WO2024109891A1 - 氢能混动汽车的动力电池加热方法、装置、介质和设备 - Google Patents

氢能混动汽车的动力电池加热方法、装置、介质和设备 Download PDF

Info

Publication number
WO2024109891A1
WO2024109891A1 PCT/CN2023/133739 CN2023133739W WO2024109891A1 WO 2024109891 A1 WO2024109891 A1 WO 2024109891A1 CN 2023133739 W CN2023133739 W CN 2023133739W WO 2024109891 A1 WO2024109891 A1 WO 2024109891A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
heat
temperature
battery
circuit
Prior art date
Application number
PCT/CN2023/133739
Other languages
English (en)
French (fr)
Inventor
李文旭
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2024109891A1 publication Critical patent/WO2024109891A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/66Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells
    • H01M10/663Heat-exchange relationships between the cells and other systems, e.g. central heating systems or fuel cells the system being an air-conditioner or an engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the field of vehicle technology, and in particular to a method, device, medium and equipment for heating a power battery of a hydrogen hybrid vehicle.
  • Hydrogen hybrid vehicles are driven by hydrogen fuel cells and power batteries. Like oil-electric hybrid vehicles, they can choose two different power outputs according to different driving conditions.
  • the present application provides a method, device, medium and equipment for heating a power battery of a hydrogen hybrid vehicle, which can heat the power battery without consuming the power battery electricity, so as to solve the problem of driving range attenuation at low temperatures.
  • an embodiment of the present application provides a method for heating a power battery of a hydrogen hybrid vehicle, wherein the hydrogen hybrid vehicle includes a stack circuit for performing heat exchange with a fuel cell stack, and the method includes:
  • the heat of the stack circuit is controlled to heat the power battery
  • the air conditioning system is controlled to heat the power battery based on the lowest temperature of the power battery.
  • determining whether there is residual heat in the fuel cell stack includes:
  • the heat of the stack circuit is controlled to heat the power battery, including:
  • the heat of the battery stack circuit is controlled to heat the power battery so that the lowest temperature of the power battery is greater than the first temperature threshold.
  • the method further includes:
  • the heat of the battery stack circuit is controlled to stop heating the power battery until the lowest temperature of the power battery is less than or equal to the first temperature threshold, and then the heat of the battery stack circuit is controlled again to heat the power battery.
  • the method further includes:
  • the heat of the battery stack circuit is controlled to stop heating the power battery; until the temperature difference is less than the second temperature difference threshold, the heat of the battery stack circuit is controlled again to heat the power battery.
  • the hydrogen hybrid vehicle further includes a battery circuit for heat exchange with the power battery;
  • Control the heat of the battery stack circuit to heat the power battery including:
  • the heat of the stack circuit is controlled to heat the battery circuit, so that the battery circuit heats the power battery.
  • the method further includes:
  • the heat of the battery stack circuit is controlled to stop heating the battery circuit; until the coolant temperature of the battery circuit is less than the fifth temperature threshold, the heat of the battery stack circuit is controlled again to heat the battery circuit.
  • the air conditioning system includes a PTC heating device
  • the air conditioning system is controlled to heat the power battery, including:
  • the heating trigger threshold of the power battery is a sixth temperature threshold, and the sixth temperature threshold is less than the first temperature threshold
  • the PTC heating device When it is detected that the lowest temperature of the power battery is greater than the seventh temperature threshold, the PTC heating device is controlled to stop heating the power battery until the lowest temperature of the power battery is less than or equal to the sixth temperature threshold, and the PTC heating device is controlled again to heat the power battery.
  • determining whether there is residual heat in the fuel cell stack includes:
  • the third temperature threshold is less than or equal to the second temperature threshold.
  • the method further includes:
  • the target coolant temperature and the allowable upper and lower deviation limits are set, wherein the fourth temperature threshold is the sum of the target coolant temperature and the upper deviation limit, and the fifth temperature threshold is the difference between the target coolant temperature and the lower deviation limit.
  • the seventh temperature threshold is greater than the sixth temperature threshold.
  • the embodiment of the present application provides a power battery heating device for a hydrogen hybrid vehicle, the device is applied to a hydrogen hybrid vehicle, the hydrogen hybrid vehicle includes a stack circuit for heat exchange with a fuel cell stack, and the device includes:
  • a residual heat judgment module is used to judge whether there is residual heat in the fuel cell stack
  • a stack heating module is used to control the heat of the stack circuit to heat the power battery based on the lowest temperature of the power battery when it is determined that there is residual heat in the fuel cell stack;
  • the air conditioning heating module is used to control the air conditioning system to heat the power battery based on the minimum temperature of the power battery when it is determined that there is no residual heat in the fuel cell stack.
  • the residual heat judgment module includes:
  • the temperature acquisition submodule is used to obtain the coolant temperature of the stack circuit
  • the second determination submodule is used to determine that there is no residual heat in the fuel cell stack when the coolant temperature of the stack loop is less than or equal to a second temperature threshold.
  • the stack heating module includes:
  • a first temperature threshold determination submodule for determining a heating trigger threshold of the power battery as a first temperature threshold when it is determined that there is residual heat in the fuel cell stack;
  • the first heating submodule is used to control the heat of the battery stack circuit to heat the power battery when it is detected that the lowest temperature of the power battery is less than or equal to the first temperature threshold, so that the lowest temperature of the power battery is greater than the first temperature threshold.
  • the stack heating module further includes:
  • the first dynamic control submodule is used to control the heat of the battery stack circuit to heat the power battery so that the minimum temperature of the power battery is greater than the first temperature threshold.
  • the heat of the battery stack circuit is controlled to stop heating the power battery until the minimum temperature of the power battery is less than or equal to the first temperature threshold, and then the heat of the battery stack circuit is controlled to heat the power battery again.
  • the stack heating module further includes:
  • the temperature difference determination submodule is used to control the heat of the battery stack circuit to heat the power battery, obtain the maximum temperature of the power battery, and determine the temperature difference between the maximum temperature and the minimum temperature;
  • the second dynamic control submodule is used to control the stack to return to normal when the temperature difference is greater than the first temperature difference threshold.
  • the heat of the stack circuit stops heating the power battery; until the temperature difference value is less than the second temperature difference threshold, the heat of the stack circuit is controlled again to heat the power battery.
  • the hydrogen hybrid vehicle further includes a battery circuit for heat exchange with the power battery, and the first heating submodule includes:
  • the battery circuit heating unit is used to control the heat of the battery stack circuit to heat the battery circuit so that the battery circuit heats the power battery.
  • the first heating unit further includes:
  • the temperature acquisition subunit is used to control the heat of the battery stack circuit to heat the battery circuit, so that the battery circuit heats the power battery and then acquires the coolant temperature of the battery circuit;
  • the dynamic control subunit is used to control the heat of the battery stack circuit to stop heating the battery circuit when the coolant temperature of the battery circuit is greater than a fourth temperature threshold; until the coolant temperature of the battery circuit is less than a fifth temperature threshold, the heat of the battery stack circuit is controlled again to heat the battery circuit.
  • the air conditioning system includes a PTC heating device, and the air conditioning heating module includes:
  • a second temperature threshold determination submodule for determining, when it is determined that there is no residual heat in the fuel cell stack, that the heating trigger threshold of the power battery is a sixth temperature threshold, the sixth temperature threshold being less than the first temperature threshold;
  • a second heating submodule configured to control the PTC heating device to heat the power battery when detecting that the lowest temperature of the power battery is less than or equal to a sixth temperature threshold
  • the third dynamic control submodule is used to control the PTC heating device to stop heating the power battery when it is detected that the lowest temperature of the power battery is greater than the seventh temperature threshold, and to control the PTC heating device to heat the power battery again when the lowest temperature of the power battery is less than or equal to the sixth temperature threshold.
  • an embodiment of the present application provides a storage medium, in which machine executable instructions are stored.
  • the machine executable instructions are executed by a processor, the power battery heating method for a hydrogen hybrid vehicle proposed in the first aspect of the present application is implemented.
  • an embodiment of the present application provides a vehicle, including a processor and a memory, the memory storing machine executable instructions that can be executed by the processor, and the processor being used to execute the machine executable instructions to implement the power battery heating method of a hydrogen hybrid vehicle proposed in the first aspect of the present application.
  • the embodiment of the present application provides a method for heating a power battery of a hydrogen hybrid vehicle, by judging Whether there is waste heat in the fuel cell stack, when it is determined that there is waste heat in the fuel cell stack, based on the lowest temperature of the power battery, the heat of the stack circuit can be controlled to heat the power battery; when it is determined that there is no waste heat in the fuel cell stack, based on the lowest temperature of the power battery, the air conditioning system can be controlled to heat the power battery.
  • the embodiment of the application can effectively use the waste heat of the fuel cell stack to heat the power battery, and then heat the power battery to a suitable operating temperature without consuming the power battery power; and when the heat of the fuel cell stack is not enough to heat the power battery, the power battery is heated by controlling the air conditioning system.
  • the embodiment of the application can effectively solve the problem of battery capacity attenuation of the power battery at low temperatures through the coordinated use of the stack circuit and the air conditioning system, thereby increasing the driving range of the whole vehicle at low temperatures.
  • FIG. 1 is a flow chart of the steps of a method for heating a power battery of a hydrogen hybrid vehicle in one embodiment of the present application.
  • FIG. 2 is a schematic diagram showing the connection between the stack circuit and the battery circuit in one embodiment of the present application.
  • FIG3 is a schematic diagram of the functional modules of a power battery heating device for a hydrogen hybrid vehicle in one embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a vehicle in an embodiment of the present application.
  • the hydrogen fuel cell stack is the place where the electrochemical reaction occurs. It is the core component of the hydrogen fuel cell system and maintains the energy output process of the entire fuel cell system.
  • the fuel cell stack converts the chemical energy of hydrogen and oxygen into electrical energy and thermal energy, of which the electrical energy is used for load use, while the thermal energy is usually dissipated through the heat dissipation system.
  • the inventor of this application found that in order to solve the problem of battery mileage attenuation at low temperatures, related technologies usually use heating film heating, PTC heating, heat pump heating, motor active heating and other solutions to heat the power battery. However, these solutions also consume the power of the power battery while heating, and cannot effectively solve the problem of mileage attenuation at low temperatures.
  • the present application aims to provide a power battery heating method for a hydrogen hybrid vehicle, which heats the power battery by effectively utilizing the waste heat of the fuel cell stack. It can heat the power battery to a suitable operating temperature without consuming the power battery power, thereby solving the problem of battery capacity attenuation at low temperatures, and effectively increasing the vehicle's cruising range at low temperatures.
  • the hydrogen hybrid vehicle includes a stack circuit for heat exchange with a fuel cell stack.
  • the method may specifically include the following steps:
  • the execution subject of this embodiment is the vehicle controller, which can be a computing service device with data processing, network communication and program running functions, or an electronic device with the above functions such as a driving computer, an on-board computer, etc., such as BCM (Body Control Module), VCU (Vehicle Control Unit), CCU (Central Computing Unit), etc.
  • BCM Body Control Module
  • VCU Vehicle Control Unit
  • CCU Central Computing Unit
  • temperature also has a great influence on the performance of fuel cell stacks.
  • the stack continuously generates heat, which gradually increases the temperature of the stack.
  • the increase in temperature can increase the activity of the catalyst and the speed of proton transfer on the proton exchange membrane, thereby increasing the speed of the electrochemical reaction, increasing the reaction current, and improving the performance of the stack. Therefore, before using the heat generated by the fuel cell stack to heat the power battery, it is necessary to first determine whether there is waste heat in the stack circuit.
  • waste heat of the fuel cell stack refers to the excess heat beyond the working requirements of the fuel cell stack itself.
  • a first temperature sensor can be provided on the fuel cell stack to monitor the operating temperature of the fuel cell stack, and the operating temperature can be sent to the CCU.
  • the CCU detects that the operating temperature is greater than a preset operating temperature threshold, it can be determined that there is residual heat in the fuel cell stack; otherwise, it is determined that there is no residual heat in the fuel cell stack.
  • a second temperature sensor can also be provided at the water outlet of the stack circuit to monitor the coolant temperature at the water outlet, and the coolant temperature can be sent to the CCU. When the CCU detects that the coolant temperature is greater than a preset second temperature threshold, it can be determined that there is residual heat in the fuel cell stack; otherwise, it is determined that there is no residual heat in the fuel cell stack.
  • the operating temperature threshold or the second temperature threshold can be set according to actual needs.
  • the second temperature threshold can be set to 25°C, that is, when the coolant temperature of the stack loop is greater than 25°C, it indicates that there is residual heat in the fuel cell stack that can be used to heat the power battery; when the coolant temperature of the stack loop is ⁇ 25°C, it indicates that there is no residual heat in the fuel cell stack, and the heat of the stack loop is insufficient to heat the power battery.
  • the air conditioning system can be used to heat the power battery.
  • the minimum value of all battery cell temperatures is taken as the lowest temperature of the power battery.
  • the stack circuit can be used to absorb the waste heat of the fuel cell stack. At this time, by detecting the lowest temperature of the power battery, it can be determined whether it is necessary to control the heat of the stack circuit to heat the power battery, and then when the power battery needs to be heated, it can be heated to a suitable operating temperature.
  • the embodiment of the present application improves a method for heating the power battery of a hydrogen hybrid vehicle.
  • the residual heat of the fuel cell stack can be fully utilized to heat the power battery, thereby heating the power battery to a suitable operating temperature without consuming the power battery power.
  • the air conditioning system can be controlled to heat the power battery, thereby meeting the heating demand of the power battery.
  • the embodiment of the present application can effectively solve the problem of battery capacity attenuation at low temperatures of the power battery through the coordinated use of the stack circuit and the air conditioning system, thereby increasing the driving range of the whole vehicle at low temperatures.
  • S102 may specifically include the following sub-steps:
  • the operating temperature of the power battery needs to be at least -10°C. Since the fuel cell system can heat the coolant temperature in the stack circuit to a higher temperature in a short period of time, this heat is sufficient to heat the power battery. Therefore, when it is determined that there is waste heat in the fuel cell stack, the heating trigger threshold of the power battery can be set to the first temperature threshold with a higher temperature value, such as 20°C.
  • the first temperature threshold is set to 20° C.
  • the second temperature threshold is set to 25° C.
  • the power battery is heated by effectively utilizing the waste heat of the fuel cell stack.
  • the power battery can be heated to a suitable operating temperature without consuming the power battery power, thereby solving the problem of battery capacity attenuation at low temperatures, thereby effectively increasing the vehicle's cruising range at low temperatures.
  • the method for heating the power battery of a hydrogen hybrid vehicle may further include the following steps:
  • a third temperature threshold is set for the power battery, which is equivalent to the threshold for triggering the stopping of heating. That is to say, when the CCU controls the heat of the stack circuit to heat the power battery, it will continue to monitor the lowest temperature of the power battery in real time through the temperature sensor set in the power battery. When the CCU detects that the lowest temperature of the power battery is greater than the third temperature threshold, it will control the heat of the stack circuit to stop heating the power battery. After stopping heating the power battery, due to the low temperature Due to the influence of the environment, the temperature of the power battery will drop again.
  • the CCU When the minimum temperature of the power battery is less than or equal to the first temperature threshold, the CCU will re-control the heat of the battery stack circuit to heat the power battery, and then continue the cycle to dynamically maintain the minimum temperature of the power battery between the first temperature threshold to the third temperature threshold.
  • the third temperature threshold can be equal to the second temperature threshold or less than the second temperature threshold.
  • the power battery heating method of the hydrogen hybrid vehicle may further include the following steps:
  • S102-4 Obtain the maximum temperature of the power battery, and determine the temperature difference between the maximum temperature and the minimum temperature.
  • the space in the battery pack is very limited, a large number of single cells are stacked together, which may cause uneven temperature in the power battery, and a large temperature difference between different cells of the power battery may shorten the service life of the battery pack. Therefore, in this embodiment, after controlling the heat of the battery stack circuit to heat the power battery, the temperature of all cells will be monitored, and the maximum value of all cell temperatures will be determined as the highest temperature of the power battery, and the minimum value of all cell temperatures will be determined as the lowest temperature of the power battery, and then the temperature difference value ⁇ T between the highest temperature and the lowest temperature will be determined.
  • the first temperature difference threshold can be set to 15°C
  • the second temperature difference threshold can be set to 10°C.
  • the CCU In the battery temperature equalization mode, the CCU will control the battery water pump to work continuously, so that the battery circuit brings the heat from the high-temperature part of the power battery to the low-temperature part of the battery, thereby reducing the temperature difference value ⁇ T; during this process, the CCU will continue to monitor the temperature difference value ⁇ T, and when the temperature difference value ⁇ T ⁇ 10°C is monitored, the temperature equalization mode will be exited. If during the battery temperature equalization mode, the minimum temperature of the power battery drops again to less than or equal to the first temperature threshold, the heat of the battery stack circuit will be controlled again to heat the power battery until the minimum temperature of the power battery is greater than the third temperature threshold, and then the heating function will be exited.
  • the hydrogen hybrid vehicle further includes a battery circuit for performing heat exchange with the power battery, and the battery circuit and the stack circuit perform heat exchange via a heat exchanger.
  • the step of controlling the heat of the stack circuit to heat the power battery in S102-2 may specifically include the following sub-steps:
  • S102-2-1 Control the heat of the battery stack circuit to heat the battery circuit so that the battery circuit heats the power battery.
  • valves and heat exchangers can be used to achieve heating of the battery circuit by the stack circuit.
  • the battery circuit 1 includes a power battery 10, a battery water pump 11 and a second circulation pipeline 41, the power battery 10 and the battery water pump 11 are both connected to the second circulation pipeline 41, and the battery water pump 11 is used to improve the stable and reliable driving force for the coolant circulation in the second circulation pipeline 41 to flow to the power battery 10;
  • the stack circuit 2 includes a fuel cell 20, a water pump 30 and a first circulation pipeline 40, wherein the fuel cell 20 includes a fuel cell stack 21, a hydrogen heater 23, a deionizer 24 and a thermistor 22, the fuel cell stack 21, the hydrogen heater 23, the deionizer 24 and the thermistor 22 are all connected to the first circulation pipeline 40, and the water pump 30 is used to improve the stable and reliable driving force for the coolant circulation in the first circulation pipeline 40 to flow to the thermistor 22, the deionizer
  • the main heat-generating components are the fuel cell stack 21 and the thermistor 22 , so the heat of the stack loop 2 mainly comes from the fuel cell stack 21 and the thermistor 22 .
  • the CCU controls the valve 60 to open, so that the coolant in the stack circuit 2 that absorbs the heat of the fuel cell stack 21 and the thermistor 22 flows through the heat exchanger 50 for heat exchange, and the heat exchanger 50 transfers the heat to the coolant in the battery circuit 1, and the coolant in the battery circuit 1 transfers the heat to the power battery 10 under the drive of the battery water pump 11, thereby heating the power battery 10.
  • the valve 60 is closed.
  • the valve 60 can be a three-way proportional valve, a four-way proportional valve, or a CBV (Compressor Bypass Valve), etc., and can be set according to actual needs.
  • the embodiment of the present application does not limit the specific type of the valve 60.
  • the present embodiment can also heat the power battery 10 in other ways.
  • a separate pipeline can be provided to connect the battery circuit 1 and the battery stack circuit 2 so that the coolant of the battery stack circuit 2 flows directly into the battery circuit 1 to heat the power battery 10.
  • the present embodiment does not impose specific restrictions on the method of heating the power battery 10.
  • the method for heating the power battery of a hydrogen hybrid vehicle may further include the following steps:
  • a temperature sensor may be provided at the battery inlet of the battery circuit to obtain the coolant temperature of the battery circuit in real time, and transmit information including the coolant temperature of the battery circuit to the CCU.
  • the CCU compares the coolant temperature with the fourth temperature threshold.
  • the heat of the battery stack circuit is controlled to stop heating the battery circuit to prevent the coolant temperature of the battery circuit from continuing to rise. Due to the influence of the low temperature environment, the coolant temperature of the battery circuit will drop again.
  • the CCU will re-control the heat of the battery stack circuit to heat the battery circuit, and then continue to circulate, so that the coolant temperature of the battery circuit is dynamically maintained between the fifth temperature threshold and the fourth temperature threshold.
  • the target coolant temperature and the upper and lower limits of the allowed deviations can be set, and then the fourth temperature threshold is equivalent to the target coolant temperature + the upper limit of the deviation, and the fifth temperature threshold is equivalent to the target coolant temperature - the lower limit of the deviation.
  • the upper limit of the deviation can be set to 5°C
  • the lower limit of the deviation can be set to 2°C.
  • the CCU controls the three-way proportional valve to close, controls the heat of the stack circuit to stop heating the battery circuit, and controls the battery water pump to continue working; in this process, the difference between the coolant temperature T cool of the battery circuit and the target coolant temperature T tar is judged until T cool -T tar ⁇ -2°C, and the CCU controls the three-way proportional valve to open again, and continues to use the residual heat of the fuel cell system to heat the power battery, thereby maintaining the coolant temperature of the battery circuit in the temperature range between (T tar -2°C) and (T tar +5°C), where (T tar -2°C) That is the fifth temperature threshold, and (T tar +5°C) is the fourth temperature threshold.
  • the air conditioning system further includes a PTC heating device
  • the power battery heating method of the hydrogen hybrid vehicle may further include the following steps:
  • PTC heating devices are usually used to generate heat.
  • PTC heating devices also known as car heaters, are ceramic heating elements with a positive temperature coefficient and can be used for low-temperature starting of vehicles.
  • the battery needs to work at least above -10°C, so the sixth temperature threshold can be set to -10°C. That is to say, when the coolant temperature of the stack circuit Tstack ⁇ 25°C, and the minimum temperature of the power battery Tmin ⁇ -10°C, it means that there is no residual heat in the fuel cell stack and the minimum temperature of the power battery is too low. At this time, the CCU will control the PTC heating device to heat the power battery.
  • the CCU since the PTC heating device is usually located in the air-conditioning system, the CCU will send a heating request or a stop heating request to the air-conditioning controller so that the air-conditioning controller responds to the heating request or the stop heating request, thereby controlling the opening or closing of the PTC heating device.
  • the CCU will not control the battery stack circuit or the PTC heating device to heat the power battery.
  • the seventh temperature threshold should be greater than the sixth temperature threshold, such as -5°C, that is, after controlling the PTC heating device to heat the power battery, if the lowest temperature of the power battery T min > -5°C is detected, the CCU will control the PTC heating device to stop heating the power battery. After stopping heating the power battery, the temperature of the power battery will drop again due to the influence of the low temperature environment. When the lowest temperature of the power battery T min ⁇ -10°C, the CCU will control the PTC heating device to heat the power battery again, and then continue to cycle, and dynamically maintain the lowest temperature of the power battery between -10°C and -5°C.
  • the sixth temperature threshold such as -5°C
  • steps that are the same or similar to S102-4 to S102-5 will be executed to prevent the temperature difference between the highest temperature and the lowest temperature of the power battery during the heating process from being too large; steps that are the same or similar to S102-2-1 to S102-2-3 will also be executed to prevent the coolant temperature of the battery circuit from rising to an excessively high temperature, thereby affecting the service life of the battery circuit.
  • different power battery heating threshold control strategy solutions will be adopted according to the different coolant temperatures in the fuel cell system.
  • the first temperature threshold when there is residual heat in the fuel cell stack, by setting the first temperature threshold with a higher temperature, the excess heat of the fuel cell stack can be effectively utilized to heat the power battery to the optimal operating temperature range without consuming electricity;
  • the sixth temperature threshold when there is no residual heat in the fuel cell stack, by setting the sixth temperature threshold with a lower temperature, the PTC heating device can be used to heat the power battery, and the power battery can be heated to a suitable temperature that can meet the minimum working requirements using a small amount of power in the power battery.
  • an embodiment of the present application provides a power battery heating device 300 for a hydrogen hybrid vehicle, the power battery heating device 300 for a hydrogen hybrid vehicle is applied to a hydrogen hybrid vehicle, the hydrogen hybrid vehicle includes a stack circuit for heat exchange with a fuel cell stack, the power battery heating device 300 for a hydrogen hybrid vehicle may include:
  • a residual heat determination module 301 is used to determine whether there is residual heat in the fuel cell stack
  • the stack heating module 302 is used to control the heat of the stack circuit to heat the power battery based on the lowest temperature of the power battery when it is determined that there is residual heat in the fuel cell stack;
  • the air conditioning heating module 303 is used to, when it is determined that there is no residual heat in the fuel cell stack, The minimum temperature of the battery controls the air conditioning system to heat the power battery.
  • the residual heat judgment module 301 may include a temperature sensor and a judgment circuit.
  • the temperature sensor may be a first temperature sensor and/or a second temperature sensor
  • the first temperature sensor may be arranged on the fuel cell stack to monitor the operating temperature of the fuel cell stack, and send the operating temperature to the judgment circuit
  • the judgment circuit may determine that the fuel cell stack has residual heat when the operating temperature is detected to be greater than the preset operating temperature threshold, otherwise it is determined that the fuel cell stack does not have residual heat
  • the second temperature sensor may be arranged at the water outlet of the stack circuit to monitor the coolant temperature at the water outlet, and send the coolant temperature to the judgment circuit
  • the judgment circuit may determine that the fuel cell stack has residual heat when the coolant temperature is detected to be greater than the preset second temperature threshold, otherwise it is determined that the fuel cell stack does not have residual heat.
  • the stack heating module 302 may be a control circuit for controlling the heat of the stack circuit to heat the power battery based on the lowest temperature of the power battery when it is determined that the fuel cell stack has residual heat.
  • the air conditioning heating module 303 may be a drive circuit for controlling the air conditioning system to heat the power battery based on the lowest temperature of the power battery when it is determined that the fuel cell stack has no residual heat.
  • the above-mentioned judgment circuit, control circuit and drive circuit can all be circuits in the vehicle's controller, and the controller can be a computing service device with data processing, network communication and program running functions, or an electronic device with the above-mentioned functions such as a driving computer, an on-board computer, etc., such as BCM (Body Control Module), VCU (Vehicle Control Unit), CCU (Central Computing Unit), etc., and this embodiment does not impose any restrictions on this.
  • BCM Body Control Module
  • VCU Vehicle Control Unit
  • CCU Central Computing Unit
  • the residual heat determination module 301 includes:
  • the temperature acquisition submodule is used to obtain the coolant temperature of the stack circuit
  • a first determination submodule configured to determine that there is residual heat in the fuel cell stack when the coolant temperature of the stack loop is greater than a second temperature threshold
  • the second determination submodule is used to determine that there is no residual heat in the fuel cell stack when the coolant temperature of the stack loop is less than or equal to a second temperature threshold.
  • the stack heating module 302 includes:
  • a first temperature threshold determination submodule for determining a heating trigger threshold of the power battery as a first temperature threshold when it is determined that there is residual heat in the fuel cell stack;
  • the first heating submodule is used to detect that the lowest temperature of the power battery is less than or equal to the first temperature When the temperature reaches the first threshold, the heat of the battery stack circuit is controlled to heat the power battery so that the lowest temperature of the power battery is greater than the first temperature threshold.
  • the stack heating module 302 further includes:
  • the first dynamic control submodule is used to control the heat of the battery stack circuit to heat the power battery so that the minimum temperature of the power battery is greater than the first temperature threshold.
  • the heat of the battery stack circuit is controlled to stop heating the power battery until the minimum temperature of the power battery is less than or equal to the first temperature threshold, and then the heat of the battery stack circuit is controlled again to heat the power battery.
  • the stack heating module 302 further includes:
  • the temperature difference determination submodule is used to control the heat of the battery stack circuit to heat the power battery, obtain the maximum temperature of the power battery, and determine the temperature difference between the maximum temperature and the minimum temperature;
  • the second dynamic control submodule is used to control the heat of the battery stack circuit to stop heating the power battery when the temperature difference value is greater than the first temperature difference threshold; until the temperature difference value is less than the second temperature difference threshold, the heat of the battery stack circuit is controlled again to heat the power battery.
  • the hydrogen hybrid vehicle further includes a battery circuit for heat exchange with the power battery, and the first heating submodule includes:
  • the battery circuit heating unit is used to control the heat of the battery stack circuit to heat the battery circuit so that the battery circuit heats the power battery.
  • the battery circuit heating unit further includes:
  • the temperature acquisition subunit is used to control the heat of the battery stack circuit to heat the battery circuit, so that the battery circuit heats the power battery and then acquires the coolant temperature of the battery circuit;
  • the dynamic control subunit is used to control the heat of the battery stack circuit to stop heating the battery circuit when the coolant temperature of the battery circuit is greater than a fourth temperature threshold; until the coolant temperature of the battery circuit is less than a fifth temperature threshold, the heat of the battery stack circuit is controlled again to heat the battery circuit.
  • the air conditioning system includes a PTC heating device, and the air conditioning heating module 303 also includes:
  • a second temperature threshold determination submodule for determining, when it is determined that there is no residual heat in the fuel cell stack, that the heating trigger threshold of the power battery is a sixth temperature threshold, the sixth temperature threshold being less than the first temperature threshold;
  • the second heating submodule is used to detect that the lowest temperature of the power battery is less than or equal to the sixth temperature. When the threshold is reached, the PTC heating device is controlled to heat the power battery;
  • the third dynamic control submodule is used to control the PTC heating device to stop heating the power battery when it is detected that the lowest temperature of the power battery is greater than the seventh temperature threshold, and to control the PTC heating device to heat the power battery again when the lowest temperature of the power battery is less than or equal to the sixth temperature threshold.
  • the specific implementation of the power battery heating device 300 for the hydrogen hybrid vehicle in the embodiment of the present application refers to the specific implementation of the power battery heating method for the hydrogen hybrid vehicle proposed in the first aspect of the embodiment of the present application, and will not be repeated here.
  • an embodiment of the present application provides a storage medium on which a computer program/instruction is stored.
  • the computer program/instruction is executed by a processor, the power battery heating method for a hydrogen hybrid vehicle proposed in the first aspect of the embodiment of the present application is implemented.
  • an embodiment of the present application provides a vehicle 400, including a processor 401 and a memory 402; the memory 402 stores machine executable instructions that can be executed by the processor 401, and the processor 401 is used to execute the machine executable instructions to implement the power battery heating method of the hydrogen hybrid vehicle proposed in the first aspect.
  • vehicle 400 in the embodiment of the present application refers to the specific implementation of the power battery heating method of the hydrogen hybrid vehicle proposed in the first aspect of the embodiment of the present application, and will not be repeated here.
  • the embodiments of the embodiments of the present invention may be provided as methods, devices, or computer program products. Therefore, the embodiments of the present invention may take the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the embodiments of the present invention may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can be provided to a general-purpose computer, A processor of a special-purpose computer, an embedded processing machine or other programmable data processing terminal device is used to produce a machine, so that the instructions executed by the processor of the computer or other programmable data processing terminal device produce a device for implementing the functions specified in one or more processes in the flowchart and/or one or more blocks in the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing terminal device to operate in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing terminal device so that a series of operating steps are executed on the computer or other programmable terminal device to produce computer-implemented processing, so that the instructions executed on the computer or other programmable terminal device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Development (AREA)
  • Electromagnetism (AREA)
  • Fuel Cell (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种氢能混动汽车的动力电池(10)加热方法、装置、介质和设备。通过判断燃料电池电堆是否存在余热,能够在确定燃料电池电堆存在余热时,有效利用燃料电池电堆的余热实现对动力电池(10)的加热,进而在不消耗动力电池(10)电量的前提下,将动力电池(10)加热到适宜的工作温度;在确定燃料电池电堆不存在余热时,则控制空调系统加热动力电池(10)。

Description

氢能混动汽车的动力电池加热方法、装置、介质和设备
相关申请的交叉引用
本公开要求在2022年11月25日提交中国专利局、申请号为202211497716.8、名称为“氢能混动汽车的动力电池加热方法、装置、介质和设备”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本申请涉及车辆技术领域,特别是涉及一种氢能混动汽车的动力电池加热方法、装置、介质和设备。
背景技术
在国家的大力推动下,新能源汽车越来越受到各大汽车厂家的重视。其中,氢能混动汽车具有非常广阔的前景。氢能混动汽车采用氢燃料电池和动力电池共同驱动,与油电混动一样,可以根据不同的驾驶条件选择两种不同的动力输出。
然而,由于氢能混动汽车配备了动力电池,因此仍然面临着低温下电池容量衰减造成续驶里程衰减的问题。为此,各大车企增加了多种动力电池加热功能,如加热膜加热、PTC(Positive Temperature Coefficient,正温度系数)加热、热泵加热、电机主动加热等方案。但这些方案在加热的同时也消耗了动力电池的电量,虽然通过加热动力电池缓解了低温下电池容量衰减问题,但对于续驶里程来说并没太多收益,并未有效解决低温下续驶里程衰减问题。
发明内容
本申请提供一种氢能混动汽车的动力电池加热方法、装置、介质和设备,能够在不消耗动力电池电量的同时,为动力电池加热,以解决低温下续驶里程衰减问题。
为了解决上述问题,本申请采用了以下的技术方案:
第一方面,本申请实施例提供了一种氢能混动汽车的动力电池加热方法,氢能混动汽车包括用于和燃料电池电堆进行热交换的电堆回路,方法包括:
判断燃料电池电堆是否存在余热;
在确定燃料电池电堆存在余热时,基于动力电池的最低温度,控制电堆回路的热量加热动力电池;
在确定燃料电池电堆不存在余热时,基于动力电池的最低温度,控制空调系统加热动力电池。
在本申请一实施例中,判断燃料电池电堆是否存在余热,包括:
获取电堆回路的冷却液温度;
在电堆回路的冷却液温度大于第二温度阈值时,确定燃料电池电堆存在余热;
在电堆回路的冷却液温度小于等于第二温度阈值时,确定燃料电池电堆不存在余热。
在本申请一实施例中,在确定燃料电池电堆存在余热时,基于动力电池的最低温度,控制电堆回路的热量加热动力电池,包括:
在确定燃料电池电堆存在余热时,确定动力电池的加热触发阈值为第一温度阈值;
在检测到动力电池的最低温度小于等于第一温度阈值时,控制电堆回路的热量加热动力电池,以使动力电池的最低温度大于第一温度阈值。
在本申请一实施例中,控制电堆回路的热量加热动力电池,以使动力电池的最低温度大于第一温度阈值之后,方法还包括:
在检测到动力电池的最低温度大于第三温度阈值时,控制电堆回路的热量停止对动力电池进行加热,直到动力电池的最低温度小于等于第一温度阈值时,重新控制电堆回路的热量加热动力电池。
在本申请一实施例中,控制电堆回路的热量加热动力电池之后,方法还包括:
获取动力电池的最高温度,并确定最高温度与最低温度之间的温差值;
在温差值大于第一温差阈值时,控制电堆回路的热量停止对动力电池加热;直到温差值小于第二温差阈值时,重新控制电堆回路的热量加热动力电池。
在本申请一实施例中,氢能混动汽车还包括用于和动力电池进行热交换的电池回路;
控制电堆回路的热量加热动力电池,包括:
控制电堆回路的热量加热电池回路,以使电池回路加热动力电池。
在本申请一实施例中,控制电堆回路的热量加热电池回路,以使电池回路加热动力电池之后,方法还包括:
获取电池回路的冷却液温度;
在电池回路的冷却液温度大于第四温度阈值时,控制电堆回路的热量停止对电池回路加热;直到电池回路的冷却液温度小于第五温度阈值时,重新控制电堆回路的热量加热电池回路。
在本申请一实施例中,空调系统包括PTC加热装置;
在确定燃料电池电堆不存在余热时,基于动力电池的最低温度,控制空调系统加热动力电池,包括:
在确定燃料电池电堆不存在余热时,确定动力电池的加热触发阈值为第六温度阈值,第六温度阈值小于第一温度阈值;
在检测到动力电池的最低温度小于等于第六温度阈值时,控制PTC加热装置加热动力电池;
在检测到动力电池的最低温度大于第七温度阈值时,控制PTC加热装置停止对动力电池进行加热,直到动力电池的最低温度小于等于第六温度阈值时,重新控制PTC加热装置加热动力电池。
在本申请一实施例中,判断燃料电池电堆是否存在余热,包括:
获取燃料电池电堆的运行温度;
在燃料电池电堆的运行温度大于预设的运行温度阈值时,确定燃料电池电堆存在余热;或者
在燃料电池电堆的运行温度小于或等于预设的运行温度阈值时,确定燃料电池电堆不存在余热。
在本申请一实施例中,第三温度阈值小于或等于第二温度阈值。
在本申请一实施例中,方法还包括:
设置目标冷却液温度以及允许的偏差上限和偏差下限,其中,第四温度阈值为目标冷却液温度与偏差上限之和,第五温度阈值为目标冷却液温度与偏差下限之差。
在本申请一实施例中,第七温度阈值大于第六温度阈值。
第二方面,基于相同发明构思,本申请实施例提供了一种氢能混动汽车的动力电池加热装置,装置应用于氢能混动汽车,氢能混动汽车包括用于和燃料电池电堆进行热交换的电堆回路,装置包括:
余热判断模块,用于判断燃料电池电堆是否存在余热;
电堆加热模块,用于在确定燃料电池电堆存在余热时,基于动力电池的最低温度,控制电堆回路的热量加热动力电池;
空调加热模块,用于在确定燃料电池电堆不存在余热时,基于动力电池的最低温度,控制空调系统加热动力电池。
在本申请一实施例中,余热判断模块包括:
温度获取子模块,用于获取电堆回路的冷却液温度;
第一确定子模块,用于在电堆回路的冷却液温度大于第二温度阈值时,确定燃料电池电堆存在余热;
第二确定子模块,用于在电堆回路的冷却液温度小于等于第二温度阈值时,确定燃料电池电堆不存在余热。
在本申请一实施例中,电堆加热模块包括:
第一温度阈值确定子模块,用于在确定燃料电池电堆存在余热时,确定动力电池的加热触发阈值为第一温度阈值;
第一加热子模块,用于在检测到动力电池的最低温度小于等于第一温度阈值时,控制电堆回路的热量加热动力电池,以使动力电池的最低温度大于第一温度阈值。
在本申请一实施例中,电堆加热模块还包括:
第一动态控制子模块,用于控制电堆回路的热量加热动力电池,以使动力电池的最低温度大于第一温度阈值之后,在检测到动力电池的最低温度大于第三温度阈值时,控制电堆回路的热量停止对动力电池进行加热,直到动力电池的最低温度小于等于第一温度阈值时,重新控制电堆回路的热量加热动力电池。
在本申请一实施例中,电堆加热模块还包括:
温差值确定子模块,用于控制电堆回路的热量加热动力电池之后,获取动力电池的最高温度,并确定最高温度与最低温度之间的温差值;
第二动态控制子模块,用于在温差值大于第一温差阈值时,控制电堆回 路的热量停止对动力电池加热;直到温差值小于第二温差阈值时,重新控制电堆回路的热量加热动力电池。
在本申请一实施例中,氢能混动汽车还包括用于和动力电池进行热交换的电池回路,第一加热子模块包括:
电池回路加热单元,用于控制电堆回路的热量加热电池回路,以使电池回路加热动力电池。
在本申请一实施例中,第一加热单元还包括:
温度获取子单元,用于控制电堆回路的热量加热电池回路,以使电池回路加热动力电池之后,获取电池回路的冷却液温度;
动态控制子单元,用于在电池回路的冷却液温度大于第四温度阈值时,控制电堆回路的热量停止对电池回路加热;直到电池回路的冷却液温度小于第五温度阈值时,重新控制电堆回路的热量加热电池回路。
在本申请一实施例中,空调系统包括PTC加热装置,空调加热模块包括:
第二温度阈值确定子模块,用于在确定燃料电池电堆不存在余热时,确定动力电池的加热触发阈值为第六温度阈值,第六温度阈值小于第一温度阈值;
第二加热子模块,用于在检测到动力电池的最低温度小于等于第六温度阈值时,控制PTC加热装置加热动力电池;
第三动态控制子模块,用于在检测到动力电池的最低温度大于第七温度阈值时,控制PTC加热装置停止对动力电池进行加热,直到动力电池的最低温度小于等于第六温度阈值时,重新控制PTC加热装置加热动力电池。
第三方面,基于相同发明构思,本申请实施例提供了一种存储介质,存储介质内存储有机器可执行指令,机器可执行指令被处理器执行时实现本申请第一方面提出的氢能混动汽车的动力电池加热方法。
第四方面,基于相同发明构思,本申请实施例提供了一种车辆,包括处理器和存储器,存储器存储有能够被处理器执行的机器可执行指令,处理器用于执行机器可执行指令,以实现本申请第一方面提出的氢能混动汽车的动力电池加热方法。
与现有技术相比,本申请包括以下优点:
本申请实施例提供的一种氢能混动汽车的动力电池加热方法,通过判断 燃料电池电堆是否存在余热,能够在确定燃料电池电堆存在余热时,基于动力电池的最低温度,控制电堆回路的热量加热动力电池;在确定燃料电池电堆不存在余热时,基于动力电池的最低温度,控制空调系统加热动力电池。本申请实施例能够在燃料电池电堆存在余热时,有效利用燃料电池电堆的余热实现对动力电池的加热,进而在不消耗动力电池电量的前提下,将动力电池加热到适宜的工作温度;而在燃料电池电堆的热量不足以加热动力电池时,则通过控制空调系统加热动力电池。本申请实施例通过电堆回路和空调系统的配合使用,能够有效解决动力电池低温下电池容量衰减问题,进而增加低温下整车的续驶里程。
附图说明
图1是本申请一实施例中一种氢能混动汽车的动力电池加热方法的步骤流程图。
图2是本申请一实施例中电堆回路和电池回路的连接示意图。
图3是本申请一实施例中一种氢能混动汽车的动力电池加热装置的功能模块示意图。
图4是本申请一实施例中一种车辆的结构示意图。
具体实施例
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,氢燃料电池电堆是发生电化学反应的场所,是氢燃料电池系统的核心部件,维系着整个燃料电池系统的能量输出过程。燃料电池堆将氢气和氧气的化学能转化为电能和热能,其中,电能用于负载的使用,而热能通常通过散热系统进行散热。
本申请发明人发现,针对电池低温时里程衰减问题,相关技术通常采用加热膜加热、PTC加热、热泵加热、电机主动加热等方案对动力电池进行加 热,但这些方案在加热的同时也消耗了动力电池的电量,并不能有效解决低温下续驶里程衰减问题。
针对相关技术中存在的缺陷,本申请旨在提供一种氢能混动汽车的动力电池加热方法,通过有效利用燃料电池电堆的余热实现对动力电池的加热,能够在不消耗动力电池电量的前提下,将动力电池加热到适宜的工作温度,解决动力电池低温下电池容量衰减问题,进而有效增加低温时整车的续驶里程。
参照图1,示出了本申请一种氢能混动汽车的动力电池加热方法,应用于氢能混动汽车,该氢能混动汽车包括用于和燃料电池电堆进行热交换的电堆回路,该方法具体可以包括以下步骤:
S101:判断燃料电池电堆是否存在余热。
需要说明的是,本实施例的执行主体为车辆的控制器,该控制器可以是具有数据处理、网络通信以及程序运行功能的计算服务设备,或者具有上述功能的电子设备如行车电脑、车载电脑等,如BCM(Body Control Module,车身控制模块)、VCU(Vehicle Control Unit,整车控制器)、CCU(Central Computing Unit,中央计算单元)等,本实施方式不对执行主体作出具体限制,以下将以CCU作为执行主体进行示例说明。
需要进一步说明的是,温度对燃料电池电堆性能同样存在较大影响,燃料电池发动机工作时电堆连续产生热量,使电堆温度逐渐升高,温度升高可提高催化剂活性,提高质子交换膜上的质子传递速度,从而提高电化学反应速度,反应电流升高,电堆性能变好。因此,在利用燃料电池电堆产生的热量加热动力电池之前,需要首先判断电堆回路是否存在余热。所谓燃料电池电堆的余热,即是指满足燃料电池电堆本身工作需求之外多余的热量。
在具体实现中,可以通过在燃料电池电堆上设置第一温度传感器,以监测燃料电池电堆的运行温度,并将该运行温度发送至CCU,CCU在检测到该运行温度大于预设的运行温度阈值时,便可以确定燃料电池电堆存在余热,否则确定燃料电池电堆不存在余热;还可以通过在电堆回路的出水口处设置第二温度传感器,以监测出水口处的冷却液温度,并将该冷却液温度发送至CCU,CCU在检测到该冷却液温度大于预设的第二温度阈值时,确定燃料电池电堆存在余热,否则,确定燃料电池电堆不存在余热。
在本实施方式中,可以根据实际需要对运行温度阈值或第二温度阈值进行设置。如可以将第二温度阈值设置为25℃,即,当电堆回路的冷却液温度>25℃时,说明燃料电池电堆存在余热可用于加热动力电池;当电堆回路的冷却液温度≤25℃时,说明燃料电池电堆不存在余热,电堆回路的热量不足以加热动力电池,此时可以利用空调系统对动力电池进行加热。
S102:在确定燃料电池电堆存在余热时,基于动力电池的最低温度,控制电堆回路的热量加热动力电池。
在本实施方式中,考虑到动力电池通常由多个电芯组成,而不同的电芯在运行过程中的温度可能不一样,因此,为实现对动力电池的有效加热,保证动力电池的运行性能,将取所有电芯温度中的最小值作为动力电池的最低温度。
在本实施方式中,若确定燃料电池电堆存在余热,则可以利用电堆回路吸收燃料电池电堆的余热,此时通过检测动力电池的最低温度可以判断是否需要控制电堆回路的热量加热动力电池,进而在动力电池需要加热时,将其加热到适宜的工作温度。
S103:在确定燃料电池电堆不存在余热时,基于动力电池的最低温度,控制空调系统加热动力电池。
在本实施方式中,若确定燃料电池电堆不存在余热,则说明电堆回路的热量不足以加热动力电池,此时通过检测动力电池的最低温度可以判断是否需要控制空调系统加热动力电池,进而在燃料电池电堆不存在余热而动力电池需要加热时,满足动力电池的加热需求。
本申请实施例提高的一种氢能混动汽车的动力电池加热方法,一方面,可以在燃料电池电堆存在余热时,充分利用燃料电池电堆的余热实现对动力电池的加热,进而在不消耗动力电池电量的前提下,将动力电池加热到适宜的工作温度;另一方面,可以在燃料电池电堆的热量不足以加热动力电池时,通过控制空调系统加热动力电池,进而满足动力电池的加热需求。本申请实施例通过电堆回路和空调系统的配合使用,能够有效解决动力电池低温下电池容量衰减问题,进而增加低温下整车的续驶里程。
在一个可行的实施方式中,S102具体可以包括以下子步骤:
S102-1:在确定燃料电池电堆存在余热时,确定动力电池的加热触发阈 值为第一温度阈值。
需要说明的是,因整车动力性的要求,需要动力电池的工作温度最少在-10℃以上,而由于燃料电池系统可在短时间内可将电堆回路中的冷却液温度加热至较高温度,此部分热量足够给动力电池加热,因此,在确定燃料电池电堆存在余热时,可将动力电池的加热触发阈值设置为温度值较高的第一温度阈值,如设置为20℃。
S102-2:在检测到动力电池的最低温度小于等于第一温度阈值时,控制电堆回路的热量加热动力电池,以使动力电池的最低温度大于第一温度阈值。
在本实施方式中,通过取所有电芯温度中的最小值作为动力电池的最低温度与第一温度阈值进行比较,能够有效保证每个电芯温度都能够大于第一温度阈值。
示例性的,第一温度阈值设置为20℃,第二温度阈值设置为25℃。当检测到电堆回路的冷却液温度T>25℃且动力电池的最低温度Tmin≤20℃时,则CCU将控制电堆回路的热量对动力电池进行加热,以使动力电池的最低温度大于20℃。
在本实施方式中,通过有效利用燃料电池电堆的余热实现对动力电池的加热,能够在不消耗动力电池电量的前提下,将动力电池加热到适宜的工作温度,解决动力电池低温下电池容量衰减问题,进而有效增加低温下整车的续驶里程。
在一个可行的实施方式中,S102-2之后,氢能混动汽车的动力电池加热方法还可以包括以下步骤:
S102-3:在检测到动力电池的最低温度大于第三温度阈值时,控制电堆回路的热量停止对动力电池进行加热,直到动力电池的最低温度小于等于第一温度阈值时,重新控制电堆回路的热量加热动力电池。
在本实施方式中,为避免燃料电池电堆的余热将动力电池加热至过高的温度,将针对动力电池设置第三温度阈值,该第三温度阈值相当于停止加热触发阈值。也就是说,CCU在控制电堆回路的热量加热动力电池的过程中,将会通过设置在动力电池的温度传感器继续实时监测动力电池的最低温度,在CCU检测到动力电池的最低温度大于第三温度阈值时,将控制电堆回路的热量停止对动力电池进行加热,在停止对动力电池进行加热之后,由于低温 环境的影响,动力电池的温度将再度下降,在动力电池的最低温度小于等于第一温度阈值时,CCU将重新控制电堆回路的热量加热动力电池,进而不断循环,将动力电池的最低温度动态维持在第一温度阈值到第三温度阈值之间。
在本实施方式中,通过设置第一温度阈值和第三温度阈值,可以实现对动力电池的最低温度的动态控制,使得动力电池的最低温度维持在一个合适的温度范围内。其中,第三温度阈值可以等于第二温度阈值,也可以小于第二温度阈值。
在一个可行的实施方式中,S102-2中控制电堆回路的热量加热动力电池的步骤之后,氢能混动汽车的动力电池加热方法还可以包括以下步骤:
S102-4:获取动力电池的最高温度,并确定最高温度与最低温度之间的温差值。
需要说明的是,由于电池包内的空间非常有限,大量的单体电池堆积在一起,可能会出现动力电池内温度不均匀的现象,而动力电池的不同电芯之间的温差过大则可能导致电池组的使用寿命缩短。因此,本实施方式中,在控制电堆回路的热量加热动力电池之后,将会对所有电芯的温度进行监测,将所有电芯温度的最大值确定为动力电池的最高温度,将所有电芯温度的最小值确定为动力电池的最低温度,进而确定最高温度与最低温度之间的温差值△T。
S102-5:在温差值大于第一温差阈值时,控制电堆回路的热量停止对动力电池加热;直到温差值小于第二温差阈值时,重新控制电堆回路的热量加热动力电池。
在本实施方式中,第一温差阈值可以设置为15℃,第二温差阈值可以设置为10℃,进而在检测到温差值△T≥15℃时,说明电池温差过大,此时CCU将控制三通比例阀关闭,控制电堆回路的热量停止对动力电池加热,控制进入电池均温模式,在电池均温模式下,CCU将控制电池水泵持续工作,使得电池回路将动力电池中高温部分的热量带往电池的低温部分,进而降低温差值△T;此过程中CCU将持续对温差值△T进行监测,在监测到温差值△T≤10℃时,则退出均温模式,若在电池均温模式期间,动力电池的最低温度再次下降到小于等于第一温度阈值,则重新控制电堆回路的热量加热动力电池,直到动力电池的最低温度大于第三温度阈值,再退出加热功能。
在本实施方式中,通过检测最高温度与最低温度之间的温差值,可以有效防止在加热过程中出现加热不均匀的现象,避免温差过大而影响动力电池的寿命,保证加热安全性。
在一个可行的实施方式中,氢能混动汽车还包括用于和动力电池进行热交换的电池回路,电池回路和电堆回路通过换热器进行热交换,S102-2中控制电堆回路的热量加热动力电池的步骤具体可以包括以下子步骤:
S102-2-1:控制电堆回路的热量加热电池回路,以使电池回路加热动力电池。
在本实施方式中,可以采用阀门和换热器实现电堆回路对电池回路加热。参照图2,示出了电堆回路和电池回路的连接示意图,其中,电池回路1包括动力电池10、电池水泵11和第二循环管道41,动力电池10和电池水泵11均连接于第二循环管道41,电池水泵11用于为第二循环管道41内的冷却液循环流向动力电池10提高稳定可靠的驱动力;电堆回路2包括燃料电池20、水泵30和第一循环管道40,其中,燃料电池20包括燃料电堆21、氢气加热器23、去离子器24和热敏电阻22,燃料电堆21、氢气加热器23、去离子器24和热敏电阻22均连接于第一循环管道40,水泵30用于为第一循环管道40内的冷却液循环流向热敏电阻22、去离子器24、氢气加热器23和燃料电堆21提高稳定可靠的驱动力。
需要说明的是,燃料电池20在工作过程中,主要的发热部件为燃料电堆21和热敏电阻22,因此电堆回路2的热量主要来自于燃料电堆21和热敏电阻22。
在本实施方式中,在控制电堆回路2的热量加热电池回路1时,CCU将控制阀门60开启,使得电堆回路2中吸收了燃料电堆21和热敏电阻22的热量的冷却液流经换热器50进行热量交换,而换热器50则将热量传递给电池回路1中的冷却液,电池回路1中的冷却液则在电池水泵11的驱动下,将热量传递给动力电池10,进而实现对动力电池10的加热。当燃料电池20没有工作或者没有足够的余热时,则关闭阀门60。
在本实施方式中,阀门60可以为三通比例阀,也可以为四通比例阀或者CBV(Compressor Bypass Valve,压缩机旁路阀门)等等,可以根据实际需要进行设置,本申请实施例对阀门60的具体类型可以不做限定。
需要说明的是,本实施方式还可以通过其他方式对动力电池10进行加热,如还可以设置单独的管道连通电池回路1和电堆回路2,使得电堆回路2的冷却液直接流入电池回路1以对动力电池10进行加热,本实施方式不对加热动力电池10的方式作出具体限制。
在一个可行的实施方式中,S102-2-1之后,氢能混动汽车的动力电池加热方法还可以包括以下步骤:
S102-2-2:获取电池回路的冷却液温度。
在具体实现中,可以在电池回路的电池入口处设置温度传感器,以实时获取电池回路的冷却液温度,并将包含电池回路的冷却液温度的信息传输给CCU。
S102-2-3:在电池回路的冷却液温度大于第四温度阈值时,控制电堆回路的热量停止对电池回路加热;直到电池回路的冷却液温度小于第五温度阈值时,重新控制电堆回路的热量加热电池回路。
在本实施方式中,CCU在获取到电池回路的冷却液温度之后,将该冷却液温度与第四温度阈值进行比较,在检测到电池回路的冷却液温度大于第四温度阈值时,将控制电堆回路的热量停止对电池回路加热,以防止电池回路的冷却液温度继续升高。由于低温环境的影响,电池回路的冷却液温度将再度下降,在电池回路的冷却液温度下降到小于等于第五温度阈值时,CCU将重新控制电堆回路的热量加热电池回路,进而不断循环,使得电池回路的冷却液温度动态维持在第五温度阈值和第四温度阈值之间。
在具体实现中,可以设置目标冷却液温度以及允许的偏差上限和偏差下限,进而第四温度阈值相当于目标冷却液温度+偏差上限,第五温度阈值相当于目标冷却液温度-偏差下限。示例性的,偏差上限可以设置为5℃,偏差下限可以设置为2℃,则在控制电堆回路的热量加热电池回路的过程中,持续判断电池回路的冷却液温度Tcool与目标冷却液温度Ttar的差值,当Tcool-Ttar≥5℃时,则CCU控制三通比例阀关闭,控制电堆回路的热量停止对电池回路加热,并控制电池水泵继续工作;此过程中判断电池回路的冷却液温度Tcool与目标冷却液温度Ttar的差值,直到Tcool-Ttar≤-2℃时,CCU再次控制三通比例阀开启,继续利用燃料电池系统的电堆余热为动力电池加热,进而将电池回路的冷却液温度维持在(Ttar-2℃)到(Ttar+5℃)之间的温度范围,其中,(Ttar-2℃) 即为第五温度阈值,(Ttar+5℃)即为第四温度阈值。
在本实施方式中,通过设置第四温度阈值和第五温度阈值,可是实现对电池回路的冷却液温度的动态控制,使得电池回路的冷却液温度维持在一个合适的温度范围内,防止电池回路的冷却液温度上升到过高的温度,超过电池回路的冷却液允许的最高温度,影响电池回路的使用寿命。
在一个可行的实施方式中,空调系统还包括PTC加热装置,氢能混动汽车的动力电池加热方法还可以包括以下步骤:
S201:在确定燃料电池电堆不存在余热时,确定动力电池的加热触发阈值为第六温度阈值,第六温度阈值小于第一温度阈值。
需要说明的是,在确定燃料电池电堆不存在余热时,且动力电池的最低温度小于第六温度阈值时,为满足整车动力性的要求,仍需要使用PTC加热装置为动力电池加热。
S202:在检测到动力电池的最低温度小于等于第六温度阈值时,控制PTC加热装置加热动力电池。
需要说明的是,由于氢能混动汽车没有内燃机,所以通常采用PTC加热装置制造热量。PTC加热装置,又称汽车加热器,是一种正温度系数的陶瓷发热元件,可用于汽车低温启动。
在本实施方式中,因整车动力性的要求,需要电池最少工作在-10℃以上,因此,第六温度阈值可以设置为-10℃。也就是说,当电堆回路的冷却液温度T≤25℃,且动力电池的最低温度Tmin≤-10℃时,说明燃料电池电堆不存在余热并且动力电池的最低温度过低,此时,CCU将控制PTC加热装置加热动力电池。
在具体实现中,由于PTC加热装置通常位于空调系统,因此,CCU将通过向空调控制器发送加热请求或停止加热请求,以使空调控制器响应于该加热请求或停止加热请求,进而控制PTC加热装置的开启或关闭。
在本实施方式中,若检测到电堆回路的冷却液温度T≤25℃,且动力电池的最低温度-10℃<Tmin≤20℃,说明动力电池的最低温度满足最低的工作需求,此时,CCU将不控制电堆回路或者PTC加热装置加热动力电池。
S203:在检测到动力电池的最低温度大于第七温度阈值时,控制PTC加热装置停止对动力电池进行加热,直到动力电池的最低温度小于等于第六温 度阈值时,重新控制PTC加热装置加热动力电池。
在本实施方式中,第七温度阈值应当大于第六温度阈值,如可以设置为-5℃,即,控制PTC加热装置加热动力电池之后,若检测到动力电池的最低温度Tmin>-5℃,CCU将控制PTC加热装置停止对动力电池进行加热。在停止对动力电池进行加热之后,由于低温环境的影响,动力电池的温度将再度下降,在动力电池的最低温度Tmin≤-10℃时,CCU将重新控制PTC加热装置加热动力电池,进而不断循环,将动力电池的最低温度动态维持在-10℃到-5℃之间。
需要说明的是,在利用PTC加热装置加热动力电池的过程中,将执行与S102-4至S102-5相同或相似的步骤,以防止加热过程中动力电池的最高温度与最低温度之间的温差值过大;同样将执行与S102-2-1至S102-2-3相同或相似的步骤,以防止电池回路的冷却液温度上升到过高的温度,影响电池回路的使用寿命。
在本实施方式中,根据燃料电池系统中冷却液温度的不同,将采取不同的动力电池加热阈值控制策略方案。在燃料电池电堆存在余热时,通过设置温度较高的第一温度阈值,可以有效利用燃料电池电堆多余的热量,在不消耗电量的同时将动力电池加热至最佳工作温度范围;在燃料电池电堆不存在余热时,过设置温度较低的第六温度阈值,可以利用PTC加热装置加热动力电池,利用动力电池少量的电量,将动力电池加热至能够满足最低工作需求的适宜温度。通过对不同条件下的多阈值判断,能够充分满足动力电池的加热需求,有效解决动力电池低温下电池容量衰减问题,进而有效增加低温下整车的续驶里程。
第二方面,参照图3,基于相同发明构思,本申请实施例提供了一种氢能混动汽车的动力电池加热装置300,该氢能混动汽车的动力电池加热装置300应用于氢能混动汽车,氢能混动汽车包括用于和燃料电池电堆进行热交换的电堆回路,该氢能混动汽车的动力电池加热装置300可以包括:
余热判断模块301,用于判断燃料电池电堆是否存在余热;
电堆加热模块302,用于在确定燃料电池电堆存在余热时,基于动力电池的最低温度,控制电堆回路的热量加热动力电池;
空调加热模块303,用于在确定燃料电池电堆不存在余热时,基于动力电 池的最低温度,控制空调系统加热动力电池。
需要说明的是,余热判断模块301可以包括温度传感器和判断电路。具体地,温度传感器可以是第一温度传感器和/或第二温度传感器,第一温度传感器可以设置在燃料电池电堆上,以监测燃料电池电堆的运行温度,并将该运行温度发送至判断电路,该判断电路在检测到该运行温度大于预设的运行温度阈值时,便可以确定燃料电池电堆存在余热,否则确定燃料电池电堆不存在余热;第二温度传感器可以设置在电堆回路的出水口处,以监测出水口处的冷却液温度,并将该冷却液温度发送至判断电路,该判断电路在检测到该冷却液温度大于预设的第二温度阈值时,确定燃料电池电堆存在余热,否则,确定燃料电池电堆不存在余热。
电堆加热模块302可以是控制电路,用于在确定燃料电池电堆存在余热时,基于动力电池的最低温度,控制电堆回路的热量加热动力电池。空调加热模块303可以是驱动电路,用于在确定燃料电池电堆不存在余热时,基于动力电池的最低温度,控制空调系统加热动力电池。
其中,上述判断电路、控制电路以及驱动电路都可以是车辆的控制器中的电路,该控制器可以是具有数据处理、网络通信以及程序运行功能的计算服务设备,或者具有上述功能的电子设备如行车电脑、车载电脑等,如BCM(Body Control Module,车身控制器)、VCU(Vehicle Control Unit,整车控制器)、CCU(Central Computing Unit,中央计算单元)等,本实施例对此不作限制。
在本申请一实施例中,余热判断模块301包括:
温度获取子模块,用于获取电堆回路的冷却液温度;
第一确定子模块,用于在电堆回路的冷却液温度大于第二温度阈值时,确定燃料电池电堆存在余热;
第二确定子模块,用于在电堆回路的冷却液温度小于等于第二温度阈值时,确定燃料电池电堆不存在余热。
在本申请一实施例中,电堆加热模块302包括:
第一温度阈值确定子模块,用于在确定燃料电池电堆存在余热时,确定动力电池的加热触发阈值为第一温度阈值;
第一加热子模块,用于在检测到动力电池的最低温度小于等于第一温度 阈值时,控制电堆回路的热量加热动力电池,以使动力电池的最低温度大于第一温度阈值。
在本申请一实施例中,电堆加热模块302还包括:
第一动态控制子模块,用于控制电堆回路的热量加热动力电池,以使动力电池的最低温度大于第一温度阈值之后,在检测到动力电池的最低温度大于第三温度阈值时,控制电堆回路的热量停止对动力电池进行加热,直到动力电池的最低温度小于等于第一温度阈值时,重新控制电堆回路的热量加热动力电池。
在本申请一实施例中,电堆加热模块302还包括:
温差值确定子模块,用于控制电堆回路的热量加热动力电池之后,获取动力电池的最高温度,并确定最高温度与最低温度之间的温差值;
第二动态控制子模块,用于在温差值大于第一温差阈值时,控制电堆回路的热量停止对动力电池加热;直到温差值小于第二温差阈值时,重新控制电堆回路的热量加热动力电池。
在本申请一实施例中,氢能混动汽车还包括用于和动力电池进行热交换的电池回路,第一加热子模块包括:
电池回路加热单元,用于控制电堆回路的热量加热电池回路,以使电池回路加热动力电池。
在本申请一实施例中,电池回路加热单元还包括:
温度获取子单元,用于控制电堆回路的热量加热电池回路,以使电池回路加热动力电池之后,获取电池回路的冷却液温度;
动态控制子单元,用于在电池回路的冷却液温度大于第四温度阈值时,控制电堆回路的热量停止对电池回路加热;直到电池回路的冷却液温度小于第五温度阈值时,重新控制电堆回路的热量加热电池回路。
在本申请一实施例中,空调系统包括PTC加热装置,空调加热模块303还包括:
第二温度阈值确定子模块,用于在确定燃料电池电堆不存在余热时,确定动力电池的加热触发阈值为第六温度阈值,第六温度阈值小于第一温度阈值;
第二加热子模块,用于在检测到动力电池的最低温度小于等于第六温度 阈值时,控制PTC加热装置加热动力电池;
第三动态控制子模块,用于在检测到动力电池的最低温度大于第七温度阈值时,控制PTC加热装置停止对动力电池进行加热,直到动力电池的最低温度小于等于第六温度阈值时,重新控制PTC加热装置加热动力电池。
需要说明的是,本申请实施例的氢能混动汽车的动力电池加热装置300的具体实施方式参照前述本申请实施例第一方面提出的氢能混动汽车的动力电池加热方法的具体实施方式,在此不再赘述。
第三方面,基于相同发明构思,本申请实施例提供了一种存储介质,其上存储有计算机程序/指令,该计算机程序/指令被处理器执行时实现本申请实施例第一方面提出的氢能混动汽车的动力电池加热方法。
需要说明的是,本申请实施例的存储介质的具体实施方式参照前述本申请实施例第一方面提出的氢能混动汽车的动力电池加热方法的具体实施方式,在此不再赘述。
第四方面,基于相同发明构思,参照图4,本申请实施例提供了一种车辆400,包括处理器401和存储器402;存储器402存储有能够被处理器401执行的机器可执行指令,处理器401用于执行机器可执行指令,以实现第一方面提出的氢能混动汽车的动力电池加热方法。
需要说明的是,本申请实施例的车辆400的具体实施方式参照前述本申请实施例第一方面提出的氢能混动汽车的动力电池加热方法的具体实施方式,在此不再赘述。
本领域内的技术人员应明白,本发明实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本发明实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明实施例是参照根据本发明实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、 专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本发明所提供的一种氢能混动汽车的动力电池加热方法、装置、存储介质和车辆,进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在 具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本发明的限制。

Claims (15)

  1. 一种氢能混动汽车的动力电池加热方法,其特征在于,所述氢能混动汽车包括用于和燃料电池电堆进行热交换的电堆回路,所述方法包括:
    判断所述燃料电池电堆是否存在余热;
    在确定所述燃料电池电堆存在余热时,基于动力电池的最低温度,控制所述电堆回路的热量加热所述动力电池;以及
    在确定所述燃料电池电堆不存在余热时,基于所述动力电池的最低温度,控制空调系统加热所述动力电池。
  2. 根据权利要求1所述的氢能混动汽车的动力电池加热方法,其特征在于,判断所述燃料电池电堆是否存在余热,包括:
    获取所述电堆回路的冷却液温度;
    在所述电堆回路的冷却液温度大于第二温度阈值时,确定所述燃料电池电堆存在余热;或者
    在所述电堆回路的冷却液温度小于等于所述第二温度阈值时,确定所述燃料电池电堆不存在余热。
  3. 根据权利要求1所述的氢能混动汽车的动力电池加热方法,其特征在于,在确定所述燃料电池电堆存在余热时,基于动力电池的最低温度,控制所述电堆回路的热量加热所述动力电池,包括:
    在确定所述燃料电池电堆存在余热时,确定所述动力电池的加热触发阈值为第一温度阈值;以及
    在检测到所述动力电池的最低温度小于等于所述第一温度阈值时,控制所述电堆回路的热量加热所述动力电池,以使所述动力电池的最低温度大于所述第一温度阈值。
  4. 根据权利要求3所述的氢能混动汽车的动力电池加热方法,其特征在于,控制所述电堆回路的热量加热所述动力电池,以使所述动力电池的最低温度大于所述第一温度阈值之后,所述方法还包括:
    在检测到所述动力电池的最低温度大于第三温度阈值时,控制所述电堆回路的热量停止对所述动力电池进行加热,直到所述动力电池的最低温度小于等于所述第一温度阈值时,重新控制所述电堆回路的热量加热所述动力电 池。
  5. 根据权利要求3所述的氢能混动汽车的动力电池加热方法,其特征在于,控制所述电堆回路的热量加热所述动力电池之后,所述方法还包括:
    获取所述动力电池的最高温度,并确定所述最高温度与所述最低温度之间的温差值;以及
    在所述温差值大于第一温差阈值时,控制所述电堆回路的热量停止对所述动力电池加热;直到所述温差值小于第二温差阈值时,重新控制所述电堆回路的热量加热所述动力电池。
  6. 根据权利要求1所述的氢能混动汽车的动力电池加热方法,其特征在于,所述氢能混动汽车还包括用于和动力电池进行热交换的电池回路;
    控制所述电堆回路的热量加热所述动力电池,包括:
    控制所述电堆回路的热量加热所述电池回路,以使所述电池回路加热所述动力电池。
  7. 根据权利要求6所述的氢能混动汽车的动力电池加热方法,其特征在于,控制所述电堆回路的热量加热所述电池回路,以使所述电池回路加热所述动力电池之后,所述方法还包括:
    获取所述电池回路的冷却液温度;以及
    在所述电池回路的冷却液温度大于第四温度阈值时,控制所述电堆回路的热量停止对所述电池回路加热;直到所述电池回路的冷却液温度小于第五温度阈值时,重新控制所述电堆回路的热量加热所述电池回路。
  8. 根据权利要求3所述的氢能混动汽车的动力电池加热方法,其特征在于,所述空调系统包括PTC加热装置;
    在确定所述燃料电池电堆不存在余热时,基于所述动力电池的最低温度,控制空调系统加热所述动力电池,包括:
    在确定所述燃料电池电堆不存在余热时,确定所述动力电池的加热触发阈值为第六温度阈值,所述第六温度阈值小于所述第一温度阈值;
    在检测到所述动力电池的最低温度小于等于所述第六温度阈值时,控制所述PTC加热装置加热所述动力电池;以及
    在检测到所述动力电池的最低温度大于第七温度阈值时,控制所述PTC加热装置停止对所述动力电池进行加热,直到所述动力电池的最低温度小于 等于所述第六温度阈值时,重新控制所述PTC加热装置加热所述动力电池。
  9. 根据权利要求1所述的氢能混动汽车的动力电池加热方法,其特征在于,判断所述燃料电池电堆是否存在余热,包括:
    获取所述燃料电池电堆的运行温度;
    在所述燃料电池电堆的运行温度大于预设的运行温度阈值时,确定所述燃料电池电堆存在余热;或者
    在所述燃料电池电堆的运行温度小于或等于所述预设的运行温度阈值时,确定所述燃料电池电堆不存在余热。
  10. 根据权利要求4所述的氢能混动汽车的动力电池加热方法,其特征在于,所述第三温度阈值小于或等于第二温度阈值。
  11. 根据权利要求7所述的氢能混动汽车的动力电池加热方法,其特征在于,所述方法还包括:
    设置目标冷却液温度以及允许的偏差上限和偏差下限,其中,所述第四温度阈值为所述目标冷却液温度与所述偏差上限之和,所述第五温度阈值为所述目标冷却液温度与所述偏差下限之差。
  12. 根据权利要求8所述的氢能混动汽车的动力电池加热方法,其特征在于,所述第七温度阈值大于所述第六温度阈值。
  13. 一种氢能混动汽车的动力电池加热装置,其特征在于,所述装置应用于氢能混动汽车,所述氢能混动汽车包括用于和燃料电池电堆进行热交换的电堆回路,所述装置包括:
    余热判断模块,用于判断所述燃料电池电堆是否存在余热;
    电堆加热模块,用于在确定所述燃料电池电堆存在余热时,基于动力电池的最低温度,控制所述电堆回路的热量加热所述动力电池;以及
    空调加热模块,用于在确定所述燃料电池电堆不存在余热时,基于所述动力电池的最低温度,控制空调系统加热所述动力电池。
  14. 一种存储介质,其特征在于,所述存储介质内存储有机器可执行指令,所述机器可执行指令被处理器执行时实现如权利要求1-12任一项所述的氢能混动汽车的动力电池加热方法。
  15. 一种车辆,其特征在于,包括处理器和存储器;所述存储器存储有能够被所述处理器执行的机器可执行指令,所述处理器用于执行机器可执行 指令,以实现如权利要求1-12任一项所述的氢能混动汽车的动力电池加热方法。
PCT/CN2023/133739 2022-11-25 2023-11-23 氢能混动汽车的动力电池加热方法、装置、介质和设备 WO2024109891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211497716.8A CN115742871A (zh) 2022-11-25 2022-11-25 氢能混动汽车的动力电池加热方法、装置、介质和设备
CN202211497716.8 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024109891A1 true WO2024109891A1 (zh) 2024-05-30

Family

ID=85338971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/133739 WO2024109891A1 (zh) 2022-11-25 2023-11-23 氢能混动汽车的动力电池加热方法、装置、介质和设备

Country Status (2)

Country Link
CN (1) CN115742871A (zh)
WO (1) WO2024109891A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115742871A (zh) * 2022-11-25 2023-03-07 长城汽车股份有限公司 氢能混动汽车的动力电池加热方法、装置、介质和设备
CN117317465B (zh) * 2023-11-28 2024-01-30 深圳海辰储能科技有限公司 基于电池热量的电池加热方法及相关装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037447A1 (en) * 2000-09-27 2002-03-28 Honda Giken Kogyo Kabushiki Kaisha Cooling system for fuel cell
CN106945537A (zh) * 2017-01-23 2017-07-14 清华大学 燃料电池汽车热管理系统
CN109244505A (zh) * 2018-09-25 2019-01-18 吉林大学 一种车用燃料电池热管理系统及其控制方法
CN112078322A (zh) * 2019-06-13 2020-12-15 北汽福田汽车股份有限公司 用于燃料电池车的供热系统和燃料电池车
CN113937319A (zh) * 2021-09-26 2022-01-14 海卓动力(上海)能源科技有限公司 一种新能源车辆整车热量分配系统及其方法
CN115742871A (zh) * 2022-11-25 2023-03-07 长城汽车股份有限公司 氢能混动汽车的动力电池加热方法、装置、介质和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020037447A1 (en) * 2000-09-27 2002-03-28 Honda Giken Kogyo Kabushiki Kaisha Cooling system for fuel cell
CN106945537A (zh) * 2017-01-23 2017-07-14 清华大学 燃料电池汽车热管理系统
CN109244505A (zh) * 2018-09-25 2019-01-18 吉林大学 一种车用燃料电池热管理系统及其控制方法
CN112078322A (zh) * 2019-06-13 2020-12-15 北汽福田汽车股份有限公司 用于燃料电池车的供热系统和燃料电池车
CN113937319A (zh) * 2021-09-26 2022-01-14 海卓动力(上海)能源科技有限公司 一种新能源车辆整车热量分配系统及其方法
CN115742871A (zh) * 2022-11-25 2023-03-07 长城汽车股份有限公司 氢能混动汽车的动力电池加热方法、装置、介质和设备

Also Published As

Publication number Publication date
CN115742871A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
WO2024109891A1 (zh) 氢能混动汽车的动力电池加热方法、装置、介质和设备
JP6687895B2 (ja) 車両用燃料電池の暖機装置
WO2022021795A1 (zh) 一种电动汽车低温充电控制系统及其控制方法
US10826094B2 (en) Fuel cell thermal management system and control method of the same
WO2024109883A1 (zh) 氢能混动汽车的动力电池加热方法、装置、介质和设备
CN109572486B (zh) 一种混合动力汽车动力电池热管理系统及控制方法
CN112172607B (zh) 电动汽车充电完成电池保温控制系统
CA3153993A1 (en) Thermal management system for electric vehicle
CN111600049B (zh) 一种氢发动机的新型能量输出管理方法
CN108232234B (zh) 一种燃料电池系统及燃料电池汽车
US20230387494A1 (en) Thermal management method and thermal management system
CN113299946A (zh) 燃料电池停机工况热管理方法及装置
CN113581018B (zh) 一种燃料电池汽车的热管理方法、控制器、介质及设备
JP5794197B2 (ja) 燃料電池システムおよびその制御方法
CN110281808A (zh) 一种基于电池温度与健康状态的v2g安全控制方法及系统
CN110767957A (zh) 混合动力总成动力电池的复合加热系统及加热方法
US9905864B2 (en) Fuel cell system and control method thereof
CN112216905B (zh) 蓄电池温度控制系统、方法及具有其的车辆
JP2020053287A (ja) 燃料電池システム
JP5290514B2 (ja) 燃料電池制御システム及びその冷却媒体制御方法
CN116872795A (zh) 电池热管理方法、装置、车辆和存储介质
US20230150398A1 (en) Fuel cell system
CN111211340A (zh) 燃料电池系统
US12005809B2 (en) Method for the thermal conditioning of traction batteries
CN111509262B (zh) 燃料电池车及其热管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893980

Country of ref document: EP

Kind code of ref document: A1