WO2024111094A1 - Determination method, determination device, and program - Google Patents

Determination method, determination device, and program Download PDF

Info

Publication number
WO2024111094A1
WO2024111094A1 PCT/JP2022/043404 JP2022043404W WO2024111094A1 WO 2024111094 A1 WO2024111094 A1 WO 2024111094A1 JP 2022043404 W JP2022043404 W JP 2022043404W WO 2024111094 A1 WO2024111094 A1 WO 2024111094A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforced concrete
concrete structure
stress
deterioration
standard
Prior art date
Application number
PCT/JP2022/043404
Other languages
French (fr)
Japanese (ja)
Inventor
陽祐 竹内
みずき 田端
良 牧野
潤一郎 玉松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/043404 priority Critical patent/WO2024111094A1/en
Publication of WO2024111094A1 publication Critical patent/WO2024111094A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging

Definitions

  • This disclosure relates to a determination method, a determination device, and a program.
  • Non-Patent Document 2 Such deterioration of manholes is generally confirmed by visual inspection for cracks, spalling of concrete, exposed reinforcement, etc. It is also known that deterioration of manholes can be monitored by methods such as using strain gauges (see Non-Patent Document 2), using optical fiber sensors (see Non-Patent Document 3), and electrochemical detection of rebar corrosion (see Non-Patent Document 4).
  • the standards and timing for repairing concrete structures such as manholes are determined by the manager of the concrete structure, who repairs the concrete to prevent the progression of corrosion of the reinforcing bars contained in the concrete structure. For example, it is known that surface coating, cathodic protection, etc. are performed to repair concrete structures depending on the cause of deterioration, the state of deterioration, etc. (see Non-Patent Document 5).
  • Non-Patent Document 6 Since the location, size, and type (cracks, concrete spalling, exposed rebar, etc.) of deterioration differs for each concrete structure, it is also known to conduct structural analysis individually (see Non-Patent Document 6).
  • reinforced concrete structures such as manholes are designed based on a safety factor, assuming that they will deteriorate, so that they will be maintained even if they deteriorate to a certain extent. For this reason, even if cracks or spalling occur in the concrete due to external forces, ASR, or poor quality or poor construction of the concrete, prompt repair may not be necessary if the remaining strength is sufficient when considering a predetermined safety factor. In contrast, if repairs are made without a strength assessment through structural analysis every time cracks or spalling in the concrete are confirmed using the above-mentioned technology, it is difficult to reduce the management costs for maintaining the safety of reinforced concrete structures. Furthermore, if cracks or spalling are confirmed and structural analysis is conducted, it is difficult to appropriately assess the deterioration of the current reinforced concrete structure if the design drawings used when the reinforced concrete structure was constructed are used.
  • the purpose of this disclosure is to provide a determination method, determination device, and program that can efficiently determine whether or not repairs are required in reinforced concrete structures while reducing the management costs required to maintain the safety of the reinforced concrete structures.
  • the determination method disclosed herein is a determination method executed by a determination device that determines whether or not a reinforced concrete structure that includes reinforcing bars and concrete covering the reinforcing bars and defines an internal space needs to be repaired, and includes a stress calculation step of calculating a deterioration stress-strain relationship that indicates the correspondence between stress and strain of the deteriorated reinforced concrete structure using a deterioration model that represents the deteriorated reinforced concrete structure, which is the reinforced concrete structure in which the concrete covering has peeled off on a predetermined surface on the internal space side, and a determination step of determining whether or not the reinforced concrete structure needs to be repaired based on the deterioration stress-strain relationship and an assumed stress that is assumed to occur in the environment in which the reinforced concrete structure is installed.
  • the determination device is a determination device that determines whether or not a reinforced concrete structure that includes reinforcing bars and concrete covering the reinforcing bars and defines an internal space needs to be repaired, and includes a stress calculation unit that calculates a deterioration stress-strain relationship that indicates the correspondence between stress and strain of the deteriorated reinforced concrete structure using a deterioration model that represents the deteriorated reinforced concrete structure, which is the reinforced concrete structure in which the concrete cover has peeled off on a specified surface on the internal space side, and a determination unit that determines whether or not the reinforced concrete structure needs to be repaired based on the deterioration stress-strain relationship and an assumed stress that is assumed to occur in the environment in which the reinforced concrete structure is installed.
  • the program disclosed herein causes a computer to execute the degradation determination method described above.
  • the assessment method, assessment device, and program disclosed herein can efficiently determine whether or not repairs are required in reinforced concrete structures, while reducing management costs for maintaining the safety of the reinforced concrete structures.
  • FIG. 1 is a perspective view illustrating an example of a determination device according to a first embodiment of the present disclosure.
  • 2 is a schematic diagram showing an example of a reinforced concrete structure for which the judgment device shown in FIG. 1 judges whether or not repair is required.
  • FIG. FIG. 2B is a cross-sectional view of the reinforced concrete structure shown in FIG. 2A.
  • FIG. 2C is a partially enlarged view of the reinforced concrete structure shown in FIG. 2B.
  • FIG. 1 is a diagram showing an example of a healthy but deteriorated reinforced concrete structure.
  • FIG. 1 is a diagram showing an example of a deteriorated reinforced concrete structure.
  • FIG. 2 is a diagram showing stress-strain curves of a healthy and deteriorated reinforced concrete structure and a deteriorated reinforced concrete structure.
  • FIG. 4 is a flowchart showing an example of an operation executed by the determination device shown in FIG. 1 .
  • FIG. 11 is a schematic diagram illustrating an example of a determination device according to a second embodiment of the present disclosure.
  • 7 is a flowchart showing an example of an operation executed by the determination device shown in FIG. 6 .
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of the determination device illustrated in FIG. 1 .
  • Fig. 1 is a schematic diagram showing an example of the determination device 1 according to the first embodiment.
  • the judgment device 1 judges whether or not repair is required for a reinforced concrete structure 2 that includes reinforcing bars 2a and concrete 2b that covers the reinforcing bars 2a and defines an internal space IS, as shown in Figures 2A and 2B.
  • the reinforced concrete structure 2 defines an internal space IS by an upper surface member 21, a side surface member 22, and a lower surface member 23.
  • the upper surface member 21 is an upper floor slab
  • the side surface member 22 is a side wall
  • the lower surface member 23 is a lower floor slab.
  • a hole HL is defined in the upper surface member 21 for people to enter and exit the internal space IS.
  • the upper surface member 21, the side surface member 22, and the lower surface member 23 are each composed of reinforcing bars 2a and concrete 2b covering the reinforcing bars 2a (in FIG. 2B, the reinforcing bars 2a are shown in the upper surface member 21). Furthermore, as shown in FIG.
  • the reinforced concrete structure 2 is a rectangular parallelepiped, but this is not limited to this.
  • reinforced concrete structures 2 There are multiple standards for reinforced concrete structures 2, and the sizes of the reinforced concrete structures 2 for each standard are different.
  • reinforced concrete structures 2 for some standards are similar in shape to each other.
  • a straight-line type No. 1 (S-1) manhole of one standard and a straight-line type No. 2 (S-2) manhole of another standard are similar in shape to each other.
  • the judgment device 1 includes an input unit 11, a stress level calculation unit 12, a judgment unit 13, and an output unit 14.
  • the input unit 11 is configured with an input interface.
  • the input interface may be a communication interface.
  • standards such as Ethernet (registered trademark), FDDI (Fiber Distributed Data Interface), and Wi-Fi (registered trademark) may be used for the communication interface.
  • the stress level calculation unit 12 and the judgment unit 13 are configured with a controller.
  • the controller may be configured with dedicated hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array), may be configured with a processor, or may be configured to include both.
  • the output unit 14 is configured with an output interface.
  • the output interface may be a communication interface.
  • the input unit 11 accepts input of rust information relating to rust or rust traces on the reinforced concrete structure 2.
  • the rust information may be information indicating whether or not there is rust or rust traces on the reinforced concrete structure 2.
  • the rust information may be information based on the results of observation by an inspector, stored in an inspection device including a database, and input from the inspection device to the input unit 11.
  • the rust information may also be image information indicating an image of the reinforced concrete structure 2 captured by an imaging device such as a camera, and input from the imaging device to the input unit 11.
  • the stress calculation unit 12 uses a deterioration model representing a deteriorated reinforced concrete structure 2-B (see Figure 3B), which is a reinforced concrete structure 2 in which the concrete cover has peeled off on a specified surface on the internal space IS side, to calculate a deterioration stress-strain relationship that shows the correspondence between stress and strain in the deteriorated reinforced concrete structure 2-B.
  • the concrete cover has peeled off over the entire surface of the specified surface on the internal space IS side.
  • the specified surface is the surface of the upper surface member 21.
  • the deterioration model is a model (see FIG. 3B) that represents a deteriorated reinforced concrete structure 2-B in which the concrete covering on a specified surface on the internal space IS side of one surface member (e.g., upper surface member 21) has been peeled off from a healthy reinforced concrete structure 2-A, which is a reinforced concrete structure 2 in which no deterioration has occurred, as shown in FIG. 3A.
  • the deterioration model can be a solid model.
  • the stress calculation unit 12 has a cover element number setting unit 121, a finite element model construction unit 122, a finite element analysis unit 123, and a calculation unit 124.
  • the cover element number setting unit 121 sets the size and number of meshes for constructing a deterioration model by the finite element method. Specifically, as shown in FIG. 3B, the cover element number setting unit 121 sets the size and number of meshes that can be set by the finite element method so that the concrete cover on a specified surface on the internal space IS side of the reinforced concrete structure 2 is peeled off and the length of peeled concrete 2b is maximized within the range where the reinforcing bar 2a is not exposed. For example, the cover element number setting unit 121 sets the size and number of meshes so that the length Ly (see FIG. 2C) of peeled concrete 2b in the normal direction of the surface of the upper surface member 21 is shorter than the length d (see FIG. 2C) from the surface of the upper surface member 21 on the internal space IS side to the reinforcing bar 2a, and is the maximum value that can be set by the finite element method.
  • the finite element model construction unit 122 can construct a deterioration model by the finite element method using the size and number of meshes determined by the cover element number setting unit 121. Because the cover element number setting unit 121 sets the size and number of meshes as described above, the finite element model construction unit 122 can construct a deterioration model representing a deteriorated reinforced concrete structure 2-B in which the concrete cover on a specified surface on the internal space IS side of the reinforced concrete structure 2-B has been peeled off and the length of peeled concrete 2b is the longest within the range where the reinforcing bars 2a are not exposed. This allows the finite element model construction unit 122 to construct a deterioration model that comprehensively represents the reinforced concrete structure 2 in various states of deterioration, large and small, in the early stages of the deterioration process caused by corrosion, external forces, etc.
  • the finite element model construction unit 122 may also construct a sound model representing the sound reinforced concrete structure 2-A using the finite element method.
  • the finite element analysis unit 123 uses the deterioration model to calculate a deterioration stress-strain relationship that indicates the corresponding relationship between stress and strain in the deteriorated reinforced concrete structure 2-B.
  • the finite element analysis unit 123 may also use the sound model to calculate a healthy stress-strain relationship that indicates the corresponding relationship between stress and strain in the healthy reinforced concrete structure 2-A.
  • the deteriorated stress-strain relationship and the healthy stress-strain relationship may each be represented by a stress-strain curve as shown in Fig. 4.
  • Fig. 4 shows a design value XA of the stress intensity of the healthy reinforced concrete structure 2-A and a design value XB of the stress intensity of the deteriorated reinforced concrete structure 2-B.
  • the design value of the stress intensity is the maximum value of the stress in a range in which the stress and the strain have an approximately linear relationship. "Approximately linear" means that the rate of change of the stress with respect to the strain (the slope of the curve shown in Fig. 4) is approximately constant (the rate of change is equal to or less than a threshold value).
  • the calculation unit 124 calculates the allowable stress f B ⁇ of the deteriorated reinforced concrete structure 2-B based on the design value X B of the stress of the deteriorated reinforced concrete structure 2-B indicated by the deterioration stress-strain relationship and the safety factor ⁇ .
  • the safety factor ⁇ is a ratio of the allowable stress to the fracture stress of the material used in the reinforced concrete structure 2, and is a value greater than 1 that is determined when the reinforced concrete structure 2 is designed. Specifically, the calculation unit 124 calculates the value obtained by dividing the design value X B of the stress by the safety factor ⁇ as the allowable stress f B ⁇ .
  • FIG. 4 shows, as examples, the allowable stress f B2 when the safety factor ⁇ is 2 and the allowable stress f B3 when the safety factor ⁇ is 3.
  • the calculation unit 124 may also calculate the allowable stress fA ⁇ of the healthy reinforced concrete structure 2-A represented by the healthy model based on the design value XA of the stress of the healthy reinforced concrete structure 2-A and the safety factor ⁇ , which are shown by the healthy stress-strain relationship. Specifically, the calculation unit 124 may calculate the value obtained by dividing the design value XA of the stress by the safety factor ⁇ as the allowable stress fA ⁇ . In Fig. 4, as examples, the allowable stress fA2 when the safety factor ⁇ is 2 and the allowable stress fA3 when the safety factor ⁇ is 3 are shown.
  • the judgment unit 13 may judge whether or not repair of the reinforced concrete structure 2 is necessary based on the rust information. If there is rust or traces of rust on the reinforced concrete structure 2, it is expected that the reinforcing bars 2a are exposed and therefore deterioration is progressing. On the other hand, if there is no rust or traces of rust on the reinforced concrete structure 2, it is expected that the reinforcing bars 2a are not exposed to the atmosphere and therefore deterioration may not be progressing.
  • the determination unit 13 may determine whether or not there is rust or rust traces in the reinforced concrete structure. If it is determined that there is rust or rust traces in the reinforced concrete structure, the determination unit 13 may determine that repair of the reinforced concrete structure 2 is necessary. If it is determined that there is no rust or rust traces in the reinforced concrete structure 2, the determination unit 13 may determine whether or not repair of the reinforced concrete structure 2 is necessary based on the deterioration stress-strain relationship and the assumed stress intensity fw , as will be described in detail below.
  • the judgment unit 13 judges whether or not repair of the reinforced concrete structure 2 is necessary based on the deterioration stress-strain relationship and the assumed stress intensity fw that is assumed to occur in the environment in which the reinforced concrete structure 2 is installed.
  • the judgment unit 13 judges whether or not the allowable stress fB ⁇ obtained by dividing the design value XB of the stress of the deteriorated reinforced concrete structure 2-B, which is indicated by the deterioration stress-strain relationship, by the safety factor ⁇ of the reinforced concrete structure, is equal to or greater than the assumed stress fw that is assumed to occur in the environment in which the reinforced concrete structure 2 is installed. If the judgment unit 13 judges that the allowable stress fB ⁇ is equal to or greater than the assumed stress fw , it judges that repair of the reinforced concrete structure 2 is not necessary. Furthermore, if the judgment unit 13 judges that the allowable stress fB ⁇ is less than the assumed stress fw , it judges that repair of the reinforced concrete structure 2 is necessary.
  • the judgment unit 13 judges whether or not there is rust or rust traces in the reinforced concrete structure 2 based on the image information. Specifically, the judgment unit 13 uses any image processing to judge that there is rust or rust traces in the reinforced concrete structure 2 when an image of rust or rust traces is detected in the image of the reinforced concrete structure 2. Furthermore, the judgment unit 13 uses the image processing to judge that there is no rust or rust traces in the reinforced concrete structure 2 when an image of rust or rust traces is not detected in the image of the reinforced concrete structure 2.
  • the output unit 14 outputs the judgment result judged by the judgment unit 13.
  • the output unit 14 may display the judgment result on a display device configured as an integral part of or separate from the judgment device 1.
  • the output unit 14 may also output the judgment result to another device via a communication network, or may output the judgment result by any method such as voice.
  • Fig. 5 is a flowchart showing an example of the operation of the determination device 1 according to the first embodiment.
  • the operation of the determination device 1 described with reference to Fig. 5 corresponds to an example of a determination method executed by the determination device 1 according to the first embodiment.
  • step S11 the input unit 11 accepts input of rust information relating to rust or rust traces on the reinforced concrete structure 2 (input step).
  • step S12 the judgment unit 13 judges whether or not there is rust or traces of rust on the reinforced concrete structure 2 based on the rust information (judgment step).
  • step S12 If it is determined in step S12 that there is rust or traces of rust on the reinforced concrete structure 2, then in step 16 the determination unit 13 determines that repair of the reinforced concrete structure 2 is necessary (determination step).
  • step S13 the stress calculation unit 12 calculates the deterioration stress-strain relationship (stress calculation step), and in steps S14 to S16, the judgment unit 13 judges whether or not repair of the reinforced concrete structure 2 is necessary based on the deterioration stress-strain relationship and the assumed stress fw (judgment step).
  • the stress calculation unit 12 uses a deterioration model representing a deteriorated reinforced concrete structure 2-B, which is a reinforced concrete structure 2 in which the concrete cover has peeled off on a specified surface on the internal space IS side, to calculate a deterioration stress-strain relationship that indicates the correspondence between stress and strain of the deteriorated reinforced concrete structure 2-B (stress calculation step).
  • the stress calculation unit 12 determines the size and number of meshes for constructing the deterioration model using the finite element method, and can construct the deterioration model using the finite element method using the size and number of meshes.
  • step S14 the judgment unit 13 judges whether the allowable stress fB ⁇ obtained by dividing the design value XB of the stress of the deteriorated reinforced concrete structure 2-B shown in the deterioration stress-strain relationship by the safety factor ⁇ of the reinforced concrete structure 2 is equal to or greater than the assumed stress fW (judgment step).
  • step S15 the determination unit 13 determines that repair of the reinforced concrete structure 2 is not necessary (determination step).
  • step S16 the determination unit 13 determines that repair of the reinforced concrete structure 2 is necessary (determination step).
  • step S17 the output unit 14 outputs the determination result (output step).
  • the determination method according to the first embodiment is a determination method executed by a determination device 1 that determines whether or not the reinforced concrete structure 2 that includes the reinforcing bar 2a and the concrete 2b covering the reinforcing bar 2a and defines an internal space IS needs to be repaired.
  • the determination method includes a stress calculation step of calculating a deterioration stress-strain relationship that indicates a correspondence relationship between the stress and strain of the deteriorated reinforced concrete structure 2-B using a deterioration model that represents a deteriorated reinforced concrete structure 2-B that is a reinforced concrete structure 2 in which the concrete covering on a predetermined surface on the internal space IS side has peeled off, and a determination step of determining whether or not the reinforced concrete structure 2 needs to be repaired based on the deterioration stress-strain relationship and an assumed stress f w that is assumed to occur in the environment in which the reinforced concrete structure 2 is installed.
  • the deterioration model can comprehensively represent reinforced concrete structures in various deterioration states, to a large or small extent, making it possible to efficiently judge whether or not repairs are required for the reinforced concrete structure.
  • the determination method further includes an input step of receiving input of rust information related to rust or rust traces in the reinforced concrete structure 2.
  • the determination step includes a step of determining whether or not the reinforced concrete structure 2 has rust or rust traces based on the rust information, determining that the reinforced concrete structure 2 needs repair when it is determined that the reinforced concrete structure 2 has rust or rust traces, and determining whether or not the reinforced concrete structure 2 needs repair based on the deterioration stress-strain relationship and the assumed stress f w when it is determined that the reinforced concrete structure 2 does not have rust or rust traces.
  • the determination method according to the first embodiment it is possible to immediately repair the reinforced concrete structure 2 determined to have rust or rust traces without making a determination using the stress-strain relationship, and it is possible to reduce the processing load because a determination is made using the stress-strain relationship for the reinforced concrete structure 2 determined to have no rust or rust traces.
  • Fig. 6 is a schematic diagram showing an example of the determination device 1-1 according to the present embodiment.
  • the same reference numerals are used for the same functional units as those in the first embodiment, and the description thereof will be omitted.
  • the judgment device 1-1 includes an input unit 11, a stress level calculation unit 12-1, a judgment unit 13-1, and an output unit 14.
  • the stress level calculation unit 12-1 and the judgment unit 13-1 are configured by a controller.
  • the stress calculation unit 12-1 has a cover element number setting unit 121, a finite element model construction unit 122, a finite element analysis unit 123-1, a calculation unit 124-1, and a deterioration ratio calculation unit 125.
  • the finite element analysis unit 123-1 calculates a deterioration stress-strain relationship that indicates the correspondence between stress and strain of the deteriorated reinforced concrete structure 2-B of the first standard, using a deterioration model that represents the deteriorated reinforced concrete structure 2-B of the first standard, which is a reinforced concrete structure 2 of the first standard in which the concrete cover on a specified surface on the internal space IS side has peeled off.
  • This process corresponds to the process in which the finite element analysis unit 123-1 in the first embodiment described above calculates the deterioration stress-strain relationship.
  • the deteriorated reinforced concrete structure in the first embodiment is a deteriorated reinforced concrete structure of the first standard in the second embodiment.
  • the finite element analysis unit 123-1 calculates a first healthy stress-strain relationship that shows the correspondence between stress and strain of the healthy reinforced concrete structure 2-A of the first standard, which is a reinforced concrete structure 2 of the first standard that has not deteriorated, using a healthy model that represents the healthy reinforced concrete structure 2-A of the first standard.
  • the deterioration ratio calculation unit 125 calculates the deterioration ratio ⁇ .
  • the deterioration ratio ⁇ is the ratio of the design value XB of the stress intensity of the deteriorated reinforced concrete structure 2-B of the first standard, which is indicated by the deteriorated stress-strain relationship, to the design value XA of the stress intensity of the healthy reinforced concrete structure 2-A of the first standard, which is indicated by the first healthy stress-strain relationship.
  • the finite element analysis unit 123-1 calculates a second healthy stress-strain relationship that shows the correspondence between stress and strain of a healthy reinforced concrete structure 2-A of the second standard, using a healthy model that represents a healthy reinforced concrete structure 2-A of the second standard, which is similar in shape but different in size from the first standard.
  • the calculation unit 124-1 calculates a value obtained by multiplying the allowable stress fA' ⁇ of the healthy reinforced concrete structure 2-A of the second standard based on the second healthy stress-strain relationship by the deterioration ratio ⁇ as the allowable stress fB' ⁇ of the deteriorated reinforced concrete structure 2-B of the second standard.
  • the calculation unit 124-1 can calculate a value obtained by dividing the design value XA' of the stress of the reinforced concrete structure of the second standard shown in the second healthy stress-strain relationship by the safety factor ⁇ of the reinforced concrete structure 2 as the allowable stress fA' ⁇ .
  • the judgment unit 13-1 judges whether or not repair of the reinforced concrete structure 2 of the second standard is necessary, similarly to the first embodiment, based on whether the allowable stress f B' ⁇ of the deteriorated reinforced concrete structure 2-B of the second standard is equal to or greater than the assumed stress f w' .
  • the judgment unit 13-1 judges whether the allowable stress f B' ⁇ of the deteriorated reinforced concrete structure 2-B of the second standard is equal to or greater than the assumed stress f w' assumed to occur in the environment in which the reinforced concrete structure 2 of the second standard is installed. If the judgment unit 13-1 judges that the allowable stress f B' ⁇ is equal to or greater than the assumed stress f w' , it judges that the reinforced concrete structure 2 of the second standard does not need to be repaired. If the judgment unit 13-1 judges that the allowable stress f B' ⁇ is less than the assumed stress f w' , it judges that the reinforced concrete structure 2 of the second standard needs to be repaired.
  • the stress calculation unit 12-1 can similarly calculate the allowable stress of a deteriorated reinforced concrete structure 2-B of a kth standard (k is an integer equal to or greater than 3) that is similar in shape to the first and second standards but different in size based on the deterioration ratio ⁇ .
  • the judgment unit 13-1 can similarly judge whether or not repairs are necessary for the reinforced concrete structure 2 of the kth standard.
  • the representative model which is a deterioration model representing the deteriorated reinforced concrete structure 2-B of the first standard, is a model representing the deteriorated reinforced concrete structure 2-B of the standard having the largest size.
  • the deterioration stress-strain relationship of the reinforced concrete structure 2 of a standard having a size smaller than the reinforced concrete structure 2 represented by the representative model is calculated using the deterioration ratio ⁇ , as described above. In this way, by using the largest-sized structure, which is likely to have low strength, as the representative model, a safe evaluation (an evaluation that is less likely to result in a dangerous state) of the concrete structure 2 represented by each model is possible.
  • Fig. 7 is a flowchart showing an example of the operation of the determination device 1-1 according to the second embodiment.
  • the operation of the determination device 1-1 described with reference to Fig. 7 corresponds to an example of a determination method of the determination device 1-1 according to the second embodiment for determining whether or not repair is required for a reinforced concrete structure 2 that includes reinforcing bars 2a and concrete 2b covering the reinforcing bars 2a and defines an internal space IS.
  • the operation of the judgment device 1-1 to make a judgment on a reinforced concrete structure 2 of the first standard is similar to the operation of the judgment device 1 of the first embodiment described with reference to FIG. 5.
  • the following describes the operation of the judgment device 1-1 to make a judgment on a reinforced concrete structure 2 of the second standard.
  • step S21 the stress calculation unit 12-1 calculates a first healthy stress-strain relationship that indicates the correspondence between stress and strain of the healthy reinforced concrete structure 2-A of the first standard, using a healthy model that represents the healthy reinforced concrete structure 2-A, which is a reinforced concrete structure of the first standard in which no deterioration has occurred.
  • This operation corresponds to the operation of step S13 in the first embodiment described above. Therefore, after the operation of the first embodiment has been executed, the operation of step S21 does not need to be executed.
  • step S22 the stress calculation unit 12-1 uses a healthy model representing a healthy reinforced concrete structure 2-A, which is a reinforced concrete structure of the first standard and in which no deterioration has occurred, to calculate a first healthy stress-strain relationship that shows the correspondence between stress and strain of the healthy reinforced concrete structure 2-A of the first standard (stress calculation step).
  • step S23 the deterioration ratio calculation unit 125 calculates a deterioration ratio ⁇ , which is the ratio of the design value XB of the stress intensity of the deteriorated reinforced concrete structure 2-B of the first standard, which is indicated by the deteriorated stress-strain relationship, to the design value XA of the stress intensity of the healthy reinforced concrete structure 2-A of the first standard, which is indicated by the first healthy stress-strain relationship (deterioration ratio calculation step).
  • step 24 the input unit 11 accepts input of rust information relating to rust or rust traces on the second standard reinforced concrete structure 2 (input step).
  • step S25 the judgment unit 13-1 judges whether or not there is rust or traces of rust in the reinforced concrete structure of the second standard based on the rust information (judgment step).
  • step S25 If it is determined in step S25 that the reinforced concrete structure of the second standard has rust or traces of rust, in step 31, the determination unit 13-1 determines that the reinforced concrete structure 2 of the second standard needs repair (determination step).
  • step S26 the stress calculation unit 12-1 calculates the deterioration stress-strain relationship (stress calculation step), and in steps S27 to S31, the judgment unit 13-1 judges whether or not repair of the second standard reinforced concrete structure 2 is necessary based on the deterioration stress-strain relationship and the assumed stress fw (judgment step).
  • the stress calculation unit 12-1 uses a healthy model representing a healthy reinforced concrete structure 2-A of a second standard that is similar in shape but different in size from the first standard to calculate a second healthy stress-strain relationship that shows the correspondence between stress and strain of the healthy reinforced concrete structure 2-A of the second standard (stress calculation step).
  • the stress calculation unit 12-1 calculates the allowable stress f A' ⁇ of the healthy reinforced concrete structure 2-A of the second standard, based on the healthy stress-strain relationship of the second standard, multiplied by the deterioration ratio ⁇ , as the allowable stress f B' ⁇ of the deteriorated reinforced concrete structure 2-B of the second standard (stress calculation step).
  • step S27 the stress calculation unit 12-1 calculates the allowable stress fA' ⁇ by dividing the design stress value XA ' by the safety factor ⁇ (stress calculation step).
  • step S28 the stress calculation unit 12-1 calculates the allowable stress f A' ⁇ multiplied by the deterioration ratio ⁇ as the allowable stress f B' ⁇ of the deteriorated reinforced concrete structure 2-B of the second standard (stress calculation step).
  • step S29 the judgment unit 13-1 judges whether the allowable stress f B' ⁇ of the deteriorated reinforced concrete structure 2-B of the second standard is equal to or greater than the assumed stress f w' assumed to occur in the environment in which the reinforced concrete structure 2 of the second standard is installed (judgment step).
  • step S30 the judgment unit 13-1 judges that repair of the reinforced concrete structure 2 according to the second standard is not necessary (judgment step).
  • step S31 the judgment unit 13-1 judges that repair of the reinforced concrete structure according to the second standard is necessary (judgment step).
  • step S32 the output unit 14 outputs the determination result (output step).
  • the judgment device 1-1 may use the deterioration ratio ⁇ calculated in step S23 to further repeatedly execute the processes from step S24 onwards to judge whether or not repair is necessary for the deteriorated reinforced concrete structure 2-B of the kth standard (k is an integer equal to or greater than 3). In this case, the judgment device 1-1 does not need to repeatedly execute the processes from step S21 to step S23 described above.
  • the judgment method according to the second embodiment further includes a deterioration ratio calculation step.
  • the stress calculation step includes a step of calculating a first healthy stress-strain relationship showing a correspondence relationship between stress and strain of the healthy reinforced concrete structure 2-A of the first standard, using a healthy model representing the healthy reinforced concrete structure 2-A, which is the reinforced concrete structure 2 of the first standard in which deterioration has not occurred.
  • the deterioration ratio calculation step also includes a step of calculating a deterioration ratio ⁇ , which is a ratio of a design value XB of stress of the deteriorated reinforced concrete structure 2-B of the first standard, which is shown by the deteriorated stress-strain relationship, to a design value XA of stress of the healthy reinforced concrete structure 2-A of the first standard, which is shown by the first healthy stress-strain relationship.
  • the stress calculation step includes a step of calculating a second healthy stress-strain relationship using a healthy model representing a healthy reinforced concrete structure 2-A of a second standard similar in shape to but different in size from the first standard, and calculating a value obtained by multiplying the allowable stress f A' ⁇ of the healthy reinforced concrete structure 2-A of the second standard based on the healthy stress-strain relationship of the second standard by the deterioration ratio ⁇ as the allowable stress f B' ⁇ of the deteriorated reinforced concrete structure 2-B of the second standard.
  • the determination step includes a step of determining whether or not the allowable stress f B' ⁇ of the deteriorated reinforced concrete structure 2-B of the second standard is equal to or greater than the assumed stress f W assumed to occur in the environment in which the reinforced concrete structure of the second standard is installed.
  • the judgment device 1-1 can easily calculate the allowable stress level f B' ⁇ of the deteriorated reinforced concrete structure 2-B of the second standard compared to the case where the allowable stress level f B' ⁇ is calculated by performing structural analysis using a deterioration model, thereby reducing the processing load of the judgment device 1-1.
  • the above-mentioned determination device 1 and determination device 1-1 can each be realized by a computer 301.
  • a program for causing the computer 301 to function as the above-mentioned determination device 1 or determination device 1-1 may be provided.
  • the program may be stored in a storage medium or provided through a network.
  • FIG. 8 is a block diagram showing a schematic configuration of a computer 301 functioning as the determination device 1.
  • the schematic configuration of a computer functioning as the determination device 1-1 is similar.
  • the computer 301 may be a general-purpose computer, a dedicated computer, a workstation, a PC (Personal Computer), an electronic notepad, or the like.
  • the program instructions may be program code, code segments, or the like for performing necessary tasks.
  • computer 301 includes processor 310, ROM (Read Only Memory) 320, RAM (Random Access Memory) 330, storage 340, input section 350, output section 360, and communication interface (I/F) 370.
  • processor 310 is specifically a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), etc., and may be composed of multiple processors of the same or different types.
  • Processor 310 controls each component and executes various types of arithmetic processing. That is, processor 310 reads a program from ROM 320 or storage 340, and executes the program using RAM 330 as a working area. Processor 310 controls each component and executes various types of arithmetic processing according to the program stored in ROM 320 or storage 340. In the above-described embodiment, the program related to the present disclosure is stored in ROM 320 or storage 340.
  • the program may be stored in a storage medium that is readable by computer 301. By using such a storage medium, it is possible to install the program in computer 301.
  • the storage medium on which the program is stored may be a non-transitory storage medium.
  • the non-transitory storage medium is not particularly limited, and may be, for example, a CD-ROM, a DVD-ROM, or a USB (Universal Serial Bus) memory.
  • the program may be in a form that is downloaded from an external device via a network.
  • ROM 320 stores various programs and data.
  • RAM 330 temporarily stores programs or data as a working area.
  • Storage 340 is composed of a HDD (Hard Disk Drive) or SSD (Solid State Drive), and stores various programs and data including the operating system.
  • the input unit 350 is an interface for accepting input of information
  • the output unit 360 is an interface for outputting information.
  • the communication interface 370 is an interface for communicating with external devices.
  • a method for determining whether or not a reinforced concrete structure that includes a reinforcing bar and concrete covering the reinforcing bar and defines an internal space is required, the method being performed by a determination device, comprising: a stress calculation step of calculating a deterioration stress-strain relationship showing a correspondence relationship between stress and strain of the deteriorated reinforced concrete structure using a deterioration model representing the deteriorated reinforced concrete structure, which is the reinforced concrete structure in which the concrete covering on a predetermined surface on the internal space side has peeled off; a determination step of determining whether or not the reinforced concrete structure needs repair based on the deterioration stress-strain relationship and an assumed stress intensity assumed to occur in an environment in which the reinforced concrete structure is installed;
  • a determination method comprising: [Additional Note 2] The method further includes an input step of receiving input of rust information related to the rust or rust traces of the reinforced concrete structure, The judgment step includes a step of
  • the judgment step includes a step of judging whether the allowable stress level, obtained by dividing the design value of the stress level of the deteriorated reinforced concrete structure, as indicated by the deterioration stress-strain relationship, by the safety factor of the reinforced concrete structure, is equal to or greater than the assumed stress level assumed to occur in the environment in which the reinforced concrete structure is installed, and if it is determined that the allowable stress level is equal to or greater than the assumed stress level, judging that repair of the reinforced concrete structure is not necessary, and if it is determined that the allowable stress level is less than the assumed stress level, judging that repair of the reinforced concrete structure is necessary.
  • the deteriorated reinforced concrete structure is a deteriorated reinforced concrete structure of a first standard, Further comprising a deterioration ratio calculation step,
  • the stress level calculation step includes a step of calculating a first healthy stress-strain relationship indicating a correspondence relationship between stress level and strain of the healthy reinforced concrete structure of the first standard, using a healthy model representing a healthy reinforced concrete structure that is the reinforced concrete structure of the first standard in which no deterioration has occurred,
  • the deterioration ratio calculation step includes a step of calculating a deterioration ratio, which is a ratio of a design value of a stress level of a deteriorated reinforced concrete structure of the first standard, which is indicated by the deteriorated stress-strain relationship, to a design value of a stress level of a healthy reinforced concrete structure of the first standard, which is indicated by the first healthy stress-strain relationship;
  • the stress calculation step includes a step of calculating a second healthy stress-strain relationship showing the correspondence relationship between the stress and strain of the healthy reinforced
  • the stress calculation step includes: determining the size and number of meshes for constructing the degradation model by a finite element method; constructing the degradation model by a finite element method using the size and the number of the meshes;
  • a controller comprising: Calculating a deterioration stress-strain relationship showing a correspondence relationship between stress and strain of the deteriorated reinforced concrete structure using a deterioration model representing the deteriorated reinforced concrete structure, which is the reinforced concrete structure in which the concrete covering on the predetermined surface on the internal space side has peeled off; A determination device that determines whether or not repair of the reinforced concrete structure is necessary based on the deterioration stress-strain relationship and an expected stress level that is expected to occur in the environment in which the reinforced concrete structure is installed.
  • a non-transitory storage medium storing a program executable by a computer, the non-transitory storage medium storing the program causing the computer to execute the determination method described in any one of appended claims 1 to 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

A determination method according to the present disclosure is executed by a determination device (1) that determines the necessity of repair of a reinforced concrete structure (2), which comprises reinforcing bars (21) and concrete (22) covering the reinforcing bars (21), and which defines an interior space (IS). The determination method includes: a stress degree calculation step for calculating a deterioration stress strain relationship indicating a correspondence relationship between stress degree and strain of a deteriorated reinforced concrete structure (2-B), using a deterioration model representing a deteriorated reinforced concrete structure, which is a reinforced concrete structure from which a concrete cover on the interior space (IS) side has peeled off; and a determination step for determining whether or not repair of the reinforced concrete structure is necessary, on the basis of the deterioration stress strain relationship and an assumed stress level (fw) that is expected to occur in the environment where the reinforced concrete structure (2) is installed.

Description

判定方法、判定装置、及びプログラムDetermination method, determination device, and program
 本開示は、判定方法、判定装置、及びプログラムに関する。 This disclosure relates to a determination method, a determination device, and a program.
 従来、鉄筋コンクリート(Reinforced Concrete(RC))で構成されているマンホールは、劣化することが知られている。マンホールの劣化には、外力、アルカリ骨材反応(Alkali Silica Reaction(ASR))(非特許文献1参照)、コンクリートの材質不良若しくは施工不良、又は中性化進行若しくは塩害による鉄筋腐食によるコンクリート剥離及びひび割れが挙げられる。  Traditionally, manholes made of reinforced concrete (RC) have been known to deteriorate. Causes of manhole deterioration include external forces, Alkali Silica Reaction (ASR) (see Non-Patent Document 1), poor concrete quality or poor construction, or concrete spalling and cracking due to corrosion of rebar caused by carbonation or salt damage.
 このようなマンホールの劣化は、一般的には、ひび割れ、コンクリート剥離、露筋等を目視することにより確認される。また、マンホールの劣化は、ひずみゲージを用いる方法(非特許文献2参照)、光ファイバーセンサを用いる方法(非特許文献3参照)、及び鉄筋腐食を電気化学的に検出する方法(非特許文献4参照)等によりモニタリングされることも知られている。 Such deterioration of manholes is generally confirmed by visual inspection for cracks, spalling of concrete, exposed reinforcement, etc. It is also known that deterioration of manholes can be monitored by methods such as using strain gauges (see Non-Patent Document 2), using optical fiber sensors (see Non-Patent Document 3), and electrochemical detection of rebar corrosion (see Non-Patent Document 4).
 また、マンホール等のコンクリート構造物を補修する基準及び時期は、コンクリート構造物の管理者によって判断され、管理者は、コンクリート構造物に含まれる鉄筋の腐食の進行を妨げるようにコンクリートを補修する。例えば、コンクリート構造物を補修するために、劣化要因、劣化状態等に応じて、表面被覆、カソード防食等を行うことが知られている(非特許文献5参照)。 The standards and timing for repairing concrete structures such as manholes are determined by the manager of the concrete structure, who repairs the concrete to prevent the progression of corrosion of the reinforcing bars contained in the concrete structure. For example, it is known that surface coating, cathodic protection, etc. are performed to repair concrete structures depending on the cause of deterioration, the state of deterioration, etc. (see Non-Patent Document 5).
 さらに、コンクリート構造物ごとに劣化の部位、サイズ、及び種類(ひび割れ、コンクリート剥離、鉄筋露出等)が異なるため、個別に構造解析を行うことも知られている(非特許文献6参照)。 Furthermore, since the location, size, and type (cracks, concrete spalling, exposed rebar, etc.) of deterioration differs for each concrete structure, it is also known to conduct structural analysis individually (see Non-Patent Document 6).
 しかしながら、マンホール等の鉄筋コンクリート構造物は、劣化することが想定され、ある程度劣化しても維持されるように、安全率に基づいて設計されている。このため、外力、ASR、又はコンクリートの材質不良若しくは施工不良に起因して、コンクリートにひび割れ又は剥離が発生していても、予め定められた安全率を鑑みたときに残存耐力が十分である場合には、迅速な補修を必要としないことがある。これに対して、上述した技術によりコンクリートのひび割れ又は剥離が確認されるたびに、構造解析による耐力判定がなされることなく補修が行われる場合、鉄筋コンクリート構造物の安全性を保持するための管理コストを抑制するのが困難であった。さらに、仮に、ひび割れ又は剥離が確認され、構造解析を行う場合に、鉄筋コンクリート構造物を構築したときに用いられた設計図を利用すると、現状の鉄筋コンクリート構造物の劣化を適切に判定することが困難であった。 However, reinforced concrete structures such as manholes are designed based on a safety factor, assuming that they will deteriorate, so that they will be maintained even if they deteriorate to a certain extent. For this reason, even if cracks or spalling occur in the concrete due to external forces, ASR, or poor quality or poor construction of the concrete, prompt repair may not be necessary if the remaining strength is sufficient when considering a predetermined safety factor. In contrast, if repairs are made without a strength assessment through structural analysis every time cracks or spalling in the concrete are confirmed using the above-mentioned technology, it is difficult to reduce the management costs for maintaining the safety of reinforced concrete structures. Furthermore, if cracks or spalling are confirmed and structural analysis is conducted, it is difficult to appropriately assess the deterioration of the current reinforced concrete structure if the design drawings used when the reinforced concrete structure was constructed are used.
 また、上述したように、構造物における補修の要否を個別に判定する技術では、様々な状態の構造物における補修の要否を包括的に判定することは困難であった。そのため、処理負荷が高くなり、効率的に構造物における補修の要否を判定することが困難であった。 Also, as mentioned above, using technology that determines whether or not a structure needs repairs individually makes it difficult to comprehensively determine whether or not a structure needs repairs in various states. This results in a high processing load, making it difficult to efficiently determine whether or not a structure needs repairs.
 かかる事情に鑑みてなされた本開示の目的は、鉄筋コンクリート構造物における補修の要否を効率的に判定しつつ、鉄筋コンクリート構造物における安全性を保持するための管理コストを抑制することができる判定方法、判定装置、及びプログラムを提供することにある。 The purpose of this disclosure, made in consideration of these circumstances, is to provide a determination method, determination device, and program that can efficiently determine whether or not repairs are required in reinforced concrete structures while reducing the management costs required to maintain the safety of the reinforced concrete structures.
 上記課題を解決するため、本開示に係る判定方法は、鉄筋と、前記鉄筋を覆うコンクリートとを備え、内部空間を画定する鉄筋コンクリート構造物の補修の要否を判定する判定装置が実行する判定方法であって、前記内部空間側の所定の面におけるコンクリートかぶりが剥離されている前記鉄筋コンクリート構造物である劣化鉄筋コンクリート構造物を表す劣化モデルを用いて、前記劣化鉄筋コンクリート構造物の応力度と歪みとの対応関係を示す劣化応力歪み関係を算出する応力度算出ステップと、前記劣化応力歪み関係と、前記鉄筋コンクリート構造物が設置されている環境で発生すると想定される想定応力度とに基づいて、前記鉄筋コンクリート構造物の補修が必要であるか否かを判定する判定ステップと、を含む。 In order to solve the above problems, the determination method disclosed herein is a determination method executed by a determination device that determines whether or not a reinforced concrete structure that includes reinforcing bars and concrete covering the reinforcing bars and defines an internal space needs to be repaired, and includes a stress calculation step of calculating a deterioration stress-strain relationship that indicates the correspondence between stress and strain of the deteriorated reinforced concrete structure using a deterioration model that represents the deteriorated reinforced concrete structure, which is the reinforced concrete structure in which the concrete covering has peeled off on a predetermined surface on the internal space side, and a determination step of determining whether or not the reinforced concrete structure needs to be repaired based on the deterioration stress-strain relationship and an assumed stress that is assumed to occur in the environment in which the reinforced concrete structure is installed.
 また、上記課題を解決するため、本開示に係る判定装置は、鉄筋と、前記鉄筋を覆うコンクリートとを備え、内部空間を画定する鉄筋コンクリート構造物の補修の要否を判定する判定装置であって、前記内部空間側の所定の面におけるコンクリートかぶりが剥離されている前記鉄筋コンクリート構造物である劣化鉄筋コンクリート構造物を表す劣化モデルを用いて、前記劣化鉄筋コンクリート構造物の応力度と歪みとの対応関係を示す劣化応力歪み関係を算出する応力度算出部と、前記劣化応力歪み関係と、前記鉄筋コンクリート構造物が設置されている環境で発生すると想定される想定応力度とに基づいて、前記鉄筋コンクリート構造物の補修が必要であるか否かを判定する判定部と、を備える。 In order to solve the above problems, the determination device according to the present disclosure is a determination device that determines whether or not a reinforced concrete structure that includes reinforcing bars and concrete covering the reinforcing bars and defines an internal space needs to be repaired, and includes a stress calculation unit that calculates a deterioration stress-strain relationship that indicates the correspondence between stress and strain of the deteriorated reinforced concrete structure using a deterioration model that represents the deteriorated reinforced concrete structure, which is the reinforced concrete structure in which the concrete cover has peeled off on a specified surface on the internal space side, and a determination unit that determines whether or not the reinforced concrete structure needs to be repaired based on the deterioration stress-strain relationship and an assumed stress that is assumed to occur in the environment in which the reinforced concrete structure is installed.
 また、上記課題を解決するため、本開示に係るプログラムは、コンピュータに、上述した劣化判定方法を実行させる。 In addition, to solve the above problem, the program disclosed herein causes a computer to execute the degradation determination method described above.
 本開示に係る判定方法、判定装置、及びプログラムによれば、鉄筋コンクリート構造物における補修の要否を効率的に判定しつつ、鉄筋コンクリート構造物における安全性を保持するための管理コストを抑制することができる。 The assessment method, assessment device, and program disclosed herein can efficiently determine whether or not repairs are required in reinforced concrete structures, while reducing management costs for maintaining the safety of the reinforced concrete structures.
本開示の第1の実施形態に係る判定装置の一例を模式的に示す斜視図である。FIG. 1 is a perspective view illustrating an example of a determination device according to a first embodiment of the present disclosure. 図1に示す判定装置が補修の要否を判定する鉄筋コンクリート構造物の一例を示す模式図である。2 is a schematic diagram showing an example of a reinforced concrete structure for which the judgment device shown in FIG. 1 judges whether or not repair is required. FIG. 図2Aに示す鉄筋コンクリート構造物の断面図である。FIG. 2B is a cross-sectional view of the reinforced concrete structure shown in FIG. 2A. 図2Bに示す鉄筋コンクリート構造物の部分拡大図である。FIG. 2C is a partially enlarged view of the reinforced concrete structure shown in FIG. 2B. 健全劣化鉄筋コンクリート構造物の一例を示す図である。FIG. 1 is a diagram showing an example of a healthy but deteriorated reinforced concrete structure. 劣化劣化鉄筋コンクリート構造物の一例を示す図である。FIG. 1 is a diagram showing an example of a deteriorated reinforced concrete structure. 健全劣化鉄筋コンクリート構造物及び劣化鉄筋コンクリート構造物それぞれの応力歪み曲線を示す図である。FIG. 2 is a diagram showing stress-strain curves of a healthy and deteriorated reinforced concrete structure and a deteriorated reinforced concrete structure. 図1に示す判定装置が実行する動作の一例を示すフローチャートである。4 is a flowchart showing an example of an operation executed by the determination device shown in FIG. 1 . 本開示の第2の実施形態に係る判定装置の一例を示す概略図である。FIG. 11 is a schematic diagram illustrating an example of a determination device according to a second embodiment of the present disclosure. 図6に示す判定装置が実行する動作の一例を示すフローチャートである。7 is a flowchart showing an example of an operation executed by the determination device shown in FIG. 6 . 図1に示す判定装置のハードウェア構成の一例を示す図である。FIG. 2 is a diagram illustrating an example of a hardware configuration of the determination device illustrated in FIG. 1 .
 <<第1の実施形態>>
 <判定装置の構成>
 図1を参照して第1の実施形態の判定装置1について説明する。図1は、第1の実施形態に係る判定装置1の一例を示す概略図である。
First Embodiment
<Configuration of Determination Device>
A determination device 1 according to the first embodiment will be described with reference to Fig. 1. Fig. 1 is a schematic diagram showing an example of the determination device 1 according to the first embodiment.
 判定装置1は、図2A及び図2Bに示すような、鉄筋2aと、鉄筋2aを覆うコンクリート2bとを備え、内部空間ISを画定する鉄筋コンクリート構造物2の補修の要否を判定する。 The judgment device 1 judges whether or not repair is required for a reinforced concrete structure 2 that includes reinforcing bars 2a and concrete 2b that covers the reinforcing bars 2a and defines an internal space IS, as shown in Figures 2A and 2B.
 本例では、鉄筋コンクリート構造物2は、上面部材21と、側面部材22と、下面部材23とによって内部空間ISを画定する。一例として、上面部材21は上床版であり、側面部材22は側壁であり、下面部材23は下床版である。さらに、上面部材21には、人が内部空間ISに出入りするための孔HLが画定されている。また、上面部材21、側面部材22、下面部材23は、それぞれ鉄筋2aと、鉄筋2aを覆うコンクリート2bとによって構成されている(図2Bでは、上面部材21に鉄筋2aが示されている)。また、図2Cに示すように、鉄筋コンクリート構造物2には、コンクリート2bのひび割れ2c、剥離2d等が発生することがあり、剥離2dが大きくなって露筋2eに至ることもある。なお、本例では、鉄筋コンクリート構造物2は、直方体であるが、この限りではない。 In this example, the reinforced concrete structure 2 defines an internal space IS by an upper surface member 21, a side surface member 22, and a lower surface member 23. As an example, the upper surface member 21 is an upper floor slab, the side surface member 22 is a side wall, and the lower surface member 23 is a lower floor slab. Furthermore, a hole HL is defined in the upper surface member 21 for people to enter and exit the internal space IS. Furthermore, the upper surface member 21, the side surface member 22, and the lower surface member 23 are each composed of reinforcing bars 2a and concrete 2b covering the reinforcing bars 2a (in FIG. 2B, the reinforcing bars 2a are shown in the upper surface member 21). Furthermore, as shown in FIG. 2C, cracks 2c and peeling 2d of the concrete 2b may occur in the reinforced concrete structure 2, and the peeling 2d may become large and lead to exposed reinforcing bars 2e. In this example, the reinforced concrete structure 2 is a rectangular parallelepiped, but this is not limited to this.
 鉄筋コンクリート構造物2には、複数の規格があり、各規格の鉄筋コンクリート構造物2のサイズは異なり、また、いくつかの規格における鉄筋コンクリート構造物2は互いに相似形をなしている。例えば、鉄筋コンクリート構造物2がマンホールである例において、一の規格である直線型1号(S-1)のマンホール、他の規格である直線型2号(S-2)のマンホール等は、互いに相似形をなしている。 There are multiple standards for reinforced concrete structures 2, and the sizes of the reinforced concrete structures 2 for each standard are different. In addition, reinforced concrete structures 2 for some standards are similar in shape to each other. For example, in an example where the reinforced concrete structure 2 is a manhole, a straight-line type No. 1 (S-1) manhole of one standard and a straight-line type No. 2 (S-2) manhole of another standard are similar in shape to each other.
 図1に示すように、判定装置1は、入力部11と、応力度算出部12と、判定部13と、出力部14とを備える。入力部11は、入力インターフェースによって構成される。入力インターフェースは、通信インターフェースであってもよい。通信インターフェースには、例えば、イーサネット(登録商標)、FDDI(Fiber Distributed Data Interface)、Wi-Fi(登録商標)等の規格が用いられてもよい。応力度算出部12及び判定部13は、コントローラによって構成される。コントローラは、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)等の専用のハードウェアによって構成されてもよいし、プロセッサによって構成されてもよいし、双方を含んで構成されてもよい。出力部14は、出力インターフェースによって構成される。出力インターフェースは、通信インターフェースであってもよい。 As shown in FIG. 1, the judgment device 1 includes an input unit 11, a stress level calculation unit 12, a judgment unit 13, and an output unit 14. The input unit 11 is configured with an input interface. The input interface may be a communication interface. For example, standards such as Ethernet (registered trademark), FDDI (Fiber Distributed Data Interface), and Wi-Fi (registered trademark) may be used for the communication interface. The stress level calculation unit 12 and the judgment unit 13 are configured with a controller. The controller may be configured with dedicated hardware such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field-Programmable Gate Array), may be configured with a processor, or may be configured to include both. The output unit 14 is configured with an output interface. The output interface may be a communication interface.
 入力部11は、鉄筋コンクリート構造物2の錆汁又は錆汁跡に関する錆汁情報の入力を受け付ける。錆汁情報は、鉄筋コンクリート構造物2に錆汁又は錆汁跡があるか否かを示す情報であってもよい。例えば、錆汁情報は、点検者によって観察された結果に基づく情報であってデータベースを含む点検装置に記憶され、点検装置から入力部11に入力されてもよい。また、錆汁情報は、カメラ等の撮像装置によって撮像された鉄筋コンクリート構造物2の画像を示す画像情報であって、撮像装置から入力部11に入力されてもよい。 The input unit 11 accepts input of rust information relating to rust or rust traces on the reinforced concrete structure 2. The rust information may be information indicating whether or not there is rust or rust traces on the reinforced concrete structure 2. For example, the rust information may be information based on the results of observation by an inspector, stored in an inspection device including a database, and input from the inspection device to the input unit 11. The rust information may also be image information indicating an image of the reinforced concrete structure 2 captured by an imaging device such as a camera, and input from the imaging device to the input unit 11.
 応力度算出部12は、内部空間IS側の所定の面におけるコンクリートかぶりが剥離されている鉄筋コンクリート構造物2である劣化鉄筋コンクリート構造物2-B(図3B参照)を表す劣化モデルを用いて、劣化鉄筋コンクリート構造物2-Bの応力度と歪みとの対応関係を示す劣化応力歪み関係を算出する。劣化鉄筋コンクリート構造物2-Bにおいて、コンクリートかぶりは、内部空間IS側の所定の面における全面で剥離されている。図3Bに示す例では、所定の面は、上面部材21の面である。 The stress calculation unit 12 uses a deterioration model representing a deteriorated reinforced concrete structure 2-B (see Figure 3B), which is a reinforced concrete structure 2 in which the concrete cover has peeled off on a specified surface on the internal space IS side, to calculate a deterioration stress-strain relationship that shows the correspondence between stress and strain in the deteriorated reinforced concrete structure 2-B. In the deteriorated reinforced concrete structure 2-B, the concrete cover has peeled off over the entire surface of the specified surface on the internal space IS side. In the example shown in Figure 3B, the specified surface is the surface of the upper surface member 21.
 劣化モデルは、図3Aに示すような、劣化が発生していない鉄筋コンクリート構造物2である健全鉄筋コンクリート構造物2-Aから、一の面部材(例えば、上面部材21)における内部空間IS側の所定の面におけるコンクリートかぶりが剥離された劣化鉄筋コンクリート構造物2-Bを表すモデル(図3B参照)である。劣化モデルは、ソリッドモデルとすることができる。 The deterioration model is a model (see FIG. 3B) that represents a deteriorated reinforced concrete structure 2-B in which the concrete covering on a specified surface on the internal space IS side of one surface member (e.g., upper surface member 21) has been peeled off from a healthy reinforced concrete structure 2-A, which is a reinforced concrete structure 2 in which no deterioration has occurred, as shown in FIG. 3A. The deterioration model can be a solid model.
 ここで、応力度算出部12について詳細に説明する。図1に示すように、応力度算出部12は、かぶり要素数設定部121と、有限要素モデル構築部122と、有限要素解析部123と、算出部124とを有する。 Here, the stress calculation unit 12 will be described in detail. As shown in FIG. 1, the stress calculation unit 12 has a cover element number setting unit 121, a finite element model construction unit 122, a finite element analysis unit 123, and a calculation unit 124.
 かぶり要素数設定部121は、有限要素法により劣化モデルを構築するためのメッシュのサイズ及び数を設定する。具体的には、かぶり要素数設定部121は、図3Bに示すように、鉄筋コンクリート構造物2における内部空間IS側の所定の面におけるコンクリートかぶりが剥離され、鉄筋2aが暴露しない範囲において、コンクリート2bの剥離長さが最も長くなるように、有限要素法により設定可能なメッシュのサイズ及び数を設定する。例えば、かぶり要素数設定部121は、上面部材21が有する面の法線方向における、コンクリート2bが剥離した長さLy(図2C参照)が、上面部材21の内部空間IS側の表面から鉄筋2aまでの長さd(図2C参照)より短く、有限要素法において設定可能な値の最大値であるように、メッシュのサイズ及び数を設定する。 The cover element number setting unit 121 sets the size and number of meshes for constructing a deterioration model by the finite element method. Specifically, as shown in FIG. 3B, the cover element number setting unit 121 sets the size and number of meshes that can be set by the finite element method so that the concrete cover on a specified surface on the internal space IS side of the reinforced concrete structure 2 is peeled off and the length of peeled concrete 2b is maximized within the range where the reinforcing bar 2a is not exposed. For example, the cover element number setting unit 121 sets the size and number of meshes so that the length Ly (see FIG. 2C) of peeled concrete 2b in the normal direction of the surface of the upper surface member 21 is shorter than the length d (see FIG. 2C) from the surface of the upper surface member 21 on the internal space IS side to the reinforcing bar 2a, and is the maximum value that can be set by the finite element method.
 有限要素モデル構築部122は、かぶり要素数設定部121によって決定されたサイズ及び数のメッシュを用いて、有限要素法により劣化モデルを構築することができる。かぶり要素数設定部121が、上述したようにメッシュのサイズ及び数を設定しているため、有限要素モデル構築部122は、鉄筋コンクリート構造物2-Bにおける内部空間IS側の所定の面におけるコンクリートかぶりが剥離され、鉄筋2aが暴露しない範囲において、コンクリート2bの剥離長さが最も長い劣化鉄筋コンクリート構造物2-Bを表す劣化モデルを構築することができる。これにより、有限要素モデル構築部122は、腐食、外力等に起因する劣化過程の初期における、大小さまざまな劣化状態の鉄筋コンクリート構造物2を包括的に表す劣化モデルを構築することができる。 The finite element model construction unit 122 can construct a deterioration model by the finite element method using the size and number of meshes determined by the cover element number setting unit 121. Because the cover element number setting unit 121 sets the size and number of meshes as described above, the finite element model construction unit 122 can construct a deterioration model representing a deteriorated reinforced concrete structure 2-B in which the concrete cover on a specified surface on the internal space IS side of the reinforced concrete structure 2-B has been peeled off and the length of peeled concrete 2b is the longest within the range where the reinforcing bars 2a are not exposed. This allows the finite element model construction unit 122 to construct a deterioration model that comprehensively represents the reinforced concrete structure 2 in various states of deterioration, large and small, in the early stages of the deterioration process caused by corrosion, external forces, etc.
 また、有限要素モデル構築部122は、有限要素法により、健全鉄筋コンクリート構造物2-Aを表す健全モデルを構築してもよい。 The finite element model construction unit 122 may also construct a sound model representing the sound reinforced concrete structure 2-A using the finite element method.
 有限要素解析部123は、劣化モデルを用いて、劣化鉄筋コンクリート構造物2-Bの応力度と歪みとの対応関係を示す劣化応力歪み関係を算出する。また、有限要素解析部123は、健全モデルを用いて、健全鉄筋コンクリート構造物2-Aの応力度と歪みとの対応関係を示す健全応力歪み関係を算出してもよい。 The finite element analysis unit 123 uses the deterioration model to calculate a deterioration stress-strain relationship that indicates the corresponding relationship between stress and strain in the deteriorated reinforced concrete structure 2-B. The finite element analysis unit 123 may also use the sound model to calculate a healthy stress-strain relationship that indicates the corresponding relationship between stress and strain in the healthy reinforced concrete structure 2-A.
 劣化応力歪み関係および健全応力歪み関係は、それぞれ図4に示すような、応力歪み曲線によって示されてもよい。図4には、健全鉄筋コンクリート構造物2-Aの応力度の設計値X、及び劣化鉄筋コンクリート構造物2-Bの応力度の設計値Xが示されている。応力度の設計値は、応力と歪みが略線形の関係にある範囲における応力の最大値である。略線形とは、歪みに対する応力の変化率(図4に示す曲線の傾き)が略一定(変化率が閾値以下)であることをいう。 The deteriorated stress-strain relationship and the healthy stress-strain relationship may each be represented by a stress-strain curve as shown in Fig. 4. Fig. 4 shows a design value XA of the stress intensity of the healthy reinforced concrete structure 2-A and a design value XB of the stress intensity of the deteriorated reinforced concrete structure 2-B. The design value of the stress intensity is the maximum value of the stress in a range in which the stress and the strain have an approximately linear relationship. "Approximately linear" means that the rate of change of the stress with respect to the strain (the slope of the curve shown in Fig. 4) is approximately constant (the rate of change is equal to or less than a threshold value).
 算出部124は、劣化応力歪み関係によって示される、劣化鉄筋コンクリート構造物2-Bの応力度の設計値Xと、安全率αとに基づいて、劣化鉄筋コンクリート構造物2-Bの許容応力度fBαを算出する。安全率αは、鉄筋コンクリート構造物2の使用材料における破壊応力に対する許容応力の比であって、鉄筋コンクリート構造物2を設計するときに定められる1より大きい値である。具体的には、算出部124は、応力度の設計値Xを安全率αで除した値を許容応力度fBαとして算出する。図4には、例として、安全率αが2である場合の許容応力度fB2、及び安全率αが3である場合の許容応力度fB3がそれぞれ示されている。 The calculation unit 124 calculates the allowable stress f Bα of the deteriorated reinforced concrete structure 2-B based on the design value X B of the stress of the deteriorated reinforced concrete structure 2-B indicated by the deterioration stress-strain relationship and the safety factor α . The safety factor α is a ratio of the allowable stress to the fracture stress of the material used in the reinforced concrete structure 2, and is a value greater than 1 that is determined when the reinforced concrete structure 2 is designed. Specifically, the calculation unit 124 calculates the value obtained by dividing the design value X B of the stress by the safety factor α as the allowable stress f . FIG. 4 shows, as examples, the allowable stress f B2 when the safety factor α is 2 and the allowable stress f B3 when the safety factor α is 3.
 また、算出部124は、健全応力歪み関係によって示される、健全鉄筋コンクリート構造物2-Aの応力度の設計値Xと、安全率αとに基づいて、健全モデルによって表される健全鉄筋コンクリート構造物2-Aの許容応力度fAαを算出してもよい。具体的には、算出部124は、応力度の設計値Xを安全率αで除した値を許容応力度fAαとして算出してもよい。図4には、例として、安全率αが2である場合の許容応力度fA2、及び安全率αが3である場合の許容応力度fA3がそれぞれ示されている。 The calculation unit 124 may also calculate the allowable stress fAα of the healthy reinforced concrete structure 2-A represented by the healthy model based on the design value XA of the stress of the healthy reinforced concrete structure 2-A and the safety factor α, which are shown by the healthy stress-strain relationship. Specifically, the calculation unit 124 may calculate the value obtained by dividing the design value XA of the stress by the safety factor α as the allowable stress fAα . In Fig. 4, as examples, the allowable stress fA2 when the safety factor α is 2 and the allowable stress fA3 when the safety factor α is 3 are shown.
 判定部13は、錆汁情報に基づいて、鉄筋コンクリート構造物2の補修が必要であるか否かを判定してもよい。鉄筋コンクリート構造物2に錆汁又は錆汁跡がある場合、鉄筋2aが暴露しており、それゆえ、劣化が進んでいると見込まれる。これに対して、鉄筋コンクリート構造物2に錆汁又は錆汁跡がない場合、鉄筋2aが大気に暴露しておらず、それゆえ、劣化が進んでいないこともあると見込まれる。 The judgment unit 13 may judge whether or not repair of the reinforced concrete structure 2 is necessary based on the rust information. If there is rust or traces of rust on the reinforced concrete structure 2, it is expected that the reinforcing bars 2a are exposed and therefore deterioration is progressing. On the other hand, if there is no rust or traces of rust on the reinforced concrete structure 2, it is expected that the reinforcing bars 2a are not exposed to the atmosphere and therefore deterioration may not be progressing.
 そのため、判定部13は、鉄筋コンクリート構造物に錆汁又は錆汁跡があるか否かを判定してもよい。そして、判定部13は、鉄筋コンクリート構造物に錆汁又は錆汁跡があると判定された場合、鉄筋コンクリート構造物2の補修が必要であると判定してもよい。また、判定部13は、鉄筋コンクリート構造物2に錆汁及び錆汁跡がないと判定された場合、以降において詳細に説明するように、劣化応力歪み関係と、想定応力度fとに基づいて、鉄筋コンクリート構造物2の補修が必要であるか否かを判定してもよい。 Therefore, the determination unit 13 may determine whether or not there is rust or rust traces in the reinforced concrete structure. If it is determined that there is rust or rust traces in the reinforced concrete structure, the determination unit 13 may determine that repair of the reinforced concrete structure 2 is necessary. If it is determined that there is no rust or rust traces in the reinforced concrete structure 2, the determination unit 13 may determine whether or not repair of the reinforced concrete structure 2 is necessary based on the deterioration stress-strain relationship and the assumed stress intensity fw , as will be described in detail below.
 判定部13は、劣化応力歪み関係と、鉄筋コンクリート構造物2が設置されている環境で発生すると想定される想定応力度fとに基づいて、鉄筋コンクリート構造物2の補修が必要であるか否かを判定する。 The judgment unit 13 judges whether or not repair of the reinforced concrete structure 2 is necessary based on the deterioration stress-strain relationship and the assumed stress intensity fw that is assumed to occur in the environment in which the reinforced concrete structure 2 is installed.
 具体的には、判定部13は、劣化応力歪み関係で示される、劣化鉄筋コンクリート構造物2-Bの応力度の設計値Xを、鉄筋コンクリート構造物の安全率αで除した許容応力度fBαが、鉄筋コンクリート構造物2が設置されている環境で発生すると想定される想定応力度f以上であるか否かを判定する。判定部13は、許容応力度fBαが想定応力度f以上であると判定された場合、鉄筋コンクリート構造物2の補修が必要でないと判定する。また、判定部13は、許容応力度fBαが想定応力度f未満であると判定された場合、鉄筋コンクリート構造物2の補修が必要であると判定する。 Specifically, the judgment unit 13 judges whether or not the allowable stress fBα obtained by dividing the design value XB of the stress of the deteriorated reinforced concrete structure 2-B, which is indicated by the deterioration stress-strain relationship, by the safety factor α of the reinforced concrete structure, is equal to or greater than the assumed stress fw that is assumed to occur in the environment in which the reinforced concrete structure 2 is installed. If the judgment unit 13 judges that the allowable stress fBα is equal to or greater than the assumed stress fw , it judges that repair of the reinforced concrete structure 2 is not necessary. Furthermore, if the judgment unit 13 judges that the allowable stress fBα is less than the assumed stress fw , it judges that repair of the reinforced concrete structure 2 is necessary.
 なお、上述したように、錆汁情報が鉄筋コンクリート構造物2の画像を示す画像情報である構成において、判定部13は、画像情報に基づいて、鉄筋コンクリート構造物2に錆汁又は錆汁跡があるか否かを判定する。具体的には、判定部13は、任意の画像処理を用いて、鉄筋コンクリート構造物2の像内に錆汁又は錆汁跡の像が検出された場合、鉄筋コンクリート構造物2に錆汁又は錆汁跡があると判定する。また、判定部13は、該画像処理を用いて、鉄筋コンクリート構造物2の像内に錆汁又は錆汁跡の像が検出されなかった場合、鉄筋コンクリート構造物2に錆汁及び錆汁跡がないと判定する。 As described above, in a configuration in which the rust information is image information showing an image of the reinforced concrete structure 2, the judgment unit 13 judges whether or not there is rust or rust traces in the reinforced concrete structure 2 based on the image information. Specifically, the judgment unit 13 uses any image processing to judge that there is rust or rust traces in the reinforced concrete structure 2 when an image of rust or rust traces is detected in the image of the reinforced concrete structure 2. Furthermore, the judgment unit 13 uses the image processing to judge that there is no rust or rust traces in the reinforced concrete structure 2 when an image of rust or rust traces is not detected in the image of the reinforced concrete structure 2.
 出力部14は、判定部13によって判定された判定結果を出力する。例えば、出力部14は、判定装置1と一体又は別体として構成された表示装置に判定結果を表示させてもよい。また、出力部14は、通信ネットワークを介して判定結果を他の装置に出力してもよいし、音声等の任意の方法により判定結果を出力してもよい。 The output unit 14 outputs the judgment result judged by the judgment unit 13. For example, the output unit 14 may display the judgment result on a display device configured as an integral part of or separate from the judgment device 1. The output unit 14 may also output the judgment result to another device via a communication network, or may output the judgment result by any method such as voice.
 <判定装置の動作>
 ここで、第1の実施形態に係る判定装置1の動作について、図5を参照して説明する。図5は、第1の実施形態に係る判定装置1の動作の一例を示すフローチャートである。図5を参照して説明する判定装置1における動作は、第1の実施形態に係る判定装置1が実行する判定方法の一例に相当する。
<Operation of Determination Device>
Here, the operation of the determination device 1 according to the first embodiment will be described with reference to Fig. 5. Fig. 5 is a flowchart showing an example of the operation of the determination device 1 according to the first embodiment. The operation of the determination device 1 described with reference to Fig. 5 corresponds to an example of a determination method executed by the determination device 1 according to the first embodiment.
 ステップS11において、入力部11が、鉄筋コンクリート構造物2の錆汁又は錆汁跡に関する錆汁情報の入力を受け付ける(入力ステップ)。 In step S11, the input unit 11 accepts input of rust information relating to rust or rust traces on the reinforced concrete structure 2 (input step).
 ステップS12において、判定部13が、錆汁情報に基づいて、鉄筋コンクリート構造物2に錆汁又は錆汁跡があるか否かを判定する(判定ステップ)。 In step S12, the judgment unit 13 judges whether or not there is rust or traces of rust on the reinforced concrete structure 2 based on the rust information (judgment step).
 ステップS12で、鉄筋コンクリート構造物2に錆汁又は錆汁跡があると判定された場合、ステップ16において、判定部13が、鉄筋コンクリート構造物2の補修が必要であると判定する(判定ステップ)。 If it is determined in step S12 that there is rust or traces of rust on the reinforced concrete structure 2, then in step 16 the determination unit 13 determines that repair of the reinforced concrete structure 2 is necessary (determination step).
 ステップ12で、鉄筋コンクリート構造物2に錆汁及び錆汁跡がないと判定された場合、ステップS13で、応力度算出部12が、劣化応力歪み関係を算出し(応力度算出ステップ)、ステップS14~ステップS16において、判定部13が、劣化応力歪み関係と、想定応力度fとに基づいて、鉄筋コンクリート構造物2の補修が必要であるか否かを判定する(判定ステップ)。 If it is determined in step 12 that there is no rust or traces of rust in the reinforced concrete structure 2, in step S13, the stress calculation unit 12 calculates the deterioration stress-strain relationship (stress calculation step), and in steps S14 to S16, the judgment unit 13 judges whether or not repair of the reinforced concrete structure 2 is necessary based on the deterioration stress-strain relationship and the assumed stress fw (judgment step).
 具体的には、ステップS13において、応力度算出部12が、内部空間IS側の所定の面におけるコンクリートかぶりが剥離されている鉄筋コンクリート構造物2である劣化鉄筋コンクリート構造物2-Bを表す劣化モデルを用いて、劣化鉄筋コンクリート構造物2-Bの応力度と歪みとの対応関係を示す劣化応力歪み関係を算出する(応力度算出ステップ)。このとき、応力度算出部12は、有限要素法により劣化モデルを構築するためのメッシュのサイズ及び数を決定し、サイズ及び数のメッシュを用いて、有限要素法により劣化モデルを構築することができる。 Specifically, in step S13, the stress calculation unit 12 uses a deterioration model representing a deteriorated reinforced concrete structure 2-B, which is a reinforced concrete structure 2 in which the concrete cover has peeled off on a specified surface on the internal space IS side, to calculate a deterioration stress-strain relationship that indicates the correspondence between stress and strain of the deteriorated reinforced concrete structure 2-B (stress calculation step). At this time, the stress calculation unit 12 determines the size and number of meshes for constructing the deterioration model using the finite element method, and can construct the deterioration model using the finite element method using the size and number of meshes.
 ステップS14において、判定部13が、劣化応力歪み関係で示される、劣化鉄筋コンクリート構造物2-Bの応力度の設計値Xを、鉄筋コンクリート構造物2の安全率αで除した許容応力度fBαが想定応力度f以上であるか否かを判定する(判定ステップ)。 In step S14, the judgment unit 13 judges whether the allowable stress fBα obtained by dividing the design value XB of the stress of the deteriorated reinforced concrete structure 2-B shown in the deterioration stress-strain relationship by the safety factor α of the reinforced concrete structure 2 is equal to or greater than the assumed stress fW (judgment step).
 ステップS14で、許容応力度fBαが想定応力度f以上であると判定された場合、ステップS15において、判定部13が、鉄筋コンクリート構造物2の補修が必要でないと判定する(判定ステップ)。 If it is determined in step S14 that the allowable stress f is equal to or greater than the assumed stress f w , then in step S15, the determination unit 13 determines that repair of the reinforced concrete structure 2 is not necessary (determination step).
 ステップS14で、許容応力度fBαが想定応力度f未満であると判定された場合、ステップS16において、判定部13が、鉄筋コンクリート構造物2の補修が必要であると判定する(判定ステップ)。 If it is determined in step S14 that the allowable stress f is less than the assumed stress f w , then in step S16, the determination unit 13 determines that repair of the reinforced concrete structure 2 is necessary (determination step).
 ステップS17において、出力部14が判定結果を出力する(出力ステップ)。 In step S17, the output unit 14 outputs the determination result (output step).
 以上、説明したように、第1の実施形態に係る判定方法は、鉄筋2aと、鉄筋2aを覆うコンクリート2bとを備え、内部空間ISを画定する鉄筋コンクリート構造物2の補修の要否を判定する判定装置1が実行する判定方法である。また、第1の実施形態に係る判定方法は、内部空間IS側の所定の面におけるコンクリートかぶりが剥離されている鉄筋コンクリート構造物2である劣化鉄筋コンクリート構造物2-Bを表す劣化モデルを用いて、劣化鉄筋コンクリート構造物2-Bの応力度と歪みとの対応関係を示す劣化応力歪み関係を算出する応力度算出ステップと、劣化応力歪み関係と、鉄筋コンクリート構造物2が設置されている環境で発生すると想定される想定応力度fとに基づいて、鉄筋コンクリート構造物2の補修が必要であるか否かを判定する判定ステップと、を含む。 As described above, the determination method according to the first embodiment is a determination method executed by a determination device 1 that determines whether or not the reinforced concrete structure 2 that includes the reinforcing bar 2a and the concrete 2b covering the reinforcing bar 2a and defines an internal space IS needs to be repaired. The determination method according to the first embodiment includes a stress calculation step of calculating a deterioration stress-strain relationship that indicates a correspondence relationship between the stress and strain of the deteriorated reinforced concrete structure 2-B using a deterioration model that represents a deteriorated reinforced concrete structure 2-B that is a reinforced concrete structure 2 in which the concrete covering on a predetermined surface on the internal space IS side has peeled off, and a determination step of determining whether or not the reinforced concrete structure 2 needs to be repaired based on the deterioration stress-strain relationship and an assumed stress f w that is assumed to occur in the environment in which the reinforced concrete structure 2 is installed.
 これにより、鉄筋コンクリート構造物2の補修が必要であるか、補修が必要でないかを適切に判定することができる。このため、例えば、目視によりひび割れ等が確認されていたとしても、維持に必要な耐力を有する鉄筋コンクリート構造物2の補修を順延することができる。したがって、鉄筋コンクリート構造物における安全性を保持するための管理コストを抑制することができる。 This makes it possible to appropriately determine whether or not repairs are necessary for the reinforced concrete structure 2. Therefore, for example, even if cracks or the like are confirmed by visual inspection, repairs to the reinforced concrete structure 2 that has the necessary strength for maintenance can be postponed. This makes it possible to reduce the management costs for maintaining the safety of the reinforced concrete structure.
 また、仮に、鉄筋コンクリート構造物2の実際の劣化状態を反映させたモデルで構造解析が行われる場合、処理負荷が大きくなり、効率的に判定を行うことが困難となる。これに対し、第1の実施形態に係る判定方法において、劣化モデルは、大小さまざまな劣化状態の鉄筋コンクリート構造物を包括的に表すことができるため、鉄筋コンクリート構造物における補修の要否を効率的に判定することができる。 Furthermore, if structural analysis were performed using a model that reflected the actual deterioration state of the reinforced concrete structure 2, the processing load would be large, making it difficult to make an efficient judgment. In contrast, in the judgment method according to the first embodiment, the deterioration model can comprehensively represent reinforced concrete structures in various deterioration states, to a large or small extent, making it possible to efficiently judge whether or not repairs are required for the reinforced concrete structure.
 また、第1の実施形態に係る判定方法は、鉄筋コンクリート構造物2の錆汁又は錆汁跡に関する錆汁情報の入力を受け付ける入力ステップをさらに含む。判定ステップは、錆汁情報に基づいて、鉄筋コンクリート構造物2に錆汁又は錆汁跡があるか否かを判定し、鉄筋コンクリート構造物2に錆汁又は錆汁跡があると判定された場合、鉄筋コンクリート構造物2の補修が必要であると判定し、鉄筋コンクリート構造物2に錆汁及び錆汁跡がないと判定された場合、劣化応力歪み関係と、想定応力度fとに基づいて、鉄筋コンクリート構造物2の補修が必要であるか否かを判定するステップを含む。このように、第1の実施形態に係る判定方法によれば、錆汁及び錆汁跡があると判定された鉄筋コンクリート構造物2について応力歪み関係を用いて判定を行わずに、即時に補修を行うことができ、錆汁及び錆汁跡がないと判定された鉄筋コンクリート構造物2について応力歪み関係を用いた判定を行うため、処理負荷を軽減することができる。 The determination method according to the first embodiment further includes an input step of receiving input of rust information related to rust or rust traces in the reinforced concrete structure 2. The determination step includes a step of determining whether or not the reinforced concrete structure 2 has rust or rust traces based on the rust information, determining that the reinforced concrete structure 2 needs repair when it is determined that the reinforced concrete structure 2 has rust or rust traces, and determining whether or not the reinforced concrete structure 2 needs repair based on the deterioration stress-strain relationship and the assumed stress f w when it is determined that the reinforced concrete structure 2 does not have rust or rust traces. In this way, according to the determination method according to the first embodiment, it is possible to immediately repair the reinforced concrete structure 2 determined to have rust or rust traces without making a determination using the stress-strain relationship, and it is possible to reduce the processing load because a determination is made using the stress-strain relationship for the reinforced concrete structure 2 determined to have no rust or rust traces.
 <<第2の実施形態>>
 <判定装置の構成>
 図6を参照して第2の実施形態の判定装置1-1について説明する。図6は、本実施形態に係る判定装置1-1の一例を示す概略図である。第2の実施形態において、第1の実施形態と同一の機能部については同じ符号を付加し、説明を省略する。
<<Second embodiment>>
<Configuration of Determination Device>
A determination device 1-1 according to the second embodiment will be described with reference to Fig. 6. Fig. 6 is a schematic diagram showing an example of the determination device 1-1 according to the present embodiment. In the second embodiment, the same reference numerals are used for the same functional units as those in the first embodiment, and the description thereof will be omitted.
 判定装置1-1は、入力部11と、応力度算出部12-1と、判定部13―1と、出力部14とを備える。応力度算出部12-1及び判定部13-1はコントローラによって構成される。 The judgment device 1-1 includes an input unit 11, a stress level calculation unit 12-1, a judgment unit 13-1, and an output unit 14. The stress level calculation unit 12-1 and the judgment unit 13-1 are configured by a controller.
 応力度算出部12-1は、かぶり要素数設定部121と、有限要素モデル構築部122と、有限要素解析部123-1と、算出部124-1と、劣化比率算出部125とを有する。 The stress calculation unit 12-1 has a cover element number setting unit 121, a finite element model construction unit 122, a finite element analysis unit 123-1, a calculation unit 124-1, and a deterioration ratio calculation unit 125.
 有限要素解析部123-1は、内部空間IS側の所定の面におけるコンクリートかぶりが剥離されている、第1の規格の鉄筋コンクリート構造物2である第1の規格の劣化鉄筋コンクリート構造物2-Bを表す劣化モデルを用いて、第1の規格の劣化鉄筋コンクリート構造物2-Bの応力度と歪みとの対応関係を示す劣化応力歪み関係を算出する。本処理は、上述した第1の実施形態における有限要素解析部123-1が劣化応力歪み関係を算出する処理に相当する。すなわち、第1の実施形態における劣化鉄筋コンクリート構造物は、第2の実施形態において、第1の規格の劣化鉄筋コンクリート構造物である。 The finite element analysis unit 123-1 calculates a deterioration stress-strain relationship that indicates the correspondence between stress and strain of the deteriorated reinforced concrete structure 2-B of the first standard, using a deterioration model that represents the deteriorated reinforced concrete structure 2-B of the first standard, which is a reinforced concrete structure 2 of the first standard in which the concrete cover on a specified surface on the internal space IS side has peeled off. This process corresponds to the process in which the finite element analysis unit 123-1 in the first embodiment described above calculates the deterioration stress-strain relationship. In other words, the deteriorated reinforced concrete structure in the first embodiment is a deteriorated reinforced concrete structure of the first standard in the second embodiment.
 また、有限要素解析部123-1は、劣化が発生していない、第1の規格の鉄筋コンクリート構造物2である第1の規格の健全鉄筋コンクリート構造物2-Aを表す健全モデルを用いて、第1の規格の健全鉄筋コンクリート構造物2-Aの応力度と歪みとの対応関係を示す第1の健全応力歪み関係を算出する。 Furthermore, the finite element analysis unit 123-1 calculates a first healthy stress-strain relationship that shows the correspondence between stress and strain of the healthy reinforced concrete structure 2-A of the first standard, which is a reinforced concrete structure 2 of the first standard that has not deteriorated, using a healthy model that represents the healthy reinforced concrete structure 2-A of the first standard.
 劣化比率算出部125は、劣化比率βを算出する。劣化比率βは、第1の健全応力歪み関係によって示される、第1の規格の健全鉄筋コンクリート構造物2-Aの応力度の設計値Xに対する、劣化応力歪み関係によって示される、第1の規格の劣化鉄筋コンクリート構造物2-Bの応力度の設計値Xの比率である。 The deterioration ratio calculation unit 125 calculates the deterioration ratio β. The deterioration ratio β is the ratio of the design value XB of the stress intensity of the deteriorated reinforced concrete structure 2-B of the first standard, which is indicated by the deteriorated stress-strain relationship, to the design value XA of the stress intensity of the healthy reinforced concrete structure 2-A of the first standard, which is indicated by the first healthy stress-strain relationship.
 また、有限要素解析部123-1は、第1の規格とは形状が相似し、サイズが異なる第2の規格の健全鉄筋コンクリート構造物2-Aを表す健全モデルを用いて、第2の規格の健全鉄筋コンクリート構造物2-Aの応力度と歪みとの対応関係を示す第2の健全応力歪み関係を算出する。 Furthermore, the finite element analysis unit 123-1 calculates a second healthy stress-strain relationship that shows the correspondence between stress and strain of a healthy reinforced concrete structure 2-A of the second standard, using a healthy model that represents a healthy reinforced concrete structure 2-A of the second standard, which is similar in shape but different in size from the first standard.
 さらに、算出部124-1は、第2の健全応力歪み関係に基づく、第2の規格の健全鉄筋コンクリート構造物2-Aの許容応力度fA’αに劣化比率βを乗じた値を第2の規格の劣化鉄筋コンクリート構造物2-Bの許容応力度fB’αとして算出する。ここで、算出部124-1は、第2の健全応力歪み関係で示される、第2の規格の鉄筋コンクリート構造物の応力度の設計値XA’を、鉄筋コンクリート構造物2の安全率αで除した値を許容応力度fA’αとして算出することができる。 Furthermore, the calculation unit 124-1 calculates a value obtained by multiplying the allowable stress fA'α of the healthy reinforced concrete structure 2-A of the second standard based on the second healthy stress-strain relationship by the deterioration ratio β as the allowable stress fB'α of the deteriorated reinforced concrete structure 2-B of the second standard. Here, the calculation unit 124-1 can calculate a value obtained by dividing the design value XA' of the stress of the reinforced concrete structure of the second standard shown in the second healthy stress-strain relationship by the safety factor α of the reinforced concrete structure 2 as the allowable stress fA'α .
 判定部13-1は、第2の規格の劣化鉄筋コンクリート構造物2-Bの許容応力度fB’αが、想定応力度fw’以上であるか否かに基づいて、第1の実施形態と同様に、第2の規格の鉄筋コンクリート構造物2の補修が必要であるか否かを判定する。 The judgment unit 13-1 judges whether or not repair of the reinforced concrete structure 2 of the second standard is necessary, similarly to the first embodiment, based on whether the allowable stress f B'α of the deteriorated reinforced concrete structure 2-B of the second standard is equal to or greater than the assumed stress f w' .
 具体的には、判定部13-1は、第2の規格の劣化鉄筋コンクリート構造物2-Bの許容応力度fB’αが、第2の規格の鉄筋コンクリート構造物2が設置されている環境で発生すると想定される想定応力度fw’以上であるか否かを判定する。そして、判定部13-1は、許容応力度fB’αが想定応力度fw’以上であると判定された場合、第2の規格の鉄筋コンクリート構造物2の補修が必要でないと判定する。判定部13-1は、許容応力度fB’αが想定応力度fw’未満であると判定された場合、第2の規格の鉄筋コンクリート構造物2の補修が必要であると判定する。 Specifically, the judgment unit 13-1 judges whether the allowable stress f B'α of the deteriorated reinforced concrete structure 2-B of the second standard is equal to or greater than the assumed stress f w' assumed to occur in the environment in which the reinforced concrete structure 2 of the second standard is installed. If the judgment unit 13-1 judges that the allowable stress f B'α is equal to or greater than the assumed stress f w' , it judges that the reinforced concrete structure 2 of the second standard does not need to be repaired. If the judgment unit 13-1 judges that the allowable stress f B'α is less than the assumed stress f w' , it judges that the reinforced concrete structure 2 of the second standard needs to be repaired.
 また、応力度算出部12-1は、劣化比率βに基づいて、第1の規格及び第2の規格と形状が相似し、サイズが異なる第kの規格(kは3以上の整数)の劣化鉄筋コンクリート構造物2-Bの許容応力度を同様にして算出することができる。この場合、判定部13-1は、第kの規格の鉄筋コンクリート構造物2の補修が必要であるか否かを同様にして判定することができる。 Furthermore, the stress calculation unit 12-1 can similarly calculate the allowable stress of a deteriorated reinforced concrete structure 2-B of a kth standard (k is an integer equal to or greater than 3) that is similar in shape to the first and second standards but different in size based on the deterioration ratio β. In this case, the judgment unit 13-1 can similarly judge whether or not repairs are necessary for the reinforced concrete structure 2 of the kth standard.
 なお、一般的に、鉄筋コンクリート構造物2は、寸法効果により、サイズが大きくなるほど、想定された強度よりも低い強度で破壊される可能性が高い。このため、第1の規格の劣化鉄筋コンクリート構造物2-Bを表す劣化モデルである代表モデルは、最も大きいサイズを有する規格の劣化鉄筋コンクリート構造物2-Bを表すモデルであることが好ましい。このような構成では、代表モデルが表す鉄筋コンクリート構造物2より小さいサイズを有する規格の鉄筋コンクリート構造物2の劣化応力歪み関係は、上述したように、劣化比率βを用いて算出される。このように、強度が低い可能性の高い、最も大きいサイズの構造物を代表モデルとすることで、各モデルが表すコンクリート構造物2についての安全な評価(危険な状態となりにくい評価)が可能となる。 In general, due to the size effect, the larger the reinforced concrete structure 2, the more likely it is to be destroyed at a strength lower than the expected strength. For this reason, it is preferable that the representative model, which is a deterioration model representing the deteriorated reinforced concrete structure 2-B of the first standard, is a model representing the deteriorated reinforced concrete structure 2-B of the standard having the largest size. In such a configuration, the deterioration stress-strain relationship of the reinforced concrete structure 2 of a standard having a size smaller than the reinforced concrete structure 2 represented by the representative model is calculated using the deterioration ratio β, as described above. In this way, by using the largest-sized structure, which is likely to have low strength, as the representative model, a safe evaluation (an evaluation that is less likely to result in a dangerous state) of the concrete structure 2 represented by each model is possible.
 <判定装置の動作>
 ここで、第2の実施形態に係る判定装置1-1の動作について、図7を参照して説明する。図7は、第2の実施形態に係る判定装置1-1の動作の一例を示すフローチャートである。図7を参照して説明する判定装置1-1における動作は、第2の実施形態に係る、鉄筋2aと、鉄筋2aを覆うコンクリート2bとを備え、内部空間ISを画定する鉄筋コンクリート構造物2の補修の要否を判定する判定装置1-1の判定方法の一例に相当する。
<Operation of Determination Device>
Here, the operation of the determination device 1-1 according to the second embodiment will be described with reference to Fig. 7. Fig. 7 is a flowchart showing an example of the operation of the determination device 1-1 according to the second embodiment. The operation of the determination device 1-1 described with reference to Fig. 7 corresponds to an example of a determination method of the determination device 1-1 according to the second embodiment for determining whether or not repair is required for a reinforced concrete structure 2 that includes reinforcing bars 2a and concrete 2b covering the reinforcing bars 2a and defines an internal space IS.
 判定装置1-1が、第1の規格の鉄筋コンクリート構造物2について判定を実行する動作は、図5を参照して説明した、第1の実施形態の判定装置1の動作と同様である。以降において、判定装置1-1が第2の規格の鉄筋コンクリート構造物2について判定を実行する動作について説明する。 The operation of the judgment device 1-1 to make a judgment on a reinforced concrete structure 2 of the first standard is similar to the operation of the judgment device 1 of the first embodiment described with reference to FIG. 5. The following describes the operation of the judgment device 1-1 to make a judgment on a reinforced concrete structure 2 of the second standard.
 ステップS21において、応力度算出部12-1が、劣化が発生していない、第1の規格の鉄筋コンクリート構造物である健全鉄筋コンクリート構造物2-Aを表す健全モデルを用いて、第1の規格の健全鉄筋コンクリート構造物2-Aの応力度と歪みとの対応関係を示す第1の健全応力歪み関係を算出する。本動作は、上述した第1の実施形態におけるステップS13の動作に相当する。そのため、第1の実施形態の動作が実行された後においては、ステップS21の動作は実行されなくてもよい。 In step S21, the stress calculation unit 12-1 calculates a first healthy stress-strain relationship that indicates the correspondence between stress and strain of the healthy reinforced concrete structure 2-A of the first standard, using a healthy model that represents the healthy reinforced concrete structure 2-A, which is a reinforced concrete structure of the first standard in which no deterioration has occurred. This operation corresponds to the operation of step S13 in the first embodiment described above. Therefore, after the operation of the first embodiment has been executed, the operation of step S21 does not need to be executed.
 ステップS22において、応力度算出部12-1が、劣化が発生していない、第1の規格の鉄筋コンクリート構造物である健全鉄筋コンクリート構造物2-Aを表す健全モデルを用いて、第1の規格の健全鉄筋コンクリート構造物2-Aの応力度と歪みとの対応関係を示す第1の健全応力歪み関係を算出する(応力度算出ステップ)。 In step S22, the stress calculation unit 12-1 uses a healthy model representing a healthy reinforced concrete structure 2-A, which is a reinforced concrete structure of the first standard and in which no deterioration has occurred, to calculate a first healthy stress-strain relationship that shows the correspondence between stress and strain of the healthy reinforced concrete structure 2-A of the first standard (stress calculation step).
 ステップS23において、劣化比率算出部125が、第1の健全応力歪み関係によって示される、第1の規格の健全鉄筋コンクリート構造物2-Aの応力度の設計値Xに対する、劣化応力歪み関係で示される、第1の規格の劣化鉄筋コンクリート構造物2-Bの応力度の設計値Xの比率である劣化比率βを算出する(劣化比率算出ステップ)。 In step S23, the deterioration ratio calculation unit 125 calculates a deterioration ratio β, which is the ratio of the design value XB of the stress intensity of the deteriorated reinforced concrete structure 2-B of the first standard, which is indicated by the deteriorated stress-strain relationship, to the design value XA of the stress intensity of the healthy reinforced concrete structure 2-A of the first standard, which is indicated by the first healthy stress-strain relationship (deterioration ratio calculation step).
 ステップ24において、入力部11が、第2の規格の鉄筋コンクリート構造物2の錆汁又は錆汁跡に関する錆汁情報の入力を受け付ける(入力ステップ)。 In step 24, the input unit 11 accepts input of rust information relating to rust or rust traces on the second standard reinforced concrete structure 2 (input step).
 ステップS25において、判定部13-1は、錆汁情報に基づいて、第2の規格の鉄筋コンクリート構造物に錆汁又は錆汁跡があるか否かを判定する(判定ステップ)。 In step S25, the judgment unit 13-1 judges whether or not there is rust or traces of rust in the reinforced concrete structure of the second standard based on the rust information (judgment step).
 ステップS25で、第2の規格の鉄筋コンクリート構造物に錆汁又は錆汁跡があると判定された場合、ステップ31において、判定部13-1が、第2の規格の鉄筋コンクリート構造物2の補修が必要であると判定する(判定ステップ)。 If it is determined in step S25 that the reinforced concrete structure of the second standard has rust or traces of rust, in step 31, the determination unit 13-1 determines that the reinforced concrete structure 2 of the second standard needs repair (determination step).
 ステップ25で、第2の規格の鉄筋コンクリート構造物に錆汁及び錆汁跡がないと判定された場合、ステップS26で、応力度算出部12-1が、劣化応力歪み関係を算出し(応力度算出ステップ)、ステップS27~ステップS31において、判定部13-1が、劣化応力歪み関係と、想定応力度fとに基づいて、第2の規格の鉄筋コンクリート構造物2の補修が必要であるか否かを判定する(判定ステップ)。 If it is determined in step 25 that there is no rust or traces of rust in the second standard reinforced concrete structure, in step S26, the stress calculation unit 12-1 calculates the deterioration stress-strain relationship (stress calculation step), and in steps S27 to S31, the judgment unit 13-1 judges whether or not repair of the second standard reinforced concrete structure 2 is necessary based on the deterioration stress-strain relationship and the assumed stress fw (judgment step).
 具体的には、ステップS26において、応力度算出部12-1が、第1の規格とは形状が相似し、サイズが異なる第2の規格の健全鉄筋コンクリート構造物2-Aを表す健全モデルを用いて、第2の規格の健全鉄筋コンクリート構造物2-Aの応力度と歪みとの対応関係を示す第2の健全応力歪み関係を算出する(応力度算出ステップ)。 Specifically, in step S26, the stress calculation unit 12-1 uses a healthy model representing a healthy reinforced concrete structure 2-A of a second standard that is similar in shape but different in size from the first standard to calculate a second healthy stress-strain relationship that shows the correspondence between stress and strain of the healthy reinforced concrete structure 2-A of the second standard (stress calculation step).
 そして、応力度算出部12-1が、第2の規格の健全応力歪み関係に基づく、第2の規格の健全鉄筋コンクリート構造物2-Aの許容応力度fA’αに、劣化比率βを乗じた値を第2の規格の劣化鉄筋コンクリート構造物2-Bの許容応力度fB’αとして算出する(応力度算出ステップ)。 Then, the stress calculation unit 12-1 calculates the allowable stress f A'α of the healthy reinforced concrete structure 2-A of the second standard, based on the healthy stress-strain relationship of the second standard, multiplied by the deterioration ratio β, as the allowable stress f B'α of the deteriorated reinforced concrete structure 2-B of the second standard (stress calculation step).
 具体的には、ステップS27において、応力度算出部12-1は、応力度の設計値XA’を安全率αで除した値を許容応力度fA’αとして算出する(応力度算出ステップ)。 Specifically, in step S27, the stress calculation unit 12-1 calculates the allowable stress fA'α by dividing the design stress value XA ' by the safety factor α (stress calculation step).
 ステップS28において、応力度算出部12-1が、許容応力度fA’αに劣化比率βを乗じた値を第2の規格の劣化鉄筋コンクリート構造物2-Bの許容応力度fB’αとして算出する(応力度算出ステップ)。 In step S28, the stress calculation unit 12-1 calculates the allowable stress f A'α multiplied by the deterioration ratio β as the allowable stress f B'α of the deteriorated reinforced concrete structure 2-B of the second standard (stress calculation step).
 ステップS29において、判定部13-1が、第2の規格の劣化鉄筋コンクリート構造物2-Bの許容応力度fB’αが、第2の規格の鉄筋コンクリート構造物2が設置されている環境で発生すると想定される想定応力度fw’以上であるか否かを判定する(判定ステップ)。 In step S29, the judgment unit 13-1 judges whether the allowable stress f B'α of the deteriorated reinforced concrete structure 2-B of the second standard is equal to or greater than the assumed stress f w' assumed to occur in the environment in which the reinforced concrete structure 2 of the second standard is installed (judgment step).
 ステップS29で、許容応力度fB’αが想定応力度fw’以上であると判定された場合、ステップS30において、判定部13-1が、第2の規格の鉄筋コンクリート構造物2の補修が必要でないと判定する(判定ステップ)。 If it is determined in step S29 that the allowable stress f B'α is equal to or greater than the assumed stress f w' , then in step S30, the judgment unit 13-1 judges that repair of the reinforced concrete structure 2 according to the second standard is not necessary (judgment step).
 ステップS29で、許容応力度fB’αが想定応力度fw’未満であると判定された場合、ステップS31において、判定部13-1が、第2の規格の鉄筋コンクリート構造物の補修が必要であると判定する(判定ステップ)。 If it is determined in step S29 that the allowable stress f B'α is less than the assumed stress f w' , then in step S31, the judgment unit 13-1 judges that repair of the reinforced concrete structure according to the second standard is necessary (judgment step).
 ステップS32において、出力部14が判定結果を出力する(出力ステップ)。 In step S32, the output unit 14 outputs the determination result (output step).
 なお、上述した動作において、判定装置1-1は、ステップS23で算出された劣化比率βを用いて、さらに、ステップS24以降の処理を繰り返し実行することによって、第kの規格(kは3以上の整数)の劣化鉄筋コンクリート構造物2-Bの補修が必要であるか否かを判定してもよい。このとき、判定装置1-1は、上述したステップS21からステップS23の処理を繰り返し実行しなくてもよい。 In the above-mentioned operation, the judgment device 1-1 may use the deterioration ratio β calculated in step S23 to further repeatedly execute the processes from step S24 onwards to judge whether or not repair is necessary for the deteriorated reinforced concrete structure 2-B of the kth standard (k is an integer equal to or greater than 3). In this case, the judgment device 1-1 does not need to repeatedly execute the processes from step S21 to step S23 described above.
 以上、説明したように、第2の実施形態に係る判定方法は、劣化比率算出ステップをさらに含む。また、応力度算出ステップは、劣化が発生していない第1の規格の鉄筋コンクリート構造物2である健全鉄筋コンクリート構造物2-Aを表す健全モデルを用いて、第1の規格の健全鉄筋コンクリート構造物2-Aの応力度と歪みとの対応関係を示す第1の健全応力歪み関係を算出するステップを含む。また、劣化比率算出ステップは、第1の健全応力歪み関係によって示される、第1の規格の健全鉄筋コンクリート構造物2-Aの応力度の設計値Xに対する、劣化応力歪み関係で示される、第1の規格の劣化鉄筋コンクリート構造物2-Bの応力度の設計値Xの比率である劣化比率βを算出するステップを含む。また、応力度算出ステップは、第1の規格とは形状が相似しておりサイズが異なる第2の規格の健全鉄筋コンクリート構造物2-Aを表す健全モデルを用いて第2の健全応力歪み関係を算出し、第2の規格の健全応力歪み関係に基づく、第2の規格の健全鉄筋コンクリート構造物2-Aの許容応力度fA’αに劣化比率βを乗じた値を第2の規格の劣化鉄筋コンクリート構造物2-Bの許容応力度fB’αとして算出するステップを含む。また、判定ステップは、第2の規格の劣化鉄筋コンクリート構造物2-Bの許容応力度fB’αが、第2の規格の鉄筋コンクリート構造物が設置されている環境で発生すると想定される想定応力度f以上であるか否かを判定するステップを含む。これにより、判定装置1-1は、劣化モデルを用いて構造解析を行うことによって許容応力度fB’αを算出する場合に比べて、容易に、第2の規格の劣化鉄筋コンクリート構造物2-Bの許容応力度fB’αを算出することができるため、判定装置1-1の処理負荷が軽減される。 As described above, the judgment method according to the second embodiment further includes a deterioration ratio calculation step. The stress calculation step includes a step of calculating a first healthy stress-strain relationship showing a correspondence relationship between stress and strain of the healthy reinforced concrete structure 2-A of the first standard, using a healthy model representing the healthy reinforced concrete structure 2-A, which is the reinforced concrete structure 2 of the first standard in which deterioration has not occurred. The deterioration ratio calculation step also includes a step of calculating a deterioration ratio β, which is a ratio of a design value XB of stress of the deteriorated reinforced concrete structure 2-B of the first standard, which is shown by the deteriorated stress-strain relationship, to a design value XA of stress of the healthy reinforced concrete structure 2-A of the first standard, which is shown by the first healthy stress-strain relationship. The stress calculation step includes a step of calculating a second healthy stress-strain relationship using a healthy model representing a healthy reinforced concrete structure 2-A of a second standard similar in shape to but different in size from the first standard, and calculating a value obtained by multiplying the allowable stress f A'α of the healthy reinforced concrete structure 2-A of the second standard based on the healthy stress-strain relationship of the second standard by the deterioration ratio β as the allowable stress f B'α of the deteriorated reinforced concrete structure 2-B of the second standard. The determination step includes a step of determining whether or not the allowable stress f B'α of the deteriorated reinforced concrete structure 2-B of the second standard is equal to or greater than the assumed stress f W assumed to occur in the environment in which the reinforced concrete structure of the second standard is installed. As a result, the judgment device 1-1 can easily calculate the allowable stress level f B'α of the deteriorated reinforced concrete structure 2-B of the second standard compared to the case where the allowable stress level f B'α is calculated by performing structural analysis using a deterioration model, thereby reducing the processing load of the judgment device 1-1.
 <プログラム>
 上述した判定装置1及び判定装置1-1は、それぞれコンピュータ301によって実現することができる。また、コンピュータ301を上述した判定装置1又は判定装置1-1として機能させるためのプログラムが提供されてもよい。また、該プログラムは、記憶媒体に記憶されてもよいし、ネットワークを通して提供されてもよい。図8は、判定装置1として機能するコンピュータ301の概略構成を示すブロック図である。判定装置1-1として機能するコンピュータの概略構成も同様である。ここで、コンピュータ301は、汎用コンピュータ、専用コンピュータ、ワークステーション、PC(Personal Computer)、電子ノートパッドなどであってもよい。プログラム命令は、必要なタスクを実行するためのプログラムコード、コードセグメントなどであってもよい。
<Program>
The above-mentioned determination device 1 and determination device 1-1 can each be realized by a computer 301. In addition, a program for causing the computer 301 to function as the above-mentioned determination device 1 or determination device 1-1 may be provided. In addition, the program may be stored in a storage medium or provided through a network. FIG. 8 is a block diagram showing a schematic configuration of a computer 301 functioning as the determination device 1. The schematic configuration of a computer functioning as the determination device 1-1 is similar. Here, the computer 301 may be a general-purpose computer, a dedicated computer, a workstation, a PC (Personal Computer), an electronic notepad, or the like. The program instructions may be program code, code segments, or the like for performing necessary tasks.
 図8に示すように、コンピュータ301は、プロセッサ310と、ROM(Read Only Memory)320と、RAM(Random Access Memory)330と、ストレージ340と、入力部350と、出力部360と、通信インターフェース(I/F)370とを備える。各構成は、バス380を介して相互に通信可能に接続されている。プロセッサ310は、具体的にはCPU(Central Processing Unit)、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、SoC(System on a Chip)などであり、同種又は異種の複数のプロセッサにより構成されてもよい。 As shown in FIG. 8, computer 301 includes processor 310, ROM (Read Only Memory) 320, RAM (Random Access Memory) 330, storage 340, input section 350, output section 360, and communication interface (I/F) 370. Each component is connected to each other via bus 380 so as to be able to communicate with each other. Processor 310 is specifically a CPU (Central Processing Unit), MPU (Micro Processing Unit), GPU (Graphics Processing Unit), DSP (Digital Signal Processor), SoC (System on a Chip), etc., and may be composed of multiple processors of the same or different types.
 プロセッサ310は、各構成の制御、及び各種の演算処理を実行する。すなわち、プロセッサ310は、ROM320又はストレージ340からプログラムを読み出し、RAM330を作業領域としてプログラムを実行する。プロセッサ310は、ROM320又はストレージ340に記憶されているプログラムに従って、各構成の制御及び各種の演算処理を行う。上述した実施形態では、ROM320又はストレージ340に、本開示に係るプログラムが記憶されている。 Processor 310 controls each component and executes various types of arithmetic processing. That is, processor 310 reads a program from ROM 320 or storage 340, and executes the program using RAM 330 as a working area. Processor 310 controls each component and executes various types of arithmetic processing according to the program stored in ROM 320 or storage 340. In the above-described embodiment, the program related to the present disclosure is stored in ROM 320 or storage 340.
 プログラムは、コンピュータ301が読み取り可能な記憶媒体に記憶されていてもよい。このような記憶媒体を用いれば、プログラムをコンピュータ301にインストールすることが可能である。ここで、プログラムが記憶された記憶媒体は、非一時的(non-transitory)記憶媒体であってもよい。非一時的記憶媒体は、特に限定されるものではないが、例えば、CD-ROM、DVD-ROM、USB(Universal Serial Bus)メモリなどであってもよい。また、このプログラムは、ネットワークを介して外部装置からダウンロードされる形態としてもよい。 The program may be stored in a storage medium that is readable by computer 301. By using such a storage medium, it is possible to install the program in computer 301. Here, the storage medium on which the program is stored may be a non-transitory storage medium. The non-transitory storage medium is not particularly limited, and may be, for example, a CD-ROM, a DVD-ROM, or a USB (Universal Serial Bus) memory. In addition, the program may be in a form that is downloaded from an external device via a network.
 ROM320は、各種プログラム及び各種データを記憶する。RAM330は、作業領域として一時的にプログラム又はデータを記憶する。ストレージ340は、HDD(Hard Disk Drive)又はSSD(Solid State Drive)により構成され、オペレーティングシステムを含む各種プログラム及び各種データを記憶する。 ROM 320 stores various programs and data. RAM 330 temporarily stores programs or data as a working area. Storage 340 is composed of a HDD (Hard Disk Drive) or SSD (Solid State Drive), and stores various programs and data including the operating system.
 入力部350は、情報の入力を受け付けるためのインターフェースであり、出力部360は、情報を出力するためのインターフェースである。 The input unit 350 is an interface for accepting input of information, and the output unit 360 is an interface for outputting information.
 通信インターフェース370は、外部の装置と通信するためのインターフェースである。 The communication interface 370 is an interface for communicating with external devices.
 以上の実施形態に関し、更に以下の付記を開示する。
 [付記項1]
 鉄筋と、前記鉄筋を覆うコンクリートとを備え、内部空間を画定する鉄筋コンクリート構造物の補修の要否を判定する判定装置が実行する判定方法であって、
 前記内部空間側の所定の面におけるコンクリートかぶりが剥離されている前記鉄筋コンクリート構造物である劣化鉄筋コンクリート構造物を表す劣化モデルを用いて、前記劣化鉄筋コンクリート構造物の応力度と歪みとの対応関係を示す劣化応力歪み関係を算出する応力度算出ステップと、
 前記劣化応力歪み関係と、前記鉄筋コンクリート構造物が設置されている環境で発生すると想定される想定応力度とに基づいて、前記鉄筋コンクリート構造物の補修が必要であるか否かを判定する判定ステップと、
を含む判定方法。
 [付記項2]
 前記鉄筋コンクリート構造物の錆汁又は錆汁跡に関する錆汁情報の入力を受け付ける入力ステップをさらに含み、
 前記判定ステップは、前記錆汁情報に基づいて、前記鉄筋コンクリート構造物に前記錆汁又は前記錆汁跡があるか否かを判定し、前記鉄筋コンクリート構造物に前記錆汁又は前記錆汁跡があると判定された場合、前記鉄筋コンクリート構造物の補修が必要であると判定し、前記鉄筋コンクリート構造物に前記錆汁及び前記錆汁跡がないと判定された場合、前記劣化応力歪み関係と、前記想定応力度とに基づいて、前記鉄筋コンクリート構造物の補修が必要であるか否かを判定するステップを含む、付記項1に記載の判定方法。
 [付記項3]
 前記判定ステップは、前記劣化応力歪み関係で示される、前記劣化鉄筋コンクリート構造物の応力度の設計値を、前記鉄筋コンクリート構造物の安全率で除した許容応力度が、前記鉄筋コンクリート構造物が設置されている環境で発生すると想定される想定応力度以上であるか否かを判定し、前記許容応力度が前記想定応力度以上であると判定された場合、前記鉄筋コンクリート構造物の補修が必要でないと判定し、前記許容応力度が前記想定応力度未満であると判定され場合、前記鉄筋コンクリート構造物の補修が必要であると判定するステップを含む、付記項1又は2に記載の判定方法。
 [付記項4]
 前記劣化鉄筋コンクリート構造物は、第1の規格の劣化鉄筋コンクリート構造物であって、
 劣化比率算出ステップをさらに含み、
 前記応力度算出ステップは、劣化が発生していない、前記第1の規格の前記鉄筋コンクリート構造物である健全鉄筋コンクリート構造物を表す健全モデルを用いて、前記第1の規格の前記健全鉄筋コンクリート構造物の応力度と歪みとの対応関係を示す第1の健全応力歪み関係を算出するステップを含み、
 前記劣化比率算出ステップは、前記第1の健全応力歪み関係によって示される、前記第1の規格の健全鉄筋コンクリート構造物の応力度の設計値に対する、前記劣化応力歪み関係で示される、前記第1の規格の劣化鉄筋コンクリート構造物の応力度の設計値の比率である劣化比率を算出するステップを含み、
 前記応力度算出ステップは、前記第1の規格とは形状が相似し、サイズが異なる第2の規格の健全鉄筋コンクリート構造物を表す健全モデルを用いて、前記第2の規格の健全鉄筋コンクリート構造物の応力度と歪みとの対応関係を示す第2の健全応力歪み関係を算出し、前記第2の規格の健全応力歪み関係に基づく、前記第2の規格の前記健全鉄筋コンクリート構造物の許容応力度に、前記劣化比率を乗じた値を前記第2の規格の前記劣化鉄筋コンクリート構造物の許容応力度として算出するステップを含み、
 前記判定ステップは、前記第2の規格の前記劣化鉄筋コンクリート構造物の許容応力度が、前記第2の規格の鉄筋コンクリート構造物が設置されている環境で発生すると想定される想定応力度以上であるか否かを判定するステップを含む、付記項1から3のいずれか一項に記載の判定方法。
 [付記項5]
 前記応力度算出ステップは、
  有限要素法により前記劣化モデルを構築するためのメッシュのサイズ及び数を決定するステップと、
  前記サイズ及び前記数の前記メッシュを用いて、有限要素法により前記劣化モデルを構築するステップと、
をさらに含む、付記項1から4のいずれか一項に記載の判定方法。
 [付記項6]
 鉄筋と、前記鉄筋を覆うコンクリートとを備え、内部空間を画定する鉄筋コンクリート構造物の補修の要否を判定する判定装置であって、
 コントローラを備え、前記コントローラは、
 前記内部空間側の所定の面におけるコンクリートかぶりが剥離されている前記鉄筋コンクリート構造物である劣化鉄筋コンクリート構造物を表す劣化モデルを用いて、前記劣化鉄筋コンクリート構造物の応力度と歪みとの対応関係を示す劣化応力歪み関係を算出し、
 前記劣化応力歪み関係と、前記鉄筋コンクリート構造物が設置されている環境で発生すると想定される想定応力度とに基づいて、前記鉄筋コンクリート構造物の補修が必要であるか否かを判定する、判定装置。
 [付記項7]
 コンピュータによって実行可能なプログラムを記憶した非一時的記憶媒体であって、前記コンピュータに、付記項1から5のいずれか一項に記載の判定方法を実行させるプログラムを記憶した非一時的記憶媒体。
The following supplementary notes are further disclosed regarding the above embodiment.
[Additional Note 1]
A method for determining whether or not a reinforced concrete structure that includes a reinforcing bar and concrete covering the reinforcing bar and defines an internal space is required, the method being performed by a determination device, comprising:
a stress calculation step of calculating a deterioration stress-strain relationship showing a correspondence relationship between stress and strain of the deteriorated reinforced concrete structure using a deterioration model representing the deteriorated reinforced concrete structure, which is the reinforced concrete structure in which the concrete covering on a predetermined surface on the internal space side has peeled off;
a determination step of determining whether or not the reinforced concrete structure needs repair based on the deterioration stress-strain relationship and an assumed stress intensity assumed to occur in an environment in which the reinforced concrete structure is installed;
A determination method comprising:
[Additional Note 2]
The method further includes an input step of receiving input of rust information related to the rust or rust traces of the reinforced concrete structure,
The judgment step includes a step of judging whether or not the reinforced concrete structure has rust or rust juice traces based on the rust information, and if it is judged that the reinforced concrete structure has rust or rust juice traces, judging that the reinforced concrete structure needs repair, and if it is judged that the reinforced concrete structure does not have the rust or rust juice traces, judging whether or not the reinforced concrete structure needs repair based on the deterioration stress-strain relationship and the assumed stress level.
[Additional Note 3]
The judgment method described in Appendix 1 or 2, wherein the judgment step includes a step of judging whether the allowable stress level, obtained by dividing the design value of the stress level of the deteriorated reinforced concrete structure, as indicated by the deterioration stress-strain relationship, by the safety factor of the reinforced concrete structure, is equal to or greater than the assumed stress level assumed to occur in the environment in which the reinforced concrete structure is installed, and if it is determined that the allowable stress level is equal to or greater than the assumed stress level, judging that repair of the reinforced concrete structure is not necessary, and if it is determined that the allowable stress level is less than the assumed stress level, judging that repair of the reinforced concrete structure is necessary.
[Additional Note 4]
The deteriorated reinforced concrete structure is a deteriorated reinforced concrete structure of a first standard,
Further comprising a deterioration ratio calculation step,
The stress level calculation step includes a step of calculating a first healthy stress-strain relationship indicating a correspondence relationship between stress level and strain of the healthy reinforced concrete structure of the first standard, using a healthy model representing a healthy reinforced concrete structure that is the reinforced concrete structure of the first standard in which no deterioration has occurred,
The deterioration ratio calculation step includes a step of calculating a deterioration ratio, which is a ratio of a design value of a stress level of a deteriorated reinforced concrete structure of the first standard, which is indicated by the deteriorated stress-strain relationship, to a design value of a stress level of a healthy reinforced concrete structure of the first standard, which is indicated by the first healthy stress-strain relationship;
The stress calculation step includes a step of calculating a second healthy stress-strain relationship showing the correspondence relationship between the stress and strain of the healthy reinforced concrete structure of the second standard using a healthy model representing a healthy reinforced concrete structure of the second standard, which is similar in shape but different in size from the first standard, and calculating a value obtained by multiplying the allowable stress of the healthy reinforced concrete structure of the second standard, based on the healthy stress-strain relationship of the second standard, by the deterioration ratio as the allowable stress of the deteriorated reinforced concrete structure of the second standard;
A determination method described in any one of appendix 1 to 3, wherein the determination step includes a step of determining whether the allowable stress level of the deteriorated reinforced concrete structure of the second standard is equal to or greater than the expected stress level expected to occur in the environment in which the reinforced concrete structure of the second standard is installed.
[Additional Note 5]
The stress calculation step includes:
determining the size and number of meshes for constructing the degradation model by a finite element method;
constructing the degradation model by a finite element method using the size and the number of the meshes;
The method according to any one of claims 1 to 4, further comprising:
[Additional Note 6]
A determination device for determining whether or not a reinforced concrete structure that defines an internal space is required to be repaired, the device comprising: a reinforcing bar; and concrete covering the reinforcing bar.
a controller, the controller comprising:
Calculating a deterioration stress-strain relationship showing a correspondence relationship between stress and strain of the deteriorated reinforced concrete structure using a deterioration model representing the deteriorated reinforced concrete structure, which is the reinforced concrete structure in which the concrete covering on the predetermined surface on the internal space side has peeled off;
A determination device that determines whether or not repair of the reinforced concrete structure is necessary based on the deterioration stress-strain relationship and an expected stress level that is expected to occur in the environment in which the reinforced concrete structure is installed.
[Additional Note 7]
A non-transitory storage medium storing a program executable by a computer, the non-transitory storage medium storing the program causing the computer to execute the determination method described in any one of appended claims 1 to 5.
 本明細書に記載された全ての文献、特許出願及び技術は、個々の文献、特許出願、及び技術が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。 All publications, patent applications, and technologies described in this specification are incorporated by reference into this specification to the same extent as if each individual publication, patent application, and technology was specifically and individually indicated to be incorporated by reference.
 上述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本発明は、上述の実施形態によって制限するものと解するべきではなく、請求の範囲から逸脱することなく、種々の変形又は変更が可能である。 The above-described embodiments have been described as representative examples, but it will be apparent to those skilled in the art that many modifications and substitutions can be made within the spirit and scope of the present disclosure. Therefore, the present invention should not be construed as being limited to the above-described embodiments, and various modifications or alterations are possible without departing from the scope of the claims.
1、1-1 判定装置
2 鉄筋コンクリート構造物
2-A 健全鉄筋コンクリート構造物
2-B 劣化鉄筋コンクリート構造物
2a 鉄筋
2b コンクリート
2c ひび割れ
2d 剥離
2e 露筋
11 入力部
12、12-1 応力度算出部
13、13-1 判定部
14 出力部
21 上面部材
22 側面部材
23 下面部材
121 かぶり要素数設定部
122 有限要素モデル構築部
123、123-1 有限要素解析部
124、124-1 算出部
125 劣化比率算出部
301 コンピュータ
310 プロセッサ
320 ROM
330 RAM
340 ストレージ
350 入力部
360 出力部
370 通信インターフェース
380 バス
 
Reference Signs List 1, 1-1: Determination device 2: Reinforced concrete structure 2-A: Sound reinforced concrete structure 2-B: Deteriorated reinforced concrete structure 2a: Reinforcement 2b: Concrete 2c: Crack 2d: Separation 2e: Exposed reinforcement 11: Input section 12, 12-1: Stress calculation section 13, 13-1: Determination section 14: Output section 21: Top member 22: Side member 23: Bottom member 121: Cover element number setting section 122: Finite element model construction section 123, 123-1: Finite element analysis section 124, 124-1: Calculation section 125: Deterioration ratio calculation section 301: Computer 310: Processor 320: ROM
330 RAM
340 Storage 350 Input section 360 Output section 370 Communication interface 380 Bus

Claims (7)

  1.  鉄筋と、前記鉄筋を覆うコンクリートとを備え、内部空間を画定する鉄筋コンクリート構造物の補修の要否を判定する判定装置が実行する判定方法であって、
     前記内部空間側の所定の面におけるコンクリートかぶりが剥離されている前記鉄筋コンクリート構造物である劣化鉄筋コンクリート構造物を表す劣化モデルを用いて、前記劣化鉄筋コンクリート構造物の応力度と歪みとの対応関係を示す劣化応力歪み関係を算出する応力度算出ステップと、
     前記劣化応力歪み関係と、前記鉄筋コンクリート構造物が設置されている環境で発生すると想定される想定応力度とに基づいて、前記鉄筋コンクリート構造物の補修が必要であるか否かを判定する判定ステップと、
    を含む判定方法。
    A method for determining whether or not a reinforced concrete structure that includes a reinforcing bar and concrete covering the reinforcing bar and defines an internal space is required, the method being performed by a determination device, comprising:
    a stress intensity calculation step of calculating a deterioration stress-strain relationship showing a correspondence relationship between stress intensity and strain of the deteriorated reinforced concrete structure using a deterioration model representing the deteriorated reinforced concrete structure, which is the reinforced concrete structure in which the concrete covering on a predetermined surface on the internal space side has peeled off;
    a determining step of determining whether or not the reinforced concrete structure needs repair based on the deterioration stress-strain relationship and an assumed stress intensity assumed to occur in an environment in which the reinforced concrete structure is installed;
    A determination method comprising:
  2.  前記鉄筋コンクリート構造物の錆汁又は錆汁跡に関する錆汁情報の入力を受け付ける入力ステップをさらに含み、
     前記判定ステップは、前記錆汁情報に基づいて、前記鉄筋コンクリート構造物に前記錆汁又は前記錆汁跡があるか否かを判定し、前記鉄筋コンクリート構造物に前記錆汁又は前記錆汁跡があると判定された場合、前記鉄筋コンクリート構造物の補修が必要であると判定し、前記鉄筋コンクリート構造物に前記錆汁及び前記錆汁跡がないと判定された場合、前記劣化応力歪み関係と、前記想定応力度とに基づいて、前記鉄筋コンクリート構造物の補修が必要であるか否かを判定するステップを含む、請求項1に記載の判定方法。
    The method further includes an input step of receiving input of rust information related to the rust or rust traces of the reinforced concrete structure,
    2. The method of claim 1, wherein the determination step includes a step of determining whether or not the reinforced concrete structure has the rust or rust traces based on the rust information, determining that the reinforced concrete structure needs repair if it is determined that the reinforced concrete structure has the rust or rust traces, and determining whether or not the reinforced concrete structure needs repair based on the deterioration stress-strain relationship and the assumed stress level if it is determined that the reinforced concrete structure does not have the rust or rust traces.
  3.  前記判定ステップは、前記劣化応力歪み関係で示される、前記劣化鉄筋コンクリート構造物の応力度の設計値を、前記鉄筋コンクリート構造物の安全率で除した許容応力度が、前記鉄筋コンクリート構造物が設置されている環境で発生すると想定される想定応力度以上であるか否かを判定し、前記許容応力度が前記想定応力度以上であると判定された場合、前記鉄筋コンクリート構造物の補修が必要でないと判定し、前記許容応力度が前記想定応力度未満であると判定され場合、前記鉄筋コンクリート構造物の補修が必要であると判定するステップを含む、請求項1又は2に記載の判定方法。 The judgment method according to claim 1 or 2, wherein the judgment step includes a step of judging whether or not the allowable stress level obtained by dividing the design value of the stress level of the deteriorated reinforced concrete structure, which is indicated by the deterioration stress-strain relationship, by the safety factor of the reinforced concrete structure is equal to or greater than the assumed stress level assumed to occur in the environment in which the reinforced concrete structure is installed, judging that the reinforced concrete structure does not need repair if it is judged that the allowable stress level is equal to or greater than the assumed stress level, and judging that the reinforced concrete structure needs repair if it is judged that the allowable stress level is less than the assumed stress level.
  4.  前記劣化鉄筋コンクリート構造物は、第1の規格の劣化鉄筋コンクリート構造物であって、
     劣化比率算出ステップをさらに含み、
     前記応力度算出ステップは、劣化が発生していない、前記第1の規格の前記鉄筋コンクリート構造物である健全鉄筋コンクリート構造物を表す健全モデルを用いて、前記第1の規格の前記健全鉄筋コンクリート構造物の応力度と歪みとの対応関係を示す第1の健全応力歪み関係を算出するステップを含み、
     前記劣化比率算出ステップは、前記第1の健全応力歪み関係によって示される、前記第1の規格の健全鉄筋コンクリート構造物の応力度の設計値に対する、前記劣化応力歪み関係で示される、前記第1の規格の劣化鉄筋コンクリート構造物の応力度の設計値の比率である劣化比率を算出するステップを含み、
     前記応力度算出ステップは、前記第1の規格とは形状が相似し、サイズが異なる第2の規格の健全鉄筋コンクリート構造物を表す健全モデルを用いて、前記第2の規格の健全鉄筋コンクリート構造物の応力度と歪みとの対応関係を示す第2の健全応力歪み関係を算出し、前記第2の規格の健全応力歪み関係に基づく、前記第2の規格の前記健全鉄筋コンクリート構造物の許容応力度に、前記劣化比率を乗じた値を前記第2の規格の前記劣化鉄筋コンクリート構造物の許容応力度として算出するステップを含み、
     前記判定ステップは、前記第2の規格の前記劣化鉄筋コンクリート構造物の許容応力度が、前記第2の規格の鉄筋コンクリート構造物が設置されている環境で発生すると想定される想定応力度以上であるか否かを判定するステップを含む、請求項1又は2に記載の判定方法。
    The deteriorated reinforced concrete structure is a deteriorated reinforced concrete structure of a first standard,
    Further comprising a deterioration ratio calculation step,
    The stress level calculation step includes a step of calculating a first healthy stress-strain relationship indicating a correspondence relationship between stress level and strain of the healthy reinforced concrete structure of the first standard, using a healthy model representing a healthy reinforced concrete structure that is the reinforced concrete structure of the first standard in which no deterioration has occurred,
    The deterioration ratio calculation step includes a step of calculating a deterioration ratio, which is a ratio of a design value of a stress level of a deteriorated reinforced concrete structure of the first standard, which is indicated by the deteriorated stress-strain relationship, to a design value of a stress level of a healthy reinforced concrete structure of the first standard, which is indicated by the first healthy stress-strain relationship;
    The stress calculation step includes a step of calculating a second healthy stress-strain relationship showing the correspondence relationship between the stress and strain of the healthy reinforced concrete structure of the second standard using a healthy model representing a healthy reinforced concrete structure of the second standard similar in shape but different in size from the first standard, and calculating a value obtained by multiplying the allowable stress of the healthy reinforced concrete structure of the second standard based on the healthy stress-strain relationship of the second standard by the deterioration ratio as the allowable stress of the deteriorated reinforced concrete structure of the second standard;
    A determination method as described in claim 1 or 2, wherein the determination step includes a step of determining whether the allowable stress of the deteriorated reinforced concrete structure of the second standard is equal to or greater than the expected stress expected to occur in the environment in which the reinforced concrete structure of the second standard is installed.
  5.  前記応力度算出ステップは、
      有限要素法により前記劣化モデルを構築するためのメッシュのサイズ及び数を決定するステップと、
      前記サイズ及び前記数の前記メッシュを用いて、有限要素法により前記劣化モデルを構築するステップと、
    をさらに含む、請求項1又は2に記載の判定方法。
    The stress calculation step includes:
    determining the size and number of meshes for constructing the degradation model by a finite element method;
    constructing the degradation model by a finite element method using the size and the number of the meshes;
    The method of claim 1 or 2, further comprising:
  6.  鉄筋と、前記鉄筋を覆うコンクリートとを備え、内部空間を画定する鉄筋コンクリート構造物の補修の要否を判定する判定装置であって、
     前記内部空間側の所定の面におけるコンクリートかぶりが剥離されている前記鉄筋コンクリート構造物である劣化鉄筋コンクリート構造物を表す劣化モデルを用いて、前記劣化鉄筋コンクリート構造物の応力度と歪みとの対応関係を示す劣化応力歪み関係を算出する応力度算出部と、
     前記劣化応力歪み関係と、前記鉄筋コンクリート構造物が設置されている環境で発生すると想定される想定応力度とに基づいて、前記鉄筋コンクリート構造物の補修が必要であるか否かを判定する判定部と、
    を備える判定装置。
    A determination device for determining whether or not a reinforced concrete structure that defines an internal space is required to be repaired, the device comprising: a reinforcing bar; and concrete covering the reinforcing bar.
    a stress intensity calculation unit that calculates a deterioration stress-strain relationship that indicates a correspondence relationship between stress intensity and strain of the deteriorated reinforced concrete structure using a deterioration model that represents the deteriorated reinforced concrete structure, which is the reinforced concrete structure in which the concrete covering on a predetermined surface on the internal space side has peeled off;
    a determination unit that determines whether or not the reinforced concrete structure needs repair based on the deterioration stress-strain relationship and an assumed stress intensity that is assumed to occur in an environment in which the reinforced concrete structure is installed;
    A determination device comprising:
  7.  コンピュータに、請求項1又は2に記載の判定方法を実行させるためのプログラム。
     
    A program for causing a computer to execute the determination method according to claim 1 or 2.
PCT/JP2022/043404 2022-11-24 2022-11-24 Determination method, determination device, and program WO2024111094A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043404 WO2024111094A1 (en) 2022-11-24 2022-11-24 Determination method, determination device, and program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/043404 WO2024111094A1 (en) 2022-11-24 2022-11-24 Determination method, determination device, and program

Publications (1)

Publication Number Publication Date
WO2024111094A1 true WO2024111094A1 (en) 2024-05-30

Family

ID=91195914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043404 WO2024111094A1 (en) 2022-11-24 2022-11-24 Determination method, determination device, and program

Country Status (1)

Country Link
WO (1) WO2024111094A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352027A (en) * 1998-06-12 1999-12-24 Ohbayashi Corp Method for analyzing reinforced concrete member and its recording medium
JP2004053562A (en) * 2002-07-24 2004-02-19 Tokyo Electric Power Services Co Ltd Apparatus and program for supporting maintenance and management of reinforced concrete structure
JP2011032788A (en) * 2009-08-04 2011-02-17 Ohbayashi Corp Repair necessity determination method for wall member having drying shrinkage crack inducing part, and design method for the wall member having drying shrinkage crack inducing part
JP2019207486A (en) * 2018-05-28 2019-12-05 日本車輌製造株式会社 Design support device, design support method, design support program and method for manufacturing concrete structure
JP2020060429A (en) * 2018-10-09 2020-04-16 公益財団法人鉄道総合技術研究所 Deterioration prediction method
JP2021001837A (en) * 2019-06-24 2021-01-07 株式会社大林組 Analysis method, program and system
WO2021100693A1 (en) * 2019-11-21 2021-05-27 日本製鉄株式会社 Method of evaluating continuous beams, program for evaluating continuous beams, and method for evaluating composite beams
JP2022012546A (en) * 2020-07-01 2022-01-17 東急建設株式会社 Analytic model and design method for reinforced concrete beam

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11352027A (en) * 1998-06-12 1999-12-24 Ohbayashi Corp Method for analyzing reinforced concrete member and its recording medium
JP2004053562A (en) * 2002-07-24 2004-02-19 Tokyo Electric Power Services Co Ltd Apparatus and program for supporting maintenance and management of reinforced concrete structure
JP2011032788A (en) * 2009-08-04 2011-02-17 Ohbayashi Corp Repair necessity determination method for wall member having drying shrinkage crack inducing part, and design method for the wall member having drying shrinkage crack inducing part
JP2019207486A (en) * 2018-05-28 2019-12-05 日本車輌製造株式会社 Design support device, design support method, design support program and method for manufacturing concrete structure
JP2020060429A (en) * 2018-10-09 2020-04-16 公益財団法人鉄道総合技術研究所 Deterioration prediction method
JP2021001837A (en) * 2019-06-24 2021-01-07 株式会社大林組 Analysis method, program and system
WO2021100693A1 (en) * 2019-11-21 2021-05-27 日本製鉄株式会社 Method of evaluating continuous beams, program for evaluating continuous beams, and method for evaluating composite beams
JP2022012546A (en) * 2020-07-01 2022-01-17 東急建設株式会社 Analytic model and design method for reinforced concrete beam

Similar Documents

Publication Publication Date Title
JP6454793B2 (en) Soundness determination device, soundness determination method, and soundness determination program
CN107590349B (en) Method for evaluating damage degree of concrete member crack fractal
Aghababaei et al. Component damage models for detailed seismic risk analysis using structural reliability methods
Perera et al. Identification of damage in RC beams using indexes based on local modal stiffness
Huang et al. Seismic demand and experimental evaluation of the nonstructural building curtain wall: A review
Finozzi et al. Structural response of reinforcing bars affected by pitting corrosion: experimental evaluation
JP2007270552A (en) Signal processing method, signal processing program and recording medium
JP5145501B2 (en) Large building diagnostic system, large building diagnostic program, recording medium, and large building diagnostic method
Alvarado et al. An experimental study into the evolution of loads on shores and slabs during construction of multistory buildings using partial striking
WO2024111094A1 (en) Determination method, determination device, and program
Peil Assessment of bridges via monitoring
JP2004053562A (en) Apparatus and program for supporting maintenance and management of reinforced concrete structure
Quattrone et al. Vibration tests on dismounted bridge beams and effects of deterioration
Amani et al. Identification of changes in the stiffness and damping matrices of linear structures through ambient vibrations
KR20130033171A (en) Acceleration-impedance based monitoring technique for prestressed concrete girder
Singh Kanwar et al. Health monitoring of RCC building model experimentally and its analytical validation
KR20090082613A (en) Hybrid damage monitoring system for prestressed concrete girder bridges
Moravvej Hamedani Reference-Free Response-Only Damage Identification in Bridges Using Relative Wavelet Entropy
Song et al. Application of ARMAV for modal identification of the Emerson Bridge
Bertola et al. Predicting the usefulness of monitoring information for structural evaluations of bridges
Veerman et al. Automatic degradation detection during a dynamic loaded beam test
Wang Vibration-based damage detection on a multi-girder bridge superstructure
Erduran et al. Drift based damage functions for components of RC structures
CN116933644A (en) Anti-floating anchor stress monitoring method, system, terminal equipment and storage medium
Baghaei et al. Residual capacity estimation of bridges using structural health monitoring data