WO2021100693A1 - Method of evaluating continuous beams, program for evaluating continuous beams, and method for evaluating composite beams - Google Patents

Method of evaluating continuous beams, program for evaluating continuous beams, and method for evaluating composite beams Download PDF

Info

Publication number
WO2021100693A1
WO2021100693A1 PCT/JP2020/042755 JP2020042755W WO2021100693A1 WO 2021100693 A1 WO2021100693 A1 WO 2021100693A1 JP 2020042755 W JP2020042755 W JP 2020042755W WO 2021100693 A1 WO2021100693 A1 WO 2021100693A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending
moment
fulcrum
dimensionless
rigidity
Prior art date
Application number
PCT/JP2020/042755
Other languages
French (fr)
Japanese (ja)
Inventor
政樹 有田
清水 信孝
聡 北岡
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019210811A external-priority patent/JP7348510B2/en
Priority claimed from JP2019210798A external-priority patent/JP7348509B2/en
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202080093437.8A priority Critical patent/CN114945923A/en
Publication of WO2021100693A1 publication Critical patent/WO2021100693A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Definitions

  • the present invention relates to a continuous beam evaluation method, a continuous beam evaluation program, and a composite beam evaluation method.
  • the present application claims priority based on Japanese Patent Application No. 2019-210798 and Japanese Patent Application No. 2019-210811, which were filed in Japan on November 21, 2019, and the contents thereof are incorporated herein by reference.
  • Patent Document 3 a method for evaluating a composite beam when the bending rigidity of forward bending and the bending rigidity of negative bending are different from each other is known (for example, Patent Document 3). reference).
  • Patent Document 3 solves the equation (positive function) for the bending moment and the deflection of the composite beam shown in the specification when a two-point concentrated load acts on the composite beam. Then, the maximum value of the bending moment at the end of the composite beam (the bending moment acting on the end of the composite beam) and the deflection is calculated.
  • the first problem is to provide a continuous beam evaluation method and a continuous beam evaluation program that can more appropriately evaluate the bending moment and deflection distribution of a continuous beam according to the joint state at both ends. is there.
  • the present invention has been made in view of the first and second problems, and provides a continuous beam evaluation method, a continuous beam evaluation program, and a composite beam evaluation method capable of appropriately evaluating deflection.
  • the purpose is.
  • the first aspect of the present invention is n, which is two or more natural numbers arranged side by side in the longitudinal direction and having end portions adjacent to each other in the longitudinal direction semi-rigidly joined to each other to form an intermediate fulcrum.
  • a method for evaluating a continuous beam including a book beam in which both ends of the entire continuous beam are paired end fulcrums, wherein the intermediate fulcrum and the pair of end fulcrums are used.
  • It has a solution determination step of obtaining a plurality of bending moments and a plurality of rotation angles at the pair of end fulcrums based on given conditions, and the given conditions are the length and bending rigidity of each of the n beams. And; including a plurality of rotational rigidity at the intermediate fulcrum and the pair of end fulcrums; a vertical load acting on the n beams; and a plurality of vertical displacements at the intermediate fulcrum and the pair of end fulcrums;
  • the plurality of bending moments and the plurality of rotation angles are defined as a plurality of unknowns, the relational expressions of the plurality of rotational rigidity, the plurality of bending moments, and the plurality of rotation angles, and the said.
  • the relational expression of the plurality of vertical displacements is defined as the plurality of first fulcrums having the same number as the number of the plurality of unknowns
  • the plurality of unknowns satisfy the plurality of first fulcrums so as to satisfy the plurality of first fulcrums.
  • the unknown number is solved to evaluate the bending moment and the deflection distribution of the continuous beam.
  • the number of the plurality of unknowns and the number of the plurality of first boundary conditions are the same. Therefore, a plurality of first boundary conditions are set based on the beam length and flexural rigidity, a plurality of rotational rigidity, a vertical load, or a plurality of vertical displacements at an intermediate fulcrum and a pair of end fulcrums given as given conditions. Solve multiple unknowns to satisfy.
  • a plurality of bending moments and a plurality of rotation angles included in a plurality of unknowns can be obtained.
  • a plurality of vertical displacements are calculated from the obtained plurality of bending moments and a plurality of rotation angles based on the relational expressions of the plurality of vertical displacements.
  • the bending moment and the deflection distribution of the continuous beam can be more appropriately evaluated according to the joint state at the pair of end fulcrums. Therefore, the deflection can be appropriately evaluated.
  • the solution determination step is the first design step of giving a design value including the plurality of vertical displacements;
  • a tentative design process that gives a tentative design value; a calculated value that includes a calculation result of vertical displacement at the intermediate fulcrum so as to satisfy the plurality of first boundary conditions and the second boundary condition based on the tentative design value.
  • the solution determination step further includes a storage step of storing the temporary design value after the temporary design step, and in the determination step, the temporary design value is stored.
  • the displacement residual is equal to or greater than the threshold value
  • another new temporary design value is given in the temporary design process in place of the temporary design value stored in the storage process, and the new temporary design value is given.
  • the solution calculation step, the residual calculation step, and the determination step are performed based on the above, and the determination step is repeated until the displacement residual is determined to be smaller than the threshold value in the determination step.
  • the bending moment of the provisional design value when the displacement residual is determined to be smaller than the threshold value is defined as the bending moment acting on the intermediate fulcrum, and the plurality of bending moments are defined based on the bending moment.
  • the rotation angle may be obtained.
  • a new tentative design value is given until the displacement residual is determined to be smaller than the threshold value in the determination step, and the solution calculation step and the residual calculation are performed based on the new tentative design value. Repeat the process and the judgment process as a set.
  • the bending moment can be calculated with arbitrary accuracy. Then, a plurality of rotation angles can be obtained based on this bending moment.
  • the first end fulcrum which is one of the continuous beams among the n beams, is the first end fulcrum.
  • the second end fulcrum which is the other end fulcrum of the continuous beam, with respect to a natural number i of 1 or more and n or less, the intermediate fulcrum or the end on the first end fulcrum side of the i-th beam.
  • the vertical displacement ⁇ 0i (m) at the fulcrum is defined as the given condition; the calculation result of the vertical displacement at the intermediate fulcrum on the second end fulcrum side of the i-th beam or the end fulcrum ⁇ i,
  • the calc (m) is calculated as being included in the calculated value by the equation (9) obtained from the equation (1) to the equation (8); (i + 1) for i of 1 or more and (n-1) or less. )
  • the intermediate is the sum of the first residual to the (n-1) residual.
  • the residual is calculated; the calculation result of the vertical displacement ⁇ n at the second end fulcrum, which is the given condition, and the calculation result ⁇ n, calc of the vertical displacement at the second end fulcrum of the nth beam.
  • the second end fulcrum residual which is a residual, may be calculated; the displacement residual, which is the sum of the intermediate residual and the second end fulcrum residual, may be calculated.
  • the length of the beam of i-th L i (m), in the beam of the i-th, the origin end of the first end supporting point side, the first end The coordinates defined when the direction from the fulcrum toward the second end fulcrum is positive are x i (m), the vertical load acting on the i-th beam is wi (N / m), and the i-th said.
  • the rotational rigidity of the beam at the end on the first end fulcrum side is S jl, i (Nm / rad)
  • the rotational rigidity of the i-th beam at the end on the second end fulcrum side is S jr, i (Nm).
  • the bending rigidity of the forward bending of the i-th beam is EI s, i (Nm 2 )
  • the bending rigidity of the negative bending of the i-th beam is EI h, i (Nm 2 )
  • the i-th The bending moment at the intermediate fulcrum or the end fulcrum on the second end fulcrum side of the beam is defined as M j, i (Nm).
  • the bending moment M j, 0 (Nm) at the first end fulcrum of the first beam included in the second boundary condition is 0 when the first end fulcrum is a pin joint, rigid joint or semi-rigid.
  • the angle of rotation ⁇ 01 (rad) at the first end fulcrum of the first beam is 0 when the first end fulcrum is rigid joining, and it is pin joint or semi-rigid joint.
  • a plurality of vertical displacements at the intermediate fulcrum and the pair of end fulcrums can be evaluated with high accuracy using a mathematical formula.
  • the second aspect of the present invention is n, which is two or more natural numbers, which are arranged side by side in the longitudinal direction and whose ends adjacent to each other in the longitudinal direction are semi-rigidly joined to each other to form an intermediate fulcrum.
  • An evaluation program for an evaluation device for evaluating a continuous beam including a book beam in which both ends of the entire continuous beam are paired end fulcrums. A plurality of bending moments at the intermediate fulcrum and the pair of end fulcrums, and a plurality of rotation angles at the pair of end fulcrums are made to function as a solution determining unit obtained based on given conditions, and the given conditions are the n lines.
  • the solution determination unit defines the plurality of bending moments and the plurality of rotation angles as a plurality of unknowns, and the plurality of rotational rigidity, the plurality of bending moments, and the plurality of rotation angles.
  • the relational expression of the rotation angle and the relational expression of the plurality of vertical displacements are defined as a plurality of first boundary conditions having the same number as the number of the plurality of unknowns, the plurality of unknowns are the plurality of firsts.
  • the bending moment and the deflection distribution of the continuous beam are evaluated by solving the plurality of unknowns so as to satisfy the boundary condition.
  • the number of the plurality of unknowns and the number of the plurality of first boundary conditions are the same. Therefore, a plurality of first boundary conditions are set based on the beam length and flexural rigidity, a plurality of rotational rigidity, a vertical load, or a plurality of vertical displacements at an intermediate fulcrum and a pair of end fulcrums given as given conditions. Solve multiple unknowns to satisfy.
  • a plurality of bending moments and a plurality of rotation angles included in a plurality of unknowns can be obtained.
  • a plurality of vertical displacements are calculated from the obtained plurality of bending moments and a plurality of rotation angles based on the relational expressions of the plurality of vertical displacements.
  • the bending moment and the deflection distribution of the continuous beam can be more appropriately evaluated according to the joint state at the pair of end fulcrums. Therefore, the deflection can be appropriately evaluated.
  • the bending rigidity of the forward bending and the bending rigidity of the negative bending are different from each other, and both ends are semi-rigidly joined to act on the end of the composite beam on which an evenly distributed load acts over the entire length.
  • This is an evaluation method for a composite beam that calculates the bending moment at the end, which is the bending moment to be performed, and the maximum value of the deflection that occurs in the composite beam.
  • the rotational rigidity of the composite beam at the end is determined by the unit length of the composite beam.
  • the value divided by the winning bending rigidity is defined as the dimensionless rotational rigidity
  • the ratio of the forward bending bending rigidity of the composite beam to the negative bending bending rigidity of the composite beam is defined as the dimensionless bending rigidity.
  • the inventors evaluate the maximum value of the end bending moment and the deflection based on the non-dimensionalized rotational rigidity and the non-dimensionalized bending rigidity.
  • the maximum values of the end bending moment and the deflection can be calculated with high versatility and accuracy by an explicit function regardless of the specifications of the composite beam.
  • the maximum values of the end bending moment and the deflection of the composite beam are calculated by an explicit function.
  • the bending moment acting on the end of the composite beam when it is assumed that both ends are rigidly joined and an evenly distributed load acts over the entire length is rigid.
  • the maximum value of the bending moment acting on the composite beam when it is assumed that the tangential moment is pin-joined at both ends and an evenly distributed load acts over the entire length is defined as the pin tangent moment, and both ends are defined as pin tangent moments.
  • the bending moment acting on the end of the composite beam, which is semi-rigidly joined and an evenly distributed load acts over the entire length, is defined as the semi-rigid contact moment, and the value obtained by dividing the semi-rigid contact moment by the pin contact moment is dimensionless.
  • the dimensionless rigid contact moment is defined based on the dimensionless flexural rigidity.
  • the dimensionless joint moment was calculated by an explicit function based on the calculated dimensionless rigid contact moment, the dimensionless rotational rigidity, and the dimensionless flexural rigidity;
  • the end bending moment and the maximum value of the deflection may be calculated by an explicit function based on the dimensionless joint moment.
  • the dimensionless rigid contact moment is calculated by an explicit function based on the dimensionless flexural rigidity.
  • the non-dimensional joint moment is calculated based on the calculated non-dimensional rigid contact moment, the non-dimensional rotational rigidity, and the non-dimensional bending rigidity, and the end bending is based on the calculated non-dimensional joint moment.
  • the maximum values of moment and deflection are calculated by explicit functions, respectively. In this way, the maximum values of the end bending moment and the deflection of the composite beam can be calculated without performing the convergence calculation.
  • the non-dimensional rigid contact moment is ⁇ Mj, rigid
  • the non-dimensional rotational rigidity is ⁇ j
  • the non-dimensional flexural rigidity is ⁇ s .
  • the dimensionless junction moment ⁇ Mj may be calculated by Eq. (13) using Eqs. (10) to (12).
  • the dimensionless joint moment ⁇ Mj can be accurately calculated by the equation (13) using the equations (10) to (12) without performing the convergence calculation.
  • the dimensionless rigid contact moment ⁇ Mj, rigid when the dimensionless rigid contact moment ⁇ Mj, rigid is 0.4 or less, the error of the dimensionless rigid contact moment ⁇ Mj, rigid becomes large with respect to the exact solution. Even in this case, the dimensionless rigid contact moment can be calculated more accurately by using the dimensionless rigid contact moment ⁇ Mj, rigid, Theo instead of the dimensionless rigid contact moment ⁇ Mj, rigid. Can be done.
  • the deflection can be appropriately evaluated.
  • FIG. 1 It is a top view of the building which uses the continuous beam to which the evaluation method of the continuous beam of 1st Embodiment of this invention is applied. It is sectional drawing of the cutting line A1-A1 in FIG. It is a schematic diagram explaining the specifications of a beam and the bending moment acting on a beam. It is a schematic diagram explaining an external force and a load acting on a beam. It is a schematic diagram explaining the shearing force acting on a beam. It is a schematic diagram explaining the continuous beam and the external force acting. It is a figure explaining the relationship between the rotational rigidity and the angle of rotation at the end of a pair of beams adjacent to each other in the longitudinal direction when the distance between the positions where rotational rigidity occurs is taken into consideration.
  • the continuous beam evaluation method of the present embodiment (hereinafter, also simply referred to as an evaluation method) is suitably used for evaluating the continuous beam 11 constituting the building 1 shown in FIGS. 1 and 2, for example.
  • FIG. 1 shows the floor 17 described later through the floor 17, and FIG. 2 does not show the pillar 33 described later.
  • the bending moment, the angle of rotation, the deflection distribution, etc. of the continuous beam 11 are obtained, and for example, how much the bending strength of the continuous beam 11 has a margin with respect to the bending moment of the continuous beam 11. It means to evaluate if there is.
  • the continuous beam 11 includes n (two in this example) beams (small beams) 13 in which the ends adjacent to each other in the longitudinal direction are semi-rigidly joined to each other to form an intermediate fulcrum 12a. ..
  • n is a natural number of 2 or more.
  • the beam 13 includes a floor 17 and a beam body 18.
  • the configuration of the beam 13 is not limited to this example.
  • the floor 17 is a so-called synthetic slab, which is supported from below by the beam body 18.
  • the floor 17 includes a deck plate 20 and an RC (Reinforced Concrete) slab 21 arranged on the deck plate 20.
  • the uneven shape of the deck plate 20 extends in a direction along the horizontal plane and in a direction orthogonal to the direction in which the beam body 18 extends.
  • the RC slab 21 includes concrete 22 and reinforcing bars 23.
  • the concrete 22 is formed in a plate shape in which the vertical direction is the thickness direction.
  • the concrete 22 is supported from below by the deck plate 20.
  • the reinforcing bar 23 extends along the horizontal plane and is buried in the concrete 22.
  • the reinforcing bars 23 are arranged in a grid pattern in a plan view.
  • the n beams 13 are arranged side by side in the longitudinal direction of the beams 13.
  • the beam body 18 is made of steel H-section steel and extends along a horizontal plane.
  • the lower end of the stud 26 is fixed to the upper flange of the beam body 18.
  • the stud 26 penetrates the deck plate 20.
  • the upper end of the stud 26 is embedded in the concrete 22.
  • the ends of the beam body 18 are semi-rigidly joined to the first girder (intermediate support portion) 27 extending along the horizontal plane at the intermediate fulcrum 12a.
  • the intermediate fulcrum 12a is supported in the vertical direction by the first girder 27.
  • the first girder 27 extends in a direction orthogonal to the beam body 18.
  • the semi-rigid joint between the beam body 18 and the first girder 27 is performed by, for example, a shear plate 28 and a bolt 29.
  • the pair of end fulcrums 12b at both ends of the entire continuous beam 11 are supported in the vertical direction by the pair of second girders (end support portions) 31.
  • the first girder 27 and the second girder 31 extend along the first direction along the horizontal plane.
  • the state of joining the end of the beam body 18 and the second girder 31 at the end fulcrum 12b is not particularly limited, and may be pin joining, semi-rigid joining, or rigid joining.
  • the building 1 includes a third girder 32 that extends along a horizontal plane and along a second direction orthogonal to the first direction.
  • the connecting portion between the first girder 27, the second girder 31, and the third girder 32 is supported in the vertical direction by the pillar 33.
  • the bending rigidity of the forward bending (convex downward) and the bending rigidity of the negative bending (convex upward) are different from each other.
  • the coordinates x i (m) are defined when the right direction is positive along the beam 13 i.
  • Beams 13 i of the leftmost rotational stiffness S jl, and i (Nm / rad) defines the rotational stiffness of the right end of the beam 13 i S jr, and i (Nm / rad).
  • FIG. 4 the coordinates x i (m) are defined when the right direction is positive along the beam 13 i.
  • Beams 13 i of the leftmost rotational stiffness S jl, and i (Nm / rad) defines the rotational stiffness of the right end of the beam 13 i S jr, and i (
  • the absolute value of the bending moment (negative bending moment) acting on the left end of the beam 13 i is M jl, i (Nm)
  • the bending moment (negative bending moment) acting on the right end of the beam 13 i is defined as M jl, i (Nm).
  • the absolute value of is defined as M jr, i (Nm).
  • the bending moment shown by the curve L1 acts on the beam 13 i. The bending moment is positive in the direction in which the downwardly convex bending occurs.
  • the coordinates x i at which the bending moment becomes 0 are defined as x h, i (m), x s, i (m) (0 ⁇ x h, i ⁇ x s, i ⁇ Li ). ..
  • the left end of the beam 13 i is V jl, i (N) as the shearing force (external force) supported from below by the girders 27, 31 and the like
  • the right end of the beam 13 i is the girder 27, 31 and the like.
  • V jr, i (N) be the shearing force supported from below.
  • the beams 13 i, shear force shown by the curve L2 acts.
  • the shear force distribution V (x i ) (N) and the bending moment distribution M (x i ) (Nm) acting on the beam 13 i can be expressed by Eqs. (21) and (22).
  • the shear forces V jl, i , V jr, i , and the shear force distribution V (x i ) are positive (+) in the direction in which clockwise rotation occurs.
  • the absolute values M jl, i , M jr, i of the bending moment in the equations (22) to (24) represent the magnitude of the negative bending moment, and in (24-1) and (24-2). Defined.
  • the curvature distribution of the beam 13 i is defined as ⁇ (x i ) (1 / m), where the downward convex case is positive (+).
  • the vertical deflection (displacement) distribution of the beam 13 i is defined as ⁇ (x i ) (m) with the vertical downward direction as positive (+).
  • the curvature distribution [rho (x i) is expressed by equation (34).
  • the right end fulcrum 12b (the other end fulcrum) is also referred to as a second end fulcrum 12b 2.
  • the coordinates x i of the i-th beam 13 i are shown as an example of the coordinates.
  • the coordinates x i have the origin on the first end fulcrum 12b 1 side of the beam 13 i , and the direction from the first end fulcrum 12b 1 to the second end fulcrum 12b 2 is positive.
  • the beam 13 of the most first end supporting point 12b 1 side of the n of beams 13 is a first beam 13 1.
  • the rotational stiffness S jl, i is the rotational stiffness of the end of the first end supporting point 12b 1 side in the i beam 13 i (intermediate fulcrum 12a).
  • the rotational stiffness S jr, i is the rotational stiffness of the second end supporting point 12b 2 side end of the i-th beam 13 i (intermediate fulcrum 12a).
  • the vertical displacement of the n-th beam 13 n at the second end fulcrum 12b 2 is defined as ⁇ n (m).
  • the plurality of vertical displacements under the given conditions are vertical displacements ⁇ i with respect to a natural number i of 0 or more and n or less.
  • the vertical displacement ⁇ i at the intermediate fulcrum 12a of the continuous beam 11 shown in FIG. 1 may be obtained from the range R of the distributed load defined to act on the first girder 27 by a known method. Then, the vertical displacement ⁇ i at the intermediate fulcrum 12a is obtained from the distributed load acting in the range R, the bending rigidity of the first girder 27, and the like.
  • Bending moments due to, for example, rotational resistance of the girder do not act on the fulcrums 12a and 12b, and the bending moments acting on the ends of the beams 13 adjacent to each other in the longitudinal direction have the same value. That is, for example, the absolute value M jr bending moment acting on the right end of the i beam 13 i, and i, the (i + 1) beams 13 i + 1 of the absolute value M jl bending moment acting on the left end, and i + 1, is equal to .. Let the equal values be M j, i (Nm).
  • Bending moment M j, i to the one or more (n-1) following i, a bending moment in the second end supporting point 12b 2 side of the intermediate supporting point 12a in the i beam 13 i.
  • the bending moment M j, 0 is equal to the absolute value M jl bending moment acting on the left end of the first beam 13 1, 1 (bending moment in the first end supporting point 12b 1 of the first beam 13 1).
  • Bending moment M j, n is the absolute value M jr bending moment acting on the right end of the n beam 13 n, equal to n (bending moment in the second end supporting point 12b 2 in the n beam 13 n).
  • the rotation angle of the beam 13 i in each support point 12a, 12b can be expressed by using the rotational stiffness of the beam 13 i in each support point 12a, 12b, bending the absolute value M jl moment, i, M jr, the i.
  • the continuous beam 11 includes n beams 13 i .
  • the intermediate fulcrum 12a of the continuous beam 11 is semi-rigidly joined to the first girder 27, and the end fulcrum 12b of the continuous beam 11 is supported by the second girder 31.
  • the angle of rotation of the i-th beam 13 i at the left end is defined as ⁇ jl, i (rad)
  • the rotation angle of the i-th beam 13 i at the right end is defined as ⁇ jr, i (rad).
  • the rotation angle at the right end of the (i-1) th (i-1) beam 13 i-1 is ⁇ jr, i-1 (rad).
  • the angle of rotation of the i-th beam 13 i with respect to the horizontal plane at the left end is defined as ⁇ l, i (rad).
  • the rotation angle at the right end of the i beam 13 i with respect to the horizontal plane is defined as ⁇ r, i (rad).
  • the rotation angles of the first (i-1) beam 13 i-1 with respect to the horizontal plane at the right end are ⁇ r, i-1 (rad).
  • the distance between the position where the rotational rigidity S jr, i-1 is generated at the right end of the first (i-1) beam 13 i-1 and the position where the rotational rigidity S jl, i is generated at the left end of the i-th beam 13 i is extremely small.
  • it is a length. Eqs. (47) and (48) can be obtained from the definitions of each variable in consideration of the positive and negative of the rotation angle distribution.
  • Equation (49) can be obtained from the geometrical relationship of the deformed state in FIG.
  • the (i-1) beams 13 i-1 of rotational stiffness S jr, i-1 and rotational stiffness S jl i-th beam 13 i, i is the rotational stiffness S j, It is represented by i-1.
  • the rotational rigidity S j, i-1 is obtained from the equations (50) and (51) in which the equations (47) and (48) are substituted into the equation (49).
  • the rotational rigidity S j, i-1 can be expressed by the series connection of the rotating springs of the left and right joints sandwiching each intermediate fulcrum 12a.
  • x i-1 L in i-1 by (38) the rotation angle of formula distribution phi c (x i-1), the (i-1) beam 13 rotation angle at the i-1 of the rightmost phi r, i-1 Is decided.
  • the rotation angles ⁇ l and i at the left end of the i- th beam 13 i adjacent to the (i-1) beam 13 i-1 are determined by the equation (49).
  • the x i L i in equation (44) of the deflection distribution [delta] c (x i), each supporting point 12a, the vertical displacement [delta] 0i at 12b obtained.
  • the rotation angles ⁇ r and n of the nth beam 13 n at the second end fulcrum 12b 2 are also defined as unknowns. That is, with respect to the rotation angles, the two rotation angles ⁇ 01 and the rotation angles ⁇ r and n are unknown.
  • the unknown numbers are, for example, the bending moments M j and i at the respective fulcrums 12a and 12b, and the rotation angle (n + 3) at both end fulcrums 12b.
  • Eq. (54-2) is an equation for bending moments M j, 0 , M j, 1 .
  • Equation (54-3) is an equation for bending moments M j, 0 , M j, 1 , M j, 2 .
  • Equation (54- (n + 1)) is an equation for bending moments M j, 0 , M j, 1 , M j, 2 , ..., M j, n .
  • Equations (55-1) and (55-2) are obtained according to the joint state at both end fulcrums 12b of the continuous beam 11.
  • the bending moments M j and 0 are 0.
  • the number of first boundary conditions is (n + 3) of (n + 3) relational expressions. That is, the number of the plurality of first boundary conditions is the same as the number of the plurality of unknowns. Therefore, if the plurality of unknowns are solved so that the plurality of unknowns satisfy the plurality of first boundary conditions , the combination of (n + 1) bending moments Mj and i is determined to be one.
  • ⁇ i, calc (m) be the calculation result of the vertical displacement corresponding to the vertical displacement ⁇ i at each fulcrum 12a, 12b obtained from the assumed bending moments M j, i.
  • the evaluation device 101 is a computer, and includes a CPU (Central Processing Unit) 111, a main storage device 125, an auxiliary storage device 126, an input / output interface (IO / I / F) 131, and a recording / playback device 136. I have.
  • CPU Central Processing Unit
  • the main storage device 125 is a RAM (Random Access Memory) or the like that serves as a work area or the like of the CPU 111.
  • the input / output interface 131 is connected to an input device 132 such as a keyboard and a mouse, and a display device 133.
  • the recording / reproducing device 136 records and reproduces data on a recording medium 137 such as a disc type such as a CD or a DVD.
  • the auxiliary storage device 126 is a hard disk drive device or the like that stores various data, programs, and the like.
  • the auxiliary storage device 126 stores a continuous beam evaluation program (hereinafter, simply referred to as an evaluation program) 127 for causing the computer to function as the evaluation device 101, various programs such as an OS program, a predetermined threshold value, and the like. Has been done.
  • Various programs including the evaluation program 127 are taken into the auxiliary storage device 126 from the recording medium 137 via the recording / playback device 136.
  • the evaluation program and the like are stored in the recording medium 137. Note that these programs may be incorporated into the auxiliary storage device 126 from an external device via a portable memory such as a flash memory or a communication device (not shown).
  • the auxiliary storage device 126 is further provided with a temporary setting value file 128 in the process of executing the evaluation program 127. Temporary design values, which will be described later, are stored in the temporary setting value file 128.
  • the CPU 111 executes various arithmetic processes.
  • the CPU 111 functionally includes a solution determination unit 112 that obtains a plurality of bending moments and a plurality of rotation angles based on given conditions.
  • the solution determination unit 112 functionally includes a first design unit 113, a second design unit 114, a temporary design unit 115, a storage unit 116, a solution calculation unit 117, and a residual calculation unit 118.
  • a determination unit 119 and a solution setting unit 120 are provided.
  • the first design unit 113, the second design unit 114, the temporary design unit 115, the storage unit 116, the solution calculation unit 117, the residual calculation unit 118, the determination unit 119, and the solution setting unit 120 which are the functional components of the CPU 111. All function when the CPU 111 executes the evaluation program 127 or the like stored in the auxiliary storage device 126.
  • the evaluation program 127 and the like are programs for the evaluation device 101.
  • the evaluation program 127 causes the evaluation device 101
  • Case 2 The case where the fulcrums 12b 1 and 12b 2 at both ends are semi-rigidly joined will be described as case 2, and the case where the fulcrums 12b 1 and 12b 2 at both ends are rigidly joined will be described as case 3.
  • Case 4A when the first end fulcrum 12b 1 is a pin joint and the second end fulcrum 12b 2 is a semi-rigid joint
  • case 5A when the first end fulcrum 12b 1 is a pin joint and the second end fulcrum 12b 2 is a rigid joint. It is explained as.
  • Case 6A A case where the first end fulcrum 12b 1 is a rigid joint and the second end fulcrum 12b 2 is a semi-rigid joint will be described as Case 6A.
  • the continuous beam 11 has the same configuration as the case 4A, and thus the description thereof will be omitted.
  • the case 5B in which the first end fulcrum 12b 1 is a rigid joint and the second end fulcrum 12b 2 is a pin joint is also omitted in the same manner.
  • Case 6B in the case where the first end fulcrum 12b 1 is a semi-rigid joint and the second end fulcrum 12b 2 is a rigid joint is also omitted in the same manner.
  • FIG. 10 is a flowchart showing the evaluation method S11 of the present embodiment when the continuous beam 11 is the case 1.
  • the evaluation method S11 has a solution determination step (step S12 shown in FIG. 10) of obtaining a plurality of bending moments and a plurality of rotation angles based on given conditions.
  • the solution determination step S12 first, the first design unit 113 performs the first design step (step S14) (the solution determination step S12 has the first design process S14).
  • a design value including a plurality of vertical displacements ⁇ i at the pair of end fulcrums 12b and the intermediate fulcrums 12a of the continuous beam 11 is given.
  • the plurality of vertical displacements ⁇ i are given as the given conditions.
  • the design value, the plurality of rotational stiffness, and n of beams 13 i each length L i, and the beam 13 i of each flexural rigidity of the n, n of beams 13 i comprising a uniformly distributed load w i acting on each of the.
  • the second design unit 114 gives a second boundary condition to the pair of end fulcrums 12b according to the joining state at the pair of end fulcrums 12b.
  • the second boundary condition is that the bending moments M j, 0 , M j, and n are 0 Nm, respectively. That is, the second boundary condition includes that the rotation angle ⁇ 01 is unknown.
  • the temporary design unit 115 includes a temporary design value M j, i acting on the pair of end fulcrums 12b and the intermediate fulcrum 12a according to the joining state at the pair of end fulcrums 12b. give. If continuous beam 11 of the case 1 is tentatively designed section 115 further gives the rotation angle phi 01 of the beam 13 1 in the first end supporting point 12b 1 as a temporary design value.
  • the process proceeds to step S20.
  • the storage unit 116 stores the temporary design value in the temporary setting value file 128 after the temporary design step S18.
  • the process proceeds to step S22.
  • the solution calculation unit 117 determines the intermediate fulcrum 12a so as to satisfy the plurality of first boundary conditions and the second boundary conditions based on the temporary design values stored in the temporary setting value file 128.
  • Calculation result of vertical displacement in ⁇ i calculate the calculated value including cal.
  • the calculated value includes the calculation result ⁇ n, calc of the vertical displacement, which is the calculation result of the vertical displacement at the second end fulcrum 12b 2 .
  • the residual calculation unit 118 obtains the displacement residual, which is the residual between the design value and the calculated value.
  • the displacement residual is determined by using the calculation results ⁇ i, calc of the plurality of vertical displacements calculated in the solution calculation step S22 and the plurality of vertical displacements ⁇ i given as the given conditions in the first design step S14. It is calculated by the formula 57). The displacement residual will be described in more detail.
  • the residual with the calculation result ⁇ i and calc of the vertical displacement at the intermediate fulcrum 12a on the fulcrum 12b 2 side is defined as the i-th residual.
  • the intermediate residual which is the sum of the first residual to the (n-1) residual, is calculated.
  • the residual of the second end fulcrum which is the residual of the vertical displacement ⁇ n at the second end fulcrum 12b 2 which is the given condition, and the calculation result ⁇ n, calc of the vertical displacement at the second end fulcrum 12b 2 of the beam 13 n.
  • the displacement residual is the sum of the intermediate residual and the second end fulcrum residual.
  • the residual may be either positive or negative.
  • the sum of the absolute values of each residual or the sum of the squares of each residual is defined as the displacement residual.
  • the bending stiffness EI i is the bending stiffness EI s, i of the forward bending in the case of the forward bending, and the bending stiffness EI h, i of the negative bending in the case of the negative bending.
  • the determination unit 119 determines whether or not the displacement residual is smaller than the threshold value.
  • the process proceeds to step S28.
  • the process proceeds to step S18.
  • the solution setting unit 120 defines the bending moment of the temporary design value stored in the temporary setting value file 128 as the bending moment acting on the intermediate fulcrum 12a. Then, a plurality of rotation angles and deflection distributions are obtained based on this bending moment. This completes all the steps in the evaluation method S11.
  • the temporary design step S18 another new temporary design value is given in place of the temporary design value stored in the temporary setting value file 128 in the storage step S20.
  • the storage step S20 shifted from the temporary design step S18 the other new temporary design value is stored in the temporary setting value file 128.
  • the storage step S20, the solution calculation step S22, the residual calculation step S24, and the determination step S26 are performed based on the other new provisional design values.
  • the determination step S26 determines the displacement residual is equal to or greater than the threshold value (No)
  • another new provisional design value is given in the storage step S20, and the other new provisional design.
  • the storage step S20, the solution calculation step S22, the residual calculation step S24, and the determination step S26 are performed as a set. Then, this set of steps is repeated until it is determined in the determination step S26 that the displacement residual is smaller than the threshold value.
  • the tentative design values are reset according to the differential evolution method, and the tentative design steps S18 to the determination step S26 are calculated to effectively calculate the convergence of the displacement residuals. be able to.
  • the solution determination step S37 for obtaining a plurality of bending moments and a plurality of rotation angles based on the given conditions is performed.
  • the first design step S14 is performed.
  • the process proceeds to step S39.
  • the second design step S39 the second design unit 114 gives a second boundary condition according to the joining state at the pair of end fulcrums 12b.
  • the second boundary conditions are the equations (64) and (65) at the end fulcrums 12b 1 and 12b 2 of the continuous beam 11. That is, the bending moments M j, 0 , M j, n are unknown.
  • the second boundary condition includes that the rotation angle ⁇ 01 is unknown.
  • the rotational rigidity S j, 0 , S j, and i are constants, for example, in equation (64), if one of the bending moment M j, 0 and the angle of rotation ⁇ jl, 1 is obtained, equation (64) is obtained. The other of the bending moment M j, 0 and the rotation angle ⁇ jl, 1 can be obtained from.
  • the equation (65) is the same as that of the equation (64).
  • the bending moments M j and n are calculated from the equation (65) using the calculated rotation angles ⁇ r and n.
  • the solution determination step S47 for obtaining a plurality of bending moments and a plurality of rotation angles based on the given conditions is performed.
  • the first design step S14 is performed.
  • the process proceeds to step S49.
  • the second design step S49 the second design unit 114 gives a second boundary condition according to the joining state at the pair of end fulcrums 12b.
  • the second boundary condition is that the rotation angles ⁇ jl, 1 ( ⁇ l, 1 , ⁇ 01 ) and the rotation angles ⁇ jr, n ( ⁇ r, n ) are 0 rad, respectively. That is, the bending moments M j, 0 , M j, n are unknown.
  • the temporary design unit 115 gives a temporary design value including bending moments M j and i acting on the intermediate fulcrum 12a according to the joining state at the pair of end fulcrums 12b.
  • bending moments M j, 0 , M j, n acting on the pair of end fulcrums 12b are further given as temporary design values.
  • the storage step S20, the solution calculation step S22, the residual calculation step S24, and the determination step S26 are performed, and the process proceeds to the solution setting step S28 or the tentative design step S51 based on the determination in the determination step S26. ..
  • the vertical displacement calculation result ⁇ 0, calc is not newly calculated, and the vertical displacement calculation result ⁇ 0, calc is the value of the vertical displacement ⁇ 0 given under the given conditions.
  • the solution determination step S57 for obtaining a plurality of bending moments and a plurality of rotation angles based on the given conditions is performed.
  • the first design step S14 is performed.
  • the process proceeds to step S59.
  • the second design step S59 the second design unit 114 gives a second boundary condition according to the joining state at the pair of end fulcrums 12b.
  • the second boundary condition is that the bending moments M j and 0 are 0 Nm and the equation (65). That is, the second boundary condition includes that the rotation angle ⁇ 01 is unknown.
  • the temporary design unit 115 gives a temporary design value including bending moments M j and i acting on the intermediate fulcrum 12a according to the joining state at the pair of end fulcrums 12b.
  • the rotation angles ⁇ l, 1 at the first end fulcrum 12b 1 and the bending moments M j, n acting on the second end fulcrum 12b 2 are further given as temporary design values.
  • the storage step S20, the solution calculation step S22, the residual calculation step S24, and the determination step S26 are performed, and the process proceeds to the solution setting step S28 or the tentative design step S61 based on the determination in the determination step S26. ..
  • the solution determination step S67 for obtaining a plurality of bending moments and a plurality of rotation angles based on the given conditions is performed.
  • the first design step S14 is performed.
  • the process proceeds to step S69.
  • the second design step S69 the second design unit 114 gives a second boundary condition according to the joining state at the pair of end fulcrums 12b.
  • the second boundary condition is that the bending moments M j and 0 are 0 Nm and the rotation angles ⁇ r and n are 0 rad. That is, the second boundary condition includes that the rotation angle ⁇ 01 is unknown.
  • the temporary design step S61 is performed. From this point onward, since the joining state at the pair of end fulcrums 12b is the same as in the case of case 4A, the description thereof will be omitted.
  • the residual calculation step S24 performs the following steps when determining whether or not the conforming condition is satisfied.
  • the solution determination step S77 for obtaining a plurality of bending moments and a plurality of rotation angles based on the given conditions is performed.
  • the first design step S14 is performed.
  • the process proceeds to step S79.
  • the second design step S79 the second design unit 114 gives a second boundary condition according to the joining state at the pair of end fulcrums 12b.
  • the second boundary condition is that the rotation angles ⁇ l and 1 are 0 rad and the equation (65). That is, the bending moments M j and 0 are unknown.
  • the temporary design unit 115 gives a temporary design value including bending moments M j and i acting on the intermediate fulcrum 12a according to the joining state at the pair of end fulcrums 12b.
  • bending moments M j, 0 , M j, and n acting on the pair of end fulcrums 12b are further given as temporary design values.
  • the storage step S20, the solution calculation step S22, the residual calculation step S24, and the determination step S26 are performed, and the process proceeds to the solution setting step S28 or the tentative design step S81 based on the determination in the determination step S26. ..
  • the residual calculation step S24 performs the following steps when determining whether or not the conforming condition is satisfied. That is, the rotation angles ⁇ r, n obtained in the solution calculation step S22, and the rotation angles ⁇ r , n calculated by the equation (65) included in the second boundary condition and the tentative design values Mj, n . Multiply the square of the difference by an appropriate weighting factor (positive value) and add it to the displacement residuals.
  • the number of fulcrums (intermediate fulcrum 12a and end fulcrum 12b) included in the continuous beam 11 is (n + 1). Since the moment and the angle of rotation are unknown at each fulcrum, there are 2 (n + 1) unknowns according to the equation (n + 1) ⁇ 2. That is, the number of the plurality of unknowns is 2 (n + 1).
  • the conditional expression (n + 1) is given as the relational expression of the plurality of rotational rigidity, the plurality of bending moments, and the plurality of rotation angles.
  • conditional expression (n + 1) is given.
  • the conditional expression becomes indefinite, and the number of first boundary conditions decreases.
  • the condition that the number of the plurality of unknowns and the sum of the number of the plurality of first conditional expressions and the number of the plurality of second conditional expressions are the same (constant) is maintained.
  • the bending moment of the continuous beam 11 is obtained by the equation (70) from the shearing force V jl, i , the bending moment M j, i, etc. obtained by the equation (24) in the equation (22).
  • the deflection distribution of the continuous beam 11 can be obtained from Eqs. (42) to (44) according to the interval of the coordinates x i. Further, the evaluation method of the present embodiment may be used to perform a continuous beam design method for designing the continuous beam 11.
  • a uniformly distributed load w i are equal to each other acting on the beam 13 5 from the beam 13 1, it was 28.56kN / m.
  • the vertical displacement ⁇ i at each intermediate fulcrum 12a was set to 0 m.
  • the load loaded on the beam 13 after the continuous beam 11 is put into service is the joint portion (intermediate fulcrum 12a) that behaves as a semi-rigid joint after the concrete is hardened, and the composite beam (beam) supported by the pin joint at both end fulcrums 12b. It is assumed that the main body 18 and the floor 17 are supported by a beam 13) that behaves integrally.
  • Figure 12 was evaluated using the evaluation program, shows the bending relationship moment distribution acting on the continuous beam 11 with respect to the distance from the first end supporting point 12b 1.
  • the horizontal axis represents the distance (mm) moved from the first end fulcrum 12b 1 to the second end fulcrum 12b 2 in the continuous beam 11.
  • the vertical axis represents the bending moment distribution (kNm) acting on the continuous beam 11.
  • the curve L4 shown by the solid line represents the bending moment distribution with respect to the load (equally distributed load) after the concrete is hardened.
  • the curve L5 shown by the dotted line shows a value in consideration of the bending moment distribution due to the own weight of the slab concrete (concrete 22) and the steel frame (beam body 18) in addition to the value shown by the curve L4. That is, the curve L4 represents the bending moment distribution when the mass of the continuous beam 11 which is a structure is not taken into consideration.
  • the white triangle mark ( ⁇ ) with a sharp upper part and the white triangle mark ( ⁇ ) with a sharp lower part represent the elastic limiting bending strength of the beam 13.
  • the white square marks ( ⁇ ) represent the elastic limiting bending strength of the joints (intermediate fulcrum 12a and end fulcrum 12b). It was found that both bending moment distributions were equal to or less than the elastic limiting bending strength of the beam 13 and the joint.
  • Figure 13 was evaluated using the evaluation program, shows the relationship between the rotational angle distribution of the continuous beam 11 with respect to the distance from the first end supporting point 12b 1.
  • the horizontal axis represents the distance (mm) moved from the first end fulcrum 12b 1 to the second end fulcrum 12b 2 in the continuous beam 11.
  • the vertical axis represents the rotation angle distribution (rad) of the continuous beam 11.
  • a rotation angle corresponding to the rotational rigidity is generated at the intermediate fulcrum 12a which is semi-rigidly joined. Therefore, the rotation angle distribution is discontinuous at the intermediate fulcrum 12a.
  • FIG. 13 shows the relationship between the rotational angle distribution of the continuous beam 11 with respect to the distance from the first end supporting point 12b 1.
  • the horizontal axis represents the distance (mm) moved from the first end fulcrum 12b 1 to the second end fulcrum 12b 2 in the continuous beam 11.
  • the vertical axis represents the rotation angle distribution (rad) of the continuous beam 11.
  • rad rotation angle distribution
  • the rotation angles ⁇ r and 3 and the rotation angles ⁇ l and 4 are discontinuous.
  • the difference in the absolute values of the rotation angles of the adjacent beams 13 at the intermediate fulcrum 12a is caused by the ratio of the bending moment of the joint to the rotational rigidity. Specifically, the smaller the rotational rigidity and the larger the bending moment, the larger the sum of the absolute values of the rotation angles of the adjacent beams 13 at the intermediate fulcrum 12a.
  • Figure 14 was evaluated using the evaluation program, shows the relationship between the deflection distribution of the continuous beam 11 with respect to the distance from the first end supporting point 12b 1.
  • the horizontal axis represents the distance (mm) moved from the first end fulcrum 12b 1 to the second end fulcrum 12b 2 in the continuous beam 11.
  • the vertical axis represents the deflection distribution (mm) of the continuous beam 11.
  • One end is the maximum of the first beam 13 1 and the fifth beam 13 5 as a pin joint deflection, the second beam 13 2, third beam 13 3, and a fourth beam 13 is larger than the fourth maximum deflection.
  • the number n of the beams included in the continuous beams of Comparative Examples and Examples 1 to 3 was set to 4, respectively.
  • the i-th beam counting from the first end fulcrum side is also referred to as an i-beam.
  • the i-th intermediate fulcrum counted from the first end fulcrum side is also called the i-th intermediate fulcrum.
  • the length of the beam was set to 15500 mm (15.5 m) for each of the beams in Comparative Examples, Examples 1 and 2.
  • the lengths of the first beam to the fourth beam were 13000 mm, 15500 mm, 14000 mm, and 13000 mm, respectively.
  • the beam length was assumed to be 617 mm.
  • the flange width is 230 mm
  • the web thickness is 13.1 mm
  • the flange thickness is 22.1 mm
  • the moment of inertia of area around the strong axis is 1120000000 mm 4 (0.00112 m 4 )
  • the mass per unit length of the beam is 140 kg / m.
  • the yield strength of the steel material of the beam was assumed to be 345 N / mm 2.
  • the beam length was assumed to be 600 mm.
  • Flange width is 250 mm
  • web thickness is 9.0 mm
  • flange thickness is 16.0 mm
  • moment of inertia of area around the strong axis is 831000000 mm 4
  • mass per unit length of the beam is 104 kg / m
  • yield strength of the steel material of the beam was assumed to be 355 N / mm 2.
  • Example 2 reinforcing bars having a diameter of D16 were arranged at a pitch of 100 mm. In the comparative example, no reinforcing bar was placed at the joint.
  • the yield strength of the steel material of the reinforcing bar used in Comparative Examples and Examples 1 to 3 was 435 N / mm 2 .
  • the effective width of the slab was determined based on the British Standards "Eurocode 4: Design of composite steel and concrete structures --Part 1-1: General rules and rules for buildings".
  • the definition of the effective width of the slab is not limited to this, and may be defined based on, for example, "Various Composite Structure Design Guidelines / Explanation", Architectural Institute of Japan, and the like.
  • the effective width of the slab with respect to the first beam to the fourth beam was set to 3294 mm, respectively.
  • the effective widths of the slabs from the first beam to the fourth beam were set to 3294 mm, 2713 mm, 2713 mm, and 3294 mm.
  • the rotational rigidity from the first intermediate fulcrum to the third intermediate fulcrum was calculated to be 108 kNm / mrad, 116 kNm / mrad, and 108 kNm / mrad, respectively.
  • the rotational rigidity from the first intermediate fulcrum to the third intermediate fulcrum was calculated to be 192 kNm / mrad, 242 kNm / mrad, and 192 kNm / mrad, respectively.
  • the rotational rigidity from the first intermediate fulcrum to the third intermediate fulcrum was calculated to be 103 kNm / mrad, 116 kNm / mrad, and 102 kNm / mrad, respectively.
  • the flexural rigidity of the composite beam for forward bending and negative bending was calculated as follows, based on the cross-sectional dimensions of the beam body in Table 2 and the effective width in Table 3.
  • the bending rigidity of the forward bending was 555,000 kNm 2
  • the bending rigidity of the negative bending was 308,000 kNm 2 in all of the first to fourth beams.
  • the continuous beam of Example 1, the first beam and the fourth beam, flexural rigidity of the positive bending 555000KNm 2, the bending stiffness of the negative bending was calculated as 308000kNm 2.
  • the bending rigidity of the positive bending 525000KNm 2 the bending stiffness of the negative bending was calculated as 292000KNm 2.
  • the continuous beam of Example 2 the first beam and the fourth beam, flexural rigidity of the positive bending 433594KNm 2, the bending stiffness of the negative bending was calculated as 241305KNm 2.
  • the bending rigidity of the positive bending 413095KNm 2 the bending stiffness of the negative bending was calculated as 232307KNm 2.
  • the continuous beam of Example 3, the first beam and the fourth beam, flexural rigidity of the positive bending 415000KNm 2, the bending stiffness of the negative bending was calculated as 232000kNm 2.
  • the bending rigidity of the positive bending 413000KNm 2 the bending stiffness of the negative bending was calculated as 232000KNm 2.
  • the bending rigidity of the positive bending 402000KNm 2 the bending stiffness of the negative bending was calculated as 227000kNm 2.
  • the yield bending strength of the beam and the joint was set.
  • the yield bending strength of the first beam was calculated to be 1750 kNm and the yield bending strength of the negative bending was 1415 kNm.
  • the yield bending strength of the first beam was calculated to be 1750 kNm and the yield bending strength of the negative bending was 1415 kNm.
  • the yield strength of the negative bending at the first intermediate fulcrum was calculated to be 474 kNm.
  • the SDL (dead load excluding the structure) of the continuous beams of Comparative Examples and Examples 1 to 3 was calculated to be 1.0 kN / m 2, respectively.
  • the LL (live load) was calculated to be 4.5 kN / m 2 respectively.
  • the maximum generated bending moment was 1400 kNm in the forward bending and 0 kNm in the negative bending in all of the first to fourth beams.
  • the bending moment of negative bending did not act on each intermediate fulcrum.
  • a bending moment of 1174 kNm was applied to the first beam in the forward bending, and a bending moment of 471 kNm was applied in the negative bending.
  • a bending moment of 471 kNm acted on the first intermediate fulcrum by negative bending.
  • the maximum deflection of the continuous beam was 95 mm for the continuous beam of the comparative example. In the continuous beams of Examples 1 to 3, they were 82 mm, 104 mm, and 96 mm, respectively.
  • the ratio of the generated bending moment to the bending proof stress shown in Table 8 means that there is no margin for the bending proof stress as the value approaches from 0% to 100%. In the continuous beam of the comparative example, this ratio was 80% in the forward bending of the beam. In the continuous beam of Example 1, the forward bending of the beam was 68%, the negative bending of the beam was 34%, and the negative bending of the joint between the beams was 99%. In the continuous beam of Example 2, the forward bending of the beam was 83%, the negative bending of the beam was 49%, and the negative bending of the joint between the beams was 66%.
  • the forward bending of the beam was 58%
  • the negative bending of the beam was 37%
  • the negative bending of the joint between the beams was 88%.
  • the maximum deflection ratio of the beam based on the continuous beam of the comparative example means that the closer the value is from 100% to 0%, the smaller the maximum deflection is with respect to the continuous beam of the comparative example.
  • This ratio was 86% for the continuous beam of Example 1. It was 110% for the continuous beam of Example 2 and 101% for the continuous beam of Example 3.
  • the mass ratio of the beam (steel) based on the continuous beam of the comparative example the closer the value is from 100% to 0%, the smaller the mass of the steel material required to form the beam with respect to the continuous beam of the comparative example. That is, it means that it is an economical design.
  • This ratio was 100% for the continuous beam of Example 1. In the continuous beams of Examples 2 and 3, it was 74%.
  • the mass of the beam does not change in the continuous beam of Example 1 as compared with the continuous beam of the comparative example, but the maximum deflection of the continuous beam is (82-95) / 95. It was found that it was reduced by 14% from the formula of.
  • the maximum deflection of the continuous beam is increased by 10% from the equation of (104-95) / 95 as compared with the continuous beam of the comparative example, and the ratio of the generated bending moment to the bending strength is 80 to 83%. Equivalent, but the beam mass was found to be reduced by 26% from the equation (104-140) / 140.
  • the maximum deflection of the continuous beam is equivalent to 95 to 96 mm as compared with the continuous beam of the comparative example, but the mass of the beam can be reduced by 26% from the equation (104-140) / 140. Do you get it.
  • Beams in which different materials such as steel beams and concrete slabs are joined differ in rigidity and yield strength depending on the bending direction.
  • the reason for this is that the stress-strain relationship between concrete and steel is different, the tensile strength of concrete is smaller than the compressive strength, and the material properties depend on the direction of the force.
  • an explicit solution could not be obtained, and it was necessary to obtain it by convergence calculation.
  • the equation for identifying the solution becomes more complicated. Therefore, there is a problem that it is too complicated to be used in design practice.
  • the number of the plurality of unknowns and the number of the plurality of first boundary conditions are the same. Therefore, a plurality of unknowns are solved so as to satisfy a plurality of first boundary conditions based on the length and flexural rigidity of the beam 13, a plurality of rotational rigidity, a plurality of vertical loads, and a plurality of vertical displacements given as given conditions.
  • a plurality of bending moments and a plurality of rotation angles included in a plurality of unknowns can be obtained.
  • a plurality of vertical displacements are calculated from the obtained plurality of bending moments and a plurality of rotation angles based on the relational expressions of the plurality of vertical displacements.
  • the continuous beam 11 composed of a concrete slab and a steel beam and having different bending rigidity between normal bending and negative bending has a joint portion (semi-rigid joint) having a finite rotational rigidity at the intermediate fulcrum 12a.
  • a method for evaluating the case (semi-rigid continuous beam) was proposed. According to this evaluation method, the bending moment distribution, the rotation angle distribution, and the deflection distribution at an arbitrary position are represented by using the value of the bending moment at the joint. Then, the value of the bending moment of the joint is identified by the optimization calculation considering the first boundary condition, and the required performance in the design (bending moment distribution for design, rotation angle of the joint) and the deflection distribution of the beam are derived. can do.
  • the first design process S14, the second design process, the temporary design process, the solution calculation process S22, the residual calculation process S24, and the determination process S26 are performed.
  • the calculated value calculated based on the provisional design value can be evaluated based on the design value and the displacement residual.
  • the determination step S26 when the displacement residual is equal to or greater than the threshold value, another new temporary design value is given in the temporary design step instead of the temporary design value stored in the storage step S20, and this new temporary design
  • the solution calculation step S22, the residual calculation step S24, and the determination step S26 are performed based on the values. Then, this set is repeated until it is determined in the determination step S26 that the displacement residual is smaller than the threshold value. Therefore, the bending moment can be calculated with high accuracy, and a plurality of rotation angles can be obtained based on the bending moment.
  • the bending rigidity of the forward bending and the bending rigidity of the negative bending may be equal to each other.
  • the end support portion is assumed to be the second girder 31, the end support portion may be a rigid body such as another building.
  • the synthetic beam evaluation method of the present embodiment is used, for example, to evaluate the synthetic beam 211 constituting the building 201 shown in FIG.
  • the composite beam 211 includes a floor 212 and a beam (small beam) 213.
  • the configuration of the composite beam 211 is not limited to this example.
  • the floor 212 is a so-called synthetic slab and is supported from below by the beams 13.
  • the floor 212 includes a deck plate 216 and an RC (Reinforced Concrete) slab 217 arranged on the deck plate 216.
  • the uneven shape of the deck plate 216 extends in a direction along the horizontal plane and in a direction orthogonal to the direction in which the beam 213 extends.
  • the RC slab 217 includes concrete 218 and reinforcing bars 219.
  • the concrete 218 is formed in a plate shape in which the vertical direction is the thickness direction.
  • the concrete 218 is supported from below by the deck plate 216.
  • Reinforcing bars 219 extend along a horizontal plane and are buried in concrete 218.
  • the reinforcing bars 219 are arranged in a grid pattern in a plan view.
  • the beam 213 is made of H-section steel and extends along a horizontal plane.
  • the lower end of the stud 221 is fixed to the upper flange of the beam 213.
  • the stud 221 penetrates the deck plate 216.
  • the upper end of the stud 221 is embedded in concrete 218.
  • Both ends of the beam 213 are semi-rigidly joined to the girder 224 extending along the horizontal plane.
  • the girder 224 extends in a direction orthogonal to the beam 213.
  • the semi-rigid joint between the beam 213 and the girder 224 is performed by, for example, a shear plate 225 and a bolt 226.
  • the end of the girder 224 is supported from below by columns 228.
  • the rotational rigidity of the joints at both ends of the composite beam is S j (Nmm / rad: Newton millimeter per radian), the rotation angle at the end of the composite beam is ⁇ j (positive in the front view shown in FIG. 16). rad: Radian).
  • the absolute value of the bending moment at the end of the composite beam (the moment of the semi-rigid joint at the end; hereinafter referred to as the semi-rigid contact moment) M j (N mm) is expressed by the equation (111).
  • the distribution of bending moments M (x) (Nmm) along the coordinates x of the composite beam is (112) from the force balance condition, assuming that the bending moment when tensile stress acts on the lower flange of the composite beam is positive. It is represented by an expression.
  • the curvature ⁇ (rad / mm) of the composite beam can be expressed by using the bending moment M (N mm) acting on the composite beam and the flexural rigidity EI (Nmm 2) of the composite beam. Due to the action of concrete, the flexural rigidity of forward bending (convex downward) and the bending rigidity of negative bending (convex upward) of synthetic beams are different from each other. Therefore, the bending rigidity of the forward bending of the composite beam is defined as EI s (N mm 2 ), and the bending rigidity of the negative bending of the composite beam is defined as EI h (N mm 2 ). Then, as shown in FIG.
  • the rotation angle ⁇ (x) (rad) of the composite beam will be described with the clockwise rotation with respect to the horizontal plane as positive (+).
  • the rotation angle ⁇ (x) can be obtained by integrating the curvature ⁇ of the equations (113) and (114) with the coordinates x and the like. Further, the rotation angle ⁇ (x) is calculated from the equations (120) to (122) by using the equation (119) in consideration of the boundary condition that the rotation angle ⁇ becomes ⁇ j when the coordinate x is 0. It is expressed as.
  • the deflection ⁇ (x) (mm) generated in the composite beam will be described with the vertical downward direction as positive (+).
  • the deflection ⁇ (x) can be obtained by integrating the rotation angles ⁇ of the equations (120) to (122) with the coordinates x and the like. Further, the deflection ⁇ (x) is obtained from the equation (127) by using the equations (125) and (126) in consideration of the boundary condition that the deflection ⁇ (x) becomes 0 when the coordinate x is 0. It is expressed as in equation (129).
  • Equations (127) to (129) obtained above are expressed in a form including a semi-rigid contact moment M j and a rotation angle ⁇ j.
  • the semi- rigid contact moment M j and the rotation angle ⁇ j cannot be uniquely determined with respect to the arbitrary rotational rigidity S j.
  • the rotation rigidity S j and the rotation angle ⁇ can be obtained from the equations (111) and (121).
  • the relationship with j is expressed as in Eq. (130).
  • the maximum value ⁇ max of the deflection generated in the composite beam is the value when the coordinate x in the equation (128) is (L / 2).
  • the convergence calculation is performed using the equation (130) or the equation (131) to calculate the rotation angle ⁇ j.
  • the deflection ⁇ (x) when the coordinate x is (L / 2) is performed by using the equation (128).
  • the dimensionless flexural rigidity ⁇ s and the dimensionless rotational rigidity ⁇ j are defined.
  • the non-dimensional bending rigidity ⁇ s is defined as the ratio of the bending rigidity of the forward bending of the synthetic beam to the bending rigidity of the negative bending of the synthetic beam.
  • the non-dimensional bending rigidity ⁇ s is defined as the ratio of the bending rigidity EI s of the positive bending of the synthetic beam to the bending rigidity EI h of the negative bending of the synthetic beam.
  • the dimensionless flexural rigidity ⁇ s generally takes a value of 1 or more. This is because the floor is usually above the vertical direction of the beam, and the concrete of the floor has a higher compressive resistance than the tensile resistance.
  • the dimensionless bending rigidity ⁇ s is 10 or less, and in a more commonly used composite beam, the dimensionless bending rigidity ⁇ s is 3 or less.
  • the non-dimensional bending rigidity ⁇ s may be defined as the ratio of the bending rigidity EI h of the negative bending of the synthetic beam to the bending rigidity EI s of the forward bending of the synthetic beam.
  • the non-dimensional rotational rigidity ⁇ j is a value obtained by dividing the rotational rigidity at the end of the synthetic beam by the bending rigidity per unit length of the synthetic beam.
  • pin contact moment M o HanTsuyoshise' moment M j, rigid connection moment M jr, dimensionless joint moment beta Mj, and dimensionless KaTsuyoshise' moment beta Mj, the rigid.
  • the pin contact moment Mo is defined when it is assumed that in a composite beam in which the bending rigidity of the forward bending and the bending rigidity of the negative bending are different from each other, both ends are pin-joined and an evenly distributed load acts over the entire length.
  • the pin contact moment Mo means the maximum value of the bending moment acting on the composite beam.
  • the pin contact moment Mo is expressed by the equation (137).
  • the pin contact moment Mo is equal to the following value in a beam in which the bending rigidity of the forward bending and the bending rigidity of the negative bending are equal to each other.
  • the pin contact moment Mo is equal to the bending moment acting on the end of the beam when both ends are pin-joined and an evenly distributed load acts over the entire length.
  • the pin contact moment M o is the value according to equation (wL 2/8).
  • the semi-rigid contact moment M j is the absolute value of the bending moment at the end of the composite beam. More specifically, the semi-rigid contact moment M j is a composite beam in which both ends are semi-rigidly joined and an evenly distributed load acts over the entire length in a composite beam in which the bending rigidity of forward bending and the bending rigidity of negative bending are different from each other. It means the bending moment acting on the end of the beam.
  • the semi-rigid moment of a sequence M j is expressed by the equation (138) using the rotation angle ⁇ j calculated by performing the convergence calculation using the equation (130) or the equation (131).
  • the rigid contact moment M jr means the following values in a composite beam in which the bending rigidity of the forward bending and the bending rigidity of the negative bending are different from each other.
  • the rigid contact moment M jr means a bending moment acting on the end of the composite beam when both ends are rigidly joined and an evenly distributed load acts over the entire length.
  • the composite beam of the present embodiment is a beam in which the bending rigidity of the forward bending and the bending rigidity of the negative bending are different from each other.
  • a beam of a comparative example in which the bending rigidity of the forward bending and the bending rigidity of the negative bending are equal to each other is assumed.
  • rigid connection moment M jr is the value according to equation (wL 2/12).
  • Dimensionless joint moment beta Mj is a value obtained by dividing the HanTsuyoshise' moment M j with a pin contact moment M o, represented by (139) below.
  • the length L of the composite beam was assumed to be 10.0 m (10000 mm). 229397KNm 2 negative bending flexural rigidity EI h, when a uniformly distributed load w assuming 28.6kN / m (28.6N / mm) , a pin contact moment M o was calculated as 357kNm from (137) below.
  • the dimensionless rotational rigidity ⁇ j was changed from a minimum value of 0.00 to a maximum value of 50.00 in 1.00 increments to 51 different values. That is, the dimensionless rotational rigidity ⁇ j was set to a value of 0.00, 1.00, 2.00, ..., 50.00.
  • the dimensionless flexural rigidity ⁇ s was changed from a minimum value of 1.00 to a maximum value of 6.00 in 0.10 increments to 51 different values. That is, the dimensionless flexural rigidity ⁇ s was set to a value of 1.00, 1.10, 1.20, ..., 6.00.
  • 2601 cases were calculated according to the equation (51 ⁇ 51) in which the values of the dimensionless rotational rigidity ⁇ j and the dimensionless bending rigidity ⁇ s were changed.
  • the length L of the composite beam was changed to 15.0 m based on the case 1.
  • Pin contact moment M o was calculated to 803kNm from (137) below.
  • the dimensionless rotational rigidity ⁇ j and the dimensionless bending rigidity ⁇ s were changed in the same manner as in case 1, and 2601 cases were calculated.
  • the step of the dimensionless rotational rigidity ⁇ j and the maximum value and the step of the dimensionless bending rigidity ⁇ s were changed. That is, in Case 3, the dimensionless rotational rigidity ⁇ j was changed from a minimum value of 0.00 to a maximum value of 50.00 in increments of 0.01 to 5001 types of values.
  • the dimensionless rotational rigidity ⁇ j was set to a value of 0.00, 0.01, 0.02, ..., 50.00.
  • the dimensionless flexural rigidity ⁇ s was changed from a minimum value of 1.00 to a maximum value of 1.06 in 0.01 increments to seven different values. That is, the dimensionless flexural rigidity ⁇ s was set to a value of 1.00, 1.01, 1.02, ..., 1.06.
  • a trial calculation was made for 35007 cases according to the equation (5001 ⁇ 7) in which the values of the dimensionless rotational rigidity ⁇ j and the dimensionless bending rigidity ⁇ s were changed.
  • a more detailed trial calculation was made for a part of the range of the dimensionless rotational rigidity ⁇ j and the dimensionless bending rigidity ⁇ s in Case 2.
  • the length L of the composite beam was changed to 8.4 m with reference to case 1.
  • pin contact moment M o was calculated as 252kNm from (137) below.
  • the dimensionless rotational rigidity ⁇ j was changed from a minimum value of 0.00 to a maximum value of 100.00 in 0.50 increments to 201 kinds of values. That is, the dimensionless rotational rigidity ⁇ j was set to a value of 0.00, 0.50, 1.00, ..., 100.00.
  • the dimensionless flexural rigidity ⁇ s was changed from a minimum value of 1.00 to a maximum value of 1.30 in 0.05 increments to seven different values.
  • the dimensionless flexural rigidity ⁇ s was set to a value of 1.00, 1.05, 1.10, ..., 1.30.
  • 1407 cases according to the equation (201 ⁇ 7) in which the values of the dimensionless rotational rigidity ⁇ j and the dimensionless bending rigidity ⁇ s were changed were calculated.
  • the length L of the composite beam was changed to 13.8 m with reference to case 1.
  • Pin contact moment M o was calculated to 680kNm from (137) below.
  • the value of the dimensionless rotational rigidity ⁇ j was changed in the same manner as in case 4.
  • the dimensionless flexural rigidity ⁇ s was changed from a minimum value of 1.00 to a maximum value of 4.00 in 0.50 increments to seven different values. That is, the dimensionless flexural rigidity ⁇ s was set to a value of 1.00, 1.50, 2.00, ..., 4.00.
  • the maximum values of the dimensionless rotational rigidity ⁇ j and the dimensionless bending rigidity ⁇ s were changed.
  • the dimensionless rotational rigidity ⁇ j is set to infinity ( ⁇ ), that is, the rotational rigidity S j is set to infinity, and both ends of the composite beam are rigidly joined.
  • the dimensionless flexural rigidity ⁇ s was changed from a minimum value of 1.00 to a maximum value of 51.00 in 0.10 increments to 501 types of values. That is, the dimensionless flexural rigidity ⁇ s was set to a value of 1.00, 1.10, 1.20, ..., 51.00.
  • FIG. 18 shows the relationship between the dimensionless rotational rigidity ⁇ j and the dimensionless joint moment ⁇ Mj in cases 1 to 5.
  • the horizontal axis represents the dimensionless rotational rigidity ⁇ j
  • the vertical axis represents the dimensionless joint moment ⁇ Mj .
  • the straight line L11 is a dimensionless rigid contact moment ⁇ Mj, rigid, u in a normal beam in which the bending rigidity of the forward bending and the bending rigidity of the negative bending are equal to each other.
  • the length is L (mm) and the evenly distributed load is w (N / mm).
  • the trial calculation result of Case 1 is represented by a white square mark.
  • the trial calculation result of Case 2 is represented by a white triangle mark
  • the trial calculation result of Case 3 is represented by a white round mark.
  • the trial calculation result of Case 4 is represented by a white diamond mark
  • the trial calculation result of Case 5 is represented by a cross mark.
  • the dimensionless junction moment ⁇ Mj converges to the upper limit value of the dimensionless rigid contact moment ⁇ Mj, rigid represented by the straight line L11.
  • the non-dimensionalized joint moment ⁇ Mj represented by the curve L12 considers the shape of the function and the limit of the non-dimensionalized joint moment ⁇ Mj when the non-dimensionalized rotational rigidity ⁇ j becomes 0 and infinity. Therefore, it is considered that it can be approximated by Eq. (142). However, e is the number of Napiers (2.718 ).
  • k is a coefficient.
  • Variable alpha j, T is a dimensionless rotational stiffness alpha j when dimensionless joint moment beta Mj dimensionless KaTsuyoshise' moment beta Mj, take half of the rigid.
  • Equation (146) is modified as equations (147) and (148). Further, the equations (147) and (148) are modified as the equation (150) by using the equation (149).
  • the dimensionless rigid contact moment ⁇ Mj, rigid is, strictly speaking, a solution of the cubic equation by Eq. (150). Furthermore, it was found that the solution of the dimensionless rigid contact moment ⁇ Mj, rigid depends only on the dimensionless flexural rigidity ⁇ s , and does not depend on the length L of the composite beam, the evenly distributed load w, and the like. Therefore, the solution of Eq. (50) can be obtained by using Cardano's formula, which is a solution of the cubic equation, and the exact solution of the dimensionless rigid contact moment ⁇ Mj, rigid can be obtained from the real number solution.
  • FIG. 19 The relationship between the dimensionless flexural rigidity ⁇ s and the dimensionless rigid contact moments ⁇ Mj and rigid for Case 6 is shown in FIG. In FIG. 19, the horizontal axis represents the dimensionless flexural rigidity ⁇ s . The vertical axis represents the dimensionless rigid contact moment ⁇ Mj, rigid .
  • the dimensionless rigid contact moment ⁇ Mj, rigid can be obtained as a real number solution of the cubic equation by Eq. (150).
  • the non-dimensional flexural rigidity ⁇ s is about 10 or less
  • the non-dimensional rigid contact moments ⁇ Mj and rigid are in the common logarithm linear form of the non-dimensional flexural rigidity ⁇ s. It is thought that it can be approximated.
  • the dimensionless flexural rigidity ⁇ s is 10 or less if the slab thickness of a general composite beam is used. Therefore, in FIG. 19, the range in which the dimensionless flexural rigidity ⁇ s is 10 or less is approximated in a linear form, and the dimensionless rigid contact moments ⁇ Mj and rigid are approximated by the equation (153).
  • Equation (153) the dimensionless rigid contact moments ⁇ Mj and rigid are calculated by an explicit function based on the dimensionless flexural rigidity ⁇ s. Equation (153) is shown by a straight line L14 in FIG. In the range where the dimensionless flexural rigidity ⁇ s is 10 or less, the straight line L14 overlaps with the trial calculation result.
  • FIG. 20 shows a comparison between the approximate solution of the dimensionless rigid contact moment ⁇ Mj and rigid according to the equation (153) and the exact solution according to the equation (150).
  • FIG. 20 shows a comparison between the approximate solution of the dimensionless rigid contact moment ⁇ Mj and rigid according to the equation (153) and the exact solution according to the equation (150).
  • the horizontal axis represents an approximate solution of the dimensionless rigid contact moment ⁇ Mj, rigid according to equation (153)
  • the vertical axis represents the exact solution of the dimensionless rigid contact moment ⁇ Mj, rigid according to equation (150).
  • Dimensionless KaTsuyoshise' moment beta Mj, the approximate solution and the exact solution of the rigid, when the dimensionless KaTsuyoshise' moment beta Mj, approximate solution of rigid exceeds 0.4 is generally consistent.
  • Equation (154) is shown by a curve L17 in FIG. 20, with the dimensionless rigid contact moments ⁇ Mj and rigid on the horizontal axis and the dimensionless rigid contact moments ⁇ Mj, rigid and Theo on the vertical axis.
  • Dimensionless KaTsuyoshise' moment ⁇ Mj, rigid, Theo is, dimensionless KaTsuyoshise' Mometo ⁇ Mj, and overlaps with the exact solution of rigid.
  • the dimensionless rigid contact moment ⁇ Mj, rigid is replaced with the dimensionless rigid contact moment ⁇ in equation (142).
  • the dimensionless rigid contact moment ⁇ Mj, rigid Theo calculated by Eq. (154) based on Mj, rigid may be used.
  • the approximate expressions of the coefficient k and the variables ⁇ j and T are obtained.
  • the coefficient k was obtained by the differential evolution method. The relationship between the obtained coefficient k and the dimensionless flexural rigidity ⁇ s is shown in FIG.
  • the coefficient k depends on the dimensionless flexural rigidity ⁇ s in a higher order and is approximated by Eq. (155).
  • the variables ⁇ j and T were obtained by the differential evolution method.
  • FIG. 22 shows the relationship between the obtained variables ⁇ j and T and the dimensionless flexural rigidity ⁇ s.
  • the variables ⁇ j and T depend on the dimensionless flexural rigidity ⁇ s in a higher order and are approximated by Eq. (156).
  • Equation (155) is shown by curve L18 in FIG. In the study range, the curve L18 is a good approximation of the trial calculation results.
  • equation (156) is shown by curve L19 in FIG. In the examination range, the curve L19 is a good approximation of the trial calculation result.
  • the dimensionless rigid contact moment ⁇ Mj, rigid , the coefficient k, and the variables ⁇ j, T are calculated by the dimensionless flexural rigidity ⁇ s
  • the dimensionless joint moment ⁇ Mj is calculated by Eq. (142). Is calculated.
  • the non-dimensional joint moment ⁇ Mj is calculated by the positive equation (142). Calculated by a function. More specifically, the dimensionless joint moment ⁇ Mj is calculated by Eq. (142) using Eqs. (153), (155), and (156).
  • Equation (153) instead of equation (153) and (154) dimensionless KaTsuyoshise' moment beta Mj was calculated using equation rigid, dimensionless KaTsuyoshise' Mometo of Theo (142) below beta Mj , Rigid may be substituted to calculate the dimensionless junction moment ⁇ Mj.
  • the maximum deflection [delta] max (the maximum value of deflection) in the middle of the composite beam, it converts the expression of the dimensionless joint moments beta Mj and pin contact moment M o.
  • the deflection function of the forward bending region including the center of the composite beam is given by the above equation (128).
  • L 1 and L 2 in the equations (115) and (116) are the dimensionless joint moment ⁇ Mj , the pin contact moment Mo , and the half as in the equations (160) and (161). It can be expressed by the equation of rigid contact moment M j.
  • L 1 and L 2 are points where the bending moment of the composite beam becomes zero, and satisfies Eq. (162).
  • equation (128) When equation (128) is expressed by the dimensionless flexural rigidity ⁇ s , the dimensionless rotational rigidity ⁇ j , and the dimensionless joint moment ⁇ Mj , it becomes equation (164).
  • the maximum value of deflection ⁇ max is calculated by an explicit function based on the calculated non-dimensional flexural rigidity ⁇ s , non-dimensional rotational rigidity ⁇ j , non-dimensional joint moment ⁇ Mj, etc. be able to.
  • a function of the moment distribution of the composite beam can be obtained.
  • the bending moment M j can be directly obtained from the equation (171) which is a modification of the equation (139).
  • the non-dimensional joint moment ⁇ Mj and the pin contact moment Mo are the given conditions of the non-dimensional rotational rigidity ⁇ j , the non-dimensional bending rigidity ⁇ s , and the composite beam which is the design requirement (given condition). It can be calculated by the explicit functions of the above equations (142) and (137) using the length L of the above and the evenly distributed load w. Further, the coefficient k, the variables ⁇ j, T , and the dimensionless rigid contact moment ⁇ Mj, rigid in the equation (142) are calculated by the explicit functions of the equations (155), (156), and (153). it can.
  • the dimensionless rigid contact moment ⁇ Mj, rigid calculated by the equation (153) is 0.4 or less
  • the dimensionless rigid contact moment ⁇ Mj, rigid is replaced with the dimensionless rigid contact moment ⁇ Mj, rigid in the equation (142).
  • the dimensionless rigid contact moment ⁇ Mj, rigid Theo calculated by Eq. (154) based on the rigid contact moment ⁇ Mj, rigid may be used.
  • the maximum value ⁇ max of the deflection which is the maximum deflection at the center of the composite beam, can be obtained explicitly by substituting the dimensionless joint moment ⁇ Mj calculated by Eq. (142) and the given conditions into Eq. (170). it can.
  • the maximum value ⁇ max of the end bending moment and the deflection is set by an explicit function based on the non-dimensional rotational rigidity ⁇ j and the non-dimensional bending rigidity ⁇ s. calculate.
  • the maximum value ⁇ max of the deflection the approximate solution by Eq. (170) using the approximate solution of the dimensionless joint moment ⁇ Mj and the exact solution are compared and shown in FIG. 24.
  • the trial calculation result of Case 6 is also shown.
  • the trial calculation result of Case 6 is represented by a white rectangular mark. From the results shown in FIG. 24, it can be seen that the approximate solution and the exact solution of the maximum value of deflection ⁇ max match with sufficient accuracy for practical use.
  • the maximum value ⁇ max of the deflection was evaluated based on the non-dimensional rotational rigidity ⁇ j and the non-dimensional bending rigidity ⁇ s. As a result, it was found that the maximum value ⁇ max of the deflection can be calculated with high versatility and accuracy regardless of the specifications of the composite beam 211.
  • a new composite beam may be designed based on the maximum values of the end bending moment and the deflection calculated by the composite beam evaluation method of the present embodiment. That is, the composite beam design method may be performed using the composite beam evaluation method of the present embodiment.
  • the inventors have found that the maximum values of the end bending moment and the deflection are ⁇ max based on the non-dimensional rotational rigidity ⁇ j and the non-dimensional bending rigidity ⁇ s.
  • the maximum value ⁇ max of the end bending moment and the deflection can be calculated with high versatility and accuracy by the explicit function regardless of the specifications of the composite beam 211.
  • the end bending moment of the composite beam 211 and the maximum bending moment ⁇ max of the composite beam 211 are calculated by an explicit function based on the dimensionless rotational rigidity ⁇ j and the dimensionless bending rigidity ⁇ s.
  • the maximum value of deflection ⁇ max can be calculated without performing convergence calculation.
  • non-dimensionalized flexural rigidity ⁇ s and the non-dimensionalized rigid-contact moment ⁇ Mj, rigid are calculated by an explicit function based on the equation (153), and the calculated non-dimensional rigid-contact moment ⁇ Mj, rigid is made non-dimensional.
  • the non-dimensionalized joint moment ⁇ Mj is calculated by an explicit function based on the rotational rigidity ⁇ j , the non-dimensionalized bending rigidity ⁇ s, and the equation (142).
  • the maximum value ⁇ max of the end bending moment and the deflection is calculated by an explicit function based on the calculated dimensionless joint moment ⁇ Mj and the equation (170).
  • the maximum value ⁇ max of the end bending moment and the deflection of the composite beam 211 can be calculated without performing the convergence calculation.
  • the dimensionless joint moment ⁇ Mj is calculated by Eq. (142) using Eqs. (153), (155), and (156). Therefore, the dimensionless joint moment ⁇ Mj can be calculated accurately by these equations without performing the convergence calculation. Therefore, the deflection can be appropriately evaluated.
  • the dimensionless rigid contact moment ⁇ Mj, rigid is used instead of the dimensionless rigid contact moment ⁇ Mj, rigid .
  • the dimensionless rigid contact moment ⁇ Mj, rigid, and Theo calculated by Eq. (154) are used.
  • the dimensionless rigid contact moment ⁇ Mj, rigid is 0.4 or less, the error of the dimensionless rigid contact moment ⁇ Mj, rigid becomes large with respect to the exact solution. Even in this case, the dimensionless rigid contact moment can be calculated more accurately by using the dimensionless rigid contact moment ⁇ Mj, rigid, Theo instead of the dimensionless rigid contact moment ⁇ Mj, rigid. Can be done.
  • the convergence calculation for calculating the bending moment of the composite beam which is a member constituting the structure becomes unnecessary. Therefore, it is not necessary to perform double convergence calculation for dynamic analysis of the structure, and the calculation time can be significantly shortened.
  • the cross-sectional area of the composite beam is set as the objective function and the design conditions such as the deflection and the bending moment are set as the constraint conditions, and the optimization calculation for minimizing the objective function is performed, there are the following advantages. That is, since the convergence calculation for calculating the deflection and the bending moment, which are the constraint conditions, is not required, it is not necessary to perform the double convergence calculation for the optimization of the objective function, and the calculation time can be significantly shortened.
  • the second embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and changes and combinations of configurations within a range that does not deviate from the gist of the present invention, Deletion etc. are also included.
  • the bending moment M j and the maximum value ⁇ max of the deflection are calculated by an explicit function based on the non-dimensional rotational rigidity ⁇ j and the non-dimensional bending rigidity ⁇ s. Good.
  • the following procedure may be performed. That is, the dimensionless rigid contact moments ⁇ Mj and rigid are calculated by an explicit function based on the dimensionless flexural rigidity ⁇ s.
  • the non-dimensional joint moment ⁇ Mj is calculated by an explicit function. Then, based on the calculated dimensionless joint moment ⁇ Mj , the bending moment M j and the maximum value ⁇ max of the deflection are calculated by an explicit function.

Abstract

This method of evaluating continuous beams includes a solution determination step for finding, on the basis of given conditions, a plurality of bending moments at an intermediate fulcrum and a pair of end fulcrums, and a plurality of rotational angles at the pair of end fulcrums. The given conditions include: length and flexural rigidity of each of n beams; a plurality of rotational rigidities at the intermediate fulcrum and the pair of end fulcrums; vertical load acting on the n beams; and a plurality of perpendicular displacements at the intermediate fulcrum and the pair of end fulcrums. In the solution determination step: the plurality of bending moments and the plurality of rotational angles are defined as a plurality of unknowns; a relational expression for the plurality of perpendicular displacements, and relational expressions for the plurality of rotational rigidities, plurality of bending moments, and plurality of rotational angles are defined as a plurality of first boundary conditions of the same number as that of the plurality of unknowns; and at such time, the plurality of unknowns are solved so that the plurality of unknowns satisfy the plurality of first boundary conditions, thereby evaluating the bending moment and the sag distribution of the continuous beam.

Description

連続梁の評価方法、連続梁の評価プログラム、及び合成梁の評価方法Evaluation method of continuous beam, evaluation program of continuous beam, and evaluation method of composite beam
 本発明は、連続梁の評価方法、連続梁の評価プログラム、及び合成梁の評価方法に関する。
 本願は、2019年11月21日に、日本に出願された、特願2019-210798号、及び特願2019-210811号に基づき優先権を主張し、これらの内容をここに援用する。
The present invention relates to a continuous beam evaluation method, a continuous beam evaluation program, and a composite beam evaluation method.
The present application claims priority based on Japanese Patent Application No. 2019-210798 and Japanese Patent Application No. 2019-210811, which were filed in Japan on November 21, 2019, and the contents thereof are incorporated herein by reference.
 従来、複数本の梁を互いに半剛接合した連続梁が知られている(例えば、特許文献1及び2、非特許文献1参照)。 Conventionally, continuous beams in which a plurality of beams are semi-rigidly joined to each other are known (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1).
 一方で、従来、両端がそれぞれ半剛接合された合成梁において、正曲げの曲げ剛性と負曲げの曲げ剛性とが互いに異なる場合の合成梁の評価方法が知られている(例えば、特許文献3参照)。
 特許文献3では、合成梁に2点集中荷重が作用する場合に、明細書に示された合成梁の曲げモーメント及びたわみについての方程式(陽関数)を解いている。そして、合成梁の端部曲げモーメント(合成梁の端に作用する曲げモーメント)及びたわみの最大値を算出している。
On the other hand, conventionally, in a composite beam in which both ends are semi-rigidly joined, a method for evaluating a composite beam when the bending rigidity of forward bending and the bending rigidity of negative bending are different from each other is known (for example, Patent Document 3). reference).
Patent Document 3 solves the equation (positive function) for the bending moment and the deflection of the composite beam shown in the specification when a two-point concentrated load acts on the composite beam. Then, the maximum value of the bending moment at the end of the composite beam (the bending moment acting on the end of the composite beam) and the deflection is calculated.
日本国特開2015-068001号公報Japanese Patent Application Laid-Open No. 2015-068001 日本国特開2005-282019号公報Japanese Patent Application Laid-Open No. 2005-282019 日本国特開2018-09410号公報Japanese Patent Application Laid-Open No. 2018-09410
 しかしながら、この種の連続梁では、連続梁に荷重が作用したときに生じる曲げモーメントやたわみ分布の実用的な評価方法が提供されていなかった。
 両端が端支持部と剛接合された連続梁であっても、例えば端支持部が鉄骨の大梁の場合、剛接合と評価するには大梁のねじれ抵抗が不十分である。このため、剛接合を仮定してしまうと、連続梁の梁毎に大きさの異なる荷重が作用した際に、曲げモーメントやたわみ分布を過小評価する。それゆえに、連続梁を危険側に評価する恐れがある。
 さらに、正曲げと負曲げの曲げ剛性が異なる連続梁については、これらの曲げ剛性と両端での接合状態を考慮して連続梁の曲げモーメントやたわみ分布を求める実用的な評価方法が提供されていなかった。
However, in this type of continuous beam, a practical evaluation method of bending moment and deflection distribution generated when a load is applied to the continuous beam has not been provided.
Even if both ends are rigidly joined to the end support portion, for example, when the end support portion is a steel girder, the torsional resistance of the girder is insufficient to evaluate it as a rigid joint. Therefore, assuming rigid joints, the bending moment and deflection distribution are underestimated when loads of different sizes are applied to each beam of continuous beams. Therefore, there is a risk of evaluating continuous beams on the dangerous side.
Furthermore, for continuous beams with different bending stiffness between forward bending and negative bending, a practical evaluation method is provided to determine the bending moment and deflection distribution of the continuous beam in consideration of these bending stiffness and the joint state at both ends. There wasn't.
 連続梁を危険側に評価しないように、従来は、連続梁の両端がピン接合で支持されていると仮定して、連続梁を評価している。このため、連続梁の長手方向の中央に発生する曲げモーメントやたわみ分布を過大評価している。これにより、長手方向に直交する断面が大きい梁を連続梁に用いる必要があると判断され、必要以上に高価な連続梁を用いている。 Conventionally, continuous beams are evaluated on the assumption that both ends of the continuous beams are supported by pin joints so that the continuous beams are not evaluated on the dangerous side. Therefore, the bending moment and the deflection distribution generated in the center of the continuous beam in the longitudinal direction are overestimated. As a result, it is determined that it is necessary to use a beam having a large cross section orthogonal to the longitudinal direction as a continuous beam, and a continuous beam that is more expensive than necessary is used.
 このような問題点に鑑みると、両端での接合状態に応じて連続梁の曲げモーメントやたわみ分布をより適切に評価できる連続梁の評価方法及び連続梁の評価プログラムを提供するという第1課題がある。 In view of these problems, the first problem is to provide a continuous beam evaluation method and a continuous beam evaluation program that can more appropriately evaluate the bending moment and deflection distribution of a continuous beam according to the joint state at both ends. is there.
 一方で、合成梁に全長にわたって等分布荷重が作用する場合について説明する。この場合、この方程式が陰関数であるため、合成梁の曲げモーメント及びたわみについての方程式から合成梁の曲げモーメント及びたわみを算出するには、収斂(収束)計算を行う必要がある。さらに、例えば複数の合成梁を有する構造体を動的解析するためには、これを陰解法で収斂計算によって解く必要がある。合成梁と構造体の2重の収斂計算が必要となるため、多大な時間が必要である。
 さらに、例えば合成梁の断面積を目的関数、たわみや曲げモーメント等の設計条件を制約条件とし、目的関数を最小化する最適化計算を行う場合について説明する。この場合、制約条件及び目的関数の最適化に対して2重の収斂計算が必要となるため、多大な時間が必要である。
On the other hand, a case where an evenly distributed load acts on the composite beam over the entire length will be described. In this case, since this equation is an implicit function, it is necessary to perform convergence calculation in order to calculate the bending moment and deflection of the composite beam from the equation for the bending moment and deflection of the composite beam. Furthermore, for example, in order to dynamically analyze a structure having a plurality of composite beams, it is necessary to solve this by a convergence calculation by an implicit method. A large amount of time is required because the double convergence calculation of the composite beam and the structure is required.
Further, for example, the case where the optimization calculation for minimizing the objective function is performed with the cross-sectional area of the composite beam as the objective function and the design conditions such as the deflection and the bending moment as the constraint conditions will be described. In this case, a large amount of time is required because double convergence calculation is required for the optimization of the constraint condition and the objective function.
 このような問題点に鑑みると、合成梁の端部曲げモーメント及びたわみの最大値を収斂計算を行うことなく算出できる合成梁の評価方法を提供するという第2課題がある。 In view of these problems, there is a second problem of providing an evaluation method for a composite beam that can calculate the maximum values of bending moment and deflection at the end of a composite beam without performing convergence calculation.
 本発明は、前記第1課題及び前記第2課題に鑑みてなされたものであって、たわみを適切に評価できる連続梁の評価方法、連続梁の評価プログラム、及び合成梁の評価方法を提供することを目的とする。 The present invention has been made in view of the first and second problems, and provides a continuous beam evaluation method, a continuous beam evaluation program, and a composite beam evaluation method capable of appropriately evaluating deflection. The purpose is.
 前記課題を解決するために、この発明は以下の手段を提案している。
(1)本発明の第一の態様は、長手方向に並べて配置されるとともに、前記長手方向に隣り合う端部同士が互いに半剛接合されて中間支点とされた、2以上の自然数であるn本の梁を備える連続梁であって、前記連続梁全体の両端が一対の端支点とされた前記連続梁を評価する連続梁の評価方法であって、前記中間支点及び前記一対の端支点での複数の曲げモーメント、及び前記一対の端支点での複数の回転角を、与条件に基づいて求める解決定工程を有し、前記与条件が、前記n本の梁それぞれの長さ及び曲げ剛性と;前記中間支点及び前記一対の端支点での複数の回転剛性と;前記n本の梁に作用する鉛直荷重と;前記中間支点及び前記一対の端支点での複数の鉛直変位と;を含み、前記解決定工程では、前記複数の曲げモーメント及び前記複数の回転角を複数の未知数と規定し、前記複数の回転剛性、前記複数の曲げモーメント、及び前記複数の回転角の関係式と、前記複数の鉛直変位の関係式とを、前記複数の未知数の数と同数の複数の第1境界条件と規定したときに、前記複数の未知数が前記複数の第1境界条件を満たすように前記複数の未知数を解いて、前記連続梁の曲げモーメント及びたわみ分布を評価する。
In order to solve the above problems, the present invention proposes the following means.
(1) The first aspect of the present invention is n, which is two or more natural numbers arranged side by side in the longitudinal direction and having end portions adjacent to each other in the longitudinal direction semi-rigidly joined to each other to form an intermediate fulcrum. A method for evaluating a continuous beam including a book beam in which both ends of the entire continuous beam are paired end fulcrums, wherein the intermediate fulcrum and the pair of end fulcrums are used. It has a solution determination step of obtaining a plurality of bending moments and a plurality of rotation angles at the pair of end fulcrums based on given conditions, and the given conditions are the length and bending rigidity of each of the n beams. And; including a plurality of rotational rigidity at the intermediate fulcrum and the pair of end fulcrums; a vertical load acting on the n beams; and a plurality of vertical displacements at the intermediate fulcrum and the pair of end fulcrums; In the solution determination step, the plurality of bending moments and the plurality of rotation angles are defined as a plurality of unknowns, the relational expressions of the plurality of rotational rigidity, the plurality of bending moments, and the plurality of rotation angles, and the said. When the relational expression of the plurality of vertical displacements is defined as the plurality of first fulcrums having the same number as the number of the plurality of unknowns, the plurality of unknowns satisfy the plurality of first fulcrums so as to satisfy the plurality of first fulcrums. The unknown number is solved to evaluate the bending moment and the deflection distribution of the continuous beam.
 この態様によれば、複数の未知数の数と複数の第1境界条件の数とが同数である。このため、与条件として与えられた梁の長さ及び曲げ剛性、複数の回転剛性、鉛直荷重、乃至中間支点及び一対の端支点での複数の鉛直変位に基づいて、複数の第1境界条件を満たすように複数の未知数を解く。この方法により、複数の未知数に含まれる複数の曲げモーメント及び複数の回転角を求めることができる。
 そして、求めた複数の曲げモーメント及び複数の回転角から、複数の鉛直変位の関係式に基づいて複数の鉛直変位を算出する。この方法により、例えば一対の端支点での接合状態に応じて、連続梁の曲げモーメントやたわみ分布をより適切に評価することができる。従って、たわみを適切に評価することができる。
According to this aspect, the number of the plurality of unknowns and the number of the plurality of first boundary conditions are the same. Therefore, a plurality of first boundary conditions are set based on the beam length and flexural rigidity, a plurality of rotational rigidity, a vertical load, or a plurality of vertical displacements at an intermediate fulcrum and a pair of end fulcrums given as given conditions. Solve multiple unknowns to satisfy. By this method, a plurality of bending moments and a plurality of rotation angles included in a plurality of unknowns can be obtained.
Then, a plurality of vertical displacements are calculated from the obtained plurality of bending moments and a plurality of rotation angles based on the relational expressions of the plurality of vertical displacements. According to this method, for example, the bending moment and the deflection distribution of the continuous beam can be more appropriately evaluated according to the joint state at the pair of end fulcrums. Therefore, the deflection can be appropriately evaluated.
(2)前記(1)に記載の連続梁の評価方法では、前記解決定工程が、前記複数の鉛直変位を含む設計値を与える第1設計工程と;前記一対の端支点での接合状態に応じて前記一対の端支点に第2境界条件を与える第2設計工程と;前記一対の端支点での接合状態に応じて、前記一対の端支点及び前記中間支点に作用する前記曲げモーメントを含む仮設計値を与える仮設計工程と;前記仮設計値に基づいて、前記複数の第1境界条件及び前記第2境界条件を満たすように、前記中間支点での鉛直変位の計算結果を含む計算値を算出する解算出工程と;前記設計値と前記計算値との残差である変位残差を求める残差算出工程と;前記変位残差が、予め定められた閾値よりも小さいか否かを判定する判定工程と;を有してもよい。
 この態様によれば、判定工程において変位残差が閾値よりも小さいか否かを判定することにより、仮設計値に基づいて算出された計算値を、設計値及び変位残差に基づいて評価することができる。
(2) In the evaluation method of the continuous beam according to the above (1), the solution determination step is the first design step of giving a design value including the plurality of vertical displacements; A second design step of imparting a second boundary condition to the pair of end fulcrums accordingly; includes the bending moment acting on the pair of end fulcrums and the intermediate fulcrum depending on the joining state at the pair of end fulcrums. A tentative design process that gives a tentative design value; a calculated value that includes a calculation result of vertical displacement at the intermediate fulcrum so as to satisfy the plurality of first boundary conditions and the second boundary condition based on the tentative design value. A solution calculation step for calculating; and a residual calculation step for obtaining a displacement residual which is a residual between the design value and the calculated value; whether or not the displacement residual is smaller than a predetermined threshold value. It may have a determination step for determining;
According to this aspect, the calculated value calculated based on the tentative design value is evaluated based on the design value and the displacement residual by determining whether or not the displacement residual is smaller than the threshold value in the determination step. be able to.
(3)前記(2)に記載の連続梁の評価方法では、前記解決定工程が、前記仮設計工程の後で、前記仮設計値を記憶する記憶工程をさらに有し、前記判定工程において、前記変位残差が前記閾値以上であるときには、前記記憶工程で記憶された前記仮設計値に代えて前記仮設計工程で他の新たな仮設計値を与えること、及び、この新たな仮設計値に基づいて前記解算出工程、前記残差算出工程、前記判定工程を行うこと、を組にして、前記判定工程において前記変位残差が前記閾値よりも小さいと判定されるまで繰り返し、前記判定工程において前記変位残差が前記閾値よりも小さいと判定されたときの前記仮設計値の前記曲げモーメントを、前記中間支点に作用する前記曲げモーメントと規定して、この曲げモーメントに基づいて前記複数の回転角を求めてもよい。
 この態様によれば、判定工程において変位残差が閾値よりも小さいと判定されるまで、新たな仮設計値を与えること、及び、この新たな仮設計値に基づいて解算出工程、残差算出工程、判定工程を行うこと、を組にして繰り返す。この方法により、曲げモーメントを任意の精度で算出することができる。そして、この曲げモーメントに基づいて複数の回転角を求めることができる。
(3) In the evaluation method of the continuous beam according to the above (2), the solution determination step further includes a storage step of storing the temporary design value after the temporary design step, and in the determination step, the temporary design value is stored. When the displacement residual is equal to or greater than the threshold value, another new temporary design value is given in the temporary design process in place of the temporary design value stored in the storage process, and the new temporary design value is given. The solution calculation step, the residual calculation step, and the determination step are performed based on the above, and the determination step is repeated until the displacement residual is determined to be smaller than the threshold value in the determination step. The bending moment of the provisional design value when the displacement residual is determined to be smaller than the threshold value is defined as the bending moment acting on the intermediate fulcrum, and the plurality of bending moments are defined based on the bending moment. The rotation angle may be obtained.
According to this aspect, a new tentative design value is given until the displacement residual is determined to be smaller than the threshold value in the determination step, and the solution calculation step and the residual calculation are performed based on the new tentative design value. Repeat the process and the judgment process as a set. By this method, the bending moment can be calculated with arbitrary accuracy. Then, a plurality of rotation angles can be obtained based on this bending moment.
(4)前記(2)又は(3)に記載の連続梁の評価方法において、前記解算出工程では、前記n本の梁のうち、前記連続梁の一方の前記端支点である第1端支点から前記連続梁の他方の前記端支点である第2端支点に向かって、1以上n以下の自然数iに対して、i本目の前記梁における前記第1端支点側の前記中間支点又は前記端支点での前記鉛直変位δ0i(m)を前記与条件と規定し;i本目の前記梁における前記第2端支点側の前記中間支点又は前記端支点での前記鉛直変位の計算結果δi,calc(m)を、(1)式から(8)式に基づいて得られる(9)式により、前記計算値に含まれるとして算出し;1以上(n-1)以下のiに対する、(i+1)本目の前記梁における前記第1端支点側の前記中間支点での前記鉛直変位δ0(i+1)と、i本目の前記梁における前記第2端支点側の前記中間支点での前記鉛直変位の計算結果δi,calcと、の残差を第i残差と規定したときに、前記残差算出工程では、前記第1残差から前記第(n-1)残差までの和である中間残差を算出し;前記与条件である前記第2端支点における前記鉛直変位δと、n本目の前記梁における前記第2端支点での前記鉛直変位の計算結果δn,calcと、の残差である第2端支点残差を算出し;前記中間残差と前記第2端支点残差との和である前記変位残差を算出してもよい。 (4) In the method for evaluating a continuous beam according to (2) or (3), in the solution calculation step, the first end fulcrum, which is one of the continuous beams among the n beams, is the first end fulcrum. To the second end fulcrum, which is the other end fulcrum of the continuous beam, with respect to a natural number i of 1 or more and n or less, the intermediate fulcrum or the end on the first end fulcrum side of the i-th beam. The vertical displacement δ 0i (m) at the fulcrum is defined as the given condition; the calculation result of the vertical displacement at the intermediate fulcrum on the second end fulcrum side of the i-th beam or the end fulcrum δ i, The calc (m) is calculated as being included in the calculated value by the equation (9) obtained from the equation (1) to the equation (8); (i + 1) for i of 1 or more and (n-1) or less. ) The vertical displacement δ 0 (i + 1) at the intermediate fulcrum on the first end fulcrum side of the second beam and the vertical displacement at the intermediate fulcrum on the second end fulcrum side of the i-th beam. When the residual of the calculation results δ i, calc is defined as the i-th residual, in the residual calculation step, the intermediate is the sum of the first residual to the (n-1) residual. The residual is calculated; the calculation result of the vertical displacement δ n at the second end fulcrum, which is the given condition, and the calculation result δ n, calc of the vertical displacement at the second end fulcrum of the nth beam. The second end fulcrum residual, which is a residual, may be calculated; the displacement residual, which is the sum of the intermediate residual and the second end fulcrum residual, may be calculated.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 ただし、1以上n以下の自然数iに対して、i本目の前記梁の長さをL(m)、i本目の前記梁において、前記第1端支点側の端を原点、前記第1端支点から前記第2端支点に向かう向きを正とした場合に規定される座標をx(m)、i本目の前記梁に作用する鉛直荷重をw(N/m)、i本目の前記梁における前記第1端支点側の端での回転剛性をSjl,i(Nm/rad)、i本目の前記梁における前記第2端支点側の端での回転剛性をSjr,i(Nm/rad)、i本目の前記梁における正曲げの曲げ剛性をEIs,i(Nm)、i本目の前記梁における負曲げの曲げ剛性をEIh,i(Nm)、i本目の前記梁における前記第2端支点側の前記中間支点又は前記端支点での曲げモーメントをMj,i(Nm)と規定する。前記第2境界条件に含まれる1本目の前記梁における前記第1端支点での曲げモーメントMj,0(Nm)は、前記第1端支点がピン接合の場合は0、剛接合又は半剛接合の場合は未知数であり、1本目の前記梁における前記第1端支点での回転角φ01(rad)は、前記第1端支点が剛接合の場合は0、ピン接合または半剛接合の場合は未知数である。
 この態様によれば、中間支点及び一対の端支点における複数の鉛直変位を、数式を用いて精度良く評価することができる。
However, with respect to 1 to n for a natural number i, the length of the beam of i-th L i (m), in the beam of the i-th, the origin end of the first end supporting point side, the first end The coordinates defined when the direction from the fulcrum toward the second end fulcrum is positive are x i (m), the vertical load acting on the i-th beam is wi (N / m), and the i-th said. The rotational rigidity of the beam at the end on the first end fulcrum side is S jl, i (Nm / rad), and the rotational rigidity of the i-th beam at the end on the second end fulcrum side is S jr, i (Nm). / Rad), the bending rigidity of the forward bending of the i-th beam is EI s, i (Nm 2 ), and the bending rigidity of the negative bending of the i-th beam is EI h, i (Nm 2 ), the i-th The bending moment at the intermediate fulcrum or the end fulcrum on the second end fulcrum side of the beam is defined as M j, i (Nm). The bending moment M j, 0 (Nm) at the first end fulcrum of the first beam included in the second boundary condition is 0 when the first end fulcrum is a pin joint, rigid joint or semi-rigid. In the case of joining, it is unknown, and the angle of rotation φ 01 (rad) at the first end fulcrum of the first beam is 0 when the first end fulcrum is rigid joining, and it is pin joint or semi-rigid joint. The case is unknown.
According to this aspect, a plurality of vertical displacements at the intermediate fulcrum and the pair of end fulcrums can be evaluated with high accuracy using a mathematical formula.
(5)本発明の第二の態様は、長手方向に並べて配置されるとともに、前記長手方向に隣り合う端部同士が互いに半剛接合されて中間支点とされた、2以上の自然数であるn本の梁を備える連続梁であって、前記連続梁全体の両端が一対の端支点とされた前記連続梁を評価する評価装置用の連続梁の評価プログラムであって、前記評価装置を、前記中間支点及び前記一対の端支点での複数の曲げモーメント、及び前記一対の端支点での複数の回転角を、与条件に基づいて求める解決定部として機能させ、前記与条件は、前記n本の梁それぞれの長さ及び曲げ剛性と;前記中間支点及び前記一対の端支点での複数の回転剛性と;前記n本の梁に作用する鉛直荷重と;前記中間支点及び前記一対の端支点での複数の鉛直変位と;を含み、前記解決定部は、前記複数の曲げモーメント及び前記複数の回転角を複数の未知数と規定し、前記複数の回転剛性、前記複数の曲げモーメント、及び前記複数の回転角の関係式と、前記複数の鉛直変位の関係式とを、前記複数の未知数の数と同数の複数の第1境界条件と規定したときに、前記複数の未知数が前記複数の第1境界条件を満たすように前記複数の未知数を解いて、前記連続梁の曲げモーメント及びたわみ分布を評価する。 (5) The second aspect of the present invention is n, which is two or more natural numbers, which are arranged side by side in the longitudinal direction and whose ends adjacent to each other in the longitudinal direction are semi-rigidly joined to each other to form an intermediate fulcrum. An evaluation program for an evaluation device for evaluating a continuous beam including a book beam in which both ends of the entire continuous beam are paired end fulcrums. A plurality of bending moments at the intermediate fulcrum and the pair of end fulcrums, and a plurality of rotation angles at the pair of end fulcrums are made to function as a solution determining unit obtained based on given conditions, and the given conditions are the n lines. With the length and bending rigidity of each of the beams; with the plurality of rotational rigidity at the intermediate fulcrum and the pair of end fulcrums; with the vertical load acting on the n beams; at the intermediate fulcrum and the pair of end fulcrums. The solution determination unit defines the plurality of bending moments and the plurality of rotation angles as a plurality of unknowns, and the plurality of rotational rigidity, the plurality of bending moments, and the plurality of rotation angles. When the relational expression of the rotation angle and the relational expression of the plurality of vertical displacements are defined as a plurality of first boundary conditions having the same number as the number of the plurality of unknowns, the plurality of unknowns are the plurality of firsts. The bending moment and the deflection distribution of the continuous beam are evaluated by solving the plurality of unknowns so as to satisfy the boundary condition.
 この態様によれば、複数の未知数の数と複数の第1境界条件の数とが同数である。このため、与条件として与えられた梁の長さ及び曲げ剛性、複数の回転剛性、鉛直荷重、乃至中間支点及び一対の端支点での複数の鉛直変位に基づいて、複数の第1境界条件を満たすように複数の未知数を解く。この方法により、複数の未知数に含まれる複数の曲げモーメント及び複数の回転角を求めることができる。
 そして、求めた複数の曲げモーメント及び複数の回転角から、複数の鉛直変位の関係式に基づいて複数の鉛直変位を算出する。この方法により、例えば一対の端支点での接合状態に応じて、連続梁の曲げモーメントやたわみ分布をより適切に評価することができる。従って、たわみを適切に評価することができる。
According to this aspect, the number of the plurality of unknowns and the number of the plurality of first boundary conditions are the same. Therefore, a plurality of first boundary conditions are set based on the beam length and flexural rigidity, a plurality of rotational rigidity, a vertical load, or a plurality of vertical displacements at an intermediate fulcrum and a pair of end fulcrums given as given conditions. Solve multiple unknowns to satisfy. By this method, a plurality of bending moments and a plurality of rotation angles included in a plurality of unknowns can be obtained.
Then, a plurality of vertical displacements are calculated from the obtained plurality of bending moments and a plurality of rotation angles based on the relational expressions of the plurality of vertical displacements. According to this method, for example, the bending moment and the deflection distribution of the continuous beam can be more appropriately evaluated according to the joint state at the pair of end fulcrums. Therefore, the deflection can be appropriately evaluated.
(6)本発明の第三の態様は、正曲げの曲げ剛性と負曲げの曲げ剛性とが互いに異なり、両端がそれぞれ半剛接合され全長にわたって等分布荷重が作用する合成梁の前記端に作用する曲げモーメントである端部曲げモーメント、及び前記合成梁に生じるたわみの最大値を算出する合成梁の評価方法であって、前記合成梁の前記端における回転剛性を、前記合成梁の単位長さ当たりの曲げ剛性で除した値を無次元化回転剛性と規定し、前記合成梁の正曲げの曲げ剛性及び前記合成梁の負曲げの曲げ剛性の比を無次元化曲げ剛性と規定したときに、
 前記端部曲げモーメント及び前記たわみの最大値を、前記無次元化回転剛性及び前記無次元化曲げ剛性に基づいて陽関数により算出する。
(6) In the third aspect of the present invention, the bending rigidity of the forward bending and the bending rigidity of the negative bending are different from each other, and both ends are semi-rigidly joined to act on the end of the composite beam on which an evenly distributed load acts over the entire length. This is an evaluation method for a composite beam that calculates the bending moment at the end, which is the bending moment to be performed, and the maximum value of the deflection that occurs in the composite beam. The rotational rigidity of the composite beam at the end is determined by the unit length of the composite beam. When the value divided by the winning bending rigidity is defined as the dimensionless rotational rigidity, and the ratio of the forward bending bending rigidity of the composite beam to the negative bending bending rigidity of the composite beam is defined as the dimensionless bending rigidity. ,
The end bending moment and the maximum value of the deflection are calculated by an explicit function based on the non-dimensional rotational rigidity and the non-dimensional bending rigidity.
 この態様によれば、発明者らは無次元化された値である無次元化回転剛性及び無次元化曲げ剛性に基づいて端部曲げモーメント及びたわみの最大値を評価する。この方法により、合成梁の仕様によらずに端部曲げモーメント及びたわみの最大値を陽関数により汎用性高く、かつ精度良く算出できることを見出した。
 無次元化回転剛性及び無次元化曲げ剛性に基づいて、陽関数により合成梁の端部曲げモーメント及びたわみの最大値を算出する。この方法により、合成梁の端部曲げモーメント及びたわみの最大値を収斂計算を行うことなく算出することができる。従って、たわみを適切に評価することができる。
According to this aspect, the inventors evaluate the maximum value of the end bending moment and the deflection based on the non-dimensionalized rotational rigidity and the non-dimensionalized bending rigidity. By this method, it has been found that the maximum values of the end bending moment and the deflection can be calculated with high versatility and accuracy by an explicit function regardless of the specifications of the composite beam.
Based on the non-dimensional rotational rigidity and the non-dimensional bending rigidity, the maximum values of the end bending moment and the deflection of the composite beam are calculated by an explicit function. By this method, the maximum values of the end bending moment and the deflection of the composite beam can be calculated without performing the convergence calculation. Therefore, the deflection can be appropriately evaluated.
(7)前記(6)に記載の合成梁の評価方法では、前記両端がそれぞれ剛接合されて全長にわたって等分布荷重が作用すると仮定したときの前記合成梁の前記端に作用する曲げモーメントを剛接モーメントと規定し、前記両端がそれぞれピン接合されて全長にわたって等分布荷重が作用する仮定としたときの前記合成梁に作用する曲げモーメントの最大値をピン接モーメントと規定し、前記両端がそれぞれ半剛接合されて全長にわたって等分布荷重が作用する前記合成梁の前記端に作用する曲げモーメントを半剛接モーメントと規定し、前記半剛接モーメントを前記ピン接モーメントで除した値を無次元化接合部モーメントと規定し、前記剛接モーメントを前記ピン接モーメントで除した値を無次元化剛接モーメントと規定したときに、前記無次元化曲げ剛性に基づいて前記無次元化剛接モーメントを陽関数により算出し;算出した前記無次元化剛接モーメント、前記無次元化回転剛性、及び前記無次元化曲げ剛性に基づいて前記無次元化接合部モーメントを陽関数により算出し;算出した前記無次元化接合部モーメントに基づいて前記端部曲げモーメント及び前記たわみの最大値を陽関数により算出してもよい。 (7) In the method for evaluating a composite beam according to (6) above, the bending moment acting on the end of the composite beam when it is assumed that both ends are rigidly joined and an evenly distributed load acts over the entire length is rigid. The maximum value of the bending moment acting on the composite beam when it is assumed that the tangential moment is pin-joined at both ends and an evenly distributed load acts over the entire length is defined as the pin tangent moment, and both ends are defined as pin tangent moments. The bending moment acting on the end of the composite beam, which is semi-rigidly joined and an evenly distributed load acts over the entire length, is defined as the semi-rigid contact moment, and the value obtained by dividing the semi-rigid contact moment by the pin contact moment is dimensionless. When the value obtained by dividing the rigid contact moment by the pin contact moment is defined as the dimensionless rigid contact moment, the dimensionless rigid contact moment is defined based on the dimensionless flexural rigidity. Was calculated by an explicit function; the dimensionless joint moment was calculated by an explicit function based on the calculated dimensionless rigid contact moment, the dimensionless rotational rigidity, and the dimensionless flexural rigidity; The end bending moment and the maximum value of the deflection may be calculated by an explicit function based on the dimensionless joint moment.
 この態様によれば、無次元化曲げ剛性に基づいて無次元化剛接モーメントを陽関数により算出する。さらに、算出した無次元化剛接モーメント、無次元化回転剛性、及び無次元化曲げ剛性に基づいて無次元化接合部モーメントを算出し、算出した無次元化接合部モーメントに基づいて端部曲げモーメント及びたわみの最大値を、それぞれ陽関数により算出する。
 こうして、合成梁の端部曲げモーメント及びたわみの最大値を収斂計算を行うことなく算出することができる。
According to this aspect, the dimensionless rigid contact moment is calculated by an explicit function based on the dimensionless flexural rigidity. Furthermore, the non-dimensional joint moment is calculated based on the calculated non-dimensional rigid contact moment, the non-dimensional rotational rigidity, and the non-dimensional bending rigidity, and the end bending is based on the calculated non-dimensional joint moment. The maximum values of moment and deflection are calculated by explicit functions, respectively.
In this way, the maximum values of the end bending moment and the deflection of the composite beam can be calculated without performing the convergence calculation.
(8)前記(7)に記載の合成梁の評価方法では、前記無次元化剛接モーメントをβMj,rigid、前記無次元化回転剛性をα、前記無次元化曲げ剛性をαと規定したときに、前記無次元化接合部モーメントβMjを、(10)式から(12)式を用いて(13)式により算出してもよい。 (8) In the method for evaluating a composite beam according to (7), the non-dimensional rigid contact moment is β Mj, rigid , the non-dimensional rotational rigidity is α j , and the non-dimensional flexural rigidity is α s . When specified, the dimensionless junction moment β Mj may be calculated by Eq. (13) using Eqs. (10) to (12).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 この態様によれば、(10)式から(12)式を用いた(13)式により、無次元化接合部モーメントβMjを、収斂計算を行うことなく精度良く算出することができる。 According to this aspect, the dimensionless joint moment β Mj can be accurately calculated by the equation (13) using the equations (10) to (12) without performing the convergence calculation.
(9)前記(8)に記載の合成梁の評価方法では、前記無次元化剛接モーメントβMj,rigidが0.4以下のときには、(13)式において、前記無次元化剛接モーメントβMj,rigidに代えて、前記無次元化剛接モーメントβMj,rigidに基づいて(14)式により算出される無次元化剛接モーメントβMj,rigid,Theoを用いてもよい。 (9) In the method for evaluating a composite beam according to (8), when the dimensionless rigid contact moment β Mj, rigid is 0.4 or less, the dimensionless rigid contact moment β is described in the equation (13). mj, instead of rigid, the dimensionless KaTsuyoshise' moment beta mj, dimensionless KaTsuyoshise' moment beta mj calculated by on the basis of the rigid (14) equation, rigid, may be used Theo.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 この態様によれば、無次元化剛接モーメントβMj,rigidが0.4以下である場合には、無次元化剛接モーメントβMj,rigidが厳密解に対して誤差が大きくなる。この場合であっても、無次元化剛接モーメントβMj,rigidに代えて無次元化剛接モーメントβMj,rigid,Theoを用いることにより、無次元化剛接モーメントをより精度良く算出することができる。 According to this aspect, when the dimensionless rigid contact moment β Mj, rigid is 0.4 or less, the error of the dimensionless rigid contact moment β Mj, rigid becomes large with respect to the exact solution. Even in this case, the dimensionless rigid contact moment can be calculated more accurately by using the dimensionless rigid contact moment β Mj, rigid, Theo instead of the dimensionless rigid contact moment β Mj, rigid. Can be done.
 本発明の前記各態様に係る連続梁の評価方法、連続梁の評価プログラム、及び合成梁の評価方法によれば、たわみを適切に評価することができる。 According to the continuous beam evaluation method, the continuous beam evaluation program, and the composite beam evaluation method according to each of the above aspects of the present invention, the deflection can be appropriately evaluated.
本発明の第1実施形態の連続梁の評価方法が適用される連続梁が用いられる建築物の平面図である。It is a top view of the building which uses the continuous beam to which the evaluation method of the continuous beam of 1st Embodiment of this invention is applied. 図1中の切断線A1-A1の断面図である。It is sectional drawing of the cutting line A1-A1 in FIG. 梁の諸元及び梁に作用する曲げモーメントを説明する模式図である。It is a schematic diagram explaining the specifications of a beam and the bending moment acting on a beam. 梁に作用する外力及び荷重を説明する模式図である。It is a schematic diagram explaining an external force and a load acting on a beam. 梁に作用するせん断力を説明する模式図である。It is a schematic diagram explaining the shearing force acting on a beam. 同連続梁及び作用する外力を説明する模式図である。It is a schematic diagram explaining the continuous beam and the external force acting. 長手方向に隣接する一対の梁において、回転剛性が生じる位置間の距離を考慮した場合の梁の端における回転剛性及び回転角の関係を説明する図である。It is a figure explaining the relationship between the rotational rigidity and the angle of rotation at the end of a pair of beams adjacent to each other in the longitudinal direction when the distance between the positions where rotational rigidity occurs is taken into consideration. 長手方向に隣接する一対の梁において、回転剛性が生じる位置間の距離を無視した場合の梁の端における回転剛性及び回転角の関係を説明する図である。It is a figure explaining the relationship between the rotational rigidity and the angle of rotation at the end of a pair of beams adjacent to each other in the longitudinal direction when the distance between the positions where rotational rigidity occurs is ignored. 同連続梁の評価方法を行うのに用いられる連続梁の評価装置のブロック図である。It is a block diagram of the evaluation apparatus of the continuous beam used to perform the evaluation method of the continuous beam. 同連続梁の評価方法を示すフローチャートである。It is a flowchart which shows the evaluation method of the continuous beam. 本発明の第1実施形態の連続梁の評価プログラムの入力シートの一例を示す図である。It is a figure which shows an example of the input sheet of the evaluation program of the continuous beam of 1st Embodiment of this invention. 本発明の第1実施形態の連続梁の評価プログラムを用いて評価した、第1端支点からの距離に対する連続梁に作用する曲げモーメント分布の関係を示す図である。It is a figure which shows the relationship of the bending moment distribution acting on a continuous beam with respect to the distance from the 1st end fulcrum evaluated by using the evaluation program of the continuous beam of 1st Embodiment of this invention. 本発明の第1実施形態の連続梁の評価プログラムを用いて評価した、第1端支点からの距離に対する回転角分布の関係を示す図である。It is a figure which shows the relationship of the rotation angle distribution with respect to the distance from the 1st end fulcrum evaluated by using the evaluation program of the continuous beam of 1st Embodiment of this invention. 本発明の第1実施形態の連続梁の評価プログラムを用いて評価した、第1端支点からの距離に対するたわみ分布の関係を示す図である。It is a figure which shows the relationship of the deflection distribution with respect to the distance from the 1st end fulcrum evaluated by using the evaluation program of the continuous beam of 1st Embodiment of this invention. 本発明の第2実施形態の合成梁の評価方法が適用される合成梁が用いられる建築物の縦断面図である。It is a vertical sectional view of the building which uses the synthetic beam to which the evaluation method of the synthetic beam of the 2nd Embodiment of this invention is applied. 同合成梁を境界条件とともに示す模式化した正面図である。It is a schematic front view which shows the composite beam together with the boundary condition. 同合成梁における正曲げされる領域及び負曲げされる領域を模式化して示した正面図である。It is a front view which shows typically the region which is bent forward and the region which is bent negative in the composite beam. ケース1からケース5における無次元化回転剛性と無次元化接合部モーメントとの関係を示す図である。It is a figure which shows the relationship between the dimensionless rotational rigidity and the dimensionless joint moment in case 1 to case 5. 合成梁における無次元化曲げ剛性と無次元化剛接モーメントとの試算結果の関係を示す図である。It is a figure which shows the relationship of the trial calculation result of the dimensionless bending rigidity and the dimensionless rigid contact moment in a composite beam. 無次元化剛接モーメントの近似解と厳密解との関係を示す図である。It is a figure which shows the relationship between the approximate solution and the exact solution of a dimensionless rigid moment of force. 無次元化曲げ剛性と係数kとの関係を示す図である。It is a figure which shows the relationship between the dimensionless bending rigidity and a coefficient k. 無次元化曲げ剛性と変数αj,Tとの関係を示す図である。It is a figure which shows the relationship between the dimensionless flexural rigidity and the variables α j, T. 無次元化接合部モーメントの近似解と厳密解との関係を示す図である。It is a figure which shows the relationship between the approximate solution and the exact solution of a dimensionless joint moment. たわみの最大値の近似解と厳密解との関係を示す図である。It is a figure which shows the relationship between the approximate solution of the maximum value of deflection, and the exact solution.
(第1実施形態)
 以下、本発明に係る連続梁の評価方法及び連続梁の評価プログラムの第1実施形態を、図1から図14を参照しながら説明する。
(First Embodiment)
Hereinafter, the continuous beam evaluation method and the first embodiment of the continuous beam evaluation program according to the present invention will be described with reference to FIGS. 1 to 14.
〔1.連続梁〕
 本実施形態の連続梁の評価方法(以下、単に評価方法とも言う)は、例えば、図1及び図2に示す建築物1を構成する連続梁11を評価するのに好適に用いられる。なお、図1では後述する床17を透過して示し、図2では後述する柱33を示していない。ここで言う連続梁11を評価するとは、連続梁11の曲げモーメント、回転角、及びたわみ分布等を求めて、例えば連続梁11の曲げ耐力が連続梁11の曲げモーメントに対してどの程度余裕があるかを評価することを意味する。
 この例では、連続梁11は、長手方向に隣り合う端部同士が互いに半剛接合されて中間支点12aとされたn本(この例では2本)の梁(小梁)13を備えている。なお、nは2以上の自然数である。
 この例では、梁13は、床17と、梁本体18と、を備えている。なお、梁13の構成はこの例に限定されない。
 床17は、いわゆる合成スラブであり、梁本体18により下方から支持されている。床17は、デッキプレート20と、デッキプレート20上に配置されたRC(Reinforced Concrete)スラブ21と、を備えている。
 デッキプレート20の凹凸形状は、水平面に沿う方向であって、梁本体18が延びる方向とは直交する方向に延びている。
 RCスラブ21は、コンクリート22と、鉄筋23と、を備えている。コンクリート22は、上下方向が厚さ方向となる板状に形成されている。コンクリート22は、デッキプレート20により下方から支持されている。
 鉄筋23は、水平面に沿って延びていて、コンクリート22内に埋設されている。例えば、鉄筋23は、平面視で格子状に配置されている。
 n本の梁13は、梁13の長手方向に並べて配置されている。
[1. Continuous beam]
The continuous beam evaluation method of the present embodiment (hereinafter, also simply referred to as an evaluation method) is suitably used for evaluating the continuous beam 11 constituting the building 1 shown in FIGS. 1 and 2, for example. It should be noted that FIG. 1 shows the floor 17 described later through the floor 17, and FIG. 2 does not show the pillar 33 described later. To evaluate the continuous beam 11 referred to here, the bending moment, the angle of rotation, the deflection distribution, etc. of the continuous beam 11 are obtained, and for example, how much the bending strength of the continuous beam 11 has a margin with respect to the bending moment of the continuous beam 11. It means to evaluate if there is.
In this example, the continuous beam 11 includes n (two in this example) beams (small beams) 13 in which the ends adjacent to each other in the longitudinal direction are semi-rigidly joined to each other to form an intermediate fulcrum 12a. .. Note that n is a natural number of 2 or more.
In this example, the beam 13 includes a floor 17 and a beam body 18. The configuration of the beam 13 is not limited to this example.
The floor 17 is a so-called synthetic slab, which is supported from below by the beam body 18. The floor 17 includes a deck plate 20 and an RC (Reinforced Concrete) slab 21 arranged on the deck plate 20.
The uneven shape of the deck plate 20 extends in a direction along the horizontal plane and in a direction orthogonal to the direction in which the beam body 18 extends.
The RC slab 21 includes concrete 22 and reinforcing bars 23. The concrete 22 is formed in a plate shape in which the vertical direction is the thickness direction. The concrete 22 is supported from below by the deck plate 20.
The reinforcing bar 23 extends along the horizontal plane and is buried in the concrete 22. For example, the reinforcing bars 23 are arranged in a grid pattern in a plan view.
The n beams 13 are arranged side by side in the longitudinal direction of the beams 13.
 梁本体18は鉄骨のH形鋼で形成され、水平面に沿って延びている。梁本体18の上フランジには、スタッド26の下端部が固定されている。スタッド26は、デッキプレート20を貫通している。スタッド26の上端部は、コンクリート22内に埋設されている。
 梁本体18の端は、中間支点12aにおいて、水平面に沿って延びる第1大梁(中間支持部)27にそれぞれ半剛接合されている。中間支点12aは、第1大梁27により上下方向に支持されている。第1大梁27は、梁本体18に直交する方向に延びている。梁本体18と第1大梁27との半剛接合は、例えばシアプレート28及びボルト29等により行われている。
The beam body 18 is made of steel H-section steel and extends along a horizontal plane. The lower end of the stud 26 is fixed to the upper flange of the beam body 18. The stud 26 penetrates the deck plate 20. The upper end of the stud 26 is embedded in the concrete 22.
The ends of the beam body 18 are semi-rigidly joined to the first girder (intermediate support portion) 27 extending along the horizontal plane at the intermediate fulcrum 12a. The intermediate fulcrum 12a is supported in the vertical direction by the first girder 27. The first girder 27 extends in a direction orthogonal to the beam body 18. The semi-rigid joint between the beam body 18 and the first girder 27 is performed by, for example, a shear plate 28 and a bolt 29.
 連続梁11全体の両端である一対の端支点12bは、一対の第2大梁(端支持部)31により上下方向に支持されている。第1大梁27及び第2大梁31は、水平面に沿う第1方向に沿って延びている。端支点12bにおける梁本体18の端と第2大梁31との接合の状態は特に限定されず、ピン接合、半剛接合、及び剛接合のいずれでもよい。
 建築物1は、水平面に沿うとともに第1方向に直交する第2方向に沿って延びる第3大梁32を備えている。第1大梁27及び第2大梁31と、第3大梁32と、の接続部分は、柱33により上下方向に支持されている。
The pair of end fulcrums 12b at both ends of the entire continuous beam 11 are supported in the vertical direction by the pair of second girders (end support portions) 31. The first girder 27 and the second girder 31 extend along the first direction along the horizontal plane. The state of joining the end of the beam body 18 and the second girder 31 at the end fulcrum 12b is not particularly limited, and may be pin joining, semi-rigid joining, or rigid joining.
The building 1 includes a third girder 32 that extends along a horizontal plane and along a second direction orthogonal to the first direction. The connecting portion between the first girder 27, the second girder 31, and the third girder 32 is supported in the vertical direction by the pillar 33.
 以下では、このように構成された連続梁11の評価方法について説明する。 The evaluation method of the continuous beam 11 configured in this way will be described below.
〔2.連続梁のせん断力分布及びモーメント分布の導出〕
〔2.1.基本式〕
 n本(スパン)の梁13を備える連続梁11において、連続梁11の一方の端支点12bから数えて任意のi本目(iは自然数で、1≦i≦n)の梁13の諸元、及び梁13に作用する曲げモーメント、外力、せん断力等を、図3から図5に示すように仮定する。
 すなわち、図3に示すように、i本目の梁13が水平面に沿って延びるとし、梁13の長さがL(m)であるとする。なお、各梁13を区別しないで言うときには、梁13とも言う。
 梁13では、正曲げ(下に凸)の曲げ剛性と負曲げ(上に凸)の曲げ剛性とが互いに異なるとする。梁13の正曲げの曲げ剛性をEIs,i(Nm)とし、梁13の負曲げの曲げ剛性をEIh,i(Nm)とする。
[2. Derivation of shear force distribution and moment distribution of continuous beams]
[2.1. Basic formula]
In the continuous beam 11 including the n (span) beams 13, the specifications of the arbitrary i-th beam (i is a natural number and 1 ≦ i ≦ n) counting from one end fulcrum 12b of the continuous beam 11. And the bending moment, the external force, the shearing force, etc. acting on the beam 13 are assumed as shown in FIGS. 3 to 5.
That is, as shown in FIG. 3, i-th beam 13 i is set to extend along the horizontal plane, the length of the beam 13 i is assumed to be L i (m). When each beam 13 i is not distinguished, it is also referred to as a beam 13.
In the beam 13i , it is assumed that the bending rigidity of the forward bending (convex downward) and the bending rigidity of the negative bending (convex upward) are different from each other. Positive bending the bending stiffness of the beam 13 i and EI s, i (Nm 2) , the negative bending of the bending stiffness of the beam 13 i EI h, and i (Nm 2).
 図4に示すように、梁13に沿って右向きを正とした場合の、座標x(m)を規定する。梁13の左端の位置を、座標xの原点(x=0の位置)とする。梁13には、全長にわたって下方向きの等分布荷重(鉛直荷重)w(N/m)が作用すると仮定する。梁13の左端の回転剛性をSjl,i(Nm/rad)とし、梁13の右端の回転剛性をSjr,i(Nm/rad)と規定する。
 図3に示すように、梁13の左端に作用する曲げモーメント(負曲げモーメント)の絶対値をMjl,i(Nm)とし、梁13の右端に作用する曲げモーメント(負曲げモーメント)の絶対値をMjr,i(Nm)と規定する。梁13には、曲線L1で示す曲げモーメントが作用する。なお、曲げモーメントは下に凸の曲げを生じる向きを正とする。梁13において、曲げモーメントが0になる座標xを、xh,i(m),xs,i(m)(0≦xh,i<xs,i≦L)と規定する。
 図5に示すように、梁13の左端が大梁27,31等により下方から支持されるせん断力(外力)をVjl,i(N)とし、梁13の右端が大梁27,31等により下方から支持されるせん断力をVjr,i(N)とする。梁13には、曲線L2で示すせん断力が作用する。
As shown in FIG. 4 , the coordinates x i (m) are defined when the right direction is positive along the beam 13 i. The position of the left end of the beam 13 i is defined as the origin of the coordinates x i (the position of x i = 0). Assume that the beam 13 i, a uniformly distributed load of the downward-looking over the entire length (vertical load) w i (N / m) is applied. Beams 13 i of the leftmost rotational stiffness S jl, and i (Nm / rad), defines the rotational stiffness of the right end of the beam 13 i S jr, and i (Nm / rad).
As shown in FIG. 3, the absolute value of the bending moment (negative bending moment) acting on the left end of the beam 13 i is M jl, i (Nm), and the bending moment (negative bending moment) acting on the right end of the beam 13 i is defined as M jl, i (Nm). The absolute value of is defined as M jr, i (Nm). The bending moment shown by the curve L1 acts on the beam 13 i. The bending moment is positive in the direction in which the downwardly convex bending occurs. In the beam 13 i , the coordinates x i at which the bending moment becomes 0 are defined as x h, i (m), x s, i (m) (0 ≦ x h, i <x s, iLi ). ..
As shown in FIG. 5, the left end of the beam 13 i is V jl, i (N) as the shearing force (external force) supported from below by the girders 27, 31 and the like , and the right end of the beam 13 i is the girder 27, 31 and the like. Let V jr, i (N) be the shearing force supported from below. The beams 13 i, shear force shown by the curve L2 acts.
 このとき、梁13に作用するせん断力分布V(x)(N)と曲げモーメント分布M(x)(Nm)は、(21)式及び(22)式で表せる。なお、せん断力Vjl,i、Vjr,i、及びせん断力分布V(x)は、時計回りの回転を生じる方向を正(+)とする。 At this time, the shear force distribution V (x i ) (N) and the bending moment distribution M (x i ) (Nm) acting on the beam 13 i can be expressed by Eqs. (21) and (22). The shear forces V jl, i , V jr, i , and the shear force distribution V (x i ) are positive (+) in the direction in which clockwise rotation occurs.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 (22)式に、x=Lにおける曲げモーメントの境界条件を用いると、(23)式及び(24)式が得られる。 (22) in the expression, the use of boundary conditions of the bending moment in the x i = L i, is obtained (23) and (24) below.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 ここで、(22)式から(24)式における曲げモーメントの絶対値Mjl,i,Mjr,iは、負曲げモーメントの大きさを表し、(24-1)及び(24-2)で定義される。 Here, the absolute values M jl, i , M jr, i of the bending moment in the equations (22) to (24) represent the magnitude of the negative bending moment, and in (24-1) and (24-2). Defined.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 (21)式に(24)式を代入し、x=Lにおける力の釣り合い条件を用いると、(25)式及び(26)式が得られる。 (21) by substituting the expression (24) into equation, using the balance condition of the forces in the x i = L i, is obtained (25) and (26) below.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 (21)式に(26)式を代入すると、せん断力分布V(x)についての(27)式が得られる。 Substituting (21) into equation (26), (27) for shear force distribution V (x i) is obtained.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 (22)式に(24)式を代入すると、(28)式が得られる。 Substituting equation (24) into equation (22) gives equation (28).
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 (22)式を用いて、曲げモーメント分布M(x)=0のときの座標x(xh,i,xs,i)を求める。(29)式をxについて解く。(xh,i<xs,i)であることを考慮すると、(30)式及び(31)式が得られる。 Using equation (22), the coordinates x i (x h, i , x s, i ) when the bending moment distribution M (x i ) = 0 are obtained. (29) is solved for x i. Considering that (x h, i <x s, i ), equations (30) and (31) can be obtained.
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
〔2.2.回転角分布〕
 梁13の曲率分布を、下に凸の場合を正(+)として、ρ(x)(1/m)と規定する。梁13の上下方向のたわみ(変位)分布を、鉛直下向きを正(+)としてδ(x)(m)と規定する。このとき、曲率分布ρ(x)は(34)式で表せる。
[2.2. Angle of rotation distribution]
The curvature distribution of the beam 13 i is defined as ρ (x i ) (1 / m), where the downward convex case is positive (+). The vertical deflection (displacement) distribution of the beam 13 i is defined as δ (x i ) (m) with the vertical downward direction as positive (+). At this time, the curvature distribution [rho (x i) is expressed by equation (34).
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
〔2.2.1.区間[a]=[0,xh,i]の回転角分布〕
 座標xが0以上xh,i以下のとき、梁13の回転角分布をφ(x)(rad:ラジアン)と規定する。回転角分布φ(x)は、水平線からの回転方向が時計回りの場合を正(+)と規定する。回転角分布φ(x)は、曲率分布ρ(x)を(28)式及び(34)式で表し、さらに曲率分布ρ(x)を区間[0,x]で積分して、(35)式を用いることで、(36)式のように求められる。回転角分布φ(x)を求めるときに、x=0における境界条件である、回転角分布φ(x=0)=φ0iを考慮する。すなわち、梁13における左側(後述する第1端支点12b側)の回転角は、φ0iである。
 なお、区間[a]での回転角分布φ(x)を、回転角分布φ(x)とも言う。
[2.2.1. Rotation angle distribution of interval [a] = [0, x h, i]]
When the coordinates x i are 0 or more and x h, i or less, the rotation angle distribution of the beam 13 i is defined as φ (x i ) (rad: radian). Rotation angle distribution phi (x i), the direction of rotation from the horizontal line defining the case of clockwise as positive (+). The angle of rotation distribution φ (x i ) expresses the curvature distribution ρ (x i ) by the equations (28) and (34), and further integrates the curvature distribution ρ (x i ) in the interval [0, x i]. , By using the equation (35), it can be obtained as in the equation (36). Consider when determining the rotation angle distribution φ (x i), the boundary condition at x i = 0, the rotation angle distribution phi a (x i = 0) = φ 0i. That is, the rotation angle of the left (first end supporting point 12b 1 side to be described later) in the beam 13 i is phi 0i.
The rotation angle distribution φ (x i ) in the interval [a] is also referred to as a rotation angle distribution φ a (x i).
Figure JPOXMLDOC01-appb-M000015
Figure JPOXMLDOC01-appb-M000015
〔2.2.2.区間[b]=[xh,i,xs,i]の回転角分布〕
 座標xがxh,i以上xs,i以下のとき、梁13の回転角分布φ(x)は、曲率分布ρ(x)を(28)式及び(34)式で表し、区間[xh,i,x]で積分して、(37)式のように求められる。回転角分布φ(x)を求めるときに、x=xh,iにおける境界条件を考慮する。
 なお、区間[b]での回転角分布φ(x)を、回転角分布φ(x)とも言う。
[2.2.2. Rotation angle distribution of interval [b] = [x h, i , x s, i]]
When the coordinates x i are x h, i or more and x s, i or less, the rotation angle distribution φ (x i ) of the beam 13 i expresses the curvature distribution ρ (x i ) by the equations (28) and (34). , Integrate over the interval [x h, i , x i ] and obtain as in Eq. (37). When finding the rotation angle distribution φ (x i ), consider the boundary conditions at x i = x h, i.
The rotation angle distribution φ (x i ) in the section [b] is also referred to as a rotation angle distribution φ b (x i).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000016
〔2.2.3.区間[c]=[xs,i,L]の回転角分布〕
 座標xがxs,i以上L以下のとき、梁13の回転角分布φ(x)は、曲率分布ρ(x)を(28)式及び(34)式で表し、区間[xs,i,x]で積分して、(38)式のように求められる。回転角分布φ(x)を求めるときに、x=xs,iにおける境界条件を考慮する。
 なお、区間[c]での回転角分布φ(x)を、回転角分布φ(x)とも言う。
[2.22.3. Rotation angle distribution of interval [c] = [x s, i , Li]]
When the coordinates x i is x s, the following more L i i, rotation angle distribution phi (x i) of the beam 13 i denotes curvature distribution ρ a (x i) (28) and equation (34) in equation section Integrate with [x s, i , x i ] and obtain as in Eq. (38). When finding the rotation angle distribution φ (x i ), consider the boundary conditions at x i = x s, i.
The rotation angle distribution φ (x i ) in the interval [c] is also referred to as a rotation angle distribution φ c (x i).
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000017
〔2.3.たわみ分布〕
〔2.3.1.区間[a]=[0,xh,i]のたわみ分布〕
 座標xが0以上xh,i以下のとき、梁13のたわみ分布δ(x)は、回転角分布φ(x)を区間[0,x]で積分して、(41)式を用いて(42)式のように求められる。たわみ分布δ(x)を求めるときに、x=0における境界条件である、鉛直変位δ(x=0)=δ0iを考慮する。
 なお、区間[a]でのたわみ分布δ(x)を、たわみ分布δ(x)とも言う。
[2.3. Deflection distribution]
[2.3.1. Deflection distribution of interval [a] = [0, x h, i]]
When the coordinates x i are 0 or more and x h, i or less, the deflection distribution δ (x i ) of the beam 13 i is obtained by integrating the rotation angle distribution φ (x i ) in the interval [0, x i ] and (41. ) Is used to obtain the equation (42). When determining the deflection distribution δ (x i), the boundary condition at x i = 0, vertical displacement δ (x i = 0) = δ consider 0i.
Incidentally, the deflection distribution [delta] (x i) of the interval [a], the deflection distribution [delta] a is also referred to as (x i).
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000018
〔2.3.2.区間[b]=[xh,i,xs,i]のたわみ分布〕
 座標xがxh,i以上xs,i以下のとき、たわみ分布δ(x)は、回転角分布φ(x)を区間[xh,i,x]で積分して、(43)式のように求められる。たわみ分布δ(x)を求めるときに、x=xh,iにおける境界条件を考慮する。
 なお、区間[b]でのたわみ分布δ(x)を、たわみ分布δ(x)とも言う。
[2.3.3. Deflection distribution of interval [b] = [x h, i , x s, i]]
When the coordinates x i are x h, i or more and x s, i or less, the deflection distribution δ (x i ) is obtained by integrating the rotation angle distribution φ (x i ) in the interval [x h, i , x i]. It is obtained as in Eq. (43). When determining the deflection distribution δ (x i ), consider the boundary conditions at x i = x h, i.
Incidentally, the deflection distribution [delta] (x i) in the interval [b], the deflection distribution [delta] b is also referred to as (x i).
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000019
〔2.3.3.区間[c]=[xs,i,L]のたわみ分布〕
 座標xがxs,i以上L以下のとき、たわみ分布δ(x)は、回転角分布φ(x)を区間[xs,i,x]で積分して、(44)式のように求められる。たわみ分布δ(x)を求めるときに、x=xs,iにおける境界条件を考慮する。
 なお、区間[c]でのたわみ分布δ(x)を、たわみ分布δ(x)とも言う。
[2.3.3. Interval [c] = [x s, i, L i] deflection distribution]
When the coordinates x i is x s, the following more L i i, deflection distribution [delta] (x i), the rotation angle distribution phi (x i) the interval [x s, i, x i] by integrating with, (44 ) Is calculated as in the formula. When determining the deflection distribution δ (x i ), consider the boundary conditions at x i = x s, i.
Incidentally, the deflection distribution [delta] (x i) in the interval [c], the deflection distribution [delta] c is also referred to as (x i).
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000020
〔3.連続梁の評価方法における計算手順〕
 評価方法では、中間支点12a及び一対の端支点12bでの複数の曲げモーメントMj,i、及び一対の端支点12bでの複数の回転角φ01、φを、与条件に基づいて求める。
 ここで言う与条件を説明する前に、複数の鉛直変位、複数の回転剛性について説明する。
 まず、図6に示すように、一対の端支点12bのうち、左側の端支点12b(一方の端支点)を第1端支点12bとも言う。一対の端支点12bのうち、右側の端支点12b(他方の端支点)を第2端支点12bとも言う。なお、図6中には、座標の一例として第i梁13の座標xを示す。
 前記座標xは、梁13の第1端支点12b側の端を原点とし、第1端支点12bから第2端支点12bに向かう向きを正とする。以下では、n本の梁13のうち、第1端支点12bから第2端支点12bに向かってi本目の梁13を、第i梁13とも言う。例えば、n本の梁13のうち最も第1端支点12b側の梁13は、第1梁13である。
 前記回転剛性Sjl,iは第i梁13における第1端支点12b側の端(中間支点12a)での回転剛性である。前記回転剛性Sjr,iは、第i梁13における第2端支点12b側の端(中間支点12a)での回転剛性である。
[3. Calculation procedure in the evaluation method of continuous beams]
In the evaluation method, a plurality of bending moments M j and i at the intermediate fulcrum 12a and the pair of end fulcrums 12b, and a plurality of rotation angles φ 01 and φ c at the pair of end fulcrums 12b are obtained based on the given conditions.
Before explaining the given conditions mentioned here, a plurality of vertical displacements and a plurality of rotational rigidity will be described.
First, as shown in FIG. 6, of the pair of end fulcrums 12b, the left end fulcrum 12b (one end fulcrum) is also referred to as the first end fulcrum 12b 1. Of the pair of end fulcrums 12b, the right end fulcrum 12b (the other end fulcrum) is also referred to as a second end fulcrum 12b 2. In FIG. 6, the coordinates x i of the i-th beam 13 i are shown as an example of the coordinates.
The coordinates x i have the origin on the first end fulcrum 12b 1 side of the beam 13 i , and the direction from the first end fulcrum 12b 1 to the second end fulcrum 12b 2 is positive. Hereinafter, among the n number of beams 13 i, the beam 13 i of the i-th from the first end supporting point 12b 1 toward the second end supporting point 12b 2, also referred to as the i-beam 13 i. For example, the beam 13 of the most first end supporting point 12b 1 side of the n of beams 13 is a first beam 13 1.
The rotational stiffness S jl, i is the rotational stiffness of the end of the first end supporting point 12b 1 side in the i beam 13 i (intermediate fulcrum 12a). The rotational stiffness S jr, i is the rotational stiffness of the second end supporting point 12b 2 side end of the i-th beam 13 i (intermediate fulcrum 12a).
 第1梁13における第1端支点12bで上下方向のたわみを、鉛直下方を正(+)として、δ(m)とする。1以上(n-1)以下のiに対して、第i梁13における第2端支点12b側の中間支点12aでの鉛直変位を、δ(m)とする。第n梁13における第2端支点12bでの鉛直変位を、δ(m)とする。与条件における複数の鉛直変位は、0以上n以下の自然数iに対する鉛直変位δである。
 例えば、図1に示す連続梁11の中間支点12aでの鉛直変位δは、公知の方法により第1大梁27に作用すると規定される分布荷重の範囲Rから求めてもよい。そして、その範囲R内に作用する分布荷重、及び第1大梁27の曲げ剛性等から、中間支点12aでの鉛直変位δを求める。
The deflection of the vertical at a first end supporting point 12b 1 of the first beam 13 1, a vertically downward as a positive (+), and [delta] 0 (m). For one or more (n-1) following i, the vertical displacement of the second end supporting point 12b 2 side of the intermediate supporting point 12a in the i beam 13 i, and [delta] i (m). The vertical displacement of the n-th beam 13 n at the second end fulcrum 12b 2 is defined as δ n (m). The plurality of vertical displacements under the given conditions are vertical displacements δ i with respect to a natural number i of 0 or more and n or less.
For example, the vertical displacement δ i at the intermediate fulcrum 12a of the continuous beam 11 shown in FIG. 1 may be obtained from the range R of the distributed load defined to act on the first girder 27 by a known method. Then, the vertical displacement δ i at the intermediate fulcrum 12a is obtained from the distributed load acting in the range R, the bending rigidity of the first girder 27, and the like.
 各支点12a,12bに、例えば大梁の回転抵抗等による曲げモーメントは作用せず、長手方向に隣接する梁13の端に作用する曲げモーメントは同じ値とする。すなわち、例えば、第i梁13の右端に作用する曲げモーメントの絶対値Mjr,iと、第(i+1)梁13i+1の左端に作用する曲げモーメントの絶対値Mjl,i+1と、は等しい。その等しい値を、Mj,i(Nm)とする。曲げモーメントMj,iは、1以上(n-1)以下のiに対して、第i梁13における第2端支点12b側の中間支点12aでの曲げモーメントである。
 なお、曲げモーメントMj,0は、第1梁13の左端に作用する曲げモーメントの絶対値Mjl,1(第1梁13における第1端支点12bでの曲げモーメント)と等しい。曲げモーメントMj,nは、第n梁13の右端に作用する曲げモーメントの絶対値Mjr,n(第n梁13における第2端支点12bでの曲げモーメント)と等しい。
Bending moments due to, for example, rotational resistance of the girder do not act on the fulcrums 12a and 12b, and the bending moments acting on the ends of the beams 13 adjacent to each other in the longitudinal direction have the same value. That is, for example, the absolute value M jr bending moment acting on the right end of the i beam 13 i, and i, the (i + 1) beams 13 i + 1 of the absolute value M jl bending moment acting on the left end, and i + 1, is equal to .. Let the equal values be M j, i (Nm). Bending moment M j, i, to the one or more (n-1) following i, a bending moment in the second end supporting point 12b 2 side of the intermediate supporting point 12a in the i beam 13 i.
Incidentally, the bending moment M j, 0 is equal to the absolute value M jl bending moment acting on the left end of the first beam 13 1, 1 (bending moment in the first end supporting point 12b 1 of the first beam 13 1). Bending moment M j, n is the absolute value M jr bending moment acting on the right end of the n beam 13 n, equal to n (bending moment in the second end supporting point 12b 2 in the n beam 13 n).
 このように、連続梁11における中間支点12a及び一対の端支点12bでの複数(n+1)の曲げモーメントMj,0,‥,Mj,nが規定される。 In this way, a plurality of (n + 1) bending moments M j, 0 , ..., M j, n at the intermediate fulcrum 12a and the pair of end fulcrums 12b in the continuous beam 11 are defined.
 前記与条件は、前記複数の鉛直変位と、複数の回転剛性Sj,iと、n本の梁13それぞれの長さLと、n本の梁13それぞれの曲げ剛性(正曲げの曲げ剛性EIs,i及び負曲げの曲げ剛性EIh,i)と、n本の梁13それぞれに作用する等分布荷重wと、を含む。 The given condition, the plurality of vertical displacement, and a plurality of rotational stiffness S j, i, each of a length L i beam 13 i of the n, n of beams 13 i each flexural rigidity (positive bending including flexural rigidity EI s, i and negative bending flexural rigidity EI h, i) and the uniformly distributed load w i acting on the n beams 13 i each, a.
 このとき、各支点12a,12bにおける梁13の回転角は、各支点12a,12bにおける梁13の回転剛性と、曲げモーメントの絶対値Mjl,i,Mjr,iを用いて表せる。
 ここで、第1梁13の左端の回転剛性Sjl,1をSj,0、中間支点12aの代表点における回転剛性をSj,iとする。
 図6に示すように、連続梁11は、n本の梁13を備えている。連続梁11の中間支点12aは、第1大梁27にそれぞれ半剛接合され、連続梁11の端支点12bは、第2大梁31により支持されている。
At this time, the rotation angle of the beam 13 i in each support point 12a, 12b can be expressed by using the rotational stiffness of the beam 13 i in each support point 12a, 12b, bending the absolute value M jl moment, i, M jr, the i.
Here, the first beam 13 1 of the left end of the rotational stiffness S jl, 1 to S j, 0, the rotational stiffness in a representative point of the intermediate support point 12a and S j, i.
As shown in FIG. 6, the continuous beam 11 includes n beams 13 i . The intermediate fulcrum 12a of the continuous beam 11 is semi-rigidly joined to the first girder 27, and the end fulcrum 12b of the continuous beam 11 is supported by the second girder 31.
 図7に示すように、(i-1)本目の第(i-1)梁13i-1と、i本目の第i梁13との接合部を考える。
 第i梁13の左端での回転角をφjl,i(rad)とし、第i梁13の右端での回転角をφjr,i(rad)と規定する。この場合、(i-1)本目の第(i-1)梁13i-1の右端での回転角は、φjr,i-1(rad)となる。水平面に対する第i梁13の左端での回転角を、φl,i(rad)と規定する。水平面に対する第i梁13の右端での回転角を、φr,i(rad)と規定する。この場合、水平面に対する第(i-1)梁13i-1の右端での回転角は、φr,i-1(rad)となる。
 第(i-1)梁13i-1の右端で回転剛性Sjr,i-1が生じる位置と、第i梁13の左端で回転剛性Sjl,iが生じる位置との距離が、極小長さであるとする。
 回転角分布の正負を考慮して、各変数の定義から(47)式及び(48)式が得られる。
As shown in FIG. 7, consider the joint between the (i-1) th (i-1) th beam 13 i-1 and the i -th i- th beam 13 i.
The angle of rotation of the i-th beam 13 i at the left end is defined as φ jl, i (rad), and the rotation angle of the i-th beam 13 i at the right end is defined as φ jr, i (rad). In this case, the rotation angle at the right end of the (i-1) th (i-1) beam 13 i-1 is φ jr, i-1 (rad). The angle of rotation of the i-th beam 13 i with respect to the horizontal plane at the left end is defined as φ l, i (rad). The rotation angle at the right end of the i beam 13 i with respect to the horizontal plane, is defined as φ r, i (rad). In this case, the rotation angles of the first (i-1) beam 13 i-1 with respect to the horizontal plane at the right end are φ r, i-1 (rad).
The distance between the position where the rotational rigidity S jr, i-1 is generated at the right end of the first (i-1) beam 13 i-1 and the position where the rotational rigidity S jl, i is generated at the left end of the i-th beam 13 i is extremely small. Suppose it is a length.
Eqs. (47) and (48) can be obtained from the definitions of each variable in consideration of the positive and negative of the rotation angle distribution.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-M000021
 図7の変形状態の幾何学的関係から、(49)式が得られる。 Equation (49) can be obtained from the geometrical relationship of the deformed state in FIG.
Figure JPOXMLDOC01-appb-M000022
Figure JPOXMLDOC01-appb-M000022
 この場合、極小長さが無視できると仮定する。このとき、図8に示すように、第(i-1)梁13i-1の回転剛性Sjr,i-1及び第i梁13の回転剛性Sjl,iが、回転剛性Sj,i-1で代表される。回転剛性Sj,i-1は、(47)式及び(48)式を(49)式に代入した、(50)式及び(51)式から得られる。 In this case, it is assumed that the minimum length is negligible. At this time, as shown in FIG. 8, the (i-1) beams 13 i-1 of rotational stiffness S jr, i-1 and rotational stiffness S jl i-th beam 13 i, i is the rotational stiffness S j, It is represented by i-1. The rotational rigidity S j, i-1 is obtained from the equations (50) and (51) in which the equations (47) and (48) are substituted into the equation (49).
Figure JPOXMLDOC01-appb-M000023
Figure JPOXMLDOC01-appb-M000023
 従って、回転剛性Sj,i-1は、各中間支点12aを挟む左右の接合部の回転ばねの直列結合で表せる。
 ここで、i=2~(n-1)に対し、(38)式におけるφ0iは、次のように求められる。図8から、第i梁13の左端の中間支点12aにおける回転角φ0i=φl,iは、(49)式を用いて右端の中間支点12aにおける回転角φr,i-1と関係づけられる。(49)式では、この中間支点12aにおけるモーメントの絶対値Mj,i-1と回転剛性Sj,i-1が用いられる。
 さらに、φr,i-1は第(i-1)梁13i-1の右端における回転角なので、第(i-1)梁13i-1における(38)式にxi-1=Li-1を代入した値に等しい。
 従って、(38)式を(49)式に代入し、(8)式が導出される。第1端支点12bの回転角初期値φ01及び各中間支点12aと両端支点12bのモーメントが与えられると、i=2~(n-1)に対するφ0iは(8)式によって順に求められる。
 連続梁11を評価するのに際し、曲げモーメントについては、0以上n以下の自然数iに対する曲げモーメントMj,i(複数の曲げモーメント)である(n+1)個の未知数が規定される。
Therefore, the rotational rigidity S j, i-1 can be expressed by the series connection of the rotating springs of the left and right joints sandwiching each intermediate fulcrum 12a.
Here, for i = 2 to (n-1), φ 0i in the equation (38) is obtained as follows. From FIG. 8, the rotation angles φ 0i = φ l, i at the left end intermediate fulcrum 12a of the i-th beam 13i are related to the rotation angles φ r, i-1 at the right end intermediate fulcrum 12a using the equation (49). Be attached. In equation (49), the absolute values M j, i-1 of the moment at the intermediate fulcrum 12a and the rotational stiffness S j, i-1 are used.
Moreover, phi r, since i-1 is a rotation angle in the (i-1) beams 13 i-1 at the right end, the (i-1) to (38) below the beams 13 i-1 x i-1 = L It is equal to the value to which i-1 is substituted.
Therefore, the equation (38) is substituted into the equation (49), and the equation (8) is derived. Given the initial rotation angle φ 01 of the first end fulcrum 12b 1 and the moments of each intermediate fulcrum 12a and both end fulcrums 12b, φ 0i for i = 2 to (n-1) is sequentially obtained by Eq. (8). ..
When evaluating the continuous beam 11, for the bending moment, (n + 1) unknowns, which are bending moments M j and i (plural bending moments) with respect to a natural number i of 0 or more and n or less, are defined.
 連続梁11の両端支点12bにおける接合状態にもよるが、一般的に以下のことが言える。
 第1梁13の両端での曲げモーメントMj,0,Mj,1、及び未知数である第1端支点12bでの第1梁13の回転角φ01(φjl,1)にそれぞれ初期値を与える。すると、x=Lにおける(38)式の回転角分布φ(x)によって第1梁13の回転角φr,1が決まる。(49)式によって、第1梁13に隣接する2本目の第2梁13の回転角φl,2が決まる。
 回転角φl,2は、第2梁13に対して(38)式を適用する際の回転角分布φ(x)のx=0における値であるφ02に相当する。
 同様に、3以上n以下であるiに対して、第(i-1)梁13i-1の両端接合部の曲げモーメントMj,i-2,Mj,i-1を与えると、xi-1=Li-1における(38)式の回転角分布φ(xi-1)によって、第(i-1)梁13i-1の右端での回転角φr,i-1が決まる。(49)式によって、第(i-1)梁13i-1に隣接する第i梁13の左端での回転角φl,iが決まる。なお、第i梁13の左端での回転角φl,iは、第i梁13に対して(38)式を適用する際の回転角分布φ(xi)のx=0における値であるφ0iに相当する。
Although it depends on the joint state at both end fulcrums 12b of the continuous beam 11, the following can be generally said.
At the bending moments M j, 0 , M j, 1 at both ends of the first beam 131, and the rotation angle φ 01 (φ jl, 1) of the first beam 13 1 at the first end fulcrum 12b 1, which is an unknown number. Give initial values for each. Then, x 1 = angle of rotation of the equation (38) in L 1 distribution phi c (x i) first rotation angle of the beam 13 1 by phi r, 1 is determined. (49) by the equation, the second beam 13 and second rotation angles of the two eyes adjacent to the first beam 13 1 phi l, 2 is determined.
Rotation angle phi l, 2 corresponds to phi 02 is a value in x 2 = 0 of the rotational angle distribution phi (x 2) when applied to the second beam 13 2 (38) below.
Similarly, when the bending moments M j, i-2 , M j, and i-1 of the joints at both ends of the (i-1) beam 13 i-1 are given to i which is 3 or more and n or less, x i-1 = L in i-1 by (38) the rotation angle of formula distribution phi c (x i-1), the (i-1) beam 13 rotation angle at the i-1 of the rightmost phi r, i-1 Is decided. The rotation angles φ l and i at the left end of the i- th beam 13 i adjacent to the (i-1) beam 13 i-1 are determined by the equation (49). The rotation angle phi l, i at the left end of the i beam 13 i is in x i = 0 of the rotational angle distribution phi (x i) of applying the i-th beam 13 i relative to (38) below It corresponds to the value φ 0i.
 こうしてi=1~nまで曲げモーメントMj,i-1,Mj,iを仮定し、順に対応する回転角φr,i-1及び回転角φl,iを求める。すると、x=Lにおける(44)式のたわみ分布δ(x)から、各支点12a,12bでの鉛直変位δ0iが得られる。
 なお、第2端支点12bでの第n梁13の回転角φr,nも未知数として規定される。すなわち、回転角については、2個の回転角φ01及び回転角φr,nが未知数である。
 こうして未知数の数は、例えば、各支点12a,12bでの曲げモーメントMj,i、及び両端支点12bでの回転角の(n+3)である。
In this way, the bending moments M j, i-1 , M j, and i are assumed from i = 1 to n, and the corresponding rotation angles φ r, i-1 and rotation angles φ l, i are obtained in this order. Then, the x i = L i in equation (44) of the deflection distribution [delta] c (x i), each supporting point 12a, the vertical displacement [delta] 0i at 12b obtained.
The rotation angles φ r and n of the nth beam 13 n at the second end fulcrum 12b 2 are also defined as unknowns. That is, with respect to the rotation angles, the two rotation angles φ 01 and the rotation angles φ r and n are unknown.
Thus, the unknown numbers are, for example, the bending moments M j and i at the respective fulcrums 12a and 12b, and the rotation angle (n + 3) at both end fulcrums 12b.
 これに対し、複数の未知数を解くための複数の第1境界条件は、以下のように規定される。
 与条件である第1端支点12bでの鉛直変位δ01、及び1以上n以下のiに対するx=Lにおける(44)式から、0以上n以下のiに対して、複数の第1境界条件である(54-1)式から(54-(n+1))式の(n+1)個の関係式が得られる。これら(n+1)個の関係式は、複数の鉛直変位δの関係式である。
On the other hand, a plurality of first boundary conditions for solving a plurality of unknowns are defined as follows.
From the vertical displacement δ 01 at the first end fulcrum 12b 1 , which is the given condition, and equation (44) at x i = Li for i of 1 or more and n or less, a plurality of orders for i of 0 or more and n or less. From Eq. (54-1), which is one boundary condition, (n + 1) relational expressions of Eq. (54- (n + 1)) can be obtained. These (n + 1) relational expressions are relational expressions of a plurality of vertical displacements δ i .
Figure JPOXMLDOC01-appb-M000024
Figure JPOXMLDOC01-appb-M000024
 例えば、(54-2)式は、曲げモーメントMj,0,Mj,1についての方程式である。(54-3)式は、曲げモーメントMj,0,Mj,1,Mj,2についての方程式である。(54-(n+1))式は、曲げモーメントMj,0,Mj,1,Mj,2,‥,Mj,nについての方程式である。 For example, Eq. (54-2) is an equation for bending moments M j, 0 , M j, 1 . Equation (54-3) is an equation for bending moments M j, 0 , M j, 1 , M j, 2 . Equation (54- (n + 1)) is an equation for bending moments M j, 0 , M j, 1 , M j, 2 , ..., M j, n .
 連続梁11の両端支点12bでの回転剛性、曲げモーメント、及び回転角の関係式から、(55-1)式及び(55-2)式の2個の関係式が得られる。 From the relational expressions of the rotational rigidity, the bending moment, and the rotation angle at the fulcrums 12b at both ends of the continuous beam 11, two relational expressions (55-1) and (55-2) can be obtained.
Figure JPOXMLDOC01-appb-M000025
Figure JPOXMLDOC01-appb-M000025
 (55-1)式及び(55-2)式は、連続梁11の両端支点12bでの接合状態に応じて得られる。例えば、連続梁11の左側の端支点12b(第1端支点12b)がピン接合であれば、曲げモーメントMj,0は0である。
 こうして第1境界条件の数は、(n+3)個の関係式の(n+3)である。すなわち、複数の第1境界条件の数は複数の未知数の数と同数になる。
 従って、複数の未知数が複数の第1境界条件を満たすように複数の未知数を解けば、(n+1)個の曲げモーメントMj,iの組み合わせは一つに決まる。
Equations (55-1) and (55-2) are obtained according to the joint state at both end fulcrums 12b of the continuous beam 11. For example, if the left end fulcrum 12b (first end fulcrum 12b 1 ) of the continuous beam 11 is a pin joint, the bending moments M j and 0 are 0.
Thus, the number of first boundary conditions is (n + 3) of (n + 3) relational expressions. That is, the number of the plurality of first boundary conditions is the same as the number of the plurality of unknowns.
Therefore, if the plurality of unknowns are solved so that the plurality of unknowns satisfy the plurality of first boundary conditions , the combination of (n + 1) bending moments Mj and i is determined to be one.
 ここで、全ての支点12a,12bでの曲げモーメントMj,iの値を仮定する。仮定した曲げモーメントMj,iから得られた、各支点12a,12bでの鉛直変位δに対応する鉛直変位の計算結果を、δi,calc(m)とする。全ての支点12a,12bでの曲げモーメントMj,iの値を仮定し、仮定した曲げモーメントMj,iから得られた鉛直変位の計算結果δi,calcと、変形の適合条件から決まる鉛直変位δとの差の2乗の、全ての支点12a,12bでの和((57)式による値、変位残差)を目的関数と規定する。すると、目的関数が最小となる曲げモーメントMj,iの組み合わせを探す最適化計算により、全ての支点12a,12bでの曲げモーメントMj,iを同定することができる。
 最適化計算には、公知の差分進化法(Differential Evolution Method)等を用いることができる。
 なお、連続梁11の両端支点12bでの接合状態に応じた連続梁の評価方法における計算手順については、後述する。
Here, the values of the bending moments Mj and i at all the fulcrums 12a and 12b are assumed. Let δ i, calc (m) be the calculation result of the vertical displacement corresponding to the vertical displacement δ i at each fulcrum 12a, 12b obtained from the assumed bending moments M j, i. Assuming the values of bending moments M j and i at all fulcrums 12a and 12b, the vertical displacement calculation results δ i and calc obtained from the assumed bending moments M j and i and the vertical determined by the conforming conditions of deformation. The sum of the squares of the difference from the displacement δ i at all the fulcrums 12a and 12b (value according to equation (57), displacement residual) is defined as the objective function. Then, it is possible to identify the objective function is minimized bending moment M j, the optimization calculation to find a combination of i, all the fulcrum 12a, the bending moment M j at 12b, and i.
A known differential evolution method or the like can be used for the optimization calculation.
The calculation procedure in the evaluation method of the continuous beam according to the joint state at both end fulcrums 12b of the continuous beam 11 will be described later.
Figure JPOXMLDOC01-appb-M000026
Figure JPOXMLDOC01-appb-M000026
〔4.連続梁の評価方法に用いられる評価装置〕
 連続梁の評価方法を行い連続梁11を評価するには、例えば図9に示す評価装置101が用いられる。評価装置101はコンピュータであり、CPU(Central Processing Unit)111と、主記憶装置125と、補助記憶装置126と、入出力インタフェース(IO・I/F)131と、記録・再生装置136と、を備えている。
[4. Evaluation device used for evaluation method of continuous beam]
In order to evaluate the continuous beam 11 by performing the evaluation method of the continuous beam, for example, the evaluation device 101 shown in FIG. 9 is used. The evaluation device 101 is a computer, and includes a CPU (Central Processing Unit) 111, a main storage device 125, an auxiliary storage device 126, an input / output interface (IO / I / F) 131, and a recording / playback device 136. I have.
 主記憶装置125は、CPU111のワークエリア等になるRAM(Random Access Memory)等である。
 入出力インタフェース131は、キーボードやマウス等の入力装置132、及び表示装置133に接続される。
 記録・再生装置136は、CDやDVD等のディスク型等の記録媒体137に対するデータの記録や再生を行う。
The main storage device 125 is a RAM (Random Access Memory) or the like that serves as a work area or the like of the CPU 111.
The input / output interface 131 is connected to an input device 132 such as a keyboard and a mouse, and a display device 133.
The recording / reproducing device 136 records and reproduces data on a recording medium 137 such as a disc type such as a CD or a DVD.
 補助記憶装置126は、各種データやプログラム等が記憶されるハードディスクドライブ装置等である。補助記憶装置126には、前記コンピュータを評価装置101として機能させるための連続梁の評価プログラム(以下、単に評価プログラムと言う)127や、OSプログラム等の各種プログラム、予め定められた閾値等が格納されている。評価プログラム127を含む各種プログラムは、記録・再生装置136を介して記録媒体137から補助記憶装置126に取り込まれる。評価プログラム等は、記録媒体137に格納される。
 なお、これらのプログラムは、フラッシュメモリ等の携帯可能なメモリや、図示されていない通信装置を介して外部装置から補助記憶装置126に取り込まれてもよい。
The auxiliary storage device 126 is a hard disk drive device or the like that stores various data, programs, and the like. The auxiliary storage device 126 stores a continuous beam evaluation program (hereinafter, simply referred to as an evaluation program) 127 for causing the computer to function as the evaluation device 101, various programs such as an OS program, a predetermined threshold value, and the like. Has been done. Various programs including the evaluation program 127 are taken into the auxiliary storage device 126 from the recording medium 137 via the recording / playback device 136. The evaluation program and the like are stored in the recording medium 137.
Note that these programs may be incorporated into the auxiliary storage device 126 from an external device via a portable memory such as a flash memory or a communication device (not shown).
 この補助記憶装置126には、さらに、評価プログラム127の実行過程で、仮設定値ファイル128が設けられる。仮設定値ファイル128には、後述する仮設計値が格納される。 The auxiliary storage device 126 is further provided with a temporary setting value file 128 in the process of executing the evaluation program 127. Temporary design values, which will be described later, are stored in the temporary setting value file 128.
 CPU111は、各種演算処理を実行する。
 CPU111は、機能的に、複数の曲げモーメント、及び複数の回転角を、与条件に基づいて求める解決定部112を備えている。さらに、解決定部112は、機能的に、第1設計部113と、第2設計部114と、仮設計部115と、記憶部116と、解算出部117と、残差算出部118と、判定部119と、解設定部120と、を備えている。
 これらのCPU111の機能構成要素である第1設計部113、第2設計部114、仮設計部115、記憶部116、解算出部117、残差算出部118、判定部119、及び解設定部120は、いずれも、補助記憶装置126に格納されている評価プログラム127等をCPU111が実行することで機能する。評価プログラム127等は、評価装置101用のプログラムである。評価プログラム127は、評価装置101を解決定部112として機能させる。
The CPU 111 executes various arithmetic processes.
The CPU 111 functionally includes a solution determination unit 112 that obtains a plurality of bending moments and a plurality of rotation angles based on given conditions. Further, the solution determination unit 112 functionally includes a first design unit 113, a second design unit 114, a temporary design unit 115, a storage unit 116, a solution calculation unit 117, and a residual calculation unit 118. A determination unit 119 and a solution setting unit 120 are provided.
The first design unit 113, the second design unit 114, the temporary design unit 115, the storage unit 116, the solution calculation unit 117, the residual calculation unit 118, the determination unit 119, and the solution setting unit 120, which are the functional components of the CPU 111. All function when the CPU 111 executes the evaluation program 127 or the like stored in the auxiliary storage device 126. The evaluation program 127 and the like are programs for the evaluation device 101. The evaluation program 127 causes the evaluation device 101 to function as the solution determination unit 112.
〔5.連続梁の評価方法〕
 次に、評価装置101の評価動作(評価方法)について説明する。なお、表1に示すように、第1端支点12bの接合状態は、ピン接合、半剛接合、及び剛接合の3通りある。第2端支点12bの接合状態は、ピン接合、半剛接合、及び剛接合の3通りある。従って、連続梁11の一対の端支点12bでの接合状態は、全部で9通りある。
[5. Evaluation method for continuous beams]
Next, the evaluation operation (evaluation method) of the evaluation device 101 will be described. As shown in Table 1, there are three joining states of the first end fulcrum 12b 1 : pin joining, semi-rigid joining, and rigid joining. There are three joining states of the second end fulcrum 12b 2 , pin joining, semi-rigid joining, and rigid joining. Therefore, there are a total of nine joint states at the pair of end fulcrums 12b of the continuous beam 11.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 ただし、例えば、第1端支点12bがピン接合で第2端支点12bが半剛接合の場合と、第1端支点12bが半剛接合で第2端支点12bがピン接合の場合とでは、連続梁11の向きを反対にすれば同一の構成となる。このため、両端支点12b,12bがピン接合の場合をケース1として説明する。両端支点12b,12bが半剛接合の場合をケース2、両端支点12b,12bが剛接合の場合をケース3として説明する。第1端支点12bがピン接合で第2端支点12bが半剛接合の場合をケース4A、第1端支点12bがピン接合で第2端支点12bが剛接合の場合をケース5Aとして説明する。第1端支点12bが剛接合で第2端支点12bが半剛接合の場合をケース6Aとして説明する。
 そして、第1端支点12bが半剛接合で第2端支点12bがピン接合の場合のケース4Bは、連続梁11がケース4Aと同様の構成なので説明を省略する。第1端支点12bが剛接合で第2端支点12bがピン接合の場合のケース5Bも、同様に省略する。第1端支点12bが半剛接合で第2端支点12bが剛接合の場合のケース6Bも、同様に省略する。
However, for example, when the first end fulcrum 12b 1 is a pin joint and the second end fulcrum 12b 2 is a semi-rigid joint, and when the first end fulcrum 12b 1 is a semi-rigid joint and the second end fulcrum 12b 2 is a pin joint. Then, if the directions of the continuous beams 11 are reversed, the same configuration can be obtained. Therefore, the case where the fulcrums 12b 1 and 12b 2 at both ends are pin-joined will be described as Case 1. The case where the fulcrums 12b 1 and 12b 2 at both ends are semi-rigidly joined will be described as case 2, and the case where the fulcrums 12b 1 and 12b 2 at both ends are rigidly joined will be described as case 3. Case 4A when the first end fulcrum 12b 1 is a pin joint and the second end fulcrum 12b 2 is a semi-rigid joint, and case 5A when the first end fulcrum 12b 1 is a pin joint and the second end fulcrum 12b 2 is a rigid joint. It is explained as. A case where the first end fulcrum 12b 1 is a rigid joint and the second end fulcrum 12b 2 is a semi-rigid joint will be described as Case 6A.
In the case 4B in which the first end fulcrum 12b 1 is semi-rigidly joined and the second end fulcrum 12b 2 is pin-joined, the continuous beam 11 has the same configuration as the case 4A, and thus the description thereof will be omitted. The case 5B in which the first end fulcrum 12b 1 is a rigid joint and the second end fulcrum 12b 2 is a pin joint is also omitted in the same manner. Case 6B in the case where the first end fulcrum 12b 1 is a semi-rigid joint and the second end fulcrum 12b 2 is a rigid joint is also omitted in the same manner.
〔5.1.ケース1(一対の端支点がピン接合)の場合の連続梁の評価方法〕
 図10は、連続梁11がケース1の場合の本実施形態の評価方法S11を示すフローチャートである。評価方法S11は、複数の曲げモーメント及び複数の回転角を与条件に基づいて求める解決定工程(図10に示すステップS12)を有する。
 解決定工程S12では、まず、第1設計部113は第1設計工程(ステップS14)を行う(解決定工程S12は、第1設計工程S14を有する)。第1設計工程S14では、連続梁11の一対の端支点12b及び中間支点12aでの複数の鉛直変位δを含む設計値を与える。複数の鉛直変位δは、前記与条件として与えられる。第1設計工程S14では、前記設計値には、前記複数の回転剛性と、n本の梁13それぞれの長さLと、n本の梁13それぞれの曲げ剛性と、n本の梁13それぞれに作用する等分布荷重wと、を含む。
 第1設計工程S14が終了すると、ステップS16に移行する。
[5.1. Evaluation method of continuous beam in case 1 (a pair of end fulcrums are pin-joined)]
FIG. 10 is a flowchart showing the evaluation method S11 of the present embodiment when the continuous beam 11 is the case 1. The evaluation method S11 has a solution determination step (step S12 shown in FIG. 10) of obtaining a plurality of bending moments and a plurality of rotation angles based on given conditions.
In the solution determination step S12, first, the first design unit 113 performs the first design step (step S14) (the solution determination step S12 has the first design process S14). In the first design step S14, a design value including a plurality of vertical displacements δ i at the pair of end fulcrums 12b and the intermediate fulcrums 12a of the continuous beam 11 is given. The plurality of vertical displacements δ i are given as the given conditions. In the first design step S14, the design value, the plurality of rotational stiffness, and n of beams 13 i each length L i, and the beam 13 i of each flexural rigidity of the n, n of beams 13 i comprising a uniformly distributed load w i acting on each of the.
When the first design step S14 is completed, the process proceeds to step S16.
 次に、第2設計工程S16において、第2設計部114は一対の端支点12bでの接合状態に応じて一対の端支点12bに第2境界条件を与える。ケース1の場合には、第2境界条件は、曲げモーメントMj,0,Mj,nがそれぞれ0Nmであることである。すなわち、第2境界条件には回転角φ01が未知数であることが含まれる。
 第2設計工程S16が終了すると、ステップS18に移行する。
 次に、仮設計工程S18において、仮設計部115は一対の端支点12bでの接合状態に応じて、一対の端支点12b及び中間支点12aに作用する曲げモーメントMj,iを含む仮設計値を与える。連続梁11がケース1の場合には、仮設計部115はさらに、仮設計値として第1端支点12bでの梁13の回転角φ01を与える。
 仮設計工程S18が終了すると、ステップS20に移行する。
Next, in the second design step S16, the second design unit 114 gives a second boundary condition to the pair of end fulcrums 12b according to the joining state at the pair of end fulcrums 12b. In the case of Case 1, the second boundary condition is that the bending moments M j, 0 , M j, and n are 0 Nm, respectively. That is, the second boundary condition includes that the rotation angle φ 01 is unknown.
When the second design step S16 is completed, the process proceeds to step S18.
Next, in the temporary design step S18, the temporary design unit 115 includes a temporary design value M j, i acting on the pair of end fulcrums 12b and the intermediate fulcrum 12a according to the joining state at the pair of end fulcrums 12b. give. If continuous beam 11 of the case 1 is tentatively designed section 115 further gives the rotation angle phi 01 of the beam 13 1 in the first end supporting point 12b 1 as a temporary design value.
When the tentative design step S18 is completed, the process proceeds to step S20.
 次に、記憶工程S20において、記憶部116は仮設計工程S18の後で、仮設定値ファイル128に仮設計値を記憶する。記憶工程S20が終了すると、ステップS22に移行する。
 次に、解算出工程S22において、解算出部117は、仮設定値ファイル128に記憶された仮設計値に基づいて、複数の第1境界条件及び第2境界条件を満たすように、中間支点12aでの鉛直変位の計算結果δi,calcを含む計算値を算出する。計算値は、第2端支点12bでの鉛直変位の計算結果である鉛直変位の計算結果δn,calcを含む。鉛直変位の計算結果δi,calcは、(54-2)式から(54-(n+1))式における鉛直変位δから鉛直変位δまでのn個の値に基づいて得られる。
 鉛直変位の計算結果δ0,calcである鉛直変位δ01(鉛直変位δ)は、与条件として与えられる複数の鉛直変位の1つの要素であるため、解算出工程S22では値は新たに算出されない。鉛直変位の計算結果δi,calcは、δ1,calc、δ2,calc、‥、δn,calcの順に算出される。
 解算出工程S22が終了すると、ステップS24に移行する。
Next, in the storage step S20, the storage unit 116 stores the temporary design value in the temporary setting value file 128 after the temporary design step S18. When the storage step S20 is completed, the process proceeds to step S22.
Next, in the solution calculation step S22, the solution calculation unit 117 determines the intermediate fulcrum 12a so as to satisfy the plurality of first boundary conditions and the second boundary conditions based on the temporary design values stored in the temporary setting value file 128. Calculation result of vertical displacement in δ i, calculate the calculated value including cal. The calculated value includes the calculation result δ n, calc of the vertical displacement, which is the calculation result of the vertical displacement at the second end fulcrum 12b 2 . Calculation results of vertical displacement δ i, calc are obtained based on n values from vertical displacement δ 1 to vertical displacement δ n in equations (54-2) to (54- (n + 1)).
Since the vertical displacement calculation result δ 0, calc vertical displacement δ 01 (vertical displacement δ 0 ) is one element of a plurality of vertical displacements given as given conditions, the value is newly calculated in the solution calculation step S22. Not done. Calculation result of vertical displacement δ i, calc is calculated in the order of δ 1, calc , δ 2, calc , ..., δ n, calc.
When the solution calculation step S22 is completed, the process proceeds to step S24.
 次に、残差算出工程S24において、残差算出部118は設計値と計算値との残差である変位残差を求める。変位残差は、解算出工程S22で算出された複数の鉛直変位の計算結果δi,calc、及び第1設計工程S14で前記与条件として与えられた複数の鉛直変位δを用いて、(57)式により求められる。
 変位残差について、より詳しく説明する。ここで、1以上(n-1)以下のiに対する、梁13(i+1)における第1端支点12b側の中間支点12aでの鉛直変位δ0(i+1)と、梁13における第2端支点12b側の中間支点12aでの鉛直変位の計算結果δi,calcとの残差を、第i残差と規定する。
 残差算出工程S24では、第1残差から第(n-1)残差までの和である中間残差を算出する。与条件である第2端支点12bにおける鉛直変位δと、梁13における第2端支点12bでの鉛直変位の計算結果δn,calcと、の残差である第2端支点残差を算出する。このとき、変位残差は、中間残差と第2端支点残差との和になる。なお、残差は正負どちらの値となる場合もある。残差の和を誤差として適切に累加するため、各残差の絶対値の和、または各残差の二乗の和を、変位残差とする。
 なお、残差算出工程S24では、回転角分布φ(x)、曲げモーメント分布M(x)Mj,i、曲げ剛性EI、曲げモーメントMj,i、回転剛性Sj,i、回転角φl,i,φr,i-1に関する(60)式及び(61)式である適合条件が成り立つか否かを判定する。曲げモーメント分布M(x)は、(22)式から求められる。
Next, in the residual calculation step S24, the residual calculation unit 118 obtains the displacement residual, which is the residual between the design value and the calculated value. The displacement residual is determined by using the calculation results δ i, calc of the plurality of vertical displacements calculated in the solution calculation step S22 and the plurality of vertical displacements δ i given as the given conditions in the first design step S14. It is calculated by the formula 57).
The displacement residual will be described in more detail. Wherein one or more (n-1) for the following i, the beam 13 (i + 1) vertical displacement of the first end supporting point 12b 1 of the intermediate fulcrum 12a in δ 0 (i + 1), the second end of the beam 13 i The residual with the calculation result δ i and calc of the vertical displacement at the intermediate fulcrum 12a on the fulcrum 12b 2 side is defined as the i-th residual.
In the residual calculation step S24, the intermediate residual, which is the sum of the first residual to the (n-1) residual, is calculated. The residual of the second end fulcrum, which is the residual of the vertical displacement δ n at the second end fulcrum 12b 2 which is the given condition, and the calculation result δ n, calc of the vertical displacement at the second end fulcrum 12b 2 of the beam 13 n. Calculate the difference. At this time, the displacement residual is the sum of the intermediate residual and the second end fulcrum residual. The residual may be either positive or negative. In order to appropriately accumulate the sum of the residuals as an error, the sum of the absolute values of each residual or the sum of the squares of each residual is defined as the displacement residual.
In the residual calculation step S24, the rotation angle distribution φ (x i ), the bending moment distribution M (x i ) M j, i , the bending rigidity EI i , the bending moment M j, i , the rotational rigidity S j, i , It is determined whether or not the conforming conditions of Eqs. (60) and (61) relating to the rotation angles φ l, i , φ r, and i-1 are satisfied. Bending moment distribution M (x i) is determined from equation (22).
Figure JPOXMLDOC01-appb-M000028
Figure JPOXMLDOC01-appb-M000028
 ただし、曲げ剛性EIは、正曲げの場合には正曲げの曲げ剛性EIs,iであり、負曲げの場合には負曲げの曲げ剛性EIh,iである。
 残差算出工程S24が終了すると、ステップS26に移行する。
However, the bending stiffness EI i is the bending stiffness EI s, i of the forward bending in the case of the forward bending, and the bending stiffness EI h, i of the negative bending in the case of the negative bending.
When the residual calculation step S24 is completed, the process proceeds to step S26.
 次に、判定工程S26において、判定部119は変位残差が閾値よりも小さいか否かを判定する。判定工程S26において、変位残差が閾値よりも小さい(Yes)と判定されたときには、ステップS28に移行する。一方で、判定工程S26において、変位残差が閾値以上である(No)と判定されたときには、ステップS18に移行する。 Next, in the determination step S26, the determination unit 119 determines whether or not the displacement residual is smaller than the threshold value. When it is determined in the determination step S26 that the displacement residual is smaller than the threshold value (Yes), the process proceeds to step S28. On the other hand, when it is determined in the determination step S26 that the displacement residual is equal to or greater than the threshold value (No), the process proceeds to step S18.
 解設定工程S28では、解設定部120は、仮設定値ファイル128に記憶された仮設計値の曲げモーメントを、中間支点12aに作用する曲げモーメントと規定する。そして、この曲げモーメントに基づいて複数の回転角とたわみ分布を求める。
 以上で、評価方法S11における全ての工程を終了する。
In the solution setting step S28, the solution setting unit 120 defines the bending moment of the temporary design value stored in the temporary setting value file 128 as the bending moment acting on the intermediate fulcrum 12a. Then, a plurality of rotation angles and deflection distributions are obtained based on this bending moment.
This completes all the steps in the evaluation method S11.
 仮設計工程S18では、記憶工程S20で仮設定値ファイル128に記憶された仮設計値に代えて、他の新たな仮設計値を与える。仮設計工程S18から移行した記憶工程S20では、前記他の新たな仮設計値を仮設定値ファイル128に記憶する。そして、前記他の新たな仮設計値に基づいて、記憶工程S20、解算出工程S22、残差算出工程S24、及び判定工程S26を行う。
 このように、判定工程S26において、変位残差が閾値以上である(No)と判定されたときには、記憶工程S20で他の新たな仮設計値を与えること、及び、この他の新たな仮設計値に基づいて、記憶工程S20、解算出工程S22、残差算出工程S24、及び判定工程S26を行うこと、を組にする。そして、この組にした工程を、判定工程S26において変位残差が閾値よりも小さいと判定されるまで繰り返す。2回目以降の仮設計工程S18においては、例えば差分進化法に従って仮設計値を再設定し、仮設計工程S18~判定工程S26の計算を行うことで、効果的に変位残差の収斂計算を行うことができる。
In the temporary design step S18, another new temporary design value is given in place of the temporary design value stored in the temporary setting value file 128 in the storage step S20. In the storage step S20 shifted from the temporary design step S18, the other new temporary design value is stored in the temporary setting value file 128. Then, the storage step S20, the solution calculation step S22, the residual calculation step S24, and the determination step S26 are performed based on the other new provisional design values.
As described above, when it is determined in the determination step S26 that the displacement residual is equal to or greater than the threshold value (No), another new provisional design value is given in the storage step S20, and the other new provisional design. Based on the values, the storage step S20, the solution calculation step S22, the residual calculation step S24, and the determination step S26 are performed as a set. Then, this set of steps is repeated until it is determined in the determination step S26 that the displacement residual is smaller than the threshold value. In the second and subsequent tentative design steps S18, for example, the tentative design values are reset according to the differential evolution method, and the tentative design steps S18 to the determination step S26 are calculated to effectively calculate the convergence of the displacement residuals. be able to.
〔5.2.ケース2(一対の端支点が半剛接合)の場合の連続梁の評価方法〕
 この場合の評価方法S36では、複数の曲げモーメント及び複数の回転角を与条件に基づいて求める解決定工程S37を行う。
 解決定工程S37では、まず、前記第1設計工程S14を行う。第1設計工程S14が終了すると、ステップS39に移行する。
 次に、第2設計工程S39において、第2設計部114は一対の端支点12bでの接合状態に応じて第2境界条件を与える。ケース2の場合には、第2境界条件は、連続梁11の端支点12b,12bにおける(64)式及び(65)式である。すなわち、曲げモーメントMj,0,Mj,nは、未知数である。第2境界条件には、回転角φ01が未知数であることが含まれる。
[5.2. Evaluation method of continuous beam in case 2 (a pair of end fulcrums are semi-rigid joints)]
In the evaluation method S36 in this case, the solution determination step S37 for obtaining a plurality of bending moments and a plurality of rotation angles based on the given conditions is performed.
In the solution determination step S37, first, the first design step S14 is performed. When the first design step S14 is completed, the process proceeds to step S39.
Next, in the second design step S39, the second design unit 114 gives a second boundary condition according to the joining state at the pair of end fulcrums 12b. In the case of Case 2, the second boundary conditions are the equations (64) and (65) at the end fulcrums 12b 1 and 12b 2 of the continuous beam 11. That is, the bending moments M j, 0 , M j, n are unknown. The second boundary condition includes that the rotation angle φ 01 is unknown.
Figure JPOXMLDOC01-appb-M000029
Figure JPOXMLDOC01-appb-M000029
 回転剛性Sj,0,Sj,iはそれぞれ定数であるため、例えば、(64)式において、曲げモーメントMj,0及び回転角φjl,1の一方が求まれば、(64)式から曲げモーメントMj,0及び回転角φjl,1の他方が求まる。(65)式についても、(64)式と同様である。第2設計工程S39が終了すると、ステップS41に移行する。
 次に、仮設計工程S41において、仮設計部115は一対の端支点12bでの接合状態に応じて、中間支点12aに作用する曲げモーメントMj,iを含む仮設計値を与える。連続梁11がケース2の場合には、さらに曲げモーメントMj,0及び回転角φjl,1の一方を仮設計値として与える。
 仮設計工程S41が終了すると、記憶工程S20、解算出工程S22、残差算出工程S24、判定工程S26を行い、判定工程S26での判定に基づいて解設定工程S28又は仮設計工程S41に移行する。
Since the rotational rigidity S j, 0 , S j, and i are constants, for example, in equation (64), if one of the bending moment M j, 0 and the angle of rotation φ jl, 1 is obtained, equation (64) is obtained. The other of the bending moment M j, 0 and the rotation angle φ jl, 1 can be obtained from. The equation (65) is the same as that of the equation (64). When the second design step S39 is completed, the process proceeds to step S41.
Next, in the temporary design step S41, the temporary design unit 115 gives a temporary design value including bending moments M j and i acting on the intermediate fulcrum 12a according to the joining state at the pair of end fulcrums 12b. When the continuous beam 11 is the case 2 , one of the bending moment M j, 0 and the rotation angle φ jl, 1 is further given as a provisional design value.
When the tentative design step S41 is completed, the storage step S20, the solution calculation step S22, the residual calculation step S24, and the determination step S26 are performed, and the process proceeds to the solution setting step S28 or the tentative design step S41 based on the determination in the determination step S26. ..
 この場合の解設定工程S28では、算出した回転角φr,nを用いて(65)式から曲げモーメントMj,nを算出する。 In the solution setting step S28 in this case, the bending moments M j and n are calculated from the equation (65) using the calculated rotation angles φ r and n.
〔5.3.ケース3(一対の端支点が剛接合)の場合の連続梁の評価方法〕
 この場合の評価方法S46では、複数の曲げモーメント及び複数の回転角を与条件に基づいて求める解決定工程S47を行う。
 解決定工程S47では、まず、前記第1設計工程S14を行う。第1設計工程S14が終了すると、ステップS49に移行する。
 次に、第2設計工程S49において、第2設計部114は一対の端支点12bでの接合状態に応じて第2境界条件を与える。ケース3の場合には、第2境界条件は、回転角φjl,1(φl,1、φ01)及び回転角φjr,n(φr,n)がそれぞれ0radであることである。すなわち、曲げモーメントMj,0,Mj,nは、未知数である。
 第2設計工程S49が終了すると、ステップS51に移行する。
[5.3. Evaluation method of continuous beam in case 3 (a pair of end fulcrums are rigid joints)]
In the evaluation method S46 in this case, the solution determination step S47 for obtaining a plurality of bending moments and a plurality of rotation angles based on the given conditions is performed.
In the solution determination step S47, first, the first design step S14 is performed. When the first design step S14 is completed, the process proceeds to step S49.
Next, in the second design step S49, the second design unit 114 gives a second boundary condition according to the joining state at the pair of end fulcrums 12b. In the case of Case 3, the second boundary condition is that the rotation angles φ jl, 1l, 1 , φ 01 ) and the rotation angles φ jr, nr, n ) are 0 rad, respectively. That is, the bending moments M j, 0 , M j, n are unknown.
When the second design step S49 is completed, the process proceeds to step S51.
 次に、仮設計工程S51において、仮設計部115は一対の端支点12bでの接合状態に応じて、中間支点12aに作用する曲げモーメントMj,iを含む仮設計値を与える。連続梁11がケース3の場合には、仮設計値としてさらに一対の端支点12bに作用する曲げモーメントMj,0,Mj,nを与える。
 仮設計工程S51が終了すると、記憶工程S20、解算出工程S22、残差算出工程S24、判定工程S26を行い、判定工程S26での判定に基づいて解設定工程S28又は仮設計工程S51に移行する。
 ただし、残差算出工程S24では、鉛直変位の計算結果δ0,calcは新たに計算せずに、鉛直変位の計算結果δ0,calcとして与条件で与えられる鉛直変位δの値であるとする。回転角φl,1は、新たに計算せずに0radであるとする。
 連続梁11がケース3の場合には、残差算出工程S24において、与条件であるφr,n=0を考慮して、(38)式においてx=Lとした(68)式から回転角φr,nを算出し、回転角φr,nの二乗に適切な重み係数(正の値)を乗じて、変位残差に加える。
Next, in the temporary design step S51, the temporary design unit 115 gives a temporary design value including bending moments M j and i acting on the intermediate fulcrum 12a according to the joining state at the pair of end fulcrums 12b. When the continuous beam 11 is the case 3, bending moments M j, 0 , M j, n acting on the pair of end fulcrums 12b are further given as temporary design values.
When the tentative design step S51 is completed, the storage step S20, the solution calculation step S22, the residual calculation step S24, and the determination step S26 are performed, and the process proceeds to the solution setting step S28 or the tentative design step S51 based on the determination in the determination step S26. ..
However, in the residual calculation step S24, the vertical displacement calculation result δ 0, calc is not newly calculated, and the vertical displacement calculation result δ 0, calc is the value of the vertical displacement δ 0 given under the given conditions. To do. It is assumed that the rotation angles φ l and 1 are 0 rad without new calculation.
If continuous beam 11 of the case 3, the residual calculation step S24, in consideration of the phi r, n = 0 is given condition, from x i = I was L i (68) In the formula (38) below The rotation angles φr and n are calculated, and the square of the rotation angles φr and n is multiplied by an appropriate weighting coefficient (positive value) and added to the displacement residual.
Figure JPOXMLDOC01-appb-M000030
Figure JPOXMLDOC01-appb-M000030
〔5.4.ケース4A(第1端支点がピン接合で第2端支点が半剛接合)の場合の連続梁の評価方法〕
 この場合の評価方法S56では、複数の曲げモーメント及び複数の回転角を与条件に基づいて求める解決定工程S57を行う。
 解決定工程S57では、まず、前記第1設計工程S14を行う。第1設計工程S14が終了すると、ステップS59に移行する。
 次に、第2設計工程S59において、第2設計部114は一対の端支点12bでの接合状態に応じて第2境界条件を与える。ケース4Aの場合には、第2境界条件は、曲げモーメントMj,0が0Nmであることと、(65)式である。すなわち、第2境界条件には回転角φ01が未知数であることが含まれる。
 第2設計工程S59が終了すると、ステップS61に移行する。
[5.4. Evaluation method of continuous beam in case 4A (first end fulcrum is pin joint and second end fulcrum is semi-rigid joint)]
In the evaluation method S56 in this case, the solution determination step S57 for obtaining a plurality of bending moments and a plurality of rotation angles based on the given conditions is performed.
In the solution determination step S57, first, the first design step S14 is performed. When the first design step S14 is completed, the process proceeds to step S59.
Next, in the second design step S59, the second design unit 114 gives a second boundary condition according to the joining state at the pair of end fulcrums 12b. In the case of Case 4A, the second boundary condition is that the bending moments M j and 0 are 0 Nm and the equation (65). That is, the second boundary condition includes that the rotation angle φ 01 is unknown.
When the second design step S59 is completed, the process proceeds to step S61.
 次に、仮設計工程S61において、仮設計部115は一対の端支点12bでの接合状態に応じて、中間支点12aに作用する曲げモーメントMj,iを含む仮設計値を与える。連続梁11がケース4Aの場合には、仮設計値としてさらに第1端支点12bでの回転角φl,1、第2端支点12bに作用する曲げモーメントMj,nを与える。
 仮設計工程S61が終了すると、記憶工程S20、解算出工程S22、残差算出工程S24、判定工程S26を行い、判定工程S26での判定に基づいて解設定工程S28又は仮設計工程S61に移行する。
Next, in the temporary design step S61, the temporary design unit 115 gives a temporary design value including bending moments M j and i acting on the intermediate fulcrum 12a according to the joining state at the pair of end fulcrums 12b. When the continuous beam 11 is the case 4A, the rotation angles φ l, 1 at the first end fulcrum 12b 1 and the bending moments M j, n acting on the second end fulcrum 12b 2 are further given as temporary design values.
When the tentative design step S61 is completed, the storage step S20, the solution calculation step S22, the residual calculation step S24, and the determination step S26 are performed, and the process proceeds to the solution setting step S28 or the tentative design step S61 based on the determination in the determination step S26. ..
〔5.5.ケース5A(第1端支点がピン接合で第2端支点が剛接合)の場合の連続梁の評価方法〕
 この場合の評価方法S66では、複数の曲げモーメント及び複数の回転角を与条件に基づいて求める解決定工程S67を行う。
 解決定工程S67では、まず、前記第1設計工程S14を行う。第1設計工程S14が終了すると、ステップS69に移行する。
 次に、第2設計工程S69において、第2設計部114は一対の端支点12bでの接合状態に応じて第2境界条件を与える。ケース5Aの場合には、第2境界条件は、曲げモーメントMj,0が0Nmであることと、回転角φr,nが0radであることである。すなわち、第2境界条件には回転角φ01が未知数であることが含まれる。第2設計工程S69が終了すると、前記仮設計工程S61を行う。
 これ以降は、一対の端支点12bでの接合状態がケース4Aの場合と同一なので、説明を省略する。ただし、連続梁11がケース5Aの場合には、残差算出工程S24では、前記適合条件が成り立つか否かを判定する際に、以下の工程を行う。すなわち、残差算出工程S24において、与条件であるφr,n=0を考慮して、(38)式においてx=Lとした(68)式から回転角φr,nを算出する。そして、回転角φr,nの二乗に適切な重み係数(正の値)を乗じて、変位残差に加える。
[5.5. Evaluation method of continuous beam in case 5A (first end fulcrum is pin joint and second end fulcrum is rigid joint)]
In the evaluation method S66 in this case, the solution determination step S67 for obtaining a plurality of bending moments and a plurality of rotation angles based on the given conditions is performed.
In the solution determination step S67, first, the first design step S14 is performed. When the first design step S14 is completed, the process proceeds to step S69.
Next, in the second design step S69, the second design unit 114 gives a second boundary condition according to the joining state at the pair of end fulcrums 12b. In the case of Case 5A, the second boundary condition is that the bending moments M j and 0 are 0 Nm and the rotation angles φ r and n are 0 rad. That is, the second boundary condition includes that the rotation angle φ 01 is unknown. When the second design step S69 is completed, the temporary design step S61 is performed.
From this point onward, since the joining state at the pair of end fulcrums 12b is the same as in the case of case 4A, the description thereof will be omitted. However, when the continuous beam 11 is the case 5A, the residual calculation step S24 performs the following steps when determining whether or not the conforming condition is satisfied. That is, in the residual calculation step S24, in consideration of the phi r, n = 0 is given condition, and calculates the rotation angle phi r, n from x i = was L i (68) In the formula (38) below .. Then, the square of the rotation angles φ r and n is multiplied by an appropriate weighting coefficient (positive value) and added to the displacement residual.
〔5.6.ケース6A(第1端支点が剛接合で第2端支点が半剛接合)の場合の連続梁の評価方法〕
 この場合の評価方法S76では、複数の曲げモーメント及び複数の回転角を与条件に基づいて求める解決定工程S77を行う。
 解決定工程S77では、まず、前記第1設計工程S14を行う。第1設計工程S14が終了すると、ステップS79に移行する。
 次に、第2設計工程S79において、第2設計部114は一対の端支点12bでの接合状態に応じて第2境界条件を与える。ケース6Aの場合には、第2境界条件は、回転角φl,1が0radであることと、(65)式である。すなわち、曲げモーメントMj,0は、未知数である。第2設計工程S79が終了すると、ステップS81に移行する。
[5.6. Evaluation method of continuous beam in case 6A (first end fulcrum is rigid joint and second end fulcrum is semi-rigid joint)]
In the evaluation method S76 in this case, the solution determination step S77 for obtaining a plurality of bending moments and a plurality of rotation angles based on the given conditions is performed.
In the solution determination step S77, first, the first design step S14 is performed. When the first design step S14 is completed, the process proceeds to step S79.
Next, in the second design step S79, the second design unit 114 gives a second boundary condition according to the joining state at the pair of end fulcrums 12b. In the case of case 6A, the second boundary condition is that the rotation angles φ l and 1 are 0 rad and the equation (65). That is, the bending moments M j and 0 are unknown. When the second design step S79 is completed, the process proceeds to step S81.
 次に、仮設計工程S81において、仮設計部115は一対の端支点12bでの接合状態に応じて、中間支点12aに作用する曲げモーメントMj,iを含む仮設計値を与える。連続梁11がケース6Aの場合には、仮設計値としてさらに一対の端支点12bに作用する曲げモーメントMj,0,Mj,nをそれぞれ与える。
 仮設計工程S81が終了すると、記憶工程S20、解算出工程S22、残差算出工程S24、判定工程S26を行い、判定工程S26での判定に基づいて解設定工程S28又は仮設計工程S81に移行する。ただし、連続梁11がケース6Aの場合には、残差算出工程S24では、前記適合条件が成り立つか否かを判定する際に、以下の工程を行う。すなわち、解算出工程S22で得られた回転角φr,nと、前記第2境界条件に含まれる(65)式と仮設計値のMj,nによって計算される回転角φr,nとの差の二乗に適切な重み係数(正の値)を乗じて、変位残差に加える。
Next, in the temporary design step S81, the temporary design unit 115 gives a temporary design value including bending moments M j and i acting on the intermediate fulcrum 12a according to the joining state at the pair of end fulcrums 12b. When the continuous beam 11 is the case 6A, bending moments M j, 0 , M j, and n acting on the pair of end fulcrums 12b are further given as temporary design values.
When the tentative design step S81 is completed, the storage step S20, the solution calculation step S22, the residual calculation step S24, and the determination step S26 are performed, and the process proceeds to the solution setting step S28 or the tentative design step S81 based on the determination in the determination step S26. .. However, when the continuous beam 11 is the case 6A, the residual calculation step S24 performs the following steps when determining whether or not the conforming condition is satisfied. That is, the rotation angles φr, n obtained in the solution calculation step S22, and the rotation angles φr , n calculated by the equation (65) included in the second boundary condition and the tentative design values Mj, n . Multiply the square of the difference by an appropriate weighting factor (positive value) and add it to the displacement residuals.
 以上説明したように、n本の梁13を備える連続梁11において、連続梁11が備える支点(中間支点12a及び端支点12b)の数は(n+1)である。各支点において、モーメント及び回転角が未知であることから、(n+1)×2の式により2(n+1)の未知数がある。すなわち、複数の未知数の数は、2(n+1)である。
 一方で、複数の回転剛性、複数の曲げモーメント、及び複数の回転角の関係式として、(n+1)の条件式が与えられる。
As described above, in the continuous beam 11 including the n beams 13, the number of fulcrums (intermediate fulcrum 12a and end fulcrum 12b) included in the continuous beam 11 is (n + 1). Since the moment and the angle of rotation are unknown at each fulcrum, there are 2 (n + 1) unknowns according to the equation (n + 1) × 2. That is, the number of the plurality of unknowns is 2 (n + 1).
On the other hand, the conditional expression (n + 1) is given as the relational expression of the plurality of rotational rigidity, the plurality of bending moments, and the plurality of rotation angles.
 第2境界条件を与える場合には、以下のようになる。
(1)連続梁11の端支点12bの少なくとも一方がピン接合の場合
 ピン接合されている端支点12bでの曲げモーメントが0であるため、ピン接合されている端支点12bの数(0以上2以下)だけ未知数が減る。これにより、ピン接合における回転角と曲げモーメントと回転剛性の式も、M=S×φの式において、M=S=0となる。このため回転角φは不定となり、ピン接合されている端支点12bの数だけ、第1境界条件による条件式が減る。
(2)連続梁11の端支点12bの少なくとも一方が剛接合の場合
 剛接合されている端支点12bでの回転角が0であるため、剛接合されている端支点12bの数(0以上2以下)だけ未知数が減る。これにより、剛接合における回転角と曲げモーメントと回転剛性の式も、M=S×φの式においてφ=0、S=∞(無限大)となる。このため曲げモーメントMは不定となり、剛接合されている端支点12bの数だけ第1境界条件による条件式が減る。
When the second boundary condition is given, it becomes as follows.
(1) When at least one of the end fulcrums 12b of the continuous beam 11 is pin-joined Since the bending moment at the pin-joined end fulcrum 12b is 0, the number of pin-joined end fulcrums 12b (0 or more 2). The unknown number decreases by the following). As a result, the equations of the angle of rotation, the bending moment, and the rotational rigidity in the pin joint also become M j = S j = 0 in the equation of M j = S j × φ j. Therefore, the rotation angle φ j becomes indefinite, and the conditional expression based on the first boundary condition is reduced by the number of pin-joined end fulcrums 12b.
(2) When at least one of the end fulcrums 12b of the continuous beam 11 is rigidly joined Since the rotation angle at the rigidly joined end fulcrum 12b is 0, the number of rigidly joined end fulcrums 12b (0 or more 2). The unknown number decreases by the following). As a result, the equations of the angle of rotation, the bending moment, and the rotational rigidity in the rigid joint also become φ j = 0 and S j = ∞ (infinity) in the equation of M j = S j × φ j. Therefore, the bending moment M j becomes indefinite, and the conditional expression based on the first boundary condition is reduced by the number of rigidly joined end fulcrums 12b.
 また、各支点の鉛直変位の与条件として、(n+1)の条件式が与えられる。
 端支点12bがピン接合又は剛接合であるという第2境界条件を与えることで、第2境界条件の数だけ、複数の未知数が減る。しかし、条件式が不定になり、第1境界条件の数が減る。
 この結果、複数の未知数の数と、複数の第1条件式の数と複数の第2条件式の数との和とは同数(一定)である、という条件が保たれる。
Further, as a condition for giving the vertical displacement of each fulcrum, the conditional expression (n + 1) is given.
By giving the second boundary condition that the end fulcrum 12b is a pin joint or a rigid joint, a plurality of unknowns are reduced by the number of the second boundary conditions. However, the conditional expression becomes indefinite, and the number of first boundary conditions decreases.
As a result, the condition that the number of the plurality of unknowns and the sum of the number of the plurality of first conditional expressions and the number of the plurality of second conditional expressions are the same (constant) is maintained.
 以上説明した、連続梁11がケース1からケース6の場合の評価方法を行うことにより、連続梁11の一対の端支点12bでの接合状態によらず、複数の曲げモーメント及び複数の回転角を与条件に基づいて求めることができる。
 なお、連続梁11の曲げモーメントは、(22)式において、(24)式で求めたせん断力Vjl,i、曲げモーメントMj,i等から、(70)式により得られる。
By performing the evaluation method when the continuous beam 11 is the case 1 to the case 6 described above, a plurality of bending moments and a plurality of rotation angles can be obtained regardless of the joint state at the pair of end fulcrums 12b of the continuous beam 11. It can be obtained based on the given conditions.
The bending moment of the continuous beam 11 is obtained by the equation (70) from the shearing force V jl, i , the bending moment M j, i, etc. obtained by the equation (24) in the equation (22).
Figure JPOXMLDOC01-appb-M000031
Figure JPOXMLDOC01-appb-M000031
 連続梁11のたわみ分布は、座標xの区間に応じて(42)式から(44)式により得られる。
 また、本実施形態の評価方法を用いて、連続梁11を設計する連続梁の設計方法を行ってもよい。
The deflection distribution of the continuous beam 11 can be obtained from Eqs. (42) to (44) according to the interval of the coordinates x i.
Further, the evaluation method of the present embodiment may be used to perform a continuous beam design method for designing the continuous beam 11.
〔6.評価例1〕
 発明者らは、前記差分進化法を用いて評価方法を行い、複数の曲げモーメント及び複数の回転角を与条件に基づいて求める評価プログラムを作成した。評価プログラムの入力シートCを図11に示す。入力シートCに入力する、主な連続梁11の諸元等について説明する。
 入力シートCにおいて、連続梁11の梁13の本数(Number of continuous beam span)nを、セルC1に入力する。この例では、nを5とした。収斂計算に用いる閾値(Threshold for ending convergence)を、セルC2に入力する。この例では、閾値を1.38×10-2mmとした。
 梁13から梁13の長さ(Span)Lを、それぞれセルC3に入力する。この例では、梁13から梁13の長さLを、それぞれ13800mm(13.8m)とした。
[6. Evaluation example 1]
The inventors performed an evaluation method using the differential evolution method, and created an evaluation program for obtaining a plurality of bending moments and a plurality of rotation angles based on given conditions. The input sheet C of the evaluation program is shown in FIG. The specifications and the like of the main continuous beams 11 to be input to the input sheet C will be described.
In the input sheet C, the number of continuous beam span n of the continuous beam 11 is input to the cell C1. In this example, n was set to 5. The threshold value for ending convergence used for the convergence calculation is input to cell C2. In this example, the threshold is 1.38 × 10 −2 mm 2 .
Length of the beam 13 5 from the beam 13 1 (Span) L i, respectively inputted to the cell C3. In this example, the length L i of the beam 13 5 from the beam 13 1, and a 13800mm (13.8m), respectively.
 梁13から梁13に作用する等分布荷重(Composite stage load)wを、それぞれセルC6に入力する。この例では、梁13から梁13に作用する等分布荷重wは互いに等しく、28.56kN/mとした。
 各中間支点12aでの鉛直変位δは、それぞれ0mとした。
 この例では、スラブコンクリート及び鉄骨の自重(構造質量×重力加速度、ww_SW)を、両端支点12b及び中間支点12aにおいてピン接合された純鉄骨架構の梁13で支持すると仮定した。この値を、セルC7に入力した。
 そして、連続梁11の供用開始後に梁13に積載された荷重は、コンクリート硬化後に半剛接合として挙動する接合部(中間支点12a)、及び両端支点12bにおいてピン接合で支持された合成梁(梁本体18と床17が一体で挙動する梁13)が支えるものと仮定した。
The uniformly distributed load (Composite stage load) w i applied from the beam 13 1 to the beam 13 5, respectively entered in the cell C6. In this example, a uniformly distributed load w i are equal to each other acting on the beam 13 5 from the beam 13 1, it was 28.56kN / m.
The vertical displacement δ i at each intermediate fulcrum 12a was set to 0 m.
In this example, it is assumed that the weight of the slab concrete and the steel frame (structural mass × gravitational acceleration, ww_SW) is supported by the beam 13 of the pure steel frame frame pin-joined at the fulcrums 12b at both ends and the intermediate fulcrum 12a. This value was entered in cell C7.
Then, the load loaded on the beam 13 after the continuous beam 11 is put into service is the joint portion (intermediate fulcrum 12a) that behaves as a semi-rigid joint after the concrete is hardened, and the composite beam (beam) supported by the pin joint at both end fulcrums 12b. It is assumed that the main body 18 and the floor 17 are supported by a beam 13) that behaves integrally.
 図12に、本評価プログラムを用いて評価した、第1端支点12bからの距離に対する連続梁11に作用する曲げモーメント分布の関係を示す。図12において、横軸は連続梁11における第1端支点12bから第2端支点12bに向かって移動した距離(mm)を表す。縦軸は、連続梁11に作用する曲げモーメント分布(kNm)を表す。
 実線で示した曲線L4は、コンクリート硬化後の積載荷重(等分布荷重)に対する曲げモーメント分布を表す。点線で示した曲線L5は、曲線L4で示した値に加えて、スラブコンクリート(コンクリート22)及び鉄骨(梁本体18)の自重による曲げモーメント分布を考慮した値を示す。すなわち、曲線L4は、構造体である連続梁11の質量を考慮しない場合の曲げモーメント分布を表す。
Figure 12 was evaluated using the evaluation program, shows the bending relationship moment distribution acting on the continuous beam 11 with respect to the distance from the first end supporting point 12b 1. In FIG. 12, the horizontal axis represents the distance (mm) moved from the first end fulcrum 12b 1 to the second end fulcrum 12b 2 in the continuous beam 11. The vertical axis represents the bending moment distribution (kNm) acting on the continuous beam 11.
The curve L4 shown by the solid line represents the bending moment distribution with respect to the load (equally distributed load) after the concrete is hardened. The curve L5 shown by the dotted line shows a value in consideration of the bending moment distribution due to the own weight of the slab concrete (concrete 22) and the steel frame (beam body 18) in addition to the value shown by the curve L4. That is, the curve L4 represents the bending moment distribution when the mass of the continuous beam 11 which is a structure is not taken into consideration.
 上方の部分が尖った白抜きの三角印(△)、及び下方の部分が尖った白抜きの三角印(▽)は、梁13の弾性限曲げ耐力を表す。白抜きの四角印(□)は、接合部(中間支点12a及び端支点12b)の弾性限曲げ耐力を表す。
 いずれの曲げモーメント分布も、梁13及び接合部の弾性限曲げ耐力以下であることが分かった。
The white triangle mark (Δ) with a sharp upper part and the white triangle mark (▽) with a sharp lower part represent the elastic limiting bending strength of the beam 13. The white square marks (□) represent the elastic limiting bending strength of the joints (intermediate fulcrum 12a and end fulcrum 12b).
It was found that both bending moment distributions were equal to or less than the elastic limiting bending strength of the beam 13 and the joint.
 図13に、本評価プログラムを用いて評価した、第1端支点12bからの距離に対する連続梁11の回転角分布の関係を示す。図13において、横軸は連続梁11における第1端支点12bから第2端支点12bに向かって移動した距離(mm)を表す。縦軸は、連続梁11の回転角分布(rad)を表す。
 連続梁11では、半剛接合されている中間支点12aにおいて回転剛性に応じた回転角が生じる。このため、回転角分布は、中間支点12aにおいて不連続である。例えば、図13中に、第3梁13の右端での回転角φr,3、及び第4梁13の左端での回転角φl,4を示す。回転角φr,3と回転角φl,4とは、不連続である。
 なお、中間支点12aにおける隣接する梁13同士の回転角の絶対値の差は、接合部の曲げモーメントの回転剛性に対する比により生じる。具体的には、回転剛性が小さく、曲げモーメントが大きいほど、中間支点12aにおける隣接する梁13同士の回転角の絶対値の和が大きくなる。
Figure 13 was evaluated using the evaluation program, shows the relationship between the rotational angle distribution of the continuous beam 11 with respect to the distance from the first end supporting point 12b 1. In FIG. 13, the horizontal axis represents the distance (mm) moved from the first end fulcrum 12b 1 to the second end fulcrum 12b 2 in the continuous beam 11. The vertical axis represents the rotation angle distribution (rad) of the continuous beam 11.
In the continuous beam 11, a rotation angle corresponding to the rotational rigidity is generated at the intermediate fulcrum 12a which is semi-rigidly joined. Therefore, the rotation angle distribution is discontinuous at the intermediate fulcrum 12a. For example, in FIG. 13, showing a rotational angle phi l, 4 in the left end of the third beam 13 3 of the rotation angle of the right end phi r, 3, and the fourth beam 13 4. The rotation angles φ r and 3 and the rotation angles φ l and 4 are discontinuous.
The difference in the absolute values of the rotation angles of the adjacent beams 13 at the intermediate fulcrum 12a is caused by the ratio of the bending moment of the joint to the rotational rigidity. Specifically, the smaller the rotational rigidity and the larger the bending moment, the larger the sum of the absolute values of the rotation angles of the adjacent beams 13 at the intermediate fulcrum 12a.
 図14に、本評価プログラムを用いて評価した、第1端支点12bからの距離に対する連続梁11のたわみ分布の関係を示す。図14において、横軸は連続梁11における第1端支点12bから第2端支点12bに向かって移動した距離(mm)を表す。縦軸は、連続梁11のたわみ分布(mm)を表す。片端がピン接合となる第1梁13及び第5梁13の最大たわみは、第2梁13、第3梁13、及び第4梁13の最大たわみよりも大きい。 Figure 14 was evaluated using the evaluation program, shows the relationship between the deflection distribution of the continuous beam 11 with respect to the distance from the first end supporting point 12b 1. In FIG. 14, the horizontal axis represents the distance (mm) moved from the first end fulcrum 12b 1 to the second end fulcrum 12b 2 in the continuous beam 11. The vertical axis represents the deflection distribution (mm) of the continuous beam 11. One end is the maximum of the first beam 13 1 and the fifth beam 13 5 as a pin joint deflection, the second beam 13 2, third beam 13 3, and a fourth beam 13 is larger than the fourth maximum deflection.
〔7.評価例2〕
 表2から表8に示す比較例、及び実施例1から3の連続梁に対して、連続梁の評価方法を行った。
[7. Evaluation example 2]
The evaluation method of the continuous beam was performed on the continuous beams of Comparative Examples shown in Tables 2 to 8 and Examples 1 to 3.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000035
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
 表2に示すように、連続梁の特性として、比較例、及び実施例1から3の連続梁が備える梁の数nは、それぞれ4とした。以下では、第1端支点側から数えてi本目の梁を第i梁とも言う。第1端支点側から数えてi番目の中間支点を第i中間支点とも言う。
 梁の長さは、比較例、実施例1及び2では、いずれの梁も15500mm(15.5m)とした。実施例3では、第1梁から第4梁の長さは、それぞれ13000mm、15500mm、14000mm、13000mmとした。
 比較例及び実施例1では、梁せいは617mmと仮定した。フランジ幅は230mm、ウェブ厚は13.1mm、フランジ厚は22.1mm、強軸回りの断面2次モーメントは1120000000mm(0.00112m)、梁の単位長さ当たりの質量は140kg/m、梁の鋼材の降伏強度は345N/mmと仮定した。
 実施例2及び3では、梁せいは600mmと仮定した。フランジ幅は250mm、ウェブ厚は9.0mm、フランジ厚は16.0mm、強軸回りの断面2次モーメントは831000000mm、梁の単位長さ当たりの質量は104kg/m、梁の鋼材の降伏強度は355N/mmと仮定した。
As shown in Table 2, as the characteristics of the continuous beams, the number n of the beams included in the continuous beams of Comparative Examples and Examples 1 to 3 was set to 4, respectively. Hereinafter, the i-th beam counting from the first end fulcrum side is also referred to as an i-beam. The i-th intermediate fulcrum counted from the first end fulcrum side is also called the i-th intermediate fulcrum.
The length of the beam was set to 15500 mm (15.5 m) for each of the beams in Comparative Examples, Examples 1 and 2. In Example 3, the lengths of the first beam to the fourth beam were 13000 mm, 15500 mm, 14000 mm, and 13000 mm, respectively.
In Comparative Example and Example 1, the beam length was assumed to be 617 mm. The flange width is 230 mm, the web thickness is 13.1 mm, the flange thickness is 22.1 mm, the moment of inertia of area around the strong axis is 1120000000 mm 4 (0.00112 m 4 ), and the mass per unit length of the beam is 140 kg / m. The yield strength of the steel material of the beam was assumed to be 345 N / mm 2.
In Examples 2 and 3, the beam length was assumed to be 600 mm. Flange width is 250 mm, web thickness is 9.0 mm, flange thickness is 16.0 mm, moment of inertia of area around the strong axis is 831000000 mm 4 , mass per unit length of the beam is 104 kg / m, yield strength of the steel material of the beam. Was assumed to be 355 N / mm 2.
 表3に示すように、スラブ(RCスラブ)の特性として、比較例、及び実施例1から3の連続梁のいずれにおいても、スラブ厚さは130mm、デッキプレート高さは52mmと仮定した。
 梁が負曲げされる部分(梁の両端部)の補強筋として、比較例、実施例1及び3では、径がD10の鉄筋を100mmピッチで配置した。実施例2では、径がD16の鉄筋を100mmピッチで配置した。
 梁同士が接合される接合部の補強筋として、実施例1及び3では、径がD10の鉄筋を100mmピッチで配置した。実施例2では、径がD16の鉄筋を100mmピッチで配置した。比較例では、接合部に補強筋を配置しなかった。
 比較例、及び実施例1から3で用いた鉄筋の鋼材の降伏強度は、435N/mmとした。
As shown in Table 3, as the characteristics of the slab (RC slab), it was assumed that the slab thickness was 130 mm and the deck plate height was 52 mm in both the comparative beam and the continuous beams of Examples 1 to 3.
In Comparative Examples, Examples 1 and 3, reinforcing bars having a diameter of D10 were arranged at a pitch of 100 mm as reinforcing bars for the portion where the beam is negatively bent (both ends of the beam). In Example 2, reinforcing bars having a diameter of D16 were arranged at a pitch of 100 mm.
In Examples 1 and 3, reinforcing bars having a diameter of D10 were arranged at a pitch of 100 mm as reinforcing bars at the joint where the beams are joined. In Example 2, reinforcing bars having a diameter of D16 were arranged at a pitch of 100 mm. In the comparative example, no reinforcing bar was placed at the joint.
The yield strength of the steel material of the reinforcing bar used in Comparative Examples and Examples 1 to 3 was 435 N / mm 2 .
 スラブの有効幅は、British Standards ”Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings”に基づいて定めた。なお、スラブの有効幅の定義はこれに限定されず、例えば「各種合成構造設計指針・同解説」、日本建築学会等に基づいて定めてもよい。
 この例では、例えば比較例の連続梁では、第1梁から第4梁に対するスラブの有効幅は、それぞれ3294mmとした。実施例1の連続梁では、第1梁から第4梁に対するスラブの有効幅は、3294mm、2713mm、2713mm、3294mm、とした。
The effective width of the slab was determined based on the British Standards "Eurocode 4: Design of composite steel and concrete structures --Part 1-1: General rules and rules for buildings". The definition of the effective width of the slab is not limited to this, and may be defined based on, for example, "Various Composite Structure Design Guidelines / Explanation", Architectural Institute of Japan, and the like.
In this example, for example, in the continuous beam of the comparative example, the effective width of the slab with respect to the first beam to the fourth beam was set to 3294 mm, respectively. In the continuous beam of Example 1, the effective widths of the slabs from the first beam to the fourth beam were set to 3294 mm, 2713 mm, 2713 mm, and 3294 mm.
 表4に示すように、連続梁の各支点での支持条件として、比較例の連続梁では、各端支点及び各中間支点でそれぞれピン接合とした。なお、ピン接合の場合の各支点での回転剛性は0になる。
 実施例1から3の連続梁では、各端支点でそれぞれピン接合とし、各中間支点でそれぞれ半剛接合とした。半剛接合の回転剛性は、表3の配筋及び有効幅に基づき、British Standards ”Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings”に記載された方法を用いて次の通り算出した。実施例1の連続梁では、第1中間支点から第3中間支点での回転剛性はそれぞれ108kNm/mrad、116kNm/mrad、108kNm/mradと算出した。実施例2の連続梁では、第1中間支点から第3中間支点での回転剛性はそれぞれ192kNm/mrad、242kNm/mrad、192kNm/mradと算出した。実施例3の連続梁では、第1中間支点から第3中間支点での回転剛性はそれぞれ103kNm/mrad、116kNm/mrad、102kNm/mradと算出した。
As shown in Table 4, as the support conditions at each fulcrum of the continuous beam, in the continuous beam of the comparative example, pin joining was performed at each end fulcrum and each intermediate fulcrum. In the case of pin joining, the rotational rigidity at each fulcrum becomes 0.
In the continuous beams of Examples 1 to 3, pin joints were made at each end fulcrum, and semi-rigid joints were made at each intermediate fulcrum. The rotational rigidity of semi-rigid joints is based on the reinforcement arrangement and effective width in Table 3, as described in British Standards "Eurocode 4: Design of composite steel and concrete structures --Part 1-1: General rules and rules for buildings". Was calculated as follows. In the continuous beam of Example 1, the rotational rigidity from the first intermediate fulcrum to the third intermediate fulcrum was calculated to be 108 kNm / mrad, 116 kNm / mrad, and 108 kNm / mrad, respectively. In the continuous beam of Example 2, the rotational rigidity from the first intermediate fulcrum to the third intermediate fulcrum was calculated to be 192 kNm / mrad, 242 kNm / mrad, and 192 kNm / mrad, respectively. In the continuous beam of Example 3, the rotational rigidity from the first intermediate fulcrum to the third intermediate fulcrum was calculated to be 103 kNm / mrad, 116 kNm / mrad, and 102 kNm / mrad, respectively.
 表5に示すように、梁の曲げ剛性として、表2の梁本体の断面寸法及び表3の有効幅に基づき、合成梁の正曲げと負曲げの曲げ剛性をそれぞれ下記の通り算出した。
 比較例の連続梁では、第1梁から第4梁のいずれにおいても、正曲げの曲げ剛性は555000kNm、負曲げの曲げ剛性は308000kNmと仮定した。
 実施例1の連続梁では、第1梁及び第4梁において、正曲げの曲げ剛性は555000kNm、負曲げの曲げ剛性は308000kNmと算出した。第2梁及び第3梁において、正曲げの曲げ剛性は525000kNm、負曲げの曲げ剛性は292000kNmと算出した。
 実施例2の連続梁では、第1梁及び第4梁において、正曲げの曲げ剛性は433594kNm、負曲げの曲げ剛性は241305kNmと算出した。第2梁及び第3梁において、正曲げの曲げ剛性は413095kNm、負曲げの曲げ剛性は232307kNmと算出した。
 実施例3の連続梁では、第1梁及び第4梁において、正曲げの曲げ剛性は415000kNm、負曲げの曲げ剛性は232000kNmと算出した。第2梁において、正曲げの曲げ剛性は413000kNm、負曲げの曲げ剛性は232000kNmと算出した。第3梁において、正曲げの曲げ剛性は402000kNm、負曲げの曲げ剛性は227000kNmと算出した。
As shown in Table 5, the flexural rigidity of the composite beam for forward bending and negative bending was calculated as follows, based on the cross-sectional dimensions of the beam body in Table 2 and the effective width in Table 3.
In the continuous beams of the comparative example, it was assumed that the bending rigidity of the forward bending was 555,000 kNm 2 and the bending rigidity of the negative bending was 308,000 kNm 2 in all of the first to fourth beams.
The continuous beam of Example 1, the first beam and the fourth beam, flexural rigidity of the positive bending 555000KNm 2, the bending stiffness of the negative bending was calculated as 308000kNm 2. In a second beam and a third beam, the bending rigidity of the positive bending 525000KNm 2, the bending stiffness of the negative bending was calculated as 292000KNm 2.
The continuous beam of Example 2, the first beam and the fourth beam, flexural rigidity of the positive bending 433594KNm 2, the bending stiffness of the negative bending was calculated as 241305KNm 2. In a second beam and a third beam, the bending rigidity of the positive bending 413095KNm 2, the bending stiffness of the negative bending was calculated as 232307KNm 2.
The continuous beam of Example 3, the first beam and the fourth beam, flexural rigidity of the positive bending 415000KNm 2, the bending stiffness of the negative bending was calculated as 232000kNm 2. In a second beam, the bending rigidity of the positive bending 413000KNm 2, the bending stiffness of the negative bending was calculated as 232000KNm 2. In the third beam, the bending rigidity of the positive bending 402000KNm 2, the bending stiffness of the negative bending was calculated as 227000kNm 2.
 表6に示すように、梁及び接合部の降伏曲げ耐力を設定した。例えば、比較例の連続梁では、第1梁の正曲げの降伏曲げ耐力は1750kNm、負曲げの降伏曲げ耐力は1415kNmと算出した。実施例1の連続梁では、第1梁の正曲げの降伏曲げ耐力は1750kNm、負曲げの降伏曲げ耐力は1415kNmと算出した。第1中間支点での負曲げの降伏曲げ耐力は、474kNmと算出した。
 積載荷重として、比較例、及び実施例1から3の連続梁のSDL(構造体を除く死荷重)はそれぞれ1.0kN/mと算出した。LL(活荷重)は、それぞれ4.5kN/mと算出した。
As shown in Table 6, the yield bending strength of the beam and the joint was set. For example, in the continuous beam of the comparative example, the yield bending strength of the first beam was calculated to be 1750 kNm and the yield bending strength of the negative bending was 1415 kNm. In the continuous beam of Example 1, the yield bending strength of the first beam was calculated to be 1750 kNm and the yield bending strength of the negative bending was 1415 kNm. The yield strength of the negative bending at the first intermediate fulcrum was calculated to be 474 kNm.
As the load, the SDL (dead load excluding the structure) of the continuous beams of Comparative Examples and Examples 1 to 3 was calculated to be 1.0 kN / m 2, respectively. The LL (live load) was calculated to be 4.5 kN / m 2 respectively.
 比較例、及び実施例1から3の連続梁に対して連続梁の評価方法を行った結果、表7及び表8に示す結果が得られた。 As a result of performing the evaluation method of the continuous beam for the continuous beams of Comparative Examples and Examples 1 to 3, the results shown in Tables 7 and 8 were obtained.
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
 表7に示すように、最大発生曲げモーメントは、例えば比較例の連続梁では、第1梁から第4梁のいずれにおいても、正曲げで1400kNmであり、負曲げで0kNmであった。各中間支点には、負曲げの曲げモーメントは作用しなかった。
 実施例1の連続梁では、第1梁に正曲げで1174kNmの曲げモーメントが作用し、負曲げで471kNmの曲げモーメントが作用した。第1中間支点には、負曲げで471kNmの曲げモーメントが作用した。
 連続梁の最大たわみは、比較例の連続梁では95mmであった。実施例1から3の連続梁では、それぞれ82mm、104mm、96mmであった。
As shown in Table 7, for example, in the continuous beam of the comparative example, the maximum generated bending moment was 1400 kNm in the forward bending and 0 kNm in the negative bending in all of the first to fourth beams. The bending moment of negative bending did not act on each intermediate fulcrum.
In the continuous beam of Example 1, a bending moment of 1174 kNm was applied to the first beam in the forward bending, and a bending moment of 471 kNm was applied in the negative bending. A bending moment of 471 kNm acted on the first intermediate fulcrum by negative bending.
The maximum deflection of the continuous beam was 95 mm for the continuous beam of the comparative example. In the continuous beams of Examples 1 to 3, they were 82 mm, 104 mm, and 96 mm, respectively.
 表8に示す曲げ耐力に対する発生曲げモーメントの割合は、値が0%から100%に近づくほど曲げ耐力に対して余裕が無いことを意味する。この割合は、比較例の連続梁では、梁の正曲げで80%であった。実施例1の連続梁では、梁の正曲げで68%、梁の負曲げで34%、梁同士の接合部の負曲げで99%であった。実施例2の連続梁では、梁の正曲げで83%、梁の負曲げで49%、梁同士の接合部の負曲げで66%であった。実施例3の連続梁では、梁の正曲げで58%、梁の負曲げで37%、梁同士の接合部の負曲げで88%であった。
 比較例の連続梁を基準とした梁の最大たわみ比は、値が100%から0%に近づくほど比較例の連続梁に対して最大たわみが小さいことを意味する。この比は、実施例1の連続梁では86%であった。実施例2の連続梁では110%であり、実施例3の連続梁では101%であった。
 比較例の連続梁を基準とした梁(鋼)の質量比は、値が100%から0%に近づくほど比較例の連続梁に対して梁を形成するのに必要な鋼材の質量が小さい、すなわち経済的な設計であることを意味する。
 この比は、実施例1の連続梁では100%であった。実施例2及び3の連続梁では、74%であった。
The ratio of the generated bending moment to the bending proof stress shown in Table 8 means that there is no margin for the bending proof stress as the value approaches from 0% to 100%. In the continuous beam of the comparative example, this ratio was 80% in the forward bending of the beam. In the continuous beam of Example 1, the forward bending of the beam was 68%, the negative bending of the beam was 34%, and the negative bending of the joint between the beams was 99%. In the continuous beam of Example 2, the forward bending of the beam was 83%, the negative bending of the beam was 49%, and the negative bending of the joint between the beams was 66%. In the continuous beam of Example 3, the forward bending of the beam was 58%, the negative bending of the beam was 37%, and the negative bending of the joint between the beams was 88%.
The maximum deflection ratio of the beam based on the continuous beam of the comparative example means that the closer the value is from 100% to 0%, the smaller the maximum deflection is with respect to the continuous beam of the comparative example. This ratio was 86% for the continuous beam of Example 1. It was 110% for the continuous beam of Example 2 and 101% for the continuous beam of Example 3.
As for the mass ratio of the beam (steel) based on the continuous beam of the comparative example, the closer the value is from 100% to 0%, the smaller the mass of the steel material required to form the beam with respect to the continuous beam of the comparative example. That is, it means that it is an economical design.
This ratio was 100% for the continuous beam of Example 1. In the continuous beams of Examples 2 and 3, it was 74%.
 本評価プログラムを用いて連続梁を評価した結果、比較例の連続梁に比べて実施例1の連続梁では、梁の質量は変わらないが、連続梁の最大たわみが(82-95)/95の式から14%減ることが分かった。
 比較例の連続梁に比べて実施例2の連続梁では、連続梁の最大たわみが(104-95)/95の式から10%増え、曲げ耐力に対する発生曲げモーメントの割合が80~83%で同等であるが、梁の質量は(104-140)/140の式から26%減ることが分かった。
 比較例の連続梁に比べて実施例3の連続梁では、連続梁の最大たわみが95~96mmで同等であるが、梁の質量は(104-140)/140の式から26%減ることが分かった。
As a result of evaluating the continuous beam using this evaluation program, the mass of the beam does not change in the continuous beam of Example 1 as compared with the continuous beam of the comparative example, but the maximum deflection of the continuous beam is (82-95) / 95. It was found that it was reduced by 14% from the formula of.
In the continuous beam of Example 2, the maximum deflection of the continuous beam is increased by 10% from the equation of (104-95) / 95 as compared with the continuous beam of the comparative example, and the ratio of the generated bending moment to the bending strength is 80 to 83%. Equivalent, but the beam mass was found to be reduced by 26% from the equation (104-140) / 140.
In the continuous beam of Example 3, the maximum deflection of the continuous beam is equivalent to 95 to 96 mm as compared with the continuous beam of the comparative example, but the mass of the beam can be reduced by 26% from the equation (104-140) / 140. Do you get it.
 鉄骨梁とコンクリートスラブ等の異種材料が接合された梁(合成梁)は、曲げられる方向によって剛性と耐力が異なる。この理由は、コンクリートと鋼材の応力ひずみ関係が異なること、コンクリートが圧縮耐力に比べ引張耐力が小さく、材料特性が力の方向に依存するためである。このような梁の剛性を考慮して曲げモーメント分布と耐力を評価する場合、陽な解が得られず、収斂計算によって求める必要があった。さらに、連続梁の端が半剛接合によって支持される場合、解を同定するための式がより複雑になる。従って、設計実務で用いるには煩雑すぎるという問題があった。
 従って、多くの連続梁の評価では、端支点での接合状態がピン接合あるいは剛接合と仮定している。そして、梁の剛性(スラブの合成効果)を考慮しないか、考慮したとしても精度の良い評価式がない。このため、連続梁の設計において安全率を大きくとり、連続梁の設計をする際の経済効果が得られにくい課題があった。
Beams (synthetic beams) in which different materials such as steel beams and concrete slabs are joined differ in rigidity and yield strength depending on the bending direction. The reason for this is that the stress-strain relationship between concrete and steel is different, the tensile strength of concrete is smaller than the compressive strength, and the material properties depend on the direction of the force. When evaluating the bending moment distribution and proof stress in consideration of the rigidity of such a beam, an explicit solution could not be obtained, and it was necessary to obtain it by convergence calculation. Moreover, if the ends of the continuous beam are supported by semi-rigid joints, the equation for identifying the solution becomes more complicated. Therefore, there is a problem that it is too complicated to be used in design practice.
Therefore, in the evaluation of many continuous beams, it is assumed that the joint state at the end fulcrum is pin joint or rigid joint. Then, the rigidity of the beam (composite effect of the slab) is not taken into consideration, or even if it is taken into consideration, there is no accurate evaluation formula. For this reason, there is a problem that a large safety factor is taken in the design of the continuous beam and it is difficult to obtain an economic effect when designing the continuous beam.
 これに対して、本実施形態の評価方法及び評価プログラム127によれば、複数の未知数の数と複数の第1境界条件の数とが同数である。このため、与条件として与えられた梁13の長さ及び曲げ剛性、複数の回転剛性、鉛直荷重、及び複数の鉛直変位に基づいて複数の第1境界条件を満たすように複数の未知数を解く。この方法により、複数の未知数に含まれる複数の曲げモーメント及び複数の回転角を求めることができる。
 そして、求めた複数の曲げモーメント及び複数の回転角から、複数の鉛直変位の関係式に基づいて複数の鉛直変位を算出する。この方法により、一対の端支点12bでの接合状態に応じて、連続梁11の曲げモーメントやたわみ分布をより適切に評価することができる。従って、たわみを適切に評価することができる。
 以上の工程により、連続梁11の評価が過大評価及び過小評価になることを避けることができる。
On the other hand, according to the evaluation method and the evaluation program 127 of the present embodiment, the number of the plurality of unknowns and the number of the plurality of first boundary conditions are the same. Therefore, a plurality of unknowns are solved so as to satisfy a plurality of first boundary conditions based on the length and flexural rigidity of the beam 13, a plurality of rotational rigidity, a plurality of vertical loads, and a plurality of vertical displacements given as given conditions. By this method, a plurality of bending moments and a plurality of rotation angles included in a plurality of unknowns can be obtained.
Then, a plurality of vertical displacements are calculated from the obtained plurality of bending moments and a plurality of rotation angles based on the relational expressions of the plurality of vertical displacements. By this method, the bending moment and the deflection distribution of the continuous beam 11 can be evaluated more appropriately according to the joint state at the pair of end fulcrums 12b. Therefore, the deflection can be appropriately evaluated.
By the above steps, it is possible to prevent the evaluation of the continuous beam 11 from being overestimated and underestimated.
 本実施形態では、コンクリートスラブと鉄骨梁からなり正曲げと負曲げの曲げ剛性が異なる梁で構成される連続梁11が中間支点12aに有限な回転剛性を持つ接合部(半剛接合)を有する場合(半剛連続梁)の評価方法を提案した。この評価方法によれば、任意の位置における曲げモーメント分布、回転角分布、及びたわみ分布を、接合部の曲げモーメントの値を用いて表す。そして、第1境界条件を考慮した最適化計算によって、接合部の曲げモーメントの値を同定し、設計における必要性能(設計用曲げモーメント分布、接合部の回転角)、及び梁のたわみ分布を導出することができる。 In the present embodiment, the continuous beam 11 composed of a concrete slab and a steel beam and having different bending rigidity between normal bending and negative bending has a joint portion (semi-rigid joint) having a finite rotational rigidity at the intermediate fulcrum 12a. A method for evaluating the case (semi-rigid continuous beam) was proposed. According to this evaluation method, the bending moment distribution, the rotation angle distribution, and the deflection distribution at an arbitrary position are represented by using the value of the bending moment at the joint. Then, the value of the bending moment of the joint is identified by the optimization calculation considering the first boundary condition, and the required performance in the design (bending moment distribution for design, rotation angle of the joint) and the deflection distribution of the beam are derived. can do.
 解決定工程では、第1設計工程S14、第2設計工程、仮設計工程、解算出工程S22、残差算出工程S24、及び判定工程S26を行う。判定工程S26において変位残差が閾値よりも小さいか否かを判定することにより、仮設計値に基づいて算出された計算値を、設計値及び変位残差に基づいて評価することができる。
 判定工程S26において、変位残差が閾値以上であるときには、記憶工程S20で記憶された仮設計値に代えて仮設計工程で他の新たな仮設計値を与えること、及び、この新たな仮設計値に基づいて解算出工程S22、残差算出工程S24、判定工程S26を行うこと、を組にする。そして、この組を、判定工程S26において変位残差が閾値よりも小さいと判定されるまで繰り返す。従って、曲げモーメントを精度良く算出することができ、この曲げモーメントに基づいて複数の回転角を求めることができる。
In the solution determination process, the first design process S14, the second design process, the temporary design process, the solution calculation process S22, the residual calculation process S24, and the determination process S26 are performed. By determining whether or not the displacement residual is smaller than the threshold value in the determination step S26, the calculated value calculated based on the provisional design value can be evaluated based on the design value and the displacement residual.
In the determination step S26, when the displacement residual is equal to or greater than the threshold value, another new temporary design value is given in the temporary design step instead of the temporary design value stored in the storage step S20, and this new temporary design The solution calculation step S22, the residual calculation step S24, and the determination step S26 are performed based on the values. Then, this set is repeated until it is determined in the determination step S26 that the displacement residual is smaller than the threshold value. Therefore, the bending moment can be calculated with high accuracy, and a plurality of rotation angles can be obtained based on the bending moment.
 鉛直変位の計算結果δi,calcを、(24)式等を用いて、(44)式においてx=Lとした式により算出する。これにより、中間支点12a及び一対の端支点12bにおける複数の鉛直変位を、数式を用いて精度良く評価することができる。 The calculation results [delta] i, calc of vertical displacement, with (24) or the like, is calculated by the equation which was x i = L i In equation (44). As a result, a plurality of vertical displacements at the intermediate fulcrum 12a and the pair of end fulcrums 12b can be evaluated with high accuracy using a mathematical formula.
 以上、本発明の第1実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。さらに、各実施形態で示した構成のそれぞれを適宜組み合わせて利用できることは、言うまでもない。
 例えば、前記実施形態の評価方法では、判定工程S26における判定に基づいて、解設定工程S28又は仮設計工程に移行しなくてもよい。この場合、評価方法で記憶工程S20は行われない。
Although the first embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and changes and combinations of configurations within a range that does not deviate from the gist of the present invention, Deletion etc. are also included. Further, it goes without saying that each of the configurations shown in each embodiment can be used in combination as appropriate.
For example, in the evaluation method of the above-described embodiment, it is not necessary to shift to the solution setting step S28 or the tentative design step based on the determination in the determination step S26. In this case, the storage step S20 is not performed by the evaluation method.
 梁13では、正曲げの曲げ剛性と負曲げの曲げ剛性とが互いに等しいとしてもよい。
 端支持部は第2大梁31であるとしたが、端支持部は他の建築物等の剛体でもよい。
In the beam 13, the bending rigidity of the forward bending and the bending rigidity of the negative bending may be equal to each other.
Although the end support portion is assumed to be the second girder 31, the end support portion may be a rigid body such as another building.
(第2実施形態)
 次に、本発明の第2実施形態に係る合成梁の評価方法について図15から図24を参照しながら説明するが、前記実施形態と同一の部位には同一の符号を付してその説明は省略し、異なる点についてのみ説明する。
(Second Embodiment)
Next, the evaluation method of the composite beam according to the second embodiment of the present invention will be described with reference to FIGS. 15 to 24, but the same parts as those in the above embodiment are designated by the same reference numerals and the description thereof will be described. It will be omitted and only the differences will be explained.
〔1.両端が半剛接合された合成梁〕
 本実施形態の合成梁の評価方法は、例えば、図15に示す建築物201を構成する合成梁211を評価するのに用いられる。
 この例では、合成梁211は、床212と、梁(小梁)213と、を備えている。なお、合成梁211の構成はこの例に限定されない。
 床212は、いわゆる合成スラブであり、梁13により下方から支持されている。床212は、デッキプレート216と、デッキプレート216上に配置されたRC(Reinforced Concrete)スラブ217と、を備えている。
 デッキプレート216の凹凸形状は、水平面に沿う方向であって、梁213が延びる方向とは直交する方向に延びている。
 RCスラブ217は、コンクリート218と、鉄筋219と、を備えている。コンクリート218は、上下方向が厚さ方向となる板状に形成されている。コンクリート218は、デッキプレート216により下方から支持されている。
 鉄筋219は、水平面に沿って延びていて、コンクリート218内に埋設されている。例えば、鉄筋219は、平面視で格子状に配置されている。
[1. Synthetic beam with semi-rigid joints at both ends]
The synthetic beam evaluation method of the present embodiment is used, for example, to evaluate the synthetic beam 211 constituting the building 201 shown in FIG.
In this example, the composite beam 211 includes a floor 212 and a beam (small beam) 213. The configuration of the composite beam 211 is not limited to this example.
The floor 212 is a so-called synthetic slab and is supported from below by the beams 13. The floor 212 includes a deck plate 216 and an RC (Reinforced Concrete) slab 217 arranged on the deck plate 216.
The uneven shape of the deck plate 216 extends in a direction along the horizontal plane and in a direction orthogonal to the direction in which the beam 213 extends.
The RC slab 217 includes concrete 218 and reinforcing bars 219. The concrete 218 is formed in a plate shape in which the vertical direction is the thickness direction. The concrete 218 is supported from below by the deck plate 216.
Reinforcing bars 219 extend along a horizontal plane and are buried in concrete 218. For example, the reinforcing bars 219 are arranged in a grid pattern in a plan view.
 梁213はH形鋼で形成され、水平面に沿って延びている。梁213の上フランジには、スタッド221の下端部が固定されている。スタッド221は、デッキプレート216を貫通している。スタッド221の上端部は、コンクリート218内に埋設されている。
 梁213の両端は、水平面に沿って延びる大梁224にそれぞれ半剛接合されている。大梁224は、梁213に直交する方向に延びている。梁213と大梁224との半剛接合は、例えばシアプレート225及びボルト226等により行われている。
 大梁224の端部は、柱228により下方から支持されている。
The beam 213 is made of H-section steel and extends along a horizontal plane. The lower end of the stud 221 is fixed to the upper flange of the beam 213. The stud 221 penetrates the deck plate 216. The upper end of the stud 221 is embedded in concrete 218.
Both ends of the beam 213 are semi-rigidly joined to the girder 224 extending along the horizontal plane. The girder 224 extends in a direction orthogonal to the beam 213. The semi-rigid joint between the beam 213 and the girder 224 is performed by, for example, a shear plate 225 and a bolt 226.
The end of the girder 224 is supported from below by columns 228.
 以下では、このように構成された合成梁211の評価方法について説明する。 The evaluation method of the composite beam 211 configured in this way will be described below.
〔2.両端が半剛接合された合成梁のたわみの微分方程式(厳密解)〕
 以下の検討は、全て合成梁の弾性範囲に限定する。
 図16に示すように、合成梁を模式化する。
 合成梁に沿って右向きに座標x(mm)を規定する。合成梁の左端の位置を、座標xの原点と規定する。合成梁の長さが、L(mm)であると仮定する。境界条件(前提条件)として、合成梁は、両端がそれぞれ半剛接合されていると仮定する。合成梁には、全長にわたって下方向きの等分布荷重w(N/mm:ニュートン・パー・ミリメートル)が作用すると仮定する。
 合成梁の両端の接合部の回転剛性をS(Nmm/rad:ニュートンミリメートル・パー・ラジアン)、合成梁の端における回転角を、図16に示す正面視における時計回りを正としてθ(rad:ラジアン)とする。
 このとき、合成梁の端における曲げモーメントの絶対値(端部の半剛接合部のモーメント。以下、半剛接モーメントという。)M(Nmm)は、(111)式で表される。
[2. Differential equation of deflection of synthetic beam with semi-rigid joint at both ends (exact solution)]
The following studies are all limited to the elastic range of synthetic beams.
As shown in FIG. 16, the composite beam is modeled.
The coordinates x (mm) are defined to the right along the composite beam. The position of the left end of the composite beam is defined as the origin of the coordinates x. It is assumed that the length of the composite beam is L (mm). As a boundary condition (precondition), it is assumed that both ends of the composite beam are semi-rigidly joined. It is assumed that a downward evenly distributed load w (N / mm: Newton per millimeter) acts on the composite beam over the entire length.
The rotational rigidity of the joints at both ends of the composite beam is S j (Nmm / rad: Newton millimeter per radian), the rotation angle at the end of the composite beam is θ j (positive in the front view shown in FIG. 16). rad: Radian).
At this time, the absolute value of the bending moment at the end of the composite beam (the moment of the semi-rigid joint at the end; hereinafter referred to as the semi-rigid contact moment) M j (N mm) is expressed by the equation (111).
Figure JPOXMLDOC01-appb-M000039
Figure JPOXMLDOC01-appb-M000039
 合成梁の座標xに沿う曲げモーメントの分布M(x)(Nmm)は、合成梁の梁の下フランジに引張応力が作用するときの曲げモーメントを正とすると、力の釣り合い条件から(112)式で表される。 The distribution of bending moments M (x) (Nmm) along the coordinates x of the composite beam is (112) from the force balance condition, assuming that the bending moment when tensile stress acts on the lower flange of the composite beam is positive. It is represented by an expression.
Figure JPOXMLDOC01-appb-M000040
Figure JPOXMLDOC01-appb-M000040
 合成梁の曲率φ(rad/mm)は、合成梁に作用する曲げモーメントM(Nmm)と、合成梁の曲げ剛性EI(Nmm)と、を用いて表せる。合成梁は、コンクリートの作用により、正曲げ(下に凸)の曲げ剛性と負曲げ(上に凸)の曲げ剛性とが互いに異なる。このため、合成梁の正曲げの曲げ剛性をEI(Nmm)とし、合成梁の負曲げの曲げ剛性をEI(Nmm)とする。そして、図17に示すように、座標xが0以上L以下の範囲、及びL以上L以下の範囲で合成梁が負曲げされるとする。ただし、Lは0よりも大きく、LはLよりも大きくLよりも小さい。座標xがL以上L以下の範囲で、合成梁が正曲げされるとする。
 このとき、(112)式が0となる時のxの解が、L及びLである。
 合成梁の曲率φは、合成梁が正曲げされる領域と、合成梁が負曲げされる領域と、に分けて、(113)式及び(114)式で表される。
The curvature φ (rad / mm) of the composite beam can be expressed by using the bending moment M (N mm) acting on the composite beam and the flexural rigidity EI (Nmm 2) of the composite beam. Due to the action of concrete, the flexural rigidity of forward bending (convex downward) and the bending rigidity of negative bending (convex upward) of synthetic beams are different from each other. Therefore, the bending rigidity of the forward bending of the composite beam is defined as EI s (N mm 2 ), and the bending rigidity of the negative bending of the composite beam is defined as EI h (N mm 2 ). Then, as shown in FIG. 17, it is assumed that the composite beam is negatively bent in the range where the coordinates x are 0 or more and L 1 or less, and L 2 or more and L or less. However, L 1 is greater than 0 and L 2 is greater than L 1 and less than L. It is assumed that the composite beam is bent forward in the range where the coordinates x are L 1 or more and L 2 or less.
At this time, the solutions of x when Eq. (112) becomes 0 are L 1 and L 2 .
The curvature φ of the composite beam is divided into a region where the composite beam is bent forward and a region where the composite beam is negatively bent, and is expressed by equations (113) and (114).
Figure JPOXMLDOC01-appb-M000041
Figure JPOXMLDOC01-appb-M000041
 (112)式の右辺が0に等しいとした式をxについて解くと、L及びLが(115)式及び(116)式の通り求まる。 When the equation (112) in which the right side is equal to 0 is solved for x, L 1 and L 2 can be obtained as in equations (115) and (116).
Figure JPOXMLDOC01-appb-M000042
Figure JPOXMLDOC01-appb-M000042
 次に、合成梁の回転角θ(x)(rad)を、水平面に対し時計回りの回転を正(+)として説明する。回転角θ(x)は、(113)式及び(114)式の曲率φを座標xで積分すること等により得られる。さらに、回転角θ(x)は、座標xが0のときに回転角θがθになる境界条件を考慮して、(119)式を用いて、(120)式から(122)式のように表される。 Next, the rotation angle θ (x) (rad) of the composite beam will be described with the clockwise rotation with respect to the horizontal plane as positive (+). The rotation angle θ (x) can be obtained by integrating the curvature φ of the equations (113) and (114) with the coordinates x and the like. Further, the rotation angle θ (x) is calculated from the equations (120) to (122) by using the equation (119) in consideration of the boundary condition that the rotation angle θ becomes θ j when the coordinate x is 0. It is expressed as.
Figure JPOXMLDOC01-appb-M000043
Figure JPOXMLDOC01-appb-M000043
 次に、合成梁に生じるたわみδ(x)(mm)を、鉛直下向きを正(+)として説明する。たわみδ(x)は、(120)式から(122)式の回転角θを座標xで積分すること等により得られる。さらに、たわみδ(x)は、座標xが0のときにたわみδ(x)が0になる境界条件を考慮して、(125)式及び(126)式を用いて、(127)式から(129)式のように表される。 Next, the deflection δ (x) (mm) generated in the composite beam will be described with the vertical downward direction as positive (+). The deflection δ (x) can be obtained by integrating the rotation angles θ of the equations (120) to (122) with the coordinates x and the like. Further, the deflection δ (x) is obtained from the equation (127) by using the equations (125) and (126) in consideration of the boundary condition that the deflection δ (x) becomes 0 when the coordinate x is 0. It is expressed as in equation (129).
Figure JPOXMLDOC01-appb-M000044
Figure JPOXMLDOC01-appb-M000044
 以上で求めた(127)式から(129)式は、半剛接モーメントM及び回転角θを含む形で表されている。しかし、このままでは、任意の回転剛性Sに対して、半剛接モーメントM及び回転角θが一義的に決まらない。ここでさらに、座標xが(L/2)のときに回転角θが0radになるという変形の適合条件を用いると、(111)式及び(121)式から、回転剛性Sと回転角θとの関係が、(130)式のように表される。 Equations (127) to (129) obtained above are expressed in a form including a semi-rigid contact moment M j and a rotation angle θ j. However, as it is, the semi- rigid contact moment M j and the rotation angle θ j cannot be uniquely determined with respect to the arbitrary rotational rigidity S j. Further, if the conforming condition of the deformation that the rotation angle θ becomes 0 rad when the coordinate x is (L / 2) is used, the rotation rigidity S j and the rotation angle θ can be obtained from the equations (111) and (121). The relationship with j is expressed as in Eq. (130).
Figure JPOXMLDOC01-appb-M000045
Figure JPOXMLDOC01-appb-M000045
 また、座標xがLのときにたわみδ(x)が0になるという、変形の適合条件を用いる。すると、(111)式及び(129)式から、回転剛性Sと回転角θとの関係が、(131)式のように表される。
 なお、(130)式は(131)式と等価である。
Further, when the coordinate x is L, the deflection δ (x) becomes 0, which is the conformity condition of the deformation. Then, from the equations (111) and (129) , the relationship between the rotational rigidity S j and the rotation angle θ j is expressed as in the equation (131).
The equation (130) is equivalent to the equation (131).
Figure JPOXMLDOC01-appb-M000046
Figure JPOXMLDOC01-appb-M000046
 合成梁に生じるたわみの最大値δmaxは、(128)式における座標xが(L/2)のときの値となる。
 前記(130)式又は(131)式を用いてたわみの最大値δmaxを算出するためには、(130)式又は(131)式を用いて収斂計算を行って回転角θを算出する必要がある。さらに(128)式を用いて、座標xが(L/2)のときのたわみδ(x)を算出する必要がある。
The maximum value δ max of the deflection generated in the composite beam is the value when the coordinate x in the equation (128) is (L / 2).
In order to calculate the maximum value δ max of the deflection using the above equation (130) or (131), the convergence calculation is performed using the equation (130) or the equation (131) to calculate the rotation angle θ j. There is a need. Further, it is necessary to calculate the deflection δ (x) when the coordinate x is (L / 2) by using the equation (128).
〔3.両端が半剛接合された合成梁のたわみの近似式〕
 発明者らは無次元化された値である無次元化回転剛性及び無次元化曲げ剛性に基づいてたわみの最大値δmaxを評価することにより、以下のようになることを見出した。すなわち、合成梁の仕様によらずに、端部曲げモーメント及びたわみの最大値δmaxを汎用性高く、かつ収斂計算を行わずに精度良く算出できる。
 以下では、端部曲げモーメント及びたわみの最大値を陽関数により算出できる近似式について説明する。
[3. Approximate formula for deflection of synthetic beams with semi-rigid joints at both ends]
The inventors have found that by evaluating the maximum value δ max of the deflection based on the non-dimensionalized rotational rigidity and the non-dimensionalized flexural rigidity, the following results are obtained. That is, regardless of the specifications of the composite beam, the maximum value δ max of the end bending moment and the deflection can be calculated with high versatility and with high accuracy without performing the convergence calculation.
In the following, an approximate expression that can calculate the maximum values of the end bending moment and the deflection by an explicit function will be described.
 (135)式及び(136)式のように、無次元化曲げ剛性α及び無次元化回転剛性αを規定した。 As in Eqs. (135) and (136), the dimensionless flexural rigidity α s and the dimensionless rotational rigidity α j are defined.
Figure JPOXMLDOC01-appb-M000047
Figure JPOXMLDOC01-appb-M000047
 すなわち、無次元化曲げ剛性αは、合成梁の正曲げの曲げ剛性及び合成梁の負曲げの曲げ剛性の比であると規定される。この例では、無次元化曲げ剛性αは、合成梁の負曲げの曲げ剛性EIに対する、合成梁の正曲げの曲げ剛性EIの比であると規定される。この場合、無次元化曲げ剛性αは、一般に1以上の値をとる。これは、通常床は梁の鉛直方向上方にあり、床のコンクリートは引張抵抗より圧縮抵抗が大きい。このため、床のコンクリートが引張られる負曲げに比べ、圧縮される正曲げに対して床の抵抗が大きくなるからである。一般的な合成梁の仕様では、無次元化曲げ剛性αは10以下であり、より一般的に用いられる合成梁では無次元化曲げ剛性αは3以下である。
 なお、無次元化曲げ剛性αは、合成梁の正曲げの曲げ剛性EIに対する、合成梁の負曲げの曲げ剛性EIの比であると規定してもよい。
 無次元化回転剛性αは、合成梁の端における回転剛性を、合成梁の単位長さ当たりの曲げ剛性で除した値である。
That is, the non-dimensional bending rigidity α s is defined as the ratio of the bending rigidity of the forward bending of the synthetic beam to the bending rigidity of the negative bending of the synthetic beam. In this example, the non-dimensional bending rigidity α s is defined as the ratio of the bending rigidity EI s of the positive bending of the synthetic beam to the bending rigidity EI h of the negative bending of the synthetic beam. In this case, the dimensionless flexural rigidity α s generally takes a value of 1 or more. This is because the floor is usually above the vertical direction of the beam, and the concrete of the floor has a higher compressive resistance than the tensile resistance. For this reason, the resistance of the floor to the positive bending that is compressed is larger than that of the negative bending in which the concrete of the floor is pulled. In the specifications of a general composite beam, the dimensionless bending rigidity α s is 10 or less, and in a more commonly used composite beam, the dimensionless bending rigidity α s is 3 or less.
The non-dimensional bending rigidity α s may be defined as the ratio of the bending rigidity EI h of the negative bending of the synthetic beam to the bending rigidity EI s of the forward bending of the synthetic beam.
The non-dimensional rotational rigidity α j is a value obtained by dividing the rotational rigidity at the end of the synthetic beam by the bending rigidity per unit length of the synthetic beam.
 さらに、ピン接モーメントM、半剛接モーメントM、剛接モーメントMjr、無次元化接合部モーメントβMj、及び無次元化剛接モーメントβMj,rigidを規定した。
 ピン接モーメントMは、正曲げの曲げ剛性と負曲げの曲げ剛性とが互いに異なる合成梁において、両端がそれぞれピン接合されて全長にわたって等分布荷重が作用すると仮定したときに規定される。ピン接モーメントMは、合成梁に作用する曲げモーメントの最大値のことを意味する。ピン接モーメントMは、(137)式で表される。
 なお、ピン接モーメントMは、正曲げの曲げ剛性と負曲げの曲げ剛性とが互いに等しい梁における以下の値に等しい。ピン接モーメントMは、両端がそれぞれピン接合されて全長にわたって等分布荷重が作用するとしたときの前記梁の端に作用する曲げモーメントに等しい。具体的には、ピン接モーメントMは、(wL/8)の式による値である。
Further, defined pin contact moment M o, HanTsuyoshise' moment M j, rigid connection moment M jr, dimensionless joint moment beta Mj, and dimensionless KaTsuyoshise' moment beta Mj, the rigid.
The pin contact moment Mo is defined when it is assumed that in a composite beam in which the bending rigidity of the forward bending and the bending rigidity of the negative bending are different from each other, both ends are pin-joined and an evenly distributed load acts over the entire length. The pin contact moment Mo means the maximum value of the bending moment acting on the composite beam. The pin contact moment Mo is expressed by the equation (137).
The pin contact moment Mo is equal to the following value in a beam in which the bending rigidity of the forward bending and the bending rigidity of the negative bending are equal to each other. The pin contact moment Mo is equal to the bending moment acting on the end of the beam when both ends are pin-joined and an evenly distributed load acts over the entire length. Specifically, the pin contact moment M o is the value according to equation (wL 2/8).
Figure JPOXMLDOC01-appb-M000048
Figure JPOXMLDOC01-appb-M000048
 半剛接モーメントMは、上述のように、合成梁の端における曲げモーメントの絶対値である。半剛接モーメントMは、より具体的には、正曲げの曲げ剛性と負曲げの曲げ剛性とが互いに異なる合成梁において、両端がそれぞれ半剛接合されて全長にわたって等分布荷重が作用する合成梁の端に作用する曲げモーメントのことを意味する。半剛接モーメントMは、(130)式又は(131)式を用いて収斂計算を行って算出した回転角θを用い、(138)式で表される。 As described above, the semi-rigid contact moment M j is the absolute value of the bending moment at the end of the composite beam. More specifically, the semi-rigid contact moment M j is a composite beam in which both ends are semi-rigidly joined and an evenly distributed load acts over the entire length in a composite beam in which the bending rigidity of forward bending and the bending rigidity of negative bending are different from each other. It means the bending moment acting on the end of the beam. The semi-rigid moment of a sequence M j is expressed by the equation (138) using the rotation angle θ j calculated by performing the convergence calculation using the equation (130) or the equation (131).
Figure JPOXMLDOC01-appb-M000049
Figure JPOXMLDOC01-appb-M000049
 剛接モーメントMjrは、正曲げの曲げ剛性と負曲げの曲げ剛性とが互いに異なる合成梁における以下の値のことを意味する。剛接モーメントMjrは、両端がそれぞれ剛接合されて全長にわたって等分布荷重が作用するとしたときの合成梁の端に作用する曲げモーメントのことを意味する。
 なお、本実施形態の合成梁は、正曲げの曲げ剛性と負曲げの曲げ剛性とが互いに異なる梁である。説明の便宜上、正曲げの曲げ剛性と負曲げの曲げ剛性とが互いに等しい比較例の梁を仮定する。その比較例の梁において、両端がそれぞれ剛接合されて全長にわたって等分布荷重が作用するとしたとき、剛接モーメントMjrは(wL/12)の式による値である。
 無次元化接合部モーメントβMjは、半剛接モーメントMをピン接モーメントMで除した値であり、(139)式で表される。
The rigid contact moment M jr means the following values in a composite beam in which the bending rigidity of the forward bending and the bending rigidity of the negative bending are different from each other. The rigid contact moment M jr means a bending moment acting on the end of the composite beam when both ends are rigidly joined and an evenly distributed load acts over the entire length.
The composite beam of the present embodiment is a beam in which the bending rigidity of the forward bending and the bending rigidity of the negative bending are different from each other. For convenience of explanation, a beam of a comparative example in which the bending rigidity of the forward bending and the bending rigidity of the negative bending are equal to each other is assumed. In the beam of the comparative example, when both ends of which are that the uniformly distributed load over the entire length are respectively rigidly joined to act, rigid connection moment M jr is the value according to equation (wL 2/12).
Dimensionless joint moment beta Mj is a value obtained by dividing the HanTsuyoshise' moment M j with a pin contact moment M o, represented by (139) below.
Figure JPOXMLDOC01-appb-M000050
Figure JPOXMLDOC01-appb-M000050
 無次元化剛接モーメントβMj,rigidは、剛接モーメントMjrをピン接モーメントMで除した値であり、(140)式で表される。 Dimensionless KaTsuyoshise' moment beta Mj, rigid is a value obtained by dividing the rigid connection moment M jr pin contact moment M o, represented by (140) below.
Figure JPOXMLDOC01-appb-M000051
Figure JPOXMLDOC01-appb-M000051
 ここで、前記無次元化回転剛性α、無次元化曲げ剛性α等の指標を評価した。そのために、表9に示すケース1からケース6の仕様の合成梁に対して、無次元化回転剛性α、無次元化曲げ剛性αを変化させて無次元化接合部モーメントβMjを試算した。
 なお、ケース1からケース5では合成梁の両端が半剛接合され、ケース6では合成梁の両端が剛接合される。
Here, indexes such as the dimensionless rotational rigidity α j and the dimensionless bending rigidity α s were evaluated. Therefore, the non-dimensional joint moment β Mj is calculated by changing the non-dimensional rotational rigidity α j and the non-dimensional flexural rigidity α s for the composite beams of the specifications of Cases 1 to 6 shown in Table 9. did.
In Cases 1 to 5, both ends of the composite beam are semi-rigidly joined, and in Case 6, both ends of the composite beam are rigidly joined.
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000052
 ケース1では、合成梁の長さLを10.0m(10000mm)と仮定した。負曲げの曲げ剛性EIを229397kNm、等分布荷重wを28.6kN/m(28.6N/mm)と仮定すると、ピン接モーメントMは(137)式から357kNmと算出された。ケース1では、無次元化回転剛性αを、最小値0.00から最大値50.00まで1.00刻みで、51種類の値に変化させた。すなわち、無次元化回転剛性αを、0.00、1.00、2.00、‥、50.00の値とした。無次元化曲げ剛性αを、最小値1.00から最大値6.00まで0.10刻みで、51種類の値に変化させた。すなわち、無次元化曲げ剛性αを、1.00、1.10、1.20、‥、6.00の値とした。ケース1では、無次元化回転剛性α及び無次元化曲げ剛性αの値を変化させた、(51×51)の式による2601通りの場合を試算した。 In Case 1, the length L of the composite beam was assumed to be 10.0 m (10000 mm). 229397KNm 2 negative bending flexural rigidity EI h, when a uniformly distributed load w assuming 28.6kN / m (28.6N / mm) , a pin contact moment M o was calculated as 357kNm from (137) below. In Case 1, the dimensionless rotational rigidity α j was changed from a minimum value of 0.00 to a maximum value of 50.00 in 1.00 increments to 51 different values. That is, the dimensionless rotational rigidity α j was set to a value of 0.00, 1.00, 2.00, ..., 50.00. The dimensionless flexural rigidity α s was changed from a minimum value of 1.00 to a maximum value of 6.00 in 0.10 increments to 51 different values. That is, the dimensionless flexural rigidity α s was set to a value of 1.00, 1.10, 1.20, ..., 6.00. In Case 1, 2601 cases were calculated according to the equation (51 × 51) in which the values of the dimensionless rotational rigidity α j and the dimensionless bending rigidity α s were changed.
 ケース2では、ケース1を基準に、合成梁の長さLを15.0mとと変化させた。ピン接モーメントMは、(137)式から803kNmと算出された。ケース2では、ケース1と同様に無次元化回転剛性α及び無次元化曲げ剛性αを変化させ、2601通りの場合を試算した。
 ケース3では、ケース2において、無次元化回転剛性αの刻み、及び無次元化曲げ剛性αの最大値及び刻みを変化させた。すなわち、ケース3では、無次元化回転剛性αを、最小値0.00から最大値50.00まで0.01刻みで、5001種類の値に変化させた。すなわち、無次元化回転剛性αを、0.00、0.01、0.02、‥、50.00の値とした。無次元化曲げ剛性αを、最小値1.00から最大値1.06まで0.01刻みで、7種類の値に変化させた。すなわち、無次元化曲げ剛性αを、1.00、1.01、1.02、‥、1.06の値とした。ケース3では、無次元化回転剛性α及び無次元化曲げ剛性αの値を変化させた、(5001×7)の式による35007通りの場合を試算した。ケース3では、ケース2における無次元化回転剛性α及び無次元化曲げ剛性αの一部の範囲に対して、より詳細に試算した。
In the case 2, the length L of the composite beam was changed to 15.0 m based on the case 1. Pin contact moment M o was calculated to 803kNm from (137) below. In case 2, the dimensionless rotational rigidity α j and the dimensionless bending rigidity α s were changed in the same manner as in case 1, and 2601 cases were calculated.
In the case 3, in the case 2, the step of the dimensionless rotational rigidity α j and the maximum value and the step of the dimensionless bending rigidity α s were changed. That is, in Case 3, the dimensionless rotational rigidity α j was changed from a minimum value of 0.00 to a maximum value of 50.00 in increments of 0.01 to 5001 types of values. That is, the dimensionless rotational rigidity α j was set to a value of 0.00, 0.01, 0.02, ..., 50.00. The dimensionless flexural rigidity α s was changed from a minimum value of 1.00 to a maximum value of 1.06 in 0.01 increments to seven different values. That is, the dimensionless flexural rigidity α s was set to a value of 1.00, 1.01, 1.02, ..., 1.06. In Case 3, a trial calculation was made for 35007 cases according to the equation (5001 × 7) in which the values of the dimensionless rotational rigidity α j and the dimensionless bending rigidity α s were changed. In Case 3, a more detailed trial calculation was made for a part of the range of the dimensionless rotational rigidity α j and the dimensionless bending rigidity α s in Case 2.
 ケース4では、ケース1を基準に、合成梁の長さLを8.4mと変化させた。負曲げの曲げ剛性EIを214311kNmと仮定すると、ピン接モーメントMは(137)式から252kNmと算出された。ケース4では、無次元化回転剛性αを、最小値0.00から最大値100.00まで0.50刻みで、201種類の値に変化させた。すなわち、無次元化回転剛性αを、0.00、0.50、1.00、‥、100.00の値とした。無次元化曲げ剛性αを、最小値1.00から最大値1.30まで0.05刻みで、7種類の値に変化させた。すなわち、無次元化曲げ剛性αを、1.00、1.05、1.10、‥、1.30の値とした。ケース4では、無次元化回転剛性α及び無次元化曲げ剛性αの値を変化させた、(201×7)の式による1407通りの場合を試算した。 In case 4, the length L of the composite beam was changed to 8.4 m with reference to case 1. When a negative bending of the flexural rigidity EI h Assuming 214311kNm 2, pin contact moment M o was calculated as 252kNm from (137) below. In Case 4, the dimensionless rotational rigidity α j was changed from a minimum value of 0.00 to a maximum value of 100.00 in 0.50 increments to 201 kinds of values. That is, the dimensionless rotational rigidity α j was set to a value of 0.00, 0.50, 1.00, ..., 100.00. The dimensionless flexural rigidity α s was changed from a minimum value of 1.00 to a maximum value of 1.30 in 0.05 increments to seven different values. That is, the dimensionless flexural rigidity α s was set to a value of 1.00, 1.05, 1.10, ..., 1.30. In Case 4, 1407 cases according to the equation (201 × 7) in which the values of the dimensionless rotational rigidity α j and the dimensionless bending rigidity α s were changed were calculated.
 ケース5では、ケース1を基準に、合成梁の長さLを13.8mと変化させた。ピン接モーメントMは、(137)式から680kNmと算出された。ケース5では、無次元化回転剛性αの値はケース4と同様に変化させた。無次元化曲げ剛性αを、最小値1.00から最大値4.00まで0.50刻みで、7種類の値に変化させた。すなわち、無次元化曲げ剛性αを、1.00、1.50、2.00、‥、4.00の値とした。ケース5では、無次元化回転剛性α及び無次元化曲げ剛性αの値を変化させた、(201×7)の式による1407通りの場合を試算した。
 ケース1からケース5では、合計で43023通りの場合を試算した。
In case 5, the length L of the composite beam was changed to 13.8 m with reference to case 1. Pin contact moment M o was calculated to 680kNm from (137) below. In case 5, the value of the dimensionless rotational rigidity α j was changed in the same manner as in case 4. The dimensionless flexural rigidity α s was changed from a minimum value of 1.00 to a maximum value of 4.00 in 0.50 increments to seven different values. That is, the dimensionless flexural rigidity α s was set to a value of 1.00, 1.50, 2.00, ..., 4.00. In Case 5, 1407 cases according to the equation (201 × 7) in which the values of the dimensionless rotational rigidity α j and the dimensionless bending rigidity α s were changed were calculated.
In Cases 1 to 5, a total of 43023 cases were calculated.
 ケース6では、ケース2において、無次元化回転剛性α、及び無次元化曲げ剛性αの最大値を変化させた。ケース6では、無次元化回転剛性αを無限大(∞)、すなわち回転剛性Sを無限大にして、合成梁の両端が剛接合されるとした。無次元化曲げ剛性αを、最小値1.00から最大値51.00まで0.10刻みで、501種類の値に変化させた。すなわち、無次元化曲げ剛性αを、1.00、1.10、1.20、‥、51.00の値とした。 In case 6, in case 2, the maximum values of the dimensionless rotational rigidity α j and the dimensionless bending rigidity α s were changed. In Case 6, the dimensionless rotational rigidity α j is set to infinity (∞), that is, the rotational rigidity S j is set to infinity, and both ends of the composite beam are rigidly joined. The dimensionless flexural rigidity α s was changed from a minimum value of 1.00 to a maximum value of 51.00 in 0.10 increments to 501 types of values. That is, the dimensionless flexural rigidity α s was set to a value of 1.00, 1.10, 1.20, ..., 51.00.
 図18に、ケース1からケース5における無次元化回転剛性αと無次元化接合部モーメントβMjとの関係を示す。図18において、横軸は無次元化回転剛性αを表し、縦軸は無次元化接合部モーメントβMjを表す。
 直線L11は、正曲げの曲げ剛性と負曲げの曲げ剛性とが互いに等しい通常の梁における無次元化剛接モーメントβMj,rigid,uである。通常の梁において、長さをL(mm)、等分布荷重をw(N/mm)とする。この場合、通常の梁において、剛接モーメントMjrは(wL/12)、ピン接モーメントMは(wL/8)であるため、無次元化剛接モーメントβMj,rigid,uは{(wL/12)/(wL/8)}の式により、2/3(約0.667)の値になる。
FIG. 18 shows the relationship between the dimensionless rotational rigidity α j and the dimensionless joint moment β Mj in cases 1 to 5. In FIG. 18, the horizontal axis represents the dimensionless rotational rigidity α j , and the vertical axis represents the dimensionless joint moment β Mj .
The straight line L11 is a dimensionless rigid contact moment β Mj, rigid, u in a normal beam in which the bending rigidity of the forward bending and the bending rigidity of the negative bending are equal to each other. In a normal beam, the length is L (mm) and the evenly distributed load is w (N / mm). In this case, in the normal beam, the rigid connection moment M jr (wL 2/12) , since the pin contact moment M o is (wL 2/8), dimensionless KaTsuyoshise' moment beta Mj, rigid, u is the formula of {(wL 2/12) / (wL 2/8)}, a value of 2/3 (about 0.667).
 ケース1の試算結果を、白抜きの正方形印で表す。同様に、ケース2の試算結果を白抜きの三角形印で表し、ケース3の試算結果を白抜きの丸形印で表す。ケース4の試算結果を白抜きの菱形印で表し、ケース5の試算結果をバツ印で表す。
 横軸の無次元化回転剛性αが大きくなるのに従い、合成梁の両端の接合が剛接合に近づく。無次元化曲げ剛性αが1に近づくに従い、無次元化接合部モーメントβMjは、ケース1からケース5の上限の包絡線である曲線L12に近づく。
 さらに、無次元化回転剛性αが大きくなるのに従い、合成梁の両端の接合が剛接合に近づく。すると、無次元化接合部モーメントβMjは上限値である、直線L11が表す無次元化剛接モーメントβMj,rigidの値に収束する。
 曲線L12により表される無次元化接合部モーメントβMjは、関数の形状と、無次元化回転剛性αが0及び無限大となるときの無次元化接合部モーメントβMjの極限を考慮して、(142)式で近似できると考えられる。ただし、eはネイピア数(2.718‥)である。
The trial calculation result of Case 1 is represented by a white square mark. Similarly, the trial calculation result of Case 2 is represented by a white triangle mark, and the trial calculation result of Case 3 is represented by a white round mark. The trial calculation result of Case 4 is represented by a white diamond mark, and the trial calculation result of Case 5 is represented by a cross mark.
As the dimensionless rotational rigidity α j on the horizontal axis increases, the joints at both ends of the composite beam approach rigid joints. As the dimensionless flexural rigidity α s approaches 1, the dimensionless joint moment β Mj approaches the curve L12, which is the upper envelope of the cases 1 to 5.
Further, as the dimensionless rotational rigidity α j increases, the joints at both ends of the composite beam approach rigid joints. Then, the dimensionless junction moment β Mj converges to the upper limit value of the dimensionless rigid contact moment β Mj, rigid represented by the straight line L11.
The non-dimensionalized joint moment β Mj represented by the curve L12 considers the shape of the function and the limit of the non-dimensionalized joint moment β Mj when the non-dimensionalized rotational rigidity α j becomes 0 and infinity. Therefore, it is considered that it can be approximated by Eq. (142). However, e is the number of Napiers (2.718 ...).
Figure JPOXMLDOC01-appb-M000053
Figure JPOXMLDOC01-appb-M000053
 (142)式において、kは係数である。変数αj,Tは、無次元化接合部モーメントβMjが無次元化剛接モーメントβMj,rigidの半分の値をとるときの無次元化回転剛性αである。以下では、無次元化剛接モーメントβMj,rigid、係数k、変数αj,Tの同定方法を提案する。 In equation (142), k is a coefficient. Variable alpha j, T is a dimensionless rotational stiffness alpha j when dimensionless joint moment beta Mj dimensionless KaTsuyoshise' moment beta Mj, take half of the rigid. In the following, we propose a method for identifying the dimensionless rigid contact moment β Mj, rigid , coefficient k, and variables α j, T.
〔4.近似式の同定〕
〔4.1.無次元化剛接モーメントの支配変数〕
 (130)式において、合成梁の両端が剛接合される場合、回転剛性Sを無限大(無次元化回転剛性αを無限大)と仮定する。さらに方程式を無次元化剛接モーメントβMj,rigid、無次元化曲げ剛性α、ピン接モーメントMを用いて式を表すと、(146)式のようになる。
[4. Identification of approximate expression]
[4.1. Control variable of dimensionless rigid moment of force]
In equation (130), when both ends of the composite beam are rigidly joined, it is assumed that the rotational rigidity S j is infinite (the non-dimensional rotational rigidity α j is infinite). Further equations dimensionless KaTsuyoshise' moment β Mj, rigid, non-dimensional stiffness alpha s, to represent the formula with a pin contact moment M o, it is as (146) below.
Figure JPOXMLDOC01-appb-M000054
Figure JPOXMLDOC01-appb-M000054
 (146)式は、(147)式及び(148)式のように変形される。さらに、(147)式及び(148)式は、(149)式を用いて、(150)式のように変形される。 Equation (146) is modified as equations (147) and (148). Further, the equations (147) and (148) are modified as the equation (150) by using the equation (149).
Figure JPOXMLDOC01-appb-M000055
Figure JPOXMLDOC01-appb-M000055
 以上から、無次元化剛接モーメントβMj,rigidは厳密には、(150)式による3次方程式の解であることが分かった。さらに、無次元化剛接モーメントβMj,rigidの解は、無次元化曲げ剛性αにのみ依存し、合成梁の長さL、等分布荷重w等には依存しないことがわかった。従って、3次方程式の解法であるカルダノの公式を用いて(50)式の解を求め、そのうちの実数解により、無次元化剛接モーメントβMj,rigidの厳密解を得ることができる。
 なお、前記ケース6についての無次元化曲げ剛性αと無次元化剛接モーメントβMj,rigidとの試算結果の関係は、図19に示すようになる。図19において、横軸は無次元化曲げ剛性αを表す。縦軸は、無次元化剛接モーメントβMj,rigidを表す。
From the above, it was found that the dimensionless rigid contact moment β Mj, rigid is, strictly speaking, a solution of the cubic equation by Eq. (150). Furthermore, it was found that the solution of the dimensionless rigid contact moment β Mj, rigid depends only on the dimensionless flexural rigidity α s , and does not depend on the length L of the composite beam, the evenly distributed load w, and the like. Therefore, the solution of Eq. (50) can be obtained by using Cardano's formula, which is a solution of the cubic equation, and the exact solution of the dimensionless rigid contact moment β Mj, rigid can be obtained from the real number solution.
The relationship between the dimensionless flexural rigidity α s and the dimensionless rigid contact moments β Mj and rigid for Case 6 is shown in FIG. In FIG. 19, the horizontal axis represents the dimensionless flexural rigidity α s . The vertical axis represents the dimensionless rigid contact moment β Mj, rigid .
〔4.2.無次元化剛接モーメントの近似式〕
 無次元化剛接モーメントβMj,rigidは、厳密には(150)式による3次方程式の実数解として得ることができる。しかし、図19に示すように、無次元化曲げ剛性αが約10以下の範囲では、無次元化剛接モーメントβMj,rigidは、無次元化曲げ剛性αの常用対数の線形式で近似できると考えられる。
 前述のように、一般的な合成梁のスラブの厚さであれば無次元化曲げ剛性αは10以下である。このため、図19において、無次元化曲げ剛性αが10以下の範囲を線形式で近似して、無次元化剛接モーメントβMj,rigidを(153)式で近似する。
[4.2. Approximate formula of dimensionless rigid moment of force]
Strictly speaking, the dimensionless rigid contact moment β Mj, rigid can be obtained as a real number solution of the cubic equation by Eq. (150). However, as shown in FIG. 19, in the range where the non-dimensional flexural rigidity α s is about 10 or less, the non-dimensional rigid contact moments β Mj and rigid are in the common logarithm linear form of the non-dimensional flexural rigidity α s. It is thought that it can be approximated.
As described above, the dimensionless flexural rigidity α s is 10 or less if the slab thickness of a general composite beam is used. Therefore, in FIG. 19, the range in which the dimensionless flexural rigidity α s is 10 or less is approximated in a linear form, and the dimensionless rigid contact moments β Mj and rigid are approximated by the equation (153).
Figure JPOXMLDOC01-appb-M000056
Figure JPOXMLDOC01-appb-M000056
 (153)式では、無次元化曲げ剛性αに基づいて無次元化剛接モーメントβMj,rigidを陽関数により算出している。
 (153)式を、図19中に直線L14で示す。無次元化曲げ剛性αが10以下の範囲では、直線L14は試算結果と重なっている。
 なお、ケース6について、無次元化剛接モーメントβMj,rigidの(153)式による近似解と、(150)式による厳密解を比較して図20に示す。図20において、横軸は(153)式による無次元化剛接モーメントβMj,rigidの近似解を表し、縦軸は(150)式による無次元化剛接モーメントβMj,rigidの厳密解(無次元化剛接モーメントβMj,rigid,Theo)を表す。無次元化剛接モーメントβMj,rigidの近似解及び厳密解が互いに一致していれば、試算結果のプロットは、直線L16上に配置される。
 無次元化剛接モーメントβMj,rigidの近似解と厳密解とは、無次元化剛接モーメントβMj,rigidの近似解が0.4を超えるときには、概ね一致する。しかし、無次元化剛接モーメトβMj,rigidの近似解が0.4以下のときには、無次元化剛接モーメトβMj,rigidを(154)式で補正してもよい。(154)式を、図20中に無次元化剛接モーメントβMj,rigidを横軸、無次元化剛接モーメントβMj,rigid,Theoを縦軸にとり、曲線L17で示す。無次元化剛接モーメントβMj,rigid,Theoは、無次元化剛接モーメトβMj,rigidの厳密解と重なっている。
In equation (153), the dimensionless rigid contact moments β Mj and rigid are calculated by an explicit function based on the dimensionless flexural rigidity α s.
Equation (153) is shown by a straight line L14 in FIG. In the range where the dimensionless flexural rigidity α s is 10 or less, the straight line L14 overlaps with the trial calculation result.
In case 6, FIG. 20 shows a comparison between the approximate solution of the dimensionless rigid contact moment β Mj and rigid according to the equation (153) and the exact solution according to the equation (150). In FIG. 20, the horizontal axis represents an approximate solution of the dimensionless rigid contact moment β Mj, rigid according to equation (153), and the vertical axis represents the exact solution of the dimensionless rigid contact moment β Mj, rigid according to equation (150). Represents the dimensionless rigid contact moment β Mj, rigid, Theo ). If the approximate and exact solutions of the dimensionless rigid contact moments β Mj and rigid match each other, the plot of the trial calculation result is arranged on the straight line L16.
Dimensionless KaTsuyoshise' moment beta Mj, the approximate solution and the exact solution of the rigid, when the dimensionless KaTsuyoshise' moment beta Mj, approximate solution of rigid exceeds 0.4 is generally consistent. However, when the approximate solution of the dimensionless rigid-contact momet β Mj, rigid is 0.4 or less, the dimensionless rigid-joint momet β Mj, rigid may be corrected by the equation (154). Equation (154) is shown by a curve L17 in FIG. 20, with the dimensionless rigid contact moments β Mj and rigid on the horizontal axis and the dimensionless rigid contact moments β Mj, rigid and Theo on the vertical axis. Dimensionless KaTsuyoshise' moment β Mj, rigid, Theo is, dimensionless KaTsuyoshise' Mometo β Mj, and overlaps with the exact solution of rigid.
Figure JPOXMLDOC01-appb-M000057
Figure JPOXMLDOC01-appb-M000057
 すなわち、無次元化剛接モーメントβMj,rigidの近似解が0.4以下のときには、(142)式において、無次元化剛接モーメントβMj,rigidに代えて、無次元化剛接モーメントβMj,rigidに基づいて(154)式により算出される無次元化剛接モーメントβMj,rigid,Theoを用いてもよい。
 次に、係数k及び変数αj,Tの近似式を求める。
 各無次元化曲げ剛性αについて、係数kを差分進化法で求めた。求めた係数kと無次元化曲げ剛性αとの関係を、図21に示す。係数kは、無次元化曲げ剛性αに高次で依存しており、(155)式で近似した。
 同様に、各無次元化曲げ剛性αについて、変数αj,Tを差分進化法で求めた。求めた変数αj,Tと無次元化曲げ剛性αとの関係を、図22に示す。変数αj,Tは、無次元化曲げ剛性αに高次で依存しており、(156)式で近似した。
That is, when the approximate solution of the dimensionless rigid contact moment β Mj, rigid is 0.4 or less, the dimensionless rigid contact moment β Mj, rigid is replaced with the dimensionless rigid contact moment β in equation (142). The dimensionless rigid contact moment β Mj, rigid, Theo calculated by Eq. (154) based on Mj, rigid may be used.
Next, the approximate expressions of the coefficient k and the variables α j and T are obtained.
For each dimensionless flexural rigidity α s , the coefficient k was obtained by the differential evolution method. The relationship between the obtained coefficient k and the dimensionless flexural rigidity α s is shown in FIG. The coefficient k depends on the dimensionless flexural rigidity α s in a higher order and is approximated by Eq. (155).
Similarly, for each dimensionless flexural rigidity α s , the variables α j and T were obtained by the differential evolution method. FIG. 22 shows the relationship between the obtained variables α j and T and the dimensionless flexural rigidity α s. The variables α j and T depend on the dimensionless flexural rigidity α s in a higher order and are approximated by Eq. (156).
Figure JPOXMLDOC01-appb-M000058
Figure JPOXMLDOC01-appb-M000058
 (155)式を、図21中に曲線L18で示す。検討範囲において、曲線L18は試算結果をよく近似している。同様に、(156)式を、図22中に曲線L19で示す。検討範囲において、曲線L19は試算結果をよく近似している。
 前述のように無次元化剛接モーメントβMj,rigid、係数k、変数αj,Tが無次元化曲げ剛性αにより算出されると、(142)式により無次元化接合部モーメントβMjが算出される。すなわち、算出した無次元化曲げ剛性α、無次元化回転剛性α、及び無次元化剛接モーメントβMj,rigidに基づいて、無次元化接合部モーメントβMjを(142)式の陽関数により算出する。より詳しく説明すると、無次元化接合部モーメントβMjを、(153)式、(155)式、(156)式を用いて(142)式により算出する。または、(153)式の代わりに、(153)式及び(154)式を用いて算出した無次元化剛接モーメントβMj,rigid,Theoを(142)式の無次元化剛接モーメトβMj,rigidに代入して無次元化接合部モーメントβMjを算出してもよい。
Equation (155) is shown by curve L18 in FIG. In the study range, the curve L18 is a good approximation of the trial calculation results. Similarly, equation (156) is shown by curve L19 in FIG. In the examination range, the curve L19 is a good approximation of the trial calculation result.
As described above, when the dimensionless rigid contact moment β Mj, rigid , the coefficient k, and the variables α j, T are calculated by the dimensionless flexural rigidity α s , the dimensionless joint moment β Mj is calculated by Eq. (142). Is calculated. That is, based on the calculated non-dimensional flexural rigidity α s , the non-dimensional rotational rigidity α j , and the non-dimensional rigid contact moment β Mj, rigid , the non-dimensional joint moment β Mj is calculated by the positive equation (142). Calculated by a function. More specifically, the dimensionless joint moment β Mj is calculated by Eq. (142) using Eqs. (153), (155), and (156). Or, (153) instead of equation (153) and (154) dimensionless KaTsuyoshise' moment beta Mj was calculated using equation rigid, dimensionless KaTsuyoshise' Mometo of Theo (142) below beta Mj , Rigid may be substituted to calculate the dimensionless junction moment β Mj.
〔5.近似式を用いたたわみの最大値の計算式〕
 次に、導出したたわみ関数用いて、合成梁の中央における最大たわみ(たわみの最大値)δmaxを、無次元化接合部モーメントβMj及びピン接モーメントMの式に変換する。
 まず、合成梁の中央を含む正曲げ領域のたわみ関数は、前記(128)式である。たわみの最大値δmaxは、(128)式におけるx=(L/2)のときの値である。
 ここで、(115)式及び(116)式におけるL及びLは、(160)式及び(161)式のように、無次元化接合部モーメントβMj、ピン接モーメントM、及び半剛接モーメントMの式で表せる。ただし、L及びLは、合成梁の曲げモーメントがゼロとなる点であり、(162)式を満たす。
[5. Calculation formula for the maximum value of deflection using an approximate formula]
Then, using the derived deflection function, the maximum deflection [delta] max (the maximum value of deflection) in the middle of the composite beam, it converts the expression of the dimensionless joint moments beta Mj and pin contact moment M o.
First, the deflection function of the forward bending region including the center of the composite beam is given by the above equation (128). The maximum value δ max of the deflection is a value when x = (L / 2) in the equation (128).
Here, L 1 and L 2 in the equations (115) and (116) are the dimensionless joint moment β Mj , the pin contact moment Mo , and the half as in the equations (160) and (161). It can be expressed by the equation of rigid contact moment M j. However, L 1 and L 2 are points where the bending moment of the composite beam becomes zero, and satisfies Eq. (162).
Figure JPOXMLDOC01-appb-M000059
Figure JPOXMLDOC01-appb-M000059
 (128)式を無次元化曲げ剛性α、無次元化回転剛性α、及び無次元化接合部モーメントβMjで表すと、(164)式のようになる。 When equation (128) is expressed by the dimensionless flexural rigidity α s , the dimensionless rotational rigidity α j , and the dimensionless joint moment β Mj , it becomes equation (164).
Figure JPOXMLDOC01-appb-M000060
Figure JPOXMLDOC01-appb-M000060
 (160)式を(119)式及び(126)式に代入すると、(166)式及び(167)式が得られる。x=(L/2)を(125)式に代入すると、(168)式が得られる。 Substituting Eqs. (160) into Eqs. (119) and (126) gives Eqs. (166) and (167). Substituting x = (L / 2) into equation (125) gives equation (168).
Figure JPOXMLDOC01-appb-M000061
Figure JPOXMLDOC01-appb-M000061
 (164)式においてx=(L/2)とし、(166)式から(168)式を用いることで、たわみの最大値δmaxは(170)式で求めることができる。 By setting x = (L / 2) in the equation (164) and using the equations (168) from the (166) equation, the maximum value δ max of the deflection can be obtained by the equation (170).
Figure JPOXMLDOC01-appb-M000062
Figure JPOXMLDOC01-appb-M000062
 (170)式を用いると、算出した無次元化曲げ剛性α、無次元化回転剛性α、無次元化接合部モーメントβMj等に基づいてたわみの最大値δmaxを陽関数により算出することができる。
 一方で、前記(112)式に、求めた合成梁の端における曲げモーメントM(半剛接モーメントM)を代入すると、合成梁のモーメント分布の関数が求まる。
 合成梁の端に作用する曲げモーメントである端部曲げモーメントは、合成梁のモーメント分布の関数において、x=0,Lを代入した時の値である。具体的には、前記(139)式を変形した(171)式から曲げモーメントMを直接求めることができる。
Using equation (170), the maximum value of deflection δ max is calculated by an explicit function based on the calculated non-dimensional flexural rigidity α s , non-dimensional rotational rigidity α j , non-dimensional joint moment β Mj, etc. be able to.
On the other hand, by substituting the obtained bending moment M j (semi-rigid contact moment M j ) at the end of the composite beam into the above equation (112), a function of the moment distribution of the composite beam can be obtained.
The end bending moment, which is the bending moment acting on the end of the composite beam, is a value when x = 0, L is substituted in the function of the moment distribution of the composite beam. Specifically, the bending moment M j can be directly obtained from the equation (171) which is a modification of the equation (139).
Figure JPOXMLDOC01-appb-M000063
Figure JPOXMLDOC01-appb-M000063
 なお、無次元化接合部モーメントβMj及びピン接モーメントMは、与条件である無次元化回転剛性α、無次元化曲げ剛性α、設計の要求値(与条件)である合成梁の長さL、及び等分布荷重wを用いて、前記(142)式及び(137)式等の陽関数により算出できる。
 さらに、(142)式における係数k、変数αj,T、及び無次元化剛接モーメントβMj,rigidは、前記(155)式、(156)式、及び(153)式の陽関数により算出できる。
 なお、(153)式によって計算した無次元化剛接モーメントβMj,rigidが0.4以下のときには、(142)式において、無次元化剛接モーメントβMj,rigidに代えて、無次元化剛接モーメントβMj,rigidに基づいて(154)式により算出される無次元化剛接モーメントβMj,rigid,Theoを用いてもよい。
 合成梁の中央における最大たわみであるたわみの最大値δmaxは、(142)式により算出した無次元化接合部モーメントβMj、及び与条件を(170)式に代入して陽に求めることができる。
The non-dimensional joint moment β Mj and the pin contact moment Mo are the given conditions of the non-dimensional rotational rigidity α j , the non-dimensional bending rigidity α s , and the composite beam which is the design requirement (given condition). It can be calculated by the explicit functions of the above equations (142) and (137) using the length L of the above and the evenly distributed load w.
Further, the coefficient k, the variables α j, T , and the dimensionless rigid contact moment β Mj, rigid in the equation (142) are calculated by the explicit functions of the equations (155), (156), and (153). it can.
When the dimensionless rigid contact moment β Mj, rigid calculated by the equation (153) is 0.4 or less, the dimensionless rigid contact moment β Mj, rigid is replaced with the dimensionless rigid contact moment β Mj, rigid in the equation (142). The dimensionless rigid contact moment β Mj, rigid, Theo calculated by Eq. (154) based on the rigid contact moment β Mj, rigid may be used.
The maximum value δ max of the deflection, which is the maximum deflection at the center of the composite beam, can be obtained explicitly by substituting the dimensionless joint moment β Mj calculated by Eq. (142) and the given conditions into Eq. (170). it can.
 以上のように、本実施形態の合成梁の評価方法では、端部曲げモーメント及びたわみの最大値δmaxを、無次元化回転剛性α及び無次元化曲げ剛性αに基づいて陽関数により算出する。 As described above, in the evaluation method of the composite beam of the present embodiment, the maximum value δ max of the end bending moment and the deflection is set by an explicit function based on the non-dimensional rotational rigidity α j and the non-dimensional bending rigidity α s. calculate.
〔6.近似式の精度検証〕
 表9のケース1からケース5について、(142)式による無次元化接合部モーメントβMjの近似解、(153)式、(155)式、(156)式による無次元化接合部モーメントβMjの厳密解を比較して図23に示す。図23において、横軸は無次元化接合部モーメントβMjの厳密解を表す。縦軸は、無次元化接合部モーメントβMjの近似解を表す。無次元化接合部モーメントβMjの近似解及び厳密解が互いに一致していれば、試算結果のプロットは、直線L21上に配置される。図23に示された結果から、無次元化接合部モーメントβMjの近似解及び厳密解が、実用上十分な精度で一致していることが分かる。
 また、たわみの最大値δmaxについて、無次元化接合部モーメントβMjの近似解を用いた(170)式による近似解と、厳密解とを比較して図24に示す。図24では、ケース6の試算結果も併せて示す。ケース6の試算結果を、白抜きの長方形印で表す。図24に示された結果から、たわみの最大値δmaxの近似解及び厳密解が、実用上十分な精度で一致していることが分かる。
 以上説明したように、無次元化回転剛性α及び無次元化曲げ剛性αに基づいて、たわみの最大値δmaxを評価した。その結果、合成梁211の仕様によらずに、たわみの最大値δmaxを汎用性高く、かつ精度良く算出できることが分かった。
[6. Accuracy verification of approximate expression]
For case 5 from the case 1 of Table 9, (142) approximate solution of the non-dimensional joint moment beta Mj by equation (153) below, (155) type, (156) dimensionless joint moment by Formula beta Mj The exact solutions of are compared and shown in FIG. In FIG. 23, the horizontal axis represents the exact solution of the dimensionless junction moment β Mj. The vertical axis represents an approximate solution of the dimensionless joint moment β Mj. If the approximate solution and the exact solution of the dimensionless junction moment β Mj match each other, the plot of the trial calculation result is arranged on the straight line L21. From the results shown in FIG. 23, it can be seen that the approximate solution and the exact solution of the dimensionless joint moment β Mj match with sufficient accuracy for practical use.
Further, regarding the maximum value δ max of the deflection, the approximate solution by Eq. (170) using the approximate solution of the dimensionless joint moment β Mj and the exact solution are compared and shown in FIG. 24. In FIG. 24, the trial calculation result of Case 6 is also shown. The trial calculation result of Case 6 is represented by a white rectangular mark. From the results shown in FIG. 24, it can be seen that the approximate solution and the exact solution of the maximum value of deflection δ max match with sufficient accuracy for practical use.
As described above, the maximum value δ max of the deflection was evaluated based on the non-dimensional rotational rigidity α j and the non-dimensional bending rigidity α s. As a result, it was found that the maximum value δ max of the deflection can be calculated with high versatility and accuracy regardless of the specifications of the composite beam 211.
 なお、本実施形態の合成梁の評価方法で算出した端部曲げモーメント及びたわみの最大値に基づいて、新たな合成梁を設計してもよい。すなわち、本実施形態の合成梁の評価方法を用いて合成梁の設計方法を行ってもよい。 A new composite beam may be designed based on the maximum values of the end bending moment and the deflection calculated by the composite beam evaluation method of the present embodiment. That is, the composite beam design method may be performed using the composite beam evaluation method of the present embodiment.
 以上説明したように、本実施形態の合成梁の評価方法では、発明者らは無次元化回転剛性α及び無次元化曲げ剛性αに基づいて端部曲げモーメント及びたわみの最大値δmaxを評価した。その結果、合成梁211の仕様によらずに端部曲げモーメント及びたわみの最大値δmaxを陽関数により汎用性高く、かつ精度良く算出できることを見出した。
 無次元化回転剛性α及び無次元化曲げ剛性αに基づいて陽関数により合成梁211の端部曲げモーメント及びたわみの最大値δmaxを算出することにより、合成梁211の端部曲げモーメント及びたわみの最大値δmaxを収斂計算を行うことなく算出することができる。
As described above, in the method for evaluating the composite beam of the present embodiment, the inventors have found that the maximum values of the end bending moment and the deflection are δ max based on the non-dimensional rotational rigidity α j and the non-dimensional bending rigidity α s. Was evaluated. As a result, it was found that the maximum value δ max of the end bending moment and the deflection can be calculated with high versatility and accuracy by the explicit function regardless of the specifications of the composite beam 211.
The end bending moment of the composite beam 211 and the maximum bending moment δ max of the composite beam 211 are calculated by an explicit function based on the dimensionless rotational rigidity α j and the dimensionless bending rigidity α s. And the maximum value of deflection δ max can be calculated without performing convergence calculation.
 また、無次元化曲げ剛性α及び(153)式に基づいて無次元化剛接モーメントβMj,rigidを陽関数により算出し、算出した無次元化剛接モーメントβMj,rigid、無次元化回転剛性α、無次元化曲げ剛性α及び(142)式に基づいて前記無次元化接合部モーメントβMjを陽関数により算出する。さらに、算出した無次元化接合部モーメントβMj及び(170)式等に基づいて端部曲げモーメント及びたわみの最大値δmaxを陽関数により算出する。こうして、合成梁211の端部曲げモーメント及びたわみの最大値δmaxを収斂計算を行うことなく算出することができる。
 無次元化接合部モーメントβMjを、(153)式、(155)式、(156)式を用いて(142)式により算出する。このため、これらの式により無次元化接合部モーメントβMjを、収斂計算を行うことなく精度良く算出することができる。従って、たわみを適切に評価することができる。
Further, the non-dimensionalized flexural rigidity α s and the non-dimensionalized rigid-contact moment β Mj, rigid are calculated by an explicit function based on the equation (153), and the calculated non-dimensional rigid-contact moment β Mj, rigid is made non-dimensional. The non-dimensionalized joint moment β Mj is calculated by an explicit function based on the rotational rigidity α j , the non-dimensionalized bending rigidity α s, and the equation (142). Further, the maximum value δ max of the end bending moment and the deflection is calculated by an explicit function based on the calculated dimensionless joint moment β Mj and the equation (170). In this way, the maximum value δ max of the end bending moment and the deflection of the composite beam 211 can be calculated without performing the convergence calculation.
The dimensionless joint moment β Mj is calculated by Eq. (142) using Eqs. (153), (155), and (156). Therefore, the dimensionless joint moment β Mj can be calculated accurately by these equations without performing the convergence calculation. Therefore, the deflection can be appropriately evaluated.
 無次元化剛接モーメントβMj,rigidが0.4以下のときには、(142)式において、無次元化剛接モーメントβMj,rigidに代えて、無次元化剛接モーメントβMj,rigidに基づいて(154)式により算出される無次元化剛接モーメントβMj,rigid,Theoを用いる。無次元化剛接モーメントβMj,rigidが0.4以下である場合には、無次元化剛接モーメントβMj,rigidが厳密解に対して誤差が大きくなる。この場合であっても、無次元化剛接モーメントβMj,rigidに代えて無次元化剛接モーメントβMj,rigid,Theoを用いることにより、無次元化剛接モーメントをより精度良く算出することができる。
 さらに、例えば複数の合成梁を有する構造体の動的解析の収斂計算において、構造体を構成する部材である合成梁の曲げモーメントの算出のための収斂計算が不要となる。このため、構造体の動的解析に2重の収斂計算を行う必要がなくなり、計算時間を大幅に短縮できる。さらに、例えば合成梁の断面積を目的関数、たわみや曲げモーメント等の設計条件を制約条件とし、目的関数を最小化する最適化計算を行う場合に、以下の利点がある。すなわち、制約条件であるたわみや曲げモーメントの算出のための収斂計算が不要となるため、目的関数の最適化に対して2重の収斂計算を行う必要がなくなり、計算時間を大幅に短縮できる。
When the dimensionless rigid contact moment β Mj, rigid is 0.4 or less, in equation (142), the dimensionless rigid contact moment β Mj, rigid is used instead of the dimensionless rigid contact moment β Mj, rigid . The dimensionless rigid contact moment β Mj, rigid, and Theo calculated by Eq. (154) are used. When the dimensionless rigid contact moment β Mj, rigid is 0.4 or less, the error of the dimensionless rigid contact moment β Mj, rigid becomes large with respect to the exact solution. Even in this case, the dimensionless rigid contact moment can be calculated more accurately by using the dimensionless rigid contact moment β Mj, rigid, Theo instead of the dimensionless rigid contact moment β Mj, rigid. Can be done.
Further, for example, in the convergence calculation of the dynamic analysis of a structure having a plurality of composite beams, the convergence calculation for calculating the bending moment of the composite beam which is a member constituting the structure becomes unnecessary. Therefore, it is not necessary to perform double convergence calculation for dynamic analysis of the structure, and the calculation time can be significantly shortened. Further, for example, when the cross-sectional area of the composite beam is set as the objective function and the design conditions such as the deflection and the bending moment are set as the constraint conditions, and the optimization calculation for minimizing the objective function is performed, there are the following advantages. That is, since the convergence calculation for calculating the deflection and the bending moment, which are the constraint conditions, is not required, it is not necessary to perform the double convergence calculation for the optimization of the objective function, and the calculation time can be significantly shortened.
 以上、本発明の第2実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。
 例えば、前記実施形態の合成梁の評価方法では、曲げモーメントM及びたわみの最大値δmaxを、無次元化回転剛性α及び無次元化曲げ剛性αに基づいて陽関数により算出すればよい。
 また、その際に、以下のような手順を行ってもよい。すなわち、無次元化曲げ剛性αに基づいて、無次元化剛接モーメントβMj,rigidを陽関数により算出する。算出した無次元化剛接モーメントβMj,rigid、無次元化回転剛性α、及び無次元化曲げ剛性αに基づいて、無次元化接合部モーメントβMjを陽関数により算出する。そして、算出した無次元化接合部モーメントβMjに基づいて、曲げモーメントM及びたわみの最大値δmaxを陽関数により算出する。
Although the second embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and changes and combinations of configurations within a range that does not deviate from the gist of the present invention, Deletion etc. are also included.
For example, in the method for evaluating a composite beam of the above embodiment, if the bending moment M j and the maximum value δ max of the deflection are calculated by an explicit function based on the non-dimensional rotational rigidity α j and the non-dimensional bending rigidity α s. Good.
At that time, the following procedure may be performed. That is, the dimensionless rigid contact moments β Mj and rigid are calculated by an explicit function based on the dimensionless flexural rigidity α s. Based on the calculated non-dimensional rigid contact moment β Mj, rigid , non-dimensional rotational rigidity α j , and non-dimensional bending rigidity α s , the non-dimensional joint moment β Mj is calculated by an explicit function. Then, based on the calculated dimensionless joint moment β Mj , the bending moment M j and the maximum value δ max of the deflection are calculated by an explicit function.
 以上、本発明の第1実施形態及び第2実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。さらに、各実施形態で示した構成のそれぞれを適宜組み合わせて利用できることは、言うまでもない。 Although the first embodiment and the second embodiment of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and the configuration does not deviate from the gist of the present invention. Changes, combinations, deletions, etc. of are also included. Further, it goes without saying that each of the configurations shown in each embodiment can be used in combination as appropriate.
 本発明によれば、連続梁の評価方法、連続梁の評価プログラム、及び合成梁の評価方法を提供できる。よって、産業上の利用可能性は大である。 According to the present invention, it is possible to provide an evaluation method for continuous beams, an evaluation program for continuous beams, and an evaluation method for composite beams. Therefore, the industrial applicability is great.
 11 連続梁
 12a 中間支点
 12b 端支点
 13 梁(小梁)
 27 第1大梁(中間支持部)
 31 第2大梁(端支持部)
 101 評価装置
 112 解決定部
 211 合成梁
 Mj 半剛接モーメント
 Mjr 剛接モーメント
 M ピン接モーメント
 S11,S36,S46,S56,S66,S76 評価方法(連続梁の評価方法)
 S12,S37,S47,S57,S67,S77 解決定工程
 S14 第1設計工程
 S16,S39,S49,S59,S69,S79 第2設計工程
 S18,S41,S51,S61,S81 仮設計工程
 S20 記憶工程
 S22 解算出工程
 S24 残差算出工程
 S26 判定工程
 α 無次元化回転剛性
 α 無次元化曲げ剛性
 βMj 無次元化接合部モーメント
 βMj,rigid,βMj,rigid,Theo 無次元化剛接モーメント
11 Continuous beam 12a Intermediate fulcrum 12b End fulcrum 13 Beam (small beam)
27 1st girder (intermediate support)
31 Second girder (end support)
101 Evaluation apparatus 112 solution determining unit 211 composite beam M j HanTsuyoshise' moment M jr rigid connection moment M o pin contact moment S11, S36, S46, S56, S66, S76 evaluation method (evaluation method of continuous beam)
S12, S37, S47, S57, S67, S77 Solution determination process S14 First design process S16, S39, S49, S59, S69, S79 Second design process S18, S41, S51, S61, S81 Temporary design process S20 Storage process S22 Solution calculation process S24 Residual calculation process S26 Judgment process α j Non-dimensional rotational rigidity α s Non-dimensional flexural rigidity β Mj Non-dimensional joint moment β Mj, rigid , β Mj, rigid, Theo Non-dimensional rigid contact moment

Claims (9)

  1.  長手方向に並べて配置されるとともに、前記長手方向に隣り合う端部同士が互いに半剛接合されて中間支点とされた、2以上の自然数であるn本の梁を備える連続梁であって、前記連続梁全体の両端が一対の端支点とされた前記連続梁を評価する連続梁の評価方法であって、
     前記中間支点及び前記一対の端支点での複数の曲げモーメント、及び前記一対の端支点での複数の回転角を、与条件に基づいて求める解決定工程を有し、
     前記与条件が、
     前記n本の梁それぞれの長さ及び曲げ剛性と;
     前記中間支点及び前記一対の端支点での複数の回転剛性と;
     前記n本の梁に作用する鉛直荷重と;
     前記中間支点及び前記一対の端支点での複数の鉛直変位と;を含み、
     前記解決定工程では、
     前記複数の曲げモーメント及び前記複数の回転角を複数の未知数と規定し、
     前記複数の回転剛性、前記複数の曲げモーメント、及び前記複数の回転角の関係式と、前記複数の鉛直変位の関係式とを、前記複数の未知数の数と同数の複数の第1境界条件と規定したときに、
     前記複数の未知数が前記複数の第1境界条件を満たすように前記複数の未知数を解いて、前記連続梁の曲げモーメント及びたわみ分布を評価する
     連続梁の評価方法。
    A continuous beam having two or more natural number n beams arranged side by side in the longitudinal direction and having end portions adjacent to each other in the longitudinal direction semi-rigidly joined to each other as an intermediate fulcrum. A method for evaluating a continuous beam in which both ends of the entire continuous beam are paired end fulcrums.
    It has a solution determination step of obtaining a plurality of bending moments at the intermediate fulcrum and the pair of end fulcrums, and a plurality of rotation angles at the pair of end fulcrums based on given conditions.
    The above-mentioned given conditions
    With the length and flexural rigidity of each of the n beams;
    With a plurality of rotational rigidity at the intermediate fulcrum and the pair of end fulcrums;
    With the vertical load acting on the n beams;
    Including a plurality of vertical displacements at the intermediate fulcrum and the pair of end fulcrums;
    In the solution determination step,
    The plurality of bending moments and the plurality of rotation angles are defined as a plurality of unknowns.
    The relational expression of the plurality of rotational rigidity, the plurality of bending moments, and the plurality of rotation angles and the relational expression of the plurality of vertical displacements are combined with the plurality of first boundary conditions having the same number as the number of the plurality of unknowns. When specified,
    A method for evaluating a continuous beam in which the plurality of unknowns are solved so that the plurality of unknowns satisfy the plurality of first boundary conditions, and the bending moment and the deflection distribution of the continuous beam are evaluated.
  2.  前記解決定工程が、
     前記複数の鉛直変位を含む設計値を与える第1設計工程と;
     前記一対の端支点での接合状態に応じて前記一対の端支点に第2境界条件を与える第2設計工程と;
     前記一対の端支点での接合状態に応じて、前記一対の端支点及び前記中間支点に作用する前記曲げモーメントを含む仮設計値を与える仮設計工程と;
     前記仮設計値に基づいて、前記複数の第1境界条件及び前記第2境界条件を満たすように、前記中間支点での鉛直変位の計算結果を含む計算値を算出する解算出工程と;
     前記設計値と前記計算値との残差である変位残差を求める残差算出工程と;
     前記変位残差が、予め定められた閾値よりも小さいか否かを判定する判定工程と;
     を有する
     請求項1に記載の連続梁の評価方法。
    The solution determination step
    With the first design step of giving a design value including the plurality of vertical displacements;
    With the second design step of giving the second boundary condition to the pair of end fulcrums according to the joining state at the pair of end fulcrums;
    A tentative design step of giving a tentative design value including the bending moment acting on the pair of end fulcrums and the intermediate fulcrum according to the joining state at the pair of end fulcrums;
    A solution calculation step of calculating a calculated value including a calculation result of vertical displacement at the intermediate fulcrum so as to satisfy the plurality of first boundary conditions and the second boundary condition based on the tentative design value.
    With the residual calculation process for obtaining the displacement residual, which is the residual between the design value and the calculated value;
    A determination step for determining whether or not the displacement residual is smaller than a predetermined threshold value;
    The evaluation method for a continuous beam according to claim 1.
  3.  前記解決定工程が、前記仮設計工程の後で、前記仮設計値を記憶する記憶工程をさらに有し、
     前記判定工程において、前記変位残差が前記閾値以上であるときには、前記記憶工程で記憶された前記仮設計値に代えて前記仮設計工程で他の新たな仮設計値を与えること、及び、この新たな仮設計値に基づいて前記解算出工程、前記残差算出工程、前記判定工程を行うこと、を組にして、前記判定工程において前記変位残差が前記閾値よりも小さいと判定されるまで繰り返し、
     前記判定工程において前記変位残差が前記閾値よりも小さいと判定されたときの前記仮設計値の前記曲げモーメントを、前記中間支点に作用する前記曲げモーメントと規定して、この曲げモーメントに基づいて前記複数の回転角を求める
     請求項2に記載の連続梁の評価方法。
    The solution determination step further includes a storage step of storing the tentative design value after the tentative design step.
    In the determination step, when the displacement residual is equal to or greater than the threshold value, another new tentative design value is given in the tentative design step in place of the tentative design value stored in the storage step, and this By combining the solution calculation step, the residual calculation step, and the determination step based on the new provisional design value, until the displacement residual is determined to be smaller than the threshold value in the determination step. repetition,
    The bending moment of the provisional design value when the displacement residual is determined to be smaller than the threshold in the determination step is defined as the bending moment acting on the intermediate fulcrum, and is based on this bending moment. The method for evaluating a continuous beam according to claim 2, wherein the plurality of rotation angles are obtained.
  4.  前記解算出工程では、
     前記n本の梁のうち、前記連続梁の一方の前記端支点である第1端支点から前記連続梁の他方の前記端支点である第2端支点に向かって、1以上n以下の自然数iに対して、i本目の前記梁における前記第1端支点側の前記中間支点又は前記端支点での前記鉛直変位δ0i(m)を前記与条件と規定し;
     i本目の前記梁における前記第2端支点側の前記中間支点又は前記端支点での前記鉛直変位の計算結果δi,calc(m)を、(1)式から(8)式に基づいて得られる(9)式により、前記計算値に含まれるとして算出し;
     1以上(n-1)以下のiに対する、(i+1)本目の前記梁における前記第1端支点側の前記中間支点での前記鉛直変位δ0(i+1)と、i本目の前記梁における前記第2端支点側の前記中間支点での前記鉛直変位の計算結果δi,calcと、の残差を第i残差と規定したときに、
     前記残差算出工程では、
     前記第1残差から前記第(n-1)残差までの和である中間残差を算出し;
     前記与条件である前記第2端支点における前記鉛直変位δと、n本目の前記梁における前記第2端支点での前記鉛直変位の計算結果δn,calcと、の残差である第2端支点残差を算出し;
     前記中間残差と前記第2端支点残差との和である前記変位残差を算出する;
     請求項2又は3に記載の連続梁の評価方法。
    Figure JPOXMLDOC01-appb-M000001
     ただし、1以上n以下の自然数iに対して、i本目の前記梁の長さをL(m)、i本目の前記梁において、前記第1端支点側の端を原点、前記第1端支点から前記第2端支点に向かう向きを正とした場合に規定される座標をx(m)、i本目の前記梁に作用する鉛直荷重をw(N/m)、i本目の前記梁における前記第1端支点側の端での回転剛性をSjl,i(Nm/rad)、i本目の前記梁における前記第2端支点側の端での回転剛性をSjr,i(Nm/rad)、i本目の前記梁における正曲げの曲げ剛性をEIs,i(Nm)、i本目の前記梁における負曲げの曲げ剛性をEIh,i(Nm)、i本目の前記梁における前記第2端支点側の前記中間支点又は前記端支点での曲げモーメントをMj,i(Nm)と規定する。前記第2境界条件に含まれる1本目の前記梁における前記第1端支点での曲げモーメントMj,0(Nm)は、前記第1端支点がピン接合の場合は0、剛接合又は半剛接合の場合は未知数であり、1本目の前記梁における前記第1端支点での回転角φ01(rad)は、前記第1端支点が剛接合の場合は0、ピン接合または半剛接合の場合は未知数である。
    In the solution calculation step,
    Of the n beams, a natural number i of 1 or more and n or less from the first end fulcrum which is one of the continuous beams to the second end fulcrum which is the other end fulcrum of the continuous beam. On the other hand, the vertical displacement δ 0i (m) at the intermediate fulcrum on the first end fulcrum side or the end fulcrum of the i-th beam is defined as the given condition;
    The calculation result δ i, calc (m) of the vertical displacement at the intermediate fulcrum on the second end fulcrum side or the end fulcrum of the i-th beam is obtained from Eqs. (1) to (8). Calculated as being included in the calculated value by the formula (9).
    The vertical displacement δ 0 (i + 1) at the intermediate fulcrum on the first end fulcrum side of the (i + 1) th beam with respect to i of 1 or more (n-1) or less, and the first beam of the i-th beam. When the residual of the vertical displacement calculation result δ i, calc at the intermediate fulcrum on the two-end fulcrum side is defined as the i-th residual.
    In the residual calculation step,
    The intermediate residual, which is the sum of the first residual to the (n-1) residual, is calculated;
    The second is the residual of the vertical displacement δ n at the second end fulcrum, which is the given condition, and the calculation result δ n, calc of the vertical displacement at the second end fulcrum of the nth beam. Calculate the end fulcrum residuals;
    The displacement residual, which is the sum of the intermediate residual and the second end fulcrum residual, is calculated;
    The method for evaluating a continuous beam according to claim 2 or 3.
    Figure JPOXMLDOC01-appb-M000001
    However, with respect to 1 to n for a natural number i, the length of the beam of i-th L i (m), in the beam of the i-th, the origin end of the first end supporting point side, the first end The coordinates defined when the direction from the fulcrum toward the second end fulcrum is positive are x i (m), the vertical load acting on the i-th beam is wi (N / m), and the i-th said. The rotational rigidity of the beam at the end on the first end fulcrum side is S jl, i (Nm / rad), and the rotational rigidity of the i-th beam at the end on the second end fulcrum side is S jr, i (Nm). / Rad), the bending rigidity of the forward bending of the i-th beam is EI s, i (Nm 2 ), and the bending rigidity of the negative bending of the i-th beam is EI h, i (Nm 2 ), the i-th The bending moment at the intermediate fulcrum or the end fulcrum on the second end fulcrum side of the beam is defined as M j, i (Nm). The bending moment M j, 0 (Nm) at the first end fulcrum of the first beam included in the second boundary condition is 0 when the first end fulcrum is a pin joint, rigid joint or semi-rigid. In the case of joining, it is unknown, and the angle of rotation φ 01 (rad) at the first end fulcrum of the first beam is 0 when the first end fulcrum is rigid joining, and it is pin joint or semi-rigid joint. The case is unknown.
  5.  長手方向に並べて配置されるとともに、前記長手方向に隣り合う端部同士が互いに半剛接合されて中間支点とされた、2以上の自然数であるn本の梁を備える連続梁であって、前記連続梁全体の両端が一対の端支点とされた前記連続梁を評価する評価装置用の連続梁の評価プログラムであって、前記評価装置を、
     前記中間支点及び前記一対の端支点での複数の曲げモーメント、及び前記一対の端支点での複数の回転角を、与条件に基づいて求める解決定部として機能させ、
     前記与条件は、
     前記n本の梁それぞれの長さ及び曲げ剛性と;
     前記中間支点及び前記一対の端支点での複数の回転剛性と;
     前記n本の梁に作用する鉛直荷重と;
     前記中間支点及び前記一対の端支点での複数の鉛直変位と;を含み、
     前記解決定部は、
     前記複数の曲げモーメント及び前記複数の回転角を複数の未知数と規定し、
     前記複数の回転剛性、前記複数の曲げモーメント、及び前記複数の回転角の関係式と、前記複数の鉛直変位の関係式とを、前記複数の未知数の数と同数の複数の第1境界条件と規定したときに、
    前記複数の未知数が前記複数の第1境界条件を満たすように前記複数の未知数を解いて、前記連続梁の曲げモーメント及びたわみ分布を評価する連続梁の評価プログラム。
    A continuous beam having two or more natural number n beams arranged side by side in the longitudinal direction and having end portions adjacent to each other in the longitudinal direction semi-rigidly joined to each other as an intermediate fulcrum. An evaluation program for a continuous beam for an evaluation device that evaluates the continuous beam having both ends of the entire continuous beam as a pair of end fulcrums.
    A plurality of bending moments at the intermediate fulcrum and the pair of end fulcrums, and a plurality of rotation angles at the pair of end fulcrums are made to function as a solution determination unit for obtaining based on given conditions.
    The given conditions are
    With the length and flexural rigidity of each of the n beams;
    With a plurality of rotational rigidity at the intermediate fulcrum and the pair of end fulcrums;
    With the vertical load acting on the n beams;
    Including a plurality of vertical displacements at the intermediate fulcrum and the pair of end fulcrums;
    The solution determination unit
    The plurality of bending moments and the plurality of rotation angles are defined as a plurality of unknowns.
    The relational expression of the plurality of rotational rigidity, the plurality of bending moments, and the plurality of rotation angles and the relational expression of the plurality of vertical displacements are combined with the plurality of first boundary conditions having the same number as the number of the plurality of unknowns. When specified,
    An evaluation program for a continuous beam that solves the plurality of unknowns so that the plurality of unknowns satisfy the plurality of first boundary conditions, and evaluates the bending moment and the deflection distribution of the continuous beam.
  6.  正曲げの曲げ剛性と負曲げの曲げ剛性とが互いに異なり、両端がそれぞれ半剛接合され全長にわたって等分布荷重が作用する合成梁の前記端に作用する曲げモーメントである端部曲げモーメント、及び前記合成梁に生じるたわみの最大値を算出する合成梁の評価方法であって、
     前記合成梁の前記端における回転剛性を、前記合成梁の単位長さ当たりの曲げ剛性で除した値を無次元化回転剛性と規定し、
     前記合成梁の正曲げの曲げ剛性及び前記合成梁の負曲げの曲げ剛性の比を無次元化曲げ剛性と規定したときに、
     前記端部曲げモーメント及び前記たわみの最大値を、前記無次元化回転剛性及び前記無次元化曲げ剛性に基づいて陽関数により算出する
     合成梁の評価方法。
    The bending rigidity of the forward bending and the bending rigidity of the negative bending are different from each other, and the end bending moment, which is the bending moment acting on the end of the composite beam in which both ends are semi-rigidly joined and an evenly distributed load acts over the entire length, and the above This is an evaluation method for composite beams that calculates the maximum value of deflection that occurs in composite beams.
    The value obtained by dividing the rotational rigidity at the end of the composite beam by the bending rigidity per unit length of the synthetic beam is defined as the non-dimensional rotational rigidity.
    When the ratio of the bending rigidity of the forward bending of the composite beam to the bending rigidity of the negative bending of the composite beam is defined as the non-dimensional bending rigidity,
    A method for evaluating a composite beam in which the end bending moment and the maximum value of the deflection are calculated by an explicit function based on the non-dimensional rotational rigidity and the non-dimensional bending rigidity.
  7.  前記両端がそれぞれ剛接合されて全長にわたって等分布荷重が作用すると仮定したときの前記合成梁の前記端に作用する曲げモーメントを剛接モーメントと規定し、
     前記両端がそれぞれピン接合されて全長にわたって等分布荷重が作用する仮定としたときの前記合成梁に作用する曲げモーメントの最大値をピン接モーメントと規定し、
     前記両端がそれぞれ半剛接合されて全長にわたって等分布荷重が作用する前記合成梁の前記端に作用する曲げモーメントを半剛接モーメントと規定し、
     前記半剛接モーメントを前記ピン接モーメントで除した値を無次元化接合部モーメントと規定し、
     前記剛接モーメントを前記ピン接モーメントで除した値を無次元化剛接モーメントと規定したときに、
     前記無次元化曲げ剛性に基づいて前記無次元化剛接モーメントを陽関数により算出し;
     算出した前記無次元化剛接モーメント、前記無次元化回転剛性、及び前記無次元化曲げ剛性に基づいて前記無次元化接合部モーメントを陽関数により算出し;
     算出した前記無次元化接合部モーメントに基づいて前記端部曲げモーメント及び前記たわみの最大値を陽関数により算出する;
     請求項6に記載の合成梁の評価方法。
    The bending moment acting on the end of the composite beam when it is assumed that both ends are rigidly joined and an evenly distributed load acts over the entire length is defined as the rigid contact moment.
    The maximum value of the bending moment acting on the composite beam when it is assumed that both ends are pin-joined and an evenly distributed load acts over the entire length is defined as the pin contact moment.
    The bending moment acting on the end of the composite beam on which the both ends are semi-rigidly joined and an evenly distributed load acts over the entire length is defined as the semi-rigid contact moment.
    The value obtained by dividing the semi-rigid contact moment by the pin contact moment is defined as the dimensionless joint moment.
    When the value obtained by dividing the rigid contact moment by the pin contact moment is defined as the dimensionless rigid contact moment,
    The dimensionless rigid contact moment is calculated by an explicit function based on the dimensionless flexural rigidity;
    Based on the calculated non-dimensional rigid contact moment, the non-dimensional rotational rigidity, and the non-dimensional flexural rigidity, the non-dimensional joint moment is calculated by an explicit function;
    Based on the calculated dimensionless joint moment, the end bending moment and the maximum value of the deflection are calculated by an explicit function;
    The method for evaluating a composite beam according to claim 6.
  8.  前記無次元化剛接モーメントをβMj,rigid、前記無次元化回転剛性をα、前記無次元化曲げ剛性をαと規定したときに、前記無次元化接合部モーメントβMjを、(10)式から(12)式を用いて(13)式により算出する
     請求項7に記載の合成梁の評価方法。
    Figure JPOXMLDOC01-appb-M000002
    When the dimensionless rigid contact moment is defined as β Mj, rigid , the dimensionless rotational rigidity is defined as α j , and the dimensionless bending rigidity is defined as α s , the dimensionless joint moment β Mj is defined as (. The method for evaluating a composite beam according to claim 7, which is calculated by the formula (13) using the formulas (12) from the formula (10).
    Figure JPOXMLDOC01-appb-M000002
  9.  前記無次元化剛接モーメントβMj,rigidが0.4以下のときには、(13)式において、前記無次元化剛接モーメントβMj,rigidに代えて、前記無次元化剛接モーメントβMj,rigidに基づいて(14)式により算出される無次元化剛接モーメントβMj,rigid,Theoを用いる
     請求項8に記載の合成梁の評価方法。
    Figure JPOXMLDOC01-appb-M000003
    When the dimensionless rigid contact moment β Mj, rigid is 0.4 or less, in the equation (13), the dimensionless rigid contact moment β Mj, instead of the dimensionless rigid contact moment β Mj, rigid , the dimensionless rigid contact moment β Mj, The method for evaluating a composite beam according to claim 8, wherein the dimensionless rigid contact moment β Mj, rigid, and Theo calculated by the equation (14) based on the rigid is used.
    Figure JPOXMLDOC01-appb-M000003
PCT/JP2020/042755 2019-11-21 2020-11-17 Method of evaluating continuous beams, program for evaluating continuous beams, and method for evaluating composite beams WO2021100693A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080093437.8A CN114945923A (en) 2019-11-21 2020-11-17 Method for evaluating continuous beam, program for evaluating continuous beam, and method for evaluating composite beam

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019210811A JP7348510B2 (en) 2019-11-21 2019-11-21 Evaluation method for composite beams
JP2019210798A JP7348509B2 (en) 2019-11-21 2019-11-21 Continuous beam evaluation method and continuous beam evaluation program
JP2019-210811 2019-11-21
JP2019-210798 2019-11-21

Publications (1)

Publication Number Publication Date
WO2021100693A1 true WO2021100693A1 (en) 2021-05-27

Family

ID=75980557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/042755 WO2021100693A1 (en) 2019-11-21 2020-11-17 Method of evaluating continuous beams, program for evaluating continuous beams, and method for evaluating composite beams

Country Status (2)

Country Link
CN (1) CN114945923A (en)
WO (1) WO2021100693A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001195444A (en) * 1999-10-29 2001-07-19 Toyota Central Res & Dev Lab Inc Method for designing structure and recording medium
JP2005294195A (en) * 2004-04-05 2005-10-20 Yazaki Corp Method for assisting wiring design of wiring structure, its apparatus, and its program
JP2018168630A (en) * 2017-03-30 2018-11-01 トヨタホーム株式会社 Calculation system of stress or deflection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001195444A (en) * 1999-10-29 2001-07-19 Toyota Central Res & Dev Lab Inc Method for designing structure and recording medium
JP2005294195A (en) * 2004-04-05 2005-10-20 Yazaki Corp Method for assisting wiring design of wiring structure, its apparatus, and its program
JP2018168630A (en) * 2017-03-30 2018-11-01 トヨタホーム株式会社 Calculation system of stress or deflection

Also Published As

Publication number Publication date
CN114945923A (en) 2022-08-26

Similar Documents

Publication Publication Date Title
JP6414374B1 (en) Analysis method, design method, manufacturing method, and program
Oehlers et al. Elementary behaviour of composite steel and concrete structural members
Ma et al. Cross-sectional optimization of cold-formed steel channels to Eurocode 3
CN110852012A (en) Method for predicting ultimate strength of axial-compression stiffened plate
JP7348509B2 (en) Continuous beam evaluation method and continuous beam evaluation program
Muho et al. A seismic design method for reinforced concrete moment resisting frames using modal strength reduction factors
Muho et al. Deformation dependent equivalent modal damping ratios for the performance-based seismic design of plane R/C structures
Santana et al. Stability and load capacity of an elasto-plastic pyramidal truss
Azizov et al. Consideration of the torsional stiffness in hollow-core slabs’ design
Shayanfar et al. Analysis of coupled steel plate shear walls with outrigger system for tall buildings
WO2021100693A1 (en) Method of evaluating continuous beams, program for evaluating continuous beams, and method for evaluating composite beams
Klein et al. Effects of warping shear deformation on the torsional load-bearing behaviour of assembled half-shell structures for wind energy towers
Kusunoki et al. Study on the accuracy of practical functions for R/C wall by a developed database of experimental test results
Bajer et al. Lateral torsional buckling of selected cross-section types
JP7436849B2 (en) Analysis method, design method, manufacturing method, and program
JP7348510B2 (en) Evaluation method for composite beams
Raspudic OPTIMAL DESIGN OF LATERALLY UNRESTRAINED I-BEAMS USING GENETIC ALGORITHM.
Giżejowski et al. 05.33: LTB resistance of rolled I‐section beams: FEM verification of Eurocode's buckling curve formulation
Šakalys et al. Numerical investigation on web crippling behaviour of cold-formed C-section beam with vertical stiffeners
JP7024753B2 (en) Design method of steel beams used for floor structure, floor structure
Deâ et al. Parametrical study of lateral torsional buckling behaviour for triangular web profile steel section
Sokov Effective Width of the Free Flange of the Ship’s Wide Beam with an Axis Bend
El Dib ELASTIC BUCKLING AND ULTIMATE LOAD OF PORTAL FRAMES
Nedelcu Semi-analytical solutions for the compressed thin plate with large displacements
Aldera An investigation into the effects of the shifting centroid and shear centre in notched steel beams undergoing elastic lateral torsional buckling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20889873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20889873

Country of ref document: EP

Kind code of ref document: A1