WO2024109416A1 - 一种调整带宽的方法、装置和系统 - Google Patents

一种调整带宽的方法、装置和系统 Download PDF

Info

Publication number
WO2024109416A1
WO2024109416A1 PCT/CN2023/125987 CN2023125987W WO2024109416A1 WO 2024109416 A1 WO2024109416 A1 WO 2024109416A1 CN 2023125987 W CN2023125987 W CN 2023125987W WO 2024109416 A1 WO2024109416 A1 WO 2024109416A1
Authority
WO
WIPO (PCT)
Prior art keywords
indication information
bandwidth
service
adjustment
time slot
Prior art date
Application number
PCT/CN2023/125987
Other languages
English (en)
French (fr)
Inventor
孙亮
王兴欣
李江
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024109416A1 publication Critical patent/WO2024109416A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0896Bandwidth or capacity management, i.e. automatically increasing or decreasing capacities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/70Admission control; Resource allocation
    • H04L47/80Actions related to the user profile or the type of traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • the present application relates to the field of optical communications, and more specifically, to a method, device and system for adjusting bandwidth.
  • the Optical Service Unit can be applied to high-quality dedicated line bearer at different bandwidth levels.
  • OTN Optical Transport Network
  • the present application provides a method, device and system for adjusting bandwidth, which can simplify the processing process of lossless bandwidth adjustment of end-to-end links, thereby achieving the purpose of improving bandwidth adjustment efficiency.
  • an embodiment of the present application provides a method for adjusting bandwidth.
  • the method can be executed by a first device or by a component of the first device (such as a chip or a chip system, etc.), and the present application does not limit this.
  • the method includes: the first device sends a first indication message, the first indication message indicates a time slot state, and the time slot state is a time slot state corresponding to N1 time slots added or deleted by the first device in a data frame carrying a service according to a target bandwidth, wherein N1 is an integer greater than or equal to 1, and the time slot state is an addition state or a deletion state, and the first indication message is carried in a first type of data frame.
  • the first device receives a second indication message, the second indication message indicates whether the service bandwidth between the first device and the second device supports adjustment to the target bandwidth, and the second indication message is carried in a second type of data frame.
  • the first device adjusts the service bandwidth to the target bandwidth or cancels the adjustment of the service bandwidth according to the second indication message.
  • the first device may be the first device or a non-first device in a communication link including the first device and the second device. It should be understood that when the first device is the first device in the communication link, the communication link starts with the first device and ends with the second device. When the first device is a non-first device in the communication link, the communication link is a link that starts with the upstream device of the first device and ends with the second device.
  • the first indication information sent by the first device indicates the state of the time slot in the data frame when the service bandwidth is adjusted, so that the second device that receives the first indication information in the link determines whether the link with the first device can adjust the bandwidth through the first information.
  • the bandwidth adjustment scheme provided by the present application is based on the interaction of the first indication information and the second indication information between the first device and the second device, so that the first device and the second device can complete the bandwidth adjustment or cancellation of the link between the first device and the second device according to the above indication information.
  • the scheme completes the addition or deletion of time slots when the bandwidth adjustment is completed through the time slot status indicated by the first indication information, and can also avoid the defect of excessive verification delay caused by each site under the multi-network management performing the addition or deletion operation of the time slot separately, simplifying the process of bandwidth adjustment, thereby achieving the purpose of improving the efficiency of bandwidth adjustment.
  • the first type of data frame is an optical payload unit OPU frame
  • the second type of data frame is an optical service unit OSU frame.
  • the second indication information when the second indication information indicates that the service bandwidth between the first device and the second device supports adjustment to the target bandwidth, the second indication information includes the target bandwidth.
  • the second indication information adjusts the service bandwidth to the target bandwidth or cancels the adjustment of the service bandwidth, including: the first device adjusts the service bandwidth to the target bandwidth according to the second indication information, wherein the second indication information comes from the second device.
  • the second indication information sent by the second device to the first device indicates whether the service bandwidth supports adjustment to the target bandwidth, so that the first device determines that the devices on the link from the first device to the second device are capable of adjusting the service bandwidth to the target bandwidth according to the second indication information, thereby realizing lossless adjustment of the service bandwidth from the first device to the second device.
  • the second indication information sent by the second device to the first device can avoid negotiation delays caused by multiple network managers adjusting bandwidth, and improve the reliability and adjustment efficiency of bandwidth adjustment.
  • the method further includes: the first device sends third indication information to the second device, the third indication information indicates that the service bandwidth is adjusted to the target bandwidth, the third indication information is carried in the second type of data frame, and the third indication information includes the target bandwidth. Based on this solution, the third indication information sent by the first device indicates that the service bandwidth is adjusted to the target bandwidth, thereby achieving lossless adjustment of the bandwidth while improving the reliability and adjustment efficiency of the bandwidth adjustment.
  • the first indication information indicates that the time slot status corresponding to the N1 time slots is an adding status
  • the method further includes: the first device changes the time slot status corresponding to the N1 time slots to a service transmission status.
  • the first indication information indicates that the time slot status corresponding to the N1 time slots is a deleting status
  • the method further includes: the first device changes the time slot status corresponding to the N1 time slots to an idle status.
  • the time slot status corresponding to the time slot is modified by the first indication information in the first type of data frame.
  • the other devices can determine the status of each time slot through the first indication information in the first type of data frame, thereby ensuring the reliability of data transmission.
  • the second indication information when the second indication information indicates that the service bandwidth between the first device and the second device does not support adjustment to the target bandwidth, the second indication information includes the service bandwidth.
  • the first device adjusts the service bandwidth to the target bandwidth or cancels the adjustment of the service bandwidth according to the second indication information, including: the first device cancels the adjustment of the service bandwidth according to the second indication information.
  • the second indication information sent by the second device to the first device indicates that the service bandwidth does not support adjustment to the target bandwidth, so that the first device determines that the link from the first device to the second device cannot perform bandwidth adjustment according to the second indication information, thereby canceling the service bandwidth adjustment from the first device to the second device.
  • the second indication information sent by the second device to the first device can avoid the waste of resources caused by multiple network managers adjusting the bandwidth when the bandwidth adjustment cannot be performed, thereby improving the reliability and adjustment efficiency of the bandwidth adjustment.
  • the method further includes: the first device sends fourth indication information, the fourth indication information indicates cancellation of the bandwidth adjustment process of the service bandwidth, the fourth indication information is carried in the second type of data frame, and the fourth indication information includes the service bandwidth. Based on this solution, the bandwidth adjustment efficiency is further improved by indicating cancellation of the bandwidth adjustment process of the service bandwidth through the fourth indication information sent by the first device.
  • the method further includes: the first device changes the time slot status corresponding to the N1 time slots to an idle state. Based on this scheme, the time slot status corresponding to the time slot is modified in real time through the first indication information in the first type data frame, thereby ensuring the reliability of data transmission.
  • the method further includes: the first device acquires the target bandwidth.
  • the first device sends fifth indication information, the fifth indication information indicates the start of a bandwidth adjustment process, the bandwidth adjustment process is used to adjust the service bandwidth between the first device and the second device to the target bandwidth, the fifth indication information is carried in the second type of data frame, and the fifth indication information includes the target bandwidth.
  • the first device receives sixth indication information from the second device, the sixth indication information indicates that the second device has received the fifth indication information, and the sixth indication information includes the target bandwidth.
  • the first device sets the time slot status corresponding to the N1 time slots to an added state or a deleted state in the data frame carrying the service according to the fifth indication information.
  • the first device sends the fifth indication information in advance to notify that the link between the first device and the second device needs bandwidth adjustment, and receives the sixth indication information from the second device to determine that the fifth indication information has been fully received by the devices on the link from the first device to the second device, thereby ensuring the reliability of bandwidth adjustment.
  • an embodiment of the present application provides a method for adjusting bandwidth, which can be executed by a second device or by a component of the second device (such as a chip or a chip system, etc.), and the present application does not limit this.
  • the method includes: the second device receives first indication information from the first device, the first indication information indicates a time slot status, the time slot status is the time slot status corresponding to N1 time slots added or deleted by the first device in the data frame carrying the service according to the target bandwidth, the time slot status is an addition status or a deletion status, and the first indication information is carried in a first type of data frame, where N1 is an integer greater than or equal to 1.
  • the second device sends second indication information to the first device, the second indication information indicates whether the service bandwidth between the first device and the second device supports adjustment to the target bandwidth, and the second indication information is carried in a second type of data frame.
  • the second device adds the service bandwidth to the target bandwidth based on the second indication information. The bandwidth is adjusted to the target bandwidth or the adjustment of the service bandwidth is canceled.
  • the first type of data frame is an optical payload unit OPU frame
  • the second type of data frame is an optical service unit OSU frame.
  • the second indication information when the second indication information indicates that the service bandwidth between the first device and the second device supports adjustment to the target bandwidth, the second indication information includes the target bandwidth.
  • the second device adjusts the service bandwidth to the target bandwidth or cancels the adjustment of the service bandwidth based on the second indication information, including: the second device adjusts the service bandwidth to the target bandwidth based on the second indication information.
  • the method further includes: the second device receives third indication information from the first device, the third indication information indicates that the service bandwidth is adjusted to the target bandwidth, the third indication information is carried in the second type of data frame, and the third indication information includes the target bandwidth.
  • the second device adjusts the service bandwidth to the target bandwidth based on the second indication information, including: the second device adjusts the service bandwidth to the target bandwidth based on the second indication information and the third indication information.
  • the second indication information when the second indication information indicates that the service bandwidth between the first device and the second device does not support adjustment to the target bandwidth, the second indication information includes the service bandwidth.
  • the second device adjusts the service bandwidth to the target bandwidth or cancels the adjustment of the service bandwidth based on the second indication information, including: the second device cancels the adjustment of the service bandwidth based on the second indication information.
  • the method also includes: the second device receives fourth indication information from the first device, the fourth indication information indicates cancellation of the bandwidth adjustment process of the service bandwidth, the fourth indication information is carried in the second type data frame, and the fourth indication information includes the service bandwidth.
  • the method further includes: the second device receives fifth indication information from the first device, the fifth indication information indicates starting a bandwidth adjustment process, the bandwidth adjustment process is used to adjust the service bandwidth between the first device and the second device to a target bandwidth, the fifth indication information is carried in the second type of data frame, and the fifth indication information includes the target bandwidth.
  • the second device sends sixth indication information to the first device, the sixth indication information indicates that the second device has received the fifth indication information, and the sixth indication information includes the target bandwidth.
  • an embodiment of the present application provides a method for adjusting bandwidth.
  • the method may be performed by an intermediate device or by a component of an intermediate device (such as a chip or a chip system, etc.), and the present application does not limit this.
  • the method includes:
  • the intermediate device receives first indication information from the first device, the first indication information indicating a time slot state, the time slot state being a time slot state corresponding to N1 time slots added or deleted by the first device in a data frame carrying a service according to a target bandwidth, the time slot state being an addition state or a deletion state, the first indication information being carried in a first type of data frame, wherein N1 is an integer greater than or equal to 1.
  • the intermediate device sends second indication information to the first device, the second indication information indicating whether the service bandwidth between the first device and the second device supports adjustment to the target bandwidth, the second indication information being carried in a second type of data frame.
  • the intermediate device adjusts the service bandwidth to the target bandwidth or cancels the adjustment of the service bandwidth based on the second indication information.
  • the second indication information may be generated by the second device, and the second indication information may be transparently transmitted to the first device through the third device.
  • the second indication information may be generated by the intermediate device, and the second indication information may be sent to the first device.
  • the second indication information may be generated by the second device, and the second indication information may be sent to the first device through the third device.
  • the first type of data frame is an optical payload unit OPU frame
  • the second type of data frame is an optical service unit OSU frame.
  • the second indication information when the second indication information indicates that the service bandwidth between the first device and the second device supports adjustment to the target bandwidth, the second indication information includes the target bandwidth.
  • the method also includes: the intermediate device sets the time slot state corresponding to N2 time slots in the data frame carrying the service to an add state or a delete state according to the target bandwidth, and N2 is equal to N1.
  • the intermediate device adjusts the service bandwidth to the target bandwidth or cancels the adjustment of the service bandwidth based on the second indication information, including: the second device adjusts the service bandwidth to the target bandwidth based on the second indication information.
  • the method further includes: the intermediate device receives third indication information from the first device, the third indication information indicates that the service bandwidth is adjusted to the target bandwidth, and the third indication information is carried in the second type of data frame.
  • the intermediate device adjusts the service bandwidth to the target bandwidth based on the second indication information.
  • the method comprises: the intermediate device adjusting the service bandwidth to the target bandwidth based on the second indication information and the third indication information.
  • the first indication information indicates that the time slot state is an adding state
  • the method further includes: the intermediate device changes the time slot state corresponding to the N2 time slots to a service transmission state.
  • the first indication information indicates that the time slot state corresponding to the N1 time slot is a deleting state
  • the method further includes: the first device changes the time slot state corresponding to the N1 time slot to an idle state.
  • the second indication information when the second indication information indicates that the service bandwidth between the first device and the second device does not support adjustment to the target bandwidth, the second indication information includes the service bandwidth.
  • the intermediate device adjusts the service bandwidth to the target bandwidth or cancels the adjustment of the service bandwidth based on the second indication information, including: the intermediate device cancels the adjustment of the service bandwidth based on the second indication information.
  • the method also includes: the intermediate device receives fourth indication information from the first device, the fourth indication information indicates cancellation of the bandwidth adjustment process of the service bandwidth, and the fourth indication information is carried in the second type data frame.
  • the method further includes: the intermediate device sets the time slot status corresponding to N2 time slots in the data frame carrying the service to an add state or a delete state according to the target bandwidth, and N2 is equal to N1.
  • the method further includes: the intermediate device changes the time slot status corresponding to the N2 time slots to an idle state.
  • the method further includes: the intermediate device receives fifth indication information from the first device, the fifth indication information indicates starting a bandwidth adjustment process, the bandwidth adjustment process is used to adjust the service bandwidth between the first device and the second device to a target bandwidth, and the fifth indication information is carried in the second type of data frame.
  • the intermediate device sends sixth indication information to the first device, and the sixth indication information indicates that the intermediate device has received the fifth indication information.
  • an embodiment of the present application provides a system for adjusting bandwidth.
  • the system includes a first device and a second device, wherein the first device is used to execute the method in the first aspect or any possible implementation thereof, and the second device is used to execute the method in the second aspect or any possible implementation thereof.
  • an embodiment of the present application provides a system for adjusting bandwidth.
  • the system includes a first device, a second device, and at least one intermediate device, wherein the first device is used to execute the method in the first aspect or any possible implementation thereof, and the second device is used to execute the method in the second aspect or any possible implementation thereof. At least one intermediate device is used to execute the method in the third aspect or any possible implementation thereof.
  • an embodiment of the present application provides a device for adjusting bandwidth.
  • the device is used to execute the method provided in the first aspect above, or to execute the method provided in the second aspect above, or to execute the method provided in the third aspect above.
  • the device for configuring time slots may include units and/or modules for executing the method provided in the first aspect or any one of the above-mentioned implementations of the first aspect, or the device for configuring time slots may include units and/or modules for executing the method provided in the second aspect or any one of the above-mentioned implementations of the second aspect, such as a processing module and a transceiver module, or the device for configuring time slots may include units and/or modules for executing the method provided in the third aspect or any one of the above-mentioned implementations of the third aspect, such as a processing module and a transceiver module.
  • the device for configuring time slots may include a unit and/or module for executing the method provided by the first aspect or any one of the above implementations of the first aspect, or the device for configuring time slots may include a unit and/or module for executing the method provided by the third aspect or any one of the above implementations of the third aspect, which is a transmitting end device.
  • the transceiver module may be a transceiver, or an input/output interface.
  • the processing module may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device for configuring the time slot is a chip, a chip system or a circuit in the transmitting end device.
  • the transceiver module may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip, the chip system or the circuit.
  • the processing module may be at least one processor, a processing circuit or a logic circuit.
  • the device for configuring the time slot may include a unit and/or module for executing the method provided by the second aspect or any one of the above implementations of the second aspect, or the device for configuring the time slot may include a unit and/or module for executing the method provided by the third aspect or any one of the above implementations of the third aspect, which is a receiving end device.
  • the transceiver may be a transceiver, or an input/output interface.
  • the processing module may be at least one processor.
  • the transceiver may be a transceiver circuit.
  • the input/output interface may be an input/output circuit.
  • the device for configuring the time slot is a chip, a chip system or a circuit in the receiving end device.
  • the transceiver module may be an input/output interface, an interface circuit, an output circuit, an input circuit, a pin or a related circuit on the chip, the chip system or the circuit.
  • the processing module may be at least one processor, a processing circuit or a logic circuit.
  • an embodiment of the present application provides a processor for executing the methods provided in the above aspects.
  • an embodiment of the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores a program code for execution by a device, and the program code includes a method for executing any one of the implementations of the first aspect, the second aspect, or the third aspect.
  • an embodiment of the present application provides a computer program product comprising instructions.
  • the computer program product When the computer program product is run on a computer, the computer is caused to execute the method provided by any one of the implementations of the first aspect, the second aspect, or the third aspect.
  • an embodiment of the present application provides a chip.
  • the chip includes a processor and a communication interface, and the processor reads instructions stored in a memory through the communication interface to execute the method provided in any one of the implementations of the first aspect, the second aspect, or the third aspect.
  • the chip also includes a memory, in which a computer program or instructions are stored, and the processor is used to execute the computer program or instructions stored in the memory.
  • the processor is used to execute the method provided in any one of the implementation methods of the first aspect, the second aspect, or the third aspect mentioned above.
  • FIG1 is a schematic diagram of an OTN optical network system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a possible hardware structure of a network device.
  • FIG. 3 is a schematic diagram of a frame structure of an OTN frame.
  • FIG. 4 is a schematic flowchart of a method 400 for adjusting bandwidth provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of an OPU0 frame carrying first indication information provided in an embodiment of the present application.
  • FIG. 6 is a schematic diagram showing the byte division of the 4th row of the frame structure of the OPU0 frame shown in FIG. 5 .
  • FIG. 7 is a schematic diagram of an OSU frame carrying second indication information provided in an embodiment of the present application.
  • FIG8 is a schematic flowchart of a first specific implementation of a method for adjusting bandwidth provided in an embodiment of the present application.
  • FIG9 is a schematic flowchart of a second specific implementation of a method for adjusting bandwidth provided in an embodiment of the present application.
  • FIG10 is a schematic block diagram of a device 1000 for adjusting bandwidth provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the structure of a possible bandwidth adjustment device provided in an embodiment of the present application.
  • words such as “exemplary” or “for example” are used to indicate examples, illustrations or descriptions, and the embodiments or designs described as “exemplary” or “for example” should not be interpreted as being more preferred or more advantageous than other embodiments or designs.
  • the use of words such as “exemplary” or “for example” is intended to present related concepts in a specific way for easy understanding.
  • the services carried by the optical transport network may be, for example, Ethernet services, packet services, wireless backhaul services, etc.
  • Service data may also be referred to as service signals, customer data, or customer service data. The data type is not limited.
  • indication includes direct indication and indirect indication.
  • indication includes that the information directly indicates A or indirectly indicates A, and it does not mean that A must be carried in the information.
  • OTN optical transport network
  • MTN metropolitan transport network
  • a device may also be referred to as a node or a node device, and a sending device may be referred to as a sending node, a sending end device, a sending end, or a source node.
  • a receiving device may be referred to as a receiving node, a receiving end device, a receiving end, or a sink node.
  • FIG1 is a schematic diagram of an OTN optical network system applicable to an embodiment of the present application.
  • an OTN optical network is formed by connecting multiple devices through optical fibers, and can be composed of different topology types such as linear, ring and mesh according to specific needs.
  • OTN 100 shown in FIG1 eight OTN devices 101 are included, namely devices A-H.
  • 102 indicates an optical fiber, which is used to connect two devices
  • 103 indicates a customer service interface, which is used to receive or send customer service data.
  • OTN 100 is used to transmit service data for customer devices 1-3.
  • the customer device is connected to the OTN device through the customer service interface.
  • customer devices 1-3 are connected to OTN devices A, H and F respectively.
  • customer device 1 when customer device 1 needs to communicate with customer device 3, it can send service data through OTN devices A-F.
  • OTN device A can be a sending device
  • OTN devices B-E can be intermediate devices
  • OTN device F can be a receiving device.
  • OTN equipment is divided into optical layer equipment, electrical layer equipment and optoelectronic hybrid equipment.
  • Optical layer equipment refers to equipment that can process optical layer signals, such as optical amplifiers (OA) and optical add-drop multiplexers (OADM).
  • OA optical amplifiers
  • OADM optical add-drop multiplexers
  • OVA optical line amplifiers
  • Electrical layer equipment refers to equipment that can process electrical layer signals, such as equipment that can process OTN signals.
  • Optoelectronic hybrid equipment refers to equipment that has the ability to process optical layer signals and electrical layer signals. It should be noted that, according to specific integration needs, an OTN device can integrate multiple different functions. The technical solution provided in this application is applicable to OTN equipment with electrical layer functions of different forms and integration levels.
  • the data frame structure used by the OTN device in the embodiment of the present application is an OTN frame, which is used to carry various service data and provide rich management and monitoring functions.
  • the OTN frame can be an optical data unit frame (optical data unit k, ODUk), ODUCn, ODUflex, optical channel transmission unit k (optical transport unit k, OTUk), OTUCn, or flexible OTN (FlexO) frame, etc.
  • the difference between the ODU frame and the OTU frame is that the OTU frame includes the ODU frame and the OTU overhead.
  • the ODU frame refers to any one of ODUk, ODUCn or ODUflex
  • the OTU frame refers to any one of OTUk, OTUCn or FlexO.
  • FIG2 is a schematic diagram of a possible hardware structure of a network device.
  • OTN device 200 includes a branch board 201, a cross board 202, a line board 203, an optical layer processing board (not shown in FIG2), and a system control and communication board 204.
  • the type and quantity of boards included in the network device may be different.
  • a network device that serves as a core node does not have a branch board 201.
  • a network device that serves as an edge node has multiple branch boards 201, or does not have an optical cross board 202.
  • a network device that only supports electrical layer functions may not have an optical layer processing board.
  • the tributary board 201, the cross board 202 and the line board 203 are used to process the electrical layer signals of the OTN.
  • the tributary board 201 is used to realize the reception and transmission of various customer services, such as SDH services, packet services, Ethernet services and fronthaul services.
  • the tributary board 201 can be divided into a customer-side optical transceiver module and a signal processor.
  • the customer-side optical transceiver module can also be called an optical transceiver, which is used to receive and/or send service data.
  • the signal processor is used to realize the mapping and demapping processing of service data to data frames.
  • the cross board 202 is used to realize the exchange of data frames and complete the exchange of one or more types of data frames.
  • the line board 203 mainly realizes the processing of line-side data frames.
  • the line board 203 can be divided into a line-side optical module and a signal processor.
  • the line-side optical module can be called an optical transceiver, which is used to receive and/or send data frames.
  • the signal processor is used to realize the multiplexing and demultiplexing of the data frames on the line side, or the mapping and demapping processing.
  • the system control and communication type single board 204 is used to realize system control. Specifically, information can be collected from different boards, or control instructions can be sent to corresponding boards. It should be noted that, unless otherwise specified, a specific component (such as a signal processor) can be a The present application does not limit the number of single boards or multiple single boards.
  • the present application does not limit the type of single boards included in the device and the functional design and quantity of the single boards. It should be noted that in a specific implementation, the above two single boards may also be designed as one single board.
  • the network device may also include a power supply for backup, a fan for heat dissipation, etc.
  • FIG3 is a schematic diagram of a frame structure of an OTN frame.
  • the OTN frame is a frame structure of 4 rows and multiple columns, including an overhead area and a payload area.
  • the payload area of the OTN frame is divided into multiple payload blocks (PBs).
  • PBs payload blocks
  • Each PB occupies a fixed length (also called size) position in the payload area, for example, 128 bytes.
  • the first 4 rows * 16 columns are the overhead area of the OTU/ODU/optical payload unit (OPU), followed by the OPU payload area.
  • OPU optical payload unit
  • the OTN frame structure can refer to the relevant description in the current protocol, which will not be repeated here.
  • OSU is mainly used to carry 10M ⁇ 100Gbps customer services.
  • Carrying low-speed small-granular service signals through OSU and then mapping OSU into ODUk/ODUflex can reduce the transmission delay of services and increase the number of ports carrying services, solving the problem of low efficiency of carrying low-speed and small-granular services in the original OTN technology.
  • the network composed of different devices is managed by their own network management systems. If the end-to-end pipeline is to be losslessly adjusted, the network management systems of multiple devices need to work together, that is, the lossless bandwidth adjustment needs to rely on the bandwidth adjustment protocol issued by the upper-layer network management to each site. Since there is no centralized network management system to uniformly manage network devices, it becomes very difficult to implement bandwidth adjustment. In addition, when the current protocol design adds or deletes time slots, the process is that each site executes it separately first, and then performs end-to-end verification, which makes the processing process more complicated and the delay is larger.
  • the present application proposes a method for adjusting bandwidth.
  • a bandwidth adjustment command to any device in the network system through a network management device, lossless bandwidth adjustment control of the end-to-end link can be completed.
  • This method can support lossless bandwidth adjustment in a mixed networking of different devices, simplify the processing flow of bandwidth adjustment, and achieve high-reliability lossless bandwidth adjustment.
  • FIG4 shows a schematic flow chart of a method 400 for adjusting bandwidth provided in an embodiment of the present application.
  • an optical communication network there are multiple communication links, and there are multiple devices in each link for transmitting service data.
  • Each device on the link uses the same service bandwidth when transmitting service data, that is, each device on the link has the same number of units (such as time slots) for carrying service data and the same number of units for carrying services (such as the number of time slots) in the data frame when transmitting service data.
  • the intermediate device #1 is taken as an example to illustrate the operations performed by at least one intermediate device between the first device and the second device. It should be understood that there is at least one intermediate device in the communication link between the first device and the second device.
  • the first device may be an OTN device, or a component of an OTN device (such as a chip or a chip system).
  • the second device may be an OTN device, or a component of an OTN device (such as a chip or a chip system). Any intermediate device between the first device and the second device may be an OTN device, or a component of an OTN device (such as a chip or a chip system).
  • the method includes the following steps.
  • the first device sends the first indication information to the intermediate device #1, the first indication information indicates the time slot status, the time slot status is the time slot status corresponding to N1 time slots added or deleted by the first device in the data frame carrying the service according to the target bandwidth, the time slot status is an adding status or a deleting status, and the first indication information is carried in the first type of data frame, where N1 is an integer greater than or equal to 1.
  • the first device when the first device determines to adjust the current service bandwidth to the target bandwidth, the first device adds or deletes N1 time slots in the data frame carrying the service according to the size of the target bandwidth.
  • the first device when the first device determines to adjust the link bandwidth to a large bandwidth, that is, when the target bandwidth is greater than the current bandwidth, the first device adds N1 time slots in the data frame carrying the service, and sets the time slot status of the N1 time slots to the added status in the first indication information.
  • the first device deletes N1 time slots in the data frame carrying the service, and sets the time slot status of the N1 time slots to a deleted status in the first indication information.
  • the first type data frame is an OPU frame
  • the first indication information is carried in an overhead area of the OPU frame.
  • FIG5 is a schematic diagram of an OPU0 frame carrying first indication information provided by an embodiment of the present application.
  • the first indication information is carried in the 15th and 16th columns of the OPU0 frame, and the bits occupied by the first indication information are the 5th to 8th bits of the 15th column and the 8 bits of the 16th column, a total of 12 bits.
  • the first two bits of the 12 bits are used to carry the time slot status information
  • the last 10 bits of the 12 bits are used to carry the correspondence between the time slot and the service.
  • the bit value used to carry the time slot status information is 00
  • the time slot state corresponding to the indication time slot is an idle state.
  • the time slot state corresponding to the indication time slot is an add state.
  • the time slot state corresponding to the indication time slot is a delete state.
  • the time slot state corresponding to the indication time slot is a service transmission state.
  • the idle state can be used to indicate that the time slot currently does not carry service data.
  • the add state and delete state are respectively used for the time slots added (when the service bandwidth increases) and the time slots deleted (when the service bandwidth decreases) when the corresponding link is in the bandwidth adjustment state. It should be understood that after the bandwidth adjustment is completed, the time slots in the add state are used to transmit service data, and the time slots in the delete state no longer continue to transmit service data.
  • the service transmission state is used to indicate that the time slot is a time slot that carries service data.
  • the correspondence between the time slot and the service can refer to the correspondence between the time slot identifier and the branch port identifier of the service, wherein the time slot identifier can be the number of the time slot, and the branch port identifier can be a tag protocol identifier (TPID). That is, the correspondence between the time slot and the service used to carry the service indicates which service path the time slot corresponding to the time slot identifier is.
  • TPID tag protocol identifier
  • the correspondence between the time slot and the service indicates that the time slot is used to carry the service.
  • the time slot is not used to carry the service (such as the above-mentioned idle state)
  • the correspondence between the time slot and the service indicates that the time slot does not carry the service.
  • TPID corresponding to time slot #3 TS#3
  • TPID#2 TPID#2
  • TS#3 currently does not carry the service of TPID#2, and is in an adding state of bandwidth adjustment.
  • TS#3 carries the service of TPID#2.
  • the time slot status of TS#3 is 10
  • TS#3 currently carries the service of TPID#2, and is in a deleting state of bandwidth adjustment.
  • TS#3 no longer carries the service of TPID#2.
  • TS#3 currently carries the service of TPID#2 and is in a service transmission state.
  • the above-mentioned number and bit values of bits indicating the time slot status are only examples and not limitations. If the overhead area of the OPU frame contains the first indication information provided by the embodiment of the present application, it is within the protection scope of the present application.
  • a cyclic period structure with 119 time slots as a group can be divided in the OPU0 payload area.
  • the value of the first optical payload unit multiframe indication (optical mltiple fame idication-1, OMFI-1) is 0, and the value of the second optical payload unit multiframe indication (optical mltiple fame idication-2, OMFI-2) is an integer from 0 to 19.
  • the 4th row overhead of 20 8-frame OPU0 can be composed as shown in Figure 6.
  • the 4th row of 20 8-frame OPU0 can fully indicate the time slot status corresponding to the 119 time slots of OPU0, and can also indicate the branch port identifier corresponding to each time slot.
  • the multiframe alignment signal (multiframe alignment signal, MFAS) occupies the 6th to 8th bits of the 15th column, a total of 3 bits, namely 000 to 111, indicating 8 data frames respectively. It should be understood that the 8 data frames can indicate the time slot status of 6 time slots and the services corresponding to the 6 time slots.
  • the method further includes the first device completing the time slot adjustment of the current data frame, that is, the method further includes the following steps:
  • the first device adds or deletes N1 time slots in a data frame carrying a service according to a target bandwidth.
  • the order between S401 and S402 is not limited by this application. It can be that the first device first sends the first indication information to the second device, and then adds or deletes N1 time slots in the data frame carrying the service according to the target bandwidth; or, the first device sends the first indication information to the second device and completes the addition or deletion of N1 time slots at the same time; or the process of the first device adding or deleting N1 time slots in the data frame carrying the service according to the target bandwidth occurs after sending the first indication information.
  • the intermediate device #1 After the intermediate device #1 receives the first indication information sent by the first device, it obtains the change in the time slot status of the N1 time slots according to the first indication information, and at the same time determines that the first device has initiated a bandwidth adjustment process of increasing the bandwidth or a bandwidth adjustment process of decreasing the bandwidth according to the time slot status corresponding to the N1 time slots. At this time, the intermediate device #1 needs to add or delete time slots in the data frame transmitted between it and the second device accordingly, so that the service bandwidth adjustment from the first device to the second device is successful.
  • the intermediate device #1 can complete the addition or deletion of time slots in the data frame carrying the service, that is, when the intermediate device #1 successfully adds or deletes time slots in the data frame carrying the service, the service bandwidth between the first device and the second device supports adjustment to the target bandwidth.
  • the intermediate device #1 fails to add or delete time slots in the data frame carrying the service (for example, there are no available time slots in the service data frame between the intermediate device #1 and the second device), or the target bandwidth is a service bandwidth that is not available to the second device (for example, the When the terminal device connected to the second device cannot match the target bandwidth), the service bandwidth between the first device and the second device does not support adjustment to the target bandwidth.
  • Scenario 1 The service bandwidth between the first device and the second device can be adjusted to the target bandwidth.
  • the intermediate device #1 adds or deletes a time slot in a data frame carrying the service according to the first indication information.
  • the intermediate device #1 determines through the first indication information that the first device deletes or adds N1 time slots in the data frame carrying the service, that is, the intermediate device #1 determines through the first indication information that the first device currently wants to adjust the service bandwidth between the first device and the second device. At this time, the intermediate device #1 adds or deletes N2 time slots in the data frame from the intermediate device #1 to the second device according to the first indication information.
  • N2 of time slots added or deleted by the intermediate device #1 in the service data frame transmitted between the intermediate device #1 and the second device is the same as N1, and N1 and N2 are integers greater than or equal to 1. It should also be understood that, since the service data frame from the first device to the second device transmits the same service data, the number of the N1 time slots added or deleted by the first device is different from the number of the N2 time slots added or deleted by the intermediate device #1.
  • any one of the multiple intermediate devices will complete the addition or deletion of time slots in the service data frame transmitted between it and the downstream intermediate device according to the indication information received from the upstream intermediate device.
  • This process is the same as the process of the above-mentioned intermediate device #1 adding or deleting time slots in the data frame carrying the service according to the first indication information, and will not be repeated here.
  • the intermediate device #1 sends seventh indication information to the second device.
  • the intermediate device #1 determines the time slot status corresponding to the N1 time slots in the data frame transmitted between the first device and the intermediate device #1 through the first indication information. At this time, the intermediate device #1 sends the seventh indication information to the second device, and the seventh indication information indicates the time slot status corresponding to the N2 time slots. It should be understood that the time slot status corresponding to the N2 time slots is the same as the time slot status corresponding to the above-mentioned N1 time slots.
  • any one of the multiple intermediate devices will determine the time slot status corresponding to at least one time slot in the service data frame transmitted between the downstream intermediate device based on the indication information received from the upstream intermediate device. This process is the same as the process of the above-mentioned intermediate device #1 receiving the first indication information of the first device and sending the seventh indication information to the second device, and will not be repeated here.
  • the second device sends second indication information to the intermediate device #1, the second indication information indicating that the service bandwidth between the first device and the second device supports adjustment to the target bandwidth.
  • the second indication information is carried in a second type of data frame.
  • the second device when the second device determines based on the seventh indication information that the intermediate device #1 has completed the configuration of the time slot status information corresponding to N2 time slots in the data frame from the intermediate device #1 to the second device, and when the second device determines that the service bandwidth between the first device and the second device supports adjustment to the target bandwidth, the second device sends a second indication information to the intermediate device #1.
  • the second type data frame is an OSU frame
  • the second indication information is carried in an overhead area of the OSU frame.
  • FIG7 is a schematic diagram of an OSU frame carrying second indication information provided by an embodiment of the present application.
  • the OSU frame is a 1328-byte structure
  • the second indication information is carried in the 6th and 7th bytes of the OSU frame.
  • the 6th byte is used to indicate the state and size of the transmission bandwidth
  • the 7th byte is used to indicate the state and size of the receiving bandwidth.
  • the first bit of the 8 bits it contains is used to indicate the state of the transmission bandwidth (including the bandwidth adjustment state or the working state), and the bit is defined as the resizing protocol (RP) field, and the remaining 7 bits indicate the size of the adjusted transmission bandwidth by indicating the number of basic bandwidths (for example, 10M) included in the OSU bandwidth.
  • RP resizing protocol
  • the remaining 7 bits indicate the size of the adjusted transmission bandwidth by indicating the number of basic bandwidths (for example, 10M) included in the OSU bandwidth.
  • the RP in the 8 bits of the 6th byte is 1, it indicates that the state of the transmission bandwidth is the bandwidth adjustment state, and when the RP is 0, it indicates that the state of the transmission bandwidth is the working state.
  • the second indication information indicates that the transmission bandwidth between the first device and the second device is in the bandwidth adjustment state
  • the target bandwidth is 3 basic bandwidths.
  • TX stands for transmit
  • BW stands for bandwidth (BW). If the current service bandwidth is 10M, the target bandwidth is 30M.
  • the basic bandwidth can be understood as the rate of a unit time slot.
  • the first bit of the 8 bits is used to indicate the state of the receiving bandwidth, and the remaining 7 bits are used to indicate the size of the receiving bandwidth.
  • the second indication information indicates that the receiving bandwidth from the second device to the first device is in a bandwidth adjustment state
  • the target bandwidth is 3 basic bandwidths, where RX means receive. If the current service bandwidth is 10M, the adjusted target bandwidth is 30M.
  • the number of bits in the above RP field and the bandwidth quantity field is only an example and not a limitation. If the overhead area of the OSU frame contains the second indication information provided in the embodiment of the present application, it is within the protection scope of the present application.
  • the meaning indicated by the value of the above RP field is only an example. For example, when the RP in the 8 bits of the 6th byte is 0, it indicates that the state of the sending bandwidth is the bandwidth adjustment state. When the RP is 1, it indicates that the state of the sending bandwidth is the working state. This application does not limit it.
  • the transmission bandwidth indication and the reception bandwidth indication can realize error correction of the bit error situation by, for example, majority decision.
  • three OSU frames can be used as a group to transmit the second indication information, and in this case, a structure as shown in FIG7 can be formed. After the device receiving the second indication information receives three OSU frames, if there are two or more OSU frames with the same content of the transmission bandwidth indication or the reception bandwidth indication, the content is determined as the second indication information sent by the transmitting end device.
  • the intermediate device #1 transparently transmits the second indication information to the first device.
  • the intermediate device #1 after receiving the second indication information from the second device, the intermediate device #1 does not process the second indication information, but forwards the second indication information to the first device.
  • the second indication information sent by the second device to the first device is transparently transmitted to the first device through the intermediate device #1.
  • any one of the multiple intermediate devices will transparently transmit the second indication information it receives to the downstream intermediate device. This process is the same as the process of the above-mentioned intermediate device #1 transparently transmitting the second indication information to the first device, and will not be repeated here.
  • S407 The first device adjusts the service bandwidth to the target bandwidth according to the second indication information.
  • the first device determines that the service bandwidth between the first device and the second device supports adjustment to the target bandwidth based on the second indication information. At this time, the first device adjusts the service bandwidth to the target bandwidth.
  • the process of adjusting the bandwidth of the intermediate device #1 and the second device can be implemented in the following two ways.
  • the intermediate device #1 and the second device can autonomously complete bandwidth adjustment, and the process includes the following steps.
  • intermediate device #1 when transparently transmitting the second indication information, the intermediate device monitors the second indication information sent by the second device to indicate that the service bandwidth between the first device and the second device supports adjustment to the target bandwidth. Therefore, after intermediate device #1 transparently transmits the second indication information, the service bandwidth is adjusted to the target bandwidth.
  • any one of the multiple intermediate devices will determine the size of the target bandwidth based on the time slot added or deleted in the service data frame according to the indication information received from the upstream intermediate device, and autonomously adjust the service bandwidth to the target bandwidth. This process is the same as the process of adjusting the service bandwidth to the target bandwidth by the intermediate device #1, and will not be repeated here.
  • S409 The second device adjusts the service bandwidth to the target bandwidth.
  • the second device adjusts the service bandwidth to the target bandwidth.
  • At least one intermediate device and the second device may adjust the bandwidth through indication information sent by the first device, and the process includes the following steps:
  • S410 The first device sends third indication information, where the third indication information indicates to adjust the service bandwidth to the target bandwidth.
  • the first device sends the third indication information to the intermediate device #1.
  • the intermediate device #1 receives the third indication information.
  • the third indication information includes the target bandwidth and is carried in the second type of data frame.
  • the third indication information can refer to the description of the second indication information above, which will not be repeated here.
  • the intermediate device #1 after receiving the third indication information sent by the first device, the intermediate device #1 adjusts the service bandwidth to the target bandwidth according to the third indication information.
  • any one of the multiple intermediate devices will adjust the service bandwidth to the target bandwidth according to the third indication information received from the upstream intermediate device. This process is the same as the process of intermediate device #1 adjusting the service bandwidth to the target bandwidth, and will not be repeated here.
  • the intermediate device #1 forwards the third indication information to the second device.
  • the intermediate device #1 after the intermediate device #1 adjusts the service bandwidth to the target bandwidth, the intermediate device #1 sends the third indication information to the second device.
  • the second device receives the third indication information.
  • S409 The second device adjusts the service bandwidth to the target bandwidth.
  • the second device after receiving the third indication information from the intermediate device #1, the second device adjusts the service bandwidth to the target bandwidth according to the third indication information.
  • the bandwidth status in the third indication information is a working status, and at the same time carries the size of the target bandwidth, so that the device receiving the third indication information can adjust the bandwidth losslessly through the third indication information.
  • the third indication information sent by the first device indicates the bandwidth adjustment, so that the device receiving the third indication information confirms the target bandwidth according to the third indication information, thereby ensuring the reliability of the bandwidth adjustment.
  • the service bandwidth between the first device and the second device supports adjustment to the target bandwidth, thereby realizing lossless adjustment of the bandwidth between the first device and the second device.
  • This process does not require the participation of multiple network managements, simplifies the negotiation process when adjusting bandwidth between multiple network managements, and avoids the end-to-end verification process, thereby improving the reliability of bandwidth adjustment.
  • the device on the link changes the add time slot state configured in the service bandwidth adjustment process to the service transmission state, or changes the delete time slot state configured in the service bandwidth adjustment process to the idle state.
  • the process may include the following steps:
  • S412 The first device changes the time slot status of N1 time slots to a service transmission state or an idle state.
  • the first device sets the time slot state of the N1 transmission time slots to the add state during the bandwidth adjustment process, and after the first device adjusts the service bandwidth to the target bandwidth, the first device changes the time slot state of the N1 transmission time slots from the add state to the service transmission state.
  • the time slot state of the N1 reception time slots is changed from the add state to the service transmission state.
  • the first device sets the time slot status of the N1 transmission time slots to the deletion state during the bandwidth adjustment process. After the first device adjusts the service bandwidth to the target bandwidth, the first device changes the time slot status of the N1 transmission time slots from the deletion state to the idle state. Correspondingly, for the intermediate device #1, the time slot status of the N1 reception time slots is changed from the deletion state to the idle state.
  • the intermediate device #1 changes the time slot status of N2 time slots to a service transmission state or an idle state.
  • the N1 transmission time slots added by the first device are the receiving time slots of the intermediate device #1. Therefore, when the first device changes the time slot state of the added N1 time slots to the service transmission state, the time slot state of the N1 receiving time slots of the intermediate device #1 is changed from the adding state to the service transmission state accordingly.
  • the time slot state of the N2 transmission time slots is set to the adding state when the intermediate device #1 adjusts the bandwidth, when the intermediate device #1 adjusts the service bandwidth to the target bandwidth, the intermediate device #1 changes the time slot state of the N2 transmission time slots from the adding state to the service transmission state.
  • the time slot state of the N2 receiving time slots is changed from the adding state to the service transmission state.
  • the intermediate device #1 changes the time slot state of the N2 transmission time slots from the deleting state to the idle state.
  • the time slot state of the N2 receiving time slots is changed from the deleting state to the idle state.
  • Scenario 2 The service bandwidth between the first device and the second device cannot be adjusted to the target bandwidth.
  • the first device receives second indication information, where the second indication information indicates that the service bandwidth between the first device and the second device does not support adjustment to the target bandwidth.
  • the second indication information is carried in a second type of data frame.
  • the second indication information is sent by the intermediate device #1 or the second device.
  • the intermediate device #1 When the second indication information is sent by the intermediate device #1, it may be that after the intermediate device #1 receives the first indication information from the first device, it determines that there are not N2 time slots that can be added or N2 time slots that can be deleted in the data frame transmitted to the second device; or, when the intermediate device #1 determines that the number of time slots that can be added or the number of time slots that can be deleted in the data frame transmitted to the second device is less than N2, the intermediate device #1 sends the second indication information to the first device, indicating that the service bandwidth between the first device and the second device does not support adjustment to the target bandwidth.
  • the second indication information When the second indication information is sent by the second device, it may be that the second device determines, based on the seventh indication information, that the target bandwidth cannot match the usage bandwidth of the terminal device connected to it, and the second device sends the second indication information to the first device, indicating that the service bandwidth between the first device and the second device does not support adjustment to the target bandwidth.
  • the bandwidth status indicated by the RP field in the second indication information is the working status
  • the bandwidth size in the second indication information is the bandwidth size of the current service rather than the target bandwidth.
  • the bandwidth size is such that after the first device receives the second indication information, it is determined that the bandwidth from the first device to the second device cannot be adjusted.
  • the intermediate device when there are multiple intermediate devices between the first device and the second device, when one of the multiple intermediate devices determines that it cannot complete adding or deleting time slots in the data frame transmitted with the downstream device, the intermediate device sends the second indication information indicating that the service bandwidth is in a working state to the first device.
  • these intermediate devices transparently transmit the second indication information of the intermediate device that cannot complete the time slot adjustment to the first device.
  • the first device only receives the second indication information sent by the first intermediate device that cannot complete the time slot adjustment, that is, when the first intermediate device cannot complete the addition or deletion of time slots in the data frame transmitted to the downstream device, the transmission link between the intermediate device and the second device will no longer receive the first indication information.
  • the transmission link between the intermediate device and the second device will no longer receive the first indication information.
  • S415 The first device cancels the adjustment of the service bandwidth according to the second indication information.
  • the first device determines according to the second indication information that the service bandwidth between the first device and the second device does not support adjustment to the target bandwidth. At this time, the first device cancels the adjustment of the service bandwidth.
  • the process of canceling bandwidth adjustment for the intermediate device #1 and the second device can be implemented in the following two ways.
  • the intermediate device #1 and the second device can autonomously cancel the bandwidth adjustment process, which includes the following steps.
  • the intermediate device #1 cancels the adjustment of the service bandwidth.
  • the intermediate device #1 when the intermediate device #1 determines that the time slot adjustment cannot be completed in the data frame, the intermediate device #1 autonomously cancels the adjustment of the service bandwidth.
  • the intermediate device #1 determines that the service bandwidth between the first device and the second device does not support adjustment to the target bandwidth according to the second indication information sent by the second device, the intermediate device #1 autonomously cancels the adjustment of the service bandwidth.
  • S417 The second device cancels the adjustment of the service bandwidth.
  • intermediate device #1 when intermediate device #1 fails to adjust the time slot, it may continue to forward the first indication information to the second device. If the second device does not receive the seventh indication information sent by intermediate device #1, the second device determines that intermediate device #1 fails to adjust the time slot and cancels the adjustment of the service bandwidth.
  • At least one intermediate device and the second device may cancel the bandwidth adjustment through the indication information sent by the first device, and the process includes the following steps:
  • S418 The first device sends fourth indication information, where the fourth indication information indicates to cancel the bandwidth adjustment process.
  • the first device after the first device cancels the adjustment of the service bandwidth according to the first indication information, the first device sends the fourth indication information to the intermediate device #1.
  • the intermediate device #1 receives the fourth indication information.
  • the fourth indication information includes the service bandwidth and is carried in the second type of data frame.
  • the fourth indication information can refer to the description of the second indication information above, which will not be repeated here.
  • the intermediate device #1 cancels the adjustment of the service bandwidth.
  • intermediate device #1 After intermediate device #1 receives the fourth indication information sent by the first device, it determines that the service bandwidth between the first device and the second device does not support adjustment to the target bandwidth based on the bandwidth information of the current service carried in the fourth indication information, and intermediate device #1 cancels the adjustment of the service bandwidth.
  • any one of the multiple intermediate devices will cancel the adjustment of the service bandwidth according to the fourth indication information received from the upstream intermediate device. This process is the same as the process of canceling the adjustment of the service bandwidth by the intermediate device #1, and will not be repeated here.
  • the intermediate device #1 forwards the fourth indication information to the second device.
  • the intermediate device #1 after the intermediate device #1 cancels the adjustment of the service bandwidth, the intermediate device #1 sends fourth indication information to the second device.
  • the second device receives the fourth indication information.
  • S417 The second device cancels the adjustment of the service bandwidth.
  • the second device after receiving the fourth indication information from the intermediate device #1, the second device cancels the adjustment of the service bandwidth according to the fourth indication information.
  • the bandwidth status in the fourth indication information is the working status, and at the same time carries the size of the current service bandwidth, so that the receiving The device receiving the fourth indication information can cancel the bandwidth adjustment process through the fourth indication information.
  • the fourth indication information sent by the first device indicates the cancellation of the bandwidth adjustment, so that the device receiving the fourth indication information confirms the service bandwidth according to the fourth indication information, thereby ensuring the stability of system performance.
  • the first device receives the second indication information from the intermediate device and learns that the service bandwidth between the first device and the second device does not support adjustment to the target bandwidth, thereby canceling the adjustment of the bandwidth between the first device and the second device.
  • This process does not require the participation of multiple network managements, simplifies the negotiation process when adjusting bandwidth between multiple network managements, and avoids the end-to-end verification process, thereby improving the reliability of bandwidth adjustment.
  • the device on the link changes the time slot state configured in the service bandwidth adjustment process to an idle state.
  • the process may include the following steps:
  • S420 The first device changes the time slot status of N1 time slots to a service transmission state.
  • the time slot state of the N1 transmission time slots is set to the adding state or the deleting state according to the size of the target bandwidth.
  • the first device changes the time slot state of the N1 transmission time slots from the adding state or the deleting state to the idle state.
  • the time slot state of the N1 receiving time slots is changed from the adding state or the deleting state to the idle state.
  • the intermediate device #1 changes the time slot status of N2 time slots to an idle state.
  • the process may also include the intermediate device #1 changing the time slot state of the N2 transmission time slots from the added state or the deleted state to the idle state.
  • the time slot state of the N2 reception time slots is changed from the added state or the deleted state to the idle state.
  • the method 400 further includes the following steps:
  • the bandwidth indication information is sent to the first device by a network management device (or a network management system) that manages the first device.
  • a network management device or a network management system
  • the bandwidth indication information includes the size of the target bandwidth.
  • the first device receives the bandwidth indication information, it knows based on the size of the target bandwidth that the service bandwidth of the current transmission link between the first device and the second device needs to be adjusted to the target bandwidth.
  • the bandwidth indication information includes information indicating an increase or decrease in bandwidth and an adjustment amount of the bandwidth adjustment.
  • the bandwidth indication information is composed of 3 bits, wherein the first bit of the 3 bits is used to carry information indicating an increase or decrease in bandwidth, and the last two bits are used to carry the adjustment amount of bandwidth adjustment.
  • the content indicated by the bandwidth indication information constituted by the information may be shown in Table 1 below. In Table 1, when the first bit is 0, it is used to instruct the first device to increase the service bandwidth of the current link. When the first bit is 1, it is used to instruct the first device to reduce the service bandwidth of the current link. Exemplarily, when the bandwidth indication information is 001, it is used to instruct the first device to increase the service bandwidth of the current link by 20M.
  • the above-mentioned content of the bandwidth indication information is only an example and not a limitation.
  • the bandwidth indication information includes information about bandwidth increase or decrease and the adjustment amount of bandwidth adjustment
  • the above-mentioned Table 1 is only an illustration based on the bandwidth indication information being 4 bits, and does not affect the protection scope of this application.
  • the first device sends the fifth indication information to the intermediate device #1, the fifth indication information indicates to start the bandwidth adjustment process, the bandwidth adjustment process is used to adjust the service bandwidth between the first device and the second device to the target bandwidth.
  • the bandwidth state indicated by the fifth indication information is the bandwidth adjustment state, and the bandwidth size indicated is the target bandwidth, and is carried in the second type of data frame.
  • the fifth indication information can refer to the description of the second indication information above, and will not be repeated here.
  • the first device when the first device needs to initiate a bandwidth adjustment process, the first device sends fifth indication information to the intermediate device #1.
  • the intermediate device #1 forwards the fifth indication information to the second device.
  • the intermediate device #1 determines that the first device initiates the bandwidth adjustment process, and forwards the fifth indication information to the second device.
  • the second device intermediate device #1 sends sixth indication information.
  • the second device After the second device receives the fifth indication information, it learns from the fifth indication information that the service bandwidth from the first device to the second device is to be adjusted to the target bandwidth, and then sends the sixth indication information to the intermediate device #1, so that the first device learns that the fifth indication information has been received by the second device through the sixth indication information.
  • the bandwidth state indicated by the sixth indication information is the bandwidth adjustment state, and the bandwidth size indicated is the target bandwidth, and is carried in the second type of data frame.
  • the sixth indication information can refer to the description of the second indication information above, and will not be repeated here.
  • the intermediate device #1 forwards the sixth indication information to the first device.
  • the intermediate device #1 after receiving the sixth indication information from the second device, the intermediate device #1 does not process the sixth indication information, but forwards the sixth indication information to the first device.
  • the sixth indication information sent by the second device to the first device is transparently transmitted to the first device through the intermediate device #1.
  • any one of the multiple intermediate devices will transparently transmit the sixth indication information it receives to the downstream intermediate device until the sixth indication information is transmitted to the first device.
  • This process is the same as the process of the above-mentioned intermediate device #1 transparently transmitting the second indication information to the first device, and will not be repeated here.
  • the first device when the first device receives the sixth indication information from the second device, it can indicate that the fifth indication information sent by the first device in S423 has been received by all devices on the communication link, that is, all devices on the link know that the first device has started the bandwidth adjustment process.
  • the first device sends the fifth indication information to the second device to notify in advance that the link between the first device and the second device requires bandwidth adjustment, and receives the sixth indication information from the terminal second device to determine that the fifth indication information has been fully received by the devices on the link from the first device to the second device, thereby ensuring the reliability of the bandwidth adjustment.
  • the first device in the above method 400 can be the head node or non-head node on the communication link including the first device and the second device, and this application does not limit it. It should be understood that when the link bandwidth of the first device that is not the head node is adjusted, the bandwidth adjustment process of the first device and the head node on the communication link of the second device, the end node of the link from the first device to the second device, can refer to the above method 400, and will not be repeated here.
  • the interaction between the first device and the second device can refer to the relevant description in the above scenario one.
  • the first device determines that the current bandwidth can be adjusted to the target bandwidth, for example, when the first device determines that the time slot between the first device and the second device is available or can be deleted, the first device completes the addition and deletion of the time slot, and adjusts the service bandwidth between the first device and the second device to the target bandwidth, that is, the bandwidth adjustment of the link is completed.
  • scenario two in which the service bandwidth adjustment fails, it can also refer to the description of scenario two above.
  • the first device determines that the bandwidth adjustment fails and cancels the bandwidth adjustment process.
  • the first device can complete the addition or deletion of the time slot, but because the bandwidth of the receiving port of the downstream terminal device connected to the second device does not match the current service bandwidth, that is, the current target bandwidth cannot provide services to the terminal device normally, at this time, the second device sends the above second indication information to the first device, indicating that the receiving bandwidth is in a working state rather than a bandwidth adjustment state, so that the first device cancels the bandwidth adjustment process.
  • the first type of data frame is an OPU frame
  • the second type of data frame is an OSU frame
  • FIG8 shows a schematic flow chart of a method 800 for adjusting bandwidth provided in an embodiment of the present application.
  • device A is the first device in the link
  • device C is the last device in the link
  • the method 800 is an example of a possible implementation method for increasing the bandwidth in scenario 1 in FIG4 above.
  • device A receives bandwidth indication information sent by a network management device, where the bandwidth indication information indicates that the target bandwidth is 30M.
  • device A learns that the initial service bandwidth of the OSU service needs to be increased from 10M to 30M.
  • device B transparently transmits the first OSU frame to device C.
  • device B monitors that the OSU service between device A and device C is adjusted to 30M, and transparently transmits the first OSU frame to device C at the same time.
  • device C learns that the OSU service between device A and device C is adjusted to 30M, and sends the second OSU frame to device B at the same time.
  • device B transparently transmits the second OSU frame to device A.
  • device A adds time slot 5 and time slot 9 from device A to device B to the service corresponding to the first OSU frame.
  • device A sends a first OPU frame to device B, and the time slot status corresponding to time slot 5 and time slot 9 in the first OPU frame is add time slot (ADD).
  • ADD add time slot
  • device A sets the time slot status of time slot 5 and time slot 9 to the add state in the first OPU frame from device A to device B.
  • device B adds time slot 11 and time slot 12 from device B to device C to the service corresponding to the first OSU frame.
  • device B sends a second OPU frame to device C, and the time slot status corresponding to time slot 11 and time slot 12 in the second OPU frame is add time slot (ADD).
  • ADD add time slot
  • device B sets the time slot states of time slot 11 and time slot 12 to the add state.
  • device C learns through the second OPU frame that the time slot increase from device B to device C has been completed, and device C sends the third OSU frame to device B.
  • device B transparently transmits the third OSU frame to device A.
  • device B transparently transmits the third OSU frame to device A.
  • device A adjusts the service bandwidth to 30M.
  • device B adjusts the service bandwidth to 30M.
  • device B transparently transmits the fourth OSU frame to device C.
  • device B transparently transmits the fourth OSU frame to device C.
  • device C adjusts the service bandwidth to 30M.
  • device A changes the time slot status of time slot 5 and time slot 9 to a service transmission status.
  • device A changes the status of time slot 5 and time slot 9 from adding time slot status to service transmission status in the OPU frame from device A to device B.
  • device B changes the status of time slot 11 and time slot 12 from adding time slot status to service transmission status in the OPU frame from device B to device C.
  • the bandwidth in the OSU frame is a small bandwidth, and the corresponding time slot state is set to be deleted, and when the service bandwidth is reduced, the time slot state in the deleted state is modified to an idle state. For the sake of simplicity of explanation, it will not be repeated here.
  • FIG9 shows a schematic flow chart of a method 900 for adjusting bandwidth provided by an embodiment of the present application.
  • device A is the first device in the link
  • device C is the last device in the link
  • the method 800 This is an example description of a possible implementation method of increasing the bandwidth in the second scenario in FIG. 4 above.
  • S901-S907 may refer to S801-S807 in FIG. 8 above, and will not be described in detail here.
  • device B cancels the service bandwidth adjustment according to the fourth OSU frame.
  • device B transparently transmits the fourth OSU frame to device C.
  • device B transparently transmits the fourth OSU frame to device C.
  • device C cancels the service bandwidth adjustment according to the fourth OSU frame.
  • device A changes the time slot status of time slot 5 and time slot 9 to an idle state.
  • device A changes the status of time slot 5 and time slot 9 from the added time slot state to the idle state in the OPU frame from device A to device B.
  • the bandwidth in the OSU frame is a small bandwidth, and the corresponding time slot state is set to be deleted, and when the service bandwidth is reduced, the time slot state in the deleted state is modified to an idle state. For the sake of simplicity of explanation, it will not be repeated here.
  • Fig. 10 is a schematic block diagram of a device 1000 for adjusting bandwidth provided in an embodiment of the present application.
  • the device 1000 includes a receiving module 1001, which can be used to implement a corresponding receiving function.
  • the receiving module 1001 can also be called a receiving unit.
  • the device 1000 further includes a processing module 1002 , which can be used to implement corresponding processing functions.
  • the device 1000 further includes a sending module 1003 , which can be used to implement a corresponding sending function.
  • the sending module 1003 can also be referred to as a sending unit.
  • the device 1000 also includes a storage unit, which can be used to store instructions and/or data.
  • the processing unit 1002 can read the instructions and/or data in the storage unit so that the device implements the actions of the relevant devices in the aforementioned method embodiments.
  • the device 1000 can be used to execute the actions performed by the first device or the second device or the intermediate device in each of the method embodiments above.
  • the device 1000 can be a component of the first device or the second device or the intermediate device
  • the receiving module 1001 is used to execute the reception-related operations of the first device or the second device or the intermediate device in the method embodiments above
  • the processing module 1002 is used to execute the processing-related operations of the first device or the second device or the intermediate device in the method embodiments above
  • the sending module 1003 is used to execute the sending-related operations of the first device or the second device or the intermediate device in the method embodiments above.
  • FIG11 is a schematic diagram of a possible device 1100 for adjusting bandwidth, which is a first device or a second device or an intermediate device.
  • the device 1100 includes a processor 1101, an optical transceiver 1102, and a memory 1103.
  • the memory 1103 is optional.
  • the device 1100 can be applied to both a sending side device (e.g., the first device) and a receiving side device (e.g., the second device described above).
  • the processor 1101 and the optical transceiver 1102 are used to implement the method performed by the first device or the intermediate device shown in any of Figures 4, 8 or 9.
  • each step of the processing flow can be completed by the hardware integrated logic circuit or software instructions in the processor 1101 to complete the method performed by the sending device in the above figure.
  • the optical transceiver 1102 is used to receive and process the sent OTN frame to send it to the opposite end device (also called the receiving end device).
  • the processor 1101 and the optical transceiver 1102 are used to implement the method performed by the second device or the intermediate device shown in any of FIG. 4, FIG. 8 or FIG. 9.
  • each step of the processing flow can be completed by the hardware integrated logic circuit or software instructions in the processor 1101 to complete the method performed by the receiving side device described in the above figures.
  • the optical transceiver 1102 is used to receive the OTN frame sent by the opposite end device (also called the sending end device) and send it to the processor 1101 for subsequent processing.
  • the memory 1103 is used to store instructions to enable the processor 1101 to perform the steps mentioned in the above figure. Alternatively, the memory 1103 can also be used to store other instructions to configure the parameters of the processor 1101 to achieve corresponding functions.
  • processor 1101 and the memory 1103 may be located in a branch board or in a single board that integrates a branch and a line in the network device hardware structure diagram shown in FIG2.
  • the processor 1101 and the memory 1103 both include multiple ones, which are located in the branch board and the line board respectively, and the two boards cooperate to complete the aforementioned method steps.
  • FIG. 11 can also be used to execute the method steps involved in the embodiment variations shown in the aforementioned figures, which will not be described in detail here.
  • the embodiments of the present application further provide a computer-readable storage medium.
  • the storage medium stores a software program, and the software program can implement the method provided by any one or more of the above embodiments when read and executed by one or more processors.
  • the computer-readable storage medium may include: a USB flash drive, a mobile hard disk, a read-only memory, a random access memory, a magnetic disk or an optical disk, and other media that can store program codes.
  • the embodiments of the present application further provide a chip.
  • the chip includes a processor for implementing the functions involved in any one or more of the above embodiments, such as acquiring or processing the OTN frames involved in the above methods.
  • the chip also includes a memory, which is used for the processor to execute necessary program instructions and data.
  • the chip can be composed of a chip, or it can include a chip and other discrete devices.
  • processors mentioned in the embodiments of the present application may be a central processing unit (CPU), or other general-purpose processors, digital signal processors (DSP), application-specific integrated circuits (ASIC), field programmable gate arrays (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the memory mentioned in the embodiments of the present application may be a volatile memory and/or a non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM).
  • a RAM may be used as an external cache.
  • RAM may include the following forms: static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDR SDRAM), enhanced SDRAM (ESDRAM), synchronous link DRAM (SLDRAM), and direct rambus RAM (DR RAM).
  • SRAM static RAM
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced SDRAM
  • SLDRAM synchronous link DRAM
  • DR RAM direct rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, the memory (storage module) can be integrated into the processor.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer can be a personal computer, a server, or a network device, etc.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions can be transmitted from a website site, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that a computer can access or a data storage device such as a server or data center that contains one or more available media integrations.
  • the available medium may be a magnetic medium (e.g., a floppy disk, a hard disk, a magnetic tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid state disk (SSD)).
  • the aforementioned available medium may include, but is not limited to: a USB flash drive, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供一种调整带宽的方法、装置和系统,可以应用于光传送网络,能够实现端到端链路带宽的无损调整,实现提升带宽调整效率的目的。该方法包括:第一设备发送第一指示信息指示时隙状态,并接收第二指示信息,根据第二指示信息将业务带宽调整为目标带宽或者取消业务带宽的调整。其中,第一指示信息指示的时隙状态为第一设备根据目标带宽在承载业务的数据帧中添加或删除的时隙对应的时隙状态,第二指示信息指示第一设备到第二设备之间的业务带宽是否支持调整为目标带宽。

Description

一种调整带宽的方法、装置和系统
本申请要求在2022年11月22日提交中国国家知识产权局、申请号为202211469123.0的中国专利申请的优先权,发明名称为“一种调整带宽的方法、装置和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,更具体地,涉及一种调整带宽的方法、装置和系统。
背景技术
随着第5代固定网络(Fifth Generation Fixed Network,F5G)时代的到来,高品质连接逐步面向更多的终端用户提供更多的管道链接数量。光业务单元(Optical Service Unit,OSU)作为可以应用于不同带宽级别高品质专线承载,以光传送网(Optical Transport Network,OTN)为基础核心,具备面向城域网络高效承载的灵活带宽管道,可以实现对10Mbit/s~100Gbit/s级粒度业务的高效承载。
然而,随着专线业务以及企业的数字化建设的不断完善,基于OSU承载低速率业务时如何实现端到端管道的无损带宽调整,是亟待解决的问题。
发明内容
本申请提供一种调整带宽的方法、装置和系统,能够简化端到端链路的无损带宽调整的处理过程,从而达到提升带宽调整效率的目的。
第一方面,本申请实施例提供一种调整带宽的方法。该方法可以由第一设备或者由第一设备的部件(如芯片或芯片系统等)执行,本申请对此不作限定。该方法包括:第一设备发送第一指示信息,所述第一指示信息指示时隙状态,所述时隙状态为所述第一设备根据目标带宽在承载业务的数据帧中添加或删除的N1个时隙对应的时隙状态,其中N1为大于或者等于1的整数,所述时隙状态为添加状态或删除状态,所述第一指示信息携带在第一类型数据帧中。所述第一设备接收第二指示信息,所述第二指示信息指示所述第一设备到第二设备之间的业务带宽是否支持调整为所述目标带宽,所述第二指示信息携带在第二类型数据帧中。所述第一设备根据所述第二指示信息将业务带宽调整为所述目标带宽或者取消所述业务带宽的调整。
需要说明的是,在本申请实施例中,第一设备可以是包含第一设备和第二设备的通信链路中的首个设备或者非首个设备。应理解,当第一设备为通信链路中的首个设备时,该通信链路是以第一设备开始到第二设备结束。当第一设备为通信链路中的非首个设备时,该通信链路是以第一设备的上游设备开始直到第二设备结束的链路。
基于上述方案,通过第一设备发送的第一指示信息指示进行业务带宽调整时数据帧中时隙的状态,使得链路中接收到该第一指示信息的第二设备通过该第一信息确定与第一设备的链路是否可以进行带宽调整。即本申请提供的带宽调整方案,基于第一设备和第二设备之间第一指示信息和第二指示信息的交互,使得第一设备和第二设备能够根据上述指示信息完成第一设备和第二设备之间链路的带宽调整或取消。该方案应用于多网管系统中时,能够避免多网管调整带宽时由于协商导致的时延。同时,本方案通过第一指示信息指示的时隙状态完成带宽调整时对时隙的增加或删除,同样能够避免多网管下各个站点单独执行时隙的增加或删除操作导致的校验时延过大的缺陷,简化了带宽调整的流程,从而达到提升带宽调整效率的目的。
结合第一方面,在第一方面的某些实现方式中,所述第一类型数据帧为光净荷单元OPU帧,所述第二类型数据帧为光业务单元OSU帧。基于上述方案,通过将第一指示信息携带在OPU帧中,将第二指示信息携带在OSU帧中,使得本申请实施例提供的调整带宽的方法能够应用于OTN光通信领域。
结合第一方面,在第一方面的某些实现方式中,当所述第二指示信息指示所述第一设备到第二设备之间的业务带宽支持调整为所述目标带宽时,所述第二指示信息包括所述目标带宽。所述第一设备根据 所述第二指示信息将业务带宽调整为所述目标带宽或者取消所述业务带宽的调整,包括:所述第一设备根据所述第二指示信息将所述业务带宽调整为所述目标带宽,其中,所述第二指示信息来自于所述第二设备。基于该方案,通过第二设备向第一设备发送的第二指示信息指示业务带宽是否支持调整为所述目标带宽,使得第一设备根据该第二指示信息确定第一设备到第二设备的链路上的设备均具备将业务带宽调整为目标带宽的能力,从而实现第一设备到第二设备的业务带宽的无损调整。通过第二设备向第一设备发送的第二指示信息可以避免多网管调整带宽导致协商时延,提升带宽调整的可靠性和调整效率。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一设备向所述第二设备发送第三指示信息,所述第三指示信息指示将所述业务带宽调整为所述目标带宽,所述第三指示信息携带在所述第二类型数据帧中,所述第三指示信息包括所述目标带宽。基于该方案,通过第一设备发送的第三指示信息指示将业务带宽调整为目标带宽,实现带宽的无损调整的同时提升带宽调整的可靠性和调整效率。
结合第一方面,在第一方面的某些实现方式中,所述第一指示信息指示所述N1个时隙对应的时隙状态为添加状态,所述方法还包括:所述第一设备将所述N1个时隙对应的时隙状态更改为业务传输状态。或者,所述第一指示信息指示所述N1个时隙对应的时隙状态为删除状态,所述方法还包括:所述第一设备将所述N1个时隙对应的时隙状态更改为空闲状态。基于该方案,通过第一类型数据帧中的第一指示信息对时隙对应的时隙状态进行修改,当该第一数据帧传输至其他设备时,其他设备可通过第一类型数据帧中的第一指示信息确定各个时隙的状态,从而保证数据传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,当所述第二指示信息指示所述第一设备到第二设备之间的业务带宽不支持调整为所述目标带宽时,所述第二指示信息包括所述业务带宽。所述第一设备根据所述第二指示信息将业务带宽调整为所述目标带宽或者取消所述业务带宽的调整,包括:所述第一设备根据所述第二指示信息取消所述业务带宽的调整。基于该方案,通过第二设备向第一设备发送的第二指示信息指示业务带宽不支持调整为所述目标带宽,使得第一设备根据该第二指示信息确定第一设备到第二设备的链路不能进行带宽调整,从而取消第一设备到第二设备的业务带宽调整。通过第二设备向第一设备发送的第二指示信息能够避免无法进行带宽调整时多网管调整带宽导致的资源浪费,提升了带宽调整的可靠性和调整效率。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一设备发送第四指示信息,所述第四指示信息指示取消所述业务带宽的带宽调整流程,所述第四指示信息携带在所述第二类型数据帧中,所述第四指示信息包括所述业务带宽。基于该方案,通过第一设备发送的第四指示信息指示取消业务带宽的带宽调整流程,进一步提升带宽调整效率。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一设备将所述N1个时隙对应的时隙状态更改为空闲状态。基于该方案,通过第一类型数据帧中的第一指示信息对时隙对应的时隙状态进行实时修改,从而保证数据传输的可靠性。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:所述第一设备获取所述目标带宽。所述第一设备发送第五指示信息,所述第五指示信息指示启动带宽调整流程,所述带宽调整流程用于将所述第一设备到所述第二设备之间的业务带宽调整为目标带宽,所述第五指示信息携带在所述第二类型数据帧中,所述第五指示信息包括所述目标带宽。所述第一设备接收来自所述第二设备的第六指示信息,所述第六指示信息指示所述第二设备接收到所述第五指示信息,所述第六指示信息包括所述目标带宽。所述第一设备根据所述第五指示信息在承载所述业务的数据帧中将所述N1个时隙对应的时隙状态设置为添加状态或删除状态。基于该方案,通过第一设备发送第五指示信息提前通知第一设备到第二设备之间的链路需要带宽调整,以及接收到来自第二设备的第六指示信息确定第五指示信息已全部被第一设备到第二设备链路上的设备接收,从而保证了带宽调整的可靠性。
第二方面,本申请实施例提供一种调整带宽的方法,该方法可以由第二设备或者由第二设备的部件(如芯片或芯片系统等)执行,本申请对此不作限定。该方法包括:第二设备接收来自第一设备的第一指示信息,所述第一指示信息指示时隙状态,所述时隙状态为所述第一设备根据目标带宽在承载业务的数据帧中添加或删除的N1个时隙对应的时隙状态,所述时隙状态为添加状态或删除状态,所述第一指示信息携带在第一类型数据帧中,其中N1为大于或者等于1的整数。所述第二设备向所述第一设备发送第二指示信息,所述第二指示信息指示所述第一设备到第二设备之间的业务带宽是否支持调整为所述目标带宽,所述第二指示信息携带在第二类型数据帧中。所述第二设备基于所述第二指示信息将所述业务带 宽调整为所述目标带宽或者取消所述业务带宽的调整。
结合第二方面,在第二方面的某些实现方式中,所述第一类型数据帧为光净荷单元OPU帧,所述第二类型数据帧为光业务单元OSU帧。
结合第二方面,在第二方面的某些实现方式中,当所述第二指示信息指示所述第一设备到第二设备之间的业务带宽支持调整为所述目标带宽时,所述第二指示信息包括所述目标带宽。所述第二设备基于所述第二指示信息将所述业务带宽调整为所述目标带宽或者取消所述业务带宽的调整,包括:所述第二设备基于所述第二指示信息将所述业务带宽调整为所述目标带宽。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第二设备接收来自所述第一设备的第三指示信息,所述第三指示信息指示将所述业务带宽调整为所述目标带宽,所述第三指示信息携带在所述第二类型数据帧中,所述第三指示信息包括所述目标带宽。所述第二设备基于所述第二指示信息将所述业务带宽调整为所述目标带宽,包括:所述第二设备基于所述第二指示信息和所述第三指示信息将所述业务带宽调整为所述目标带宽。
结合第二方面,在第二方面的某些实现方式中,当所述第二指示信息指示所述第一设备到第二设备之间的业务带宽不支持调整为所述目标带宽时,所述第二指示信息包括所述业务带宽。所述第二设备基于所述第二指示信息将所述业务带宽调整为所述目标带宽或者取消所述业务带宽的调整,包括:所述第二设备基于所述第二指示信息取消所述业务带宽的调整。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第二设备接收来自所述第一设备的第四指示信息,所述第四指示信息指示取消所述业务带宽的带宽调整流程,所述第四指示信息携带在所述第二类型数据帧中,所述第四指示信息包括所述业务带宽。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述第二设备接收来自所述第一设备的第五指示信息,所述第五指示信息指示启动带宽调整流程,所述带宽调整流程用于将所述第一设备到所述第二设备之间的业务带宽调整为目标带宽,所述第五指示信息携带在所述第二类型数据帧中,所述第五指示信息包括所述目标带宽。所述第二设备向所述第一设备发送第六指示信息,所述第六指示信息指示所述第二设备接收到所述第五指示信息,所述第六指示信息包括所述目标带宽。
第三方面,本申请实施例提供一种调整带宽的方法。该方法可以由中间设备或者由中间设备的部件(如芯片或芯片系统等)执行,本申请对此不作限定。该方法包括:
中间设备接收来自第一设备的第一指示信息,所述第一指示信息指示时隙状态,所述时隙状态为所述第一设备根据目标带宽在承载业务的数据帧中添加或删除的N1个时隙对应的时隙状态,所述时隙状态为添加状态或删除状态,所述第一指示信息携带在第一类型数据帧中,其中N1为大于或者等于1的整数。所述中间设备向所述第一设备发送第二指示信息,所述第二指示信息指示所述第一设备到第二设备之间的业务带宽是否支持调整为所述目标带宽,所述第二指示信息携带在第二类型数据帧中。所述中间设备基于所述第二指示信息将所述业务带宽调整为所述目标带宽或者取消所述业务带宽的调整。
需要说明的是,当第一设备到第二设备之间的业务带宽支持调整为目标带宽时,第二指示信息可以是由第二设备生成的,通过第三设备将该第二指示信息透传给第一设备。当第一设备到第二设备之间的业务带宽不支持调整为目标带宽时,第二指示信息可以是由该中间设备生成的,并将该第二指示信息发送给第一设备。或者,第二指示信息可以是由第二设备生成的,通过第三设备将该第二指示信息发送给第一设备。
结合第三方面,在第三方面的某些实现方式中,所述第一类型数据帧为光净荷单元OPU帧,所述第二类型数据帧为光业务单元OSU帧。
结合第三方面,在第三方面的某些实现方式中,当所述第二指示信息指示所述第一设备到第二设备之间的业务带宽支持调整为所述目标带宽时,所述第二指示信息包括所述目标带宽。所述方法还包括:所述中间设备根据所述目标带宽在承载业务的数据帧中将N2个时隙对应的时隙状态设置为添加状态或删除状态,N2等于N1。所述中间设备基于所述第二指示信息将所述业务带宽调整为所述目标带宽或者取消所述业务带宽的调整,包括:所述第二设备基于所述第二指示信息将所述业务带宽调整为所述目标带宽。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述中间设备接收来自所述第一设备的第三指示信息,所述第三指示信息指示将所述业务带宽调整为所述目标带宽,所述第三指示信息携带在所述第二类型数据帧中。所述中间设备基于所述第二指示信息将所述业务带宽调整为所述目标带 宽,包括:所述中间设备基于所述第二指示信息和所述第三指示信息将所述业务带宽调整为所述目标带宽。
结合第三方面,在第三方面的某些实现方式中,所述第一指示信息指示所述时隙状态为添加状态,所述方法还包括:所述中间设备将所述N2个时隙对应的时隙状态更改为业务传输状态。或者,所述第一指示信息指示所述N1个时隙对应的时隙状态为删除状态,所述方法还包括:所述第一设备将所述N1个时隙对应的时隙状态更改为空闲状态。
结合第三方面,在第三方面的某些实现方式中,当所述第二指示信息指示所述第一设备到第二设备之间的业务带宽不支持调整为所述目标带宽时,所述第二指示信息包括所述业务带宽。所述中间设备基于所述第二指示信息将所述业务带宽调整为所述目标带宽或者取消所述业务带宽的调整,包括:所述中间设备基于所述第二指示信息取消所述业务带宽的调整。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述中间设备接收来自所述第一设备的第四指示信息,所述第四指示信息指示取消所述业务带宽的带宽调整流程,所述第四指示信息携带在所述第二类型数据帧中。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述中间设备根据所述目标带宽在承载业务的数据帧中将N2个时隙对应的时隙状态设置为添加状态或删除状态,N2等于N1。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述中间设备将所述N2个时隙对应的时隙状态更改为空闲状态。
结合第三方面,在第三方面的某些实现方式中,所述方法还包括:所述中间设备接收来自所述第一设备的第五指示信息,所述第五指示信息指示启动带宽调整流程,所述带宽调整流程用于将所述第一设备到所述第二设备之间的业务带宽调整为目标带宽,所述第五指示信息携带在所述第二类型数据帧中。所述中间设备向所述第一设备发送第六指示信息,所述第六指示信息指示所述中间设备接收到所述第五指示信息。
第四方面,本申请实施例提供一种调整带宽的系统。该系统包括第一设备和第二设备,其中,第一设备用于执行如上述第一方面或其中任一种可能的实现方式中的方法,第二设备用于执行如上述第二方面或其中任一种可能的实现方式中的方法。
第五方面,本申请实施例提供一种调整带宽的系统。该系统包括第一设备、第二设备和至少一个中间设备,其中,第一设备用于执行如上述第一方面或其中任一种可能的实现方式中的方法,第二设备用于执行如上述第二方面或其中任一种可能的实现方式中的方法。至少一个中间设备用于执行如上述第三方面或其中任一种可能的实现方式中的方法。
第六方面,本申请实施例提供了一种调整带宽的装置。该装置用于执行上述第一方面提供的方法,或用于执行上述第二方面提供的方法,或用于执行上述第三方面提供的方法。具体地,该配置时隙的装置可以包括用于执行第一方面或第一方面的上述任意一种实现方式提供的方法的单元和/或模块,或者,该配置时隙的装置可以包括用于执行第二方面或第二方面的上述任意一种实现方式提供的方法的单元和/或模块,如处理模块和收发模块,或者,该配置时隙的装置可以包括用于执行第三方面或第三方面的上述任意一种实现方式提供的方法的单元和/或模块,如处理模块和收发模块。
在一种实现方式中,该配置时隙的装置可以包括用于执行第一方面或第一方面的上述任意一种实现方式提供的方法的单元和/或模块,或者,该配置时隙的装置可以包括用于执行第三方面或第三方面的上述任意一种实现方式提供的方法的单元和/或模块,为发送端设备。收发模块可以是收发器,或,输入/输出接口。处理模块可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
或者,该配置时隙的装置为发送端设备中的芯片、芯片系统或电路。收发模块可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理模块可以是至少一个处理器、处理电路或逻辑电路等。
在另一种实现方式中,该配置时隙的装置可以包括用于执行第二方面或第二方面的上述任意一种实现方式提供的方法的单元和/或模块,或者,该配置时隙的装置可以包括用于执行第三方面或第三方面的上述任意一种实现方式提供的方法的单元和/或模块,为接收端设备。收发可以是收发器,或,输入/输出接口。处理模块可以是至少一个处理器。可选地,收发器可以为收发电路。可选地,输入/输出接口可以为输入/输出电路。
或者,该配置时隙的装置为接收端设备中的芯片、芯片系统或电路。收发模块可以是该芯片、芯片系统或电路上的输入/输出接口、接口电路、输出电路、输入电路、管脚或相关电路等。处理模块可以是至少一个处理器、处理电路或逻辑电路等。
第七方面,本申请实施例提供了一种处理器,用于执行上述各方面提供的方法。
对于处理器所涉及的发送和获取/接收等操作,如果没有特殊说明,或者,如果未与其在相关描述中的实际作用或者内在逻辑相抵触,则可以理解为处理器输出和接收、输入等操作,也可以理解为由射频电路和天线所进行的发送和接收操作,本申请对此不做限定。
第八方面,本申请实施例提供了一种计算机可读存储介质。该计算机可读存储介质存储用于设备执行的程序代码,该程序代码包括用于执行上述第一方面或第二方面或第三方面的任意一种实现方式提供的方法。
第九方面,本申请实施例提供了提供一种包含指令的计算机程序产品。当该计算机程序产品在计算机上运行时,使得计算机执行上述第一方面或第二方面或第三方面的任意一种实现方式提供的方法。
第十方面,本申请实施例提供了提供一种芯片。芯片包括处理器与通信接口,处理器通过通信接口读取存储器上存储的指令,执行上述第一方面或第二方面或第三方面的任意一种实现方式提供的方法。
可选地,作为一种实现方式,芯片还包括存储器,存储器中存储有计算机程序或指令,处理器用于执行存储器上存储的计算机程序或指令,当计算机程序或指令被执行时,处理器用于执行上述第一方面或第二方面或第三方面的任意一种实现方式提供的方法。
上述第三方面至第十方面带来的有益效果具体可以参考第一方面或第二方面中有益效果的描述,此处不再赘述。
附图说明
图1为本申请实施例适用的一种OTN光网络系统的示意图。
图2为一种可能的网络设备硬件结构示意图。
图3为一种OTN帧的帧结构的示意图。
图4为本申请实施例提供的一种调整带宽的方法400的示意性流程图。
图5为本申请实施例提供的一种承载第一指示信息的OPU0帧示意图。
图6为图5所示的OPU0帧的帧结构的第4行的字节划分示意图。
图7为本申请实施例提供的一种承载第二指示信息的OSU帧的示意图。
图8为本申请实施例提供的一种调整带宽的方法的第一种具体实现的示意性流程图。
图9为本申请实施例提供的一种调整带宽的方法的第二种具体实现的示意性流程图。
图10为本申请实施例提供的一种调整带宽的装置1000的示意性框图。
图11为本申请实施例提供的一种可能的调整带宽的设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
为了便于理解本申请实施例,作出以下说明。
第一、在下文示出的本申请实施例中的文字说明或附图中的术语“第一”、“第二”、“第三”等以及各种数字编号仅为描述方便进行的区分,而不必用于描述特定的顺序或者先后次序,并不用来限制本申请实施例的范围。例如,区分不同的指示信息或者不同的设备等。
第二、下文示出的本申请实施例中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其他步骤或者单元。
第三、在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念,便于理解。
第四、在本申请实施例中,光传送网络承载的业务,例如可以是,以太网业务、分组业务、无线回传业务等。业务数据也可以称业务信号、客户数据或客户业务数据。应理解,本申请实施例中对于业务 数据的类型不做限定。
第五、在本申请中,“指示”包括直接指示和间接指示。当描述某一信息用于指示A时,包括该信息直接指示A或间接指示A,而并不代表该信息中一定携带有A。
第六、下文示出的本申请实施例中,仅以光传送网(optical transport network,OTN)中的OTN帧作为示例对实施例进行说明的,应理解,对于其他承载OTN帧,或者城域传送网(metro transport network,MTN)帧,或者随着OTN技术以及MTN技术的发展,可能定义出新的类型的OTN帧和MTN帧,也适用于本申请。
第七、在本申请实施例中,设备也可以称为节点或者节点设备,发送设备可以称为发送节点、发送端设备、发送端或源节点。同样的,接收设备可以称为接收节点、接收端设备、接收端或者宿节点。
图1为本申请实施例适用的一种OTN光网络系统的示意图。通常,OTN光网络由多个设备通过光纤连接而成,可以根据具体需要组成如线型、环形和网状等不同的拓扑类型。在图1所示的OTN 100中,包括8个OTN设备101,即设备A-H。其中,102指示光纤,用于连接两个设备,103指示客户业务接口,用于接收或发送客户业务数据。如图1所示,OTN 100用于为客户设备1-3传输业务数据。客户设备通过客户业务接口跟OTN的设备相连。例如,图1中,客户设备1-3分别和OTN设备A,H和F相连。
在图1中,当客户设备1需要与客户设备3通信时,其可以通过OTN设备A-F来发送业务数据,此时,OTN设备A可以为发送设备,OTN设备B-E可以为中间设备,OTN设备F可以为接收设备。
应理解,在本申请提供的系统中,中间设备可以一个或者多个,当然在一些场景中,也可以没有中间设备。为了说明的简便性,在以下对本申请实施例提供的配置时隙的方法流程进行说明时,均是以没有中间设备为例进行说明的。
一般地来说,OTN设备分为光层设备、电层设备以及光电混合设备。光层设备指的是能够处理光层信号的设备,例如:光放大器(optical amplifier,OA)、光分插复用器(optical add-drop multiplexer,OADM)。OA也可被称为光线路放大器(optical line amplifier,OLA),主要用于对光信号进行放大,以支持在保证光信号的特定性能的前提下传输更远的距离。OADM用于对光信号进行空间的变换,从而使其可以从不同的输出端口(有时也称为方向)输出。电层设备指的是能够处理电层信号的设备,例如:能够处理OTN信号的设备。光电混合设备指的是具备处理光层信号和电层信号能力的设备。需要说明的是,根据具体的集成需要,一个OTN设备可以集合多种不同的功能。本申请提供的技术方案适用于不同形态和集成度的包含电层功能的OTN设备。
需要说明的是,本申请实施例中的OTN设备使用的数据帧结构是OTN帧,用于承载各种业务数据,并提供丰富的管理和监控功能。OTN帧可以是光数据单元帧(optical data unit k,ODUk)、ODUCn、ODUflex,光通道传输单元k(optical transport unit k,OTUk),OTUCn,或灵活OTN(FlexO)帧等。其中,ODU帧和OTU帧区别在于,OTU帧包括ODU帧和OTU开销。k代表了不同的速率等级,例如,k=1表示2.5Gbps,k=4表示100Gbps;Cn表示可变速率,具体为100Gbps的正整数倍的速率。除非特殊的说明,ODU帧指的是ODUk、ODUCn或ODUflex的任意一种,OTU帧指的是OTUk、OTUCn或者FlexO的任意一种。随着OTN技术发展,可能定义出新的类型的OTN帧,也适用于本申请。
图2为一种可能的网络设备硬件结构示意图。例如,图1中的设备A。具体地,OTN设备200包括支路板201、交叉板202、线路板203、光层处理单板(图2未示出)以及系统控制和通信类单板204。根据需要,网络设备包含的单板类型和数量可能不相同。例如,作为核心节点的网络设备没有支路板201。又如,作为边缘节点的网络设备有多个支路板201,或者没有光交叉板202。再如,只支持电层功能的网络设备可能没有光层处理单板。
支路板201、交叉板202和线路板203用于处理OTN的电层信号。其中,支路板201用于实现各种客户业务的接收和发送,例如SDH业务、分组业务、以太网业务和前传业务等。更进一步地,支路板201可以划分为客户侧光收发模块和信号处理器。其中,客户侧光收发模块也可以称为光收发器,用于接收和/或发送业务数据。信号处理器用于实现对业务数据到数据帧的映射和解映射处理。交叉板202用于实现数据帧的交换,完成一种或多种类型的数据帧的交换。线路板203主要实现线路侧数据帧的处理。具体地,线路板203可以划分为线路侧光模块和信号处理器。其中,线路侧光模块可以称为光收发器,用于接收和/或发送数据帧。信号处理器用于实现对线路侧的数据帧的复用和解复用,或者映射和解映射处理。系统控制和通信类单板204用于实现系统控制。具体地,可以从不同的单板收集信息,或将控制指令发送到对应的单板上去。需要说明的是,除非特殊说明,具体的组件(例如信号处理器)可以是一 个或多个,本申请不做限制。还需要说明的是,对设备包含的单板类型以及单板的功能设计和数量,本申请不做任何限制。需要说明的是,在具体的实现中,上述两个单板也可能设计为一个单板。此外,网络设备还可能包括用于备用的电源、用于散热的风扇等。
图3为一种OTN帧的帧结构的示意图。如图3所示,OTN帧为一种4行多列的帧结构,包括开销区、净荷区。其中,OTN帧的净荷区划分为多个净荷块(payload block,PB)。每个PB占据净荷区中固定长度(也可以称为大小)的位置,例如128个字节。在图3所示的OTN帧结构中,前4行*16列为OTU/ODU/光净荷单元(optical payload unit,OPU)的开销区域,其后为OPU净荷区域。具体地,OTN帧结构可以参考目前协议中相关描述,这里不再赘述。
作为OTN技术中关键技术之一的OSU,主要用于承载10M~100Gbps速率客户业务。通过OSU承载低速小颗粒业务信号,再将OSU映射进ODUk/ODUflex可以降低业务的传输时延,增加承载业务的端口数量,解决了原有OTN技术中承载低速效率小颗粒业务效率偏低的问题。
随着信息化和云化的发展,专线和视频业务承载需求的逐渐多元,由于这类业务对带宽的需求不高,同时对带宽的应用呈现动态变化,因此,实现网络中的链路实时无损动态带宽调整,不仅能够增加网络使用的弹性,减轻网络运维的负担,还可以提升客户使用的体验。
当前,针对承载以太网业务的ODUflex管道的无损带宽调整方法中,不同设备组成的网络分别由各自的网管系统进行管理,若要对端到端的管道进行无损带宽调整,则需要多个设备的网管系统进行协同操作,即进行带宽无损调整时需要依赖上层网管对每个站点下发的带宽调整协议。由于没有集中的网络管理系统对网络设备进行统一管理,因此实现带宽调整变得十分困难。此外,当前的协议设计在针对时隙的增加或删除时,其过程是各个站点先单独执行,后进行端到端的校验,导致处理过程较为复杂且时延较大。
综上所述,如何针对承载低速率业务的OSU管道实现快速的链路业务带宽无损调整,即在不中断链路中当前运行的业务,且在不影响其他链路业务的情况下,快速的对当前链路的带宽实现增大或者减小,是需要解决的问题。
为了解决上述问题,本申请提出了一种调整带宽的方法,通过网络管理设备将带宽调整命令下发到网络系统中的任意一个设备就可以完成端到端链路的无损带宽调整控制,该方法能够在不同设备混合的组网中支持无损带宽的调整,简化带宽调整的处理流程,实现高可靠性的无损带宽调整。
以下结合附图详细说明本申请所提供的调整带宽的方法。
图4示出了本申请实施例提供的一种调整带宽的方法400的示意性流程图。需要说明的是,在光通信网络中,存在多个通信链路,每条链路中存在多个设备用于传输业务数据,该链路上的每个设备在传输业务数据时采用相同的业务带宽,即该链路上的每个设备在进行业务数据传输时的数据帧中用于承载业务数据的单元(例如时隙)和承载业务的单元数量(例如时隙的个数)相同。在图4所示的流程图中,仅以中间设备#1为例,说明第一设备与第二设备之间的至少一个中间设备所执行的操作,应理解,第一设备与第二设备之间的通信链路中存在至少一个中间设备。
在一些示例中,第一设备可以是OTN设备,或者由OTN设备的部件(如芯片或芯片系统等)。第二设备可以是OTN设备,或者由OTN设备的部件(如芯片或芯片系统等)。该第一设备和第二设备之间的任意一个中间设备可以是OTN设备,或者由OTN设备的部件(如芯片或芯片系统等)。具体的,该方法包括如下多个步骤。
S401,第一设备向中间设备#1发送第一指示信息,第一指示信息指示时隙状态,时隙状态为第一设备根据目标带宽在承载业务的数据帧中添加或删除的N1个时隙对应的时隙状态,时隙状态为添加状态或删除状态,该第一指示信息携带在第一类型数据帧中,其中N1为大于或者等于1的整数。
具体地,当第一设备确定将当前的业务带宽调整为目标带宽时,第一设备根据目标带宽的大小在承载业务的数据帧中添加或者删除N1个时隙。
在一种可实现的方式中,第一设备确定将链路带宽调整为大带宽时,即目标带宽大于当前的带宽时,第一设备在承载业务的数据帧中添加N1个时隙,并在第一指示信息中将该N1个时隙的时隙状态设置为添加状态。
在另一种可实现的方式中,目标带宽为小于当前的带宽时,即链路带宽调整为小带宽时,第一设备在承载业务的数据帧中删除N1个时隙,并在第一指示信息中将该N1个时隙的时隙状态设置为删除状态。
可选地,该第一类型数据帧为OPU帧,第一指示信息承载在OPU帧的开销区中。
图5为本申请实施例提供的一种承载第一指示信息的OPU0帧示意图。如图5所示,该第一指示信息承载在OPU0帧的第15列和16列中,该第一指示信息占用的比特位为第15列的第5比特位至第8比特位以及第16列的8个比特位,共12个比特位。具体地,该12个比特位的前两个比特位用于承载时隙状态信息,该12个比特位的后10位用于承载时隙与业务的对应关系。其中,当用于承载时隙状态信息的比特值为00时,指示时隙对应的时隙状态为空闲状态。当比特值为01时,指示时隙对应的时隙状态为添加状态。当比特值为10时,指示时隙对应的时隙状态为删除状态。当该比特值11时,用于指示时隙对应的时隙状态为业务传输状态。其中,空闲状态可以用于表示时隙当前没有承载业务数据。添加状态和删除状态分别用于对应链路处于带宽调整状态时被添加的时隙(业务带宽增大时)和被删除的时隙(业务带宽减小时)。应理解,带宽调整结束后,处于添加状态的时隙则用于传输业务数据,处于删除状态的时隙则不再继续传输业务数据。业务传输状态用于表示时隙为承载业务数据的时隙。其中,在本申请实施例中,时隙与业务的对应关系可以是指,时隙标识与业务的支路端口标识的对应关系,其中,时隙标识可以是时隙的编号,支路端口标识可以是标签协议标识(tag protocol identifier,TPID)。即,用于承载时隙与业务的对应关系指示时隙标识对应的时隙为哪个业务之路中的时隙。其中,当时隙用于承载业务时(例如上述的添加状态、删除状态以及业务传输状态),时隙与业务的对应关系指示时隙用于承载的业务。当时隙不用于承载业务时(例如上述的空闲状态),时隙与业务的对应关系指示时隙没有承载该业务。示例性地,若时隙#3(TS#3)对应的TPID为TPID#2时,若TS#3的时隙状态为00,处于空闲状态,TS#3没有承载任何业务。若TS#3的时隙状态为01,则该TS#3当前没有承载TPID#2的业务,并处于带宽调整的添加状态,当TPID#2的业务调整为目标带宽后,该TS#3承载TPID#2的业务。若TS#3的时隙状态为10,则该TS#3当前承载TPID#2的业务,并处于带宽调整的删除状态,当TPID#2的业务调整为目标带宽后,该TS#3不再承载TPID#2的业务。若TS#3的时隙状态为11,则该TS#3当前承载TPID#2的业务,处于业务传输状态。
应理解,上述对于指示时隙状态的比特的数量和比特值仅为示例而非限定,若OPU帧的开销区存在本申请实施例提供的第一指示信息时,均在本申请的保护范围之内。
当在OPU0净荷区定义16字节的时隙块时,该OPU0的净荷区中可以划分出以119个时隙为一组的循环周期结构。同时,对于OPU0帧来说,第一光净荷单元复帧指示(optical mltiple fame idication-1,OMFI-1)的取值为0,第二光净荷单元复帧指示(optical mltiple fame idication-2,OMFI-2)的取值为0至19的整数。基于该结构的划分,可以将20个8帧的OPU0的第4行开销组成如图6所示的内容。如图6所示,20个8帧的OPU0的第4行能够将OPU0的119个时隙对应的时隙状态完全指示,同时可以指示出每个时隙对应的支路端口标识。其中,复帧对齐信号(multiframe alignment signal,MFAS)占用第15列的第6至8比特,共3比特,即000~111,分别指示8个数据帧。应理解,该8个数据帧能够指示6个时隙的时隙状态,以及该6个时隙对应的业务。
应理解,上述图6所示的针对OPU0帧结构的第4行的字节划分示意图仅为示例而非限定,对于其他速率的OPU帧结构的开销区,仍然可以构成例如图6所示内容进行相同字节或者不同字节的划分,均在本申请的保护范围之内。
该方法还包括第一设备完成对当前数据帧的时隙调整,即该方法还包括如下步骤:
S402,第一设备根据目标带宽在承载业务的数据帧中添加或删除N1个时隙。
具体地,S401与S402之间的先后顺序,本申请并不限定。可以是第一设备先向第二设备发送第一指示信息后,再根据目标带宽在承载业务的数据帧中添加或删除N1个时隙;或者,是第一设备向第二设备发送第一指示信息的同时完成N1个时隙的添加或删除;或者第一设备根据目标带宽在承载业务的数据帧中添加或删除N1个时隙的过程发生在发送第一指示信息之后。
需要说明的是,由于中间设备#1接收到第一设备发送的第一指示信息后,根据第一指示信息获取到N1个时隙的时隙状态发生改变,同时根据N1个时隙对应的时隙状态确定第一设备发起了带宽增大的带宽调整流程或者带宽减小的带宽调整流程。此时,中间设备#1需要在其与第二设备传输的数据帧中相应地进行时隙的添加或者删除操作,以使第一设备至第二设备的业务带宽调整成功。在一些实施例中,若中间设备#1可以在承载业务的数据帧中完成对时隙的添加或者删除,即中间设备#1成功在承载业务的数据帧中添加或者删除时隙时,第一设备到第二设备之间的业务带宽支持调整为目标带宽。或者,在另一些实施例中,中间设备#1在承载业务的数据帧中添加或者删除时隙失败(例如中间设备#1与第二设备之间的业务数据帧中没有可使用的时隙),或者,该目标带宽为第二设备不可使用的业务带宽,(例如该 第二设备连接的终端设备无法匹配该目标带宽时),第一设备到第二设备之间的业务带宽不支持调整为目标带宽。
针对上述两种场景,以下分别进行相关步骤的详细说明。
场景一:第一设备到第二设备之间的业务带宽支持调整为目标带宽。
S403,中间设备#1根据第一指示信息在承载业务的数据帧中添加或删除时隙。
具体地,中间设备#1接收到第一设备在S401中发送的第一指示信息后,通过第一指示信息确定第一设备在承载业务的数据帧中删除或添加了N1个时隙,即中间设备#1通过第一指示信息确定第一设备当前要将第一设备与第二设备的业务带宽进行调整。此时,中间设备#1根据第一指示信息在该中间设备#1至第二设备的数据帧中添加或删除N2个时隙。
应理解,中间设备#1在中间设备#1到第二设备之间传输的业务数据帧中添加或删除的时隙的个数N2与N1相同,且N1和N2为大于或者等于1的整数。还应理解,由于第一设备至第二设备的业务数据帧传输的是相同的业务数据,因此,第一设备添加或删除的N1个时隙编号与中间设备#1添加或删除的N2个时隙编号不同。
还应理解,当第一设备到第二设备之间存在多个中间设备时,该多个中间设备中的任意一个中间设备会根据其接收到的上游中间设备的指示信息在与下游中间设备之间传输的业务数据帧中完成时隙的添加或删除,该过程与上述中间设备#1根据第一指示信息在承载业务的数据帧中添加或删除时隙的过程相同,此处不再赘述。
S404,中间设备#1向第二设备发送第七指示信息。
具体地,中间设备#1在接收到第一设备在S401中发送的第一指示信息后,通过第一指示信息确定第一设备至该中间设备#1之间传输的数据帧中N1个时隙对应的时隙状态。此时,该中间设备#1向第二设备发送第七指示信息,该第七指示信息指示N2个时隙对应的时隙状态。应理解,该N2个时隙对应的时隙状态与上述N1个时隙对应的时隙状态相同。
需要说明的是,当第一设备到第二设备之间存在多个中间设备时,该多个中间设备中的任意一个中间设备会根据其接收到的上游中间设备的指示信息确定与下游中间设备之间传输的业务数据帧中至少一个时隙对应的时隙状态,该过程与上述中间设备#1接收第一设备的第一指示信息,以及向第二设备发送第七指示信息的过程相同,此处不再赘述。
具体地,S404与S403之间的先后顺序,本申请并不限定,可参考上述S402中的相关说明,此处不再赘述。
S405,第二设备向中间设备#1发送第二指示信息,第二指示信息指示第一设备到第二设备之间的业务带宽支持调整为目标带宽。第二指示信息携带在第二类型数据帧中。
具体地,当第二设备根据第七指示信息确定该中间设备#1在中间设备#1至第二设备的数据帧中完成了N2个时隙对应的时隙状态信息配置后,当第二设备确定第一设备到第二设备之间的业务带宽支持调整为目标带宽时,第二设备向中间设备#1发送第二指示信息。
可选地,该第二类型数据帧为OSU帧,第二指示信息承载在OSU帧的开销区中。
图7为本申请实施例提供的一种承载第二指示信息的OSU帧的示意图。如图7所示,该OSU帧为1328字节结构,该第二指示信息承载在OSU帧的第6字节和第7字节中。其中,第6字节用于指示发送带宽的状态和大小,第7字节用于指示接收带宽的状态和大小。对于第6字节来说,其包含的8个比特中的第1个比特用于指示发送带宽的状态(包括带宽调整状态或工作状态),将该比特定义为调整协议(resizing protocol,RP)字段,其余7比特通过指示OSU带宽包括的基础带宽(例如10M)的数量来指示调整的发送带宽的大小。可选地,当第6字节的8个比特中的RP为1时,指示发送带宽的状态为带宽调整状态,该RP为0时,指示发送带宽的状态为工作状态。示例性地,若第6字节承载的第二指示信息为[TX RP12=1,TX BW12=3],该第二指示信息指示第一设备至第二设备之间的发送带宽处于带宽调整状态,同时目标带宽为3个基础带宽。其中,TX表示发送,BW表示带宽(bandwidth,BW)。若当前业务带宽为10M时,则目标带宽为30M。
应理解,在本申请实施例中,基础带宽可以理解为单位时隙的速率。
类似地,对于第7字节来说,其采用8比特的第1个比特指示接收带宽的状态,其余7比特用以指示接收带宽的大小。示例性地,若第7字节承载的第二指示信息为[RX RP21=1,RX BW21=3],该第二指示信息指示第二设备至第一设备的接收带宽处于带宽调整状态,同时目标带宽为3个基础带宽,其中, RX表示接收。若当前业务带宽为10M时,则调整的目标带宽为30M。
应理解,上述RP字段和带宽数量字段的比特位的个数仅为示例而非限定,若OSU帧的开销区存在本申请实施例提供的第二指示信息时,均在本申请的保护范围之内。此外,上述RP字段的值所指示的含义仅为示例,例如,第6字节的8个比特中的RP为0时,指示发送带宽的状态为带宽调整状态,该RP为1时,指示发送带宽的状态为工作状态,本申请不做限定。
此外,在图7所示的OSU帧结构中,发送带宽指示和接收带宽指示(即第二指示信息)可以通过诸如多数判决实现误码情况的纠错。示例性地,可以将3个OSU帧作为一组以传输该第二指示信息,此时,可以构成如图7中所示的结构。当接收该第二指示信息的设备接收到3个OSU帧后,若存在两个以上OSU帧中发送带宽指示或接收带宽指示相同的内容,则将该内容确定为发送端设备所发送的第二指示信息。
S406,中间设备#1将第二指示信息透传给第一设备。
具体地,中间设备#1接收到来自第二设备的第二指示信息后,不对该第二指示信息进行处理,将第二指示信息转发给第一设备。换句话说,第二设备向第一设备发送第二指示信息是通过中间设备#1透传给第一设备的。
应理解,当第一设备到第二设备之间存在多个中间设备时,该多个中间设备中的任意一个中间设备均会将其接收到的第二指示信息透传至下游中间设备,该过程与上述中间设备#1将第二指示信息透传给第一设备的过程相同,此处不再赘述。
S407,第一设备根据第二指示信息将业务带宽调整为目标带宽。
具体地,第一设备接收到中间设备#1透传的第二指示信息后,第一设备根据第二指示信息确定第一设备至第二设备之间的业务带宽支持调整为目标带宽,此时,第一设备将业务带宽调整为目标带宽。
对于中间设备#1和第二设备调整带宽的过程可以通过以下两种实现方式进行。
在一种可实现的方式中,中间设备#1和第二设备可自主完成带宽调整,该过程包括以下步骤。
S408,中间设备#1将业务带宽调整为目标带宽。
具体地,对于中间设备#1由于该中间设备在透传第二指示信息时,监控到第二设备发送的第二指示信息指示第一设备至第二设备之间的业务带宽支持调整为目标带宽,因此,当中间设备#1透传第二指示信息后,将业务带宽调整为目标带宽。
应理解,当第一设备到第二设备之间存在多个中间设备时,该多个中间设备中的任意一个中间设备会根据其接收到的上游中间设备的指示信息获知业务数据帧中添加或删除的时隙确定目标带宽的大小,并自主将业务带宽调整为目标带宽。该过程与中间设备#1将业务带宽调整为目标带宽的过程相同,此处不再赘述。
S409,第二设备将业务带宽调整为目标带宽。
具体地,当第二设备发送第二指示信息后,第二设备将业务带宽调整为目标带宽。
此外,S408和S409之间的先后顺序,本申请并不限定。
在另一种可实现的方式中,至少一个中间设备和第二设备调整带宽可通过第一设备发送的指示信息进行,该过程包括以下步骤:
S410,第一设备发送第三指示信息,第三指示信息指示将业务带宽调整为所述目标带宽。
具体地,当第一设备将业务带宽调整为目标带宽后,第一设备向中间设备#1发送第三指示信息。相应地,中间设备#1接收第三指示信息。其中,该第三指示信息包括目标带宽,并携带在第二类型数据帧中,该第三指示信息可以参考上述第二指示信息的说明,此处不再赘述。
S408,中间设备#1将业务带宽调整为目标带宽。
具体地,中间设备#1接收到第一设备发送的第三指示信息后,根据第三指示信息将业务带宽调整为目标带宽。
应理解,当第一设备到第二设备之间存在多个中间设备时,该多个中间设备中的任意一个中间设备会根据其接收到的上游中间设备的第三指示信息将业务带宽调整为目标带宽。该过程与中间设备#1将业务带宽调整为目标带宽的过程相同,此处不再赘述。
S411,中间设备#1向第二设备转发第三指示信息。
具体地,当中间设备#1将业务带宽调整为目标带宽后,中间设备#1向第二设备发送第三指示信息。相应地,第二设备接收第三指示信息。
S409,第二设备将业务带宽调整为目标带宽。
具体地,第二设备接收到来自中间设备#1的第三指示信息后,根据第三指示信息将业务带宽调整为目标带宽。
应理解,上述第三指示信息中带宽状态为工作状态,同时携带目标带宽的大小,使得接收到该第三指示信息的设备可通过该第三指示信息实现无损带宽的调整。相比于自主完成带宽调整的过程来说,通过第一设备下发的第三指示信息指示带宽调整,使得接收到该第三指示信息的设备根据该第三指示信息确认目标带宽,从而保证带宽调整的可靠性。
基于上述方案,通过第一设备下发的第一指示信息,并通过接收到来自末端的最后一个设备(即第二设备)的第二指示信息获知第一设备至第二设备之间的业务带宽支持调整为目标带宽,从而实现了第一设备至第二设备之间带宽的无损调整。该过程无需多个网络管理参与,简化了多个网络管理之间带宽调整时的协商过程,同时避免了端到端的校验过程,提升了带宽调整的可靠性。
可选地,当第一设备至第二设备的链路完成业务带宽的增大或者减小调整后,该链路上的设备将在业务带宽调整过程中配置的添加时隙状态更改为业务传输状态,或者将在业务带宽调整过程中配置的删除时隙状态更改为空闲状态。具体地,该过程可包括如下多个步骤:
S412,第一设备将的N1个时隙的时隙状态更改为业务传输状态或者空闲状态。
具体地,当目标带宽大于当前业务带宽时,第一设备在带宽调整的过程中将N1个发送时隙的时隙状态设置为添加状态,当第一设备将业务带宽调整为目标带宽后,第一设备将N1个发送时隙的时隙状态从添加状态更改为业务传输状态。相应地,对于中间设备#1来说,该N1个接收时隙的时隙状态从添加状态更改为业务传输状态。
当目标带宽小于当前业务带宽时,第一设备在带宽调整的过程中将N1个发送时隙的时隙状态设置为删除状态,当第一设备将业务带宽调整为目标带宽后,第一设备将N1个发送时隙的时隙状态从删除状态更改为空闲状态。相应地,对于中间设备#1来说,该N1个接收时隙的时隙状态从删除状态更改为空闲状态。
S413,中间设备#1将N2个时隙的时隙状态更改为业务传输状态或者空闲状态。
具体地,对于中间设备#1来说,第一设备添加到的N1个发送时隙为中间设备#1的接收时隙。因此,当第一设备将添加的N1个时隙的时隙状态更改为业务传输状态后,相应地,中间设备#1的N1个接收时隙的时隙状态从添加状态更改为业务传输状态。同时,由于中间设备#1进行带宽调整时,将N2个发送时隙的时隙状态设置为添加状态,当中间设备#1将业务带宽调整为目标带宽后,中间设备#1将N2个发送时隙的时隙状态从添加状态更改为业务传输状态。相应地,对于第二设备来说,该N2个接收时隙的时隙状态从添加状态更改为业务传输状态。类似地,当第一设备将N1个时隙的时隙状态从删除状态更改为空闲状态时,中间设备#1将N2个发送时隙的时隙状态从删除状态更改为空闲状态。相应地,对于第二设备来说,该N2个接收时隙的时隙状态从删除状态更改为空闲状态。
场景二:第一设备到第二设备之间的业务带宽不支持调整为目标带宽。
S414,第一设备接收第二指示信息,该第二指示信息指示第一设备到第二设备之间的业务带宽不支持调整为目标带宽。第二指示信息携带在第二类型数据帧中。
应理解,该第二指示信息的相关说明,可以参考上述S405中的说明,此处不再赘述。
可选地,该第二指示信息是中间设备#1发送的或者是第二设备发送的。
当第二指示信息是中间设备#1发送时,可以是中间设备#1接收到来自第一设备的第一指示信息后,确定与第二设备传输的数据帧中没有可添加的N2个时隙或者可删除的N2个时隙;或者,中间设备#1确定与第二设备传输的数据帧中可添加的时隙或者可删除的时隙小于N2个时,该中间设备#1向第一设备发送第二指示信息,指示第一设备到第二设备之间的业务带宽不支持调整为目标带宽。
当第二指示信息是第二设备发送时,可以是第二设备根据上述第七指示信息确定目标带宽与其连接的终端设备的使用带宽无法匹配,该第二设备向第一设备发送第二指示信息,指示第一设备到第二设备之间的业务带宽不支持调整为目标带宽。
应理解,当中间设备#1或者第二设备由于上述原因,无法完成第一设备到第二设备的带宽调整时,中间设备#1或者第二设备发送的第二指示信息中的状态信息不会更改为带宽调整状态,而是工作状态,并保持第二指示信息中的带宽信息仍为当前业务带宽的带宽大小。也就是说,在场景二中,第二指示信息中的RP字段指示的带宽状态为工作状态,第二指示信息中的带宽大小为当前业务的带宽大小而非目标 带宽大小。使得第一设备收到该第二指示信息后,确定第一设备到第二设备的无法进行带宽调整。
需要说明的是,当第一设备到第二设备之间存在多个中间设备时,当该多个中间设备中的某个中间设备确定无法完成在与下游设备传输的数据帧中添加或者删除时隙时,该中间设备向第一设备发送该指示业务带宽处于工作状态的第二指示信息。该无法完成时隙调整的中间设备与第一设备之间还存在其他中间设备时,这些中间设备向第一设备透传该无法完成时隙调整的中间设备的第二指示信息。
可选地,第一设备仅接收无法完成时隙调整的首个中间设备发送的第二指示信息,即当首个中间设备无法完成在与下游设备传输的数据帧中添加或者删除时隙,该中间设备与第二设备之间的传输链路将不再接收到第一指示信息。基于该方案,通过首个中间设备无法调整时隙时中断第一指示信息向第二设备传输,能够避免不必要的信息传递,节约系统传输资源。
S415,第一设备根据第二指示信息取消业务带宽的调整。
具体地,第一设备接收到第二指示信息后,根据第二指示信息确定第一设备到第二设备之间的业务带宽不支持调整为目标带宽,此时,第一设备取消业务带宽的调整。
对于中间设备#1和第二设备取消带宽调整的过程可以通过以下两种实现方式进行。
在一种可实现的方式中,中间设备#1和第二设备可自主完成带宽调整流程的取消,该过程包括以下步骤。
S416,中间设备#1取消业务带宽的调整。
具体地,对于中间设备#1,当中间设备#1确定无法在数据帧中完成时隙调整时,中间设备#1自主取消业务带宽的调整。或者,当中间设备#1根据第二设备发送的第二指示信息确定第一设备到第二设备之间的业务带宽不支持调整为目标带宽时,中间设备#1自主取消业务带宽的调整。
应理解,当第一设备到中间设备#1之间存在其他中间设备时,该其他中间设备会根据其接收到的中间设备#1发送的第二指示信息或者第二设备发送的额第二指示信息获知第一设备和第二设备之间的链路无法完成带宽调整。此时,这些设备将取消业务带宽调整流程。该过程与中间设备#1取消业务带宽的调整的过程相同,此处不再赘述。
S417,第二设备将取消业务带宽的调整。
在一些实施例中,当中间设备#1调整时隙失败时,可能会继续向第二设备转发第一指示信息,若第二设备未收到中间设备#1发送的第七指示信息,则第二设备确定中间设备#1调整时隙失败,并取消业务带宽的调整。
此外,S418和S419之间的先后顺序,本申请并不限定。
在另一种的方式中,至少一个中间设备和第二设备取消带宽调整可通过第一设备发送的指示信息进行,该过程包括以下步骤:
S418,第一设备发送第四指示信息,第四指示信息指示取消带宽调整流程。
具体地,第一设备根据第指示信息取消业务带宽的调整后,第一设备向中间设备#1发送第四指示信息。相应地,中间设备#1接收第四指示信息。其中,该第四指示信息包括业务带宽,并携带在第二类型数据帧中,该第四指示信息可以参考上述第二指示信息的说明,此处不再赘述。
S416,中间设备#1取消业务带宽的调整。
具体地,中间设备#1接收到第一设备发送的第四指示信息后,根据第四指示信息中携带的当前业务的带宽信息确定第一设备到第二设备之间的业务带宽不支持调整为目标带宽,中间设备#1取消业务带宽的调整。
应理解,当第一设备到第二设备之间存在多个中间设备时,该多个中间设备中的任意一个中间设备会根据其接收到的上游中间设备的第四指示信息取消业务带宽的调整。该过程与中间设备#1取消业务带宽的调整的过程相同,此处不再赘述。
S419,中间设备#1向第二设备转发第四指示信息。
具体地,当中间设备#1取消业务带宽的调整后,中间设备#1向第二设备发送第四指示信息。相应地,第二设备接收第四指示信息。
S417,第二设备取消业务带宽的调整。
具体地,第二设备接收到来自中间设备#1的第四指示信息后,根据第四指示信息取消业务带宽的调整。
应理解,上述第四指示信息中带宽状态为工作状态,同时携带当前业务带宽的大小,使得接收到该 第四指示信息的设备可通过该第四指示信息实现带宽调整流程的取消。相比于自主取消带宽调整的过程来说,通过第一设备下发的第四指示信息指示带宽调整取消,使得接收到该第四指示信息的设备根据该第四指示信息确认业务带宽,从而保证系统性能的稳定性。
基于上述方案,第一设备通过接收到来自中间设备的第二指示信息获知第一设备到第二设备之间的业务带宽不支持调整为目标带宽,从而取消了第一设备至第二设备之间带宽的调整。该过程无需多个网络管理参与,简化了多个网络管理之间带宽调整时的协商过程,同时避免了端到端的校验过程,提升了带宽调整的可靠性。
可选地,当第一设备至第二设备的链路取消业务带宽调整后,该链路上的设备将在业务带宽调整过程中配置的时隙状态更改为空闲状态。具体地,该过程可包括如下多个步骤:
S420,第一设备将N1个时隙的时隙状态更改为业务传输状态。
具体地,第一设备进行带宽调整时,根据目标带宽的大小将N1个发送时隙的时隙状态设置为添加状态或删除状态,当第一设备取消业务带宽调整后,第一设备将N1个发送时隙的时隙状态从添加状态或删除状态更改为空闲状态。相应地,对于中间设备#1来说,N1个接收时隙的时隙状态从添加状态或删除状态更改为空闲状态。
S421,中间设备#1将N2个时隙的时隙状态更改为空闲状态。
具体地,若是由于第二设备造成的业务带宽调整取消时,由于中间设备#1配置了N2个发送时隙,因此,该过程还可以包括中间设备#1将N2个发送时隙的时隙状态从添加状态或删除状态更改为空闲状态。相应地,对于第二设备来说,N2个接收时隙的时隙状态从添加状态或删除状态更改为空闲状态。
可选地,该方法400还包括如下多个步骤:
S422,获取带宽指示信息,该带宽指示信息指示目标带宽。
示例性地,该带宽指示信息是管理第一设备的网络管理设备(或者网络管理系统)向该第一设备发送的。
可选地,该带宽指示信息中包括目标带宽的大小,当第一设备收到该带宽指示信息后,根据其中的目标带宽的大小获知需要将当前与第二设备之前的传输链路的业务带宽调整为目标带宽。
或者,该带宽指示信息中包括指示带宽增大或者减小的信息和带宽调整的调整量,例如,该带宽指示信息由3比特构成,其中,该3个比特中的首个比特用于承载指示带宽增大或者减小的信息,后两个比特用于承载带宽调整的调整量。其构成的带宽指示信息指示的内容可以如下表1所示。在表1中,首个比特为0时,用于指示第一设备将当前链路的业务带宽增大。首个比特为1时,用于指示第一设备将当前链路的业务带宽减小。示例性地,当该带宽指示信息为001时,用于指示第一设备将当前链路的业务带宽增大20M。
表1
应理解,上述对于带宽指示信息的内容仅为示例而非限定。当带宽指示信息中包括带宽增大或者减小的信息和带宽调整的调整量时,上述表1仅是以带宽指示信息为4比特为例进行的说明,并不对本申请的保护范围构成影响。
S423,第一设备向中间设备#1发送第五指示信息,该第五指示信息指示启动带宽调整流程,该宽调整流程用于将第一设备到第二设备之间的业务带宽调整为目标带宽。其中,该第五指示信息指示的带宽状态为带宽调整状态,同时指示的带宽大小为目标带宽,并携带在第二类型数据帧中,该第五指示信息可以参考上述第二指示信息的说明,此处不再赘述。
具体地,当第一设备需要发起带宽调整流程时,第一设备向中间设备#1发送第五指示信息。
S424,中间设备#1向第二设备转发第五指示信息。
具体地,中间设备#1接收到来自第一设备的第五指示信息后,确定第一设备发起带宽调整流程,并将该第五指示信息转发给第二设备。
S425,第二设备中间设备#1向发送第六指示信息。
具体地,当第二设备接收到第五指示信息后,根据第五指示信息获知第一设备到第二设备的业务带宽要调整为目标带宽后,向中间设备#1发送第六指示信息,通过该第六指示信息使得第一设备获知第五指示信息已经被第二设备接收到。其中,该第六指示信息指示的带宽状态为带宽调整状态,同时指示的带宽大小为目标带宽,并携带在第二类型数据帧中,该第六指示信息可以参考上述第二指示信息的说明,此处不再赘述。
S426,中间设备#1向第一设备转发第六指示信息。
具体地,中间设备#1接收到来自第二设备的第六指示信息后,不对该第六指示信息进行处理,将第六指示信息转发给第一设备。换句话说,第二设备向第一设备发送第六指示信息是通过中间设备#1透传给第一设备的。
应理解,当第一设备到第二设备之间存在多个中间设备时,该多个中间设备中的任意一个中间设备均会将其接收到的第六指示信息透传至下游中间设备,直到该第六指示信息传递到第一设备,该过程与上述中间设备#1将第二指示信息透传给第一设备的过程相同,此处不再赘述。
需要说明的是,当第一设备接收到来自第二设备的第六指示信息后,可以表明第一设备在S423中发送的第五指示信息被该通信链路上的所有设备均已接收,即该链路上的设备均获知第一设备启动带宽调整流程。
通过第一设备向第二设备发送第五指示信息提前通知第一设备到第二设备之间的链路需要带宽调整,以及接收到来自末端第二设备的第六指示信息确定第五指示信息已全部被第一设备到第二设备链路上的设备接收,从而保证了带宽调整的可靠性。
需要说明的是,上述方法400中的第一设备为可以为包含第一设备和第二设备的通信链路上的首节点,或者非首节点,本申请不做限定。应理解,对于第一设备为非首节点的链路带宽进行调整时,该第二设备第一设备至第二设备该段链路的末节点,第一设备与通信链路上的首节点的带宽调整过程可以参考上述方法400,此处不再赘述。
此外,在一种特殊的场景下,例如通信链路中仅存在第一设备和第二设备,即第一设备和第二设备为相邻设备的情况下时,对于业务带宽调整成功的场景一,第一设备和第二设备之间的交互可参考上述场景一中的相关说明。应理解,当第一设备确定可以将当前带宽调整为目标带宽,例如第一设备确定与第二设备之间的时隙可用或者能够删除时,第一设备完成时隙的添加和删除,并将第一设备与第二设备之间的业务带宽调整为目标带宽,即完成了该链路的带宽调整。对于业务带宽调整失败的场景二,同样可以参考上述场景二的说明,应理解,在该场景下,可以是第一设备确定无法在数据帧中完成时隙的添加或者删除时,第一设备确定带宽调整失败,并取消带宽调整流程。或者,第一设备能够完成时隙的添加或者删除,但由于第二设备连接的下游终端设备的接收端口的带宽与当前的业务带宽并不匹配,即当前的目标带宽无法正常向终端设备提供服务,此时,第二设备向第一设备发送上述第二指示信息,指示接收带宽的处于工作状态而非带宽调整状态,从而使得第一设备取消带宽的调整流程。
以下结合图8和图9对上述方法400应用于OTN帧中的场景进行具体的说明,应理解,在该场景下,第一类型数据帧为OPU帧,第二类型数据帧为OSU帧。
图8示出了本申请实施例提供的一种调整带宽的方法800的示意性流程图。在图8所示的链路中,设备A为该链路的首个设备,设备C为该链路中的最后一个设备,设备A和设备C之间存在一个中间设备B。在图8中,设备A至设备C的链路中的初始OSU业务带宽为10M,目标带宽为30M时,该方法800是对上述图4中的场景一中增大带宽的可能的实施方式进行的示例说明。
S801,设备A接收网管设备发送的带宽指示信息,该带宽指示信息指示目标带宽为30M。
具体地,设备A收到网管设备发送的带宽指示信息后,获知要将OSU业务的初始业务带宽从10M增加为30M。
S802,设备A向设备B发送第一OSU帧,该第一OSU帧携带[TX RPAC=1,TX BWAC=3]。
具体地,设备A通过将第一OSU帧中的发送带宽指示修改为TX RPAC=1,TX BWAC=3,指示设备B要将设备A至设备C之间的OSU业务调整为30M。
S803,设备B向设备C透传第一OSU帧。
具体地,设备B收到设备A发送的第一OSU帧后,监控到设备A至设备C之间的OSU业务调整为30M,同时将第一OSU帧透传给设备C。
S804,设备C向设备B发送第二OSU帧,该第二OSU帧携带[RX RPCA=1,RX BWCA=3]。
具体地,设备C收到设备B发送的第一OSU帧后,获知设备A至设备C之间的OSU业务调整为30M,同时将第二OSU帧发送给设备B。
S805,设备B向设备A透传的第二OSU帧。
具体地,设备B收到设备C发送的第二OSU帧后,将第二OSU帧透传给设备A。
S806,设备A将设备A到设备B的时隙5和时隙9添加给第一OSU帧对应的业务。
S807,设备A向设备B发送第一OPU帧,该第一OPU帧中时隙5和时隙9对应的时隙状态为添加时隙(ADD)。
具体地,设备A在设备A到设备B的第一OPU帧中,将时隙5和时隙9的时隙状态设置为添加状态。
S808,设备B将设备B到设备C的时隙11和时隙12添加给第一OSU帧对应的业务。
S809,设备B向设备C发送第二OPU帧,该第二OPU帧中时隙11和时隙12对应的时隙状态为添加时隙(ADD)。
具体地,设备B在设备B到设备C的第二OPU帧中,将时隙11和时隙12的时隙状态设备为添加状态。
S810,设备C向设备B发送第三OSU帧,该第三OSU帧携带[RX RPCA=0,RX BWCA=3]。
具体地,设备C收到设备B发送的第二OPU帧后通过第二OPU帧获知设备B至设备C完成了时隙的增加,设备C将第三OSU帧发送给设备B。通过第三OSU帧携带的[RX RPCA=0,RX BWCA=3]通知设备A,该设备A至设备C的OSU带宽支持调整到30M。
S811,设备B向设备A透传第三OSU帧。
具体地,设备B收到设备C发送的第三OSU帧后,将第三OSU帧透传给设备A。
S812,设备A将业务带宽调整为30M。
具体地,设备A收到第三OSU帧后,根据第三OSU帧携带的[RX RPCA=0,RX BWCA=3]确定设备A至设备C的OSU带宽支持调整到30M,设备A将业务带宽调整为30M。
S813,设备A向设备B发送第四OSU帧,该第四OSU帧携带[TX RPAC=0,TX BWAC=3]。
具体地,设备A通过将第四OSU帧中的发送带宽指示修改为[TX RPAC=0,TX BWAC=3]指示设备B将设备A至设备C之间的OSU业务调整为30M。
S814,设备B将业务带宽调整为30M。
具体地,设备B收到第四OSU帧后,根据第四OSU帧携带的[TX RPAC=0,TX BWAC=3]将业务带宽调整为30M。
S815,设备B向设备C透传第四OSU帧。
具体地,设备B收到设备A发送的第四OSU帧后,将第四OSU帧透传给设备C。
S816,设备C将业务带宽调整为30M。
具体地,设备C收到第四OSU帧后,根据第四OSU帧携带的[TX RPAC=0,TX BWAC=3]将业务带宽调整为30M。
S817,设备A将时隙5和时隙9的时隙状态更改为业务传输状态。
具体地,设备A在设备A到设备B的OPU帧中,将时隙5和时隙9的状态由添加时隙状态更改为业务传输状态。
S818,设备B时隙11和时隙12的时隙状态更改为业务传输状态。
具体地,设备B在设备B到设备C的OPU帧中,将时隙11和时隙12的状态由添加时隙状态更改为业务传输状态。
应理解,对于减小带宽的具体实施例,可参考图8进行说明,相比于带宽增大的实施例,区别在于OSU帧中的带宽为小带宽,以及将相应的时隙状设置为删除,同时当业务带宽调小后,将删除状态的时隙状态修改为空闲状态。为了说明的简便性,此处不再赘述。
图9示出了本申请实施例提供的一种调整带宽的方法900的示意性流程图。在图9所示的链路中,设备A为该链路的首个设备,设备C为该链路中的最后一个设备,设备A和设备C之间存在一个中间设备B。在图8中,设备A至设备C的链路中的初始OSU业务带宽为10M,目标带宽为30M时,该方法800 是对上述图4中的场景二中增大带宽的可能的实施方式进行的示例说明。
S901-S907可参考上述图8中的S801-S807,此处不再赘述。
S908,设备B向设备A发送第三OSU帧,该第三OSU携带[RX RPAC=0,RX BWAC=1]。
具体地,设备B收到设备A发送的第一OPU帧后,当确定设备B到设备C方向没有可用时隙,向设备A发送[RX RPCA=0,RX BWCA=1]通知设备A取消带宽调整。
S909,设备A取消业务带宽调整。
具体地,设备A收到第三OSU帧后,根据第三OSU帧携带的[RX RPCA=0,RX BWCA=1]确定设备A至设备C的OSU带宽不支持调整到30M,设备A取消业务带宽调整。
S910,设备A向设备B发送第四OSU帧,该第四OSU帧携带[TX RPAC=0,TX BWAC=1]。
具体地,设备A通过将第四OSU帧中的发送带宽指示修改为TX RPAC=0,TX BWAC=1,指示设备B取消带宽调整。
S911,设备B取消业务带宽调整。
具体地,设备B收到第四OSU帧后,根据第四OSU帧取消业务带宽调整。
S912,设备B向设备C透传第四OSU帧。
具体地,设备B收到设备A发送的第四OSU帧后,将第四OSU帧透传给设备C。
S913,设备C取消业务带宽调整。
具体地,设备C收到第四OSU帧后,根据第四OSU帧取消业务带宽调整。
S914,设备A将时隙5和时隙9的时隙状态更改为空闲状态。
具体地,设备A在设备A到设备B的OPU帧中,将时隙5和时隙9的状态由添加时隙状态更改为空闲状态。
应理解,对于减小带宽的具体实施例,可参考图9进行说明,相比于带宽增大的实施例,区别在于OSU帧中的带宽为小带宽,以及将相应的时隙状设置为删除,同时当业务带宽调小后,将删除状态的时隙状态修改为空闲状态。为了说明的简便性,此处不再赘述。
以下,结合图10和图11详细说明本申请实施例提供的调整带宽的装置。应理解,装置实施例的描述与方法实施例的描述相互对应。因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
图10为本申请实施例提供的一种调整带宽的装置1000的示意性框图。该装置1000包括接收模块1001,接收模块1001可以用于实现相应的接收功能。接收模块1001还可以称为接收单元。
该装置1000还包括处理模块1002,处理模块1002可以用于实现相应的处理功能。
该装置1000还包括发送模块1003,发送模块1003可以用于实现相应的发送功能,发送模块1003还可以称为发送单元。
可选地,该装置1000还包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元1002可以读取存储单元中的指令和/或数据,以使得装置实现前述各个方法实施例中的相关装置的动作。
该装置1000可以用于执行上文各个方法实施例中的第一设备或第二设备或者中间设备所执行的动作,这时,该装置1000可以为第一设备或第二设备或者中间设备的组成部件,接收模块1001用于执行上文方法实施例中第一设备或第二设备或者中间设备的接收相关的操作,处理模块1002用于执行上文方法实施例中第一设备或第二设备或者中间设备的处理相关的操作,发送模块1003用于执行上文方法实施例中第一设备或第二设备或者中间设备的发送相关的操作。
应理解,各模块执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
图11为一种可能的调整带宽的设备1100的结构示意图,该设备为第一设备或者第二设备或者中间和设备。如图11所示,该设备1100包括处理器1101、光收发器1102和存储器1103。其中,存储器1103是可选的。设备1100既可以应用于发送侧设备(如,第一设备),也应用于接收侧设备(如,上述的第二设备)。
在应用于发送侧设备时,处理器1101和光收发器1102用于实现图4、图8或图9任一所示的第一设备或者中间设备所执行的方法。在实现过程中,处理流程的各步骤可以通过处理器1101中的硬件的集成逻辑电路或软件形式的指令完成上述附图的发送设备所执行的方法。光收发器1102用于接收处理发送的OTN帧,以发送给对端设备(亦称为接收端设备)。
在应用于接收侧设备时,处理器1101和光收发器1102用于实现图4、图8或图9任一所示的第二设备或者中间设备所执行的方法。在实现过程中,处理流程的各步骤可以通过处理器1101中的硬件的集成逻辑电路或者软件形式的指令完成前述附图中所述的接收侧设备所执行的方法。光收发器1102用于接收对端设备(亦称为发送端设备)发送的OTN帧,以发送给处理器1101使其进行后续的处理。
存储器1103用于存储指令,以使得处理1101执行如上述图中提及的步骤。或者,存储1103也可以用于存储其他指令,以配置处理器1101的参数以实现对应的功能。
需要说明的是,处理器1101和存储器1103在图2所述的网络设备硬件结构图中,可能位于支路板中,也可能位于支路和线路合一的单板中。或者,处理器1101和存储器1103都包括多个,分别位于支路板和线路板,两个板配合完成前述的方法步骤。
需要说明的是,图11所述的装置也可以用于执行前述提及的附图所示的实施例变形所涉及的方法步骤,在此不再赘述。
基于以上实施例,本申请实施例还提供了一种计算机可读存储介质。该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述任意一个或多个实施例提供的方法。所述计算机可读存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
基于以上实施例,本申请实施例还提供了一种芯片。该芯片包括处理器,用于实现上述任意一个或多个实施例所涉及的功能,例如获取或处理上述方法中所涉及的OTN帧。可选地,所述芯片还包括存储器,所述存储器,用于处理器所执行必要的程序指令和数据。该芯片,可以由芯片构成,也可以包含芯片和其他分立器件。
显然,本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
应理解,本申请实施例中提及的处理器可以是中央处理单元(central processing unit,CPU),还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器和/或非易失性存储器。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM)。例如,RAM可以用作外部高速缓存。作为示例而非限定,RAM可以包括如下多种形式:静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)可以集成在处理器中。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、或计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能;这种实现不应认为超出本申请的保护范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。此外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。例如,所述计算机可以是个人计算机,服务器,或者网络设备等。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD)等。例如,前述的可用介质可以包括但不限于:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种调整带宽的方法,其特征在于,包括:
    第一设备发送第一指示信息,所述第一指示信息指示时隙状态,所述时隙状态为所述第一设备根据目标带宽在承载业务的数据帧中添加或删除的N1个时隙对应的时隙状态,所述时隙状态为添加状态或删除状态,所述第一指示信息携带在第一类型数据帧中,其中,N1为大于或者等于1的整数;
    所述第一设备接收第二指示信息,所述第二指示信息指示所述第一设备到第二设备之间的业务带宽是否支持调整为所述目标带宽,所述第二指示信息携带在第二类型数据帧中;
    所述第一设备根据所述第二指示信息将业务带宽调整为所述目标带宽或者取消所述业务带宽的调整。
  2. 根据权利要求1所述的方法,其特征在于,所述第一类型数据帧为光净荷单元OPU帧,所述第二类型数据帧为光业务单元OSU帧。
  3. 根据权利要求1或2所述的方法,其特征在于,
    当所述第二指示信息指示所述第一设备到第二设备之间的业务带宽支持调整为所述目标带宽时,所述第二指示信息包括所述目标带宽,
    所述第一设备根据所述第二指示信息将业务带宽调整为所述目标带宽或者取消所述业务带宽的调整,包括:
    所述第一设备根据所述第二指示信息将所述业务带宽调整为所述目标带宽,其中,所述第二指示信息来自于所述第二设备。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述第一设备向所述第二设备发送第三指示信息,所述第三指示信息指示将所述业务带宽调整为所述目标带宽,所述第三指示信息携带在所述第二类型数据帧中,所述第三指示信息包括所述目标带宽。
  5. 根据权利要求3或4所述的方法,其特征在于,
    当所述第一指示信息指示所述N1个时隙对应的时隙状态为添加状态时,所述方法还包括:
    所述第一设备将所述N1个时隙对应的时隙状态更改为业务传输状态;
    或者,当所述第一指示信息指示所述N1个时隙对应的时隙状态为删除状态时,所述方法还包括:
    所述第一设备将所述N1个时隙对应的时隙状态更改为空闲状态。
  6. 根据权利要求1或2所述的方法,其特征在于,
    当所述第二指示信息指示所述第一设备到第二设备之间的业务带宽不支持调整为所述目标带宽时,所述第二指示信息包括所述业务带宽,
    所述第一设备根据所述第二指示信息将业务带宽调整为所述目标带宽或者取消所述业务带宽的调整,包括:
    所述第一设备根据所述第二指示信息取消所述业务带宽的调整。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述第一设备发送第四指示信息,所述第四指示信息指示取消所述业务带宽的带宽调整流程,所述第四指示信息携带在所述第二类型数据帧中,所述第四指示信息包括所述业务带宽。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述第一设备将所述N1个时隙对应的时隙状态更改为空闲状态。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述方法还包括:
    所述第一设备获取所述目标带宽;
    所述第一设备发送第五指示信息,所述第五指示信息指示启动带宽调整流程,所述带宽调整流程用于将所述第一设备到所述第二设备之间的业务带宽调整为目标带宽,所述第五指示信息携带在所述第二类型数据帧中,所述第五指示信息包括所述目标带宽;
    所述第一设备接收来自所述第二设备的第六指示信息,所述第六指示信息指示所述第二设备接收到所述第五指示信息,所述第六指示信息包括所述目标带宽;
    所述第一设备根据所述第五指示信息在承载所述业务的数据帧中将所述N1个时隙对应的时隙状态设置为添加状态或删除状态。
  10. 一种调整带宽的方法,其特征在于,包括:
    第二设备接收来自第一设备的第一指示信息,所述第一指示信息指示时隙状态,所述时隙状态为所述第一设备根据目标带宽在承载业务的数据帧中添加或删除的N1个时隙对应的时隙状态,所述时隙状态为添加状态或删除状态,所述第一指示信息携带在第一类型数据帧中,其中,N1为大于或者等于1的整数;;
    所述第二设备向所述第一设备发送第二指示信息,所述第二指示信息指示所述第一设备到第二设备之间的业务带宽是否支持调整为所述目标带宽,所述第二指示信息携带在第二类型数据帧中;
    所述第二设备基于所述第二指示信息将所述业务带宽调整为所述目标带宽或者取消所述业务带宽的调整。
  11. 根据权利要求10所述的方法,其特征在于,
    当所述第二指示信息指示所述第一设备到第二设备之间的业务带宽支持调整为所述目标带宽时,所述第二指示信息包括所述目标带宽,
    所述第二设备基于所述第二指示信息将所述业务带宽调整为所述目标带宽或者取消所述业务带宽的调整,包括:
    所述第二设备基于所述第二指示信息将所述业务带宽调整为所述目标带宽。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收来自所述第一设备的第三指示信息,所述第三指示信息指示将所述业务带宽调整为所述目标带宽,所述第三指示信息携带在所述第二类型数据帧中,所述第三指示信息包括所述目标带宽;
    所述第二设备基于所述第二指示信息将所述业务带宽调整为所述目标带宽,包括:
    所述第二设备基于所述第二指示信息和所述第三指示信息将所述业务带宽调整为所述目标带宽。
  13. 根据权利要求10所述的方法,其特征在于,
    当所述第二指示信息指示所述第一设备到第二设备之间的业务带宽不支持调整为所述目标带宽时,所述第二指示信息包括所述业务带宽,
    所述第二设备基于所述第二指示信息将所述业务带宽调整为所述目标带宽或者取消所述业务带宽的调整,包括:
    所述第二设备基于所述第二指示信息取消所述业务带宽的调整。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收来自所述第一设备的第四指示信息,所述第四指示信息指示取消所述业务带宽的带宽调整流程,所述第四指示信息携带在所述第二类型数据帧中,所述第四指示信息包括所述业务带宽。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述第二设备接收来自所述第一设备的第五指示信息,所述第五指示信息指示启动带宽调整流程,所述带宽调整流程用于将所述第一设备到所述第二设备之间的业务带宽调整为目标带宽,所述第五指示信息携带在所述第二类型数据帧中,所述第五指示信息包括所述目标带宽;
    所述第二设备向所述第一设备发送第六指示信息,所述第六指示信息指示所述第二设备接收到所述第五指示信息,所述第六指示信息包括所述目标带宽,所述第六指示信息携带在所述第二类型数据帧中。
  16. 一种传输数据的装置,其特征在于,包括:用于执行如权利要求1至9中任一项所述方法的模块,或用于执行如权利要求10至15中任一项所述方法的模块。
  17. 一种传输数据的装置,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,以使所述通信装置执行如权利要求1至9中任一项所述的方法,或者如权利要求10至15中任一项所述的方法。
  18. 一种芯片,其特征在于,所述芯片包括处理器和通信接口,所述通信接口用于接收数据帧并传输至所述处理器或将数据帧发送给包括所述芯片的通信装置之外的其他通信装置,所述处理器用于执行如权利要求1至9中任一项所述的方法,或者如权利要求10至15中任一项所述的方法。
PCT/CN2023/125987 2022-11-22 2023-10-23 一种调整带宽的方法、装置和系统 WO2024109416A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211469123.0 2022-11-22
CN202211469123.0A CN118075132A (zh) 2022-11-22 2022-11-22 一种调整带宽的方法、装置和系统

Publications (1)

Publication Number Publication Date
WO2024109416A1 true WO2024109416A1 (zh) 2024-05-30

Family

ID=91097959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/125987 WO2024109416A1 (zh) 2022-11-22 2023-10-23 一种调整带宽的方法、装置和系统

Country Status (2)

Country Link
CN (1) CN118075132A (zh)
WO (1) WO2024109416A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195859A (zh) * 2010-03-04 2011-09-21 中兴通讯股份有限公司 基于gfp的灵活光通道数据单元带宽调整方法及系统
CN108632061A (zh) * 2017-03-20 2018-10-09 华为技术有限公司 一种带宽调整方法及装置
CN112752173A (zh) * 2021-01-04 2021-05-04 烽火通信科技股份有限公司 一种用于m-otn系统动态无损带宽调整的方法与装置
CN112804078A (zh) * 2020-07-23 2021-05-14 中兴通讯股份有限公司 带宽调整方法、业务传输方法、网络设备和可读存储介质
WO2021139607A1 (zh) * 2020-01-08 2021-07-15 华为技术有限公司 一种带宽调整方法及装置
CN114285752A (zh) * 2021-12-22 2022-04-05 中国电信股份有限公司 通道带宽调整方法、装置、系统、电子设备及可读介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195859A (zh) * 2010-03-04 2011-09-21 中兴通讯股份有限公司 基于gfp的灵活光通道数据单元带宽调整方法及系统
CN108632061A (zh) * 2017-03-20 2018-10-09 华为技术有限公司 一种带宽调整方法及装置
WO2021139607A1 (zh) * 2020-01-08 2021-07-15 华为技术有限公司 一种带宽调整方法及装置
CN112804078A (zh) * 2020-07-23 2021-05-14 中兴通讯股份有限公司 带宽调整方法、业务传输方法、网络设备和可读存储介质
CN112752173A (zh) * 2021-01-04 2021-05-04 烽火通信科技股份有限公司 一种用于m-otn系统动态无损带宽调整的方法与装置
CN114285752A (zh) * 2021-12-22 2022-04-05 中国电信股份有限公司 通道带宽调整方法、装置、系统、电子设备及可读介质

Also Published As

Publication number Publication date
CN118075132A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
US11082142B2 (en) Transmission rate adjustment method and network device
US20200162376A1 (en) Flexible ethernet path establishment method and network device
JP5503742B2 (ja) 光伝送ネットワークにおける動的でヒットレスなリサイジング
US11838181B2 (en) Flexible ethernet group management method, device, and computer-readable storage medium
WO2014005522A1 (zh) 路由计算方法及装置
WO2019170064A1 (zh) 光网络中以太数据处理的方法、装置和系统
US20230388984A1 (en) Communication Method and Device, and Chip System
EP3716641A1 (en) Data transport method, device and system
WO2010037324A1 (zh) 传送网络数据传输调整的方法和装置
WO2023273080A1 (zh) 通用通信通道数据传输方法、光网络设备和存储介质
WO2014172828A1 (zh) 无损业务的多载波频谱迁移方法及装置
WO2024109416A1 (zh) 一种调整带宽的方法、装置和系统
US20230209517A1 (en) Resource Configuration Method and Communication Apparatus
RU2352070C2 (ru) Способ увеличения пропускной способности оптической линейной сети передачи данных без прерывания услуг
JP2012151603A (ja) 光伝送装置
WO2020051851A1 (zh) 光传送网中的数据传输方法及装置
WO2024002146A1 (zh) 一种配置时隙的方法、装置和系统
WO2021218721A1 (zh) 业务处理的方法和装置
JP2008236691A (ja) EoS(EtheroverSONET)通信装置
JP5914616B1 (ja) ネットワークシステム、ファームウェア更新方法、局側終端装置及び加入者側終端装置
WO2024109580A1 (zh) 数据传输的方法和装置
JP5326674B2 (ja) Sdh/sonet伝送装置および伝送遅延低減方法
WO2024109349A1 (zh) 一种传输数据的方法和装置
WO2024188099A1 (zh) 数据传输的方法和装置
WO2023134513A1 (zh) 开销信息传输方法、通信装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893508

Country of ref document: EP

Kind code of ref document: A1