded via an ester bond and/or a sulfonamide bond. It is preferable that 50 mol % or more of the total functional groups of these polyhydroxy compounds or polyamino compounds are substituted with quinone diazide. It is also preferable that the compound contains two or more types of the photoacid generator (B1), which allows a highly sensitive photosensitive resin composition to be obtained.
  • B1 the photoacid generator
  • the quinone diazide is preferably one having a 5-naphthoquinone diazide sulfonyl group or one having a 4-naphthoquinone diazide sulfonyl group.
  • 4-naphthoquinone diazide sulfonyl ester compounds have absorption in the i-line region of a mercury lamp and are suitable for i-line exposure.
  • 5-naphthoquinone diazide sulfonyl ester compounds have absorption extending to the g-line region of a mercury lamp and are suitable for g-line exposure.
  • a naphthoquinone diazide sulfonyl ester compound having both a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group in the same molecule may be contained, or both a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester compound may be contained.
  • sulfonium salts are preferred because they adequately stabilize the acid component generated by exposure to light.
  • phosphonium salts are preferred.
  • diazonium salts are preferred.
  • photopolymerization initiator (B2) examples include the photopolymerization initiators described in paragraphs [0223] to [0276] of WO 2019/087985. Among them, it is preferable to include an oxime ester-based photopolymerization initiator from the viewpoint of achieving high sensitivity. Two or more of these may be included.
  • the content of the photosensitizer (B) is preferably 0.01 to 50 parts by mass per 100 parts by mass of the resin (A).
  • the content of the photoacid generator (B1) in the photosensitizer (B) is preferably 0.01 to 50 parts by mass per 100 parts by mass of the resin (A).
  • the content of the quinone diazide compound is preferably 3 to 40 parts by mass.
  • the total amount of the sulfonium salt, phosphonium salt, and diazonium salt is preferably 0.5 to 20 parts by mass.
  • the content of the photopolymerization initiator (B2) in the photosensitizer (B) is preferably 0.1 to 20 parts by mass per 100 parts by mass of the resin (A). If it is 0.1 part by mass or more, sufficient radicals are generated by light irradiation, improving sensitivity. Also, if it is 20 parts by mass or less, there is no hardening of the unexposed parts due to the generation of excessive radicals, improving alkaline developability.
  • the photosensitive resin composition of the present invention contains compound (C), which is a compound represented by formula (1) and/or a compound represented by formula (2).
  • R 1 and R 2 each independently represent a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms.
  • R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms.
  • R 6 and R 7 each independently represent a hydrogen atom, a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms, or a monovalent hydroxyalkyl group having 1 to 10 carbon atoms.
  • a represents 0 or 1.
  • the compound represented by formula (1) is a levulinic acid alkyl ester
  • the compound represented by formula (2) is a compound in which the carbonyl group of the levulinic acid alkyl ester is ketalized using a diol, triol, or tetraol compound.
  • These compounds may be added as additives when preparing a photosensitive resin composition, or may be used as a solvent for the photosensitive resin composition.
  • the photosensitive resin composition contains the compound (C)
  • the principle by which the above effect is obtained is presumed as follows. For example, as described in International Publication No.
  • GBL gamma-butyrolactone
  • a highly polar, high boiling point solvent such as GBL has the advantage of being highly soluble in solvents such as resins and slow drying, making it difficult for uneven coating to occur, while it has the disadvantage of being easily increased in development residue and easily reduced sensitivity due to its strong interaction with photosensitizers, which inhibits the interaction between the resin and the photosensitizer.
  • the compound (C) has good solubility in resins and additives, and has a weak interaction with resins and photosensitizers compared to highly polar, high boiling point solvents such as GBL, so it is difficult to inhibit the interaction between the resin and the photosensitizer, and it is thought that it is possible to reduce residue after development and increase sensitivity.
  • the compound (C) since the compound (C) has a weak interaction with resins, it is thought that it is difficult to volatilize from the cured product during heat curing and remain in the cured product. As a result, it is possible to reduce gas generation from the cured product obtained after heat curing, and it is thought that it is possible to improve the reliability of organic EL display devices and the like.
  • the inclusion of the compound (C) in the photosensitive resin composition makes it possible to improve the breaking elongation and crack resistance of the cured product, making it possible to obtain highly reliable electronic components or semiconductor devices.
  • the mechanism by which the breaking elongation and crack resistance of the cured product are improved by including the compound (C) is believed to be that the compound (C) has good solubility in the resin and crosslinking agent and a moderate boiling point, which promotes the crosslinking reaction between the crosslinking agent and the resin during the heat curing process, resulting in a cured product with high crosslink density.
  • the photosensitive resin composition of the present invention further contains a black agent (F) and the black agent (F) is a black pigment (F1)
  • the compound (C) is a dispersion medium because the storage stability of the black pigment dispersion obtained can be improved and the particle size of the black pigment (F1) can be made finer.
  • the compound (C) has a weaker interaction with the resin than a high-boiling point, highly polar solvent such as GBL.
  • the resin used as a dispersant is efficiently adsorbed to the surface of the black pigment (F1), and a steric repulsion effect is easily obtained, so that the dispersion stability of the black pigment (F1) is easily obtained and the particle size of the black pigment (F1) can be made finer.
  • the content of the compound (C) is preferably 1 to 3000 parts by mass, more preferably 20 to 2000 parts by mass, and even more preferably 50 to 1000 parts by mass, per 100 parts by mass of the total amount of the resin (A). By being within the above range, it becomes easier to obtain the effects of reducing development residues, increasing sensitivity, increasing reliability, improving the storage stability of the black pigment dispersion, and reducing the particle size of the black pigment (F1).
  • the content of the compound (C) is preferably 1 to 60% by mass, more preferably 2 to 50% by mass, and even more preferably 3 to 45% by mass, relative to 100% by mass of the total amount of the photosensitive resin composition.
  • the compound (C) include methyl levulinate, ethyl levulinate, propyl levulinate, butyl levulinate, pentyl levulinate, hexyl levulinate, heptyl levulinate, octyl levulinate, nonyl levulinate, and ketalized compounds obtained by reacting these compounds with polyhydric alcohol compounds such as propylene glycol and glycerin.
  • the photosensitive resin composition of the present invention preferably contains at least one selected from the group consisting of formulas (19) to (22) as a specific example of the compound (C), and more preferably contains a compound represented by formula (19) and/or a compound represented by formula (20).
  • the photosensitive resin composition of the present invention preferably further contains a compound (D) that has a boiling point at atmospheric pressure of 100°C or more and 170°C or less and does not fall under any of the resin (A), the photosensitizer (B), and the compound (C).
  • a compound (D) that has a boiling point at atmospheric pressure of 100°C or more and 170°C or less and does not fall under any of the resin (A), the photosensitizer (B), and the compound (C).
  • the compound (D) contains a compound (D1) having a hydroxyl group. This is because the inclusion of the compound (D1) provides a higher effect of reducing development residues.
  • Specific examples of the compound (D) that does not have a hydroxyl group include propylene glycol monomethyl ether acetate (boiling point 146°C), ethylene glycol monomethyl ether acetate (boiling point 145°C), and diethylene glycol dimethyl ether (boiling point 162°C).
  • compounds (D1) having a hydroxyl group include propylene glycol monomethyl ether (boiling point 120°C), methyl lactate (boiling point 145°C), ethyl lactate (boiling point 154°C), propyl lactate (boiling point 169°C), 1-butanol (boiling point 117°C), 1-pentanol (boiling point 138°C), 1-hexanol (boiling point 157°C), cyclohexanol (boiling point 161°C), 3-methoxybutanol (boiling point 161°C), ethylene glycol monomethyl ether (boiling point 124°C), and diacetone alcohol (boiling point 166°C).
  • the content of the compound (D) in the photosensitive resin composition of the present invention is preferably 5 to 5,000 parts by mass, and more preferably 10 to 3,000 parts by mass, per 100 parts by mass of the total amount of the resin (A).
  • the ratio X/Y of the mass X of the compound (C) contained in the photosensitive resin composition of the present invention to the mass Y of the compound (D) is preferably 0.01 to 10, more preferably 0.05 to 5, and even more preferably 0.1 to 2.
  • the photosensitive resin composition of the present invention preferably contains a solvent (E) other than the compound (C) and the compound (D).
  • the solvent (E) include Ethers such as ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol dimethyl ether, and diethylene glycol ethyl methyl ether; Esters such as ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, ethyl acetate, butyl acetate, and butyl lactate; Alcohols such as ethanol, isopropanol, 3-methyl-2-butanol, and 3-methyl-3-methoxybutanol; Ketones such as methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, diisobutyl ketone, cyclopentanone, and diacetone alcohol; Polar aprotic solvents such as N-methyl-2-
  • the content of the solvent (E) is preferably 50 parts by mass or more, more preferably 100 parts by mass or more, and is preferably 2000 parts by mass or less, more preferably 1500 parts by mass or less, per 100 parts by mass of the resin (A).
  • the photosensitive resin composition of the present invention preferably further contains a black agent (F).
  • the black agent (F) refers to a compound that absorbs light of a visible light wavelength to color it black. Since an organic EL display device has a self-emitting element, when external light such as sunlight is incident outdoors, the visibility and contrast may be reduced due to the reflection of the external light. Therefore, a technology to reduce the reflection of external light may be required. Therefore, by including the black agent (F), the cured product of the photosensitive resin composition becomes black, and the light shielding property of shielding light that passes through the cured product of the photosensitive resin composition or light reflected from the cured product of the photosensitive resin composition can be improved.
  • TFT thin film transistor
  • a light-shielding pixel division layer electrode insulating layer, wiring insulating layer, interlayer insulating layer, TFT planarization layer, electrode planarization layer, wiring planarization layer, TFT protective layer, electrode protective layer, wiring protective layer, or gate insulating layer for an organic EL display device, and is suitable for applications requiring high contrast by suppressing external light reflection, such as a light-shielding pixel division layer, interlayer insulating layer, TFT planarization layer, or TFT protective layer.
  • the black agent (F) include those described in paragraphs [0281] to [0344] of International Publication No. 2019/087985.
  • a black pigment (F1) from the viewpoint of high shielding properties, high weather resistance, high chemical resistance, and resistance to fading when heated.
  • an organic black pigment (F1-1) from the viewpoint of excellent insulation properties and low dielectric properties.
  • an insulating layer such as a pixel division layer of an organic EL display device, a TFT planarization layer, or a TFT protective layer, it is possible to suppress light emission defects and improve reliability.
  • the organic black pigments (F1-1) are one or more selected from the group consisting of benzofuranone-based black pigments, perylene-based black pigments, dioxazine-based black pigments, and azo-based black pigments, and benzofuranone-based black pigments are more preferable.
  • the cured product of the photosensitive resin composition is blackened and has excellent hiding properties, so that the light-shielding properties of the cured product of the photosensitive resin composition can be improved.
  • the light-shielding properties per unit content ratio of the black pigment in the photosensitive resin composition are excellent, so that the same light-shielding properties can be imparted with a small content ratio. Therefore, the light-shielding properties of the cured product can be improved, and the sensitivity during exposure can be improved.
  • the organic black pigment (F1-1) may also contain a coating layer as described in paragraphs [0345] to [0359] of WO 2019/087985.
  • the content of the blackening agent (F) is preferably 10 to 200 parts by mass per 100 parts by mass of the resin (A).
  • the photosensitive resin composition of the present invention preferably contains a dispersant (G), particularly when the photosensitive resin composition contains a black pigment (F1) as the black agent (F).
  • the dispersant (G) refers to a compound having a surface affinity group that interacts with the surface of the pigment and a dispersion stabilizing structure that improves the dispersion stability of the pigment.
  • the dispersion stabilizing structure of the dispersant (G) include a polymer chain and/or a substituent having an electrostatic charge.
  • Specific examples of dispersants that can be used include the dispersants described in [0371] to [0385] of WO 2019/087985.
  • the basic group or the structure in which the basic group forms a salt preferably has a tertiary amino group, a quaternary ammonium salt structure, or a nitrogen-containing ring skeleton such as a pyrrole skeleton, an imidazole skeleton, a pyrazole skeleton, a pyridine skeleton, a pyridazine skeleton, a pyrimidine skeleton, a pyrazine skeleton, a triazine skeleton, an isocyanuric acid skeleton, an imidazolidinone skeleton, a propylene urea skeleton, a butylene urea skeleton, a hydantoin skeleton, a barbituric acid skeleton, an alloxane skeleton, or a glycoluril skeleton.
  • a nitrogen-containing ring skeleton such as a pyrrole skeleton, an imidazole
  • the content ratio of dispersant (G) in the photosensitive resin composition of the present invention is preferably 1 mass% or more relative to 100 mass% of the total amount of black pigment (F1) and dispersant (G).
  • the content ratio of dispersant (G) is preferably 60 mass% or less. When the content ratio is 60 mass% or less, the heat resistance of the cured product can be improved.
  • the photosensitive resin composition of the present invention may further contain a radically polymerizable compound (H), and the photosensitizer (B) may contain a photopolymerization initiator (B2).
  • the active radicals generated in the light-irradiated area promote radical polymerization of the ethylenically unsaturated bonds in the radically polymerizable compound, and a negative relief pattern can be obtained in which the light-irradiated area is insolubilized.
  • the photosensitive resin composition becomes a negative-type photosensitive resin composition.
  • radical polymerizable compound (H) examples include the radical polymerizable compounds described in paragraphs [0189] to [0222] of WO 2019/087985.
  • a flexible chain-containing aliphatic radical polymerizable compound refers to a compound having multiple ethylenically unsaturated double bond groups and a flexible skeleton such as an aliphatic chain or an oxyalkylene chain in the molecule.
  • the curing reaction during light irradiation proceeds efficiently, and the sensitivity during light irradiation can be improved.
  • a black pigment (F1) is included as the black agent (F)
  • the black pigment (F1) is fixed to the cured portion by crosslinking during UV curing of the flexible chain-containing aliphatic radical polymerizable compound, and the generation of residues after development originating from the black pigment (F1) can be suppressed.
  • the change in the pattern opening dimensional width before and after thermal curing can be suppressed.
  • the content of the radical polymerizable compound (H) is preferably 5 to 50 parts by mass per 100 parts by mass of the resin (A).
  • the photosensitive resin composition of the present invention preferably contains a crosslinking agent (I).
  • the crosslinking agent (I) refers to a compound having a crosslinkable group capable of bonding with a resin.
  • the crosslinking agent (I) By including the crosslinking agent (I), the hardness and chemical resistance of the cured product can be improved. This is presumably because the crosslinking agent (I) can introduce a new crosslinking structure into the cured product of the photosensitive resin composition, thereby improving the crosslinking density.
  • the crosslinking agent (I) it becomes possible to form a pattern with a low taper shape after thermal curing. This is thought to be because the crosslinking agent (I) forms a crosslinked structure between the polymers, which inhibits the dense orientation of the polymer chains and maintains the reflowability of the pattern during thermal curing, making it possible to form a pattern with a low taper shape.
  • the crosslinking agent (I) a compound having two or more thermal crosslinkable groups in the molecule, such as an alkoxymethyl group, a methylol group, an epoxy group, or an oxetanyl group, is preferred.
  • crosslinking agent (I) that can be used include the crosslinking agents described in paragraphs [0407] to [0412] of WO 2019/087985.
  • the content of the crosslinking agent (I) is preferably 0.5 to 50 parts by mass per 100 parts by mass of the resin (A). If the content is 0.5 parts by mass or more, the hardness and chemical resistance of the cured product can be improved, and a pattern with a low taper shape can be formed after thermal curing. If the content is 50 parts by mass or less, the hardness and chemical resistance of the cured product can be improved, and a pattern with a low taper shape can be formed after thermal curing.
  • the photosensitive resin composition of the present invention may be a positive-type photosensitive resin composition further comprising a dissolution promoter (J), and the photosensitizer (B) may comprise a photoacid generator (B1).
  • the dissolution promoter (J) supplements the alkaline developability of the photosensitive resin composition, and can improve the sensitivity in the positive-type photosensitive resin composition.
  • the dissolution promoter (J) is preferably a compound having a phenolic hydroxyl group, and examples of the compound include Bis-z, BisOC-Z, BisOPP-Z, BisP-CP, Bis26X-Z, BisOTBP-Z, BisOCHP-Z, BisOCR-CP, BisP-MZ, BisP-EZ, Bis26X-CP, BisP-Pz, BisP-IPZ, BisC RIPZ, BisOCP-IPZ, BisOIPP-CP, Bis26X-IPZ, BisOTBP-CP, TekP4HBPA (TetrakisP-DO-BPA), TrisPHAP, TrisP-PA, TrisP-PHBA, TrisP-SA, TrisOCRPA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-OC, BIP-PC, B Examples of compounds having a phenolic hydroxyl group include IR-PC, BIR-PTBP, BIR-PCHP, BIP-BIOCF, 4PC, B
  • the content of the dissolution promoter (J) is preferably 1 to 40 parts by mass per 100 parts by mass of the resin (A).
  • the photosensitive resin composition of the present invention may further contain a surfactant (K).
  • a surfactant refers to a compound having a hydrophilic structure and a hydrophobic structure.
  • the surfactant (K) By including an appropriate amount of the surfactant (K), the surface tension of the resin composition can be adjusted as desired, the leveling property during application can be improved, and the thickness uniformity of the coating film can be improved.
  • a fluororesin-based surfactant, a silicone-based surfactant, a polyoxyalkylene ether-based surfactant, or an acrylic resin-based surfactant is preferable.
  • the content ratio of the surfactant (K) in the photosensitive resin composition of the present invention is preferably 0.001 mass% or more of the entire photosensitive resin composition, and more preferably 0.005 mass% or more. When the content ratio is 0.001 mass% or more, the leveling property during application can be improved. On the other hand, the content ratio of the surfactant is preferably 1 mass% or less, and more preferably 0.5 mass% or less. When the content ratio is 1 mass% or less, defects occurring during application can be reduced.
  • the photosensitive resin composition of the present invention may contain additives (L) other than those described above.
  • the additive (L) include the polyfunctional thiol compounds described in [0386] to [0398] of WO 2019/087985, the sensitizers described in [0399] to [0402] of WO 2019/087985, the polymerization inhibitors described in [0403] to [0406] of WO 2019/087985, the silane coupling agents described in [0413] to [0418] of WO 2019/087985, the surfactants described in [0419] to [0420] of WO 2019/087985, and the inorganic particles described in [0127] to [0130] of WO 2016/052268 and [0024] to [0025] of WO 2019/167461.
  • the photosensitive resin composition of the present invention can be produced, for example, by placing the resin (A), photosensitizer (B), compound (C), and other components, as well as other components as necessary, in a glass flask or stainless steel container, and stirring and dissolving them with a mechanical stirrer, dissolving them with ultrasonic waves, or stirring and dissolving them with a planetary stirring and degassing device.
  • the obtained photosensitive resin composition is preferably filtered through a leak filter to remove dust and particles.
  • the pore size of the leak filter is 0.5 to 0.02 ⁇ m, for example, 0.5 ⁇ m, 0.2 ⁇ m, 0.1 ⁇ m, 0.05 ⁇ m, 0.02 ⁇ m, etc., but is not limited to these.
  • the material of the leak filter includes polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), etc., with polyethylene and nylon being preferred.
  • PP polypropylene
  • PE polyethylene
  • nylon NY
  • PTFE polytetrafluoroethylene
  • the cured product of the present invention is obtained by curing the photosensitive resin composition of the present invention.
  • methods for curing the photosensitive resin composition include a method of curing the photosensitive resin composition by heating it, and a method of irradiating it with active actinic rays.
  • the cured product is preferably in the form of a film, i.e., a cured film.
  • the method for producing a cured product of the present invention preferably includes the following steps. (1) applying the above-mentioned photosensitive resin composition onto a substrate to form a photosensitive resin film; (2) drying the photosensitive resin film; (3) exposing the dried photosensitive resin film through a photomask; (4) a step of developing the exposed photosensitive resin film; and (5) a step of heat treating the developed photosensitive resin film.
  • the photosensitive resin composition of the present invention is applied to a substrate by a spin coating method, a slit coating method, a dip coating method, a spray coating method, a printing method, or the like to obtain a photosensitive resin film of the photosensitive resin composition.
  • the substrate to which the photosensitive resin composition is applied may be pretreated with an adhesion improver.
  • a method of treating the substrate surface using a solution in which the adhesion improver is dissolved at 0.5 to 20 mass % in a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, or diethyl adipate is used.
  • Methods for treating the substrate surface include spin coating, slit die coating, bar coating, dip coating, spray coating, and steam treatment.
  • Specific examples of adhesion improvers include the adhesion improvers described in [0127] of International Publication No. 2019/065351.
  • the applied photosensitive resin film is dried under reduced pressure as necessary, and then heat-treated at 50°C to 180°C for one minute to several hours using a hot plate, oven, infrared, etc. to obtain a photosensitive resin film.
  • the photosensitive resin film is irradiated with chemical radiation through a photomask having a desired pattern.
  • chemical radiation used for exposure include ultraviolet light, visible light, electron beams, and X-rays.
  • post-exposure baking may be performed. By performing post-exposure baking, effects such as improved resolution after development or an increased tolerance range for development conditions can be expected.
  • post-exposure baking an oven, a hot plate, infrared rays, a flash annealing device, or a laser annealing device can be used.
  • the post-exposure baking temperature is preferably 50 to 180°C, more preferably 60 to 150°C.
  • the post-exposure baking time is preferably 10 seconds to several hours. If the post-exposure baking time is within the above range, the reaction may proceed well and the development time may be shortened.
  • the exposed photosensitive resin film is developed using a developer to remove a portion of the photosensitive resin film.
  • the developer is preferably an aqueous solution of an alkaline compound such as tetramethylammonium hydroxide (TMAH), diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine, or hexamethylenediamine.
  • TMAH tetramethylammonium hydroxide
  • polar solvents such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, ⁇ -butyrolactone (GBL), and dimethylacrylamide
  • alcohols such as methanol, ethanol, and isopropanol
  • esters such as ethyl lactate and propylene glycol monomethyl ether acetate
  • ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be added to these aqueous alkaline solutions, either alone or in combination.
  • Development methods that can be used include spray, paddle, immersion, and ultrasonic methods.
  • alcohols such as ethanol and isopropyl alcohol, or esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to the deionized water for rinsing.
  • the above step (5) is carried out. Residual solvents and components with low heat resistance can be removed by the heat treatment, so that heat resistance and chemical resistance can be improved.
  • the photosensitive resin composition of the present invention contains a polyimide resin, a polybenzoxazole resin, and/or a copolymer resin of a repeating unit of a polyimide resin and a repeating unit of a polybenzoxazole resin, an imide ring and an oxazole ring can be formed by the heat treatment, so that heat resistance and chemical resistance can be improved.
  • a thermal crosslinking agent is contained, a thermal crosslinking reaction can be promoted by the heat treatment, so that heat resistance and chemical resistance can be improved.
  • This heat treatment is carried out by selecting a temperature and gradually increasing the temperature, or by selecting a certain temperature range and continuously increasing the temperature for 5 minutes to 5 hours. As an example, heat treatment is performed at 150°C and 250°C for 30 minutes each. Alternatively, a method of linearly increasing the temperature from room temperature to 300°C over 2 hours can be mentioned.
  • the heat treatment conditions in the present invention are preferably 180°C or higher, more preferably 200°C or higher, even more preferably 230°C or higher, and particularly preferably 240°C or higher.
  • the heat treatment conditions are preferably 400°C or less, more preferably 350°C or less, and even more preferably 300°C or less.
  • the photosensitive sheet here refers to a sheet-like photosensitive resin composition obtained by applying the photosensitive resin composition onto a peelable film and drying it.
  • a photosensitive sheet formed from the photosensitive resin composition of the present invention in a sheet form, if the photosensitive sheet has a protective film, this is peeled off, and the photosensitive sheet is placed opposite a substrate and bonded together by thermocompression to obtain a photosensitive resin film.
  • the photosensitive sheet can be obtained by applying the photosensitive resin composition of the present invention onto a support film made of a peelable film such as polyethylene terephthalate, followed by drying.
  • Thermocompression bonding can be performed by a heat press process, a heat lamination process, a heat vacuum lamination process, etc.
  • the lamination temperature is preferably 40°C or higher in terms of adhesion to the substrate and embeddability. Furthermore, if the photosensitive sheet has photosensitivity, the lamination temperature is preferably 140°C or lower to prevent the photosensitive sheet from hardening during lamination, which would reduce the resolution of the pattern formation in the exposure and development process.
  • the photosensitive resin film obtained by laminating a photosensitive sheet to a substrate can be formed into a hardened film by following the steps of exposing the photosensitive resin film to light, developing the exposed photosensitive resin film, and hardening it by heating, as described above.
  • Another embodiment of the cured product of the present invention is a cured product containing resin (A) and containing a compound represented by formula (1) and/or a compound (C) represented by formula (2) in a total amount of 0.00001% by mass or more and 0.01% by mass or less relative to 100% by mass of the cured product.
  • R 1 and R 2 each independently represent a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms.
  • R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms.
  • R 6 and R 7 each independently represent a hydrogen atom, a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms, or a monovalent hydroxyalkyl group having 1 to 10 carbon atoms.
  • a represents 0 or 1.
  • the content of the compound represented by formula (1) and the compound (C) represented by formula (2) in the cured product can be measured by the method described in the Examples.
  • the total amount of the compound represented by formula (1) and the compound represented by formula (2) contained in the cured product is preferably 0.00005% by mass or more and 0.008% by mass or less, and more preferably 0.0001% by mass or more and 0.005% by mass or less, relative to 100% by mass of the cured product.
  • the above cured product can improve the reliability when used in an organic EL display device.
  • the details of the mechanism by which the reliability of an organic EL display device is improved by the inclusion of compound (C) in the cured product are unknown, the inventors speculate on the following mechanism. Since the compound represented by formula (1) is a ketoester compound, it can form a chelate with an acidic compound between the carbonyl group and the ester bond. This makes it possible to suppress the generation of acidic gas from the cured product during a reliability test, suppresses corrosion of the electrodes of the organic EL display device, and improves reliability.
  • the compound represented by formula (2) is a ketalized compound obtained by reacting the carbonyl group of a ketoester compound with a compound having two or more hydroxyl groups in the molecule, and it is speculated that a part of the ketal is eliminated to generate the same compound as formula (1) during the heating process in the process of forming the cured product and during the reliability test. Therefore, it is believed that the compound represented by formula (2) can also exhibit the chelate effect like the compound of formula (1), and the reliability of the organic EL display device can be improved.
  • the compound (C) contained in the cured product preferably contains at least one selected from the group consisting of formulas (19) to (22).
  • the organic EL display device of the present invention comprises the cured product of the present invention.
  • the organic EL display device of the present invention comprises the cured product of the present invention as one or more selected from the group consisting of a pixel dividing layer, an electrode insulating layer, a wiring insulating layer, an interlayer insulating layer, a TFT planarizing layer, an electrode planarizing layer, a wiring planarizing layer, a TFT protective layer, an electrode protective layer, a wiring protective layer, a gate insulating layer, a color filter, a black matrix, and a black column spacer.
  • the organic EL display device of the present invention preferably comprises the cured product of the present invention containing a black agent as one or more layers selected from the group consisting of a pixel division layer, an electrode insulating layer, a wiring insulating layer, an interlayer insulating layer, a TFT planarizing layer, an electrode planarizing layer, a wiring planarizing layer, a TFT protective layer, an electrode protective layer, a wiring protective layer, and a gate insulating layer, and more preferably comprises the cured product of the present invention containing a black agent as one or more layers selected from the group consisting of a pixel division layer, an interlayer insulating layer, a TFT planarizing layer, and a TFT protective layer.
  • the electronic component of the present invention comprises the cured product of the present invention.
  • the semiconductor device of the present invention comprises the cured product of the present invention.
  • the cured product of the present invention is suitable for use as an interlayer insulating film of an electronic component such as a SAW filter, a passivation film of a semiconductor element included in a semiconductor device, a surface protective film, an interlayer insulating film, etc., but is not limited thereto.
  • the semiconductor device referred to here refers to a device that includes a semiconductor element or an integrated circuit integrating the semiconductor element as a component.
  • the cured product obtained by curing the photosensitive resin composition of the present invention has excellent mechanical strength, so that a highly reliable electronic component or semiconductor device that does not crack even after a thermal cycle test can be obtained by having the cured product of the present invention.
  • Examples of the configuration of the electronic component or semiconductor device of the present invention include, for example, the electronic components or semiconductor devices described in [0190] to [0208] of JP 2020-66651 A and [0183] to [0189] of WO 2021/085321 A, but are not limited thereto.
  • ODPA 4,4'-oxydiphthalic anhydride
  • 6FDA 4,4'-(hexafluoroisopropylidene)diphthalic anhydride
  • TDA-100 1,3,3a,4,5,9b-hexahydro-5(tetrahydro-2,5-dioxo-3-furanyl)naphtho[1,2-c]furan-1,3-dione.
  • BAHF 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (manufactured by Central Glass Co., Ltd.)
  • BAP 2,2-bis(3-amino-4-hydroxyphenyl)propane (manufactured by Wakayama Seika Kogyo Co., Ltd.)
  • AZ-FDA 9,9-bis(3-amino-4-hydroxyphenyl)fluorene
  • SiDA 1,3-bis(3-aminopropyl)tetramethyldisiloxane.
  • OBBOC 4,4'-oxybisbenzoic acid chloride (manufactured by Ihara Nikkei Chemical Industry Co., Ltd.).
  • OAP 2-aminophenol (Tokyo Chemical Industry Co., Ltd.)
  • MAP 3-aminophenol.
  • LVM Methyl levulinate (Tokyo Chemical Industry Co., Ltd.)
  • LVP Propyl levulinate (Tokyo Chemical Industry Co., Ltd.)
  • MPA 3-methoxy-N,N-dimethylpropanamide (KJ Chemicals Co., Ltd.).
  • ITO indium tin oxide
  • TMAH tetramethylammonium hydroxide
  • DMFDMA N,N-dimethylformamide dimethyl acetal
  • BPAF bisphenol AF.
  • ITO substrate glass substrate (manufactured by Geomatec Co., Ltd.; hereafter referred to as "ITO substrate") with 100 nm ITO formed on the glass by sputtering was subjected to a UV- O3 cleaning treatment for 100 seconds using a tabletop optical surface treatment device (PL16-110; manufactured by Sen Special Light Sources Co., Ltd.).
  • a Si wafer manufactured by Electronics and Materials Corporation was heated at 130°C for 2 minutes using a hot plate (HP-1SA; manufactured by AS ONE Corporation) for dehydration and baking treatment before use.
  • This wafer with the resin film was divided into two, and one of them was cured in a clean oven (CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.) at 140°C for 30 minutes under a nitrogen stream (oxygen concentration 20 ppm or less), and then further heated to 320°C for 1 hour to completely close the imide ring.
  • the transmission infrared absorption spectra of the resin film before and after curing were measured using an infrared spectrophotometer (FT-720, manufactured by Horiba, Ltd.) to confirm the presence of absorption peaks of the imide structure due to polyimide (near 1,780 cm - 1 and near 1,377 cm -1 ), and the peak intensities near 1,377 cm -1 (before curing: S, after curing: T) were determined.
  • the peak intensity ratio was calculated by dividing the peak intensity (S) by the peak intensity (T), and the content of imide groups in the polymer before heat treatment, i.e., the imide ring closure rate, was determined.
  • RIM (%) (S/T) ⁇ 100.
  • Pigment Particle Size The particle size of the pigment in the pigment dispersion or in the composition was measured using a nanoparticle analyzer. The pigment particle size was measured under the following conditions, and the D50 (median size) value is shown in Table 1. Measurement equipment: Nanoparticle analyzer SZ-100 (manufactured by Horiba, Ltd.) Laser wavelength: 532 nm Sample dilution solvent: PGMEA Sample dilution ratio: 250 times (mass ratio) Solvent viscosity: 1.25 Solvent refractive index: 1.40 Measurement temperature: 25°C Measurement mode: scattered light Calculation conditions: polydispersion, broad Number of measurements: 2 (average value was taken as the pigment particle size).
  • Film Thickness Measurement Film thickness was measured using a surface roughness/contour shape measuring instrument (SURFCOM1400D; manufactured by Tokyo Seimitsu Co., Ltd.) at a measurement magnification of 10,000 times, a measurement length of 1.0 mm, and a measurement speed of 0.30 mm/s.
  • SURFCOM1400D surface roughness/contour shape measuring instrument
  • the prebaked film was then developed, rinsed, and dried to obtain a solid developed film.
  • the developed film was then heat-treated (cured) to obtain a substrate for evaluating optical properties, which had a solid cured film with a thickness of 1.5 ⁇ m.
  • the thickness of the cured film was measured using the film thickness measurement method, and the light blocking ability per 1 ⁇ m of film thickness of each cured film was evaluated by calculating the OD value/film thickness.
  • the obtained prebaked film was exposed to ultraviolet light through a positive mask (manufactured by HOYA Corporation, stripe design line width 20 ⁇ m) using a double-sided alignment single-sided exposure device ("Mask Aligner"PEM-6M; manufactured by Union Optical Co., Ltd.) with a maximum exposure of 150 mJ/ cm2 (value on an i-line illuminometer) and decreasing the exposure amount in increments of 5 mJ/ cm2 , followed by development, rinsing, and drying to obtain a patterned substrate on which a photosensitive resin film was formed in a predetermined pattern.
  • the patterned substrates with each exposure amount were used to evaluate sensitivity and development residue.
  • A, B, and C which had a sensitivity of less than 95 mJ/ cm2 , were considered to be acceptable.
  • the obtained prebaked film was exposed to the i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) of an ultra-high pressure mercury lamp at a dose of 200 mJ/cm2 using a double-sided alignment single-sided exposure device (Mask Aligner PEM-6M; manufactured by Union Optical Co., Ltd.) through a grayscale mask for sensitivity measurement (MDRM MODEL 4000-5-FS; manufactured by Opto-Line International Co., Ltd., having a 1:1 line & space pattern of 2 to 50 ⁇ m, each having areas with transmittances of 1%, 5%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 25%, 30%, 35%, 40%, 50%, and 60 %). (value by an i-line illuminometer), the film was developed, rinsed, and dried to prepare a developed film of the photosensitive resin composition.
  • the resolved pattern of the prepared post-development film was observed to check for the presence or absence of residues in the openings of the 20 ⁇ m line-and-space pattern at the location of the minimum exposure dose where the opening width becomes the same line width (20 ⁇ m) as the mask design.
  • the results were judged as follows, and A, B, and C, where the area of the residues in the openings was less than 10%, were deemed to be acceptable.
  • B The area of the opening where the residue exists is 1% or more and less than 5%.
  • C The area of the opening where the residue exists is 5% or more and less than 10%.
  • D The area of the opening where the residue exists is 10% or more.
  • the display section was irradiated again, and the pixel light emitting area ratio was measured for 10 light emitting pixel sections located in the center, and the average value was calculated. Based on the pixel light emitting area ratio after one hour, the higher the pixel light emitting area ratio is maintained, the better the light emitting reliability is, and the display section was evaluated based on the following criteria, with A to C, where the area ratio of the light emitting section to the area of the light emitting pixel is 65% or more, being deemed to be pass, and D being deemed to be fail.
  • B The area ratio of the light-emitting portion to the area of the light-emitting pixel is 80% or more but less than 95%.
  • C The area ratio of the light-emitting portion to the area of the light-emitting pixel is 65% or more but less than 80%.
  • D The area ratio of the light-emitting portion to the area of the light-emitting pixel is less than 65%.
  • Example 51 (10) Elongation at Break
  • the resin compositions obtained in Example 51 and Comparative Example 51 were applied to an 8-inch silicon wafer by spin coating using a coating and developing apparatus (ACT-8 manufactured by Tokyo Electron Limited) so that the film thickness after pre-baking for 3 minutes at 120°C was 11 ⁇ m, and then pre-baked.
  • the wafer was then heated to 250°C at a rate of 3.5°C/min in an inert oven (CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.) with an oxygen concentration of 20 ppm or less, and heat-treated at 250°C for 1 hour to form a cured film.
  • an inert oven (CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.) with an oxygen concentration of 20 ppm or less
  • the wafer When the temperature reached 50°C or less, the wafer was removed and immersed in 45% by mass hydrofluoric acid for 1 minute to peel off the cured film from the wafer.
  • This film was cut into strips 1.5 cm wide and 5 cm long, and the elongation at break was measured by pulling at a tensile speed of 5 mm/min at room temperature of 23.0°C and humidity of 45.0% RH using a Tensilon (RTM-100, manufactured by Orientec Co., Ltd.). Measurements were performed on 10 strips per specimen, and the average of the top 5 points was calculated from the results. The results were judged as follows, with A, B, and C, which were elongations at break of 20% or more, being deemed to be acceptable.
  • Example 51 and Comparative Example 51 were applied to the above evaluation substrates by spin coating using a coating and developing device (ACT-8 manufactured by Tokyo Electron Ltd.) so that the film thickness after heat treatment at 120°C for 3 minutes would be 8 to 12 ⁇ m, and then prebaked to produce resin films. Prebaking was performed at 120°C for 3 minutes in both cases.
  • ACT-8 manufactured by Tokyo Electron Ltd.
  • the resin film was heated in an inert oven (KOYO THERMO SYSTEMS CO., LTD., CLH-21CD-S) from 50°C to 250°C at a rate of 3.5°C/min under a nitrogen stream with an oxygen concentration of 20 ppm or less, and then heat-treated at 250°C for 1 hour to harden the resin film and obtain a cured film.
  • the film thickness after pre-baking was measured using an optical interference film thickness measuring device (Dainippon Screen Mfg. Co., Ltd., "Lambda Ace” STM-602) with a refractive index of 1.629, and the film thickness of the cured film was measured with a refractive index of 1.773.
  • the evaluation board (hereafter referred to as the sample) was removed.
  • the sample was placed in a thermal cycle tester (conditions: -65°C/30 min to 150°C/30 min) and subjected to 200 cycles. After that, the sample was removed and the presence or absence of cracks in the cured film was observed using an optical microscope. A total of 10 locations were observed, two locations each at the center of the substrate and at the four ends of the substrate, and the results were judged as follows. A, B, and C, which show four or fewer cracks, were deemed to be pass. A: 0 cracks occurred. B: 1 to 2 cracks occurred. C: 3 to 4 cracks occurred. D: 5 or more cracks occurred.
  • Step 1 Collection of desorbed gas The cured product with the non-alkali glass substrate obtained in (8) was cut into strips and placed in a heating vessel. The vessel was then heated under the following conditions, and the generated gas was collected in an adsorption tube. A specimen in which the same procedure was carried out without using a sample was used as a blank. Heating temperature: 400°C Heating time: 60 min Atmosphere: Nitrogen 50 mL/min Step 2) Thermal desorption GC/MS The gas collected in the adsorption tube by the method of Procedure 1 was measured by thermal desorption GC/MS.
  • Thermal desorption apparatus TD-100 (Markes) Primary thermal desorption conditions: desorption temperature 260°C, trap temperature -27°C, 15 min Secondary thermal desorption conditions: 320°C, 5 min GC device: 7890A (Agilent) Column: DB-5MS 30m x 0.25mm ID, film thickness 1 ⁇ m (Agilent J&W) Column temperature: After being held at 40° C. for 4 minutes, the temperature was increased at a rate of 10° C./min and held at 280° C. for 22 minutes.
  • MS device 5975C (Agilent) Ionization method: Electron ionization (EI) Monitor ion: m / z 29 to 600 Quantitative ion of LVM: m / z 130 Quantitative ion of LVP: m / z 158 NS100 quantification ion: m / z 144 NS200 quantification ion: m / z 172 NS300 quantification ion: m / z 202 NS400 quantification ion: m / z 218 Ion source temperature: 230° C.
  • EI Electron ionization
  • Standard products LVM, LVP (Tokyo Chemical Industry Co., Ltd.), NS100, NS200, NS300, NS400 (NXTLEVEL Biochem BV)
  • the standard was dissolved in methanol to prepare a standard solution, which was then appropriately diluted and 1 ⁇ L of the solution was taken and injected into an adsorption tube, which was then measured under the same conditions as the samples, and a calibration curve was prepared for quantification.
  • 500.00 g of the above black pigment was mixed with 2.5 kg of grinding material (sodium chloride particles with an average primary particle size of 0.5 ⁇ m, which had been heated at 230° C. for 1 hour to reduce the moisture content to 0.1% by mass), and 250.00 g of dipropylene glycol, and the mixture was charged into a stainless steel 1-gallon kneader (manufactured by Inoue Seisakusho) and kneaded at 90° C. for 8 hours. The kneaded product was added to 5 L of warm water and stirred for 1 hour while maintaining the temperature at 70° C. to form a slurry.
  • grinding material sodium chloride particles with an average primary particle size of 0.5 ⁇ m, which had been heated at 230° C. for 1 hour to reduce the moisture content to 0.1% by mass
  • dipropylene glycol 250.00 g of dipropylene glycol
  • PBk-1 a finely divided perylene black pigment consisting of an isomer mixture of the compound represented by formula (26) and the compound represented by formula (27).
  • PBk-1 had an average primary particle diameter of 25 nm, a maximum primary particle diameter of 98 nm, and an average aspect ratio of 1.1.
  • the chemical structure of PBk-1 was analyzed using MALDI-TOF MS.
  • Dispersant A is a mixture of a compound represented by formula (28), a compound represented by formula (29), and a compound represented by formula (30) in a mass ratio of 42:55:3.
  • the chemical structure of dispersant A was analyzed using MALDI-TOF MS, and the mass ratio of the compounds constituting dispersant A was analyzed using LC-MS.
  • the triethylamine salt was filtered, and the filtrate was poured into water. Then, filtration was performed to collect the precipitate. The precipitate was dried in a vacuum dryer to obtain a quinone diazide compound QD-a represented by formula (31).
  • HA hydroxyl group-containing diamine compound
  • Polyamic acid ester (P2) A powder of polyamic acid ester (P2), which is a form of polyimide, was obtained in the same manner as in the synthesis example of polyamic acid ester (P1), except that GBL was used instead of NMP.
  • the weight average molecular weight of the polyamic acid ester (P2) was 31,000, and the imidization rate was 20%.
  • Polyimide resin (P3) A powder of polyimide resin (P3) was obtained in the same manner as in the synthesis example of polyimide resin (P1), except that 1,3-dimethyl-2-imidazolidinone was used instead of NMP.
  • the weight average molecular weight of polyimide resin (P3) was 31,300, and the imidization rate was 20%.
  • the precipitate was collected by filtration, washed three times with deionized water, and then dried in a vacuum dryer at 50 ° C for 20 hours to obtain a powder of polyimide resin (P4).
  • the weight average molecular weight of polyimide resin (P4) was 35,500, and the imidization rate was 99%.
  • Polyimide resin (P5) A powder of polyimide resin (P5) was obtained in the same manner as in the synthesis example of polyimide resin (P4), except that methyl levulinate was used instead of NMP.
  • the weight average molecular weight of polyimide resin P5 was 31,700, and the imidization rate was 98%.
  • polyhydroxyamide (P7) which is a form of polybenzoxazole resin.
  • the weight average molecular weight of polyhydroxyamide (P8) was 28,000.
  • polyhydroxyamide (P8) which is a form of polybenzoxazole resin.
  • the weight average molecular weight of polyhydroxyamide (P8) was 32,000.
  • polyhydroxyamide (P9) which is a form of polybenzoxazole resin.
  • the weight average molecular weight of the polyhydroxyamide (P9) was 33,000.
  • Phenol resin (P10) The phenolic resin (P10) of this synthesis example was synthesized by the method described in Synthesis Example 5 of paragraph [0120] of WO 2012/141165.
  • Acrylic resin (P11) A methyl methacrylate/methacrylic acid/styrene copolymer (mass ratio 30/40/30) was synthesized by a known method (Patent No. 3120476; Example 1). 40 parts by mass of glycidyl methacrylate was added to 100 parts by mass of the copolymer, and the mixture was reprecipitated in deionized water, filtered, and dried to obtain an acrylic resin (P11) that is a polymer containing a radical polymerizable monomer.
  • Polyamic acid ester (P12) Polyamic acid ester (P12) was obtained in the same manner as in Synthesis Example of Polyamic acid ester (P6), except that 21.0 g (0.035 mol) of the hydroxyl group-containing diamine (HA) was changed to 17.4 g (0.035 mol) of the hydroxyl group-containing diamine (HB) obtained in Synthesis Example 5.
  • the weight average molecular weight of polyamic acid ester (P12) was 32,000, and the imidization rate was 8%.
  • the precipitate was collected by filtration, washed three times with deionized water, and then dried in a vacuum dryer at 50 ° C. for 20 hours to obtain a powder of polyimide resin (P13).
  • the weight average molecular weight of the polyimide resin (P13) was 32,500, and the imidization rate was 100%.
  • Polyhydroxyamide (P14) was obtained in the same manner as in the synthesis example of polyhydroxyamide (P8), except that 29.2 g (0.80 mol) of BAHF was changed to 30.4 g (0.80 mol) of AZ-FDA.
  • the weight average molecular weight of polyhydroxyamide (P14) was 33,200.
  • Preparation Example 1 Preparation of Pigment Dispersion Bk-1 68.38 g of polyimide resin P1 was added to 900.00 g of a mixed solvent in which the mass ratio of PGME and EL as compound (D) and GBL as solvent (E) was 50:40:10, and the mixture was stirred for 30 minutes to dissolve. Further, 4.59 g of dispersant A was added, and after stirring for 30 minutes, 27.03 g of finely divided perylene black pigment PBk-1 was added and stirred for 30 minutes to obtain a preliminary stirring liquid. Next, the preliminary stirring liquid was sent to a vertical bead mill (Hiroshima Metal & Machinery Co., Ltd.
  • Preparation Example 2 Preparation of pigment dispersion Bk-2 Pigment dispersion Bk-2 was obtained in the same manner as in Preparation Example 1, except that NS100 was used as compound (C) instead of GBL in solvent (E).
  • the particle size (D 50 ) of the pigment in pigment dispersion Bk-2 was 170 nm.
  • Pigment dispersion Bk-3 was obtained in the same manner as in Preparation Example 1, except that NS100 was used as compound (C) instead of GBL in solvent (E) and polyimide resin P1 was changed to polyimide resin P2.
  • the particle diameter (D 50 ) of the pigment in pigment dispersion Bk-3 was 170 nm.
  • Preparation Example 4 Preparation of Pigment Dispersion Bk-4 Pigment dispersion Bk-5 was obtained in the same manner as in Preparation Example 1, except that NS100 was used as compound (C) instead of GBL in solvent (E) and polyimide resin P1 was changed to polyimide resin P4.
  • the particle diameter (D 50 ) of the pigment in pigment dispersion Bk-5 was 150 nm.
  • Example 1 Under yellow light, 2.08 g of polyimide resin P1 as resin (A), 0.168 g of QD-a and 0.125 g of QD-b as photoacid generator (B-1), 0.208 g of BPAF as dissolution promoter (J), 0.416 g of HMOM-TPHAP (manufactured by Honshu Chemical Industry Co., Ltd.; compound represented by formula (33)) as crosslinker (I), and 0.002 g of 10 mass% PGME solution of BYK-333 (manufactured by BYK Japan Co., Ltd.) as surfactant (K) were added to 17.0 g of a mixed solvent having a mass ratio of 20:40:40 as compound (D) and NS100 as compound (C), and the mixture was stirred for 30 minutes to dissolve the solids, thereby obtaining a homogeneous solution having a solid content of 15.00 mass%.
  • a patterned cured film-formed substrate having a cured film obtained by curing the positive-type photosensitive composition 1, and an organic EL display device for evaluating the light emission reliability having the patterned cured film as a pixel dividing layer were produced by the following method.
  • Figure 1 shows the manufacturing process for an organic EL display device, including the process of forming a pixel division layer.
  • a 10 nm-thick thin film of silver/copper alloy (volume ratio 10:1) was formed on the entire surface of an alkali-free glass substrate (1) (46 mm wide x 46 mm long square) by sputtering, and then etched to form a patterned metal reflective layer (2).
  • a 10 nm-thick ITO transparent conductive film was formed on the entire surface by sputtering, and then etched to form a second electrode (3) with the same pattern and an auxiliary electrode (4) as an extraction electrode.
  • the substrate was then ultrasonically cleaned for 10 minutes with "Semicoclean" (registered trademark) 56 (manufactured by Furuuchi Chemical Co., Ltd.) and washed with deionized water to obtain an electrode-formed substrate.
  • the positive photosensitive composition 1 was applied to the surface of the electrode formation substrate using a spin coater, adjusting the rotation speed so that the final thickness of the pixel division layer would be 2.0 ⁇ m, to obtain a coating film.
  • the coating film was prebaked at 120°C under atmospheric pressure for 120 seconds using a hot plate (HPD-3000BZN, manufactured by AS ONE Corporation) to obtain a prebaked film.
  • a positive exposure mask with openings (rectangles of 30 ⁇ m wide x 165 ⁇ m long) arranged at an opening pitch of 50 ⁇ m was set on the coating film so that the vertical/horizontal edges of the patterned light-shielding portion of the positive exposure mask were parallel to the vertical/horizontal edges of the alkali-free glass substrate (1), respectively.
  • the prebaked film was irradiated with a pattern of exposure light using a mixture of j-line (313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) from an ultra-high pressure mercury lamp at the minimum required exposure amount through the positive exposure mask to obtain an exposed film.
  • the developed film was obtained by developing and rinsing.
  • the positive exposure mask used was a mask with a patterned light-shielding portion made of chrome formed on the surface of a soda glass substrate.
  • the developed film was subjected to a heat treatment (cure) to form a hardened film, and a patterned hardened film-formed substrate with an aperture ratio of 18% was obtained, which had a patterned hardened film (5) with a thickness of 2.0 ⁇ m, in which openings (rectangles measuring 30 ⁇ m wide by 165 ⁇ m long) were arranged at an opening pitch of 50 ⁇ m within an area measuring 16 mm long by 16 mm wide in the center of the electrode-formed substrate.
  • the openings referred to here are the parts that will ultimately become the light-emitting pixel parts
  • the patterned hardened film is the part that corresponds to the pixel dividing layer.
  • an organic EL display device was produced using the patterned cured film-formed substrate.
  • the patterned cured film-formed substrate was rotated with respect to the deposition source under deposition conditions with a vacuum degree of 1 ⁇ 10 ⁇ 3 Pa or less, and first, a film was formed with a thickness of 10 nm of compound HT-1 as a hole injection layer and a thickness of 50 nm of compound HT-2 as a hole transport layer.
  • a host material, compound GH-1, and a dopant material, compound GD-1 were deposited with a thickness of 40 nm.
  • compound ET-1 and compound LiQ were laminated with a volume ratio of 1:1 to a thickness of 40 nm.
  • the compound LiQ was evaporated to a thickness of 2 nm, and then a silver/magnesium alloy (volume ratio 10/1) was evaporated to a thickness of 10 nm to form the first electrode (7).
  • the thickness mentioned here is the value displayed on a quartz crystal oscillator film thickness monitor.
  • Examples 2 to 8, 12 to 23 and Comparative Examples 1 and 2 Positive photosensitive resin compositions 2 to 8, 12, 13, and 15 to 26, cured films, and organic EL display devices were produced in the same manner as in Example 1, except that the positive photosensitive compositions were prepared according to the compositions shown in Tables 2 and 3. The evaluation results are shown in Tables 4 and 5.
  • Example 9 Under yellow light, in 1.524 g of NS100 as compound (C), 0.710 g of polyimide resin P1 as resin (A), 0.225 g of QD-a and 0.135 g of QD-b as photoacid generator (B-1), 0.270 g of BPAF as dissolution promoter (J), 0.495 g of HMOM-TPHAP (manufactured by Honshu Chemical Industry Co., Ltd.; compound represented by formula (33)) as crosslinker (I), and 0.014 g of 10% by mass PGME solution of BYK-333 (manufactured by BYK Japan Co., Ltd.) as surfactant (K) were added and stirred for 30 minutes to dissolve. Furthermore, 26.64 g of pigment dispersion Bk-2 was added and stirred for 30 minutes to obtain a uniform solution of 15.00% by mass of solids.
  • a cured film and an organic EL display device were produced in the same manner as in Example 1, except that positive-type photosensitive resin composition 9 was used.
  • Examples 10 and 11 and Comparative Example 3 Positive photosensitive resin compositions 10, 11, and 14, cured films, and organic EL display devices were produced in the same manner as in Example 9, except that positive photosensitive resin compositions were prepared according to the compositions shown in Tables 2 and 3 using pigment dispersion Bk-3 in Example 10, pigment dispersion Bk-4 in Example 11, and pigment dispersion Bk-1 in Comparative Example 3. The evaluation results are shown in Tables 4 and 5.
  • Example 51 Under yellow light, 2.0 g of quinone diazide compound b, 3.0 g of HMOM-TPHAP, 0.04 g of an NS100 solution (solid content 5 mass %) of BYK-333 as a surfactant, and 15 g of NS100 and 15 g of PGME as a solvent were added to 10.0 g of polyimide resin P1, and the mixture was stirred for 30 minutes to obtain a homogeneous solution.
  • a positive photosensitive resin composition 52 was obtained in the same manner as in Example 51, except that PGMEA was used instead of NS100.
  • Table 6 shows the results of evaluation of the breaking elongation and crack resistance of the cured films of the compositions obtained in Example 51 and Comparative Example 51.
  • Non-alkali glass substrate 2 Metal reflective layer 3: Second electrode 4: Auxiliary electrode 5: Patterned cured film 6: Organic EL layer 7: First electrode

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

The purpose of the present invention is to provide a photosensitive resin composition that has suitable sensitivity, results in little residue after development, and yields a cured product having suitable light emission characteristics even after a reliability test. This photosensitive resin composition includes a resin (A), a photosensitizer (B), and a compound (C) that is a compound represented by formula (1) and/or a compound represented by formula (2). In formula (1) and formula (2), R1 and R2 each independently represent a monovalent saturated hydrocarbon group having 1-10 carbon atoms. In formula (2), R3, R4, and R5 each independently represent a hydrogen atom or a monovalent saturated hydrocarbon group having 1-10 carbon atoms. R6 and R7 each independently represent a hydrogen atom, a monovalent saturated hydrocarbon group having 1-10 carbon atoms, or a monovalent hydroxyalkyl group having 1-10 carbon atoms. a represents 0 or 1.

Description

感光性樹脂組成物、硬化物、有機EL表示装置、電子部品、および半導体装置Photosensitive resin composition, cured product, organic EL display device, electronic component, and semiconductor device
 本発明は、感光性樹脂組成物、硬化物、有機EL表示装置、電子部品、および半導体装置に関する。 The present invention relates to a photosensitive resin composition, a cured product, an organic electroluminescence display device, an electronic component, and a semiconductor device.
 ポリイミド樹脂は優れた耐熱性や電気絶縁性、機械特性を有することから、有機エレクトロルミネッセンス(以下、「EL」)表示装置の画素分割層や半導体の層間絶縁膜などに広く用いられている。 Polyimide resins have excellent heat resistance, electrical insulation, and mechanical properties, and are therefore widely used in applications such as pixel dividing layers in organic electroluminescence (EL) display devices and interlayer insulating films in semiconductors.
 一般に、有機EL表示装置は、基板上に、駆動回路、平坦化層、第一電極、絶縁層、発光層および第二電極を有し、対向する第一電極と第二電極との間に電圧を印加することで、あるいは、電流を流すことで発光することができる。これらのうち、平坦化層用材料および絶縁層用材料としては、紫外線照射によるパターニング可能であり、かつ、硬化後に得られる硬化物が良好な耐薬品性を有する感光性樹脂組成物が一般に用いられている。 Generally, an organic EL display device has a driving circuit, a planarization layer, a first electrode, an insulating layer, a light-emitting layer, and a second electrode on a substrate, and can emit light by applying a voltage between the opposing first and second electrodes or by passing a current between them. Of these, photosensitive resin compositions that can be patterned by ultraviolet irradiation and that produce a cured product with good chemical resistance after curing are generally used as the materials for the planarization layer and the insulating layer.
 一方、有機EL表示装置に対する高信頼化要求は年々厳しくなっており、平坦化層用材料および絶縁層用材料に対しても、光照射などの加速条件での信頼性試験後でも高い発光特性を維持できる材料が求められている。 On the other hand, the demand for higher reliability for organic EL display devices is becoming stricter every year, and materials that can maintain high light-emitting properties even after reliability tests under accelerated conditions such as light exposure are required for planarization layer materials and insulating layer materials.
 ポリイミド系やポリベンゾオキサゾール系の樹脂を用いた感光性樹脂組成物は、樹脂の耐熱性が高く、硬化物から発生するガス成分が少ないため、高信頼性の有機EL表示装置を与えることができる点で好適に用いられている(例えば特許文献1参照)。また、例えば、信頼性と耐薬品の向上を目的に特定構造のフェノール化合物を含む感光性樹脂組成物(例えば特許文献2参照)が提案されている。 Photosensitive resin compositions using polyimide-based or polybenzoxazole-based resins are preferably used because they have high heat resistance and generate little gaseous components from the cured product, making them capable of producing highly reliable organic EL display devices (see, for example, Patent Document 1). In addition, for example, photosensitive resin compositions containing phenolic compounds with specific structures have been proposed for the purpose of improving reliability and chemical resistance (see, for example, Patent Document 2).
特開2002-91343号公報JP 2002-91343 A 国際公開第2019/065351号International Publication No. 2019/065351
 前述のとおり、有機EL表示装置に対する高信頼化要求は年々厳しくなっており、例えば、特許文献1に記載の感光性樹脂組成物を平坦化層用材料および絶縁層用材料に用いると、光照射などの加速条件での信頼性試験後における発光特性を維持することができないという課題があった。 As mentioned above, the demand for high reliability of organic EL display devices is becoming stricter every year. For example, when the photosensitive resin composition described in Patent Document 1 is used as a material for a planarizing layer and an insulating layer, there is an issue that the light-emitting characteristics cannot be maintained after a reliability test under accelerated conditions such as light irradiation.
 また、特定構造のフェノール化合物を含む特許文献2の技術では、良好な発光信頼性および耐薬品性が得られる一方で、感度がやや低く、パターニング時に残渣が発生しやすいという課題があった。 In addition, the technology of Patent Document 2, which contains a phenolic compound with a specific structure, provides good luminescence reliability and chemical resistance, but has issues such as slightly low sensitivity and a tendency to leave residues during patterning.
 そこで本発明は、感度が良好であり、現像後の残渣が少なく、かつ、硬化物が信頼性試験後も良好な発光特性を有する感光性樹脂組成物、および前記感光性樹脂組成物の硬化物を具備した有機EL表示装置、電子部品および半導体装置を提供することを目的とする。 The present invention aims to provide a photosensitive resin composition that has good sensitivity, leaves little residue after development, and has good luminescence properties even after a reliability test when cured, as well as an organic EL display device, electronic component, and semiconductor device that include a cured product of the photosensitive resin composition.
 上述した課題を解決し、上記目的を達成するために、本発明は以下の構成を有する。 In order to solve the above problems and achieve the above objectives, the present invention has the following configuration.
 [1] 樹脂(A)、感光剤(B)、並びに式(1)で表される化合物および/または式(2)で表される化合物である化合物(C)を含む、感光性樹脂組成物。 [1] A photosensitive resin composition comprising a resin (A), a photosensitizer (B), and a compound (C) which is a compound represented by formula (1) and/or a compound represented by formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
式(1)および式(2)中、RおよびRは、それぞれ独立に、炭素数1~10の1価の飽和炭化水素基を示す。式(2)中、R、RおよびRは、それぞれ独立に、水素原子または炭素数1~10の1価の飽和炭化水素基を示す。RとRは、それぞれ独立に、水素原子、炭素数1~10の1価の飽和炭化水素基、または炭素数1~10の1価のヒドロキシアルキル基を示す。aは0または1を示す。 In formula (1) and formula (2), R 1 and R 2 each independently represent a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms. In formula (2), R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms. R 6 and R 7 each independently represent a hydrogen atom, a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms, or a monovalent hydroxyalkyl group having 1 to 10 carbon atoms. a represents 0 or 1.
 [2] 前記樹脂(A)の総量を100質量部に対して、前記化合物(C)の含有量の合計が1~3000質量部である、[1]に記載の感光性樹脂組成物。 [2] The photosensitive resin composition according to [1], in which the total content of the compound (C) is 1 to 3,000 parts by mass per 100 parts by mass of the total amount of the resin (A).
 [3] 前記化合物(C)が、式(19)~(22)からなる群より選択される少なくとも1つを含む、[1]または[2]に記載の感光性樹脂組成物。 [3] The photosensitive resin composition according to [1] or [2], wherein the compound (C) includes at least one selected from the group consisting of formulas (19) to (22).
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 [4] さらに、大気圧における沸点が100℃以上170℃以下でありかつ前記樹脂(A)、前記感光剤(B)および前記化合物(C)のいずれにも該当しない化合物(D)を含む、[1]~[3]のいずれかに記載の感光性樹脂組成物。 [4] The photosensitive resin composition according to any one of [1] to [3], further comprising a compound (D) that has a boiling point at atmospheric pressure of 100°C or more and 170°C or less and does not fall under any of the resin (A), the photosensitizer (B), and the compound (C).
 [5] 前記化合物(D)が水酸基を有する化合物(D1)を含む、[4]に記載の感光性樹脂組成物。 [5] The photosensitive resin composition according to [4], wherein the compound (D) includes a compound (D1) having a hydroxyl group.
 [6] 前記感光性樹脂組成物に含まれる前記化合物(C)の質量Xの、前記化合物(D)の質量Yに対する比X/Yが0.01~10である、[4]に記載の感光性樹脂組成物。 [6] The photosensitive resin composition according to [4], wherein the ratio X/Y of the mass X of the compound (C) contained in the photosensitive resin composition to the mass Y of the compound (D) is 0.01 to 10.
 [7]前記樹脂(A)がアルカリ可溶性樹脂(A1)を含む、[1]~[6]のいずれかに記載の感光性樹脂組成物。 [7] The photosensitive resin composition according to any one of [1] to [6], wherein the resin (A) contains an alkali-soluble resin (A1).
 [8]前記アルカリ可溶性樹脂(A1)が、ポリイミド樹脂(A1-1)、ポリベンゾオキサゾール樹脂(A1-2)、およびポリイミド樹脂の繰り返し単位とポリベンゾオキサゾール樹脂の繰り返し単位との共重合体樹脂(A1-3)からなる群より選択される一種類以上の樹脂を含む、[7]に記載の感光性樹脂組成物。 [8] The photosensitive resin composition according to [7], wherein the alkali-soluble resin (A1) contains one or more resins selected from the group consisting of polyimide resin (A1-1), polybenzoxazole resin (A1-2), and copolymer resin (A1-3) of repeating units of polyimide resin and repeating units of polybenzoxazole resin.
 [9] 前記ポリイミド樹脂(A1-1)、前記ポリベンゾオキサゾール樹脂(A1-2)、および前記共重合体樹脂(A1-3)からなる群より選択される一種類以上の樹脂が、式(10)で表されるジアミンの残基および/または式(11)で表されるジアミンの残基を含む、[8]に記載の感光性樹脂組成物。 [9] The photosensitive resin composition according to [8], wherein one or more resins selected from the group consisting of the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) contain a residue of a diamine represented by formula (10) and/or a residue of a diamine represented by formula (11).
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
式中、XおよびXはそれぞれ独立に直接結合、-SO-、-C(CH-、式(12)で表される2価の有機基、-CH(CF)-、または-C(CF-を示す。 In the formula, X 3 and X 4 each independently represent a direct bond, —SO 2 —, —C(CH 3 ) 2 —, a divalent organic group represented by formula (12), —CH(CF 3 )—, or —C(CF 3 ) 2 —.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
式(12)中、*は結合点を示す。 In formula (12), * indicates a bond point.
 [10] 前記感光剤(B)が光酸発生剤(B1)を含む、[1]~[9]のいずれかに記載の感光性樹脂組成物。 [10] The photosensitive resin composition according to any one of [1] to [9], wherein the photosensitizer (B) contains a photoacid generator (B1).
 [11] さらに、黒色剤(F)を含む、[1]~[10]のいずれかに記載の感光性樹脂組成物。 [11] The photosensitive resin composition according to any one of [1] to [10], further comprising a blackening agent (F).
 [12] [1]~[11]のいずれかに記載の感光性樹脂組成物を硬化してなる、硬化物。 [12] A cured product obtained by curing the photosensitive resin composition described in any one of [1] to [11].
 [13] 樹脂(A)を含む硬化物であって式(1)で表される化合物および/または式(2)で表される化合物(C)を合計で、硬化物の100質量%に対して0.00001質量%以上0.01質量%以下の範囲で含有する、硬化物。 [13] A cured product containing a resin (A) and containing a compound represented by formula (1) and/or a compound (C) represented by formula (2) in a total amount of 0.00001% by mass or more and 0.01% by mass or less relative to 100% by mass of the cured product.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
式(1)および式(2)中、RおよびRは、それぞれ独立に、炭素数1~10の1価の飽和炭化水素基を示す。式(2)中、R、RおよびRは、それぞれ独立に、水素原子または炭素数1~10の1価の飽和炭化水素基を示す。RとRは、それぞれ独立に、水素原子、炭素数1~10の1価の飽和炭化水素基、または炭素数1~10の1価のヒドロキシアルキル基を示す。aは0または1を示す。 In formula (1) and formula (2), R 1 and R 2 each independently represent a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms. In formula (2), R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms. R 6 and R 7 each independently represent a hydrogen atom, a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms, or a monovalent hydroxyalkyl group having 1 to 10 carbon atoms. a represents 0 or 1.
 [14] [12]または[13]に記載の硬化物を備える、有機EL表示装置。 [14] An organic electroluminescence display device comprising the cured product described in [12] or [13].
 [15] [12]または[13]に記載の硬化物を備える、電子部品または半導体装置。 [15] An electronic component or semiconductor device comprising the cured product described in [12] or [13].
 本発明によれば、感度が良好であり、現像後の残渣が少なく、かつ、硬化物が信頼性試験後も良好な発光特性を有する感光性樹脂組成物、および前記感光性樹脂組成物の硬化物を具備した有機EL表示装置、電子部品および半導体装置を得ることができる。 The present invention provides a photosensitive resin composition that has good sensitivity, produces little residue after development, and has good luminescence properties even after a reliability test when cured, as well as an organic EL display device, electronic component, and semiconductor device that include the cured product of the photosensitive resin composition.
実施例における、画素分割層を備えた有機EL表示装置の作製方法を示す概略図である。1A to 1C are schematic diagrams illustrating a method for producing an organic EL display device having a pixel division layer in an example.
 以下、本発明について詳細に説明する。 The present invention will be described in detail below.
 本明細書中において「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。 In this specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as the lower and upper limits.
 可視光線とは、波長380nm以上780nm未満の領域の光を意味し、近赤外線とは、波長780nm以上1,000nm以下の領域の光を意味する。 Visible light refers to light with wavelengths in the range of 380 nm to less than 780 nm, and near-infrared light refers to light with wavelengths in the range of 780 nm to 1,000 nm.
 遮光性とは、硬化物に対して垂直方向に入射した光の強度と比べて、透過した光の強度を低下させる機能を意味する。 Light-blocking properties refer to the ability to reduce the intensity of transmitted light compared to the intensity of light incident perpendicularly to the cured product.
 本明細書中において、アルカリ現像液とは、特に断りがない限り、有機系アルカリ水溶液を指す。 In this specification, unless otherwise specified, the alkaline developer refers to an organic alkaline aqueous solution.
 本発明の感光性樹脂組成物は樹脂(A)を含有する。前記樹脂(A)としては例えば、ケトン系溶剤、エステル系溶剤、アミド系溶剤などの有機現像液に可溶な樹脂や、アルカリ現像液に可溶なアルカリ可溶性樹脂が挙げられる。 The photosensitive resin composition of the present invention contains a resin (A). Examples of the resin (A) include resins that are soluble in organic developers such as ketone-based solvents, ester-based solvents, and amide-based solvents, and alkali-soluble resins that are soluble in alkaline developers.
 中でも、環境負荷低減の観点から前記樹脂(A)がアルカリ可溶性樹脂(A1)を含み、感光性樹脂組成物がアルカリ現像液を用いて現像できることが好ましい。ここでいうアルカリ可溶性樹脂とは、樹脂をγ-ブチロラクトンに溶解した溶液をシリコンウェハー上に塗布し、120℃で4分間プリベークを行って膜厚10μm±0.5μmのプリベーク膜を形成し、該プリベーク膜を23±1℃の2.38質量%テトラメチルアンモニウムヒドロキシド水溶液に1分間浸漬した後、脱イオン水でリンス処理したときの膜厚減少から求められる溶解速度が50nm/分以上である樹脂を意味する。前記アルカリ可溶性樹脂(A1)のアルカリ溶解速度は現像残渣軽減の観点から100nm/分以上であることが好ましく、得られるパターンの直線性を良好にする観点から15,000nm/分以下であることが好ましい。 Among these, from the viewpoint of reducing the environmental load, it is preferable that the resin (A) contains an alkali-soluble resin (A1) and the photosensitive resin composition can be developed using an alkali developer. The alkali-soluble resin referred to here means a resin whose dissolution rate is 50 nm/min or more, calculated from the decrease in film thickness when a solution of the resin dissolved in γ-butyrolactone is applied onto a silicon wafer and prebaked at 120°C for 4 minutes to form a prebaked film with a film thickness of 10 μm±0.5 μm, the prebaked film is immersed in a 2.38 mass% tetramethylammonium hydroxide aqueous solution at 23±1°C for 1 minute, and then rinsed with deionized water. The alkali dissolution rate of the alkali-soluble resin (A1) is preferably 100 nm/min or more from the viewpoint of reducing development residue, and is preferably 15,000 nm/min or less from the viewpoint of improving the linearity of the obtained pattern.
 前記アルカリ可溶性樹脂(A1)としては例えば、ポリイミド樹脂、ポリベンゾオキサゾール樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ラジカル重合性モノマーを含む重合体、ポリシロキサン樹脂、カルド樹脂、フェノール樹脂、アクリル樹脂、およびこれらの共重合体などを挙げることができる。前記アルカリ可溶性樹脂(A1)は2種以上を併用してもよい。 Examples of the alkali-soluble resin (A1) include polyimide resins, polybenzoxazole resins, polyamideimide resins, polyamide resins, polymers containing radically polymerizable monomers, polysiloxane resins, cardo resins, phenolic resins, acrylic resins, and copolymers thereof. Two or more types of the alkali-soluble resins (A1) may be used in combination.
 上述のアルカリ可溶性樹脂(A1)の中でも、耐熱性に優れ、高温下におけるアウトガス量が少なく、耐薬品性などの膜物性に優れたものが好ましい。具体的には、ポリイミド樹脂(A1-1)、ポリベンゾオキサゾール樹脂(A1-2)、およびポリイミドの繰り返し単位とポリベンゾオキサゾールの繰り返し単位との共重合体樹脂(A1-3)からなる群より選択される一種類以上の樹脂を含むことが好ましい。 Among the above-mentioned alkali-soluble resins (A1), those that have excellent heat resistance, a small amount of outgassing at high temperatures, and excellent film properties such as chemical resistance are preferred. Specifically, it is preferred to include one or more resins selected from the group consisting of polyimide resins (A1-1), polybenzoxazole resins (A1-2), and copolymer resins (A1-3) of polyimide repeating units and polybenzoxazole repeating units.
 本発明の感光性樹脂組成物に含まれる前記アルカリ可溶性樹脂(A1)の総量を100質量%とした場合、前記ポリイミド樹脂(A1-1)、前記ポリベンゾオキサゾール樹脂(A1-2)、および前記共重合体樹脂(A1-3)からなる群より選択される一種類以上の樹脂を合計で50質量%以上含有することが好ましい。 When the total amount of the alkali-soluble resin (A1) contained in the photosensitive resin composition of the present invention is taken as 100 mass %, it is preferable that the composition contains a total of 50 mass % or more of one or more resins selected from the group consisting of the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3).
 前記アルカリ可溶性樹脂(A1)が、前記ポリイミド樹脂(A1-1)および/または前記共重合体樹脂(A1-3)を含み、前記ポリイミド樹脂(A1-1)および/または前記共重合体樹脂(A1-3)が、式(3)~式(6)のいずれかで表される酸二無水物の残基を含むことが好ましい。 It is preferable that the alkali-soluble resin (A1) contains the polyimide resin (A1-1) and/or the copolymer resin (A1-3), and that the polyimide resin (A1-1) and/or the copolymer resin (A1-3) contains a residue of an acid dianhydride represented by any one of formulas (3) to (6).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
式(5)中のXは式(7)~式(9)のいずれかで表される2価の有機基を示す。 X1 in formula (5) represents a divalent organic group represented by any one of formulas (7) to (9).
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
式(8)中のXは直接結合または酸素原子を示す。*は結合点を示す。 In formula (8), X2 represents a direct bond or an oxygen atom. * represents a bonding point.
 前記ポリイミド樹脂(A1-1)および/または前記共重合体樹脂(A1-3)が、前記酸二無水物の残基を含むことにより、樹脂のi線などの紫外線の透過率が向上するため、感光性樹脂組成物の高感度化が可能となる。加えて、式(3)~式(6)のいずれかで表される前記酸二無水物の残基を有することにより、前記ポリイミド樹脂(A1-1)および前記共重合体樹脂(A1-3)の分子間のパッキングが抑制され、樹脂の溶剤溶解性およびアルカリ溶解性が向上され、現像後残渣の抑制効果を効果的に得ることが可能となる。式(3)~式(6)のいずれかで表される酸二無水物の残基の含有量は、前記ポリイミド樹脂(A1-1)および前記共重合体樹脂(A1-3)中の酸二無水物残基の総量100mol%に対して、30mol%~100mol%であることが好ましく、45mol%~100mol%含有することがさらに好ましく、55~100mol%であることが特に好ましい。 The polyimide resin (A1-1) and/or the copolymer resin (A1-3) contain the acid dianhydride residue, which improves the transmittance of the resin to ultraviolet rays such as i-line, thereby enabling the photosensitive resin composition to have a high sensitivity. In addition, the acid dianhydride residue represented by any one of formulas (3) to (6) suppresses intermolecular packing of the polyimide resin (A1-1) and the copolymer resin (A1-3), improves the solvent solubility and alkali solubility of the resin, and effectively suppresses the residue after development. The content of the acid dianhydride residue represented by any one of formulas (3) to (6) is preferably 30 mol% to 100 mol%, more preferably 45 mol% to 100 mol%, and particularly preferably 55 mol% to 100 mol%, based on the total amount of the acid dianhydride residues in the polyimide resin (A1-1) and the copolymer resin (A1-3) (100 mol%).
 前記ポリイミド樹脂(A1-1)、および、前記共重合体樹脂(A1-3)は、前記酸二無水物残基の他に、下記の酸二無水物に由来する酸二無水物残基を有してもよい。 The polyimide resin (A1-1) and the copolymer resin (A1-3) may contain, in addition to the above-mentioned acid dianhydride residues, acid dianhydride residues derived from the following acid dianhydrides:
 当該他の酸二無水物残基の具体例としては、
1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸二無水物、2,3,5-トリカルボキシ-2-シクロペンタン酢酸二無水物、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、3,5,6-トリカルボキシ-2-ノルボルナン酢酸二無水物の様な脂環式テトラカルボン酸二無水物の残基、
ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物などの芳香族テトラカルボン酸二無水物の残基や、
ビス(3,4-ジカルボキシフェニル)スルホン二無水物、4,4’-オキシジフタル酸無水物、3,4’-オキシジフタル酸無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物、2,2-ビス(3-(3,4-ジカルボキシフェノキシ)フェニル)プロパン二無水物、2,2-ビス(4-(3,4-ジカルボキシフェノキシ)フェニル)ヘキサフルオロプロパン二無水物、2,2-ビス(3-(3,4-ジカルボキシフェノキシ)フェニル)ヘキサフルオロプロパン二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二酸無水物、9,9-ビス[4-(3,4-ジカルボシキフェノキシ)フェニル]フルオレン二酸無水物あるいはこれらの化合物の芳香族環をアルキル基やハロゲン原子で置換した化合物、およびアミド基を有する酸二無水物などの芳香族酸二無水物の残基を挙げることができる。これらは2種以上組み合わせて含有することができる。
Specific examples of the other acid dianhydride residues include:
Residues of alicyclic tetracarboxylic dianhydrides such as 1,2-dimethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2,4,5-cyclohexane tetracarboxylic dianhydride, 5-(2,5-dioxotetrahydrofuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, 2,3,5-tricarboxy-2-cyclopentane acetic dianhydride, bicyclo[2.2.2]oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, 2,3,4,5-tetrahydrofuran tetracarboxylic dianhydride, and 3,5,6-tricarboxy-2-norbornane acetic dianhydride;
Pyromellitic dianhydride, 3,3',4,4'-biphenyltetracarboxylic dianhydride, 2,3,3',4'-biphenyltetracarboxylic dianhydride, 2,2',3,3'-biphenyltetracarboxylic dianhydride, 3,3',4,4'-benzophenonetetracarboxylic dianhydride, 2,2',3,3'-benzophenonetetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)propane dianhydride, 2,2-bis(2,3-dicarboxyphenyl)propane dianhydride, 1,1-bis(3, residues of aromatic tetracarboxylic dianhydrides such as 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, and 3,4,9,10-perylenetetracarboxylic dianhydride;
Bis(3,4-dicarboxyphenyl)sulfone dianhydride, 4,4'-oxydiphthalic anhydride, 3,4'-oxydiphthalic anhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride, 2,2-bis(4-(3,4-dicarboxyphenoxy)phenyl)propane dianhydride, 2,2-bis(3-(3,4-dicarboxyphenoxy)phenyl)propane dianhydride, 2,2-bis(4-(3,4-dicarboxyphenoxy)phenyl)hexafluoropropane dianhydride Examples of the aromatic acid dianhydride include residues of aromatic acid dianhydrides such as fluoropropane dianhydride, 2,2-bis(3-(3,4-dicarboxyphenoxy)phenyl)hexafluoropropane dianhydride, 9,9-bis(3,4-dicarboxyphenyl)fluorene dianhydride, 9,9-bis[4-(3,4-dicarboxyphenoxy)phenyl]fluorene dianhydride, or compounds in which the aromatic rings of these compounds are substituted with alkyl groups or halogen atoms, and acid dianhydrides having an amide group. Two or more of these may be contained in combination.
 前記ポリイミド樹脂(A1-1)、前記ポリベンゾオキサゾール樹脂(A1-2)、および前記共重合体樹脂(A1-3)からなる群より選択される一種類以上の樹脂が、式(10)で表されるジアミンの残基、および/または式(11)で表されるジアミンの残基を含むことが好ましい。 It is preferable that one or more resins selected from the group consisting of the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) contain a residue of a diamine represented by formula (10) and/or a residue of a diamine represented by formula (11).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
式(10)および(11)中、XおよびXは、直接結合、-SO-、-C(CH-、式(12)で表される2価の有機基、-CH(CF)-、または-C(CF-を示す。 In formulas (10) and (11), X 3 and X 4 represent a direct bond, —SO 2 —, —C(CH 3 ) 2 —, a divalent organic group represented by formula (12), —CH(CF 3 )—, or —C(CF 3 ) 2 —.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
式(12)中、*は結合点を示す。 In formula (12), * indicates a bond point.
 式(10)または式(11)で表されるジアミンの残基は共にフェノール性の水酸基を有するため、アルカリ現像液に対する溶解性を付与することができ、現像残渣を低減できる。また、式(10)または式(11)で表されるジアミン残基が-C(CF-、-C(CH-、式(12)で表される2価の有機基、-CH(CF)-の構造を含む場合、分子間パッキングが抑制され、溶剤溶解性を向上させることができるため、好ましい。 Since both of the diamine residues represented by formula (10) and formula (11) have a phenolic hydroxyl group, they can impart solubility in an alkaline developer and reduce development residues. In addition, when the diamine residue represented by formula (10) or formula (11) contains a structure of -C( CF3 ) 2- , -C( CH3 ) 2- , a divalent organic group represented by formula (12), or -CH( CF3 )-, intermolecular packing is suppressed and solvent solubility can be improved, which is preferable.
 前記ポリイミド樹脂(A1-1)、前記ポリベンゾオキサゾール樹脂(A1-2)、および前記共重合体樹脂(A1-3)に含まれる全ジアミン残基の総量を100mol%とした場合、式(10)で表されるジアミンの残基および式(11)で表されるジアミンの残基の合計含有量が10~100mol%であることが好ましく、30~100mol%であることがより好ましく、50~100mol%であることがさらに好ましい。 When the total amount of all diamine residues contained in the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) is taken as 100 mol%, the total content of the diamine residues represented by formula (10) and the diamine residues represented by formula (11) is preferably 10 to 100 mol%, more preferably 30 to 100 mol%, and even more preferably 50 to 100 mol%.
 式(10)または式(11)で表されるジアミン残基としては、具体的には、2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン(HA)、2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]プロパン(HB)、2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]-1,1,1-トリフルオロエタン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(BAHF)、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン(AZ-FDA)、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン(BAP)、1,1,1-トリフルオロ-2,2-ビス(3-アミノ-4-ヒドロキシフェニル)エタン(BIS-AP-EF)などのジアミンの残基が挙げられる。なかでも、アルカリ現像液への溶解性の観点から、BAHF、BAP、AZ-FDA、2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]プロパン(HB)、および、2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン(HA)からなる群より選ばれる一種類以上の残基を含有することが好ましい。 Specific examples of diamine residues represented by formula (10) or formula (11) include residues of diamines such as 2,2-bis[3-(3-aminobenzamido)-4-hydroxyphenyl]hexafluoropropane (HA), 2,2-bis[3-(3-aminobenzamido)-4-hydroxyphenyl]propane (HB), 2,2-bis[3-(3-aminobenzamido)-4-hydroxyphenyl]-1,1,1-trifluoroethane, 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (BAHF), bis(3-amino-4-hydroxyphenyl)sulfone, 9,9-bis(3-amino-4-hydroxyphenyl)fluorene (AZ-FDA), 2,2-bis(3-amino-4-hydroxyphenyl)propane (BAP), and 1,1,1-trifluoro-2,2-bis(3-amino-4-hydroxyphenyl)ethane (BIS-AP-EF). Among these, from the viewpoint of solubility in an alkaline developer, it is preferable to contain one or more residues selected from the group consisting of BAHF, BAP, AZ-FDA, 2,2-bis[3-(3-aminobenzamido)-4-hydroxyphenyl]propane (HB), and 2,2-bis[3-(3-aminobenzamido)-4-hydroxyphenyl]hexafluoropropane (HA).
 また、前記ポリイミド樹脂(A1-1)、前記ポリベンゾオキサゾール樹脂(A1-2)、および前記共重合体樹脂(A1-3)は、前述のジアミン残基に加えて他のジアミン残基を有してもよい。 The polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) may also have other diamine residues in addition to the diamine residues described above.
 当該他のジアミン残基の具体例としては、例えば、脂肪族ジアミン残基や芳香族ジアミン残基が挙げられる。脂肪族ジアミン残基とは、芳香族環を有さないジアミンの残基を意味する。脂肪族ジアミン残基としては例えば、アルキレン基や、ポリエチレンエーテル基、ポリオキシプロピレン基、テトラメチレンエーテル基などのアルキレンエーテル基を含む脂肪族アルキルジアミン、脂環式ジアミン、シロキサン構造を有する脂肪族ジアミンなどの残基を挙げることができる。 Specific examples of the other diamine residues include aliphatic diamine residues and aromatic diamine residues. An aliphatic diamine residue means a residue of a diamine that does not have an aromatic ring. Examples of aliphatic diamine residues include residues of aliphatic alkyl diamines containing alkylene ether groups such as alkylene groups, polyethylene ether groups, polyoxypropylene groups, and tetramethylene ether groups, alicyclic diamines, and aliphatic diamines having a siloxane structure.
 脂肪族アルキレンジアミン残基としては例えば、
ポリメチレンジアミンのテトラメチレンジアミン、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、
ポリエチレンエーテル基を含有するジアミンのジェファーミンKH-511、ジェファーミンED-600、ジェファーミンED-900、ジェファーミンED-2003、ジェファーミンEDR-148、ジェファーミンEDR-176、
ポリオキシプロピレンジアミンのD-200、D-400、D-2000、D-4000、RP-409,RP-2009、
テトラメチレンエーテル基を含有するジアミンのRT-1000、HT-1100、アミノ基含有アルキレンエーテルジアミンのHT-1000、HE-1000(以上商品名、HUNTSMAN(株)製)
などの残基が挙げられる。
Examples of the aliphatic alkylenediamine residue include
Polymethylenediamines: tetramethylenediamine, hexamethylenediamine, octamethylenediamine, decamethylenediamine, dodecamethylenediamine,
Diamines containing polyethylene ether groups, such as Jeffamine KH-511, Jeffamine ED-600, Jeffamine ED-900, Jeffamine ED-2003, Jeffamine EDR-148, and Jeffamine EDR-176;
Polyoxypropylene diamines D-200, D-400, D-2000, D-4000, RP-409, RP-2009,
Tetramethylene ether group-containing diamines RT-1000 and HT-1100, and amino group-containing alkylene ether diamines HT-1000 and HE-1000 (all trade names, manufactured by HUNTSMAN Co., Ltd.)
Residues such as:
 脂環式ジアミン残基としては例えば、シクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどの残基が挙げられる。シロキサン構造を有する脂肪族ジアミン残基としては、ビス(3-アミノプロピル)テトラメチルジシロキサン、ビス(p-アミノフェニル)オクタメチルペンタシロキサンなどの残基を挙げることができる。 Examples of alicyclic diamine residues include residues of cyclohexyldiamine and methylenebiscyclohexylamine. Examples of aliphatic diamine residues having a siloxane structure include residues of bis(3-aminopropyl)tetramethyldisiloxane and bis(p-aminophenyl)octamethylpentasiloxane.
 また、耐熱性を低下させない範囲でシロキサン構造を有する脂肪族の基を共重合した場合、基板との接着性を向上させることができる。 In addition, when an aliphatic group having a siloxane structure is copolymerized to the extent that the heat resistance is not reduced, the adhesion to the substrate can be improved.
 また、その他の芳香族ジアミン残基としては例えば、
1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)メチレン、ビス(3-アミノ-4-ヒドロキシフェニル)エーテル、ビス(3-アミノ-4-ヒドロキシ)ビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレンなどのヒドロキシル基含有ジアミン残基、
3-スルホン酸-4,4’-ジアミノジフェニルエーテルなどのスルホン酸含有ジアミン残基、
ジメルカプトフェニレンジアミンなどのチオール基含有ジアミン残基、
3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルフィド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニルなどの芳香族ジアミンの残基や、
これらの芳香族環の水素原子の一部を、炭素数1~10のアルキル基やフルオロアルキル基、ハロゲン原子などで置換した化合物などの残基を挙げることができる。これらのジアミン残基は、そのまま、あるいは対応するジイソシアネート化合物、トリメチルシリル化ジアミンとして使用できる。これらは単独で又は2種以上を組み合わせて使用される。
Other examples of aromatic diamine residues include:
Hydroxyl group-containing diamine residues such as 1,4-bis(4-aminophenoxy)benzene, 1,3-bis(3-aminophenoxy)benzene, 1,3-bis(4-aminophenoxy)benzene, bis[4-(4-aminophenoxy)phenyl]sulfone, bis[4-(3-aminophenoxy)phenyl]sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane, bis(3-amino-4-hydroxyphenyl)hexafluoropropane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(3-amino-4-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)methylene, bis(3-amino-4-hydroxyphenyl)ether, bis(3-amino-4-hydroxy)biphenyl, and bis(3-amino-4-hydroxyphenyl)fluorene;
Sulfonic acid-containing diamine residues such as 3-sulfonic acid-4,4'-diaminodiphenyl ether,
thiol group-containing diamine residues such as dimercaptophenylenediamine;
3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl methane, 4,4'-diaminodiphenyl methane, 3,4'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl sulfone, 3,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfide, 1,4-bis(4-aminophenoxy)benzene, benzine, m-phenylenediamine, p-phenylenediamine, 1,5-naphthalenediamine, 2,6-naphthalenediamine, bis(4-aminophenoxyphenyl)sulfone, bis(3-aminophenoxyphenyl)sulfone, bis residues of aromatic diamines such as (4-aminophenoxy)biphenyl, bis{4-(4-aminophenoxy)phenyl}ether, 1,4-bis(4-aminophenoxy)benzene, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2'-diethyl-4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-diethyl-4,4'-diaminobiphenyl, 2,2',3,3'-tetramethyl-4,4'-diaminobiphenyl, 3,3',4,4'-tetramethyl-4,4'-diaminobiphenyl, and 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl;
Examples of the diamine residues include those obtained by substituting a portion of the hydrogen atoms of these aromatic rings with an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, a halogen atom, or the like. These diamine residues can be used as they are, or as the corresponding diisocyanate compound or trimethylsilylated diamine. These can be used alone or in combination of two or more.
 前記ポリベンゾオキサゾール樹脂(A1-2)、および前記共重合体樹脂(A1-3)はジカルボン酸残基とビスアミノフェノール残基を有することが好ましい。ここでいうジカルボン酸残基とは、ジカルボン酸化合物から2つのカルボキシル基を除いた残基を指し、ビスアミノフェノール残基とは、ビスアミノフェノール化合物から2つのアミノ基と2つのフェノール性水酸基を除いた残基を指す。 The polybenzoxazole resin (A1-2) and the copolymer resin (A1-3) preferably have a dicarboxylic acid residue and a bisaminophenol residue. The dicarboxylic acid residue here refers to a residue obtained by removing two carboxyl groups from a dicarboxylic acid compound, and the bisaminophenol residue refers to a residue obtained by removing two amino groups and two phenolic hydroxyl groups from a bisaminophenol compound.
 前記ジカルボン酸残基の例としては、フタル酸、テレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ビス(カルボキシフェニル)ヘキサフルオロプロパン、ビフェニルジカルボン酸、ベンゾフェノンジカルボン酸、トリフェニルジカルボン酸、2,5-フランジカルボン酸、2,5-チオフェンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2-フルオロテレフタル酸、2-メトキシテレフタル酸、2-フェノキシテレフタル酸などの残基が挙げられる。これらの化合物は、単独でまたは2種以上を組み合わせて用いてもよい。 Examples of the dicarboxylic acid residue include residues of phthalic acid, terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, bis(carboxyphenyl)hexafluoropropane, biphenyl dicarboxylic acid, benzophenone dicarboxylic acid, triphenyl dicarboxylic acid, 2,5-furandicarboxylic acid, 2,5-thiophenedicarboxylic acid, 1,4-cyclohexane dicarboxylic acid, 2-fluoroterephthalic acid, 2-methoxyterephthalic acid, 2-phenoxyterephthalic acid, etc. These compounds may be used alone or in combination of two or more.
 前記ビスアミノフェノール残基の例としては3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、ビス(4-アミノ-3-ヒドロキシフェニル)プロパン、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン、ビス(4-アミノ-3-ヒドロキシフェニル)スルホン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、2,2-ビス(4-アミノ-3-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン等の残基が挙げられるが、これらに限定されるものではない。これらの化合物は、単独でまたは2種以上を組み合わせて用いてもよい。 Examples of the bisaminophenol residue include, but are not limited to, residues of 3,3'-diamino-4,4'-dihydroxybiphenyl, 4,4'-diamino-3,3'-dihydroxybiphenyl, bis(3-amino-4-hydroxyphenyl)propane, bis(4-amino-3-hydroxyphenyl)propane, bis(3-amino-4-hydroxyphenyl)sulfone, bis(4-amino-3-hydroxyphenyl)sulfone, 2,2-bis(3-amino-4-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane, 2,2-bis(4-amino-3-hydroxyphenyl)-1,1,1,3,3,3-hexafluoropropane, 9,9-bis(3-amino-4-hydroxyphenyl)fluorene, etc. These compounds may be used alone or in combination of two or more.
 また、前記ポリイミド樹脂(A1-1)、前記ポリベンゾオキサゾール樹脂(A1-2)、および前記共重合体樹脂(A1-3)は、モノアミン、酸無水物、モノ酸クロリド、モノカルボン酸、モノ活性エステルなどの末端封止剤により末端が封止されていてもよい。前記樹脂の末端を末端封止剤により封止することで、前記樹脂のアルカリ水溶液に対する溶解速度を好ましい範囲に容易に調整することができる。中でも、フェノール性水酸基や、架橋性基を有する末端封止剤を用いることが好ましい。フェノール性水酸基を有する末端封止剤を用いることで樹脂にアルカリ可溶性が付与されるため残渣軽減が可能となる。また、架橋性基を有する末端封止剤を用いることで、加熱硬化の工程で架橋反応が進行するため、耐薬品性に優れる硬化物を得ることが可能になる。 The polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) may be end-capped with an end-capping agent such as a monoamine, an acid anhydride, a monoacid chloride, a monocarboxylic acid, or a monoactive ester. By capping the ends of the resin with an end-capping agent, the dissolution rate of the resin in an alkaline aqueous solution can be easily adjusted to a preferred range. Among these, it is preferable to use an end-capping agent having a phenolic hydroxyl group or a crosslinkable group. By using an end-capping agent having a phenolic hydroxyl group, the resin is made alkaline soluble, making it possible to reduce residues. In addition, by using an end-capping agent having a crosslinkable group, a crosslinking reaction proceeds during the heat curing process, making it possible to obtain a cured product with excellent chemical resistance.
 前記モノアミンの具体例のうち、フェノール性水酸基を有するものとしては、5-アミノ-8-ヒドロキシキノリン、1-ヒドロキシ-7-アミノナフタレン、1-ヒドロキシ-6-アミノナフタレン、1-ヒドロキシ-5-アミノナフタレン、1-ヒドロキシ-4-アミノナフタレン、2-ヒドロキシ-7-アミノナフタレン、2-ヒドロキシ-6-アミノナフタレン、2-ヒドロキシ-5-アミノナフタレン、4-アミノサリチル酸、5-アミノサリチル酸、6-アミノサリチル酸、3-アミノ-4,6-ジヒドロキシピリミジン、2-アミノフェノール、3-アミノフェノール、4-アミノフェノールなどが挙げられる。また、光架橋性基を有するものとしては、2-エチニルアニリン、3-エチニルアニリン、4-エチニルアニリン、2-アミノスチレン、3-アミノスチレン、4-アミノスチレン、その他として、アニリン、1-カルボキシ-7-アミノナフタレン、1-カルボキシ-6-アミノナフタレン、1-カルボキシ-5-アミノナフタレン、2-カルボキシ-7-アミノナフタレン、2-カルボキシ-6-アミノナフタレン、2-カルボキシ-5-アミノナフタレン、2-アミノ安息香酸、3-アミノ安息香酸、4-アミノ安息香酸、2-アミノベンゼンスルホン酸、3-アミノベンゼンスルホン酸、4-アミノベンゼンスルホン酸などが挙げられる。これらを2種類以上用いてもよい。 Specific examples of the monoamines mentioned above that have a phenolic hydroxyl group include 5-amino-8-hydroxyquinoline, 1-hydroxy-7-aminonaphthalene, 1-hydroxy-6-aminonaphthalene, 1-hydroxy-5-aminonaphthalene, 1-hydroxy-4-aminonaphthalene, 2-hydroxy-7-aminonaphthalene, 2-hydroxy-6-aminonaphthalene, 2-hydroxy-5-aminonaphthalene, 4-aminosalicylic acid, 5-aminosalicylic acid, 6-aminosalicylic acid, 3-amino-4,6-dihydroxypyrimidine, 2-aminophenol, 3-aminophenol, and 4-aminophenol. In addition, examples of those having a photocrosslinkable group include 2-ethynylaniline, 3-ethynylaniline, 4-ethynylaniline, 2-aminostyrene, 3-aminostyrene, and 4-aminostyrene, and others include aniline, 1-carboxy-7-aminonaphthalene, 1-carboxy-6-aminonaphthalene, 1-carboxy-5-aminonaphthalene, 2-carboxy-7-aminonaphthalene, 2-carboxy-6-aminonaphthalene, 2-carboxy-5-aminonaphthalene, 2-aminobenzoic acid, 3-aminobenzoic acid, 4-aminobenzoic acid, 2-aminobenzenesulfonic acid, 3-aminobenzenesulfonic acid, and 4-aminobenzenesulfonic acid. Two or more of these may be used.
 前記酸無水物、前記モノカルボン酸、前記モノ酸クロリド化合物、または前記モノ活性エステル化合物のうち、フェノール性水酸基を有するものとしては、3-ヒドロキシフタル酸無水物、3-カルボキシフェノール、4-カルボキシフェノール、1-ヒドロキシ-7-カルボキシナフタレン、1-ヒドロキシ-6-カルボキシナフタレン、1-ヒドロキシ-5-カルボキシナフタレンなどが挙げられる。また、光架橋性基を有するものとしては、無水マレイン酸、ナジック酸無水物、マレイン酸、イタコン酸無水物、1,2,3,6-テトラヒドロフタル酸無水物、3,4,5,6-テトラヒドロフタル酸無水物、7-オキサビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジカルボン酸無水物、3-メチル-4-シクロヘキセン-1,2-ジカルボン酸無水物、アクリル酸、メタクリル酸、クロトン酸、ケイ皮酸などが挙げられる。その他のものとしては、無水酢酸、無水コハク酸、無水フタル酸、シクロヘキサンジカルボン酸無水物、3-カルボキシチオフェノール、4-カルボキシチオフェノール、1-メルカプト-7-カルボキシナフタレン、1-メルカプト-6-カルボキシナフタレン、1-メルカプト-5-カルボキシナフタレン、3-カルボキシベンゼンスルホン酸、4-カルボキシベンゼンスルホン酸、テレフタル酸、フタル酸、シクロヘキサンジカルボン酸、1,5-ジカルボキシナフタレン、1,6-ジカルボキシナフタレン、1,7-ジカルボキシナフタレン、2,6-ジカルボキシナフタレン、無水トリメリット酸、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物、安息香酸などが挙げられる。また、上記モノカルボン酸類について、これらのカルボキシル基が酸クロリド化したモノ酸クロリド化合物を用いても良く、上記ジカルボン酸類の一方のカルボキシル基だけが酸クロリド化したモノ酸クロリド化合物を用いてもよく、モノ酸クロリド化合物とN-ヒドロキシベンゾトリアゾールやN-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミドとの反応により得られる活性エステル化合物を用いてもよい。これらを2種類以上用いてもよい。 Among the acid anhydrides, monocarboxylic acids, monoacid chloride compounds, and monoactive ester compounds, those having a phenolic hydroxyl group include 3-hydroxyphthalic anhydride, 3-carboxyphenol, 4-carboxyphenol, 1-hydroxy-7-carboxynaphthalene, 1-hydroxy-6-carboxynaphthalene, 1-hydroxy-5-carboxynaphthalene, etc. Those having a photocrosslinkable group include maleic anhydride, nadic anhydride, maleic acid, itaconic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, 7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic anhydride, 3-methyl-4-cyclohexene-1,2-dicarboxylic anhydride, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, etc. Other examples include acetic anhydride, succinic anhydride, phthalic anhydride, cyclohexanedicarboxylic anhydride, 3-carboxythiophenol, 4-carboxythiophenol, 1-mercapto-7-carboxynaphthalene, 1-mercapto-6-carboxynaphthalene, 1-mercapto-5-carboxynaphthalene, 3-carboxybenzenesulfonic acid, 4-carboxybenzenesulfonic acid, terephthalic acid, phthalic acid, cyclohexanedicarboxylic acid, 1,5-dicarboxynaphthalene, 1,6-dicarboxynaphthalene, 1,7-dicarboxynaphthalene, 2,6-dicarboxynaphthalene, trimellitic anhydride, cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride, and benzoic acid. In addition, for the above monocarboxylic acids, monoacid chloride compounds in which the carboxyl groups of these are converted to acid chlorides may be used, monoacid chloride compounds in which only one of the carboxyl groups of the above dicarboxylic acids is converted to acid chlorides may be used, and active ester compounds obtained by reacting a monoacid chloride compound with N-hydroxybenzotriazole or N-hydroxy-5-norbornene-2,3-dicarboximide may be used. Two or more of these may be used.
 また、複数の末端封止剤を反応させることにより、複数の異なる末端基を導入してもよい。 Also, multiple different end groups may be introduced by reacting multiple end-capping agents.
 前記末端封止剤としてモノアミンを用いる場合、その導入割合は、前記ポリイミド樹脂(A1-1)、前記ポリベンゾオキサゾール樹脂(A1-2)、および前記共重合体樹脂(A1-3)に含まれる全アミン化合物100mol%に対して、1mol%以上60mol%以下が好ましい。前記モノアミンの導入割合を好ましくは1mol%以上、より好ましくは5mol%以上とすることで、現像後の残渣の軽減効果を効果的に得ることができる。また、前記モノアミンの導入割合を好ましくは60mol%以下、より好ましくは50mol%以下とすることで、樹脂の分子量を高く維持し、高い耐薬品性や機械強度を維持することができる。 When a monoamine is used as the end-capping agent, the introduction ratio is preferably 1 mol% or more and 60 mol% or less, based on 100 mol% of all amine compounds contained in the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3). By setting the introduction ratio of the monoamine to preferably 1 mol% or more, more preferably 5 mol% or more, it is possible to effectively reduce the residue after development. Furthermore, by setting the introduction ratio of the monoamine to preferably 60 mol% or less, more preferably 50 mol% or less, it is possible to maintain a high molecular weight of the resin and maintain high chemical resistance and mechanical strength.
 前記末端封止剤として酸無水物、モノカルボン酸、モノ酸クロリド化合物またはモノ活性エステル化合物を用いる場合、それらの合計の導入割合は、前記ポリイミド樹脂(A1-1)、前記ポリベンゾオキサゾール樹脂(A1-2)、および、前記共重合体樹脂(A1-3)に含まれる全アミン化合物を100mol部に対して、1mol部以上100mol部以下が好ましい。当該導入割合を好ましくは1mol部以上、より好ましくは5mol部以上とすることで、現像後の残渣の軽減効果を効果的に得ることができる。一方、当該導入割合を好ましくは100mol部以下、より好ましくは90mol部以下とすることで、樹脂の分子量を高く維持し、高い耐薬品性や機械強度を維持することができる。 When an acid anhydride, a monocarboxylic acid, a monoacid chloride compound or a monoactive ester compound is used as the end-capping agent, the total introduction ratio thereof is preferably 1 mol part or more and 100 mol parts or less per 100 mol parts of all amine compounds contained in the polyimide resin (A1-1), the polybenzoxazole resin (A1-2) and the copolymer resin (A1-3). By setting the introduction ratio to preferably 1 mol part or more, more preferably 5 mol parts or more, the effect of reducing residue after development can be effectively obtained. On the other hand, by setting the introduction ratio to preferably 100 mol parts or less, more preferably 90 mol parts or less, the molecular weight of the resin can be maintained high and high chemical resistance and mechanical strength can be maintained.
 ここでいう全アミン化合物とは、モノアミン、ジアミン、トリアミンなど、アミノ基を有する化合物の含有量の合計を指す。 Total amine compounds here refers to the total content of compounds that have amino groups, such as monoamines, diamines, and triamines.
 前記ポリイミド樹脂(A1-1)、前記ポリベンゾオキサゾール樹脂(A1-2)、および前記共重合体樹脂(A1-3)の重量平均分子量は、ゲルパーミエーションクロマトグラフィーによるポリスチレン換算で3,000~100,000が好ましい。当該重量平均分子量を100,000以下、より好ましくは80,000、さらに好ましくは60,000以下とすることで、良好な溶剤溶解性、良好な現像液への溶解性を効果的に得ることができる。また、当該重量平均分子量を3,000以上、より好ましくは5,000以上、さらに好ましくは7,000以上とすることで、高い機械強度を効果的に得ることができる。本発明において、重量平均分子量は後述の方法により求められる。 The weight average molecular weight of the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) is preferably 3,000 to 100,000 in terms of polystyrene by gel permeation chromatography. By making the weight average molecular weight 100,000 or less, more preferably 80,000 or less, and even more preferably 60,000 or less, good solvent solubility and good solubility in a developer can be effectively obtained. Furthermore, by making the weight average molecular weight 3,000 or more, more preferably 5,000 or more, and even more preferably 7,000 or more, high mechanical strength can be effectively obtained. In the present invention, the weight average molecular weight is determined by the method described below.
 前記ポリイミド樹脂(A1-1)としては、例えば、テトラカルボン酸、対応するテトラカルボン酸二無水物又はテトラカルボン酸ジエステル二塩化物などと、ジアミン、対応するジイソシアネート化合物又はトリメチルシリル化ジアミンなどと、を反応させることによって得られる反応物が挙げられる。また、これらの反応物を加熱又は酸若しくは塩基などを用いた反応により、脱水閉環させてもよい。従って、前記ポリイミド樹脂(A1-1)の好ましい態様は、テトラカルボン酸及び/又はその誘導体残基と、ジアミン及び/又はその誘導体残基を有する。 The polyimide resin (A1-1) may be, for example, a reaction product obtained by reacting a tetracarboxylic acid, a corresponding tetracarboxylic dianhydride, or a tetracarboxylic diester dichloride with a diamine, a corresponding diisocyanate compound, or a trimethylsilylated diamine. These reaction products may also be dehydrated and cyclized by heating or by reaction with an acid or a base. Thus, a preferred embodiment of the polyimide resin (A1-1) has a tetracarboxylic acid and/or a derivative residue thereof, and a diamine and/or a derivative residue thereof.
 前記ポリイミド樹脂(A1-1)は、例えば、式(13)で表される繰り返し単位、式(14)で表される繰り返し単位および式(15)で表される繰り返し単位からなる群より選択される1種以上を有することが好ましい。 The polyimide resin (A1-1) preferably has one or more repeating units selected from the group consisting of repeating units represented by formula (13), repeating units represented by formula (14), and repeating units represented by formula (15).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(13)、式(14)および式(15)中、Rは酸二無水物残基を示し、Rはジアミン残基を示す。R10はそれぞれ独立に水素原子または炭素数1~20の1価の有機基を示す。*は結合点を示す。 In formulae (13), (14) and (15), R8 represents an acid dianhydride residue, R9 represents a diamine residue, and R10 each independently represents a hydrogen atom or a monovalent organic group having 1 to 20 carbon atoms. * represents a bonding point.
 式(13)で表される繰り返し単位は、繰り返し単位中のアミド酸構造またはアミド酸エステル構造の全部が閉環しイミド化した繰り返し単位を示す。式(14)は繰り返し単位中のアミド酸構造またはアミド酸エステル構造の一部が閉環してイミド化し、一部がアミド酸構造またはアミド酸エステル構造となっている繰り返し単位を示す。式(15)は繰り返し単位中のアミド酸構造またはアミド酸エステル構造が閉環せず、全てがアミド酸構造またはアミド酸エステル構造となっている繰り返し単位を示す。 The repeating unit represented by formula (13) represents a repeating unit in which all of the amic acid structures or amic acid ester structures in the repeating unit have been cyclically closed and imidized. Formula (14) represents a repeating unit in which some of the amic acid structures or amic acid ester structures in the repeating unit have been cyclically closed and imidized, with some remaining as amic acid structures or amic acid ester structures. Formula (15) represents a repeating unit in which none of the amic acid structures or amic acid ester structures in the repeating unit have been cyclically closed and all remain as amic acid structures or amic acid ester structures.
 前記ポリイミド樹脂(A1-1)中の、式(13)で表される繰り返し単位、式(14)で表される繰り返し単位および式(15)で表される繰り返し単位の数を、それぞれp、qおよびrとしたとき、p、qおよびrは0以上の整数である。 In the polyimide resin (A1-1), the number of repeating units represented by formula (13), the number of repeating units represented by formula (14), and the number of repeating units represented by formula (15) are p, q, and r, respectively, where p, q, and r are integers of 0 or more.
 前記ポリイミド樹脂(A1-1)のイミド環閉環率は好ましくは2%以上であり、より望ましくは5%以上、さらに好ましくは10%以上である。イミド環閉環率が2%以上であることにより、顔料分散液と混合した際の分散安定性を向上できるとともに、高温下におけるアウトガス量の低減が可能であり、有機EL表示装置の高信頼性を向上することができるため好ましい。 The imide ring closure rate of the polyimide resin (A1-1) is preferably 2% or more, more preferably 5% or more, and even more preferably 10% or more. An imide ring closure rate of 2% or more is preferable because it improves the dispersion stability when mixed with a pigment dispersion liquid, and it is possible to reduce the amount of outgassing at high temperatures, thereby improving the reliability of organic EL display devices.
 ポリイミド樹脂(A1-1)のイミド環閉環率は、後述の方法により求められる。 The imide ring closure rate of polyimide resin (A1-1) can be determined by the method described below.
 式(14)および式(15)中、R10における炭素数1~20の一価の有機基としては、炭素数1~20の一価の炭化水素基を挙げることができる。前記の一価の炭化水素基としては、炭素数1~20のアルキル基等が挙げられる。前記アルキル基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、t-ブチル基、ペンチル基、ヘキシル基等が挙げられる。感光性組成物の残渣の発生を軽減するため、R10はそれぞれ独立に水素原子、メチル基またはエチル基の何れかであることが好ましい。 In formulas (14) and (15), the monovalent organic group having 1 to 20 carbon atoms in R 10 can be a monovalent hydrocarbon group having 1 to 20 carbon atoms. Examples of the monovalent hydrocarbon group include an alkyl group having 1 to 20 carbon atoms. Specific examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a t-butyl group, a pentyl group, and a hexyl group. In order to reduce the generation of residues in the photosensitive composition, it is preferable that each R 10 is independently any one of a hydrogen atom, a methyl group, and an ethyl group.
 また、前記ポリイミド樹脂(A1-1)は、式(13)で表される繰り返し単位、式(14)で表される繰り返し単位および式(15)で表される繰り返し単位からなる群より選択される1種以上と、式(13)で表される繰り返し単位、式(14)で表される繰り返し単位および式(15)で表される繰り返し単位以外の繰り返し単位とを有する共重合体であってもよい。共重合体とする場合は、後述のポリベンゾオキサゾールの繰り返し単位との共重合体とすることが好ましい。 The polyimide resin (A1-1) may also be a copolymer having one or more repeating units selected from the group consisting of repeating units represented by formula (13), repeating units represented by formula (14), and repeating units represented by formula (15), and a repeating unit other than the repeating units represented by formula (13), repeating units represented by formula (14), and repeating units represented by formula (15). When a copolymer is used, it is preferable to use a copolymer with a repeating unit of polybenzoxazole described below.
 前記ポリベンゾオキサゾール樹脂(A1-2)の好ましい態様としては、例えば、ビスアミノフェノール化合物とジカルボン酸や対応するジカルボン酸クロリドやジカルボン酸活性エステルなどを反応させて得ることができ、ジカルボン酸残基とビスアミノフェノール残基を有する。また、このようにして得た反応物を加熱又は酸、塩基、無水酢酸若しくはカルボジイミド化合物などを用いた反応により、脱水閉環させてもよい。 A preferred embodiment of the polybenzoxazole resin (A1-2) is, for example, one that can be obtained by reacting a bisaminophenol compound with a dicarboxylic acid or the corresponding dicarboxylic acid chloride or dicarboxylic acid activated ester, and has a dicarboxylic acid residue and a bisaminophenol residue. The reaction product thus obtained may be dehydrated and ring-closed by heating or by reaction with an acid, a base, acetic anhydride, a carbodiimide compound, or the like.
 前記ポリベンゾオキサゾール樹脂(A1-2)は、例えば、式(16)で表される繰り返し単位、式(17)で表される繰り返し単位および式(18)で表される繰り返し単位からなる群より選択される1種以上を有することが好ましい。 The polybenzoxazole resin (A1-2) preferably has one or more repeating units selected from the group consisting of repeating units represented by formula (16), repeating units represented by formula (17), and repeating units represented by formula (18).
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式(16)、式(17)および式(18)中、R11はジカルボン酸残基を示し、R12はビスアミノフェノール残基を示す。ジカルボン酸残基は、ジカルボン酸化合物から2つのカルボキシル基を除いた構造である。ビスアミノフェノール残基は、ビスアミノフェノール化合物から、2つのアミノ基と2つの水酸基を除いた構造である。 In formula (16), formula (17) and formula (18), R11 represents a dicarboxylic acid residue, and R12 represents a bisaminophenol residue. The dicarboxylic acid residue is a structure obtained by removing two carboxyl groups from a dicarboxylic acid compound. The bisaminophenol residue is a structure obtained by removing two amino groups and two hydroxyl groups from a bisaminophenol compound.
 式(16)で表される繰り返し単位は、繰り返し単位中のヒドロキシアミド構造の全部が閉環しオキサゾール化した繰り返し単位を示す。式(17)は繰り返し単位中のヒドロキシアミド構造の一部が閉環してオキサゾール化し、一部がヒドロキシアミド構造となっている繰り返し単位を示す。式(18)は繰り返し単位中のヒドロキシアミド構造が閉環せず、全てがヒドロキシアミド構造となっている繰り返し単位を示す。 The repeating unit represented by formula (16) represents a repeating unit in which all of the hydroxyamide structures in the repeating unit have been ring-closed to form oxazole. Formula (17) represents a repeating unit in which some of the hydroxyamide structures in the repeating unit have been ring-closed to form oxazole, with some remaining as hydroxyamide structures. Formula (18) represents a repeating unit in which the hydroxyamide structures in the repeating unit have not been ring-closed, and all remain as hydroxyamide structures.
 前記ポリベンゾオキサゾール樹脂(A1-2)中の、式(16)で表される繰り返し単位、式(17)で表される繰り返し単位および式(18)で表される繰り返し単位の数を、それぞれs、tおよびuとしたとき、s、tおよびuは0以上の整数である。 In the polybenzoxazole resin (A1-2), the number of repeating units represented by formula (16), the number of repeating units represented by formula (17), and the number of repeating units represented by formula (18) are s, t, and u, respectively, where s, t, and u are integers of 0 or more.
 前記ポリベンゾオキサゾール樹脂(A1-2)のオキサゾール環閉環率は好ましくは0%以上95%以下であり、より好ましくは0%以上85%以下であり、さらに好ましくは0%以上75%以下である。オキサゾール環閉環率が上記範囲内であることにより、顔料分散液と混合した際の分散安定性を向上できるとともに、現像後の残渣の軽減が可能である。 The oxazole ring closure rate of the polybenzoxazole resin (A1-2) is preferably 0% or more and 95% or less, more preferably 0% or more and 85% or less, and even more preferably 0% or more and 75% or less. By having the oxazole ring closure rate within the above range, it is possible to improve the dispersion stability when mixed with a pigment dispersion liquid and reduce residues after development.
 前記ポリベンゾオキサゾール樹脂(A1-2)のオキサゾール環閉環率は、下記の方法により求められる。 The oxazole ring closure rate of the polybenzoxazole resin (A1-2) is determined by the following method.
 <オキサゾール環閉環率(ROX(%))>
 ポリベンゾオキサゾール樹脂を濃度35質量%になるようにγ-ブチロラクトン(GBL)に溶解する。この溶液を4インチのシリコンウエハ上にスピンナ(ミカサ(株)製1H-DX)を用いてスピンコート法で塗布し、次いで120℃のホットプレートで3分ベークし、厚さ4~5μmの樹脂膜を作製する。この樹脂膜付きウエハを2分割し、一方をクリーンオーブン(光洋サーモシステム(株)製CLH-21CD-S)を用いて、窒素気流下(酸素濃度20ppm以下)において140℃で30分、次いでさらに昇温して370℃で1時間キュアして、オキサゾール環を完全に閉環させる。赤外分光光度計((株)堀場製作所製FT-720)を用いてキュア前後の樹脂膜の透過赤外吸収スペクトルをそれぞれ測定し、オキサゾールのC-O伸縮振動に起因する吸収ピーク(1,050cm-1付近)の強度(キュア前:U、キュア後:W)を求める。ピーク強度(U)をピーク強度(W)で割ったピーク強度比を算出し、熱処理前ポリマー中のオキサゾール基の含量、すなわちオキサゾール環閉環率を求める。
OX(%)=(U/W)×100 。
<Oxazole ring closure rate ( ROX (%))>
Polybenzoxazole resin is dissolved in γ-butyrolactone (GBL) to a concentration of 35% by mass. This solution is applied to a 4-inch silicon wafer by spin coating using a spinner (1H-DX manufactured by Mikasa Co., Ltd.), and then baked on a hot plate at 120°C for 3 minutes to produce a resin film with a thickness of 4 to 5 μm. This wafer with the resin film is divided into two, and one of the two is cured in a clean oven (CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.) at 140°C for 30 minutes under a nitrogen stream (oxygen concentration 20 ppm or less), and then further heated to 370°C for 1 hour to completely close the oxazole ring. The infrared transmission absorption spectra of the resin film before and after curing are measured using an infrared spectrophotometer (FT-720, manufactured by Horiba, Ltd.), and the intensities of the absorption peaks (near 1,050 cm -1 ) due to the C-O stretching vibration of oxazole (before curing: U, after curing: W) are determined. The peak intensity ratio is calculated by dividing the peak intensity (U) by the peak intensity (W), and the content of oxazole groups in the polymer before heat treatment, i.e., the oxazole ring closure rate, is determined.
R OX (%) = (U/W) × 100.
 また、前記ポリベンゾオキサゾール樹脂(A1-2)は、式(16)で表される繰り返し単位、式(17)で表される繰り返し単位および式(18)で表される繰り返し単位からなる群より選択される1種以上と、式(16)で表される繰り返し単位、式(17)で表される繰り返し単位および式(18)で表される繰り返し単位以外の繰り返し単位とを有する共重合体であってもよい。共重合体とする場合は、前述のポリイミドの繰り返し単位との共重合体とすることが好ましい。 The polybenzoxazole resin (A1-2) may be a copolymer having one or more repeating units selected from the group consisting of repeating units represented by formula (16), repeating units represented by formula (17), and repeating units represented by formula (18), and a repeating unit other than the repeating units represented by formula (16), repeating units represented by formula (17), and repeating units represented by formula (18). When a copolymer is used, it is preferable to use a copolymer with the repeating unit of the polyimide described above.
 前記共重合体樹脂(A1-3)は、例えば、上記ポリイミド樹脂(A1-1)の原料と、上記ポリベンゾオキサゾール樹脂(A1-2)の原料を一度に反応させてランダム共重合体として得ることも出来るし、ポリイミドの繰り返し単位とポリベンゾオキサゾールの繰り返し単位を別々に合成した後に各の繰り返し単位を反応させてポリイミドの繰り返し単位とポリベンゾオキサゾールの繰り返し単位を有するブロック共重合体として得ることもできる。 The copolymer resin (A1-3) can be obtained, for example, as a random copolymer by reacting the raw materials for the polyimide resin (A1-1) and the raw materials for the polybenzoxazole resin (A1-2) at once, or as a block copolymer having polyimide repeating units and polybenzoxazole repeating units by synthesizing the polyimide repeating units and the polybenzoxazole repeating units separately and then reacting the respective repeating units.
 前記共重合体樹脂(A1-3)は、例えば、ポリイミドの繰り返し単位である、式(13)で表される繰り返し単位、式(14)で表される繰り返し単位および式(15)で表される繰り返し単位からなる群より選択される1種以上と、ポリベンゾオキサゾールの繰り返し単位である、式(16)で表される繰り返し単位、式(17)で表される繰り返し単位および式(18)で表される繰り返し単位からなる群より選択される1種以上と、を両方有することが好ましい。 The copolymer resin (A1-3) preferably has both, for example, one or more repeating units of polyimide selected from the group consisting of repeating units represented by formula (13), repeating units represented by formula (14), and repeating units represented by formula (15), and one or more repeating units of polybenzoxazole selected from the group consisting of repeating units represented by formula (16), repeating units represented by formula (17), and repeating units represented by formula (18).
 前記樹脂(A)は、公知の方法により合成することができる。以下、前記ポリイミド樹脂(A1-1)、前記ポリベンゾオキサゾール樹脂(A1-2)、および、前記共重合体樹脂(A1-3)の合成方法について例示する。 The resin (A) can be synthesized by a known method. Below, examples of the synthesis methods for the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) are described.
 前記ポリイミド樹脂(A1-1)の製造方法としては例えば、重合溶媒中、低温でテトラカルボン酸二無水物とジアミン化合物を反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得て、その後アミンと縮合剤の存在下で反応させる方法、テトラカルボン酸二無水物とアルコールとによりジエステルを得て、その後残りのジカルボン酸を酸クロリド化し、アミンと反応させる方法などで合成することができる。また、前記の方法で得た樹脂を加熱あるいは酸や塩基などの化学処理で脱水閉環してもよい。 The polyimide resin (A1-1) can be synthesized, for example, by reacting a tetracarboxylic dianhydride with a diamine compound in a polymerization solvent at low temperature, by obtaining a diester from a tetracarboxylic dianhydride with an alcohol and then reacting it with an amine in the presence of a condensing agent, or by obtaining a diester from a tetracarboxylic dianhydride with an alcohol and then converting the remaining dicarboxylic acid into an acid chloride and reacting it with an amine. The resin obtained by the above method may also be dehydrated and ring-closed by heating or chemical treatment with an acid or base.
 前記ポリベンゾオキサゾール樹脂(A1-2)の製造方法としては例えば、重合溶媒中、ビスアミノフェノール化合物とジカルボン酸を縮合反応させることで得ることが出来る。具体的には、ジシクロヘキシルカルボジイミド(DCC)のような脱水縮合剤と酸を反応させ、ここにビスアミノフェノール化合物を加える方法やピリジンなどの3級アミンを加えたビスアミノフェノール化合物の溶液にジカルボン酸ジクロリドの溶液を滴下するなどがある。 The polybenzoxazole resin (A1-2) can be produced, for example, by a condensation reaction of a bisaminophenol compound with a dicarboxylic acid in a polymerization solvent. Specifically, a method of reacting a dehydrating condensing agent such as dicyclohexylcarbodiimide (DCC) with an acid and then adding a bisaminophenol compound to the reaction, or a method of dripping a solution of a dicarboxylic acid dichloride into a solution of a bisaminophenol compound to which a tertiary amine such as pyridine has been added, can be used.
 前記共重合体樹脂(A1-3)は、例えば、前記ポリイミド樹脂(A1-1)の合成方法と、前記ポリベンゾオキサゾール樹脂(A1-2)の合成方法とを組み合わせて合成することができる。 The copolymer resin (A1-3) can be synthesized, for example, by combining the synthesis method of the polyimide resin (A1-1) and the synthesis method of the polybenzoxazole resin (A1-2).
 上記の方法で重合させた樹脂(A)は、多量の水やメタノール/水の混合液などに投入し、沈殿させて、ろ別乾燥し、単離することが望ましい。この沈殿操作によって未反応のモノマーや、2量体や3量体などのオリゴマー成分が除去され、熱硬化後の膜特性や耐薬品性が向上する。 The resin (A) polymerized by the above method is preferably poured into a large amount of water or a mixture of methanol and water, precipitated, filtered, dried, and isolated. This precipitation process removes unreacted monomers and oligomer components such as dimers and trimers, improving the film properties and chemical resistance after thermal curing.
 前記重合溶媒は、原料モノマーである酸二無水物類やジアミン類などを溶解できればよく、その種類は特に限定されない。例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン(DMI)、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N,N‘-ジメチルプロピレン尿素(DMPU)などのアミド類、γ-ブチロラクトン(GBL)、γ-バレロラクトン、δ-バレロラクトン、γ-カプロラクトン、ε-カプロラクトン、α-メチル-γ-ブチロラクトンなどの環状エステル類、エチレンカーボネート、プロピレンカーボネートなどのカーボネート類、トリエチレングリコールなどのグリコール類、m-クレゾール、p-クレゾールなどのフェノール類、レブリン酸メチル、レブリン酸エチル、レブリン酸プロピル、レブリン酸ブチル、レブリン酸エチルプロピレングリコールケタール、レブリン酸エチルグリセロールケタールなどのエステル類、アセトフェノン、スルホラン、ジメチルスルホキシド、ジヒドロレボグルコセノン(Cyrene、circa社製)、などを挙げることができる。 The polymerization solvent is not particularly limited as long as it can dissolve the raw material monomers such as acid dianhydrides and diamines. For example, amides such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI), 3-methoxy-N,N-dimethylpropanamide, 3-butoxy-N,N-dimethylpropanamide, and N,N'-dimethylpropyleneurea (DMPU), cyclic compounds such as γ-butyrolactone (GBL), γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, and α-methyl-γ-butyrolactone, and cyclic compounds such as γ-butyrolactone, γ-butyrolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, and α-methyl-γ-butyrolactone are usable. Examples include esters, carbonates such as ethylene carbonate and propylene carbonate, glycols such as triethylene glycol, phenols such as m-cresol and p-cresol, esters such as methyl levulinate, ethyl levulinate, propyl levulinate, butyl levulinate, ethyl levulinate propylene glycol ketal, and ethyl levulinate glycerol ketal, acetophenone, sulfolane, dimethyl sulfoxide, and dihydrolevoglucosenone (Cyrene, manufactured by Circa), etc.
 前記重合溶媒の使用量は、前記樹脂(A)100質量部に対して100~1900質量部であることが好ましく、150~950質量部であることがより好ましい。 The amount of the polymerization solvent used is preferably 100 to 1900 parts by mass, and more preferably 150 to 950 parts by mass, per 100 parts by mass of the resin (A).
 本発明の感光性樹脂組成物は感光剤(B)を含有する。前記感光剤(B)としては、光酸発生剤(B1)や、光重合開始剤(B2)が挙げられる。光酸発生剤(B1)を含有することで、光照射部に酸が発生して光照射部のアルカリ水溶液に対する溶解性が増大し、光照射部が溶解するポジ型のレリーフパターンを得ることができる。また、前記光酸発生剤(B1)と架橋剤(I)を含有することで、光照射部に発生した酸が架橋剤(I)の架橋反応を促進し、光照射部が不溶化するネガ型のレリーフパターンを得ることができる。また、前記光重合開始剤(B2)およびラジカル重合性化合物(H)を含有することで、光照射部に発生した活性ラジカルがラジカル重合性化合物中のエチレン性不飽和結合のラジカル重合を進行させ、光照射部が不溶化するネガ型のレリーフパターンを得ることができる。本発明の感光性樹脂組成物において、前記感光剤(B)が前記光酸発生剤(B1)を含み、ポジ型の感光性を示すことが好ましい。前記感光剤(B)が前記光酸発生剤(B1)を含み、ポジ型の感光性を示すことにより、加工プロセスによるパターンの開口寸法のバラつきを低減しやすくなる。 The photosensitive resin composition of the present invention contains a photosensitizer (B). Examples of the photosensitizer (B) include a photoacid generator (B1) and a photopolymerization initiator (B2). By containing the photoacid generator (B1), an acid is generated in the light-irradiated portion, increasing the solubility of the light-irradiated portion in an alkaline aqueous solution, and a positive-type relief pattern in which the light-irradiated portion is dissolved can be obtained. In addition, by containing the photoacid generator (B1) and the crosslinking agent (I), the acid generated in the light-irradiated portion promotes the crosslinking reaction of the crosslinking agent (I), and a negative-type relief pattern in which the light-irradiated portion is insolubilized can be obtained. In addition, by containing the photopolymerization initiator (B2) and the radical polymerizable compound (H), the active radical generated in the light-irradiated portion advances the radical polymerization of the ethylenically unsaturated bond in the radical polymerizable compound, and a negative-type relief pattern in which the light-irradiated portion is insolubilized can be obtained. In the photosensitive resin composition of the present invention, it is preferable that the photosensitizer (B) contains the photoacid generator (B1) and exhibits positive photosensitivity. The photosensitizer (B) contains the photoacid generator (B1) and exhibits positive photosensitivity, which makes it easier to reduce variation in the opening dimensions of the pattern due to the processing process.
 前記光酸発生剤(B1)としては、キノンジアジド化合物、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩、ヨードニウム塩などが挙げられる。 Examples of the photoacid generator (B1) include quinone diazide compounds, sulfonium salts, phosphonium salts, diazonium salts, and iodonium salts.
 前記キノンジアジド化合物としては、ポリヒドロキシ化合物にキノンジアジドのスルホン酸がエステルで結合したもの、ポリアミノ化合物にキノンジアジドのスルホン酸がスルホンアミド結合したもの、ポリヒドロキシポリアミノ化合物にキノンジアジドのスルホン酸がエステル結合および/またはスルホンアミド結合したものなどが挙げられる。これらポリヒドロキシ化合物やポリアミノ化合物の官能基全体の50mol%以上がキノンジアジドで置換されていることが好ましい。また、前記光酸発生剤(B1)を2種以上含有することが好ましく、そうすることで高感度な感光性樹脂組成物を得ることができる。 The quinone diazide compound may be a polyhydroxy compound to which a sulfonic acid of quinone diazide is bonded via an ester bond, a polyamino compound to which a sulfonic acid of quinone diazide is bonded via a sulfonamide bond, or a polyhydroxy polyamino compound to which a sulfonic acid of quinone diazide is bonded via an ester bond and/or a sulfonamide bond. It is preferable that 50 mol % or more of the total functional groups of these polyhydroxy compounds or polyamino compounds are substituted with quinone diazide. It is also preferable that the compound contains two or more types of the photoacid generator (B1), which allows a highly sensitive photosensitive resin composition to be obtained.
 前記キノンジアジドは5-ナフトキノンジアジドスルホニル基を有するもの、4-ナフトキノンジアジドスルホニル基を有するもののいずれも好ましく用いられる。4-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のi線領域に吸収を持っており、i線露光に適している。5-ナフトキノンジアジドスルホニルエステル化合物は水銀灯のg線領域まで吸収が伸びており、g線露光に適している。本発明においては、露光する波長によって4-ナフトキノンジアジドスルホニルエステル化合物、5-ナフトキノンジアジドスルホニルエステル化合物を選択することが好ましい。また、同一分子中に4-ナフトキノンジアジドスルホニル基および5-ナフトキノンジアジドスルホニル基の両方を有するナフトキノンジアジドスルホニルエステル化合物を含有してもよいし、4-ナフトキノンジアジドスルホニルエステル化合物および5-ナフトキノンジアジドスルホニルエステル化合物の両方を含有してもよい。 The quinone diazide is preferably one having a 5-naphthoquinone diazide sulfonyl group or one having a 4-naphthoquinone diazide sulfonyl group. 4-naphthoquinone diazide sulfonyl ester compounds have absorption in the i-line region of a mercury lamp and are suitable for i-line exposure. 5-naphthoquinone diazide sulfonyl ester compounds have absorption extending to the g-line region of a mercury lamp and are suitable for g-line exposure. In the present invention, it is preferable to select a 4-naphthoquinone diazide sulfonyl ester compound or a 5-naphthoquinone diazide sulfonyl ester compound depending on the wavelength of exposure. In addition, a naphthoquinone diazide sulfonyl ester compound having both a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group in the same molecule may be contained, or both a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester compound may be contained.
 前記光酸発生剤(B1)のうち、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩は、露光によって発生した酸成分を適度に安定化させるため好ましい。中でもスルホニウム塩が好ましい。 Among the photoacid generators (B1), sulfonium salts, phosphonium salts, and diazonium salts are preferred because they adequately stabilize the acid component generated by exposure to light. Among these, sulfonium salts are preferred.
 前記光重合開始剤(B2)の具体例としては、例えば、国際公開第2019/087985号の[0223]~[0276]に記載の光重合開始剤を用いることができる。中でも、高感度化できる観点から、オキシムエステル系光重合開始剤を含むことが好ましい。これらは2種以上含有してもよい。 Specific examples of the photopolymerization initiator (B2) include the photopolymerization initiators described in paragraphs [0223] to [0276] of WO 2019/087985. Among them, it is preferable to include an oxime ester-based photopolymerization initiator from the viewpoint of achieving high sensitivity. Two or more of these may be included.
 前記感光剤(B)の含有量は、前記樹脂(A)100質量部に対して0.01~50質量部が好ましい。 The content of the photosensitizer (B) is preferably 0.01 to 50 parts by mass per 100 parts by mass of the resin (A).
 前記感光剤(B)のうち、前記光酸発生剤(B1)の含有量は、高感度化の観点から、前記樹脂(A)100質量部に対して0.01~50質量部が好ましい。このうち、キノンジアジド化合物は3~40質量部が好ましい。また、スルホニウム塩、ホスホニウム塩、ジアゾニウム塩の総量は0.5~20質量部が好ましい。 From the viewpoint of increasing sensitivity, the content of the photoacid generator (B1) in the photosensitizer (B) is preferably 0.01 to 50 parts by mass per 100 parts by mass of the resin (A). Of these, the content of the quinone diazide compound is preferably 3 to 40 parts by mass. In addition, the total amount of the sulfonium salt, phosphonium salt, and diazonium salt is preferably 0.5 to 20 parts by mass.
 前記感光剤(B)のうち、前記光重合開始剤(B2)の含有量は、前記樹脂(A)100質量部に対して0.1~20質量部が好ましい。0.1質量部以上であれば、光照射により十分なラジカルが発生し、感度が向上する。また、20質量部以下であれば、過度なラジ力ルの発生による光未照射部の硬化がなく、アルカリ現像性が向上する。 The content of the photopolymerization initiator (B2) in the photosensitizer (B) is preferably 0.1 to 20 parts by mass per 100 parts by mass of the resin (A). If it is 0.1 part by mass or more, sufficient radicals are generated by light irradiation, improving sensitivity. Also, if it is 20 parts by mass or less, there is no hardening of the unexposed parts due to the generation of excessive radicals, improving alkaline developability.
 本発明の感光性樹脂組成物は、式(1)で表される化合物および/または式(2)で表される化合物である化合物(C)を含有する。 The photosensitive resin composition of the present invention contains compound (C), which is a compound represented by formula (1) and/or a compound represented by formula (2).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(1)および式(2)中、RおよびRは、それぞれ独立に、炭素数1~10の1価の飽和炭化水素基を示す。式(2)中、R、RおよびRは、それぞれ独立に、水素原子または炭素数1~10の1価の飽和炭化水素基を示す。RとRは、それぞれ独立に、水素原子、炭素数1~10の1価の飽和炭化水素基、または炭素数1~10の1価のヒドロキシアルキル基を示す。aは0または1を示す。 In formula (1) and formula (2), R 1 and R 2 each independently represent a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms. In formula (2), R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms. R 6 and R 7 each independently represent a hydrogen atom, a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms, or a monovalent hydroxyalkyl group having 1 to 10 carbon atoms. a represents 0 or 1.
 式(1)で表される化合物はレブリン酸アルキルエステルであり、式(2)で表される化合物はレブリン酸アルキルエステルのカルボニル基をジオール、トリオールまたはテトラオール化合物を用いてケタール化した化合物である。これらの化合物は感光性樹脂組成物を調合する際に添加物として加えても良いし、感光性樹脂組成物の溶剤として用いても良い。感光性樹脂組成物が前記化合物(C)を含むことで、現像後の残渣軽減、感光性樹脂組成物の高感度化および感光性樹脂組成物を硬化して得られる硬化物の信頼性向上が可能である。詳細なメカニズムは不明であるが、上記効果が得られる原理について下記の通り推定する。例えば、国際公開第2019/065351号などに記載がある通り、感光性樹脂組成物には塗布性向上などを目的にγ-ブチロラクトン(GBL)などの高極性高沸点溶剤が用いられるケースが多い。GBLのような高極性高沸点溶剤は樹脂などの溶剤溶解性が高く、遅乾性であるため塗布ムラが発生しづらいなどのメリットがある一方で、感光剤と強く相互作用するため樹脂と感光剤の相互作用を阻害し、現像残渣が増加しやすい、感度が低下しやすいというデメリットがある。また、GBLのような高沸点高極性溶剤は樹脂と強く相互作用するため、硬化後でも硬化物中に多く溶剤が残存し、残存溶剤が発ガス源となって有機EL表示装置などの信頼性を低下する懸念もある。これに対して、前記化合物(C)は樹脂や添加物に対して良好な溶解性を有しつつ、かつ、GBLなどの高極性高沸点溶剤と比較して樹脂や感光剤との相互作用が弱いため、樹脂と感光剤の相互作用を阻害しづらく、現像後の残渣軽減や、高感度化が可能となると考えられる。また、前記化合物(C)は樹脂との相互作用が弱いため、加熱硬化時に硬化物から揮発して硬化物中に残存しづらいと考えられる。その結果、加熱硬化後に得られる硬化物の発ガスを軽減することが可能であり、有機EL表示装置などの信頼性向上が可能となると考えられる。加えて、感光性樹脂組成物が前記化合物(C)を含むことで得られる硬化物の破断伸度やクラック耐性の向上が可能となるため、高信頼性の電子部品または半導体装置を得ることが可能になる。化合物(C)を含むことで硬化物の破断伸度およびクラック耐性が改善するメカニズムは、化合物(C)が樹脂や架橋剤に対して良好な溶解性を有しつつ、かつ、適度な沸点を有することにより、加熱硬化の工程において架橋剤と樹脂の架橋反応を促進し、架橋密度の高い硬化物が得られるため、と考えられる。 The compound represented by formula (1) is a levulinic acid alkyl ester, and the compound represented by formula (2) is a compound in which the carbonyl group of the levulinic acid alkyl ester is ketalized using a diol, triol, or tetraol compound. These compounds may be added as additives when preparing a photosensitive resin composition, or may be used as a solvent for the photosensitive resin composition. When the photosensitive resin composition contains the compound (C), it is possible to reduce residue after development, increase the sensitivity of the photosensitive resin composition, and improve the reliability of the cured product obtained by curing the photosensitive resin composition. Although the detailed mechanism is unknown, the principle by which the above effect is obtained is presumed as follows. For example, as described in International Publication No. 2019/065351, etc., highly polar and high boiling point solvents such as gamma-butyrolactone (GBL) are often used in photosensitive resin compositions for the purpose of improving coatability. A highly polar, high boiling point solvent such as GBL has the advantage of being highly soluble in solvents such as resins and slow drying, making it difficult for uneven coating to occur, while it has the disadvantage of being easily increased in development residue and easily reduced sensitivity due to its strong interaction with photosensitizers, which inhibits the interaction between the resin and the photosensitizer. In addition, a highly polar, high boiling point solvent such as GBL strongly interacts with resins, so that even after curing, a large amount of solvent remains in the cured product, and there is a concern that the remaining solvent becomes a source of gas generation and reduces the reliability of organic EL display devices and the like. In contrast, the compound (C) has good solubility in resins and additives, and has a weak interaction with resins and photosensitizers compared to highly polar, high boiling point solvents such as GBL, so it is difficult to inhibit the interaction between the resin and the photosensitizer, and it is thought that it is possible to reduce residue after development and increase sensitivity. In addition, since the compound (C) has a weak interaction with resins, it is thought that it is difficult to volatilize from the cured product during heat curing and remain in the cured product. As a result, it is possible to reduce gas generation from the cured product obtained after heat curing, and it is thought that it is possible to improve the reliability of organic EL display devices and the like. In addition, the inclusion of the compound (C) in the photosensitive resin composition makes it possible to improve the breaking elongation and crack resistance of the cured product, making it possible to obtain highly reliable electronic components or semiconductor devices. The mechanism by which the breaking elongation and crack resistance of the cured product are improved by including the compound (C) is believed to be that the compound (C) has good solubility in the resin and crosslinking agent and a moderate boiling point, which promotes the crosslinking reaction between the crosslinking agent and the resin during the heat curing process, resulting in a cured product with high crosslink density.
 また、後述のように本発明の感光性樹脂組成物がさらに黒色剤(F)を含有し、黒色剤(F)が黒色顔料(F1)である場合、前記化合物(C)を分散媒として用いることで得られる黒色顔料分散液の保存安定性を向上できるとともに、黒色顔料(F1)の粒子径の微細化が可能であるため好ましい。詳細なメカニズムは不明であるが、GBLのような高沸点高極性溶剤と比べて前記化合物(C)は樹脂との相互作用が弱いため、前記化合物(C)を分散媒として用いた場合、分散剤として用いる樹脂が効率的に黒色顔料(F1)の表面に吸着し、立体反発効果が得られやすくなるため、黒色顔料(F1)の分散安定性が得られやすくなり、かつ、黒色顔料(F1)の粒子径の微細化が可能になるものと考えられる。 In addition, as described below, when the photosensitive resin composition of the present invention further contains a black agent (F) and the black agent (F) is a black pigment (F1), it is preferable to use the compound (C) as a dispersion medium because the storage stability of the black pigment dispersion obtained can be improved and the particle size of the black pigment (F1) can be made finer. Although the detailed mechanism is unclear, the compound (C) has a weaker interaction with the resin than a high-boiling point, highly polar solvent such as GBL. Therefore, when the compound (C) is used as a dispersion medium, the resin used as a dispersant is efficiently adsorbed to the surface of the black pigment (F1), and a steric repulsion effect is easily obtained, so that the dispersion stability of the black pigment (F1) is easily obtained and the particle size of the black pigment (F1) can be made finer.
 前記化合物(C)の含有量としては、前記樹脂(A)の総量100質量部に対して1~3000質量部が好ましく、20~2000質量部がさらに好ましく、50~1000質量部がさらに好ましい。上記範囲内であることで、現像残渣軽減、高感度化、高信頼化、黒色顔料分散液の保存安定性向上および黒色顔料(F1)の粒子径微細化の効果が得やすくなる。 The content of the compound (C) is preferably 1 to 3000 parts by mass, more preferably 20 to 2000 parts by mass, and even more preferably 50 to 1000 parts by mass, per 100 parts by mass of the total amount of the resin (A). By being within the above range, it becomes easier to obtain the effects of reducing development residues, increasing sensitivity, increasing reliability, improving the storage stability of the black pigment dispersion, and reducing the particle size of the black pigment (F1).
 また、前記化合物(C)の含有量としては、感光性樹脂組成物の総量100質量%に対して1~60質量%が好ましく、2~50質量%がさらに好ましく、3~45質量%がさらに好ましい。感光性樹脂組成物中の前記化合物(C)の含有量が上記範囲内であることで、前記感光性樹脂組成物を硬化して得られる硬化物に含まれる前記化合物(C)の量を好ましい範囲にコントロールすることが可能となる。その結果、有機EL表示装置に用いた際に、信頼性の向上が可能となる。 The content of the compound (C) is preferably 1 to 60% by mass, more preferably 2 to 50% by mass, and even more preferably 3 to 45% by mass, relative to 100% by mass of the total amount of the photosensitive resin composition. By having the content of the compound (C) in the photosensitive resin composition within the above range, it becomes possible to control the amount of the compound (C) contained in the cured product obtained by curing the photosensitive resin composition within a preferred range. As a result, when used in an organic EL display device, it becomes possible to improve reliability.
 前記化合物(C)の具体例としては例えば、レブリン酸メチル、レブリン酸エチル、レブリン酸プロピル、レブリン酸ブチル、レブリン酸ペンチル、レブリン酸ヘキシル、レブリン酸ヘプチル、レブリン酸オクチル、レブリン酸ノニル、およびこれらの化合物と、プロピレングリコールやグリセリンなどの多価アルコール化合物を反応させてケタール化した化合物などが挙げられる。なかでも、加熱硬化時に硬化物から効率的に揮発させることが出来る点、樹脂や添加物に対する溶解性が良好である点から、前記化合物(C)の具体例として、本発明の感光性樹脂組成物は式(19)~(22)からなる群より選択される少なくとも1つを含むことが好ましく、式(19)で表される化合物および/または式(20)で表される化合物を含むことがさらに好ましい。 Specific examples of the compound (C) include methyl levulinate, ethyl levulinate, propyl levulinate, butyl levulinate, pentyl levulinate, hexyl levulinate, heptyl levulinate, octyl levulinate, nonyl levulinate, and ketalized compounds obtained by reacting these compounds with polyhydric alcohol compounds such as propylene glycol and glycerin. Among these, the photosensitive resin composition of the present invention preferably contains at least one selected from the group consisting of formulas (19) to (22) as a specific example of the compound (C), and more preferably contains a compound represented by formula (19) and/or a compound represented by formula (20).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 本発明の感光性樹脂組成物はさらに、大気圧における沸点が100℃以上170℃以下でありかつ前記樹脂(A)、前記感光剤(B)および前記化合物(C)のいずれにも該当しない化合物(D)を含むことが好ましい。前記化合物(D)を含むことで現像性が改善され、現像残渣の発生を抑制することができる。 The photosensitive resin composition of the present invention preferably further contains a compound (D) that has a boiling point at atmospheric pressure of 100°C or more and 170°C or less and does not fall under any of the resin (A), the photosensitizer (B), and the compound (C). By containing the compound (D), the developability is improved and the occurrence of development residues can be suppressed.
 前記化合物(D)は、水酸基を有する化合物(D1)を含むことがより好ましい。化合物(D1)を含むことで、より高い現像残渣軽減効果が得られるためである。 It is more preferable that the compound (D) contains a compound (D1) having a hydroxyl group. This is because the inclusion of the compound (D1) provides a higher effect of reducing development residues.
 前記化合物(D)のうち水酸基を有しないものの具体例としては例えば、プロピレングリコールモノメチルエーテルアセテート(沸点146℃)、エチレングリコールモノメチルエーテルアセテート(沸点145℃)、ジエチレングリコールジメチルエーテル(沸点162℃)などが挙げられる。 Specific examples of the compound (D) that does not have a hydroxyl group include propylene glycol monomethyl ether acetate (boiling point 146°C), ethylene glycol monomethyl ether acetate (boiling point 145°C), and diethylene glycol dimethyl ether (boiling point 162°C).
 水酸基を有する化合物(D1)の具体例としては例えば、プロピレングリコールモノメチルエーテル(沸点120℃)、乳酸メチル(沸点145℃)、乳酸エチル(沸点154℃)、乳酸プロピル(沸点169℃)、1-ブタノール(沸点117℃)、1-ペンタノール(沸点138℃)、1-ヘキサノール(沸点157℃)、シクロヘキサノール(沸点161℃)、3-メトキシブタノール(沸点161℃)、エチレングリコールモノメチルエーテル(沸点124℃)、ジアセトンアルコール(沸点166℃)、などが挙げられる。 Specific examples of compounds (D1) having a hydroxyl group include propylene glycol monomethyl ether (boiling point 120°C), methyl lactate (boiling point 145°C), ethyl lactate (boiling point 154°C), propyl lactate (boiling point 169°C), 1-butanol (boiling point 117°C), 1-pentanol (boiling point 138°C), 1-hexanol (boiling point 157°C), cyclohexanol (boiling point 161°C), 3-methoxybutanol (boiling point 161°C), ethylene glycol monomethyl ether (boiling point 124°C), and diacetone alcohol (boiling point 166°C).
 本発明の感光性樹脂組成物に含まれる前記化合物(D)の含有量としては、前記樹脂(A)の総量100質量部に対して、5~5000質量部が好ましく、10~3000質量部がさらに好ましい。 The content of the compound (D) in the photosensitive resin composition of the present invention is preferably 5 to 5,000 parts by mass, and more preferably 10 to 3,000 parts by mass, per 100 parts by mass of the total amount of the resin (A).
 また、本発明の感光性樹脂組成物に含まれる前記化合物(C)の質量Xの、前記化合物(D)の質量Yに対する比X/Yは、0.01~10であることが好ましく、0.05~5であることがさらに好ましく、0.1~2であることがさらに好ましい。前記比X/Yが前記範囲内であることで現像性が特に好ましい範囲に調整され、現像残渣の発生を抑制することが可能である。 Furthermore, the ratio X/Y of the mass X of the compound (C) contained in the photosensitive resin composition of the present invention to the mass Y of the compound (D) is preferably 0.01 to 10, more preferably 0.05 to 5, and even more preferably 0.1 to 2. By having the ratio X/Y within the above range, the developability can be adjusted to a particularly preferred range, and the generation of development residues can be suppressed.
 本発明の感光性樹脂組成物は、前記化合物(C)および前記化合物(D)以外の溶剤(E)を含有することが好ましい。溶剤(E)としては例えば、
エチレングリコールモノエチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールエチルメチルエーテルなどのエーテル類、
エチレングリコールモノメチルエーテルアセテ-卜、プロピレングリコールモノメチルエーテルアセテ一卜、酢酸エチル、酢酸ブチル、乳酸ブチルなどのエステル類、
エタノール、イソプロパノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノールなどのアルコール類、
メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトン、ジイソブチルケトン、シクロペンタノン、ジアセトンアルコールなどのケトン類、
N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセ卜アミド、ジメチルスルホキシド、1,3-ジメチル-2-イミダゾリジノン、ジヒドロレボグルコセノン(Cyrene、circa社製)などの極性の非プロトン性溶媒、
卜ルエン、キシレンなどの芳香族炭化水素類などが挙げられる。これらを2種以上含有してもよい。
The photosensitive resin composition of the present invention preferably contains a solvent (E) other than the compound (C) and the compound (D). Examples of the solvent (E) include
Ethers such as ethylene glycol monoethyl ether, propylene glycol monoethyl ether, diethylene glycol dimethyl ether, and diethylene glycol ethyl methyl ether;
Esters such as ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, ethyl acetate, butyl acetate, and butyl lactate;
Alcohols such as ethanol, isopropanol, 3-methyl-2-butanol, and 3-methyl-3-methoxybutanol;
Ketones such as methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, diisobutyl ketone, cyclopentanone, and diacetone alcohol;
Polar aprotic solvents such as N-methyl-2-pyrrolidone, γ-butyrolactone, N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, 1,3-dimethyl-2-imidazolidinone, and dihydrolevoglucosenone (Cyrene, manufactured by Circa),
and aromatic hydrocarbons such as toluene and xylene. Two or more of these may be contained.
 前記溶剤(E)の含有量は、前記樹脂(A)100質量部に対して、好ましくは50質量部以上、より好ましくは100質量部以上であり、また、好ましくは2000質量部以下、より好ましくは1500質量部以下である。 The content of the solvent (E) is preferably 50 parts by mass or more, more preferably 100 parts by mass or more, and is preferably 2000 parts by mass or less, more preferably 1500 parts by mass or less, per 100 parts by mass of the resin (A).
 本発明の感光性樹脂組成物は、さらに黒色剤(F)を含むことが好ましい。黒色剤(F)とは、可視光線の波長の光を吸収することで、黒色に着色する化合物をいう。有機EL表示装置は自発光素子を有するため、屋外における太陽光などの外光が入射すると、その外光反射によって視認性及びコントラストが低下する場合がある。そのため、外光反射を低減する技術が要求される場合がある。そこで、前記黒色剤(F)を含有させることで、感光性樹脂組成物の硬化物が黒色化するため、感光性樹脂組成物の硬化物を透過する光、又は、感光性樹脂組成物の硬化物から反射する光を遮光する、遮光性を向上させることができる。このため、画素分割層、電極絶縁層、配線絶縁層、層間絶縁層、薄膜トランジスタ(以下、「TFT」)平坦化層、電極平坦化層、配線平坦化層、TFT保護層、電極保護層、配線保護層、ゲート絶縁層、カラーフィルタ、ブラックマトリックス又はブラックカラムスペーサーなどの用途に好適である。特に、有機EL表示装置の遮光性を有する画素分割層、電極絶縁層、配線絶縁層、層間絶縁層、TFT平坦化層、電極平坦化層、配線平坦化層、TFT保護層、電極保護層、配線保護層、又はゲート絶縁層として好ましく、遮光性を有する画素分割層、層間絶縁層、TFT平坦化層、又はTFT保護層など、外光反射の抑制によって高コントラスト化が要求される用途に好適である。 The photosensitive resin composition of the present invention preferably further contains a black agent (F). The black agent (F) refers to a compound that absorbs light of a visible light wavelength to color it black. Since an organic EL display device has a self-emitting element, when external light such as sunlight is incident outdoors, the visibility and contrast may be reduced due to the reflection of the external light. Therefore, a technology to reduce the reflection of external light may be required. Therefore, by including the black agent (F), the cured product of the photosensitive resin composition becomes black, and the light shielding property of shielding light that passes through the cured product of the photosensitive resin composition or light reflected from the cured product of the photosensitive resin composition can be improved. Therefore, it is suitable for applications such as a pixel division layer, an electrode insulating layer, a wiring insulating layer, an interlayer insulating layer, a thin film transistor (hereinafter, "TFT") planarization layer, an electrode planarization layer, a wiring planarization layer, a TFT protective layer, an electrode protective layer, a wiring protective layer, a gate insulating layer, a color filter, a black matrix, or a black column spacer. In particular, it is preferable as a light-shielding pixel division layer, electrode insulating layer, wiring insulating layer, interlayer insulating layer, TFT planarization layer, electrode planarization layer, wiring planarization layer, TFT protective layer, electrode protective layer, wiring protective layer, or gate insulating layer for an organic EL display device, and is suitable for applications requiring high contrast by suppressing external light reflection, such as a light-shielding pixel division layer, interlayer insulating layer, TFT planarization layer, or TFT protective layer.
 前記黒色剤(F)の具体例として、例えば、国際公開第2019/087985号の[0281]~[0344]に記載の黒色剤を用いることができる。中でも、遮蔽性が高く、耐候性が高く、耐薬品性が高く、かつ、加熱時の退色が起こりにくい観点から、黒色顔料(F1)を含むことが好ましい。また、黒色顔料(F1)の中でも、絶縁性及び低誘電性に優れる観点から、有機黒色顔料(F1-1)を用いることが好ましい。特に、有機EL表示装置の画素分割層等の絶縁層、TFT平坦化層、又はTFT保護層などとして用いた場合に、発光不良等を抑制し、信頼性を向上させることができる。また、有機黒色顔料(F1-1)の中でも、露光時の感度向上、現像後のパターン形状制御による低テーパー化、熱硬化前後におけるパターン開口寸法幅変化抑制、及び、ハーフトーン特性向上の観点から、有機黒色顔料(F1-1)がベンゾフラノン系黒色顔料、ペリレン系黒色顔料、ジオキサジン系黒色顔料及びアゾ系黒色顔料からなる群より選ばれる一種類以上であることが好ましく、ベンゾフラノン系黒色顔料がより好ましい。ベンゾフラノン系黒色顔料、ペリレン系黒色顔料、ジオキサジン系黒色顔料及びアゾ系黒色顔料からなる群より選ばれる一種類以上を含有させることで、感光性樹脂組成物の硬化物が黒色化するとともに、隠蔽性に優れるため、感光性樹脂組成物の硬化物の遮光性を向上させることができる。特に、一般的な有機黒色顔料と比較して、感光性樹脂組成物中の黒色顔料の単位含有比率当たりの遮光性に優れるため、少ない含有比率で同等の遮光性を付与することができる。そのため、硬化物の遮光性を向上することができるとともに、露光時の感度を向上させることができる。 Specific examples of the black agent (F) include those described in paragraphs [0281] to [0344] of International Publication No. 2019/087985. Among these, it is preferable to include a black pigment (F1) from the viewpoint of high shielding properties, high weather resistance, high chemical resistance, and resistance to fading when heated. In addition, among the black pigments (F1), it is preferable to use an organic black pigment (F1-1) from the viewpoint of excellent insulation properties and low dielectric properties. In particular, when used as an insulating layer such as a pixel division layer of an organic EL display device, a TFT planarization layer, or a TFT protective layer, it is possible to suppress light emission defects and improve reliability. In addition, among the organic black pigments (F1-1), from the viewpoints of improving sensitivity during exposure, reducing taper by controlling the pattern shape after development, suppressing changes in the pattern opening dimensional width before and after thermal curing, and improving halftone characteristics, it is preferable that the organic black pigment (F1-1) is one or more selected from the group consisting of benzofuranone-based black pigments, perylene-based black pigments, dioxazine-based black pigments, and azo-based black pigments, and benzofuranone-based black pigments are more preferable. By containing one or more selected from the group consisting of benzofuranone-based black pigments, perylene-based black pigments, dioxazine-based black pigments, and azo-based black pigments, the cured product of the photosensitive resin composition is blackened and has excellent hiding properties, so that the light-shielding properties of the cured product of the photosensitive resin composition can be improved. In particular, compared to general organic black pigments, the light-shielding properties per unit content ratio of the black pigment in the photosensitive resin composition are excellent, so that the same light-shielding properties can be imparted with a small content ratio. Therefore, the light-shielding properties of the cured product can be improved, and the sensitivity during exposure can be improved.
 また、有機黒色顔料(F1-1)は国際公開第2019/087985号の[0345]~[0359]に記載の被覆層を含有してもよい。 The organic black pigment (F1-1) may also contain a coating layer as described in paragraphs [0345] to [0359] of WO 2019/087985.
 前記黒色剤(F)の含有量は、前記樹脂(A)100質量部に対して10~200質量部が好ましい。 The content of the blackening agent (F) is preferably 10 to 200 parts by mass per 100 parts by mass of the resin (A).
 本発明の感光性樹脂組成物は、特に黒色剤(F)として黒色顔料(F1)を含む場合、分散剤(G)を含むことが好ましい。分散剤(G)とは、顔料の表面と相互作用する表面親和性基と、顔料の分散安定性を向上させる分散安定化構造とを有する化合物をいう。前記分散剤(G)の分散安定化構造としては、ポリマー鎖及び/又は静電荷を有する置換基などが挙げられる。分散剤の具体例として、例えば、国際公開第2019/087985号の[0371]~[0385]に記載の分散剤を用いることができる。中でも、分散安定性向上及び現像後の解像度向上の観点から、塩基性基又は塩基性基が塩形成した構造としては、三級アミノ基、四級アンモニウム塩構造、又は、ピロール骨格、イミダゾール骨格、ピラゾール骨格、ピリジン骨格、ピリダジン骨格、ピリミジン骨格、ピラジン骨格、トリアジン骨格、イソシアヌル酸骨格、イミダゾリジノン骨格、プロピレン尿素骨格、ブチレン尿素骨格、ヒダントイン骨格、バルビツール酸骨格、アロキサン骨格若しくはグリコールウリル骨格などの含窒素環骨格を有することが好ましい。 The photosensitive resin composition of the present invention preferably contains a dispersant (G), particularly when the photosensitive resin composition contains a black pigment (F1) as the black agent (F). The dispersant (G) refers to a compound having a surface affinity group that interacts with the surface of the pigment and a dispersion stabilizing structure that improves the dispersion stability of the pigment. Examples of the dispersion stabilizing structure of the dispersant (G) include a polymer chain and/or a substituent having an electrostatic charge. Specific examples of dispersants that can be used include the dispersants described in [0371] to [0385] of WO 2019/087985. Among these, from the viewpoint of improving dispersion stability and improving resolution after development, the basic group or the structure in which the basic group forms a salt preferably has a tertiary amino group, a quaternary ammonium salt structure, or a nitrogen-containing ring skeleton such as a pyrrole skeleton, an imidazole skeleton, a pyrazole skeleton, a pyridine skeleton, a pyridazine skeleton, a pyrimidine skeleton, a pyrazine skeleton, a triazine skeleton, an isocyanuric acid skeleton, an imidazolidinone skeleton, a propylene urea skeleton, a butylene urea skeleton, a hydantoin skeleton, a barbituric acid skeleton, an alloxane skeleton, or a glycoluril skeleton.
 黒色剤(F)として黒色顔料(F1)を含有する場合、本発明の感光性樹脂組成物に占める分散剤(G)の含有比率は、黒色顔料(F1)と分散剤(G)との合計量100質量%に対して、1質量%以上が好ましい。含有比率が1質量%以上であると、前記黒色剤(F)の分散安定性を向上させることができ、現像後の解像度を向上させることができる。一方、前記分散剤(G)の含有比率は、60質量%以下が好ましい。含有比率が60質量%以下であると、硬化物の耐熱性を向上させることができる。 When black pigment (F1) is contained as black agent (F), the content ratio of dispersant (G) in the photosensitive resin composition of the present invention is preferably 1 mass% or more relative to 100 mass% of the total amount of black pigment (F1) and dispersant (G). When the content ratio is 1 mass% or more, the dispersion stability of the black agent (F) can be improved, and the resolution after development can be improved. On the other hand, the content ratio of dispersant (G) is preferably 60 mass% or less. When the content ratio is 60 mass% or less, the heat resistance of the cured product can be improved.
 本発明の感光性樹脂組成物は、さらに、ラジカル重合性化合物(H)を含み、感光剤(B)が光重合開始剤(B2)を含んでもよい。かかる構成を採ることにより、上述のとおり、光照射部に発生した活性ラジカルがラジカル重合性化合物中のエチレン性不飽和結合のラジカル重合を進行させ、光照射部が不溶化するネガ型のレリーフパターンを得ることができる。その結果、感光性樹脂組成物は、ネガ型感光性樹脂組成物となる。 The photosensitive resin composition of the present invention may further contain a radically polymerizable compound (H), and the photosensitizer (B) may contain a photopolymerization initiator (B2). By adopting such a configuration, as described above, the active radicals generated in the light-irradiated area promote radical polymerization of the ethylenically unsaturated bonds in the radically polymerizable compound, and a negative relief pattern can be obtained in which the light-irradiated area is insolubilized. As a result, the photosensitive resin composition becomes a negative-type photosensitive resin composition.
 前記ラジカル重合性化合物(H)の具体例としては例えば、国際公開第2019/087985号の[0189]~[0222]に記載のラジカル重合性化合物などが挙げられる。中でも、柔軟鎖含有脂肪族ラジカル重合性化合物を含有することが好ましい。柔軟鎖含有脂肪族ラジカル重合性化合物とは、分子中に複数のエチレン性不飽和二重結合基と、脂肪族鎖又はオキシアルキレン鎖などの柔軟骨格とを有する化合物をいう。 Specific examples of the radical polymerizable compound (H) include the radical polymerizable compounds described in paragraphs [0189] to [0222] of WO 2019/087985. Among these, it is preferable to contain a flexible chain-containing aliphatic radical polymerizable compound. A flexible chain-containing aliphatic radical polymerizable compound refers to a compound having multiple ethylenically unsaturated double bond groups and a flexible skeleton such as an aliphatic chain or an oxyalkylene chain in the molecule.
 前記柔軟鎖含有脂肪族ラジカル重合性化合物を含有させることで、光照射時の硬化反応が効率的に進行し、光照射時の感度を向上させることができる。加えて、前記黒色剤(F)として黒色顔料(F1)を含有させる場合、黒色顔料(F1)が柔軟鎖含有脂肪族ラジカル重合性化合物のUV硬化時の架橋によって硬化部に固定化されることで、黒色顔料(F1)に由来する現像後の残渣発生を抑制することができる。また、熱硬化前後における、パターン開口寸法幅の変化を抑制することができる。前記ラジカル重合性化合物(H)の含有量は、前記樹脂(A)100質量部に対して5~50質量部が好ましい。 By including the flexible chain-containing aliphatic radical polymerizable compound, the curing reaction during light irradiation proceeds efficiently, and the sensitivity during light irradiation can be improved. In addition, when a black pigment (F1) is included as the black agent (F), the black pigment (F1) is fixed to the cured portion by crosslinking during UV curing of the flexible chain-containing aliphatic radical polymerizable compound, and the generation of residues after development originating from the black pigment (F1) can be suppressed. In addition, the change in the pattern opening dimensional width before and after thermal curing can be suppressed. The content of the radical polymerizable compound (H) is preferably 5 to 50 parts by mass per 100 parts by mass of the resin (A).
 本発明の感光性樹脂組成物は架橋剤(I)を含むことが好ましい。架橋剤(I)とは、樹脂と結合可能な架橋性基を有する化合物をいう。前記架橋剤(I)を含有させることで、硬化物の硬度及び耐薬品性を向上させることができる。これは、前記架橋剤(I)により、感光性樹脂組成物の硬化物に新たな架橋構造を導入することができるため、架橋密度が向上するためと推測される。 The photosensitive resin composition of the present invention preferably contains a crosslinking agent (I). The crosslinking agent (I) refers to a compound having a crosslinkable group capable of bonding with a resin. By including the crosslinking agent (I), the hardness and chemical resistance of the cured product can be improved. This is presumably because the crosslinking agent (I) can introduce a new crosslinking structure into the cured product of the photosensitive resin composition, thereby improving the crosslinking density.
 また、前記架橋剤(I)を含有させることで、熱硬化後に低テーパー形状のパターン形成が可能となる。これは、架橋剤(I)によってポリマー間に架橋構造が形成されることで、ポリマー鎖同士の密な配向が阻害され、熱硬化時におけるパターンのリフロー性を維持できるため、低テーパー形状のパターン形成が可能になると考えられる。前記架橋剤(I)としては、アルコキシメチル基、メチロール基、エポキシ基、又はオキセタニル基などの熱架橋性を、分子中に2つ以上有する化合物が好ましい。 In addition, by including the crosslinking agent (I), it becomes possible to form a pattern with a low taper shape after thermal curing. This is thought to be because the crosslinking agent (I) forms a crosslinked structure between the polymers, which inhibits the dense orientation of the polymer chains and maintains the reflowability of the pattern during thermal curing, making it possible to form a pattern with a low taper shape. As the crosslinking agent (I), a compound having two or more thermal crosslinkable groups in the molecule, such as an alkoxymethyl group, a methylol group, an epoxy group, or an oxetanyl group, is preferred.
 前記架橋剤(I)の具体例としては、国際公開第2019/087985号の[0407]~[0412]に記載の架橋剤を用いることができる。 Specific examples of the crosslinking agent (I) that can be used include the crosslinking agents described in paragraphs [0407] to [0412] of WO 2019/087985.
 前記架橋剤(I)の含有量は、前記樹脂(A)100質量部に対して0.5~50質量部が好ましい。含有量が0.5質量部以上であると、硬化物の硬度及び耐薬品性を向上させることができるとともに、熱硬化後に低テーパー形状のパターンを形成することができる。また、含有量が50質量部以下であると、硬化物の硬度及び耐薬品性を向上させることができるとともに、熱硬化後に低テーパー形状のパターンを形成することができる。 The content of the crosslinking agent (I) is preferably 0.5 to 50 parts by mass per 100 parts by mass of the resin (A). If the content is 0.5 parts by mass or more, the hardness and chemical resistance of the cured product can be improved, and a pattern with a low taper shape can be formed after thermal curing. If the content is 50 parts by mass or less, the hardness and chemical resistance of the cured product can be improved, and a pattern with a low taper shape can be formed after thermal curing.
 本発明の感光性樹脂組成物は、さらに溶解促進剤(J)を含み、前記感光剤(B)が光酸発生剤(B1)を含む、ポジ型感光性樹脂組成物としても良い。前記溶解促進剤(J)は、感光性樹脂組成物のアルカリ現像性を補い、ポジ型感光性樹脂組成物において、感度を向上させることができる。前記溶解促進剤(J)はフェノール性水酸基を有する化合物が好ましく、例えば、Bis-z、BisOC-Z、BisOPP-Z、BisP-CP、Bis26X-Z、BisOTBP-Z、BisOCHP-Z、BisOCR-CP、BisP-MZ、BisP-EZ、Bis26X-CP、BisP-Pz、BisP-IPZ、BisCRIPZ、BisOCP-IPZ、BisOIPP-CP、Bis26X-IPZ、BisOTBP-CP、TekP4HBPA(テトラキスP-DO-BPA)、TrisPHAP、TrisP-PA、TrisP-PHBA、TrisP-SA、TrisOCRPA、(商品名、本州化学工業(株)製)、BIR-OC、BIP-PC、BIR-PC、BIR-PTBP、BIR-PCHP、BIP-BIOCF、4PC、BIR-BIPC-F、TEP-BIP-A(商品名、旭有機材工業(株)製)、1,4-ジヒドロキシナフタレン、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、1,7-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、2,7-ジヒドロキシナフタレン、2,4-ジヒドロキシキノリン、2,6-ジヒドロキシキノリン、2,3-ジヒドロキシキノキサリン、アントラセン-1,2,10-トリオール、アントラセン-1,8,9-トリオール、8-キノリノールなどのフェノール性水酸基を有する化合物が挙げられる。 The photosensitive resin composition of the present invention may be a positive-type photosensitive resin composition further comprising a dissolution promoter (J), and the photosensitizer (B) may comprise a photoacid generator (B1). The dissolution promoter (J) supplements the alkaline developability of the photosensitive resin composition, and can improve the sensitivity in the positive-type photosensitive resin composition. The dissolution promoter (J) is preferably a compound having a phenolic hydroxyl group, and examples of the compound include Bis-z, BisOC-Z, BisOPP-Z, BisP-CP, Bis26X-Z, BisOTBP-Z, BisOCHP-Z, BisOCR-CP, BisP-MZ, BisP-EZ, Bis26X-CP, BisP-Pz, BisP-IPZ, BisC RIPZ, BisOCP-IPZ, BisOIPP-CP, Bis26X-IPZ, BisOTBP-CP, TekP4HBPA (TetrakisP-DO-BPA), TrisPHAP, TrisP-PA, TrisP-PHBA, TrisP-SA, TrisOCRPA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), BIR-OC, BIP-PC, B Examples of compounds having a phenolic hydroxyl group include IR-PC, BIR-PTBP, BIR-PCHP, BIP-BIOCF, 4PC, BIR-BIPC-F, TEP-BIP-A (trade name, manufactured by Asahi Organic Chemicals Co., Ltd.), 1,4-dihydroxynaphthalene, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 1,7-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 2,4-dihydroxyquinoline, 2,6-dihydroxyquinoline, 2,3-dihydroxyquinoxaline, anthracene-1,2,10-triol, anthracene-1,8,9-triol, and 8-quinolinol.
 前記溶解促進剤(J)の含有量は、前記樹脂(A)100質量部に対して1~40質量部が好ましい。 The content of the dissolution promoter (J) is preferably 1 to 40 parts by mass per 100 parts by mass of the resin (A).
 本発明の感光性樹脂組成物は、さらに、界面活性剤(K)を含有してもよい。界面活性剤とは、親水性の構造及び疎水性の構造を有する化合物をいう。前記界面活性剤(K)を適量含有させることで、樹脂組成物の表面張力を任意に調整することができ、塗布時のレベリング性が向上し、塗膜の膜厚均一性を向上させることができる。前記界面活性剤(K)としては、フッ素樹脂系界面活性剤、シリコーン系界面活性剤、ポリオキシアルキレンエーテル系界面活性剤、又はアクリル樹脂系界面活性剤が好ましい。 The photosensitive resin composition of the present invention may further contain a surfactant (K). A surfactant refers to a compound having a hydrophilic structure and a hydrophobic structure. By including an appropriate amount of the surfactant (K), the surface tension of the resin composition can be adjusted as desired, the leveling property during application can be improved, and the thickness uniformity of the coating film can be improved. As the surfactant (K), a fluororesin-based surfactant, a silicone-based surfactant, a polyoxyalkylene ether-based surfactant, or an acrylic resin-based surfactant is preferable.
 本発明の感光性樹脂組成物に占める前記界面活性剤(K)の含有比率は、感光性樹脂組成物全体の0.001質量%以上が好ましく、0.005質量%以上がより好ましい。含有比率が0.001質量%以上であると、塗布時のレベリング性を向上させることができる。一方、界面活性剤の含有比率は、1質量%以下が好ましく、0.5質量%以下がより好ましい。含有比率が1質量%以下であると、塗布時に発生す欠陥を低減させることができる。 The content ratio of the surfactant (K) in the photosensitive resin composition of the present invention is preferably 0.001 mass% or more of the entire photosensitive resin composition, and more preferably 0.005 mass% or more. When the content ratio is 0.001 mass% or more, the leveling property during application can be improved. On the other hand, the content ratio of the surfactant is preferably 1 mass% or less, and more preferably 0.5 mass% or less. When the content ratio is 1 mass% or less, defects occurring during application can be reduced.
 本発明の感光性樹脂組成物は上記以外の添加剤(L)を含んでいてもよい。前記添加剤(L)としては例えば、国際公開第2019/087985号の[0386]~[0398]に記載の多官能チオール化合物、国際公開第2019/087985号の[0399]~[0402]に記載の増感剤、国際公開第2019/087985号の[0403]~[0406]に記載の重合禁止剤、国際公開第2019/087985号の[0413]~[0418]に記載のシランカップリング剤、国際公開第2019/087985号の[0419]~[0420]に記載の界面活性剤や、国際公開第2016/052268号の[0127]~[0130]や国際公開第2019/167461号の[0024]~[0025]に記載の無機粒子などが挙げられる。 The photosensitive resin composition of the present invention may contain additives (L) other than those described above. Examples of the additive (L) include the polyfunctional thiol compounds described in [0386] to [0398] of WO 2019/087985, the sensitizers described in [0399] to [0402] of WO 2019/087985, the polymerization inhibitors described in [0403] to [0406] of WO 2019/087985, the silane coupling agents described in [0413] to [0418] of WO 2019/087985, the surfactants described in [0419] to [0420] of WO 2019/087985, and the inorganic particles described in [0127] to [0130] of WO 2016/052268 and [0024] to [0025] of WO 2019/167461.
 本発明の感光性樹脂組成物を製造する方法としては、例えば、上記樹脂(A)、感光剤(B)、化合物(C)の各成分、および必要によりその他の成分をガラス製のフラスコやステンレス製の容器などに入れて、メカニカルスターラーなどによって撹拌溶解させる方法、超音波で溶解させる方法、遊星式撹拌脱泡装置で撹拌溶解させる方法などが挙げられる。 The photosensitive resin composition of the present invention can be produced, for example, by placing the resin (A), photosensitizer (B), compound (C), and other components, as well as other components as necessary, in a glass flask or stainless steel container, and stirring and dissolving them with a mechanical stirrer, dissolving them with ultrasonic waves, or stirring and dissolving them with a planetary stirring and degassing device.
 得られた感光性樹脂組成物は、漏過フィルターを用いて漏過し、ゴミや粒子を除去することが好ましい。前記漏過フィルターの孔径は、0.5~0.02μm、例えば0.5μm、0.2μm、0.1μm、0.05μm、0.02μmなどがあるが、これらに限定されない。前記漏過フィルターの材質には、ポリプロピレン(PP)、ポリエチレン(PE)、ナイロン(NY)、ポリテトラフルオロエチエレン(PTFE)などがあるが、ポリエチレンやナイロンが好ましい。感光性樹脂組成物中に無機粒子や顔料などを含有する場合、これらより大きな孔径の漏過フィルターを用いることが好ましい。 The obtained photosensitive resin composition is preferably filtered through a leak filter to remove dust and particles. The pore size of the leak filter is 0.5 to 0.02 μm, for example, 0.5 μm, 0.2 μm, 0.1 μm, 0.05 μm, 0.02 μm, etc., but is not limited to these. The material of the leak filter includes polypropylene (PP), polyethylene (PE), nylon (NY), polytetrafluoroethylene (PTFE), etc., with polyethylene and nylon being preferred. When inorganic particles or pigments are contained in the photosensitive resin composition, it is preferable to use a leak filter with a pore size larger than these.
 本発明の硬化物は、本発明の感光性樹脂組成物を硬化してなる。感光性樹脂組成物を硬化させる方法として、例えば感光性樹脂組成物を加熱して硬化する方法や、活性化学線を照射する方法などが挙げられる。本発明の感光性樹脂組成物を硬化させることで、硬化物の耐熱性や耐薬品性を向上させることができる。前記硬化物としては、膜の形状を有するもの、すなわち硬化膜が好ましい。 The cured product of the present invention is obtained by curing the photosensitive resin composition of the present invention. Examples of methods for curing the photosensitive resin composition include a method of curing the photosensitive resin composition by heating it, and a method of irradiating it with active actinic rays. By curing the photosensitive resin composition of the present invention, the heat resistance and chemical resistance of the cured product can be improved. The cured product is preferably in the form of a film, i.e., a cured film.
 次に、本発明の硬化物の製造方法について説明する。 Next, we will explain the method for producing the cured product of the present invention.
 本発明の硬化物の製造方法は、以下の工程を含むことが好ましい。
(1)上述した感光性樹脂組成物を基板に塗布し、感光性樹脂膜を形成する工程、
(2)該感光性樹脂膜を乾燥する工程、
(3)乾燥した感光性樹脂膜にフォトマスクを介して露光する工程、
(4)露光した感光性樹脂膜を現像する工程および
(5)現像した感光性樹脂膜を加熱処理する工程。
The method for producing a cured product of the present invention preferably includes the following steps.
(1) applying the above-mentioned photosensitive resin composition onto a substrate to form a photosensitive resin film;
(2) drying the photosensitive resin film;
(3) exposing the dried photosensitive resin film through a photomask;
(4) a step of developing the exposed photosensitive resin film; and (5) a step of heat treating the developed photosensitive resin film.
 上記(1)の工程では、本発明の感光性樹脂組成物をスピンコート法、スリットコート法、ディップコート法、スプレーコート法、印刷法などで基板に塗布し、感光性樹脂組成物の感光性樹脂膜を得る。塗布に先立ち、感光性樹脂組成物を塗布する基板を予め密着改良剤で前処理してもよい。例えば、密着改良剤をイソプロパノール、エタノール、メタノール、水、テトラヒドロフラン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、乳酸エチル、アジピン酸ジエチルなどの溶媒に0.5~20質量%溶解させた溶液を用いて、基板表面を処理する方法が挙げられる。基板表面の処理方法としては、スピンコート、スリットダイコート、バーコート、ディップコート、スプレーコート、蒸気処理などの方法が挙げられる。密着改良剤の具体例としては、例えば、国際公開第2019/065351号の[0127]に記載の密着改良剤などが挙げられる。 In the above step (1), the photosensitive resin composition of the present invention is applied to a substrate by a spin coating method, a slit coating method, a dip coating method, a spray coating method, a printing method, or the like to obtain a photosensitive resin film of the photosensitive resin composition. Prior to application, the substrate to which the photosensitive resin composition is applied may be pretreated with an adhesion improver. For example, a method of treating the substrate surface using a solution in which the adhesion improver is dissolved at 0.5 to 20 mass % in a solvent such as isopropanol, ethanol, methanol, water, tetrahydrofuran, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, ethyl lactate, or diethyl adipate is used. Methods for treating the substrate surface include spin coating, slit die coating, bar coating, dip coating, spray coating, and steam treatment. Specific examples of adhesion improvers include the adhesion improvers described in [0127] of International Publication No. 2019/065351.
 上記(2)の工程では、塗布した感光性樹脂膜を必要に応じて減圧乾燥処理を施し、その後、ホットプレート、オーブン、赤外線などを用いて、50℃~180℃の範囲で1分間~数時間の熱処理を施すことで感光性樹脂膜を得る。 In the above step (2), the applied photosensitive resin film is dried under reduced pressure as necessary, and then heat-treated at 50°C to 180°C for one minute to several hours using a hot plate, oven, infrared, etc. to obtain a photosensitive resin film.
 上記(3)の工程では、感光性樹脂膜上に所望のパターンを有するフォトマスクを通して化学線を照射する。露光に用いられる化学線としては紫外線、可視光線、電子線、X線などがあるが、本発明では水銀灯のi線(365nm)、h線(405nm)、g線(436nm)を用いることが好ましい。化学線を照射した後、露光後ベークをしても構わない。露光後ベークを行うことによって、現像後の解像度向上又は現像条件の許容幅増大などの効果が期待できる。露光後ベークは、オーブン、ホットプレート、赤外線、フラッシュアニール装置又はレーザーアニール装置などを使用することができる。露光後ベーク温度としては、50~180℃が好ましく、60~150℃がより好ましい。露光後ベーク時間は、10秒~数時間が好ましい。露光後ベーク時間が上記範囲内であると、反応が良好に進行し、現像時間を短くできる場合がある。 In the above step (3), the photosensitive resin film is irradiated with chemical radiation through a photomask having a desired pattern. Examples of chemical radiation used for exposure include ultraviolet light, visible light, electron beams, and X-rays. In the present invention, it is preferable to use i-rays (365 nm), h-rays (405 nm), and g-rays (436 nm) from a mercury lamp. After exposure to chemical radiation, post-exposure baking may be performed. By performing post-exposure baking, effects such as improved resolution after development or an increased tolerance range for development conditions can be expected. For post-exposure baking, an oven, a hot plate, infrared rays, a flash annealing device, or a laser annealing device can be used. The post-exposure baking temperature is preferably 50 to 180°C, more preferably 60 to 150°C. The post-exposure baking time is preferably 10 seconds to several hours. If the post-exposure baking time is within the above range, the reaction may proceed well and the development time may be shortened.
 上記(4)の工程では、露光した感光性樹脂膜を、現像液を用いて現像し感光性樹脂膜の一部を除去する。現像液としては、テトラメチルアンモニウムヒドロキシド(TMAH)、ジエタノールアミン、ジエチルアミノエタノール、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、トリエチルアミン、ジエチルアミン、メチルアミン、ジメチルアミン、酢酸ジメチルアミノエチル、ジメチルアミノエタノール、ジメチルアミノエチルメタクリレート、シクロヘキシルアミン、エチレンジアミン、ヘキサメチレンジアミンなどのアルカリ性を示す化合物の水溶液が好ましい。また場合によっては、これらのアルカリ水溶液にN-メチル-2-ピロリドン(NMP)、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、γ-ブチロラクトン(GBL)、ジメチルアクリルアミドなどの極性溶媒、メタノール、エタノール、イソプロパノールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類、シクロペンタノン、シクロヘキサノン、イソブチルケトン、メチルイソブチルケトンなどのケトン類などを単独あるいは数種を組み合わせたものを添加してもよい。現像方式としては、スプレー、パドル、浸漬、超音波等の方式が可能である。 In the above step (4), the exposed photosensitive resin film is developed using a developer to remove a portion of the photosensitive resin film. The developer is preferably an aqueous solution of an alkaline compound such as tetramethylammonium hydroxide (TMAH), diethanolamine, diethylaminoethanol, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, triethylamine, diethylamine, methylamine, dimethylamine, dimethylaminoethyl acetate, dimethylaminoethanol, dimethylaminoethyl methacrylate, cyclohexylamine, ethylenediamine, or hexamethylenediamine. In some cases, polar solvents such as N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, γ-butyrolactone (GBL), and dimethylacrylamide, alcohols such as methanol, ethanol, and isopropanol, esters such as ethyl lactate and propylene glycol monomethyl ether acetate, and ketones such as cyclopentanone, cyclohexanone, isobutyl ketone, and methyl isobutyl ketone may be added to these aqueous alkaline solutions, either alone or in combination. Development methods that can be used include spray, paddle, immersion, and ultrasonic methods.
 次に、現像によって形成したパターンを脱イオン水にてリンス処理をすることが好ましい。ここでもエタノール、イソプロピルアルコールなどのアルコール類、乳酸エチル、プロピレングリコールモノメチルエーテルアセテートなどのエステル類などを脱イオン水に加えてリンス処理をしてもよい。 Next, it is preferable to rinse the pattern formed by development with deionized water. Here too, alcohols such as ethanol and isopropyl alcohol, or esters such as ethyl lactate and propylene glycol monomethyl ether acetate may be added to the deionized water for rinsing.
 次に上記(5)の工程を行う。加熱処理により残留溶剤や耐熱性の低い成分を除去できるため、耐熱性および耐薬品性を向上させることができる。本発明の感光性樹脂組成物は、ポリイミド樹脂、ポリベンゾオキサゾール樹脂および/またはポリイミド樹脂の繰り返し単位とポリベンゾオキサゾール樹脂の繰り返し単位との共重合体樹脂を含有する場合、加熱処理によりイミド環、オキサゾール環を形成できるため、耐熱性および耐薬品性を向上させることができる。また、熱架橋剤を含有する場合は、加熱処理により熱架橋反応を進行させることができ、耐熱性および耐薬品性を向上させることができる。この加熱処理は温度を選び、段階的に昇温するか、ある温度範囲を選び連続的に昇温しながら5分間~5時間実施する。一例としては、150℃、250℃で各30分ずつ熱処理する。あるいは室温より300℃まで2時間かけて直線的に昇温するなどの方法が挙げられる。本発明においての加熱処理条件としては180℃以上が好ましく、200℃以上がより好ましく、230℃以上がさらに好ましく、240℃以上が特に好ましい。また加熱処理条件は、400℃以下が好ましく、350℃以下がより好ましく、300℃以下がさらに好ましい。 Next, the above step (5) is carried out. Residual solvents and components with low heat resistance can be removed by the heat treatment, so that heat resistance and chemical resistance can be improved. When the photosensitive resin composition of the present invention contains a polyimide resin, a polybenzoxazole resin, and/or a copolymer resin of a repeating unit of a polyimide resin and a repeating unit of a polybenzoxazole resin, an imide ring and an oxazole ring can be formed by the heat treatment, so that heat resistance and chemical resistance can be improved. In addition, when a thermal crosslinking agent is contained, a thermal crosslinking reaction can be promoted by the heat treatment, so that heat resistance and chemical resistance can be improved. This heat treatment is carried out by selecting a temperature and gradually increasing the temperature, or by selecting a certain temperature range and continuously increasing the temperature for 5 minutes to 5 hours. As an example, heat treatment is performed at 150°C and 250°C for 30 minutes each. Alternatively, a method of linearly increasing the temperature from room temperature to 300°C over 2 hours can be mentioned. The heat treatment conditions in the present invention are preferably 180°C or higher, more preferably 200°C or higher, even more preferably 230°C or higher, and particularly preferably 240°C or higher. The heat treatment conditions are preferably 400°C or less, more preferably 350°C or less, and even more preferably 300°C or less.
 次に、本発明の硬化物を製造する方法の例として、本発明の感光性樹脂組成物をシート状に形成した感光性シートを用いて、硬化物の一形態である硬化膜を製造する方法について説明する。なお、ここで、感光性シートとは、剥離性フィルム上に感光性樹脂組成物を塗布し、乾燥して得られたシート状の感光性樹脂組成物をいう。 Next, as an example of a method for producing a cured product of the present invention, a method for producing a cured film, which is one form of a cured product, using a photosensitive sheet formed from the photosensitive resin composition of the present invention in a sheet form will be described. Note that the photosensitive sheet here refers to a sheet-like photosensitive resin composition obtained by applying the photosensitive resin composition onto a peelable film and drying it.
 本発明の感光性樹脂組成物をシート状に形成した感光性シートを用いる場合、前記感光性シートに保護フィルムを有する場合にはこれを剥離し、感光性シートと基板を対向させ、熱圧着により貼り合わせて、感光性樹脂膜を得る。感光性シートは、本発明の感光性樹脂組成物を剥離性フィルムであるポリエチレンテレフタラート等により構成される支持フィルム上に塗布、乾燥させて得ることができる。 When using a photosensitive sheet formed from the photosensitive resin composition of the present invention in a sheet form, if the photosensitive sheet has a protective film, this is peeled off, and the photosensitive sheet is placed opposite a substrate and bonded together by thermocompression to obtain a photosensitive resin film. The photosensitive sheet can be obtained by applying the photosensitive resin composition of the present invention onto a support film made of a peelable film such as polyethylene terephthalate, followed by drying.
 熱圧着は、熱プレス処理、熱ラミネート処理、熱真空ラミネート処理等によって行うことができる。貼り合わせ温度は、基板への密着性、埋め込み性の点から40℃以上が好ましい。また、感光性シートが感光性を有する場合、貼り合わせ時に感光性シートが硬化し、露光・現像工程におけるパターン形成の解像度が低下することを防ぐために、貼り合わせ温度は140℃以下が好ましい。 Thermocompression bonding can be performed by a heat press process, a heat lamination process, a heat vacuum lamination process, etc. The lamination temperature is preferably 40°C or higher in terms of adhesion to the substrate and embeddability. Furthermore, if the photosensitive sheet has photosensitivity, the lamination temperature is preferably 140°C or lower to prevent the photosensitive sheet from hardening during lamination, which would reduce the resolution of the pattern formation in the exposure and development process.
 感光性シートを基板に貼り合せて得られた感光性樹脂膜は、上述の感光性樹脂膜を露光する工程、露光された感光性樹脂膜を現像する工程、および、加熱硬化をする工程にならって硬化膜を形成することができる。 The photosensitive resin film obtained by laminating a photosensitive sheet to a substrate can be formed into a hardened film by following the steps of exposing the photosensitive resin film to light, developing the exposed photosensitive resin film, and hardening it by heating, as described above.
 本発明の硬化物の他の態様は、樹脂(A)を含む硬化物であって、式(1)で表される化合物および/または式(2)で表される化合物(C)を合計で、硬化物の100質量%に対して0.00001質量%以上0.01質量%以下の範囲で含有する。 Another embodiment of the cured product of the present invention is a cured product containing resin (A) and containing a compound represented by formula (1) and/or a compound (C) represented by formula (2) in a total amount of 0.00001% by mass or more and 0.01% by mass or less relative to 100% by mass of the cured product.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
式(1)および式(2)中、RおよびRは、それぞれ独立に、炭素数1~10の1価の飽和炭化水素基を示す。式(2)中、R、RおよびRは、それぞれ独立に、水素原子または炭素数1~10の1価の飽和炭化水素基を示す。RとRは、それぞれ独立に、水素原子、炭素数1~10の1価の飽和炭化水素基、または炭素数1~10の1価のヒドロキシアルキル基を示す。aは0または1を示す。 In formula (1) and formula (2), R 1 and R 2 each independently represent a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms. In formula (2), R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms. R 6 and R 7 each independently represent a hydrogen atom, a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms, or a monovalent hydroxyalkyl group having 1 to 10 carbon atoms. a represents 0 or 1.
 硬化物中の、式(1)で表される化合物および式(2)で表される化合物(C)の含有量は、実施例に記載の手法により測定が可能である。また、硬化物に含まれる式(1)で表される化合物および式(2)で表される化合物の量は合計で、硬化物の100質量%に対して0.00005質量%以上0.008質量%以下が好ましく、0.0001質量%以上0.005質量%以下がより好ましい。 The content of the compound represented by formula (1) and the compound (C) represented by formula (2) in the cured product can be measured by the method described in the Examples. The total amount of the compound represented by formula (1) and the compound represented by formula (2) contained in the cured product is preferably 0.00005% by mass or more and 0.008% by mass or less, and more preferably 0.0001% by mass or more and 0.005% by mass or less, relative to 100% by mass of the cured product.
 上記硬化物は、有機EL表示装置に用いた際に信頼性の向上が可能である。硬化物が化合物(C)を含むことで有機EL表示装置の信頼性が向上するメカニズムの詳細は不明であるが、発明者らは下記メカニズムを推測する。式(1)で表される化合物はケトエステル化合物であるため、カルボニル基とエステル結合の間で酸性化合物とキレートを形成することができる。これにより、信頼性試験中に発生する酸性ガスが硬化物から発生するのを抑え込むことが可能となり、有機EL表示装置の電極の腐食が抑制され、信頼性が向上するものと考える。また、式(2)で表される化合物はケトエステル化合物のカルボニル基と、水酸基を分子内に2つ以上有する化合物を反応させてケタール化した化合物であり、硬化物を形成する過程の加熱工程、および信頼性試験中において、ケタールの一部が脱離して式(1)と同じ化合物が生成していると推測される。したがって、式(2)で表される化合物においても、式(1)の化合物と同様にキレート効果を発現することが可能であり、有機EL表示装置の信頼性向上が可能になるものと考える。 The above cured product can improve the reliability when used in an organic EL display device. Although the details of the mechanism by which the reliability of an organic EL display device is improved by the inclusion of compound (C) in the cured product are unknown, the inventors speculate on the following mechanism. Since the compound represented by formula (1) is a ketoester compound, it can form a chelate with an acidic compound between the carbonyl group and the ester bond. This makes it possible to suppress the generation of acidic gas from the cured product during a reliability test, suppresses corrosion of the electrodes of the organic EL display device, and improves reliability. In addition, the compound represented by formula (2) is a ketalized compound obtained by reacting the carbonyl group of a ketoester compound with a compound having two or more hydroxyl groups in the molecule, and it is speculated that a part of the ketal is eliminated to generate the same compound as formula (1) during the heating process in the process of forming the cured product and during the reliability test. Therefore, it is believed that the compound represented by formula (2) can also exhibit the chelate effect like the compound of formula (1), and the reliability of the organic EL display device can be improved.
 上記硬化物に含まれる化合物(C)としては、式(19)~(22)からなる群より選択される少なくとも1つを含むことが好ましい。 The compound (C) contained in the cured product preferably contains at least one selected from the group consisting of formulas (19) to (22).
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 本発明の有機EL表示装置は、本発明の硬化物を備える。好ましくは、本発明の有機EL表示装置は、本発明の硬化物を画素分割層、電極絶縁層、配線絶縁層、層間絶縁層、TFT平坦化層、電極平坦化層、配線平坦化層、TFT保護層、電極保護層、配線保護層、ゲート絶縁層、カラーフィルタ、ブラックマトリックス、及びブラックカラムスペーサーからなる群より選ばれる一種類以上として備える。特に、黒色剤を含む、本発明の感光性樹脂組成物を硬化してなる硬化物は遮光性に優れ、有機EL表示装置の耐光信頼性を向上できるため、本発明の有機EL表示装置は、黒色剤を含む本発明の硬化物を画素分割層、電極絶縁層、配線絶縁層、層間絶縁層、TFT平坦化層、電極平坦化層、配線平坦化層、TFT保護層、電極保護層、配線保護層及びゲート絶縁層からなる群より選ばれる一種類以上として備えることが好ましく、黒色剤を含む本発明の硬化物を画素分割層、層間絶縁層、TFT平坦化層及びTFT保護層からなる群より選ばれる一種類以上として備えることがより好ましい。 The organic EL display device of the present invention comprises the cured product of the present invention. Preferably, the organic EL display device of the present invention comprises the cured product of the present invention as one or more selected from the group consisting of a pixel dividing layer, an electrode insulating layer, a wiring insulating layer, an interlayer insulating layer, a TFT planarizing layer, an electrode planarizing layer, a wiring planarizing layer, a TFT protective layer, an electrode protective layer, a wiring protective layer, a gate insulating layer, a color filter, a black matrix, and a black column spacer. In particular, the cured product obtained by curing the photosensitive resin composition of the present invention containing a black agent has excellent light-shielding properties and can improve the light resistance reliability of the organic EL display device. Therefore, the organic EL display device of the present invention preferably comprises the cured product of the present invention containing a black agent as one or more layers selected from the group consisting of a pixel division layer, an electrode insulating layer, a wiring insulating layer, an interlayer insulating layer, a TFT planarizing layer, an electrode planarizing layer, a wiring planarizing layer, a TFT protective layer, an electrode protective layer, a wiring protective layer, and a gate insulating layer, and more preferably comprises the cured product of the present invention containing a black agent as one or more layers selected from the group consisting of a pixel division layer, an interlayer insulating layer, a TFT planarizing layer, and a TFT protective layer.
 本発明の電子部品は、本発明の硬化物を備える。また、本発明の半導体装置は、本発明の硬化物を備える。具体的には、本発明の硬化物は、SAWフィルターなどの電子部品の層間絶縁膜や、半導体装置に含まれる半導体素子のパッシベーション膜、表面保護膜、層間絶縁膜などの用途に好適に用いられるが、これに制限されない。なお、ここでいう半導体装置とは、半導体素子やそれを集積した集積回路を部品として含む装置を指す。本発明の感光性樹脂組成物を硬化して得られる硬化物は機械強度にも優れるため、本発明の硬化物を有することにより冷熱サイクル試験後においても、クラックの発生しない高信頼性の電子部品または半導体装置を得ることができる。本発明の電子部品または半導体装置の構成例として、例えば、特開2020-66651号公報の[0190]~[0208]や国際公開第2021/085321号の[0183]~[0189]に記載の電子部品または半導体装置が挙げられるが、これらのみに限定されない。 The electronic component of the present invention comprises the cured product of the present invention. The semiconductor device of the present invention comprises the cured product of the present invention. Specifically, the cured product of the present invention is suitable for use as an interlayer insulating film of an electronic component such as a SAW filter, a passivation film of a semiconductor element included in a semiconductor device, a surface protective film, an interlayer insulating film, etc., but is not limited thereto. The semiconductor device referred to here refers to a device that includes a semiconductor element or an integrated circuit integrating the semiconductor element as a component. The cured product obtained by curing the photosensitive resin composition of the present invention has excellent mechanical strength, so that a highly reliable electronic component or semiconductor device that does not crack even after a thermal cycle test can be obtained by having the cured product of the present invention. Examples of the configuration of the electronic component or semiconductor device of the present invention include, for example, the electronic components or semiconductor devices described in [0190] to [0208] of JP 2020-66651 A and [0183] to [0189] of WO 2021/085321 A, but are not limited thereto.
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの態様のみに限定されない。なお、用いた化合物のうち略語を使用しているものについて、名称を以下に示す。 The present invention will be explained in more detail below with reference to examples and comparative examples, but the present invention is not limited to these embodiments. The names of the compounds used, for which abbreviations are used, are shown below.
 (酸二無水物)
ODPA:4,4’-オキシジフタル酸無水物
6FDA:4,4’-(ヘキサフルオロイソプロピリデン)ジフタル酸無水物
TDA-100:1,3,3a,4,5,9b-ヘキサヒドロ-5(テトラヒドロ-2,5-ジオキソ-3-フラニル)ナフト[1,2-c]フラン-1,3-ジオン。
(Acid dianhydride)
ODPA: 4,4'-oxydiphthalic anhydride 6FDA: 4,4'-(hexafluoroisopropylidene)diphthalic anhydride TDA-100: 1,3,3a,4,5,9b-hexahydro-5(tetrahydro-2,5-dioxo-3-furanyl)naphtho[1,2-c]furan-1,3-dione.
 (ジアミン化合物)
BAHF: 2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン(セントラル硝子(株)製)
BAP:2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン(和歌山精化工業(株)製)
AZ-FDA:9,9-ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン
SiDA:1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン。
(Diamine Compound)
BAHF: 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (manufactured by Central Glass Co., Ltd.)
BAP: 2,2-bis(3-amino-4-hydroxyphenyl)propane (manufactured by Wakayama Seika Kogyo Co., Ltd.)
AZ-FDA: 9,9-bis(3-amino-4-hydroxyphenyl)fluorene SiDA: 1,3-bis(3-aminopropyl)tetramethyldisiloxane.
 (ジカルボン酸クロリド)
OBBOC:4,4’-オキシビス安息香酸クロリド(イハラニッケイ化学工業(株)製)。
(Dicarboxylic acid chloride)
OBBOC: 4,4'-oxybisbenzoic acid chloride (manufactured by Ihara Nikkei Chemical Industry Co., Ltd.).
 (酸二無水物、ジカルボン酸クロリドと反応する末端封止材)
OAP:2-アミノフェノール(東京化成工業(株)製)
MAP:3-アミノフェノール。
(End-capping material that reacts with acid dianhydrides and dicarboxylic acid chlorides)
OAP: 2-aminophenol (Tokyo Chemical Industry Co., Ltd.)
MAP: 3-aminophenol.
 (ビスアミノフェノール化合物と反応する末端封止材)
MAOC:メタクリロイルクロリド(東京化成工業(株)製)
 (溶剤)
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
PGMEA:プロピレングリコールモノメチルエーテルアセテート
PGME:プロピレングリコールモノメチルエーテル
EL:乳酸エチル
NS100:レブリン酸エチル(NXTLEVVEL BiochemBV社製)
NS200:レブリン酸ブチル(NXTLEVVEL BiochemBV社製)
NS300:レブリン酸エチルプロピレングリコールケタール(式(23)、NXTLEVVEL BiochemBV社製)
NS400:レブリン酸エチルグリセリンケタール(式(24)、NXTLEVVEL BiochemBV社製)
(End-capping material that reacts with bisaminophenol compounds)
MAOC: methacryloyl chloride (Tokyo Chemical Industry Co., Ltd.)
(solvent)
NMP: N-methyl-2-pyrrolidone GBL: γ-butyrolactone PGMEA: propylene glycol monomethyl ether acetate PGME: propylene glycol monomethyl ether EL: ethyl lactate NS100: ethyl levulinate (NXTLEVEL Biochem BV)
NS200: Butyl levulinate (NXTLEVEL Biochem BV)
NS300: Ethyl levulinate propylene glycol ketal (formula (23), manufactured by NXTLEVVEL Biochem BV)
NS400: Ethyl levulinate glycerol ketal (formula (24), manufactured by NXTLEVVEL Biochem BV)
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
LVM:レブリン酸メチル(東京化成工業(株)製)
LVP:レブリン酸プロピル(東京化成工業(株)製)
MPA:3-メトキシ-N,N-ジメチルプロパンアミド(KJケミカルズ(株)製)。
LVM: Methyl levulinate (Tokyo Chemical Industry Co., Ltd.)
LVP: Propyl levulinate (Tokyo Chemical Industry Co., Ltd.)
MPA: 3-methoxy-N,N-dimethylpropanamide (KJ Chemicals Co., Ltd.).
 (その他)
ITO:酸化インジウムスズ
TMAH:水酸化テトラメチルアンモニウム
DMFDMA:N,N-ジメチルホルムアミドジメチルアセタール
BPAF:ビスフェノールAF。
(others)
ITO: indium tin oxide TMAH: tetramethylammonium hydroxide DMFDMA: N,N-dimethylformamide dimethyl acetal BPAF: bisphenol AF.
 [共通する処理条件]
 以降の測定・評価方法、および実施例・比較例において、次に挙げる処理は、特に断りのない限り、下記の条件で行った。
[Common processing conditions]
In the following measurement and evaluation methods and examples and comparative examples, the following treatments were carried out under the following conditions unless otherwise specified.
 (1)ITO基板の前処理
 ガラス上に、ITOをスパッタにより100nm成膜したガラス基板(ジオマテック社製;以下、「ITO基板」)は、卓上型光表面処理装置(PL16-110;セン特殊光源社製)を用いて、100秒間UV-O洗浄処理をして使用した。Siウエハ(エレクトロニクス エンド マテリアルズ コーポレーション社製)は、ホットプレート(HP-1SA;アズワン社製)を用いて、130℃で2分間加熱して脱水ベーク処理をして使用した。
(1) Pretreatment of ITO Substrate A glass substrate (manufactured by Geomatec Co., Ltd.; hereafter referred to as "ITO substrate") with 100 nm ITO formed on the glass by sputtering was subjected to a UV- O3 cleaning treatment for 100 seconds using a tabletop optical surface treatment device (PL16-110; manufactured by Sen Special Light Sources Co., Ltd.). A Si wafer (manufactured by Electronics and Materials Corporation) was heated at 130°C for 2 minutes using a hot plate (HP-1SA; manufactured by AS ONE Corporation) for dehydration and baking treatment before use.
 (2)現像・リンス
 プリベーク膜に対して、フォトリソ用小型自動現像装置(滝沢産業社製AD-2000)を用いて、2.38質量%TMAH水溶液のアルカリ現像液で60秒間シャワー現像し、次いで脱イオン水で30秒間リンスした。
(2) Development and Rinse The prebaked film was shower-developed with an alkaline developer of 2.38% by mass TMAH aqueous solution for 60 seconds using a small automatic photolithography developing apparatus (Takizawa Sangyo Co., Ltd. AD-2000), and then rinsed with deionized water for 30 seconds.
 (3)加熱処理(キュア)
 現像膜に対して、高温イナートガスオーブン(光洋サーモシステム(株)製INH-9CD-S)を用いて、窒素雰囲気下250℃で1時間加熱して、硬化物の一形態である硬化膜とした。
(3) Heat treatment (cure)
The developed film was heated in a high-temperature inert gas oven (INH-9CD-S, manufactured by Koyo Thermo Systems Co., Ltd.) at 250° C. for 1 hour under a nitrogen atmosphere to form a cured film, which is one form of a cured product.
 [測定・評価方法]
 (1)ポリイミド樹脂の重量平均分子量
 GPC分析装置を用い、下記条件によりポリスチレン換算の重量平均分子量(Mw)を測定して求めた。
測定装置:Waters2695(Waters社製)
カラム温度:50℃
流速:0.4mL/min
検出器:2489 UV/Vis Detector(測定波長 260nm)
展開溶剤:NMP(塩化リチウム0.21質量%、リン酸0.48質量%含有)
ガードカラム:TOSOH TSK guard column(東ソー(株)製)
カラム:TOSOH TSK-GEL a-2500およびTOSOH TSK-GEL a-4000(いずれも東ソー(株)製)の直列。
測定回数:2回(平均値をポリイミドの重量平均分子量とした)。
[Measurement and evaluation method]
(1) Weight Average Molecular Weight of Polyimide Resin The weight average molecular weight (Mw) in terms of polystyrene was measured using a GPC analyzer under the following conditions.
Measuring device: Waters 2695 (manufactured by Waters Corporation)
Column temperature: 50 ° C.
Flow rate: 0.4 mL / min
Detector: 2489 UV/Vis Detector (measurement wavelength 260 nm)
Developing solvent: NMP (containing 0.21% by mass of lithium chloride and 0.48% by mass of phosphoric acid)
Guard column: TOSOH TSK guard column (manufactured by Tosoh Corporation)
Column: TOSOH TSK-GEL a-2500 and TOSOH TSK-GEL a-4000 (both manufactured by Tosoh Corporation) in series.
Number of measurements: 2 (average value was taken as the weight average molecular weight of polyimide).
 (2)イミド環閉環率(RIM(%))
 各合成例で得られたポリイミド樹脂を濃度35質量%になるようにGBLに溶解した。この溶液を4インチのシリコンウエハ上にスピンナ(ミカサ(株)製1H-DX)を用いてスピンコート法で塗布し、次いで120℃のホットプレートで3分ベークし、厚さ4~5μmの樹脂膜を作製した。この樹脂膜付きウエハを2分割し、一方をクリーンオーブン(光洋サーモシステム(株)製CLH-21CD-S)を用いて、窒素気流下(酸素濃度20ppm以下)において140℃で30分、次いでさらに昇温して320℃で1時間キュアして、イミド環を完全に閉環させた。赤外分光光度計((株)堀場製作所製FT-720)を用いてキュア前後の樹脂膜の透過赤外吸収スペクトルをそれぞれ測定し、ポリイミドに起因するイミド構造の吸収ピーク(1,780cm-1付近、1,377cm-1付近)の存在を確認の上、1,377cm-1付近のピーク強度(キュア前:S、キュア後:T)を求めた。ピーク強度(S)をピーク強度(T)で割ったピーク強度比を算出し、熱処理前ポリマー中のイミド基の含量、すなわちイミド環閉環率を求めた。
IM(%)=(S/T)×100 。
(2) Imide ring closure rate (R IM (%))
The polyimide resin obtained in each synthesis example was dissolved in GBL to a concentration of 35% by mass. This solution was applied to a 4-inch silicon wafer by spin coating using a spinner (1H-DX manufactured by Mikasa Co., Ltd.), and then baked on a hot plate at 120°C for 3 minutes to produce a resin film with a thickness of 4 to 5 μm. This wafer with the resin film was divided into two, and one of them was cured in a clean oven (CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.) at 140°C for 30 minutes under a nitrogen stream (oxygen concentration 20 ppm or less), and then further heated to 320°C for 1 hour to completely close the imide ring. The transmission infrared absorption spectra of the resin film before and after curing were measured using an infrared spectrophotometer (FT-720, manufactured by Horiba, Ltd.) to confirm the presence of absorption peaks of the imide structure due to polyimide (near 1,780 cm - 1 and near 1,377 cm -1 ), and the peak intensities near 1,377 cm -1 (before curing: S, after curing: T) were determined. The peak intensity ratio was calculated by dividing the peak intensity (S) by the peak intensity (T), and the content of imide groups in the polymer before heat treatment, i.e., the imide ring closure rate, was determined.
RIM (%)=(S/T)×100.
 (3)顔料の粒子径
 ナノ粒子解析装置を用い、顔料分散液中、または組成物中の顔料の粒子径を測定した。なお、顔料の粒子径は下記条件により測定し、D50(メジアン径)の値を表1に記載した。
測定装置:ナノ粒子解析装置 SZ-100((株)堀場製作所製)
レーザー波長:532nm
サンプル希釈溶剤:PGMEA
サンプル希釈倍率:250倍(質量比)
溶剤粘度:1.25
溶剤屈折率:1.40
測定温度:25℃
測定モード:散乱光
演算条件:多分散、ブロード
測定回数:2回(平均値を顔料の粒子径とした)。
(3) Pigment Particle Size The particle size of the pigment in the pigment dispersion or in the composition was measured using a nanoparticle analyzer. The pigment particle size was measured under the following conditions, and the D50 (median size) value is shown in Table 1.
Measurement equipment: Nanoparticle analyzer SZ-100 (manufactured by Horiba, Ltd.)
Laser wavelength: 532 nm
Sample dilution solvent: PGMEA
Sample dilution ratio: 250 times (mass ratio)
Solvent viscosity: 1.25
Solvent refractive index: 1.40
Measurement temperature: 25°C
Measurement mode: scattered light Calculation conditions: polydispersion, broad Number of measurements: 2 (average value was taken as the pigment particle size).
 (4)膜厚測定
 表面粗さ・輪郭形状測定機(SURFCOM1400D;東京精密社製)を用いて、測定倍率を10,000倍、測定長さを1.0mm、測定速度を0.30mm/sとして、膜厚を測定した。
(4) Film Thickness Measurement Film thickness was measured using a surface roughness/contour shape measuring instrument (SURFCOM1400D; manufactured by Tokyo Seimitsu Co., Ltd.) at a measurement magnification of 10,000 times, a measurement length of 1.0 mm, and a measurement speed of 0.30 mm/s.
 (5)遮光性の評価
 透明ガラス基板である(AGCテクノグラス(株)製“テンパックス”)の表面に、各実施例および比較例で得られたポジ型感光性樹脂組成物を、最終的に得られる硬化膜の厚さが1.5μmとなるように回転数を調節してスピンコーターで塗布して塗布膜を得た。ホットプレート(SCW-636;大日本スクリーン製造社製)を用いて塗布膜を大気圧下120℃で120秒間プリベークして、プリベーク膜を得た。
(5) Evaluation of light-shielding properties The positive photosensitive resin compositions obtained in each Example and Comparative Example were applied to the surface of a transparent glass substrate ("Tempax" manufactured by AGC Technoglass Co., Ltd.) using a spin coater, adjusting the rotation speed so that the final cured film had a thickness of 1.5 μm, to obtain a coating film. The coating film was prebaked at 120° C. for 120 seconds under atmospheric pressure using a hot plate (SCW-636; manufactured by Dainippon Screen Mfg. Co., Ltd.) to obtain a prebaked film.
 次に、プリベーク膜に対して、現像・リンスおよび乾燥を行い、ベタ状の現像膜を得た。現像膜を加熱処理(キュア)して、膜厚1.5μmのベタ状の硬化膜を具備する光学特性評価用基板を得た。 The prebaked film was then developed, rinsed, and dried to obtain a solid developed film. The developed film was then heat-treated (cured) to obtain a substrate for evaluating optical properties, which had a solid cured film with a thickness of 1.5 μm.
 X-rite 361T(visual)densitometerを用いて、各実施例および比較例により得られた硬化膜の入射光および透過光それぞれの強度を測定し、以下の式より硬化膜のOD値を算出した。
OD値=log10(I/I)
ここに、
:入射光強度
I:透過光強度。
The intensities of incident light and transmitted light of the cured films obtained in each of the Examples and Comparative Examples were measured using an X-rite 361T (visual) densitometer, and the OD value of the cured films was calculated according to the following formula.
OD value = log 10 (I 0 /I)
Here,
I 0 : Incident light intensity I: Transmitted light intensity.
 また、(4)膜厚測定の方法により硬化膜の膜厚を測定し、OD値/膜厚を計算することにより、各硬化膜の膜厚1μmあたりの遮光性を評価した。 In addition, (4) the thickness of the cured film was measured using the film thickness measurement method, and the light blocking ability per 1 μm of film thickness of each cured film was evaluated by calculating the OD value/film thickness.
 (6)ポジ型感光性樹脂組成物の感度評価
 実施例および比較例で得られたポジ型感光性樹脂組成物を、100mm×100mmのITO基板上にスピンコーター(MS-A100;ミカサ(株)製)を用いてプリベーク膜の膜厚が約1.8μmとなるように回転数を調節してスピンコーティングにより塗布した後、ブザーホットプレート(HPD-3000BZN;アズワン(株)製)を用いて100℃で120秒間プリベークし、膜厚約1.8μmのプリベーク膜を作製した。得られたプリベーク膜に対して、両面アライメント片面露光装置(“マスクアライナー”PEM-6M;ユニオン光学(株)製)を用いて、ポジマスク(HOYA(株)製、ストライプ設計線幅20μm)を介して、紫外線を150mJ/cm(i線照度計の値)を最大露光量とし、5mJ/cmごとに露光量を下げて露光し、現像・リンスし、乾燥することで、感光性樹脂膜が所定のパターンに形成されたパターニング基板を得た。それぞれの露光量のパターニング基板を用いて感度および現像残渣の評価を行った。
(6) Sensitivity Evaluation of Positive Photosensitive Resin Composition The positive photosensitive resin compositions obtained in the Examples and Comparative Examples were applied onto a 100 mm x 100 mm ITO substrate by spin coating using a spin coater (MS-A100; manufactured by Mikasa Co., Ltd.) while adjusting the rotation speed so that the thickness of the prebaked film would be approximately 1.8 μm. The substrate was then prebaked at 100°C for 120 seconds using a buzzer hot plate (HPD-3000BZN; manufactured by AS ONE Co., Ltd.) to produce a prebaked film having a thickness of approximately 1.8 μm. The obtained prebaked film was exposed to ultraviolet light through a positive mask (manufactured by HOYA Corporation, stripe design line width 20 μm) using a double-sided alignment single-sided exposure device ("Mask Aligner"PEM-6M; manufactured by Union Optical Co., Ltd.) with a maximum exposure of 150 mJ/ cm2 (value on an i-line illuminometer) and decreasing the exposure amount in increments of 5 mJ/ cm2 , followed by development, rinsing, and drying to obtain a patterned substrate on which a photosensitive resin film was formed in a predetermined pattern. The patterned substrates with each exposure amount were used to evaluate sensitivity and development residue.
 得られた現像後膜の開口部の残渣の有無を光学顕微鏡にて観察した。開口幅がマスク設計と同じ線幅(20μm)になる最低露光量を感度とした。下記のように判定し、感度が95mJ/cm未満となる、A、B及びCを合格とした。
A:感度が75mJ/cm未満
B:感度が75mJ/cm以上85mJ/cm未満
C:感度が85mJ/cm以上95mJ/cm未満
D:感度が95mJ/cm以上。
The presence or absence of residues in the openings of the resulting developed film was observed using an optical microscope. The minimum exposure dose at which the opening width became the same line width (20 μm) as the mask design was taken as the sensitivity. The sensitivity was judged as follows, and A, B, and C, which had a sensitivity of less than 95 mJ/ cm2 , were considered to be acceptable.
A: Sensitivity is less than 75 mJ/ cm2 . B: Sensitivity is 75 mJ/ cm2 or more and less than 85 mJ/ cm2 . C: Sensitivity is 85 mJ/ cm2 or more and less than 95 mJ/ cm2 . D: Sensitivity is 95 mJ/ cm2 or more.
 (7)現像残渣評価
 上記(6)と同様の方法で、実施例および比較例で得られたポジ型感光性樹脂組成物をITO基板上に塗布してプリベークし、膜厚約1.8μmのプリベーク膜を作製した。得られたプリベーク膜に対して、両面アライメント片面露光装置(マスクアライナー PEM-6M;ユニオン光学社製)を用いて、感度測定用のグレースケールマスク(MDRM MODEL 4000-5-FS;Opto-Line International社製。2~50μmの、1:1のライン&スペースのパターンを有する。それぞれ、1%、5%、10%、12%、14%、16%、18%、20%、22%、25%、30%、35%、40%、50%および60%の透過率となるエリアを有する。)を介して、超高圧水銀灯のi線(波長365nm)、h線(波長405nm)、及びg線(波長436nm)で、露光量を200mJ/cm(i線照度計の値)としてパターニング露光した後、現像・リンスし、乾燥することで、感光性樹脂組成物の現像後膜を作製した。
(7) Evaluation of Development Residues In the same manner as in (6) above, the positive photosensitive resin compositions obtained in the Examples and Comparative Examples were applied onto an ITO substrate and prebaked to prepare a prebaked film having a thickness of about 1.8 μm. The obtained prebaked film was exposed to the i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) of an ultra-high pressure mercury lamp at a dose of 200 mJ/cm2 using a double-sided alignment single-sided exposure device (Mask Aligner PEM-6M; manufactured by Union Optical Co., Ltd.) through a grayscale mask for sensitivity measurement (MDRM MODEL 4000-5-FS; manufactured by Opto-Line International Co., Ltd., having a 1:1 line & space pattern of 2 to 50 μm, each having areas with transmittances of 1%, 5%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 25%, 30%, 35%, 40%, 50%, and 60 %). (value by an i-line illuminometer), the film was developed, rinsed, and dried to prepare a developed film of the photosensitive resin composition.
 FPD/LSI検査顕微鏡(OPTIPHOT-300;ニコン社製)を用いて、作製した現像後膜の解像パターンを観察し、開口幅がマスク設計と同じ線幅(20μm)になる最低露光量の箇所の、20μmのライン・アンド・スペースパターンの開口部における残渣の有無を観察した。下記のように判定し、開口部における残渣の存在面積が10%未満となる、A、B、及びCを合格とした。
A:開口部における残渣無し(1%未満)
B:開口部における残渣の存在面積が1%以上5%未満
C:開口部における残渣の存在面積が5%以上10%未満
D:開口部における残渣の存在面積が10%以上。
Using an FPD/LSI inspection microscope (OPTIPHOT-300; manufactured by Nikon Corporation), the resolved pattern of the prepared post-development film was observed to check for the presence or absence of residues in the openings of the 20 μm line-and-space pattern at the location of the minimum exposure dose where the opening width becomes the same line width (20 μm) as the mask design. The results were judged as follows, and A, B, and C, where the area of the residues in the openings was less than 10%, were deemed to be acceptable.
A: No residue in the opening (less than 1%)
B: The area of the opening where the residue exists is 1% or more and less than 5%. C: The area of the opening where the residue exists is 5% or more and less than 10%. D: The area of the opening where the residue exists is 10% or more.
 (8)耐薬品性評価
 各実施例および比較例で得られた感光性樹脂組成物を無アルカリガラス板(日本電気硝子社製OA-10)上に、スピンコート法により任意の回転数で塗布し感光性樹脂膜を得て、乾燥工程として120℃のホットプレート上で2分間プリベークし、感光性樹脂膜を得た。次に現像・リンスした。現像・リンスした感光性樹脂膜付き基板を加熱処理(キュア)して膜厚2.0μmの硬化膜を得た。その後、硬化膜を、東京応化工業社製剥離液104に60℃で10分間浸漬処理を行い、処理前後の膜厚を測定し、浸漬処理による膜減り量を求めた。下記のように判定し、膜減り量が0.10μm未満となる、A、B及びCを合格とした。
A:膜減り量が0.03μm未満
B:膜減り量が0.03μm以上0.06μm未満
C:膜減り量が0.06μm以上0.10μm未満
D:膜減り量が0.10μm以上。
(8) Chemical Resistance Evaluation The photosensitive resin composition obtained in each Example and Comparative Example was applied to an alkali-free glass plate (OA-10 manufactured by Nippon Electric Glass Co., Ltd.) at an arbitrary rotation speed by spin coating to obtain a photosensitive resin film, which was then pre-baked for 2 minutes on a hot plate at 120°C as a drying process to obtain a photosensitive resin film. Then, the film was developed and rinsed. The developed and rinsed substrate with the photosensitive resin film was heat-treated (cured) to obtain a cured film having a film thickness of 2.0 μm. The cured film was then immersed in a stripping solution 104 manufactured by Tokyo Ohka Kogyo Co., Ltd. at 60°C for 10 minutes, the film thickness before and after the treatment was measured, and the amount of film loss due to the immersion treatment was determined. The evaluation was performed as follows, and A, B, and C, which were less than 0.10 μm in the amount of film loss, were deemed to be acceptable.
A: The amount of film loss is less than 0.03 μm. B: The amount of film loss is 0.03 μm or more and less than 0.06 μm. C: The amount of film loss is 0.06 μm or more and less than 0.10 μm. D: The amount of film loss is 0.10 μm or more.
 (9)有機EL表示装置の発光信頼性の評価
 実施例1~23および比較例1~3により得られた有機EL表示装置を、表示部(発光面)を上にして80℃に加熱したホットプレート上に置き、10mA/cmで直流駆動にて発光させてから1時間後の画素発光面積率(発光画素の面積に対する発光部の面積率)を評価した後に電源を一旦オフとして消灯させた。次いで、擬似太陽光としてキセノンランプを光源とする、波長420nmにおける照度3.0W/mの光を絶えず表示部に照射し続けた。照射を開始してから100時間後、500時間後に再び発光させ、中央部に位置する発光画素部10箇所について画素発光面積率を測定し、その平均値を算出した。1時間後の画素発光面積率を基準として、高い画素発光面積率を維持できるほど発光信頼性が優れているとし、以下の判定基準に基づいて評価し、発光画素の面積に対する発光部の面積率が65%以上となるA~Cを合格、Dを不合格とした。
A:発光画素の面積に対する発光部の面積率が95%以上
B:発光画素の面積に対する発光部の面積率が80%以上95%未満
C:発光画素の面積に対する発光部の面積率65%以上80%未満
D:発光画素の面積に対する発光部の面積率65%未満。
(9) Evaluation of the Light Emitting Reliability of the Organic EL Display Device The organic EL display devices obtained in Examples 1 to 23 and Comparative Examples 1 to 3 were placed on a hot plate heated to 80° C. with the display section (light emitting surface) facing up, and were driven by direct current at 10 mA/cm 2 to emit light. After that, the pixel light emitting area ratio (area ratio of the light emitting section to the area of the light emitting pixel) was evaluated one hour later, and the power was once turned off to turn off the light. Next, light with an illuminance of 3.0 W/m 2 at a wavelength of 420 nm, using a xenon lamp as a light source, was continuously irradiated onto the display section as simulated sunlight. After 100 hours and 500 hours from the start of irradiation, the display section was irradiated again, and the pixel light emitting area ratio was measured for 10 light emitting pixel sections located in the center, and the average value was calculated. Based on the pixel light emitting area ratio after one hour, the higher the pixel light emitting area ratio is maintained, the better the light emitting reliability is, and the display section was evaluated based on the following criteria, with A to C, where the area ratio of the light emitting section to the area of the light emitting pixel is 65% or more, being deemed to be pass, and D being deemed to be fail.
A: The area ratio of the light-emitting portion to the area of the light-emitting pixel is 95% or more. B: The area ratio of the light-emitting portion to the area of the light-emitting pixel is 80% or more but less than 95%. C: The area ratio of the light-emitting portion to the area of the light-emitting pixel is 65% or more but less than 80%. D: The area ratio of the light-emitting portion to the area of the light-emitting pixel is less than 65%.
 (10)破断伸度評価
 実施例51および比較例51で得られた樹脂組成物を8インチのシリコンウエハ上に、120℃で3分間のプリベーク後の膜厚が11μmとなるように塗布現像装置(東京エレクトロン(株)製ACT-8)を用いてスピンコート法で塗布およびプリベークした後、イナートオーブン(光洋サーモシステム(株)製CLH-21CD-S)を用いて、酸素濃度20ppm以下で3.5℃/分で250℃まで昇温し、250℃で1時間熱処理を行い、硬化膜を形成させた。温度が50℃以下になったところでウエハを取り出し、45質量%のフッ化水素酸に1分間浸漬することで、ウエハより硬化膜を剥がした。この膜を幅1.5cm、長さ5cmの短冊状に切断し、テンシロン((株)オリエンテック製RTM-100)を用いて、室温23.0℃、湿度45.0%RH下で引張速度5mm/分で引っ張り、破断伸度の測定を行なった。測定は1検体につき10枚の短冊について行ない、結果から上位5点の平均値を求めた。下記のように判定し、破断伸度が20%以上となる、A,BおよびCを合格とした。
A:破断伸度の値が40%以上
B:破断伸度の値が30%以上40%未満
C:破断伸度の値が20%以上30%未満
D:破断伸度の値が20%未満。
(10) Elongation at Break The resin compositions obtained in Example 51 and Comparative Example 51 were applied to an 8-inch silicon wafer by spin coating using a coating and developing apparatus (ACT-8 manufactured by Tokyo Electron Limited) so that the film thickness after pre-baking for 3 minutes at 120°C was 11 μm, and then pre-baked. The wafer was then heated to 250°C at a rate of 3.5°C/min in an inert oven (CLH-21CD-S manufactured by Koyo Thermo Systems Co., Ltd.) with an oxygen concentration of 20 ppm or less, and heat-treated at 250°C for 1 hour to form a cured film. When the temperature reached 50°C or less, the wafer was removed and immersed in 45% by mass hydrofluoric acid for 1 minute to peel off the cured film from the wafer. This film was cut into strips 1.5 cm wide and 5 cm long, and the elongation at break was measured by pulling at a tensile speed of 5 mm/min at room temperature of 23.0°C and humidity of 45.0% RH using a Tensilon (RTM-100, manufactured by Orientec Co., Ltd.). Measurements were performed on 10 strips per specimen, and the average of the top 5 points was calculated from the results. The results were judged as follows, with A, B, and C, which were elongations at break of 20% or more, being deemed to be acceptable.
A: The breaking elongation value is 40% or more. B: The breaking elongation value is 30% or more but less than 40%. C: The breaking elongation value is 20% or more but less than 30%. D: The breaking elongation value is less than 20%.
 (11)冷熱試験におけるクラック耐性評価
 銅配線での剥離評価を行うにあたり、以下の評価基板を準備した。8インチシリコンウエハ上に、厚み5μm、直径90μmの円柱型銅配線を、銅配線の中心間距離が150μmとなるように等間隔に作成した。これを評価基板として使用した。
(11) Evaluation of crack resistance in thermal tests The following evaluation substrate was prepared for evaluating peeling in copper wiring. Cylindrical copper wiring with a thickness of 5 μm and a diameter of 90 μm was created on an 8-inch silicon wafer at equal intervals so that the center-to-center distance between the copper wirings was 150 μm. This was used as the evaluation substrate.
 実施例51および比較例51で得られた樹脂組成物を上記評価基板上に、120℃で3分間の熱処理後の膜厚が8~12μmとなるよう、塗布現像装置(東京エレクトロン(株)製ACT-8)を用いてスピンコート法で塗布およびプリベークを行い、樹脂膜を作製した。プリベークはいずれも120℃で3分間行った。 The resin compositions obtained in Example 51 and Comparative Example 51 were applied to the above evaluation substrates by spin coating using a coating and developing device (ACT-8 manufactured by Tokyo Electron Ltd.) so that the film thickness after heat treatment at 120°C for 3 minutes would be 8 to 12 μm, and then prebaked to produce resin films. Prebaking was performed at 120°C for 3 minutes in both cases.
 その後、樹脂膜をイナートオーブン(光洋サーモシステム(株)製、CLH-21CD-S)を用いて、窒素気流下において酸素濃度20ppm以下で50℃から3.5℃/分で、250℃まで昇温し、続けて250℃で1時間熱処理を行ない、樹脂膜を硬化させて硬化膜を得た。なお、プリベーク後の膜厚は、光干渉式膜厚測定装置(大日本スクリーン製造(株)製“ラムダエース”STM-602)を使用し、屈折率を1.629として測定し、硬化膜の膜厚は、屈折率1.773で測定した。 Then, the resin film was heated in an inert oven (KOYO THERMO SYSTEMS CO., LTD., CLH-21CD-S) from 50°C to 250°C at a rate of 3.5°C/min under a nitrogen stream with an oxygen concentration of 20 ppm or less, and then heat-treated at 250°C for 1 hour to harden the resin film and obtain a cured film. The film thickness after pre-baking was measured using an optical interference film thickness measuring device (Dainippon Screen Mfg. Co., Ltd., "Lambda Ace" STM-602) with a refractive index of 1.629, and the film thickness of the cured film was measured with a refractive index of 1.773.
 温度が50℃以下になったところで評価基板(以後試料とする)を取り出した。 When the temperature dropped below 50°C, the evaluation board (hereafter referred to as the sample) was removed.
 次に、試料を冷熱サイクル試験機(条件:-65℃/30min~150℃/30min)に投入し、200サイクル処理を行った。その後、試料を取り出し、光学顕微鏡を用いて硬化膜のクラックの有無を観察した。基板中央、基板4端部を各2箇所ずつ計10箇所観察し、下記のように判定した。クラック発生数が4個以下となる、A,BおよびCを合格とした。
A:クラック発生数が0個
B:クラック発生数が1~2個
C:クラック発生数が3~4個
D:クラック発生数が5個以上。
Next, the sample was placed in a thermal cycle tester (conditions: -65°C/30 min to 150°C/30 min) and subjected to 200 cycles. After that, the sample was removed and the presence or absence of cracks in the cured film was observed using an optical microscope. A total of 10 locations were observed, two locations each at the center of the substrate and at the four ends of the substrate, and the results were judged as follows. A, B, and C, which show four or fewer cracks, were deemed to be pass.
A: 0 cracks occurred. B: 1 to 2 cracks occurred. C: 3 to 4 cracks occurred. D: 5 or more cracks occurred.
 (12)硬化物に含まれる化合物(C)の量の測定
 硬化物に含まれる化合物(C)の量を下記の手順で測定した。
手順1)脱離ガスの捕集
 (8)で得た無アルカリガラス基板付きの硬化物を短冊状にカットし、加熱容器に採取した。続いて、加熱容器ごと下記条件で加熱し、発生したガスを吸着管に捕集した。試料を用いず同様の操作を行った検体をブランクとした。
・加熱温度:400℃
・加熱時間:60 min
・雰囲気:窒素50mL/min
手順2)熱脱離GC/MS
 手順1の方法で吸着管に捕集したガスを熱脱離GC/MSで測定した。熱脱離GC/MSの条件を以下に示す。
・熱脱離装置:TD-100(Markes社製)
・一次熱脱離条件:脱離温度260℃、トラップ温度-27℃、15min
・二次熱脱離条件:320℃、5min
・GC装置:7890A(Agilent社製)
・カラム:DB-5MS 30m×0.25mmID 膜厚1μm(Agilent J&W社製)
・カラム温度:40℃で4分間保持後、昇温速度10℃/minで昇温し、280℃で22分間保持した。
・MS 装置:5975C(Agilent社製)
・イオン化法:電子イオン化(EI)
・モニターイオン:m/z 29~600
・LVMの定量イオン:m/z 130
・LVPの定量イオン:m/z 158
・NS100の定量イオン:m/z 144
・NS200の定量イオン:m/z 172
・NS300の定量イオン:m/z 202
・NS400の定量イオン:m/z 218
・イオン源温度:230℃
・標準品:LVM、LVP(東京化成工業(株)製)、NS100、NS200、NS300、NS400(NXTLEVVEL BiochemBV社製)
標準品をメタノールで溶解して標準溶液を作成した。この溶液を適宜希釈し作成した標準溶液から、1μLを採取して吸着管に注入した後、試料と同条件で測定し、検量線を作成して定量を行った。
(12) Measurement of the Amount of Compound (C) in the Cured Product The amount of compound (C) in the cured product was measured by the following procedure.
Step 1) Collection of desorbed gas The cured product with the non-alkali glass substrate obtained in (8) was cut into strips and placed in a heating vessel. The vessel was then heated under the following conditions, and the generated gas was collected in an adsorption tube. A specimen in which the same procedure was carried out without using a sample was used as a blank.
Heating temperature: 400°C
Heating time: 60 min
Atmosphere: Nitrogen 50 mL/min
Step 2) Thermal desorption GC/MS
The gas collected in the adsorption tube by the method of Procedure 1 was measured by thermal desorption GC/MS. The conditions for thermal desorption GC/MS are shown below.
Thermal desorption apparatus: TD-100 (Markes)
Primary thermal desorption conditions: desorption temperature 260°C, trap temperature -27°C, 15 min
Secondary thermal desorption conditions: 320°C, 5 min
GC device: 7890A (Agilent)
Column: DB-5MS 30m x 0.25mm ID, film thickness 1μm (Agilent J&W)
Column temperature: After being held at 40° C. for 4 minutes, the temperature was increased at a rate of 10° C./min and held at 280° C. for 22 minutes.
MS device: 5975C (Agilent)
Ionization method: Electron ionization (EI)
Monitor ion: m / z 29 to 600
Quantitative ion of LVM: m / z 130
Quantitative ion of LVP: m / z 158
NS100 quantification ion: m / z 144
NS200 quantification ion: m / z 172
NS300 quantification ion: m / z 202
NS400 quantification ion: m / z 218
Ion source temperature: 230° C.
Standard products: LVM, LVP (Tokyo Chemical Industry Co., Ltd.), NS100, NS200, NS300, NS400 (NXTLEVEL Biochem BV)
The standard was dissolved in methanol to prepare a standard solution, which was then appropriately diluted and 1 μL of the solution was taken and injected into an adsorption tube, which was then measured under the same conditions as the samples, and a calibration curve was prepared for quantification.
 [製造・合成・調製例]
 (製造例1)微細化ペリレンブラック顔料PBk-1
 1,000.00gの“Spectrasense(登録商標)”Black K0087(BASF社製)を、大気圧下/空気下250℃のオーブンで1時間加熱し、室温となるまで冷却した後にボールミルで乾燥凝集を解きほぐし、紫味がかった黒色顔料を得た。次いで、以下の手順でソルベントソルトミリングによる物理的微細化処理を行った。
[Production, synthesis and preparation examples]
(Production Example 1) Fine Perylene Black Pigment PBk-1
1,000.00 g of "Spectrasense (registered trademark)" Black K0087 (manufactured by BASF) was heated in an oven at 250°C under atmospheric pressure/air for 1 hour, cooled to room temperature, and then deagglomerated in a ball mill to obtain a purplish black pigment. Then, physical micronization treatment was carried out by solvent salt milling according to the following procedure.
 500.00gの上記の黒色顔料と、2.5kgの摩砕材(230℃1時間の加熱処理をして予め水分を0.1質量%とした平均一次粒子径0.5μmの塩化ナトリウム粒子)、250.00gのジプロピレングリコールとを混合して、ステンレス製1ガロンニーダー(井上製作所製)に仕込み、90℃で8時間混練した。この混練物を5Lの温水に投入し、70℃に維持しながら1時間攪拌してスラリー状とし、イオンクロマトグラフィで定量される塩素イオンが50質量ppm以下となるまで濾過、水洗を繰り返して、摩砕材およびジプロピレングリコールを除去した。さらに、大気圧下/空気下100℃のオーブンで6時間乾燥させた後にボールミルで乾燥凝集を解きほぐし、式(26)で表される化合物および式(27)で表される化合物の異性体混合物からなる微細化ペリレンブラック顔料PBk-1を得た。PBk-1は平均一次粒子径25nm、最大一次粒子径98nm、平均アスペクト比1.1であった。なお、PBk-1の化学構造はMALDI-TOF MSを用いて分析した。 500.00 g of the above black pigment was mixed with 2.5 kg of grinding material (sodium chloride particles with an average primary particle size of 0.5 μm, which had been heated at 230° C. for 1 hour to reduce the moisture content to 0.1% by mass), and 250.00 g of dipropylene glycol, and the mixture was charged into a stainless steel 1-gallon kneader (manufactured by Inoue Seisakusho) and kneaded at 90° C. for 8 hours. The kneaded product was added to 5 L of warm water and stirred for 1 hour while maintaining the temperature at 70° C. to form a slurry. The mixture was filtered and repeatedly washed with water until the chloride ion content measured by ion chromatography was 50 ppm by mass or less, and the grinding material and dipropylene glycol were removed. The mixture was then dried in an oven at 100° C. under atmospheric pressure/air for 6 hours, and the dried aggregates were loosened in a ball mill to obtain a finely divided perylene black pigment PBk-1 consisting of an isomer mixture of the compound represented by formula (26) and the compound represented by formula (27). PBk-1 had an average primary particle diameter of 25 nm, a maximum primary particle diameter of 98 nm, and an average aspect ratio of 1.1. The chemical structure of PBk-1 was analyzed using MALDI-TOF MS.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 (合成例1)分散剤A
 顆粒状の色素であるDaiwa Red 178(ダイワ化成(株)製)を乳鉢で磨り潰し、ステンレス製ふるい濾過器(開口径38μm)にかけて粗大分を除去してパウダーを得た。得られたパウダー50.00gを、PGME:水の質量比が1:1の混合溶液950.00gに添加して30分間撹拌して予備攪拌液を得た。1.0mmφのジルコニアビーズ(“トレセラム(登録商標)”東レ(株)製)が充填率75体積%でベッセル内に充填された横型ビーズミル(“DYNO-MILL(登録商標)”Willy A.Bachofen社製)に予備攪拌液を送液し、循環方式で湿式メディア分散処理を周速10m/sで2時間行った後、濾過フィルタに通液させた薄い赤色の濾液を廃棄し、イオンクロマトグラフィで定量される硫酸イオンが50ppmを下回るまで水洗を行い、濾物を集めた。濾物を減圧下80℃で24時間乾燥させて、固形分100%のパウダー状の分散剤Aを得た。
(Synthesis Example 1) Dispersant A
A granular pigment, Daiwa Red 178 (manufactured by Daiwa Chemical Industries, Ltd.), was ground in a mortar and passed through a stainless steel sieve filter (opening diameter 38 μm) to remove coarse particles to obtain a powder. 50.00 g of the obtained powder was added to 950.00 g of a mixed solution of PGME:water in a mass ratio of 1:1 and stirred for 30 minutes to obtain a preliminary stirred solution. The preliminary stirred liquid was sent to a horizontal bead mill ("DYNO-MILL (registered trademark)" manufactured by Willy A. Bachofen) whose vessel was filled with 1.0 mmφ zirconia beads ("TORACERAM (registered trademark)" manufactured by Toray Industries, Inc.) at a filling rate of 75% by volume, and a wet media dispersion treatment was carried out by a circulation method at a peripheral speed of 10 m/s for 2 hours. After that, the light red filtrate that had been passed through a filtration filter was discarded, and the mixture was washed with water until the sulfate ion concentration as determined by ion chromatography fell below 50 ppm, and the residue was collected. The residue was dried under reduced pressure at 80°C for 24 hours to obtain a powdery dispersant A with a solid content of 100%.
 分散剤Aは式(28)で表される化合物、式(29)で表される化合物および式(30)で表される化合物の質量比率42:55:3の混合物である。なお、分散剤Aの化学構造はMALDI-TOF MSを用いて分析し、分散剤Aを構成する化合物の質量比率はLC-MSを用いて分析した。 Dispersant A is a mixture of a compound represented by formula (28), a compound represented by formula (29), and a compound represented by formula (30) in a mass ratio of 42:55:3. The chemical structure of dispersant A was analyzed using MALDI-TOF MS, and the mass ratio of the compounds constituting dispersant A was analyzed using LC-MS.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 (合成例2)キノンジアジド化合物QD-a
 乾燥窒素気流下、21.22g(0.05mol)のTrisP-PA(本州化学工業(株)製)と、36.27g(0.135mol)の5-ナフトキノンジアジドスルホニル酸クロリドを、450gの1,4-ジオキサンに溶解させ、室温にした。ここに、15.18gのトリエチルアミンを、50gの1,4-ジオキサンに溶解させた液を、系内が35℃以下となるように滴下した。滴下後、30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入した。その後濾過を行い、析出した沈殿物を集めた。この沈殿物を真空乾燥機で乾燥させ、式(31)で表されるキノンジアジド化合物QD-aを得た。
(Synthesis Example 2) Quinone diazide compound QD-a
Under a dry nitrogen stream, 21.22 g (0.05 mol) of TrisP-PA (manufactured by Honshu Chemical Industry Co., Ltd.) and 36.27 g (0.135 mol) of 5-naphthoquinone diazide sulfonyl chloride were dissolved in 450 g of 1,4-dioxane and brought to room temperature. A solution of 15.18 g of triethylamine dissolved in 50 g of 1,4-dioxane was added dropwise to the system so that the temperature was 35°C or less. After the dropwise addition, the mixture was stirred at 30°C for 2 hours. The triethylamine salt was filtered, and the filtrate was poured into water. Then, filtration was performed to collect the precipitate. The precipitate was dried in a vacuum dryer to obtain a quinone diazide compound QD-a represented by formula (31).
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
式(31)中、*は酸素原子との結合部位を表す。 In formula (31), * represents the bonding site with the oxygen atom.
 (合成例3)キノンジアジド化合物QD-b
 36.27g(0.135mol)の5-ナフトキノンジアジドスルホニル酸クロリドに替えて、36.27g(0.135mol)の4-ナフトキノンジアジドスルホニル酸クロリドを用いた以外はキノンジアジド化合物QD-aの合成例と同じ方法で合成を行い、式(32)で表されるキノンジアジド化合物QD-bを得た。
(Synthesis Example 3) Quinone diazide compound QD-b
The synthesis was carried out in the same manner as in the synthesis example of the quinone diazide compound QD-a, except that 36.27 g (0.135 mol) of 4-naphthoquinone diazide sulfonyl chloride was used instead of 36.27 g (0.135 mol) of 5-naphthoquinone diazide sulfonyl chloride, to obtain a quinone diazide compound QD-b represented by formula (32).
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
式(32)中、*は酸素原子との結合部位を表す。 In formula (32), * represents the bonding site with the oxygen atom.
 (合成例4)2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]ヘキサフルオロプロパン(HA)
 BAHF18.3g(0.05モル)をアセトン100mLおよびプロピレンオキシド(東京化成(株)製)17.4g(0.3モル)に溶解させ、-15℃に冷却した。ここに3-ニトロベンゾイルクロリド(東京化成(株)製)20.4g(0.11モル)をアセトン100mLに溶解させた溶液を滴下した。滴下終了後、-15℃で4時間撹拌し、その後室温に戻した。析出した白色固体をろ別し、50℃で真空乾燥した。
(Synthesis Example 4) 2,2-bis[3-(3-aminobenzamido)-4-hydroxyphenyl]hexafluoropropane (HA)
18.3 g (0.05 mol) of BAHF was dissolved in 100 mL of acetone and 17.4 g (0.3 mol) of propylene oxide (manufactured by Tokyo Chemical Industry Co., Ltd.), and cooled to -15°C. A solution of 20.4 g (0.11 mol) of 3-nitrobenzoyl chloride (manufactured by Tokyo Chemical Industry Co., Ltd.) dissolved in 100 mL of acetone was added dropwise thereto. After completion of the dropwise addition, the mixture was stirred at -15°C for 4 hours, and then returned to room temperature. The precipitated white solid was filtered off and dried in vacuum at 50°C.
 得られた白色固体30gを300mLのステンレスオートクレーブに入れ、メチルセルソルブ250mLに分散させ、5%パラジウム-炭素(和光純薬(株)製)を2.0g加えた。ここに水素を風船で導入して、還元反応を室温で行った。約2時間後、風船がこれ以上しぼまないことを確認して反応を終了させた。反応終了後、濾過して触媒であるパラジウム化合物を除き、ロータリーエバポレーターで濃縮し、下記式で表されるヒドロキシル基含有ジアミン化合物(HA)を得た。 30 g of the resulting white solid was placed in a 300 mL stainless steel autoclave and dispersed in 250 mL of methyl cellosolve, and 2.0 g of 5% palladium-carbon (Wako Pure Chemical Industries, Ltd.) was added. Hydrogen was then introduced using a balloon, and the reduction reaction was carried out at room temperature. After approximately 2 hours, the reaction was terminated when it was confirmed that the balloon was no longer deflating. After the reaction was completed, the palladium compound catalyst was removed by filtration, and the mixture was concentrated using a rotary evaporator to obtain a hydroxyl group-containing diamine compound (HA) represented by the following formula.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
 (合成例5)2,2-ビス[3-(3-アミノベンズアミド)-4-ヒドロキシフェニル]プロパン(HB)
 BAHF18.3g(0.05モル)をBAP12.9g(0.05モル)に変更したこと以外は合成例4と同様にして、下記式で表されるヒドロキシル基含有ジアミン化合物(HB)を得た。
(Synthesis Example 5) 2,2-bis[3-(3-aminobenzamido)-4-hydroxyphenyl]propane (HB)
A hydroxyl group-containing diamine compound (HB) represented by the following formula was obtained in the same manner as in Synthesis Example 4, except that 18.3 g (0.05 mol) of BAHF was changed to 12.9 g (0.05 mol) of BAP.
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 (合成例6)ポリアミド酸エステル(P1)
 乾燥窒素気流下、三口フラスコに6FDAを16.09g(0.036mol)、100gのNMPに溶解させた。ここに合成例4で得られたHAを17.52g(0.029mol)、20gのNMPとともに加えて、40℃で2時間反応させた。次に末端封止剤としてMAPを1.38g(0.013mol)、20gのNMPとともに加え、40℃で1時間反応させた。その後、DMFDMAを12.95g(0.109mol)、20gのNMPで希釈した溶液を20分かけて滴下した。滴下後、40℃で2時間撹拌した。撹拌終了後、溶液を25℃まで冷却した後、溶液を脱イオン水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、脱イオン水で3回洗浄した後、50℃の真空乾燥機で20時間乾燥し、ポリイミドの一形態である、ポリアミド酸エステル(P1)の粉末を得た。ポリアミド酸エステル(P1)の重量平均分子量は32,500、イミド化率は15%であった。
(Synthesis Example 6) Polyamic acid ester (P1)
Under a dry nitrogen stream, 16.09 g (0.036 mol) of 6FDA was dissolved in 100 g of NMP in a three-neck flask. 17.52 g (0.029 mol) of HA obtained in Synthesis Example 4 was added together with 20 g of NMP, and the mixture was reacted at 40 ° C. for 2 hours. Next, 1.38 g (0.013 mol) of MAP was added together with 20 g of NMP as a terminal blocking agent, and the mixture was reacted at 40 ° C. for 1 hour. Then, a solution diluted with 12.95 g (0.109 mol) of DMFDMA and 20 g of NMP was added dropwise over 20 minutes. After the dropwise addition, the mixture was stirred at 40 ° C. for 2 hours. After the stirring was completed, the solution was cooled to 25 ° C., and then the solution was poured into 2 L of deionized water to obtain a white precipitate. The precipitate was collected by filtration, washed three times with deionized water, and then dried for 20 hours in a vacuum dryer at 50° C. to obtain a powder of polyamic acid ester (P1), which is a form of polyimide. The weight average molecular weight of the polyamic acid ester (P1) was 32,500, and the imidization rate was 15%.
 (合成例7)ポリアミド酸エステル(P2)
 NMPの代わりにGBLを使用したこと以外はポリアミド酸エステル(P1)の合成例と同様にして、ポリイミドの一形態である、ポリアミド酸エステル(P2)の粉末を得た。ポリアミド酸エステル(P2)の重量平均分子量は31,000、イミド化率は20%であった。
(Synthesis Example 7) Polyamic acid ester (P2)
A powder of polyamic acid ester (P2), which is a form of polyimide, was obtained in the same manner as in the synthesis example of polyamic acid ester (P1), except that GBL was used instead of NMP. The weight average molecular weight of the polyamic acid ester (P2) was 31,000, and the imidization rate was 20%.
 (合成例8)ポリイミド樹脂(P3)
 NMPの代わりに1,3-ジメチル-2-イミダゾリジノンを使用したこと以外はポリイミド樹脂(P1)の合成例と同様にして、ポリイミド樹脂(P3)の粉末を得た。ポリイミド樹脂(P3)の重量平均分子量は31,300、イミド化率は20%であった。
(Synthesis Example 8) Polyimide resin (P3)
A powder of polyimide resin (P3) was obtained in the same manner as in the synthesis example of polyimide resin (P1), except that 1,3-dimethyl-2-imidazolidinone was used instead of NMP. The weight average molecular weight of polyimide resin (P3) was 31,300, and the imidization rate was 20%.
 (合成例9)ポリイミド樹脂(P4)
  乾燥窒素気流下、三口フラスコに6FDAを16.09g(0.036mol)、100gのNMPに溶解させた。ここにHAを17.52g(0.029mol)、20gのNMPとともに加えて、40℃で2時間反応させた。次に末端封止剤としてMAPを1.38g(0.013mol)、20gのNMPとともに加え、40℃で1時間反応させ、次いで180℃で4時間攪拌した。撹拌終了後、溶液を脱イオン水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、脱イオン水で3回洗浄した後、50℃の真空乾燥機で20時間乾燥し、ポリイミド樹脂(P4)の粉末を得た。ポリイミド樹脂(P4)の重量平均分子量は35,500、イミド化率は99%であった。
(Synthesis Example 9) Polyimide resin (P4)
Under a dry nitrogen stream, 16.09 g (0.036 mol) of 6FDA was dissolved in 100 g of NMP in a three-neck flask. 17.52 g (0.029 mol) of HA was added together with 20 g of NMP and reacted at 40 ° C for 2 hours. Next, 1.38 g (0.013 mol) of MAP was added as an end-capping agent together with 20 g of NMP and reacted at 40 ° C for 1 hour, and then stirred at 180 ° C for 4 hours. After stirring, the solution was poured into 2 L of deionized water to obtain a white precipitate. The precipitate was collected by filtration, washed three times with deionized water, and then dried in a vacuum dryer at 50 ° C for 20 hours to obtain a powder of polyimide resin (P4). The weight average molecular weight of polyimide resin (P4) was 35,500, and the imidization rate was 99%.
 (合成例10)ポリイミド樹脂(P5)
 NMPの代わりにレブリン酸メチルを使用したこと以外はポリイミド樹脂(P4)の合成例と同様にして、ポリイミド樹脂(P5)の粉末を得た。ポリイミド樹脂P5の重量平均分子量は31,700、イミド化率は98%であった。
(Synthesis Example 10) Polyimide resin (P5)
A powder of polyimide resin (P5) was obtained in the same manner as in the synthesis example of polyimide resin (P4), except that methyl levulinate was used instead of NMP. The weight average molecular weight of polyimide resin P5 was 31,700, and the imidization rate was 98%.
 (合成例11)ポリアミド酸エステル(P6)
 乾燥窒素気流下、合成例4で得られたヒドロキシル基含有ジアミン(HA)21.0g(0.035モル)およびSiDA 0.54g(0.0022モル)をMPA 100gに溶解した。ここにODPA 13.4g(0.043モル)をMPA20gとともに加え、40℃で2時間撹拌した。そして末端封止剤としてMAP 0.95g(0.0087モル)をMPA 20gとともに加えて、40℃で1時間反応させた。その後、DMFDMA 10.3g(0.087モル)をMPA 10gで希釈した溶液を滴下した。滴下後、40℃で2時間撹拌を続けた。撹拌終了後、溶液を脱イオン水2Lに投入して、ポリマー固体の沈殿をろ過で集めた。さらに脱イオン水2Lで3回洗浄を行い、集めたポリマー固体を50℃の真空乾燥機で72時間乾燥し、ポリイミドの一形態である、ポリアミド酸エステル(P6)を得た。ポリアミド酸エステル(P6)の重量平均分子量は33,000、イミド化率は10%であった。
(Synthesis Example 11) Polyamic acid ester (P6)
Under a dry nitrogen stream, 21.0 g (0.035 mol) of the hydroxyl group-containing diamine (HA) obtained in Synthesis Example 4 and 0.54 g (0.0022 mol) of SiDA were dissolved in 100 g of MPA. 13.4 g (0.043 mol) of ODPA was added together with 20 g of MPA, and the mixture was stirred at 40° C. for 2 hours. Then, 0.95 g (0.0087 mol) of MAP was added together with 20 g of MPA as an end-capping agent, and the mixture was reacted at 40° C. for 1 hour. Then, a solution in which 10.3 g (0.087 mol) of DMFDMA was diluted with 10 g of MPA was dropped. After the dropwise addition, the mixture was stirred for 2 hours at 40° C. After the stirring was completed, the solution was poured into 2 L of deionized water, and the precipitate of the polymer solid was collected by filtration. The polymer solid was then washed three times with 2 L of deionized water and dried in a vacuum dryer at 50° C. for 72 hours to obtain a polyamic acid ester (P6), which is a form of polyimide. The weight average molecular weight of the polyamic acid ester (P6) was 33,000 and the imidization rate was 10%.
 (合成例12)ポリヒドロキシアミド(P7)
 乾燥窒素気流下、BAHF 33.0g(0.090モル)をMPA 115gに溶解させた。ここにNA 4.43g(0.027モル)をMPA 15gと共に加え、85℃で2時間撹拌した。攪拌後、溶液を-15℃まで冷却した。ここにOBBOC 22.6g(0.077モル)をMPA 50gに溶解させた溶液を、内部の温度が0℃を越えないように滴下した。滴下終了後、60分間、-15℃で攪拌を続けたのち、次いで室温で120分間攪拌を行った。反応終了後、溶液を脱イオン水2Lに投入して白色の沈殿を集めた。この沈殿をろ過で集めて、脱イオン水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリベンゾオキサゾール樹脂の一形態である、ポリヒドロキシアミド(P7)を得た。ポリヒドロキシアミド(P8)の重量平均分子量は28,000であった。
(Synthesis Example 12) Polyhydroxyamide (P7)
Under a dry nitrogen stream, 33.0 g (0.090 mol) of BAHF was dissolved in 115 g of MPA. 4.43 g (0.027 mol) of NA was added to the mixture along with 15 g of MPA, and the mixture was stirred at 85°C for 2 hours. After stirring, the solution was cooled to -15°C. A solution of 22.6 g (0.077 mol) of OBBOC dissolved in 50 g of MPA was added dropwise to the mixture so that the internal temperature did not exceed 0°C. After the dropwise addition, the mixture was stirred for 60 minutes at -15°C, and then stirred at room temperature for 120 minutes. After the reaction was completed, the solution was poured into 2 L of deionized water to collect a white precipitate. The precipitate was collected by filtration, washed three times with deionized water, and then dried in a vacuum dryer at 80°C for 24 hours to obtain polyhydroxyamide (P7), which is a form of polybenzoxazole resin. The weight average molecular weight of polyhydroxyamide (P8) was 28,000.
 (合成例13)ポリヒドロキシアミド(P8)
 乾燥窒素気流下、BAHF 29.2g(0.80モル)、OAP 3.07g(0.028モル)をMPA 120gに溶解させ、溶液の温度を-15℃まで冷却した。ここにOBBOC 27.7g(0.094モル)をMPA 60gに溶解させた溶液を内部の温度が0℃を越えないように滴下した。滴下終了後、60分間、-15℃で攪拌を続けたのち、室温で120分間攪拌を行った。反応終了後、溶液を脱イオン水3Lに投入して白色の沈殿を集めた。この沈殿をろ過で集めて、脱イオン水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリベンゾオキサゾール樹脂の一形態である、ポリヒドロキシアミド(P8)を得た。ポリヒドロキシアミド(P8)の重量平均分子量は32,000であった。
(Synthesis Example 13) Polyhydroxyamide (P8)
Under a dry nitrogen stream, 29.2 g (0.80 mol) of BAHF and 3.07 g (0.028 mol) of OAP were dissolved in 120 g of MPA, and the temperature of the solution was cooled to -15°C. A solution of 27.7 g (0.094 mol) of OBBOC dissolved in 60 g of MPA was added dropwise thereto so that the internal temperature did not exceed 0°C. After the dropwise addition was completed, stirring was continued at -15°C for 60 minutes, and then stirring was performed at room temperature for 120 minutes. After the reaction was completed, the solution was poured into 3 L of deionized water to collect a white precipitate. The precipitate was collected by filtration, washed three times with deionized water, and then dried in a vacuum dryer at 80°C for 24 hours to obtain polyhydroxyamide (P8), which is a form of polybenzoxazole resin. The weight average molecular weight of polyhydroxyamide (P8) was 32,000.
 (合成例14)ポリヒドロキシアミド(P9)
 乾燥窒素気流下、BAP 28.7g(0.11モル)をMPA 100gに溶解させ、溶液の温度を-15℃まで冷却した。ここにOBBOC 27.9g(0.094モル)をMPA 50gに溶解させた溶液を内部の温度が0℃を越えないように滴下した。滴下終了後、30分間、-15℃で攪拌を続けた。次いで、MAOC 3.48g(0.033モル)をMPA 30gに溶解させた溶液を内部の温度が0℃を越えないように滴下した。滴下終了後、60分間、-15℃で攪拌を続けたのち、室温で120分間攪拌を行った。反応終了後、溶液を脱イオン水3Lに投入して白色の沈殿を集めた。この沈殿をろ過で集めて、脱イオン水で3回洗浄した後、80℃の真空乾燥機で24時間乾燥し、ポリベンゾオキサゾール樹脂の一形態である、ポリヒドロキシアミド(P9)を得た。ポリヒドロキシアミド(P9)の重量平均分子量は33,000であった。
(Synthesis Example 14) Polyhydroxyamide (P9)
Under a dry nitrogen stream, 28.7 g (0.11 mol) of BAP was dissolved in 100 g of MPA, and the temperature of the solution was cooled to -15°C. A solution of 27.9 g (0.094 mol) of OBBOC dissolved in 50 g of MPA was added dropwise thereto so that the internal temperature did not exceed 0°C. After the dropwise addition, stirring was continued for 30 minutes at -15°C. Next, a solution of 3.48 g (0.033 mol) of MAOC dissolved in 30 g of MPA was added dropwise so that the internal temperature did not exceed 0°C. After the dropwise addition, stirring was continued for 60 minutes at -15°C, and then stirring was performed at room temperature for 120 minutes. After the reaction was completed, the solution was poured into 3 L of deionized water to collect a white precipitate. The precipitate was collected by filtration, washed three times with deionized water, and then dried in a vacuum dryer at 80°C for 24 hours to obtain polyhydroxyamide (P9), which is a form of polybenzoxazole resin. The weight average molecular weight of the polyhydroxyamide (P9) was 33,000.
 (合成例15)フェノール樹脂(P10)
 本合成例のフェノール樹脂(P10)は、国際公開第2012/141165号の段落[0120]の合成例5に記載の方法により合成した。
(Synthesis Example 15) Phenol resin (P10)
The phenolic resin (P10) of this synthesis example was synthesized by the method described in Synthesis Example 5 of paragraph [0120] of WO 2012/141165.
 (合成例16)アクリル樹脂(P11)
 公知の方法(特許第3120476号;実施例1)により、メチルメタクリレート/メタクリル酸/スチレン共重合体(質量比30/40/30)を合成した。当該共重合体100質量部に対し、グリシジルメタクリレート40質量部を付加させ、脱イオン水で再沈殿、濾過及び乾燥することにより、ラジカル重合性モノマーを含む重合体であるアクリル樹脂(P11)を得た。
(Synthesis Example 16) Acrylic resin (P11)
A methyl methacrylate/methacrylic acid/styrene copolymer (mass ratio 30/40/30) was synthesized by a known method (Patent No. 3120476; Example 1). 40 parts by mass of glycidyl methacrylate was added to 100 parts by mass of the copolymer, and the mixture was reprecipitated in deionized water, filtered, and dried to obtain an acrylic resin (P11) that is a polymer containing a radical polymerizable monomer.
 (合成例17)ポリアミド酸エステル(P12)
 ヒドロキシル基含有ジアミン(HA)21.0g(0.035モル)を、合成例5で得られたヒドロキシル基含有ジアミン(HB)17.4g(0.035モル)に変更したこと以外はポリアミド酸エステル(P6)の合成例と同様にして、ポリアミド酸エステル(P12)を得た。ポリアミド酸エステル(P12)の重量平均分子量は32,000、イミド化率は8%であった。
(Synthesis Example 17) Polyamic acid ester (P12)
Polyamic acid ester (P12) was obtained in the same manner as in Synthesis Example of Polyamic acid ester (P6), except that 21.0 g (0.035 mol) of the hydroxyl group-containing diamine (HA) was changed to 17.4 g (0.035 mol) of the hydroxyl group-containing diamine (HB) obtained in Synthesis Example 5. The weight average molecular weight of polyamic acid ester (P12) was 32,000, and the imidization rate was 8%.
 (合成例18)ポリイミド樹脂(P13)
 乾燥窒素気流下、三口フラスコにTDA-100を10.88g(0.036mol)、100gのMPAに溶解させた。ここにHBを14.39g(0.029mol)、20gのMPAとともに加えて、40℃で2時間反応させた。次に末端封止剤としてMAPを1.38g(0.013mol)、20gのMPAとともに加え、40℃で1時間反応させ、次いで180℃で4時間攪拌した。撹拌終了後、溶液を脱イオン水2Lに投入して白色沈殿を得た。この沈殿を濾過で集めて、脱イオン水で3回洗浄した後、50℃の真空乾燥機で20時間乾燥し、ポリイミド樹脂(P13)の粉末を得た。ポリイミド樹脂(P13)の重量平均分子量は32,500、イミド化率は100%であった。
(Synthesis Example 18) Polyimide resin (P13)
Under a dry nitrogen stream, 10.88 g (0.036 mol) of TDA-100 was dissolved in 100 g of MPA in a three-neck flask. 14.39 g (0.029 mol) of HB was added together with 20 g of MPA, and the mixture was reacted at 40 ° C. for 2 hours. Next, 1.38 g (0.013 mol) of MAP was added together with 20 g of MPA as a terminal blocking agent, and the mixture was reacted at 40 ° C. for 1 hour, and then stirred at 180 ° C. for 4 hours. After stirring, the solution was poured into 2 L of deionized water to obtain a white precipitate. The precipitate was collected by filtration, washed three times with deionized water, and then dried in a vacuum dryer at 50 ° C. for 20 hours to obtain a powder of polyimide resin (P13). The weight average molecular weight of the polyimide resin (P13) was 32,500, and the imidization rate was 100%.
 (合成例19)ポリヒドロキシアミド(P14)
 BAHF 29.2g(0.80モル)をAZ-FDA 30.4g(0.80モル)に変更したこと以外はポリヒドロキシアミド(P8)の合成例と同様にして、ポリヒドロキシアミド(P14)を得た。ポリヒドロキシアミド(P14)の重量平均分子量は33,200であった。
(Synthesis Example 19) Polyhydroxyamide (P14)
Polyhydroxyamide (P14) was obtained in the same manner as in the synthesis example of polyhydroxyamide (P8), except that 29.2 g (0.80 mol) of BAHF was changed to 30.4 g (0.80 mol) of AZ-FDA. The weight average molecular weight of polyhydroxyamide (P14) was 33,200.
 (調製例1)顔料分散液Bk-1の調製
 化合物(D)としてPGMEおよびELならびに溶剤(E)としてGBLの質量比率が50:40:10である混合溶剤900.00g中に、ポリイミド樹脂P1を68.38g添加し、30分間攪拌して溶解させた。さらに4.59gの分散剤Aを添加し、30分間攪拌した後に、27.03gの微細化ペリレンブラック顔料PBk-1を添加して30分間攪拌し、予備攪拌液を得た。次いで、0.05mmφのジルコニアビーズである“トレセラム(登録商標)”(東レ社製)が充填率75体積%でベッセル内に充填された縦型ビーズミル(広島メタル&マシナリー社製“ウルトラアペックスミル アドバンス”(登録商標))に予備攪拌液を送液し、循環方式で周速10m/sで5時間の湿式メディア分散処理を行い、固形分10.00質量%の顔料分散液Bk-1を得た。顔料分散液Bk-1中の顔料の粒子径(D50)は200nmであった。
(Preparation Example 1) Preparation of Pigment Dispersion Bk-1 68.38 g of polyimide resin P1 was added to 900.00 g of a mixed solvent in which the mass ratio of PGME and EL as compound (D) and GBL as solvent (E) was 50:40:10, and the mixture was stirred for 30 minutes to dissolve. Further, 4.59 g of dispersant A was added, and after stirring for 30 minutes, 27.03 g of finely divided perylene black pigment PBk-1 was added and stirred for 30 minutes to obtain a preliminary stirring liquid. Next, the preliminary stirring liquid was sent to a vertical bead mill (Hiroshima Metal & Machinery Co., Ltd. "Ultra Apex Mill Advance" (registered trademark)) in which 0.05 mmφ zirconia beads "Treceram (registered trademark)" (manufactured by Toray Industries, Inc.) were filled in the vessel at a filling rate of 75 volume%, and a wet media dispersion treatment was performed for 5 hours at a peripheral speed of 10 m/s in a circulation system to obtain a pigment dispersion Bk-1 with a solid content of 10.00 mass%. The particle diameter (D 50 ) of the pigment in the pigment dispersion Bk-1 was 200 nm.
 (調製例2)顔料分散液Bk-2の調製
 溶剤(E)のGBLの代わりに化合物(C)としてNS100を用いたこと以外は調製例1と同様にして、顔料分散液Bk-2を得た。顔料分散液Bk-2中の顔料の粒子径(D50)は170nmであった。
(Preparation Example 2) Preparation of pigment dispersion Bk-2 Pigment dispersion Bk-2 was obtained in the same manner as in Preparation Example 1, except that NS100 was used as compound (C) instead of GBL in solvent (E). The particle size (D 50 ) of the pigment in pigment dispersion Bk-2 was 170 nm.
 (調製例3)顔料分散液Bk-3の調製
 溶剤(E)のGBLの代わりに化合物(C)としてNS100を用い、ポリイミド樹脂P1をポリイミド樹脂P2に変更したこと以外は調製例1と同様にして、顔料分散液Bk-3を得た。顔料分散液Bk-3中の顔料の粒子径(D50)は170nmであった。
(Preparation Example 3) Preparation of pigment dispersion Bk-3 Pigment dispersion Bk-3 was obtained in the same manner as in Preparation Example 1, except that NS100 was used as compound (C) instead of GBL in solvent (E) and polyimide resin P1 was changed to polyimide resin P2. The particle diameter (D 50 ) of the pigment in pigment dispersion Bk-3 was 170 nm.
 (調製例4)顔料分散液Bk-4の調製
 溶剤(E)のGBLの代わりに化合物(C)としてNS100を用い、ポリイミド樹脂P1をポリイミド樹脂P4に変更したこと以外は調製例1と同様にして、顔料分散液Bk-5を得た。顔料分散液Bk-5中の顔料の粒子径(D50)は150nmであった。
Preparation Example 4 Preparation of Pigment Dispersion Bk-4 Pigment dispersion Bk-5 was obtained in the same manner as in Preparation Example 1, except that NS100 was used as compound (C) instead of GBL in solvent (E) and polyimide resin P1 was changed to polyimide resin P4. The particle diameter (D 50 ) of the pigment in pigment dispersion Bk-5 was 150 nm.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 [実施例1]
 黄色灯下、化合物(D)としてPGMEおよびELならびに化合物(C)としてNS100の質量比率が20:40:40である混合溶剤17.0g中に、樹脂(A)として2.08gのポリイミド樹脂P1、光酸発生剤(B-1)として0.168gのQD-aおよび0.125gのQD-b、溶解促進剤(J)として0.208gのBPAF、架橋剤(I)として0.416gのHMOM-TPHAP(本州化学工業社製;式(33)で表される化合物)、ならびに界面活性剤(K)としてBYK-333(ビックケミージャパン社製)の固形分10質量%PGME溶液を0.002g添加し、30分間攪拌し溶解させ、固形分15.00質量%の均一な溶液とした。
[Example 1]
Under yellow light, 2.08 g of polyimide resin P1 as resin (A), 0.168 g of QD-a and 0.125 g of QD-b as photoacid generator (B-1), 0.208 g of BPAF as dissolution promoter (J), 0.416 g of HMOM-TPHAP (manufactured by Honshu Chemical Industry Co., Ltd.; compound represented by formula (33)) as crosslinker (I), and 0.002 g of 10 mass% PGME solution of BYK-333 (manufactured by BYK Japan Co., Ltd.) as surfactant (K) were added to 17.0 g of a mixed solvent having a mass ratio of 20:40:40 as compound (D) and NS100 as compound (C), and the mixture was stirred for 30 minutes to dissolve the solids, thereby obtaining a homogeneous solution having a solid content of 15.00 mass%.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 その後、得られた溶液を0.45μmφのフィルターでろ過し、ポジ型感光性樹脂組成物1を得た。次いで、ポジ型感光性樹脂組成物1を用い、測定・評価方法(4)~(8)のそれぞれにより、各種評価を実施した。 Then, the obtained solution was filtered through a 0.45 μmφ filter to obtain positive-type photosensitive resin composition 1. Next, various evaluations were performed using positive-type photosensitive resin composition 1 according to each of the measurement and evaluation methods (4) to (8).
 次いで、以下の方法で、ポジ型感光性組成物1を硬化して得られる硬化膜を具備するパターン状硬化膜形成基板、および該パターン状硬化膜を画素分割層として具備する、発光信頼性評価用の有機EL表示装置を作製した。  Next, a patterned cured film-formed substrate having a cured film obtained by curing the positive-type photosensitive composition 1, and an organic EL display device for evaluating the light emission reliability having the patterned cured film as a pixel dividing layer were produced by the following method.
 図1に、画素分割層の形成工程を含む有機EL表示装置の作製工程を示す。 Figure 1 shows the manufacturing process for an organic EL display device, including the process of forming a pixel division layer.
 無アルカリガラス基板(1)(横46mm×縦46mmの正方形)の表面に、スパッタ法により、厚さ10nmの銀/銅合金の薄膜(体積比10:1)を全面成膜し、エッチングしてパターン状の金属反射層(2)を形成した。次いで、スパッタ法により、厚さ10nmのITO透明導電膜を全面成膜し、エッチングして同パターン状の第二電極(3)と、引き出し電極として補助電極(4)を形成した後、“セミコクリーン”(登録商標)56(フルウチ化学(株)製)で10分間超音波洗浄し、脱イオン水で洗浄して、電極形成基板を得た。 A 10 nm-thick thin film of silver/copper alloy (volume ratio 10:1) was formed on the entire surface of an alkali-free glass substrate (1) (46 mm wide x 46 mm long square) by sputtering, and then etched to form a patterned metal reflective layer (2). Next, a 10 nm-thick ITO transparent conductive film was formed on the entire surface by sputtering, and then etched to form a second electrode (3) with the same pattern and an auxiliary electrode (4) as an extraction electrode. The substrate was then ultrasonically cleaned for 10 minutes with "Semicoclean" (registered trademark) 56 (manufactured by Furuuchi Chemical Co., Ltd.) and washed with deionized water to obtain an electrode-formed substrate.
 電極形成基板の表面に、スピンコーターを用いて、最終的に得られる画素分割層の厚さが2.0μmとなるように回転数を調節してポジ型感光性組成物1を塗布し、塗布膜を得た。次いで、ホットプレート(アズワン(株)製HPD-3000BZN)を用いて、塗布膜を大気圧下120℃で120秒間プリベークして、プリベーク膜を得た。 The positive photosensitive composition 1 was applied to the surface of the electrode formation substrate using a spin coater, adjusting the rotation speed so that the final thickness of the pixel division layer would be 2.0 μm, to obtain a coating film. Next, the coating film was prebaked at 120°C under atmospheric pressure for 120 seconds using a hot plate (HPD-3000BZN, manufactured by AS ONE Corporation) to obtain a prebaked film.
 開口部(横30μm/縦165μmの長方形)が、開口部間ピッチ50μmで配列したポジ型露光マスクのパターン状遮光部における縦方向/横方向のエッジ部が、無アルカリガラス基板(1)の縦方向/横方向のエッジ部に対して、それぞれ平行になるようにポジ型露光マスクを塗布膜上にセッティングして、両面アライメント片面露光装置(ユニオン光学(株)製“マスクアライナー”PEM-6M)を用いて、ポジ型露光マスクを介して、超高圧水銀灯のj線(313nm)、i線(波長365nm)、h線(波長405nm)およびg線(波長436nm)の混合線を、必要最低露光量でプリベーク膜に露光光をパターン照射して、露光膜を得た。次いで、現像・リンスして、現像膜を得た。なお、ポジ型露光マスクとしては、ソーダガラス基板の表面にクロム製のパターン状遮光部が形成されたマスクを用いた。  A positive exposure mask with openings (rectangles of 30 μm wide x 165 μm long) arranged at an opening pitch of 50 μm was set on the coating film so that the vertical/horizontal edges of the patterned light-shielding portion of the positive exposure mask were parallel to the vertical/horizontal edges of the alkali-free glass substrate (1), respectively. Using a double-sided alignment single-sided exposure device ("Mask Aligner" PEM-6M manufactured by Union Optical Co., Ltd.), the prebaked film was irradiated with a pattern of exposure light using a mixture of j-line (313 nm), i-line (wavelength 365 nm), h-line (wavelength 405 nm), and g-line (wavelength 436 nm) from an ultra-high pressure mercury lamp at the minimum required exposure amount through the positive exposure mask to obtain an exposed film. Next, the developed film was obtained by developing and rinsing. Note that the positive exposure mask used was a mask with a patterned light-shielding portion made of chrome formed on the surface of a soda glass substrate.
 さらに、現像膜に対して加熱処理(キュア)を行って硬化膜とし、電極形成基板中央部の縦16mm×横16mmのエリア内に、開口部(横30μm×縦165μmの長方形)が開口部間ピッチ50μmで配列した、厚さ2.0μmのパターン状硬化膜(5)を具備する、開口率18%のパターン状硬化膜形成基板を得た。後述のプロセスを経た後に得られる有機EL表示装置において、ここでいう開口部が最終的に発光画素部となる部分であり、パターン状硬化膜が画素分割層に相当する部分である。 Furthermore, the developed film was subjected to a heat treatment (cure) to form a hardened film, and a patterned hardened film-formed substrate with an aperture ratio of 18% was obtained, which had a patterned hardened film (5) with a thickness of 2.0 μm, in which openings (rectangles measuring 30 μm wide by 165 μm long) were arranged at an opening pitch of 50 μm within an area measuring 16 mm long by 16 mm wide in the center of the electrode-formed substrate. In the organic EL display device obtained after the process described below, the openings referred to here are the parts that will ultimately become the light-emitting pixel parts, and the patterned hardened film is the part that corresponds to the pixel dividing layer.
 次に、パターン状硬化膜形成基板を用いて、有機EL表示装置の作製を行った。真空蒸着法により発光層を含む有機EL層(6)を形成するため、真空度1×10-3Pa以下の蒸着条件下で、蒸着源に対してパターン状硬化膜形成基板を回転させ、まず、正孔注入層として、化合物HT-1を10nm、正孔輸送層として、化合物HT-2を50nmの厚さで成膜した。次に、発光層上に、ホスト材料として、化合物GH-1とドーパント材料として、化合物GD-1を40nmの厚さで蒸着した。その後、電子輸送材料として、化合物ET-1と化合物LiQを、体積比1:1で40nmの厚さで積層した。 Next, an organic EL display device was produced using the patterned cured film-formed substrate. In order to form an organic EL layer (6) including a light-emitting layer by a vacuum deposition method, the patterned cured film-formed substrate was rotated with respect to the deposition source under deposition conditions with a vacuum degree of 1×10 −3 Pa or less, and first, a film was formed with a thickness of 10 nm of compound HT-1 as a hole injection layer and a thickness of 50 nm of compound HT-2 as a hole transport layer. Next, on the light-emitting layer, a host material, compound GH-1, and a dopant material, compound GD-1, were deposited with a thickness of 40 nm. Then, as an electron transport material, compound ET-1 and compound LiQ were laminated with a volume ratio of 1:1 to a thickness of 40 nm.
 次に、化合物LiQを2nm蒸着した後、銀/マグネシウム合金(体積比10/1)で10nm蒸着して第一電極(7)とした。 Next, the compound LiQ was evaporated to a thickness of 2 nm, and then a silver/magnesium alloy (volume ratio 10/1) was evaporated to a thickness of 10 nm to form the first electrode (7).
 有機EL層の形成に用いた化合物群(HT-1、HT-2、GH-1、GD-1、ET-1、LiQ)の化学構造を、それぞれ以下に示す。 The chemical structures of the compounds (HT-1, HT-2, GH-1, GD-1, ET-1, LiQ) used to form the organic EL layer are shown below.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 なお、ここでいう厚さは、水晶発振式膜厚モニターの表示値である。 The thickness mentioned here is the value displayed on a quartz crystal oscillator film thickness monitor.
 その後、低湿/窒素雰囲気下、エポキシ樹脂系接着剤を用いて、キャップ状ガラス板を接着することにより封止し、有機EL表示装置を得た。測定・評価方法(9)に記載の方法で、有機EL表示装置の発光信頼性を評価した結果を表3に示す。 Then, in a low humidity/nitrogen atmosphere, a cap-shaped glass plate was attached and sealed using an epoxy resin adhesive to obtain an organic EL display device. The light emission reliability of the organic EL display device was evaluated using the method described in Measurement/Evaluation Method (9), and the results are shown in Table 3.
 [実施例2~8、12~23及び比較例1、2]
 表2および表3に記載の組成にてポジ型感光性組成物を調製した以外は実施例1と同様にして、ポジ型感光性樹脂組成物2~8、12、13、15~26、硬化膜および有機EL表示装置を作製した。これらの評価結果をまとめて、表4および表5に示す。
[Examples 2 to 8, 12 to 23 and Comparative Examples 1 and 2]
Positive photosensitive resin compositions 2 to 8, 12, 13, and 15 to 26, cured films, and organic EL display devices were produced in the same manner as in Example 1, except that the positive photosensitive compositions were prepared according to the compositions shown in Tables 2 and 3. The evaluation results are shown in Tables 4 and 5.
 [実施例9]
 黄色灯下、化合物(C)として1.524gのNS100中に、樹脂(A)として0.710gのポリイミド樹脂P1、光酸発生剤(B-1)として0.225gのQD-aおよび0.135gのQD-b、溶解促進剤(J)として0.270gのBPAF、架橋剤(I)として0.495gのHMOM-TPHAP(本州化学工業社製;式(33)で表される化合物)、ならびに界面活性剤(K)としてBYK-333(ビックケミージャパン社製)の固形分10質量%PGME溶液を0.014g添加し、30分間攪拌し溶解させた。さらに、26.64gの顔料分散液Bk-2を添加し、30分間攪拌して固形分15.00質量%の均一な溶液とした。
[Example 9]
Under yellow light, in 1.524 g of NS100 as compound (C), 0.710 g of polyimide resin P1 as resin (A), 0.225 g of QD-a and 0.135 g of QD-b as photoacid generator (B-1), 0.270 g of BPAF as dissolution promoter (J), 0.495 g of HMOM-TPHAP (manufactured by Honshu Chemical Industry Co., Ltd.; compound represented by formula (33)) as crosslinker (I), and 0.014 g of 10% by mass PGME solution of BYK-333 (manufactured by BYK Japan Co., Ltd.) as surfactant (K) were added and stirred for 30 minutes to dissolve. Furthermore, 26.64 g of pigment dispersion Bk-2 was added and stirred for 30 minutes to obtain a uniform solution of 15.00% by mass of solids.
 その後、得られた溶液を0.45μmφのフィルターでろ過し、ポジ型感光性樹脂組成物9を得た。 Then, the resulting solution was filtered through a 0.45 μm diameter filter to obtain positive-type photosensitive resin composition 9.
 次いで、ポジ型感光性樹脂組成物9を用いた以外は実施例1と同様にして、硬化膜および有機EL表示装置を作製した。 Then, a cured film and an organic EL display device were produced in the same manner as in Example 1, except that positive-type photosensitive resin composition 9 was used.
 [実施例10、11及び比較例3]
 実施例10で顔料分散液Bk-3を用い、実施例11で顔料分散液Bk-4を用い、比較例3で顔料分散液Bk-1を用いて、表2および表3に記載の組成にてポジ型感光性樹脂組成物を調製した以外は実施例9と同様にして、ポジ型感光性樹脂組成物10,11,14、硬化膜および有機EL表示装置を作製した。これらの評価結果をまとめて、表4および表5に示す。
[Examples 10 and 11 and Comparative Example 3]
Positive photosensitive resin compositions 10, 11, and 14, cured films, and organic EL display devices were produced in the same manner as in Example 9, except that positive photosensitive resin compositions were prepared according to the compositions shown in Tables 2 and 3 using pigment dispersion Bk-3 in Example 10, pigment dispersion Bk-4 in Example 11, and pigment dispersion Bk-1 in Comparative Example 3. The evaluation results are shown in Tables 4 and 5.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
 [実施例51]
 黄色灯下、ポリイミド樹脂P1を10.0gに対し、キノンジアジド化合物bを2.0g、HMOM-TPHAPを3.0g、界面活性剤としてBYK-333のNS100溶液(固形分5質量%)を0.04g、溶剤としてNS100を15g、PGMEを15g加えて、30分間攪拌して均一な溶液とした。
[Example 51]
Under yellow light, 2.0 g of quinone diazide compound b, 3.0 g of HMOM-TPHAP, 0.04 g of an NS100 solution (solid content 5 mass %) of BYK-333 as a surfactant, and 15 g of NS100 and 15 g of PGME as a solvent were added to 10.0 g of polyimide resin P1, and the mixture was stirred for 30 minutes to obtain a homogeneous solution.
 その後、得られた溶液を0.45μmφのフィルターでろ過し、ポジ型感光性樹脂組成物51を得た。 Then, the resulting solution was filtered through a 0.45 μm diameter filter to obtain a positive-type photosensitive resin composition 51.
 次いで、ポジ型感光性樹脂組成物51を用い、測定・評価方法(10)および(11)のそれぞれにより硬化膜を作製した。 Then, a cured film was prepared using the positive photosensitive resin composition 51 according to each of the measurement and evaluation methods (10) and (11).
 [比較例51]
 NS100に代えてPGMEAを使用したこと以外は実施例51と同様にして、ポジ型感光性樹脂組成物52を得た。
[Comparative Example 51]
A positive photosensitive resin composition 52 was obtained in the same manner as in Example 51, except that PGMEA was used instead of NS100.
 次いで、ポジ型感光性樹脂組成物52を用い、測定・評価方法(10)および(11)のそれぞれにより、硬化膜を作製した。 Then, a cured film was prepared using the positive photosensitive resin composition 52 according to each of the measurement and evaluation methods (10) and (11).
 実施例51、比較例51で得られた組成物の硬化膜の破断伸度評価およびクラック耐性評価を実施した結果を表6に示す。 Table 6 shows the results of evaluation of the breaking elongation and crack resistance of the cured films of the compositions obtained in Example 51 and Comparative Example 51.
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
1:無アルカリガラス基板
2:金属反射層
3:第二電極
4:補助電極
5:パターン状硬化膜
6:有機EL層
7:第一電極
1: Non-alkali glass substrate 2: Metal reflective layer 3: Second electrode 4: Auxiliary electrode 5: Patterned cured film 6: Organic EL layer 7: First electrode

Claims (15)

  1. 樹脂(A)、感光剤(B)、並びに式(1)で表される化合物および/または式(2)で表される化合物である化合物(C)を含む、感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    式(1)および式(2)中、RおよびRは、それぞれ独立に、炭素数1~10の1価の飽和炭化水素基を示す。式(2)中、R、RおよびRは、それぞれ独立に、水素原子または炭素数1~10の1価の飽和炭化水素基を示す。RとRは、それぞれ独立に、水素原子、炭素数1~10の1価の飽和炭化水素基、または炭素数1~10の1価のヒドロキシアルキル基を示す。aは0または1を示す。
    A photosensitive resin composition comprising a resin (A), a photosensitizer (B), and a compound (C) which is a compound represented by formula (1) and/or a compound represented by formula (2).
    Figure JPOXMLDOC01-appb-C000001
    In formula (1) and formula (2), R 1 and R 2 each independently represent a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms. In formula (2), R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms. R 6 and R 7 each independently represent a hydrogen atom, a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms, or a monovalent hydroxyalkyl group having 1 to 10 carbon atoms. a represents 0 or 1.
  2. 前記樹脂(A)の総量を100質量部に対して、前記化合物(C)の含有量の合計が1~3000質量部である、請求項1に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1, wherein the total content of the compounds (C) is 1 to 3,000 parts by mass per 100 parts by mass of the total amount of the resins (A).
  3. 前記化合物(C)が、式(19)~(22)からなる群より選択される少なくとも1つを含む、請求項1または2に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000002
    The photosensitive resin composition according to claim 1 or 2, wherein the compound (C) comprises at least one selected from the group consisting of formulas (19) to (22).
    Figure JPOXMLDOC01-appb-C000002
  4. さらに、大気圧における沸点が100℃以上170℃以下でありかつ前記樹脂(A)、前記感光剤(B)および前記化合物(C)のいずれにも該当しない化合物(D)を含む、請求項1または2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1 or 2, further comprising a compound (D) having a boiling point at atmospheric pressure of 100°C or more and 170°C or less, and not corresponding to any of the resin (A), the photosensitizer (B), and the compound (C).
  5. 前記化合物(D)が水酸基を有する化合物(D1)を含む、請求項4に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 4, wherein the compound (D) includes a compound (D1) having a hydroxyl group.
  6. 前記感光性樹脂組成物に含まれる前記化合物(C)の質量Xの、前記化合物(D)の質量Yに対する比X/Yが0.01~10である、請求項4に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 4, wherein the ratio X/Y of the mass X of the compound (C) contained in the photosensitive resin composition to the mass Y of the compound (D) is 0.01 to 10.
  7. 前記樹脂(A)がアルカリ可溶性樹脂(A1)を含む、請求項1または2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1 or 2, wherein the resin (A) contains an alkali-soluble resin (A1).
  8. 前記アルカリ可溶性樹脂(A1)が、ポリイミド樹脂(A1-1)、ポリベンゾオキサゾール樹脂(A1-2)、およびポリイミド樹脂の繰り返し単位とポリベンゾオキサゾール樹脂の繰り返し単位との共重合体樹脂(A1-3)からなる群より選択される一種類以上の樹脂を含む、請求項7に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 7, wherein the alkali-soluble resin (A1) contains one or more resins selected from the group consisting of polyimide resin (A1-1), polybenzoxazole resin (A1-2), and copolymer resin (A1-3) of repeating units of polyimide resin and repeating units of polybenzoxazole resin.
  9. 前記ポリイミド樹脂(A1-1)、前記ポリベンゾオキサゾール樹脂(A1-2)、および前記共重合体樹脂(A1-3)からなる群より選択される一種類以上の樹脂が、式(10)で表されるジアミンの残基および/または式(11)で表されるジアミンの残基を含む、請求項8に記載の感光性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000003
    式中、XおよびXはそれぞれ独立に直接結合、-SO-、-C(CH-、式(12)で表される2価の有機基、-CH(CF)-、または-C(CF-を示す。
    Figure JPOXMLDOC01-appb-C000004
    式(12)中、*は結合点を示す。
    The photosensitive resin composition according to claim 8, wherein one or more resins selected from the group consisting of the polyimide resin (A1-1), the polybenzoxazole resin (A1-2), and the copolymer resin (A1-3) contain a residue of a diamine represented by formula (10) and/or a residue of a diamine represented by formula (11).
    Figure JPOXMLDOC01-appb-C000003
    In the formula, X 3 and X 4 each independently represent a direct bond, —SO 2 —, —C(CH 3 ) 2 —, a divalent organic group represented by formula (12), —CH(CF 3 )—, or —C(CF 3 ) 2 —.
    Figure JPOXMLDOC01-appb-C000004
    In formula (12), * indicates a bonding point.
  10. 前記感光剤(B)が光酸発生剤(B1)を含む、請求項1または2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1 or 2, wherein the photosensitizer (B) contains a photoacid generator (B1).
  11. さらに、黒色剤(F)を含む、請求項1または2に記載の感光性樹脂組成物。 The photosensitive resin composition according to claim 1 or 2, further comprising a blackening agent (F).
  12. 請求項1または2に記載の感光性樹脂組成物を硬化してなる、硬化物。 A cured product obtained by curing the photosensitive resin composition according to claim 1 or 2.
  13. 樹脂(A)を含む硬化物であって式(1)で表される化合物および/または式(2)で表される化合物(C)を合計で、硬化物の100質量%に対して0.00001質量%以上0.01質量%以下の範囲で含有する、硬化物。
    Figure JPOXMLDOC01-appb-C000005
    式(1)および式(2)中、RおよびRは、それぞれ独立に、炭素数1~10の1価の飽和炭化水素基を示す。式(2)中、R、RおよびRは、それぞれ独立に、水素原子または炭素数1~10の1価の飽和炭化水素基を示す。RとRは、それぞれ独立に、水素原子、炭素数1~10の1価の飽和炭化水素基、または炭素数1~10の1価のヒドロキシアルキル基を示す。aは0または1を示す。
    A cured product comprising a resin (A), the cured product containing a compound represented by formula (1) and/or a compound (C) represented by formula (2) in a total amount of 0.00001 mass% or more and 0.01 mass% or less, relative to 100 mass% of the cured product.
    Figure JPOXMLDOC01-appb-C000005
    In formula (1) and formula (2), R 1 and R 2 each independently represent a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms. In formula (2), R 3 , R 4 and R 5 each independently represent a hydrogen atom or a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms. R 6 and R 7 each independently represent a hydrogen atom, a monovalent saturated hydrocarbon group having 1 to 10 carbon atoms, or a monovalent hydroxyalkyl group having 1 to 10 carbon atoms. a represents 0 or 1.
  14. 請求項12に記載の硬化物を備える、有機EL表示装置。 An organic electroluminescence display device comprising the cured product according to claim 12.
  15. 請求項12に記載の硬化物を備える、電子部品または半導体装置。 An electronic component or semiconductor device comprising the cured product according to claim 12.
PCT/JP2023/040893 2022-11-25 2023-11-14 Photosensitive resin composition, cured product, organic el display device, electronic component, and semiconductor device WO2024111466A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022188058 2022-11-25
JP2022-188058 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024111466A1 true WO2024111466A1 (en) 2024-05-30

Family

ID=91195625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040893 WO2024111466A1 (en) 2022-11-25 2023-11-14 Photosensitive resin composition, cured product, organic el display device, electronic component, and semiconductor device

Country Status (1)

Country Link
WO (1) WO2024111466A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296801A (en) * 1989-05-12 1990-12-07 Toshiba Corp Photosensitive composition
JP2005015686A (en) * 2003-06-27 2005-01-20 Kiyomitsu Kawasaki Fruit-like flavor composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02296801A (en) * 1989-05-12 1990-12-07 Toshiba Corp Photosensitive composition
JP2005015686A (en) * 2003-06-27 2005-01-20 Kiyomitsu Kawasaki Fruit-like flavor composition

Similar Documents

Publication Publication Date Title
JP4735778B1 (en) Positive photosensitive resin composition
JP6724363B2 (en) Resin and photosensitive resin composition
JP5636456B2 (en) Photosensitive resin composition
KR20190125983A (en) The photosensitive resin composition, the cured film, the element provided with a cured film, the organic electroluminescence display provided with a cured film, the manufacturing method of a cured film, and the manufacturing method of an organic electroluminescence display
TW201638663A (en) Photosensitive resin composition and electronic component
WO2018159384A1 (en) Resin composition, resin sheet, curing pattern, and semiconductor electronic component or semiconductor device
EP2902846B1 (en) Positive photosensitive resin composition
JP2008040324A (en) Resin composition and method for producing patterned resin film using the same
KR20130013202A (en) Photosensitive resin composition having improved moisture resistance
JP5562585B2 (en) Photosensitive resin composition
JP6102389B2 (en) Resin composition
TWI450032B (en) A photosensitive resin composition, a hardened embossed pattern, and a semiconductor device
JP2012159601A (en) Photosensitive resin composition
JP2010210851A (en) Photosensitive resin composition
KR101696963B1 (en) Photosensitive resin composition
WO2024111466A1 (en) Photosensitive resin composition, cured product, organic el display device, electronic component, and semiconductor device
JP5617279B2 (en) Photosensitive resin composition
JP2004126547A (en) Photosensitive resin precursor composition
JP2010072143A (en) Positive photosensitive resin composition
WO2023042608A1 (en) Polyimide resin, photosensitive resin composition, cured object, organic el display, electronic component, and semiconductor device
WO2023095785A1 (en) Photosensitive resin composition, cured article, organic el display device, semiconductor device, and method for producing cured article
JP2018095721A (en) Resin composition, resin sheet and cured film
JP2023134943A (en) Photosensitive resin composition, cured product and organic EL display
TW201413387A (en) Positive photosensitive resin composition
JP2015176962A (en) Method for manufacturing resin film