WO2024109302A1 - 多层串联轴流式浆料分散装置与粉液混合装置 - Google Patents

多层串联轴流式浆料分散装置与粉液混合装置 Download PDF

Info

Publication number
WO2024109302A1
WO2024109302A1 PCT/CN2023/120248 CN2023120248W WO2024109302A1 WO 2024109302 A1 WO2024109302 A1 WO 2024109302A1 CN 2023120248 W CN2023120248 W CN 2023120248W WO 2024109302 A1 WO2024109302 A1 WO 2024109302A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion
ring
stator
rotor
dispersing
Prior art date
Application number
PCT/CN2023/120248
Other languages
English (en)
French (fr)
Inventor
朱宏亮
马正光
刘臻
Original Assignee
无锡理奇智能装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡理奇智能装备有限公司 filed Critical 无锡理奇智能装备有限公司
Publication of WO2024109302A1 publication Critical patent/WO2024109302A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/27Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices
    • B01F27/271Mixers with stator-rotor systems, e.g. with intermeshing teeth or cylinders or having orifices with means for moving the materials to be mixed radially between the surfaces of the rotor and the stator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/808Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with stirrers driven from the bottom of the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/86Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis co-operating with deflectors or baffles fixed to the receptacle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/80Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis
    • B01F27/90Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a substantially vertical axis with paddles or arms 
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/30Driving arrangements; Transmissions; Couplings; Brakes
    • B01F35/32Driving arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/50Mixing receptacles
    • B01F35/53Mixing receptacles characterised by the configuration of the interior, e.g. baffles for facilitating the mixing of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/75Discharge mechanisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of slurry dispersion, in particular to a multi-layer series axial flow slurry dispersion device and a powder-liquid mixing device.
  • the powder-liquid mixing device is usually provided with a slurry dispersing device, which is used to disperse the slurry and then send it into the powder-liquid mixing area to mix with the powder.
  • the slurry dispersion device in the existing powder-liquid mixing device usually adopts radial flow to disperse, that is, the slurry flows radially between the flow holes of the stator and the rotor, and flows through multiple inner ⁇ outer ⁇ inner flow channel turns in the dispersion device to be fully dispersed.
  • Such a dispersion device has a long slurry flow path, requires multiple turns, has large flow resistance, is not smooth, has large flow losses, is inefficient, and consumes a lot of energy.
  • the applicant provides a rationally structured multi-layer series axial flow slurry dispersing device and powder-liquid mixing device, which has a short slurry flow path, small flow resistance, high efficiency and low energy consumption.
  • a multi-layer series axial flow slurry dispersion device wherein a shell is provided with a plurality of layers of dispersion rotors and dispersion stators, the dispersion rotors and dispersion stators are stacked in an axial direction, the dispersion rotor is sleeved on a main shaft, the dispersion stator is connected to the shell, and the dispersion rotor and dispersion stator are rotatably matched;
  • the dispersion rotor is thick inside and thin outside, comprising a rotor connecting ring at an inner thick portion and a rotor dispersion ring at an outer thin portion, a stator ring accommodating groove is formed on the outer side of the rotor connecting ring, above or below the rotor dispersion ring, and a plurality of through rotor flow holes are provided on the rotor dispersion ring;
  • the dispersion stator is thick outside and thin inside, comprising a stator connecting ring
  • the dispersed rotors or dispersed stators are arranged in layers, and each layer of dispersed rotors is arranged on the inner side of the corresponding layer of dispersed stators; the thickness of the stator dispersed ring is less than the depth of the stator ring accommodating groove, and the thickness of the rotor dispersed ring is less than the depth of the rotor ring accommodating groove.
  • the radial width of the rotor dispersion ring is consistent with the radial width of the stator dispersion ring; the thickness of the rotor dispersion ring is approximately 1/10 to 9/10 of the thickness of the rotor connecting ring; the thickness of the stator dispersion ring is approximately 1/10 to 9/10 of the thickness of the stator connecting ring.
  • the rotor flow holes and stator flow holes are oblong holes; all rotor flow holes and/or all stator flow holes are arranged concentrically. Or eccentric arrangement.
  • the range of the angle ⁇ between the center extension line of the arc part on both sides of the rotor flow hole and the radial line passing through the center of the outer arc part is 0 to 90 degrees; the range of the angle ⁇ between the center extension line of the arc part on both sides of the stator flow hole and the radial line passing through the center of the outer arc part is 0 to 90 degrees.
  • the rotor flow holes and/or the stator flow holes are configured as straight holes or inclined holes.
  • the inner wall surface of the shell is provided with a support ring, and the dispersed stator at the bottom layer abuts against the support ring.
  • the bottom of the shell is provided with a liquid inlet cavity
  • the top is provided with a liquid outlet cavity
  • the wall surface of the shell is provided with a liquid inlet port connected with the liquid inlet cavity.
  • a powder-liquid mixing device adopts the above-mentioned multi-layer series axial flow slurry dispersion device, the top surface of the shell is connected to a mixing sleeve, a mixing chamber is opened in the mixing sleeve, the mixing chamber is connected to the liquid outlet chamber, a mixing outlet connected to the mixing chamber is provided on the mixing sleeve, a mixing impeller is provided in the mixing chamber of the mixing sleeve, the mixing impeller sleeve is arranged on the main shaft, the top of the mixing sleeve is connected to a powder inlet barrel, a powder inlet chamber is opened in the powder inlet barrel, and the powder inlet chamber is connected to the mixing chamber.
  • a vertical convex ring is arranged on the bottom surface of the powder inlet tube, a plurality of discharge holes are arranged on the wall surface of the vertical convex ring, and the vertical convex ring is sleeved outside the mixing impeller.
  • the flow holes of the dispersion rotor and the dispersion stator of the present invention are axially connected.
  • the liquid slurry only needs to flow through the axial flow channel from bottom to top without turning.
  • the slurry flow path is short, the flow resistance is small, the flow is smooth, the flow loss is small, the efficiency is high, and the energy consumption is low.
  • the flow rate and speed of each part of the flow hole are kept consistent, ensuring that the dispersion effect of the dispersion area remains consistent, the dispersion is more uniform, the dispersion effect is better, and it is also more conducive to improving the energy consumption utilization rate.
  • the dispersion rotor and the dispersion stator adopt a structure in which the connecting ring is thick and the dispersion ring is thin.
  • the thick connecting ring can increase the connection strength and make the connection more stable and reliable, and the thin dispersion ring is beneficial to reduce the flow resistance of the liquid slurry, improve efficiency and reduce energy consumption;
  • the connecting ring of the dispersion rotor and the dispersion stator is thick and the dispersion ring is thin, a receiving groove for accommodating the dispersion ring is directly formed on the outside or inside of the connecting ring of the dispersion rotor and the dispersion stator, so that the dispersion rotor or the dispersion stator can be arranged in layers by abutting against the thick connecting ring, and each layer of the dispersion rotor is arranged on the inner side of the corresponding layer of the dispersion stator, and there is no need to separate the receiving groove by an additional spacer, which saves the use of space
  • the radial width of the rotor dispersion ring of each layer of the dispersion rotor of the present invention is consistent with the radial width of the stator dispersion ring of each layer of the dispersion stator, which can maximize the use of the dispersion area between the stator and the rotor and maximize the energy consumption utilization rate.
  • the dispersed stator of the present invention abuts against the support ring, and the support ring positions and supports the dispersed stator, thereby improving the support strength.
  • the vertical convex ring of the present invention is arranged outside the mixing impeller, and the liquid slurry and the powder can be blocked inside the mixing impeller so that the liquid slurry and the powder can be stirred and mixed by the rotating mixing impeller and then flow out through the discharge hole, so that the mixing is more complete and the mixing effect is better.
  • FIG1 is a schematic structural diagram of the present invention.
  • FIG. 2 is a perspective cutaway view of the dispersion structure of the present invention.
  • FIG. 3 is a schematic diagram of the structure of concentric flow holes.
  • FIG. 4 is a schematic diagram of the structure of an eccentric flow hole.
  • FIG. 5 is a schematic diagram of a cross section of a flow hole that is a straight hole.
  • FIG. 6 is a schematic diagram of a cross section of a case where the flow hole is an inclined hole.
  • a mixing sleeve 5 is connected to the top surface of the housing 1, and a mixing chamber 51 is provided in the mixing sleeve 5.
  • the mixing chamber 51 is connected to the liquid outlet chamber 12, and a mixing outlet 52 connected to the mixing chamber 51 is provided on the mixing sleeve 5.
  • a mixing impeller 6 is arranged in the mixing chamber 51 of the mixing sleeve 5, and the mixing impeller 6 is sleeved on the main shaft 2 and driven by the main shaft 2 to rotate at high speed.
  • a powder inlet cylinder 7 is connected to the top of the mixing sleeve 5 .
  • a powder inlet cavity 71 is provided in the powder inlet cylinder 7 .
  • the powder inlet cavity 71 is connected to the mixing cavity 51 .
  • a circle of support rings 14 is provided on the inner wall surface of the housing 1 and protrudes radially inward.
  • the bottom layer of the dispersed stator 4 abuts against the support rings 14 , and the support rings 14 position and support the dispersed stator 4 to improve the support strength.
  • the dispersion rotor 3 and the dispersion stator 4 are both disc-shaped structures.
  • the dispersion rotor 3 is a disk with a thick inner part and a thin outer part, and includes a rotor connecting ring 31 with a thicker inner part and a rotor dispersion ring 32 with a thinner outer part.
  • a plurality of rotor flow holes 33 are provided on the rotor dispersion ring 32 along the circumferential direction.
  • the thickness of the rotor dispersion ring 32 is about 1/10 to 9/10 of the thickness of the rotor connecting ring 31.
  • the rotor dispersion ring 32 is formed by extending radially outward from the upper half of the outer side of the rotor connecting ring 31, and a stator ring accommodating groove 34 is formed on the outer side of the rotor connecting ring 31 and below the rotor dispersion ring 32.
  • the dispersed stator 4 is a disc with a thick outer surface and a thin inner surface, including a stator connecting ring 41 with a thicker outer portion and a stator dispersed ring 42 with a thinner inner portion.
  • a plurality of stator flow holes 43 are provided on the stator dispersed ring 42 along the circumferential direction.
  • the thickness of the stator dispersed ring 42 is about 1/10 to 9/10 of the thickness of the stator connecting ring 41.
  • the stator dispersed ring 42 is formed by extending radially inward from the lower half of the inner side edge of the stator connecting ring 41, and a rotor ring receiving groove 44 is formed on the inner side of the stator connecting ring 41 and above the stator dispersed ring 42.
  • the thickness of the stator dispersed ring 42 is less than the depth of the stator ring receiving groove 34, and the thickness of the rotor dispersed ring 32 is less than the depth of the rotor ring receiving groove 44.
  • the rotor dispersed ring 32 and the stator dispersed ring 42 are arranged in a spaced manner, the rotor dispersed ring 32 extends into the rotor ring receiving groove 44, and the stator dispersed ring 42 extends into the stator ring receiving groove 34.
  • the radial width of the rotor dispersion ring 32 of each layer of the dispersion rotor 3 is consistent with the radial width of the stator dispersion ring 42 of each layer of the dispersion stator 4, which can maximize the use of the dispersion area between the stators and rotors and maximize the energy consumption utilization rate.
  • the flow holes of the dispersion rotor 3 and the dispersion stator 4 are axially connected, and the liquid slurry flows axially through the flow holes of each layer of the dispersion rotor 3 and the dispersion stator 4 in turn to be dispersed.
  • the liquid slurry only needs to flow through the axial flow channel from bottom to top, and does not need to turn.
  • the slurry flow path is short, the flow resistance is small, the flow is smooth, the flow loss is small, the efficiency is high, and the energy consumption is low.
  • the flow rate and speed of each part of the flow holes are consistent, ensuring that the dispersion effect of the dispersion area remains consistent, the dispersion is more uniform, the dispersion effect is better, and it is also more conducive to improving the energy consumption utilization rate.
  • the dispersion rotor 3 and the dispersion stator 4 adopt a structure in which the connecting ring is thick and the dispersion ring is thin.
  • the thick connecting ring can increase the connection strength and make the connection more stable and reliable, and the thin dispersion ring is beneficial to reduce the flow resistance of the liquid slurry, improve efficiency and reduce energy consumption;
  • the connecting rings of the dispersion rotor 3 and the dispersion stator 4 are thick and the dispersion rings are thin, a receiving groove for accommodating the dispersion ring is directly formed on the outside or inside of the connecting rings of the dispersion rotor 3 and the dispersion stator 4, so that the dispersion rotor 3 or the dispersion stator 4 can be arranged layer by layer through the thick connecting rings, and each layer of the dispersion rotor 3 is arranged on the inner side of the corresponding layer of the dispersion stator 4, and there is no need to separate the receiving groove through additional spacers, which saves the use of space
  • the rotor flow holes 33 of the dispersion rotor 3 and the stator flow holes 43 of the dispersion stator 4 are oblong holes, which can make the maximum possible use of the radial areas of the rotor dispersion ring 32 and the stator dispersion ring 42 to increase the flow area, improve the dispersion effect, and reduce the flow resistance.
  • all rotor flow holes 33 of the dispersion rotor 3 and all stator flow holes 43 of the dispersion stator 4 can be arranged concentrically.
  • the concentric arrangement can make the slurry stay time longer and is more conducive to dispersion.
  • the rotor flow holes 33 and the stator flow holes 43 are distributed radially, and the center extension lines of the arc parts on both sides of the rotor flow holes 33 or the stator flow holes 43 pass through the center of the dispersion rotor 3 or the dispersion stator 4.
  • all rotor flow holes 33 of the dispersion rotor 3 and all stator flow holes 43 of the dispersion stator 4 can also be arranged eccentrically, and the eccentric direction is opposite to the rotation direction of the dispersion rotor 3.
  • the eccentric arrangement can increase the centrifugal force and the conveying flow rate, which is conducive to improving the efficiency.
  • the center extension line of the arc part on both sides of the rotor flow hole 33 or the stator flow hole 43 does not pass through the center of the dispersion rotor 3 or the dispersion stator 4.
  • the range of the angle ⁇ between the center extension line of the arc part on both sides of the rotor flow hole 33 and the radial line passing through the center of the outer arc part thereof is 0 to 90 degrees.
  • the range of the angle ⁇ between the center extension line of the arc part on both sides of the stator flow hole 43 and the radial line passing through the center of the outer arc part thereof is 0 to 90 degrees.
  • the rotor flow holes 33 of the dispersion rotor 3 and the stator flow holes 43 of the dispersion stator 4 can be arranged concentrically or eccentrically at the same time, or one of them can be arranged concentrically and the other can be arranged eccentrically.
  • the rotor flow holes 33 of the dispersion rotor 3 and the stator flow holes 43 of the dispersion stator 4 may be straight holes with smaller flow resistance.
  • the rotor flow hole 33 of the dispersion rotor 3 and the stator flow hole 43 of the dispersion stator 4 can also be inclined holes.
  • the rotor flow hole 33 and the stator flow hole 43 have opposite inclination directions, and their matching cross-sections are in a “V” shape, which provides a better shear dispersion effect.
  • the rotor flow hole 33 and the stator flow hole 43 can be simultaneously configured as straight holes or inclined holes, or one of them can be configured as a straight hole and the other as an inclined hole.
  • a vertical convex ring 72 is provided on the bottom surface of the powder inlet tube 7 extending vertically downward along the axial direction, and a plurality of discharge holes 73 are provided on the wall surface of the vertical convex ring 72.
  • the vertical convex ring 72 is sleeved outside the mixing impeller 6, and the liquid slurry and powder can be blocked inside the vertical convex ring 72 so that the liquid slurry and powder can be stirred and mixed by the rotating mixing impeller 6 and then flow out through the discharge holes 73, so that the mixing is more complete and the mixing effect is better.
  • the driving mechanism 10 drives the plurality of layers of dispersion rotors 3 and the mixing impellers 6 to rotate at high speed through the main shaft 2; the liquid slurry enters the liquid inlet chamber 11 from the liquid inlet 13, flows through the plurality of layers of dispersion rotors 3 and the dispersion stators 4 in sequence along the axial direction, and then enters the liquid outlet chamber 12 after being dispersed, and then flows from the liquid outlet chamber 12 to the mixing chamber 51; the powder is transported from the powder inlet tube 7 to the mixing chamber 51; the liquid slurry and the powder are uniformly mixed by the mixing impeller 6 in the mixing chamber 51, and then output from the mixing outlet 52.
  • the rotor dispersion ring 32 of the dispersion rotor 3 may be arranged at the lower half of the outer side of the rotor connecting ring 31, and the stator dispersion ring 42 of the corresponding dispersion stator 4 may be arranged at the stator connecting ring 31.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

本发明公开了一种多层串联轴流式浆料分散装置与粉液混合装置,壳体内设置有若干层分散转子与分散定子,分散转子与分散定子沿轴向层叠布置,分散转子内厚外薄,分散定子外厚内薄,转子分散环与定子分散环间隔布置,转子分散环伸入转子环容纳槽内,定子分散环伸入定子环容纳槽内。本发明的分散转子与分散定子的过流孔沿轴向贯通,在分散结构内,液体浆料只需要经历由下至上的轴向流道流动,不需要转向,浆液流程短,流阻小,流动顺畅,流动损失小,效率高,能耗低;而且浆液从下至上轴向流过过流孔时,过流孔各部位的流量与速度保持一致,保证分散区域的分散效果保持一致,分散更均匀,分散效果更好,也更利于提高能耗利用率。

Description

多层串联轴流式浆料分散装置与粉液混合装置 技术领域
本发明涉及浆料分散技术领域,尤其是一种多层串联轴流式浆料分散装置与粉液混合装置。
背景技术
粉液混合装置中通常设置有浆料分散装置,用于对浆料进行分散处理后送入粉液混合区与粉料混合。
现有粉液混合装置中的浆料分散装置通常采用径向流动的方式进行分散处理,即浆料在定、转子的过流孔之间径向流动,在分散装置内经由多次的内→外→内的流道转折流动,进行充分分散。这样的分散装置,浆液流程长,需要多次转向,流阻大,流动不够顺畅,流动损失大,效率低,能耗大。
发明内容
本申请人针对现有浆料分散装置存在的上述缺点,提供一种结构合理的多层串联轴流式浆料分散装置与粉液混合装置,浆液流程短,流阻小,效率高,能耗小。
本发明所采用的技术方案如下:
一种多层串联轴流式浆料分散装置,壳体内设置有若干层分散转子与分散定子,分散转子与分散定子沿轴向层叠布置,分散转子套设在主轴上,分散定子连接到壳体上,分散转子与分散定子旋转配合;分散转子内厚外薄,包括内侧厚部的转子连接环与外侧薄部的转子分散环,转子连接环外侧、在转子分散环上方或下方形成有定子环容纳槽,转子分散环上开设若干贯通的转子过流孔;分散定子外厚内薄,包括外侧厚部的定子连接环与内侧薄部的定子分散环,定子连接环内侧、在定子分散环下方或上方形成有转子环容纳槽,定子分散环上开设若干贯通的定子过流孔;转子分散环与定子分散环间隔布置,转子分散环伸入转子环容纳槽内,定子分散环伸入定子环容纳槽内。
作为上述技术方案的进一步改进:
分散转子或分散定子层层抵接布置,每层分散转子布置在对应层分散定子内侧;定子分散环的厚度小于定子环容纳槽的深度,转子分散环的厚度小于转子环容纳槽的深度。
转子分散环的径向宽度与定子分散环的径向宽度一致;转子分散环厚度约为转子连接环厚度的1/10~9/10;定子分散环厚度约为定子连接环厚度的1/10~9/10。
转子过流孔、定子过流孔为长圆孔;所有转子过流孔和/或所有定子过流孔同心布置 或偏心布置。
转子过流孔两侧圆弧部分的中心延长线与穿过其外侧圆弧部分中心的径向线之间的夹角α的范围为0~90度;定子过流孔两侧圆弧部分的中心延长线与穿过其外侧圆弧部分中心的径向线之间的夹角β的范围为0~90度。
转子过流孔和/或定子过流孔设置为直孔或斜孔。
壳体的内壁面设置有支撑环,最底层的分散定子抵靠在支撑环上。
壳体内底部具有进液腔,顶部具有出液腔,壳体的壁面上设置有连通进液腔的进液口。
一种粉液混合装置,采用上述多层串联轴流式浆料分散装置,壳体顶面连接有混合套,混合套内开设有混合腔,混合腔连通出液腔,混合套上设有连通混合腔的混料出口,混合套的混合腔内设有混合叶轮,混合叶轮套设在主轴上,混合套顶部连接有进粉筒,进粉筒内开设进粉腔,进粉腔连通混合腔。
作为上述技术方案的进一步改进:
进粉筒底面设置有竖直凸环,竖直凸环壁面上开设若干出料孔,竖直凸环套设在混合叶轮外。
本发明的有益效果如下:
本发明的分散转子与分散定子的过流孔沿轴向贯通,在分散结构内,液体浆料只需要经历由下至上的轴向流道流动,不需要转向,浆液流程短,流阻小,流动顺畅,流动损失小,效率高,能耗低;而且浆液从下至上轴向流过过流孔时,过流孔各部位的流量与速度保持一致,保证分散区域的分散效果保持一致,分散更均匀,分散效果更好,也更利于提高能耗利用率。分散转子与分散定子采用连接环厚、分散环薄的结构,一方面,连接环厚度厚,可以增加连接强度,连接更稳定可靠,分散环薄,利于降低液体浆料的流阻,提高效率,降低能耗;另一方面,由于分散转子、分散定子的连接环厚、分散环薄,在分散转子、分散定子连接环外侧或内侧直接形成有容纳分散环的容纳槽,使得分散转子或分散定子可以通过厚部的连接环层层抵接布置,每层分散转子布置在对应层分散定子内侧,不需要再通过额外的隔圈隔出容纳槽,节约了隔圈的使用,结构更简单紧凑,也节约了元件成本;而且分散转子或分散定子层层抵接,也有利于提高支撑强度,连接更稳定可靠。
本发明的每层分散转子的转子分散环径向宽度与每层分散定子的定子分散环径向宽度一致,可以最大化利用定转子之间的分散区域,使能耗利用率最大化。
本发明的分散定子抵靠在支撑环上,支撑环对分散定子进行定位及支撑,提高支撑 强度。
本发明的竖直凸环套设在混合叶轮外,可以将液体浆料和粉料拦在其内侧由旋转的混合叶轮进行搅拌混合后通过出料孔流出,混合更充分,混合效果更好。
附图说明
图1为本发明的结构示意图。
图2为本发明的分散结构的立体剖切视图。
图3为过流孔同心的结构示意图。
图4为过流孔偏心的结构示意图。
图5为过流孔为直孔的配合截面示意图。
图6为过流孔为斜孔的配合截面示意图。
图中:1、壳体;11、进液腔;12、出液腔;13、进液口;14、支撑环;2、主轴;3、分散转子;31、转子连接环;32、转子分散环;33、转子过流孔;34、定子环容纳槽;4、分散定子;41、定子连接环;42、定子分散环;43、定子过流孔;44、转子环容纳槽;5、混合套;51、混合腔;52、混料出口;6、混合叶轮;7、进粉筒;71、进粉腔;72、竖直凸环;73、出料孔;10、驱动机构。
具体实施方式
下面结合附图,说明本发明的具体实施方式。
如图1所示,本发明的壳体1内设置有若干层分散转子3与分散定子4,分散转子3与分散定子4沿轴向层叠布置,分散转子3与分散定子4旋转配合构成分散结构。分散转子3套设在主轴2上,分散定子4固定连接到壳体1上;主轴2下端部从壳体1底面穿出、与驱动机构10连接,驱动机构10通过主轴2带动若干层分散转子3高速旋转。壳体1内,位于分散结构下方具有进液腔11,位于分散结构上方具有出液腔12;壳体1的壁面上设置有连通进液腔11的进液口13。壳体1顶面连接有混合套5,混合套5内开设有混合腔51,混合腔51连通出液腔12,混合套5上设有连通混合腔51的混料出口52。混合套5的混合腔51内设有混合叶轮6,混合叶轮6套设在主轴2上、由主轴2带动高速旋转。混合套5顶部连接有进粉筒7,进粉筒7内开设进粉腔71,进粉腔71连通混合腔51。
如图1、图2所示,壳体1的内壁面、沿径向朝内凸出设置有一圈支撑环14,最底层的分散定子4抵靠在支撑环14上,支撑环14对分散定子4进行定位及支撑,提高支撑强度。
分散转子3及分散定子4均为圆盘状结构。
分散转子3为内厚外薄的圆盘,包括内侧部较厚的转子连接环31与外侧部较薄的转子分散环32,转子分散环32上沿周向开设若干贯通的转子过流孔33。转子分散环32厚度约为转子连接环31厚度的1/10~9/10;转子分散环32从转子连接环31外侧边上半部沿径向朝外延伸形成,在转子连接环31外侧、位于转子分散环32下方形成定子环容纳槽34。
分散定子4则为外厚内薄的圆盘,包括外侧部较厚的定子连接环41与内侧部较薄的定子分散环42,定子分散环42上沿周向开设若干贯通的定子过流孔43。定子分散环42厚度约为定子连接环41厚度的1/10~9/10;定子分散环42从定子连接环41内侧边下半部沿径向朝内延伸形成,在定子连接环41内侧、位于定子分散环42上方形成转子环容纳槽44。定子分散环42的厚度小于定子环容纳槽34的深度,转子分散环32的厚度小于转子环容纳槽44的深度;转子分散环32与定子分散环42间隔配合布置,转子分散环32伸入转子环容纳槽44内,定子分散环42伸入定子环容纳槽34内。每层分散转子3的转子分散环32径向宽度与每层分散定子4的定子分散环42径向宽度一致,可以最大化利用定转子之间的分散区域,使能耗利用率最大化。
如图1所示,分散转子3与分散定子4的过流孔沿轴向贯通,液体浆料沿轴向依次流过各层分散转子3与分散定子4的过流孔进行分散,在分散结构内,液体浆料只需要经历由下至上的轴向流道流动,不需要转向,浆液流程短,流阻小,流动顺畅,流动损失小,效率高,能耗低;而且浆液从下至上轴向流过过流孔时,过流孔各部位的流量与速度保持一致,保证分散区域的分散效果保持一致,分散更均匀,分散效果更好,也更利于提高能耗利用率。
分散转子3与分散定子4采用连接环厚、分散环薄的结构,一方面,连接环厚度厚,可以增加连接强度,连接更稳定可靠,分散环薄,利于降低液体浆料的流阻,提高效率,降低能耗;另一方面,由于分散转子3、分散定子4的连接环厚、分散环薄,在分散转子3、分散定子4连接环外侧或内侧直接形成有容纳分散环的容纳槽,使得分散转子3或分散定子4可以通过厚部的连接环层层抵接布置,每层分散转子3布置在对应层分散定子4内侧,不需要再通过额外的隔圈隔出容纳槽,节约了隔圈的使用,结构更简单紧凑,也节约了元件成本;而且分散转子3或分散定子4层层抵接,也有利于提高支撑强度,连接更稳定可靠。
如图2至图4所示,分散转子3的转子过流孔33、分散定子4的定子过流孔43为长圆孔,可以尽可能大地利用转子分散环32、定子分散环42的径向区域,增加过流面积,提高分散效果,降低流阻。
如图3所示,分散转子3的所有转子过流孔33、分散定子4的所有定子过流孔43可以同心布置,同心布置可以使浆料停留时间更长,更有利于分散,转子过流孔33、定子过流孔43沿径向发散分布,转子过流孔33或定子过流孔43两侧圆弧部分的中心延长线穿过分散转子3或分散定子4中心。
如图4所示,分散转子3的所有转子过流孔33、分散定子4的所有定子过流孔43也可以偏心布置,偏心方向与分散转子3的旋转方向相反,偏心布置可以提高离心力及输送流量,有利于提高效率,转子过流孔33或定子过流孔43两侧圆弧部分的中心延长线不穿过分散转子3或分散定子4中心。转子过流孔33两侧圆弧部分的中心延长线与穿过其外侧圆弧部分中心的径向线之间的夹角α的范围为0~90度。定子过流孔43两侧圆弧部分的中心延长线与穿过其外侧圆弧部分中心的径向线之间的夹角β的范围为0~90度。
分散转子3的转子过流孔33与分散定子4的定子过流孔43可以同时同心布置或偏心布置,也可以其中一者同心布置、另一者偏心布置。
如图5所示,分散转子3的转子过流孔33、分散定子4的定子过流孔43可以为直孔,流阻更小。
如图6所示,分散转子3的转子过流孔33、分散定子4的定子过流孔43也可以为斜孔,转子过流孔33与定子过流孔43的倾斜方向相反,二者的配合截面呈“V”形,剪切分散效果更好。
转子过流孔33与定子过流孔43可以同时设置为直孔或斜孔,也可以其中一者设置为直孔、另一者设置为斜孔。
如图1所示,进粉筒7底面沿轴向竖直向下伸出设置有竖直凸环72,竖直凸环72壁面上开设若干出料孔73。竖直凸环72套设在混合叶轮6外,可以将液体浆料和粉料拦在其内侧由旋转的混合叶轮6进行搅拌混合后通过出料孔73流出,混合更充分,混合效果更好。
本发明实际使用时,驱动机构10通过主轴2带动若干层分散转子3与混合叶轮6高速旋转;液体浆料从进液口13进入进液腔11,沿轴向依次流经多层分散转子3与分散定子4分散后进入出液腔12,然后从出液腔12流至混合腔51;粉料从进粉筒7输送至混合腔51;液体浆料与粉料在混合腔51内由混合叶轮6混合均匀后,从混料出口52输出。
以上描述是对本发明的解释,不是对本发明的限定,在不违背本发明精神的情况下,本发明可以作任何形式的修改。比如,在其他实施例中,分散转子3的转子分散环32可以设置在转子连接环31外侧下半部,对应的分散定子4的定子分散环42设置在定子连接 环41内侧上半部。

Claims (10)

  1. 一种多层串联轴流式浆料分散装置,包括壳体(1),壳体(1)内设置有若干层分散转子(3)与分散定子(4),分散转子(3)与分散定子(4)沿轴向层叠布置,分散转子(3)套设在主轴(2)上,分散定子(4)连接到壳体(1)上,分散转子(3)与分散定子(4)旋转配合;其特征在于:分散转子(3)内厚外薄,包括内侧厚部的转子连接环(31)与外侧薄部的转子分散环(32),转子连接环(31)外侧、在转子分散环(32)上方或下方形成有定子环容纳槽(34),转子分散环(32)上开设若干贯通的转子过流孔(33);分散定子(4)外厚内薄,包括外侧厚部的定子连接环(41)与内侧薄部的定子分散环(42),定子连接环(41)内侧、在定子分散环(42)下方或上方形成有转子环容纳槽(44),定子分散环(42)上开设若干贯通的定子过流孔(43);转子分散环(32)与定子分散环(42)间隔布置,转子分散环(32)伸入转子环容纳槽(44)内,定子分散环(42)伸入定子环容纳槽(34)内。
  2. 按照权利要求1所述的多层串联轴流式浆料分散装置,其特征在于:所述的分散转子(3)或分散定子(4)层层抵接布置,每层分散转子(3)布置在对应层分散定子(4)内侧;所述的定子分散环(42)的厚度小于定子环容纳槽(34)的深度,转子分散环(32)的厚度小于转子环容纳槽(44)的深度。
  3. 按照权利要求1所述的多层串联轴流式浆料分散装置,其特征在于:所述的转子分散环(32)的径向宽度与定子分散环(42)的径向宽度一致;所述的转子分散环(32)厚度约为转子连接环(31)厚度的1/10~9/10;所述的定子分散环(42)厚度约为定子连接环(41)厚度的1/10~9/10。
  4. 按照权利要求1所述的多层串联轴流式浆料分散装置,其特征在于:所述的转子过流孔(33)、定子过流孔(43)为长圆孔;所有转子过流孔(33)和/或所有定子过流孔(43)同心布置或偏心布置。
  5. 按照权利要求4所述的多层串联轴流式浆料分散装置,其特征在于:所述的转子过流孔(33)两侧圆弧部分的中心延长线与穿过其外侧圆弧部分中心的径向线之间的夹角α的范围为0~90度;定子过流孔(43)两侧圆弧部分的中心延长线与穿过其外侧圆弧部分中心的径向线之间的夹角β的范围为0~90度。
  6. 按照权利要求1所述的多层串联轴流式浆料分散装置,其特征在于:所述的转子过流孔(33)和/或定子过流孔(43)设置为直孔或斜孔。
  7. 按照权利要求1所述的多层串联轴流式浆料分散装置,其特征在于:所述的壳体(1)的内壁面设置有支撑环(14),最底层的分散定子(4)抵靠在支撑环(14)上。
  8. 按照权利要求1所述的多层串联轴流式浆料分散装置,其特征在于:所述的壳体(1)内底部具有进液腔(11),顶部具有出液腔(12),壳体(1)的壁面上设置有连通进液腔(11)的进液口(13)。
  9. 一种粉液混合装置,其特征在于:采用权利要求1所述的多层串联轴流式浆料分散装置,壳体(1)顶面连接有混合套(5),混合套(5)内开设有混合腔(51),混合腔(51)连通出液腔(12),混合套(5)上设有连通混合腔(51)的混料出口(52),混合套(5)的混合腔(51)内设有混合叶轮(6),混合叶轮(6)套设在主轴(2)上,混合套(5)顶部连接有进粉筒(7),进粉筒(7)内开设进粉腔(71),进粉腔(71)连通混合腔(51)。
  10. 按照权利要求9所述的粉液混合装置,其特征在于:所述的进粉筒(7)底面设置有竖直凸环(72),竖直凸环(72)壁面上开设若干出料孔(73),竖直凸环(72)套设在混合叶轮(6)外。
PCT/CN2023/120248 2022-11-23 2023-09-21 多层串联轴流式浆料分散装置与粉液混合装置 WO2024109302A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202223109247.6 2022-11-23
CN202223109247.6U CN219149796U (zh) 2022-11-23 2022-11-23 多层串联轴流式浆料分散装置与粉液混合装置

Publications (1)

Publication Number Publication Date
WO2024109302A1 true WO2024109302A1 (zh) 2024-05-30

Family

ID=86636300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/120248 WO2024109302A1 (zh) 2022-11-23 2023-09-21 多层串联轴流式浆料分散装置与粉液混合装置

Country Status (2)

Country Link
CN (1) CN219149796U (zh)
WO (1) WO2024109302A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN219149796U (zh) * 2022-11-23 2023-06-09 无锡理奇智能装备有限公司 多层串联轴流式浆料分散装置与粉液混合装置
CN117643816A (zh) * 2023-10-19 2024-03-05 深圳市尚水智能股份有限公司 制浆设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3818453A1 (de) * 1988-05-31 1989-12-07 Janke & Kunkel Kg Dispergiermaschine
CN206139275U (zh) * 2017-01-05 2017-05-03 江苏朝晖化工有限公司 一种滚珠式油漆研磨机
CN113499698A (zh) * 2021-07-30 2021-10-15 宏工科技股份有限公司 一种粉液混合机
CN217042141U (zh) * 2022-03-01 2022-07-26 宏工科技股份有限公司 一种筒式分散装置
CN219149796U (zh) * 2022-11-23 2023-06-09 无锡理奇智能装备有限公司 多层串联轴流式浆料分散装置与粉液混合装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3818453A1 (de) * 1988-05-31 1989-12-07 Janke & Kunkel Kg Dispergiermaschine
CN206139275U (zh) * 2017-01-05 2017-05-03 江苏朝晖化工有限公司 一种滚珠式油漆研磨机
CN113499698A (zh) * 2021-07-30 2021-10-15 宏工科技股份有限公司 一种粉液混合机
CN217042141U (zh) * 2022-03-01 2022-07-26 宏工科技股份有限公司 一种筒式分散装置
CN219149796U (zh) * 2022-11-23 2023-06-09 无锡理奇智能装备有限公司 多层串联轴流式浆料分散装置与粉液混合装置

Also Published As

Publication number Publication date
CN219149796U (zh) 2023-06-09

Similar Documents

Publication Publication Date Title
WO2024109302A1 (zh) 多层串联轴流式浆料分散装置与粉液混合装置
US7632061B2 (en) Pump or turbine drive unit comprising such a pump or turbine and outboard motor
CN106907348A (zh) 叶轮及使用该叶轮的泵
JPH0262718B2 (zh)
CN218901577U (zh) 浆料分散装置
US11236756B2 (en) Cavitation device
CN203783890U (zh) 双转子回转式容积泵
CN103994096A (zh) 一种无堵塞旋流泵的水力设计方法
WO2024119959A1 (zh) 液体分散结构总成及粉液混合装置
CN111550440A (zh) 一种径流式多级对转离心叶轮及其使用方法
KR20080072847A (ko) 회전기용 회전자 그리고 회전기
EA014206B1 (ru) Прудовой насос
EP0723476A1 (en) Centrifugal liquid pump with internal gas injection assembly
CN207131592U (zh) 一种双吸碟片式离心泵
CN202833318U (zh) 一种多级旋涡泵
US3907456A (en) Centrifugal pump
US3748054A (en) Reaction turbine
CN106640742A (zh) 一种螺旋轴流式油气混输泵叶轮
CN206647269U (zh) 一种离心脉冲射流泵
CN105971928A (zh) 一种螺旋轴流式叶轮
US6916152B2 (en) Centrifugal sewage pumps with two impellers
CA2310062C (en) Stage in a submerged multiple-stage pump
CN207526746U (zh) 一种不等间距流道泵的叶轮
CN101757992A (zh) 动态预旋与轴向推进式水力旋流器
CA1259068A (en) Spider mounted centrifugal mixing impeller