JPH11352027A - Method for analyzing reinforced concrete member and its recording medium - Google Patents

Method for analyzing reinforced concrete member and its recording medium

Info

Publication number
JPH11352027A
JPH11352027A JP10165145A JP16514598A JPH11352027A JP H11352027 A JPH11352027 A JP H11352027A JP 10165145 A JP10165145 A JP 10165145A JP 16514598 A JP16514598 A JP 16514598A JP H11352027 A JPH11352027 A JP H11352027A
Authority
JP
Japan
Prior art keywords
equation
thickness direction
stress
stiffness
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10165145A
Other languages
Japanese (ja)
Other versions
JP3405200B2 (en
Inventor
Kazuhiro Naganuma
一洋 長沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP16514598A priority Critical patent/JP3405200B2/en
Publication of JPH11352027A publication Critical patent/JPH11352027A/en
Application granted granted Critical
Publication of JP3405200B2 publication Critical patent/JP3405200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute an analysis by the finite element method by creating an element stiffness matrix, calculating load and displacement, and performing calculation using an equivalent stiffness expression as the stiffness in the thickness direction, when calculating element distortion and element stress. SOLUTION: When a reinforced concrete member is modeled into a flat surface element for a two-dimensional analysis, equivalent stiffness in the thickness direction is defined from the balancing expression of the stress of a reinforcing bar and concrete in a direction such that it crosses the flat plane element orthogonally, an element stiffness matrix is created using it, load and displacement are calculated, and equivalent stiffness is used as stiffness in a thickness direction also, when calculating element distortion and element stress for calculation, thus enabling a two-dimensional planar element to be modeled for eliminating labor, specifying the ratio of the reinforcing bar and a breakdown point in the thickness direction for reproducing strength and deformation according to the amount of reinforcing bar for each site, and hence obtaining an accurate calculation result which is close to a three-dimensional analysis.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、たとえば鉄筋コ
ンクリート部材を有限要素法により解析する方法および
その記録媒体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for analyzing a reinforced concrete member by a finite element method and a recording medium for the method.

【0002】[0002]

【従来の技術】鉄筋コンクリート部材の強度や変形を予
測する手法として有限要素法が用いられている。鉄筋コ
ンクリート部材として例えば図2(a),(b)に示さ
れるような鉄筋コンクリート柱を有限要素法により解析
する場合、図3に示されるように平面応力要素でモデル
化して解析する二次元解析と、図4に示されるように鉄
筋コンクリート部材を六面体要素にモデル化して解析す
る三次元解析とが知られている。
2. Description of the Related Art A finite element method is used as a method for predicting the strength and deformation of a reinforced concrete member. When a reinforced concrete column as shown in FIGS. 2 (a) and 2 (b) is analyzed by a finite element method as a reinforced concrete member, for example, as shown in FIG. As shown in FIG. 4, a three-dimensional analysis in which a reinforced concrete member is modeled into a hexahedral element and analyzed is known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、柱など
では帯筋の拘束効果により、コンクリートが三次元応力
状態になり、三方向から拘束されることで強度や変形能
が高まるという特徴があるところ、二次元解析は、モデ
ル作成は比較的容易であるが、本来三次元である部材を
二次元で解析するものであるから、正しい解析ができな
いという課題がある。具体的には、図5に示されるよう
な、平面要素に直交する部材の厚さ方向の鉄筋(ハッチ
部分)の拘束効果を考慮することができないため、部材
の厚さ方向の応力が0と仮定され、コンクリートの強度
が過小評価されてしまい、結果として、必要以上に高強
度の部材を使用せざるを得ないという欠点があった。
However, in columns and the like, concrete has a three-dimensional stress state due to the restraining effect of the stirrups, and there is a feature that strength and deformability are increased by being restrained from three directions. In the two-dimensional analysis, although model creation is relatively easy, there is a problem that correct analysis cannot be performed because members that are originally three-dimensional are analyzed in two dimensions. Specifically, as shown in FIG. 5, it is not possible to consider the restraining effect of the reinforcing bar (hatched portion) in the thickness direction of the member orthogonal to the plane element, so that the stress in the thickness direction of the member is 0. It is assumed that the strength of the concrete is underestimated, and as a result, there is a disadvantage that a member having a higher strength than necessary must be used.

【0004】これに対し、二次元解析として平面応力要
素ではなく平面ひずみ要素を用いる方法もあるが、その
場合は部材の厚さ方向の変形が完全に拘束されてしまう
ため、逆に強度が過大評価されてしまう。平面ひずみ要
素で厚さ方向の変形を許容した一般化平面ひずみ要素も
開発されているが、この場合は厚さ方向の鉄筋の効果を
考慮することができない上に、モデル全域で厚さ方向の
変形が同一となってしまうため、実際の強度を精度よく
解析することができないという欠点があった。
On the other hand, there is a method of using a plane strain element instead of a plane stress element as a two-dimensional analysis. In this case, however, the deformation in the thickness direction of the member is completely restrained, and conversely, the strength is excessively large. Will be evaluated. A generalized plane strain element that allows deformation in the thickness direction with a plane strain element has also been developed, but in this case, the effect of the reinforcing bar in the thickness direction cannot be considered, and in addition, Since the deformation is the same, there is a disadvantage that the actual strength cannot be analyzed with high accuracy.

【0005】一方、三次元解析にあっては、モデル作成
の手間がかかるほか、計算時間が多くかかるという欠点
があった。
[0005] On the other hand, the three-dimensional analysis has the drawbacks that it takes time and effort to create a model and that it takes a lot of calculation time.

【0006】そこで、本発明は、モデル作成および計算
の手間がかかることなく、鉄筋の拘束効果を考慮した有
限要素法による解析を行うことができる鉄筋コンクリー
ト部材の解析方法およびその記録媒体を提供することを
目的とする。
It is an object of the present invention to provide a method for analyzing a reinforced concrete member and an analysis method for a reinforced concrete member capable of performing an analysis by a finite element method in consideration of the restraining effect of a reinforcing bar without taking time and effort for model creation and calculation, and a recording medium therefor. With the goal.

【0007】[0007]

【課題を解決するための手段】この発明は、上記目的を
達成するためになされたもので、鉄筋コンクリート部材
を平面要素にモデル化して解析する二次元解析にあた
り、平面要素に直交する方向の鉄筋とコンクリートとの
応力の釣り合い式から厚さ方向の等価剛性
Means for Solving the Problems The present invention has been made to achieve the above-mentioned object. In a two-dimensional analysis in which a reinforced concrete member is modeled and analyzed as a plane element, the present invention relates to a method in which a reinforcing bar in a direction perpendicular to the plane element is used. Equivalent stiffness in the thickness direction from the balance equation of stress with concrete

【数2】 を定義し、これを用いて要素剛性マトリクスを作成し、
荷重および変位を計算し、要素ひずみおよび要素応力の
計算にあたっても、厚さ方向の剛性として前記等価剛性
を用いて計算することを特徴とする。
(Equation 2) Is defined, and an element rigidity matrix is created using the
The load and the displacement are calculated, and the element strain and the element stress are also calculated by using the equivalent rigidity as the rigidity in the thickness direction.

【0008】また、本発明は、上記鉄筋コンクリート部
材の解析をコンピュータに実行させるプログラムを記録
したコンピュータ読み取り可能な記録媒体にある。
The present invention also resides in a computer-readable recording medium on which a program for causing a computer to execute the analysis of the reinforced concrete member is recorded.

【0009】この発明によれば、本来三次元である部材
を二次元の平面要素でモデル化しながら、部材の厚さ方
向の鉄筋の効果を適切に考慮することができるため、図
1に示されるように、コンクリートのポアソン効果によ
る厚さ方向の変形を、厚さ方向の鉄筋1,1が拘束する
メカニズムを定式化することができる。同図において、
円白抜き矢印は圧縮力、縦方向の矢印はひずみ、斜め方
向の矢印は厚さ方向の膨らみである。この厚さ方向の膨
らみは、鉄筋との付着力を通じ鉄筋に拘束されることと
なり、また、この拘束力は前記圧縮力に対する抵抗とな
って、コンクリートの剛性を高めることにつながる。
According to the present invention, the effect of the reinforcing bar in the thickness direction of the member can be appropriately considered while modeling the member which is originally three-dimensional with a two-dimensional plane element, and is shown in FIG. As described above, it is possible to formulate a mechanism in which the deformation in the thickness direction due to the Poisson effect of concrete is restricted by the reinforcing bars 1 and 1 in the thickness direction. In the figure,
The hollow arrow indicates the compressive force, the vertical arrow indicates the strain, and the oblique arrow indicates the bulge in the thickness direction. The swelling in the thickness direction is restrained by the reinforcing bar through the adhesive force with the reinforcing bar, and the restraining force becomes a resistance to the compressive force, which leads to an increase in rigidity of the concrete.

【0010】そして、この方法で誘導された要素は、平
面応力要素と平面ひずみ要素の中間の性質を有するもの
であって、厚さ方向の応力とひずみの両方を許容するも
のである。なお、要素形状は、図3に示す平面要素と同
一である。
The element derived by this method has an intermediate property between the plane stress element and the plane strain element, and permits both stress and strain in the thickness direction. The element shape is the same as the plane element shown in FIG.

【0011】このような解析方法は、コンピュータ読み
取り可能な記録媒体に記録したコンピュータプログラム
を実行することにより実現できる。
Such an analysis method can be realized by executing a computer program recorded on a computer-readable recording medium.

【0012】[0012]

【発明の実施の形態】以下、この発明の好ましい実施の
形態を、添付図面を参照しつつ詳細に説明する。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0013】通常、有限要素法による鉄筋コンクリート
部材の解析は、例えば図6のフローチャートのような手
順で行われ、かかるフローチャートに関連して本発明に
おいては、このうち特に、要素剛性マトリクス、およ
び、要素ひずみと要素応力の計算について特徴をもつも
のである。以下、これらの特徴を中心に本実施形態を説
明する。
Normally, the analysis of a reinforced concrete member by the finite element method is performed in accordance with, for example, a procedure shown in a flowchart of FIG. 6. In the present invention, in particular, the element rigidity matrix and the element It is characterized by the calculation of strain and element stress. Hereinafter, the present embodiment will be described focusing on these features.

【0014】===要素剛性マトリクスの作成=== 3軸応力下のひずみから応力関係式は次式で表される。
添字の1,2は面内方向、3は厚さ方向を示す。
=== Preparation of Element Stiffness Matrix === The stress-related equation is expressed by the following equation based on the strain under triaxial stress.
Subscripts 1 and 2 indicate in-plane directions, and 3 indicates a thickness direction.

【0015】[0015]

【数3】 (Equation 3)

【0016】ここで、εi ,σi ,Ei はそれぞれi方
向のひずみ、応力、剛性であり、νijはi−j内面のポ
アソン比でj方向の応力によりi方向に生じるひずみの
比である。
Here, εi, σi, and Ei are the strain, stress, and rigidity in the i direction, respectively, and νij is the ratio of the strain generated in the i direction by the stress in the j direction at the Poisson's ratio of the ij inner surface.

【0017】厚さ方向の鉄筋比をρ3m、剛性をEs3m 、
鉄筋の応力をσs3m とする。添字mは厚さ方向の鉄筋が
複数の場合(m=1,2,・・・など)を示す。
The ratio of reinforcing bars in the thickness direction is ρ3m, the rigidity is Es3m,
The stress of the rebar is σs3m. The subscript m indicates a case where there are a plurality of reinforcing bars in the thickness direction (m = 1, 2,..., Etc.).

【0018】厚さ方向の応力の釣り合いより、次式が成
立する。
The following equation is established from the balance of the stress in the thickness direction.

【数4】 (Equation 4)

【0019】鉄筋の応力は次式で計算される。The stress of the rebar is calculated by the following equation.

【数5】 (Equation 5)

【0020】式(5)を式(4)に代入すると次式にな
る。
When the equation (5) is substituted into the equation (4), the following equation is obtained.

【数6】 (Equation 6)

【0021】式(6)より、厚さ方向のひずみは次式で
計算できる。
From equation (6), the strain in the thickness direction can be calculated by the following equation.

【数7】 (Equation 7)

【0022】式(7)を式(3)に代入し、ε3 を消去
すると次式となる。
By substituting equation (7) into equation (3) and eliminating ε3, the following equation is obtained.

【数8】 (Equation 8)

【0023】式(8)よりσ3 は次式で表される。From equation (8), σ 3 is represented by the following equation.

【数9】 (Equation 9)

【0024】ここで、厚さ方向の等価剛性E3 * を次式
で定義する。
Here, the equivalent rigidity E3 * in the thickness direction is defined by the following equation.

【数10】 (Equation 10)

【0025】E3 * を用いると、式(9)は次式とな
る。
Using E3 * , equation (9) becomes:

【数11】 [Equation 11]

【0026】式(11)を式(1)および(2)に代入
し、σ3 を消去すると次式となる。
Substituting equation (11) into equations (1) and (2) and eliminating σ3 yields the following equation.

【数12】 (Equation 12)

【0027】ここで、n=E3 * /E3 とおくと、式
(12)、式(13)は次式となる。
Here, if n = E3 * / E3, equations (12) and (13) are as follows.

【数13】 (Equation 13)

【0028】ここで、等価ポアソン比μijを次式で定義
する。
Here, the equivalent Poisson's ratio μij is defined by the following equation.

【数14】 [Equation 14]

【0029】Maxwell Betti の相反定理より、次式が成
立する。
From Maxwell Betti's reciprocity theorem, the following equation holds.

【数15】 (Equation 15)

【0030】式(17)を用いると、式(14)、式
(15)は次式となる。
Using equation (17), equations (14) and (15) are as follows.

【数16】 (Equation 16)

【0031】式(18)の第2項の係数と式(19)の
第1項の係数は相反定理より等しくなければならない。
即ち、次式が成立する。
The coefficient of the second term of the equation (18) and the coefficient of the first term of the equation (19) must be equal according to the reciprocity theorem.
That is, the following equation is established.

【数17】 [Equation 17]

【0032】よって、次式が得られる。Therefore, the following equation is obtained.

【数18】 (Equation 18)

【0033】ここで、式(17)より、μ13とμ32は次
式で表される。
Here, from the equation (17), μ13 and μ32 are represented by the following equations.

【数19】 [Equation 19]

【0034】式(22)、式(23)を用いると、式
(21)の左辺は次式となる。
Using equations (22) and (23), the left side of equation (21) is as follows.

【数20】 (Equation 20)

【0035】同様に、式(21)の右辺は次式となる。Similarly, the right side of equation (21) is as follows.

【数21】 式(24)と式(25)より、式(21)の左辺と右辺
は一致することが分かる。
(Equation 21) From Equations (24) and (25), it can be seen that the left side and the right side of Equation (21) match.

【0036】以上の関係を用いて、式(18)と式(1
9)をマトリクス表示すると次式となる。
Using the above relations, equation (18) and equation (1)
When 9) is displayed in a matrix, the following expression is obtained.

【数22】 (Equation 22)

【0037】式(26)を逆変換すると、次式が得られ
る。
By inversely transforming equation (26), the following equation is obtained.

【数23】 (Equation 23)

【0038】よって、要素の応力〜ひずみマトリクス
[D]は次のように表される。
Accordingly, the stress-strain matrix [D] of the element is expressed as follows.

【数24】 (Equation 24)

【0039】なお、上式でn=1とすると、通常の異方
性平面ひずみの応力〜ひずみマトリクスと一致する。ま
た、μ12=μ23=μ31=ν、E1 =E2 =Eとすると、
等方性平面ひずみの応力〜ひずみマトリクスと一致す
る。本要素の応力〜ひずみマトリクスの大きさは通常の
平面応力要素、あるいは平面ひずみ要素と同様に2×2
であり、要素剛性マトリクスの作成に際しては、応力〜
ひずみマトリクスに式(32)を用いるだけで良い。
When n = 1 in the above equation, the value is equal to the stress-strain matrix of ordinary anisotropic plane strain. Further, if μ12 = μ23 = μ31 = ν and E1 = E2 = E,
It is consistent with the stress-strain matrix of isotropic plane strain. The magnitude of the stress-strain matrix of this element is 2 × 2 as in a normal plane stress element or plane strain element.
When creating the element rigidity matrix, stress ~
It is only necessary to use equation (32) for the distortion matrix.

【0040】===要素ひずみと要素応力の計算=== 通常の平面応力要素と同様に得られた変位から要素の面
内のひずみと応力を算定する。面内の応力σ1 、σ2 が
分かれば、厚さ方向の応力σ3 は式(11)により算定
できる。
=== Calculation of Element Strain and Element Stress === The in-plane strain and stress of the element are calculated from the displacement obtained in the same manner as a normal plane stress element. If the stresses σ1 and σ2 in the plane are known, the stress σ3 in the thickness direction can be calculated by equation (11).

【0041】[0041]

【数25】 (Equation 25)

【0042】ここで、式(17)よりν31とν32は次式
で表される。
Here, from equation (17), ν31 and ν32 are represented by the following equations.

【数26】 (Equation 26)

【0043】これらを式(11)に代入するとσ3 は次
式となる。
By substituting these into the equation (11), σ3 becomes the following equation.

【数27】 [Equation 27]

【0044】厚さ方向のひずみε3 は式(7)により算
定できる。
The strain ε3 in the thickness direction can be calculated by equation (7).

【数28】 [Equation 28]

【0045】上述した本実施形態の解析方法は、コンピ
ュータ読み取り可能な記録媒体に記録したコンピュータ
プログラムをコンピュータに実行させることにより実現
できる。
The above-described analysis method of this embodiment can be realized by causing a computer to execute a computer program recorded on a computer-readable recording medium.

【0046】[0046]

【発明の効果】以上詳細に説明したように、この発明に
よれば、二次元の平面要素でモデル化すればよいので手
間がかからず、厚さ方向の鉄筋比と降伏点を指定するこ
とにより部位毎に鉄筋量に応じた強度と変形を再現する
ことができながら、解析の結果には、厚さ方向の鉄筋に
よる厚さ方向のコンクリートを抑える効果が組み込まれ
るため、結果として、三次元解析に近い正確な計算結果
を得ることができる。
As described in detail above, according to the present invention, since it is sufficient to model a two-dimensional plane element, no labor is required, and the rebar ratio and the yield point in the thickness direction can be specified. Can reproduce the strength and deformation according to the amount of rebar for each part, but the results of the analysis incorporate the effect of suppressing the concrete in the thickness direction by the rebar in the thickness direction. An accurate calculation result close to the analysis can be obtained.

【0047】そして、鉄筋コンクリート柱などでは、帯
筋の効果によりコンクリートが三次元応力状態になるた
め、二次元解析では強度や変形を過小評価する惧れがあ
ったが、このような惧れがない。
In a reinforced concrete column or the like, since the concrete is in a three-dimensional stress state due to the effect of the stirrups, there is a fear that the strength and deformation are underestimated in the two-dimensional analysis. .

【0048】また、従来の一般化平面ひずみ要素のよう
に、モデル全域で厚さ方向の変形が同一となってしまう
ことはなく、要素毎に厚さ方向の鉄筋量や応力状態に応
じた変形が再現できる。
Further, unlike the conventional generalized plane strain element, the deformation in the thickness direction does not become the same in the entire model, and the deformation in accordance with the amount of reinforcing bar in the thickness direction and the stress state for each element. Can be reproduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鉄筋によるコンクリートの変形拘束状態を示す
斜視図である。
FIG. 1 is a perspective view showing a state in which concrete is restrained from deformation by a reinforcing bar.

【図2】(a),(b)は鉄筋コンクリート部材を示す
縦断面図、横断面図である。
FIGS. 2A and 2B are a longitudinal sectional view and a transverse sectional view showing a reinforced concrete member.

【図3】平面応力要素によるモデルを示す図である。FIG. 3 is a diagram showing a model based on a plane stress element.

【図4】六面体要素によるモデルを示す図である。FIG. 4 is a diagram showing a model based on hexahedral elements.

【図5】平面応力要素が厚さ方向の鉄筋の拘束効果を考
慮しない状態を示す図である。
FIG. 5 is a diagram showing a state in which a plane stress element does not consider a restraining effect of a reinforcing bar in a thickness direction.

【図6】有限要素法による鉄筋コンクリート部材の解析
手順を示すフローチャートである。
FIG. 6 is a flowchart showing an analysis procedure of a reinforced concrete member by a finite element method.

【符号の説明】[Explanation of symbols]

1 鉄筋 1 rebar

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鉄筋コンクリート部材を平面要素にモデ
ル化して解析する二次元解析にあたり、平面要素に直交
する方向の鉄筋とコンクリートとの応力の釣り合い式か
ら厚さ方向の等価剛性 【数1】 を定義し、これを用いて要素剛性マトリクスを作成し、
荷重および変位を計算し、要素ひずみおよび要素応力の
計算にあたっても、厚さ方向の剛性として前記等価剛性
を用いて計算することを特徴とする鉄筋コンクリート部
材の解析方法。
In a two-dimensional analysis in which a reinforced concrete member is modeled and analyzed as a plane element, an equivalent rigidity in a thickness direction is obtained from a balance equation of stress between a reinforcing bar and concrete in a direction orthogonal to the plane element. Is defined, and an element rigidity matrix is created using the
A method for analyzing a reinforced concrete member, comprising calculating a load and a displacement, and calculating the element strain and the element stress by using the equivalent rigidity as the rigidity in the thickness direction.
【請求項2】 請求項1に記載の鉄筋コンクリート部材
の解析をコンピュータに実行させるプログラムを記録し
たコンピュータ読み取り可能な記録媒体。
2. A computer-readable recording medium in which a program for causing a computer to execute the analysis of the reinforced concrete member according to claim 1 is recorded.
JP16514598A 1998-06-12 1998-06-12 Analysis method for reinforced concrete member and recording medium therefor Expired - Lifetime JP3405200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16514598A JP3405200B2 (en) 1998-06-12 1998-06-12 Analysis method for reinforced concrete member and recording medium therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16514598A JP3405200B2 (en) 1998-06-12 1998-06-12 Analysis method for reinforced concrete member and recording medium therefor

Publications (2)

Publication Number Publication Date
JPH11352027A true JPH11352027A (en) 1999-12-24
JP3405200B2 JP3405200B2 (en) 2003-05-12

Family

ID=15806751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16514598A Expired - Lifetime JP3405200B2 (en) 1998-06-12 1998-06-12 Analysis method for reinforced concrete member and recording medium therefor

Country Status (1)

Country Link
JP (1) JP3405200B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250829A (en) * 2008-04-08 2009-10-29 Radioactive Waste Management Funding & Research Center Method for simple three-dimensional analysis of welding deformation and residual stress
JP2019207486A (en) * 2018-05-28 2019-12-05 日本車輌製造株式会社 Design support device, design support method, design support program and method for manufacturing concrete structure
KR20210037524A (en) * 2019-09-27 2021-04-06 경희대학교 산학협력단 method for predicting movement of steel-rebar concrete composite columns considering concrete confinement provided by rebars and steel sections

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175637A (en) * 1990-11-08 1992-06-23 Shiro Takada Method of calculating ground spring constant applied to buried corrugated pipe, and method of analyzing exhibition thereof with respect to seismic motion
JPH06305105A (en) * 1993-04-22 1994-11-01 Asics Corp Method for forming quasi-three dimensional model for composite material laminate and method for analyzing composite material laminate using the model
JPH09128436A (en) * 1995-10-30 1997-05-16 Sony Corp Element data forming method, object analytic method and recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175637A (en) * 1990-11-08 1992-06-23 Shiro Takada Method of calculating ground spring constant applied to buried corrugated pipe, and method of analyzing exhibition thereof with respect to seismic motion
JPH06305105A (en) * 1993-04-22 1994-11-01 Asics Corp Method for forming quasi-three dimensional model for composite material laminate and method for analyzing composite material laminate using the model
JPH09128436A (en) * 1995-10-30 1997-05-16 Sony Corp Element data forming method, object analytic method and recording medium

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250829A (en) * 2008-04-08 2009-10-29 Radioactive Waste Management Funding & Research Center Method for simple three-dimensional analysis of welding deformation and residual stress
JP2019207486A (en) * 2018-05-28 2019-12-05 日本車輌製造株式会社 Design support device, design support method, design support program and method for manufacturing concrete structure
KR20210037524A (en) * 2019-09-27 2021-04-06 경희대학교 산학협력단 method for predicting movement of steel-rebar concrete composite columns considering concrete confinement provided by rebars and steel sections

Also Published As

Publication number Publication date
JP3405200B2 (en) 2003-05-12

Similar Documents

Publication Publication Date Title
Minafò A practical approach for the strength evaluation of RC columns reinforced with RC jackets
Carrera et al. Refined 1D finite elements for the analysis of secondary, primary, and complete civil engineering structures
JP5003609B2 (en) Method for determining equivalent thickness of anisotropic material
Fajfar et al. Mathematical modelling of reinforced concrete structural walls for nonlinear seismic analysis
Bhatt et al. Assessing the seismic response of existing RC buildings using the extended N2 method
Frischkorn et al. A solid-beam finite element and non-linear constitutive modelling
Cheung et al. Vibrations of moderately thick rectangular plates in terms of a set of static Timoshenko beam functions
JP6497426B1 (en) Shape optimization analysis method and apparatus for laminated composite member
Pantano et al. A penalty-based finite element interface technology
Nogueira et al. Material and geometric nonlinear analysis of reinforced concrete frame structures considering the influence of shear strength complementary mechanisms
Nguyen-Thoi et al. An extended cell-based smoothed three-node Mindlin plate element (XCS-MIN3) for free vibration analysis of cracked FGM plates
KR101028978B1 (en) Solver for a restrained deformable system with released degrees of freedom
Jang et al. Analysis of three thin-walled box beams connected at a joint under out-of-plane bending loads
Wang et al. Free vibration analysis of stiffened rectangular plate with cutouts using Nitsche based IGA method
JP3603742B2 (en) Analysis method for reinforced concrete column, analysis system for reinforced concrete column, and recording medium recording computer program for executing analysis method for reinforced concrete column
JPH11352027A (en) Method for analyzing reinforced concrete member and its recording medium
Dey et al. An efficient plate element for the vibration of composite plates
Song et al. Failure analysis of reinforced concrete shell structures using layered shell element with pressure node
Høgsberg et al. Analysis of moderately thin-walled beam cross-sections by cubic isoparametric elements
Kutlu et al. A new mixed finite-element approach for the elastoplastic analysis of Mindlin plates
Capdevielle et al. A shear warping kinematic enhancement for fiber beam elements with a damaging cross-section
Mezghanni et al. Behavior of beam web panel under opposite patch loading
Liguori et al. A layer-wise plasticity-based approach for the analysis of reinforced concrete shell structures using a mixed finite element
JP2021077183A (en) Structure calculation support apparatus
KR101645169B1 (en) Method for dynamic soil-structure interaction analysis by using flexible volume method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080307

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090307

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100307

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 11

EXPY Cancellation because of completion of term