WO2024109280A1 - 一种方向盘离手检测系统及方法 - Google Patents

一种方向盘离手检测系统及方法 Download PDF

Info

Publication number
WO2024109280A1
WO2024109280A1 PCT/CN2023/118733 CN2023118733W WO2024109280A1 WO 2024109280 A1 WO2024109280 A1 WO 2024109280A1 CN 2023118733 W CN2023118733 W CN 2023118733W WO 2024109280 A1 WO2024109280 A1 WO 2024109280A1
Authority
WO
WIPO (PCT)
Prior art keywords
steering wheel
conductive layer
capacitance value
sub
hands
Prior art date
Application number
PCT/CN2023/118733
Other languages
English (en)
French (fr)
Inventor
姚海成
乔奕翔
叶际隆
赵琳
李军
胡宏伟
黄雪妍
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024109280A1 publication Critical patent/WO2024109280A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles

Definitions

  • the present application relates to the field of autonomous driving technology, and in particular to a steering wheel hands-off detection system and method.
  • the level of car autonomous driving can be divided into L1-L5, and different levels of autonomous driving have different requirements for identifying the state of hands holding the steering wheel.
  • L2 level assisted driving it is a safety regulation requirement that hands cannot leave the steering wheel.
  • the system should be able to determine whether the user's hands are holding the steering wheel based on the surface of the steering wheel or the built-in sensors. If the system detects that the steering wheel is away from the user (that is, the user's hands are off the steering wheel), the user must be reminded; and after the steering wheel is off-hand for a period of time, the system needs to automatically exit assisted driving or brake to ensure the user's driving safety. Therefore, in autonomous driving, it is important to accurately detect whether the steering wheel is in a hands-off state.
  • a capacitive sensor is usually deployed on the surface of the steering wheel to identify whether the user's hand is holding the steering wheel. Specifically, when the user's hand touches the surface of the steering wheel, since the user's hand is conductive, the user's hand will change the electric field distribution of the capacitive sensor on the surface of the steering wheel, causing a change in capacitance, and then identify whether the user's hand is holding the steering wheel based on the change in capacitance.
  • the present application provides a steering wheel hands-off detection system, which can effectively identify two states of holding the steering wheel without gloves and holding the steering wheel with gloves, and then determine whether the steering wheel is off the hands based on the identified steering wheel holding state, thereby realizing steering wheel hands-off detection in various complex situations.
  • the present application provides a steering wheel hands-off detection system, comprising: a first conductive layer, a second conductive layer, an insulating layer, and a processing module.
  • the insulating layer is disposed between the first conductive layer and the second conductive layer, and the distance between the first conductive layer and the surface of the steering wheel is different from the distance between the second conductive layer and the surface of the steering wheel.
  • the first conductive layer is disposed on the outer layer of the steering wheel
  • the second conductive layer is disposed on the inner layer of the steering wheel, so the distance between the first conductive layer and the surface of the steering wheel is smaller than the distance between the second conductive layer and the surface of the steering wheel.
  • the processing module may be deployed on the steering wheel or in the control system of the vehicle.
  • the processing module is used to identify the grip state of the steering wheel based on the ratio between the first capacitance value and the second capacitance value, and further determine whether the steering wheel is in a hand-free state based on the grip state of the steering wheel.
  • the first capacitance value is the capacitance value of the first conductive layer
  • the second capacitance value is the capacitance value of the second conductive layer.
  • the capacitance value ratio of the two conductive layers will also be relatively large; when the user's hand wears gloves to hold the steering wheel, the hand has little impact on the capacitance value of the two conductive layers. Therefore, the capacitance value ratio of the two conductive layers will be relatively close.
  • the present scheme based on the capacitance ratio of the two conductive layers, can effectively identify the two states of holding the steering wheel without gloves and holding the steering wheel with gloves, and then further determine whether the steering wheel is off the hands based on the identified steering wheel holding state, thereby ensuring that steering wheel off-hand detection can be achieved in both cases of holding the steering wheel without gloves and with gloves.
  • the processing module is used to determine whether the steering wheel is in a hands-off state based on the ratio between the first capacitance value and the second capacitance value. Specifically, the processing module is used to determine a first threshold based on the ratio between the first capacitance value and the second capacitance value, and determine whether the steering wheel is in a hands-off state by comparing the first capacitance value or the second capacitance value with the first threshold value.
  • the ratio has a positive correlation with the first threshold value. That is, the larger the ratio between the first capacitance value of the first conductive layer and the second capacitance value of the second conductive layer, the greater the influence of the driver's hand on the capacitance value of the first conductive layer (i.e., the driver is not wearing gloves), so the first threshold value can also be set to be larger; the smaller the ratio between the first capacitance value of the first conductive layer and the second capacitance value of the second conductive layer, the smaller the influence of the driver's hand on the capacitance value of the first conductive layer (i.e., the driver is wearing gloves), so the first threshold value can also be set to be smaller.
  • the processing module when the first capacitance value or the second capacitance value is greater than or equal to a first threshold, the processing module is used to determine that the steering wheel is not in a hands-off state; when the first capacitance value or the second capacitance value is less than the first threshold, the processing module is used to determine that the steering wheel is in a hands-off state.
  • the processing module is further used to control the output of an alarm message when determining that the steering wheel is in a hands-off state, and the alarm message is used to prompt that the steering wheel is in a hands-off state.
  • the alarm message controlled by the processing module to output may be text information, image information, or voice information.
  • the processing module outputs a text message through the central control display or instrument panel on the vehicle, and the text message specifically reads "Please hold the steering wheel tightly, otherwise the vehicle will exit automatic driving within 5 seconds.”
  • the first conductive layer and the second conductive layer are flexible conductive layers
  • the insulating layer is a compressibly deformable elastic insulating layer.
  • the first conductive layer, the second conductive layer and the insulating layer are made of deformable materials.
  • the first conductive layer, the second conductive layer and the insulating layer can produce compression deformation, so that the first conductive layer and the second conductive layer both output a relatively high capacitance value, thereby improving the accuracy of capacitance value detection and ensuring the accuracy of recognition of the final steering wheel hands-off state.
  • the first conductive layer includes a plurality of first portions, and any two adjacent portions of the plurality of first portions have a gap therebetween.
  • the second conductive layer includes a plurality of second portions, and any two adjacent portions of the plurality of second portions have a gap therebetween. Furthermore, the plurality of first portions and the plurality of second portions are staggered.
  • the multiple first parts in the first conductive layer are comb-tooth structures, that is, the multiple first parts are parallel to each other, and the tops of the multiple first parts are connected together by a long strip-shaped structure. That is, the multiple first parts can be regarded as multiple tooth-shaped structures in the comb-tooth structure.
  • the multiple second parts in the second conductive layer are also comb-tooth structures, that is, the multiple second parts are parallel to each other, and the tops of the multiple second parts are connected together by a long strip-shaped structure. That is, the multiple second parts can also be regarded as multiple tooth-shaped structures in the comb-tooth structure.
  • the overlapping area of the first conductive layer and the second conductive layer in the longitudinal direction can be reduced, thereby reducing the capacitive reading noise of the first conductive layer and the second conductive layer, and improving the detection accuracy of the steering wheel hand-off detection system.
  • the length of each of the plurality of first portions and the plurality of second portions is less than the second threshold value to ensure that the contact area between the two conductive layers and the driver's hand is as close as possible.
  • the length of each portion is the length of each portion in the direction of rotation of the steering wheel.
  • the first conductive layer includes multiple sub-conductive layers, the multiple sub-conductive layers are not electrically connected to each other, and the multiple sub-conductive layers are distributed in different areas on the steering wheel along the rotation direction of the steering wheel, and the first capacitance value is the largest capacitance value among the multiple capacitance values corresponding to the multiple sub-conductive layers; the processing module is also used to control the output of the first instruction based on the maximum value of the capacitance values of two adjacent sub-conductive layers within a preset time being greater than or equal to a third threshold.
  • the position of the driver's hand holding the steering wheel can be judged based on the capacitance values output by the multiple sub-conductive layers, and then the interaction between the driver and the vehicle can be triggered based on the changes in the holding position of the driver's hand, so that the driver can interact with the vehicle without taking his hands off the steering wheel, thereby ensuring driving safety.
  • the processing module is further used to control output of a first sub-instruction or a second sub-instruction based on the positions of the first sub-conductive layer and the second sub-conductive layer, where the first instruction includes the first sub-instruction and the second sub-instruction;
  • the first sub-conductive layer and the second sub-conductive layer are two adjacent sub-conductive layers, and the maximum capacitance value of the first sub-conductive layer appears earlier than the maximum capacitance value of the second sub-conductive layer within the preset time.
  • the first instruction includes: answering a call, rejecting a call, switching songs, adjusting the volume, adjusting the air-conditioning temperature, raising or lowering windows, or adjusting seats.
  • the processing module when the processing module determines that the steering wheel is not in a hands-off state, the processing module is further used to control the output of a second instruction based on the grip strength of the steering wheel or the change in the grip strength of the steering wheel within a preset time range.
  • the processing module in the steering wheel hand-off detection system detects the strength of the driver's hand holding the steering wheel and then determines whether the driver has left the steering wheel. Determine the driver's state or intention, thereby controlling the output of other instructions, enabling more ways for the driver to interact with the vehicle.
  • the processing module is further configured to determine a mapping coefficient based on the ratio, and determine a grip force of the steering wheel according to the mapping coefficient and the first capacitance value.
  • a second aspect of the present application provides a method for detecting hands-off steering wheel, which is applied to a steering wheel hands-off steering wheel detection system.
  • the system includes a first conductive layer, a second conductive layer, an insulating layer and a processing module.
  • the insulating layer is arranged between the first conductive layer and the second conductive layer, and the distance between the first conductive layer and the steering wheel surface is different from the distance between the second conductive layer and the steering wheel surface.
  • the method includes: obtaining a first capacitance value and a second capacitance value, wherein the first capacitance value is a capacitance value of a first conductive layer, and the second capacitance value is a capacitance value of a second conductive layer;
  • Whether the steering wheel is in a hands-off state is determined based on a ratio between the first capacitance value and the second capacitance value.
  • whether the steering wheel is in the hands-off state is determined based on the ratio between the first capacitance value and the second capacitance value, specifically:
  • a first threshold is determined based on the ratio between the first capacitance value and the second capacitance value, and whether the steering wheel is in a hands-off state is determined by comparing the first capacitance value or the second capacitance value with the first threshold value;
  • the ratio has a positive correlation with the first threshold value
  • the ratio has a negative correlation with the first threshold.
  • determining whether the steering wheel is in a hands-off state by comparing the first capacitance value or the second capacitance value with the first threshold value includes:
  • the method further includes:
  • the control When it is determined that the steering wheel is in the hands-off state, the control outputs an alarm message, and the alarm message is used to prompt that the steering wheel is in the hands-off state.
  • the first conductive layer includes a plurality of sub-conductive layers, the plurality of sub-conductive layers are not electrically connected to each other, and the plurality of sub-conductive layers are distributed in different areas on the steering wheel along the rotation direction of the steering wheel, and the first capacitance value is a maximum capacitance value among a plurality of capacitance values corresponding to the plurality of sub-conductive layers;
  • the method further includes:
  • the first instruction is controlled to be output.
  • the method further includes:
  • the first sub-conductive layer and the second sub-conductive layer are two adjacent sub-conductive layers, and the maximum capacitance value of the first sub-conductive layer appears earlier than the maximum capacitance value of the second sub-conductive layer within the preset time.
  • the first instruction includes: answering a call, rejecting a call, switching songs, adjusting the volume, adjusting the air-conditioning temperature, raising or lowering windows, or adjusting seats.
  • the method further includes:
  • control is performed to output a second instruction.
  • the method further includes:
  • a mapping coefficient is determined based on the ratio, and a grip force of the steering wheel is determined according to the mapping coefficient and the first capacitance value.
  • the third aspect of the present application provides a steering wheel hands-off detection device, which may include a processor, the processor and a memory are coupled, the memory stores program instructions, and when the program instructions stored in the memory are executed by the processor, the above second aspect or any implementation method of the second aspect is implemented.
  • Method For the steps in each possible implementation manner of the processor executing the second aspect, the details may refer to the first aspect, which will not be described in detail here.
  • the fourth aspect of the present application provides a computer-readable storage medium, in which a computer program is stored.
  • the computer-readable storage medium is run on a computer, the computer executes the method of the second aspect or any implementation method of the second aspect.
  • a fifth aspect of the present application provides a circuit system, the circuit system includes a processing circuit, and the processing circuit is configured to execute the method of the above-mentioned second aspect or any implementation manner of the second aspect.
  • the sixth aspect of the present application provides a computer program product, which, when executed on a computer, enables the computer to execute the method of the second aspect or any implementation manner of the second aspect.
  • the seventh aspect of the present application provides a chip system, which includes a processor for supporting a server or a threshold value acquisition device to implement the functions involved in the second aspect or any implementation of the second aspect, for example, sending or processing the data and/or information involved in the above method.
  • the chip system also includes a memory, which is used to store program instructions and data necessary for the server or communication device.
  • the chip system can be composed of chips, or it can include chips and other discrete devices.
  • FIG1 is a schematic diagram of a related art method for identifying whether a hand is holding a steering wheel based on a capacitive sensor
  • FIG2 is a schematic diagram showing a comparison between not wearing gloves and wearing gloves provided in an embodiment of the present application
  • FIG3 is a schematic diagram showing a comparison of capacitance values under different holding states in the related art
  • FIG4 is a schematic diagram of an application scenario of a steering wheel hands-off detection system provided in an embodiment of the present application
  • FIG5 is a schematic diagram of a structure of a vehicle 100 provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of a computer system 101 in a vehicle provided in an embodiment of the present application.
  • FIG7 is a schematic structural diagram of a steering wheel hands-off detection system provided in an embodiment of the present application.
  • FIG8 is a schematic diagram showing a comparison of capacitance values of a steering wheel detection system under different holding states provided by an embodiment of the present application;
  • FIG9 is a schematic diagram of a working process of a steering wheel hands-off detection system provided in an embodiment of the present application.
  • FIG10 is a schematic diagram showing a structural comparison of a steering wheel detection system provided in an embodiment of the present application.
  • FIG11 is a schematic diagram of the structure of a steering wheel detection system provided in an embodiment of the present application.
  • FIG12 is another schematic diagram of the structure of a steering wheel detection system provided in an embodiment of the present application.
  • FIG13 is a schematic diagram of triggering interaction with a vehicle by sliding a hand holding a steering wheel, provided in an embodiment of the present application;
  • FIG14 is a schematic diagram of another method of triggering interaction with a vehicle by sliding a hand holding a steering wheel, provided in an embodiment of the present application;
  • FIG15 is a schematic diagram of a structure of a processing module provided in an embodiment of the present application.
  • FIG16 is a schematic diagram of a structure of a chip provided in an embodiment of the present application.
  • FIG. 17 is a schematic diagram of the structure of a computer-readable storage medium provided in an embodiment of the present application.
  • capacitance refers to the ability to hold electric charge. Any electrostatic field is composed of many capacitors. Where there is an electrostatic field, there is capacitance. Capacitance is described by the electrostatic field. It is generally believed that an isolated conductor and infinity form a capacitor, and a grounded conductor is equivalent to being connected to infinity and connected to the earth as a whole.
  • PDMS is a hydrophobic silicone material. It is used in various fields such as medicine, daily chemicals, food, and construction. Its derivatives have reached hundreds of kinds.
  • Commonly used polysiloxanes are mainly: polydimethylsiloxane, cyclomethylsiloxane, aminosiloxane, polymethylphenylsiloxane, polyether polysiloxane copolymer, etc.
  • cyclopolydimethylsiloxane is a commonly used polysiloxane.
  • PU is a polymer compound. There are two major types of PU: polyester and polyether. PU can be made into polyurethane plastics (mainly foam plastics), polyurethane fibers (also known as spandex), polyurethane rubber and elastomers.
  • PET Polyethylene glycol terephthalate
  • PET is made by ester exchange of dimethyl terephthalate and ethylene glycol or esterification of terephthalic acid and ethylene glycol to synthesize dihydroxyethyl terephthalate, and then polycondensation.
  • PET is a crystalline saturated polyester, a milky white or light yellow, highly crystalline polymer with a smooth and shiny surface. It is a common resin in life.
  • in-vehicle terminals such as car computers (also known as in-car audio and video entertainment systems) can be fixed on the center console of the car, and their screens can also be called central control display screens or central control screens.
  • some high-end cars have gradually fully digitized displays in the cockpit, and multiple or one display screen is set in the cockpit to display digital instrument panels, in-vehicle entertainment systems and other contents.
  • multiple display screens are set in the cockpit of the car, such as a digital instrument display screen, a central control screen, a display screen in front of the passenger in the co-pilot seat (also known as the front passenger), a display screen in front of the left rear passenger, and a display screen in front of the right rear passenger.
  • Autonomous driving also known as unmanned driving, computer driving or wheeled mobility
  • autonomous driving refers to the ability of a vehicle to automatically achieve driving tasks such as path planning, behavioral decision-making and motion planning (speed and trajectory planning).
  • Autonomous driving includes five levels: L1, L2, L3, L4, and L5.
  • Level L1 Assisted driving, the vehicle provides driving for one of the steering wheel and acceleration and deceleration operations, and the human driver is responsible for other driving actions.
  • Level L2 Partial autonomous driving, the vehicle provides driving for multiple operations in the steering wheel and acceleration and deceleration, and the human driver is responsible for other driving actions.
  • Level L3 Conditional autonomous driving, most of the driving operations are completed by the vehicle, and the human driver needs to concentrate in case of emergency.
  • Level L4 Highly autonomous driving, all driving operations are completed by the vehicle, and the human driver does not need to concentrate, but the road and environmental conditions are limited.
  • Level L5 Fully autonomous driving, all driving operations are completed by the vehicle, and the human driver does not need to concentrate, and the road and environment are not limited.
  • the autonomous driving vehicle in this application refers to a vehicle that can achieve autonomous driving at level L2 and above.
  • capacitive sensors are usually deployed on the surface of the steering wheel to identify whether the driver's hands are holding the steering wheel.
  • Figure 1 is a schematic diagram of a related art method for identifying whether the hand is holding the steering wheel based on a capacitive sensor.
  • the capacitive sensor is usually deployed on the surface of the steering wheel, and a layer of surface leather is also deployed on the capacitive sensor to facilitate the driver to hold the steering wheel, and a layer of insulating substrate is also deployed under the capacitive sensor.
  • the capacitive sensor has a normal electric field distribution.
  • the driver's hand When the driver's hand approaches and touches the surface of the steering wheel, since the driver's hand is conductive, the driver's hand will change the electric field distribution of the capacitive sensor on the surface of the steering wheel, causing the capacitance to change, and then identify whether the driver's hand is holding the steering wheel based on the change in capacitance.
  • FIG. 2 is a comparative diagram of a hand without gloves and a hand with gloves provided in an embodiment of the present application.
  • the driver's hand directly contacts the surface of the capacitive sensor, causing the capacitive sensor to generate a large capacitance value change.
  • a thicker insulating layer is introduced between the hand and the surface of the capacitive sensor, which makes it difficult to change the electric field distribution of the capacitive sensor, and the capacitance change caused is small.
  • the correct posture of the driver holding the steering wheel is to hold multiple fingers on the steering wheel at the same time.
  • the driver may hold the steering wheel in the wrong posture, for example, the driver only puts one finger lightly on the steering wheel. Therefore, in the process of detecting whether the steering wheel is in a hands-off state, it is actually necessary to detect whether the driver holds the steering wheel in the correct posture.
  • the capacitance value of the capacitive sensor When the driver places only one finger on the steering wheel, the capacitance value of the capacitive sensor will also change, but the change in capacitance value is not large. Therefore, in the related technology, a larger threshold is often set and the capacitance value of the capacitive sensor is compared with the threshold to determine whether the steering wheel is in a hands-off state.
  • the applicant has discovered that when the driver wears gloves and correctly holds the steering wheel with multiple fingers, the capacitance value of the capacitive sensor does not change much. Therefore, when the related technology uses a pre-set larger threshold to compare with the capacitance value, it is easy to mistakenly determine that the steering wheel is in a hands-off state.
  • FIG3 is a schematic diagram of capacitance value comparison under different holding states in the related art.
  • the capacitive sensor on the steering wheel can output a higher capacitance value; when the driver does not wear gloves and holds the steering wheel with a single finger, the capacitive sensor on the steering wheel outputs a lower capacitance value; when the driver wears gloves and holds the steering wheel with multiple fingers in a correct holding posture, the capacitive sensor on the steering wheel also outputs a lower capacitance value.
  • the capacitance value output by the capacitive sensor on the steering wheel is close.
  • both the situation that the driver is not wearing gloves and is placing a single finger on the steering wheel and the situation that the driver is wearing gloves and holding the steering wheel with multiple fingers in the correct holding posture are often identified as the steering wheel being in the hands-off state, thus leading to misidentification.
  • an embodiment of the present application provides a steering wheel hands-off detection system, which can effectively identify two states of holding the steering wheel without gloves and holding the steering wheel with gloves, and then select a corresponding threshold based on the identified steering wheel holding state to determine whether the steering wheel is off the hands, thereby realizing steering wheel hands-off detection in various complex situations.
  • FIG 4 is a schematic diagram of an application scenario of a steering wheel hands-off detection system provided in an embodiment of the present application.
  • the steering wheel hands-off detection system can be deployed on the steering wheel of the vehicle to identify whether the steering wheel is in a hands-off state during the driving of the vehicle.
  • the steering wheel hands-off detection system detects that the steering wheel is in a hands-off state
  • the steering wheel hands-off detection system outputs an alarm signal so that the vehicle can remind the driver to hold the steering wheel by displaying a reminder message on the central control screen or instrument panel (such as "! Please hold the steering wheel tightly! in Figure 4) or by playing an external reminder sound.
  • some structures in the steering wheel hands-off detection system can be deployed on the steering wheel, and other structures (such as the structure for identifying the hands-off state based on capacitance signals) can be deployed in the vehicle's control system (such as the vehicle's central control system).
  • Figure 5 is a schematic diagram of the structure of a vehicle 100 provided in the present application embodiment.
  • the vehicle 100 may be configured in a fully or partially automated driving mode.
  • the vehicle 100 may control itself while in the automated driving mode, and may determine the current state of the vehicle and its surroundings through human operation, determine the possible behavior of at least one other vehicle in the surroundings, and determine the confidence level corresponding to the possibility of the other vehicle performing the possible behavior, and control the vehicle 100 based on the determined information.
  • the vehicle 100 may be set to operate without human interaction.
  • the vehicle 100 may include various subsystems, such as a travel system 102, a sensor system 104, a control system 106, one or more peripheral devices 108, and a power source 110, a computer system 101, and a user interface 116.
  • the vehicle 100 may include more or fewer subsystems, and each subsystem may include multiple components, such as each subsystem including multiple ECUs.
  • each subsystem of the vehicle 100 and Components can be interconnected via wires or wirelessly.
  • the propulsion system 102 may include components that provide powered movement for the vehicle 100.
  • the propulsion system 102 may include an engine 118, an energy source 119, a transmission 120, and wheels/tires 121.
  • the engine 118 may be an internal combustion engine, an electric motor, an air compression engine, or a combination of other types of engines, such as a hybrid engine consisting of a gasoline engine and an electric motor, or a hybrid engine consisting of an internal combustion engine and an air compression engine.
  • the engine 118 converts the energy source 119 into mechanical energy.
  • Examples of energy source 119 include gasoline, diesel, other petroleum-based fuels, propane, other compressed gas-based fuels, ethanol, solar panels, batteries, and other sources of electricity. Energy source 119 may also provide energy to other systems of vehicle 100.
  • the transmission 120 can transmit mechanical power from the engine 118 to the wheels 121.
  • the transmission 120 may include a gearbox, a differential, and a drive shaft.
  • the transmission 120 may also include other devices, such as a clutch.
  • the drive shaft may include one or more shafts that can be coupled to one or more wheels 121.
  • the sensor system 104 may include several sensors that sense information about the environment surrounding the vehicle 100.
  • the sensor system 104 may include a positioning system 122 (the positioning system may be a GPS system, or a Beidou system or other positioning systems), an inertial measurement unit (IMU) 124, a radar 126, a laser rangefinder 128, and a camera 130.
  • the sensor system 104 may also include sensors of the internal systems of the monitored vehicle 100 (e.g., an in-vehicle air quality monitor, a fuel gauge, an oil temperature gauge, etc.). Sensor data from one or more of these sensors may be used to detect objects and their corresponding characteristics (position, shape, direction, speed, etc.). Such detection and recognition are key functions for the safe operation of the autonomous vehicle 100.
  • Positioning system 122 may be used to estimate the geographic location of vehicle 100.
  • IMU 124 is used to sense position and orientation changes of vehicle 100 based on inertial acceleration.
  • IMU 124 may be a combination of an accelerometer and a gyroscope.
  • Radar 126 may utilize radio signals to sense objects within the surrounding environment of vehicle 100. In some embodiments, in addition to sensing objects, radar 126 may also be used to sense the speed and/or heading of an object.
  • the laser rangefinder 128 may utilize laser light to sense objects in the environment in which the vehicle 100 is located.
  • the laser rangefinder 128 may include one or more laser sources, a laser scanner, and one or more processing modules, among other system components.
  • the camera 130 may be used to capture multiple images of the surrounding environment of the vehicle 100.
  • the camera 130 may be a still camera or a video camera.
  • the control system 106 controls the operation of the vehicle 100 and its components.
  • the control system 106 may include various elements, including a steering system 132 , a throttle 134 , a brake unit 136 , a computer vision system 140 , a path control system 142 , and an obstacle avoidance system 144 .
  • the steering system 132 is operable to adjust the forward direction of the vehicle 100.
  • it may be a steering wheel system.
  • the throttle 134 is used to control the operating speed of the engine 118 and, in turn, the speed of the vehicle 100 .
  • the brake unit 136 is used to control the deceleration of the vehicle 100.
  • the brake unit 136 can use friction to slow down the wheel 121.
  • the brake unit 136 can convert the kinetic energy of the wheel 121 into electric current.
  • the brake unit 136 can also take other forms to slow down the rotation speed of the wheel 121 to control the speed of the vehicle 100.
  • the computer vision system 140 may be operable to process and analyze images captured by the camera 130 in order to identify objects and/or features in the environment surrounding the vehicle 100.
  • the objects and/or features may include traffic signs, road boundaries, and obstacles.
  • the computer vision system 140 may use object recognition algorithms, Structure from Motion (SFM) algorithms, video tracking, and other computer vision techniques.
  • SFM Structure from Motion
  • the computer vision system 140 may be used to map the environment, track objects, estimate the speed of objects, and the like.
  • the route control system 142 is used to determine the driving route of the vehicle 100.
  • the route control system 142 may combine data from the GPS 122 and one or more predetermined maps to determine the driving route for the vehicle 100.
  • the obstacle avoidance system 144 is used to identify, evaluate, and avoid or otherwise negotiate potential obstacles in the environment of the vehicle 100 .
  • control system 106 may include additional or alternative components other than those shown and described, or may also reduce some of the components shown above.
  • the vehicle 100 interacts with external sensors, other vehicles, other computer systems, or users through peripherals 108.
  • the peripherals 108 may include a wireless communication system 146, an onboard computer 148, a microphone 150, and/or a speaker 152.
  • the peripheral devices 108 provide a means for a user of the vehicle 100 to interact with the user interface 116.
  • the onboard computer 148 can provide information to the user of the vehicle 100.
  • the user interface 116 can also operate the onboard computer 148 to receive input from the user.
  • the onboard computer 148 can be operated via a touch screen.
  • the peripheral devices 108 can provide a means for the vehicle 100 to communicate with other devices located in the vehicle.
  • the microphone 150 can receive audio (e.g., voice commands or other audio input) from the user of the vehicle 100.
  • speaker 152 may output audio to a user of vehicle 100 .
  • the wireless communication system 146 can communicate wirelessly with one or more devices directly or via a communication network.
  • the wireless communication system 146 can use 3G cellular communication, such as CDMA, EVDO, GSM/GPRS, or 4G cellular communication, such as LTE. Or 5G cellular communication.
  • the wireless communication system 146 can communicate with a wireless local area network (WLAN) using WiFi.
  • the wireless communication system 146 can communicate directly with the device using an infrared link, Bluetooth, or ZigBee.
  • Other wireless protocols, such as various vehicle communication systems, for example, the wireless communication system 146 may include one or more dedicated short range communications (DSRC) devices, which may include public and/or private data communications between vehicles and/or roadside stations.
  • DSRC dedicated short range communications
  • the power source 110 can provide power to various components of the vehicle 100.
  • the power source 110 can be a rechargeable lithium-ion or lead-acid battery.
  • One or more battery packs of such batteries can be configured as a power source to provide power to various components of the vehicle 100.
  • the power source 110 and the energy source 119 can be implemented together, such as in some all-electric vehicles.
  • the computer system 101 may include at least one processor 113 that executes instructions 115 stored in a non-transitory computer-readable medium such as a memory 114.
  • the computer system 101 may also be a plurality of computing devices that control individual components or subsystems of the vehicle 100 in a distributed manner.
  • Processor 113 can be any conventional processor, such as a commercially available CPU. Alternatively, the processor can be a dedicated device such as an ASIC or other hardware-based processor. Although FIG. 5 functionally illustrates the processor, memory, and other elements of the computer 110 in the same block, it should be understood by those skilled in the art that the processor, computer, or memory may actually include multiple processors, computers, or memories that may or may not be stored in the same physical housing.
  • the memory may be a hard drive or other storage medium located in a housing different from the computer 110.
  • references to a processor or computer will be understood to include references to a collection of processors or computers or memories that may or may not operate in parallel.
  • some components such as the steering assembly and the deceleration assembly, may each have their own processor that performs only calculations related to the functions specific to the component.
  • the processor may be located remote from the vehicle and in wireless communication with the vehicle. In other aspects, some of the processes described herein are performed on a processor disposed within the vehicle and others are performed by a remote processor, including taking the necessary steps to perform a single maneuver.
  • the memory 114 may contain instructions 115 (e.g., program logic) that may be executed by the processor to perform various functions of the vehicle 100, including those described above.
  • the memory 114 may also contain additional instructions, including instructions to send data to, receive data from, interact with, and/or control one or more of the propulsion system 102, the sensor system 104, the control system 106, and the peripherals 108.
  • memory 114 may also store data such as road maps, route information, the vehicle's location, direction, speed, and other such vehicle data, and other information. Such information may be used by vehicle 100 and computer system 101 during operation of vehicle 100 in autonomous, semi-autonomous, and/or manual modes.
  • the user interface 116 is used to provide information to or receive information from a user of the vehicle 100.
  • the user interface 116 may include one or more input/output devices within the set of peripherals 108, such as a wireless communication system 146, a vehicle computer 148, a microphone 150, and a speaker 152.
  • Computer system 101 may control functions of vehicle 100 based on input received from various subsystems (e.g., travel system 102, sensor system 104, and control system 106) and from user interface 116. For example, computer system 101 may utilize input from control system 106 in order to control steering unit 132 to avoid obstacles detected by sensor system 104 and obstacle avoidance system 144. In some embodiments, computer system 101 may be operable to provide control over many aspects of vehicle 100 and its subsystems.
  • various subsystems e.g., travel system 102, sensor system 104, and control system 106
  • control system 106 may utilize input from control system 106 in order to control steering unit 132 to avoid obstacles detected by sensor system 104 and obstacle avoidance system 144.
  • computer system 101 may be operable to provide control over many aspects of vehicle 100 and its subsystems.
  • one or more of the above-mentioned components may be installed or associated separately from the vehicle 100.
  • the memory 114 may exist partially or completely separately from the vehicle 100.
  • the above-mentioned components may be communicatively coupled together in a wired and/or wireless manner.
  • FIG. 5 should not be understood as a limitation on the embodiments of the present application.
  • An autonomous vehicle traveling on a road may identify objects in its surroundings to determine adjustments to the current speed.
  • the objects may be other vehicles, traffic control devices, or other types of objects.
  • the vehicle may be independently Each identified object is considered, and based on the object's respective characteristics, such as its current speed, acceleration, distance from the vehicle, etc., it can be used to determine the speed that the autonomous vehicle should adjust.
  • the autonomous vehicle 100 or a computing device associated with the autonomous vehicle 100 can predict the behavior of the identified objects based on the characteristics of the identified objects and the state of the surrounding environment (e.g., traffic, rain, ice on the road, etc.).
  • each of the identified objects depends on the behavior of each other, so all the identified objects can also be considered together to predict the behavior of a single identified object.
  • the vehicle 100 can adjust its speed based on the predicted behavior of the identified objects.
  • the autonomous vehicle can determine what stable state the vehicle will need to adjust to (e.g., accelerate, decelerate, or stop) based on the predicted behavior of the object.
  • other factors may also be considered to determine the speed of the vehicle 100, such as the lateral position of the vehicle 100 in the road it is traveling on, the curvature of the road, the proximity of static and dynamic objects, etc.
  • the computing device may also provide instructions to modify the steering angle of vehicle 100 so that the autonomous vehicle follows a given trajectory and/or maintains a safe lateral and longitudinal distance from objects near the autonomous vehicle (e.g., cars in adjacent lanes on the road).
  • objects near the autonomous vehicle e.g., cars in adjacent lanes on the road.
  • the vehicle 100 may be a car, a truck, a motorcycle, a bus, an entertainment vehicle, an amusement park vehicle, construction equipment, a tram, a golf cart, a train, etc., and the embodiments of the present application do not make any particular limitation.
  • the vehicle 100 shown in FIG5 may be equipped with an advanced driver assistance system for realizing the automatic driving function, and the advanced driver assistance system contains a large number of parameters that need to be calibrated.
  • the calibration implementation process of the vehicle's advanced driver assistance system mainly includes the calibration of the parameters of each subsystem in the execution layer, the perception layer and the functional layer.
  • the execution layer involves the calibration of the power system, the braking system, the steering system, the four-wheel alignment parameters and the suspension system.
  • the perception layer involves the calibration of GNSS and INS (Initial Navigation System, inertial navigation system), camera calibration, laser radar calibration, millimeter wave radar calibration, ultrasonic radar calibration, etc.
  • GNSS and INS Initial Navigation System, inertial navigation system
  • GNSS includes GPS (Global Position System), GLONASS (Global Navigation Satellite System), Galileo (Galileo navigation satellite system), BDS (Beidou satellite navigation system).
  • the functional layer involves the calibration of the vehicle longitudinal control module, the lateral control module, the basic ADAS function calibration, and the ADAS driving style calibration.
  • Longitudinal control is mainly speed control, which is achieved by controlling the brake, throttle, gear, etc.
  • the lateral control is mainly to control the heading, and the vehicle is driven in the desired direction by changing the torque or angle of the steering wheel.
  • ADAS basic functions include A C C (Adaptive Cruising System), LCC (Lane Center Control), ALC (Auto Lane Change, automatic lane change assistance), etc.
  • Driving style refers to the way of driving or the habitual driving method, which includes the choice of driving speed and the choice of driving distance. Driving styles include aggressive, stable, cautious, etc.
  • FIG. 6 is a schematic diagram of the structure of a computer system 101 in a vehicle provided by an embodiment of the present application.
  • the computer system 101 includes a processor 103, and the processor 103 is coupled to a system bus 105.
  • the processor 103 can be used to implement the functions of the processor described in FIG. 2.
  • the processor 103 can be one or more processors, each of which can include one or more processor cores.
  • the system bus 105 is coupled to the input and output (I/O) bus through a bus bridge 111.
  • the I/O interface 115 is coupled to the I/O bus.
  • the I/O interface 115 communicates with a variety of I/O devices, such as an input device 117 (such as: keyboard, mouse, touch screen, etc.), a multimedia disk (media tray) 121, (for example, CD-ROM, multimedia interface, etc.).
  • Transceiver 123 can send and/or receive radio communication signals
  • camera 155 can capture dynamic digital video images
  • external USB port 125 external USB port 125.
  • the interface connected to the I/O interface 115 may be a USB port.
  • the processor 103 may be any conventional processor, including a reduced instruction set computing (“RISC”) processor, a complex instruction set computing (“CISC”) processor, or a combination thereof.
  • the processor may be a dedicated device such as an application specific integrated circuit (“ASIC").
  • the processor 103 may be a neural network processor or a combination of a neural network processor and the conventional processors described above.
  • the computer system 101 may be located remotely from the autonomous vehicle and may communicate wirelessly with the autonomous vehicle.
  • some of the processes described herein are performed on a processor disposed within the autonomous vehicle, and others are performed by a remote processor, including taking actions required to perform a single maneuver.
  • the computer system 101 can communicate with the software deployment server 149 through the network interface 129.
  • the network interface 129 is a hardware network interface, such as a network card.
  • the network 127 can be an external network, such as the Internet, or an internal network, such as an Ethernet or a virtual private network (VPN).
  • the network 127 can also be a wireless network, such as a WiFi network, a cellular network, etc.
  • the hard disk drive interface is coupled to the system bus 105.
  • the hard disk drive interface is connected to the hard disk drive.
  • the system memory 135 is coupled to the system bus 105.
  • the data running in the system memory 135 may include the operating system 137 and application programs 143 of the computer 101.
  • the operating system consists of a shell 139 and a kernel 141.
  • Shell 139 is an interface between the user and the kernel of the operating system.
  • the shell is the outermost layer of the operating system.
  • the shell manages the interaction between the user and the operating system: it waits for user input, interprets user input to the operating system, and processes various operating system output results.
  • the kernel 141 consists of those parts of the operating system that manage memory, files, peripherals, and system resources. Interacting directly with the hardware, the operating system kernel usually runs processes and provides communication between processes, provides CPU time slice management, interrupts, memory management, IO management, etc.
  • the application 143 includes a program 147 related to steering wheel hand-off detection and a program related to controlling the automatic driving of the vehicle.
  • the program 147 related to steering wheel hand-off detection is used to process the capacitive signal transmitted by the processing module in the steering wheel detection system.
  • the computer system 101 can implement the steering wheel hand-off detection function described in FIG. 4 by executing the program 147 related to steering wheel hand-off detection, that is, to detect whether the steering wheel is in a hand-off state.
  • Programs related to controlling the autonomous driving of a car may include, for example, programs for managing the interaction between the autonomous driving car and obstacles on the road, programs for controlling the route or speed of the autonomous driving car, and programs for controlling the interaction between the autonomous driving car and other autonomous driving cars on the road.
  • Application 143 also exists on the system of deploying server 149.
  • the sensor 153 is associated with the computer system 101.
  • the sensor 153 is used to detect the environment around the computer system 101.
  • the sensor 153 can detect animals, cars, obstacles, and crosswalks, etc.
  • the sensor can also detect the environment around the above-mentioned animals, cars, obstacles, crosswalks, etc., such as: the environment around the animal, for example, other animals around the animal, weather conditions, the brightness of the surrounding environment, etc.
  • FIG. 7 is a schematic diagram of the structure of a steering wheel hand-off detection system provided in an embodiment of the present application.
  • a steering wheel hand-off detection system As shown in FIG. 7, on the outside of the steering wheel, from the outside to the inside, there are surface leather, a first conductive layer, an insulating layer, a second conductive layer and an insulating substrate wrapped in sequence.
  • the first conductive layer, the insulating layer and the second conductive layer are used to form a steering wheel hand-off detection system.
  • the steering wheel hand-off detection system also includes a processing module, which is not shown in FIG. 7.
  • the insulating layer is arranged between the first conductive layer and the second conductive layer, and the distance between the first conductive layer and the steering wheel surface is different from the distance between the second conductive layer and the steering wheel surface.
  • the first conductive layer is arranged on the outer layer of the steering wheel
  • the second conductive layer is arranged on the inner layer of the steering wheel, so the distance between the first conductive layer and the steering wheel surface is smaller than the distance between the second conductive layer and the steering wheel surface.
  • FIG7 is illustrated by taking the example that the first conductive layer is arranged on the outer layer of the steering wheel and the second conductive layer is arranged on the inner layer of the steering wheel.
  • the first conductive layer may also be arranged on the inner layer of the steering wheel, and the second conductive layer may be arranged on the outer layer of the steering wheel, so the distance between the first conductive layer and the steering wheel surface is greater than the distance between the second conductive layer and the steering wheel surface. This embodiment does not specifically limit this.
  • the processing module in the hands-off-steering-wheel detection system may be deployed on the steering wheel, or deployed in the vehicle's control system (e.g., the vehicle's central control system or the computer system 101 shown in FIG5 ). This embodiment does not limit the location where the processing module in the hands-off-steering-wheel detection system is deployed.
  • the processing module is used to identify the gripping state of the steering wheel based on the ratio between the first capacitance value and the second capacitance value, and further determine whether the steering wheel is in the hands-off state based on the gripping state of the steering wheel.
  • the first capacitance value is the capacitance value of the first conductive layer
  • the second capacitance value is the capacitance value of the second conductive layer.
  • the capacitance value ratio of the two conductive layers will be relatively large.
  • the capacitance value ratio of the two conductive layers will be relatively close.
  • the capacitance ratio of the conductive layer can effectively identify the two states of holding the steering wheel without gloves and holding the steering wheel with gloves, and then further determine whether the steering wheel is off the hand based on the identified steering wheel holding state, ensuring that steering wheel off-hand detection can be achieved in both cases of holding the steering wheel without gloves and with gloves.
  • the processing module may first obtain the first capacitance value of the first conductive layer and the second capacitance value of the second conductive layer, and select a first threshold for identifying whether the steering wheel is in a hands-off state based on the ratio between the two capacitance values, and then determine whether the steering wheel is in a hands-off state by comparing the first threshold with the capacitance value of the conductive layer.
  • the processing module can determine that the steering wheel is not in a hands-off state; when the first capacitance value or the second capacitance value is less than the first threshold, the processing module can determine that the steering wheel is in a hands-off state.
  • the first capacitance value and the second capacitance value are capacitance values of different conductive layers, respectively, these two capacitance values have different capacitance values in any steering wheel holding state, so the actual value of the first threshold value is also related to the first capacitance value or the second capacitance value compared therewith.
  • the first conductive layer is the conductive layer of the outer layer of the steering wheel and the second conductive layer is the conductive layer of the inner layer of the steering wheel
  • the first capacitance value of the first conductive layer is always greater than the second capacitance value of the second conductive layer.
  • the value of the first threshold value can be a relatively large value; if the first threshold value is compared with the second capacitance value to determine the state of the steering wheel being released, the value of the first threshold value can be a relatively small value.
  • the processing module may determine a coefficient based on the ratio between the first capacitance value of the first conductive layer and the second capacitance value of the second conductive layer. Then, the processing module multiplies the coefficient with the capacitance value of the conductive layer (e.g., the first capacitance value or the second capacitance value), and compares the multiplication result with a preset threshold value to determine whether the steering wheel is in a hands-off state. If the multiplication result is greater than or equal to the preset threshold value, the processing module may determine that the steering wheel is not in a hands-off state; if the multiplication result is less than the preset threshold value, the processing module may determine that the steering wheel is in a hands-off state.
  • the processing module may determine a coefficient based on the ratio between the first capacitance value of the first conductive layer and the second capacitance value of the second conductive layer. Then, the processing module multiplies the coefficient with the capacitance value of the conductive layer (e.g., the first capacit
  • the first capacitance value is the capacitance value of the outer conductive layer
  • the second capacitance value is the capacitance value of the inner conductive layer
  • the ratio between the first capacitance value and the second capacitance value has a negative correlation with the coefficient
  • the coefficient can be set to be smaller, so as to distinguish between the driver holding the steering wheel correctly without gloves and the driver touching the steering wheel with one finger without gloves.
  • the first capacitance value is the capacitance value of the inner conductive layer
  • the second capacitance value is the capacitance value of the outer conductive layer
  • the ratio between the first capacitance value and the second capacitance value has a positive correlation with the coefficient
  • the first conductive layer and the second conductive layer will generate an electric field after being energized.
  • the electric field generated by the first conductive layer will be affected by the contact of the hand and the second conductive layer, and the electric field generated by the second conductive layer will also be affected by the contact of the hand and the first conductive layer.
  • the change in electric field distribution caused by the driver's hand touching the steering wheel surface is much greater than the change in electric field distribution caused by the mutual influence of the two conductive layers, that is, the change in capacitance value corresponding to the first conductive layer and the second conductive layer is mainly affected by the driver's hand.
  • the driver's hand since the distance between the driver's hand and the outer conductive layer is smaller than the distance between it and the inner conductive layer, the driver's hand has a greater impact on the change in capacitance value of the outer conductive layer.
  • the capacitance value of the outer conductive layer is much greater than the capacitance value of the inner conductive layer.
  • the electric field distribution change caused by the driver wearing gloves touching the steering wheel surface is greatly reduced due to the influence of the thicker insulating gloves.
  • the first conductive layer and the second conductive layer The insulating layer between the first and second conductive layers is compressed and deformed by pressure, which causes the capacitance of the first conductive layer and the second conductive layer to change simultaneously due to the shortened distance.
  • the change in electric field distribution caused by the driver wearing gloves and touching the steering wheel surface is smaller than the change in electric field distribution caused by the mutual influence of the two conductive layers, that is, the change in capacitance of the first conductive layer and the second conductive layer is mainly affected by each other.
  • the capacitance of the outer conductive layer is close to that of the inner conductive layer.
  • the change in electric field distribution caused by the driver's fingers touching the surface of the steering wheel is also greater than the change in electric field distribution caused by the mutual influence of the two conductive layers, that is, the change in capacitance corresponding to the first conductive layer and the second conductive layer is also mainly affected by the driver's fingers.
  • the distance between the driver's hand and the outer conductive layer is smaller than the distance between it and the inner conductive layer, the driver's hand has a greater impact on the change in capacitance of the outer conductive layer. In other words, when the driver is holding the steering wheel without wearing gloves, the capacitance of the outer conductive layer is also much greater than the capacitance of the inner conductive layer.
  • a threshold value for detecting whether the steering wheel is in a hands-off state can be determined based on the ratio. For any conductive layer, the capacitance value of the conductive layer when the driver is not wearing gloves is greater than the capacitance value when the driver is wearing gloves. Therefore, when it is identified that the driver is not wearing gloves, a threshold value with a larger value can be determined to detect whether the steering wheel is in a hands-off state; when it is identified that the driver is wearing gloves, a threshold value with a smaller value can be determined to detect whether the steering wheel is in a hands-off state.
  • the first capacitance value is the capacitance value of the outer conductive layer
  • the second capacitance value is the capacitance value of the inner conductive layer
  • the ratio between the first capacitance value and the second capacitance value has a positive correlation with the first threshold value
  • the first threshold value can also be set larger; the smaller the ratio between the first capacitance value of the first conductive layer and the second capacitance value of the second conductive layer, the smaller the influence of the driver's hand on the capacitance value of the first conductive layer (that is, the driver is wearing gloves), so the first threshold value can also be set smaller.
  • the first capacitance value is the capacitance value of the inner conductive layer
  • the second capacitance value is the capacitance value of the outer conductive layer
  • the ratio between the first capacitance value and the second capacitance value has a negative correlation with the first threshold
  • the first conductive layer and the second conductive layer can both output a relatively high capacitance value
  • the first conductive layer and the second conductive layer are flexible conductive layers
  • the insulating layer is a compressibly deformable elastic insulating layer.
  • the first conductive layer, the second conductive layer and the insulating layer can produce compressive deformation, so that the first conductive layer and the second conductive layer can both output a relatively high capacitance value, so as to improve the accuracy of capacitance value detection and ensure the accuracy of the final recognition of the steering wheel hand-off state.
  • first conductive layer and the second conductive layer are not flexible conductive layers and the insulating layer is not an elastic insulating layer
  • the first conductive layer and the second conductive layer in this embodiment can also output similar capacitance values, thereby ensuring the detection of the steering wheel hands-off state under different circumstances.
  • FIG. 8 is a schematic diagram comparing the capacitance values of a steering wheel detection system provided in an embodiment of the present application under different holding states.
  • the outer conductive layer on the steering wheel can output a higher capacitance value
  • the inner conductive layer on the steering wheel can also output a relatively high capacitance value.
  • the outer conductive layer on the steering wheel is affected by the fingers more than the inner conductive layer, the capacitance value output by the outer conductive layer on the steering wheel is much greater than the capacitance value output by the inner conductive layer.
  • a trigger threshold with a larger value i.e., the first threshold value mentioned above
  • the capacitance value output by the outer conductive layer is greater than the trigger threshold, Therefore, it can be determined that the driver is holding the steering wheel, that is, the steering wheel is not in a hands-off state.
  • the outer conductive layer on the steering wheel When the driver does not wear gloves and puts a single finger on the steering wheel, the outer conductive layer on the steering wheel outputs a low capacitance value, while the inner conductive layer on the steering wheel outputs a lower capacitance value. Moreover, since the outer conductive layer on the steering wheel is affected by the finger more than the inner conductive layer, the capacitance value output by the outer conductive layer on the steering wheel is several times the capacitance value output by the inner conductive layer. That is, the ratio between the capacitance value output by the outer conductive layer and the capacitance value output by the inner conductive layer is also a large value.
  • a trigger threshold with a larger value i.e., the first threshold value mentioned above
  • the capacitance value output by the outer conductive layer is less than the trigger threshold, it can be determined that the driver is not holding the steering wheel, that is, the steering wheel is in a hand-off state.
  • both the outer conductive layer and the inner conductive layer on the steering wheel output low capacitance values.
  • the capacitance value output by the outer conductive layer on the steering wheel is also close to the capacitance value output by the inner conductive layer, that is, the ratio between the capacitance value output by the outer conductive layer and the capacitance value output by the inner conductive layer is small.
  • a trigger threshold with a smaller value can be determined. In this way, when the trigger threshold is small, the capacitance value output by the outer conductive layer is greater than the trigger threshold, so it can be determined that the driver is holding the steering wheel, that is, the steering wheel is not in a hand-off state.
  • the steering wheel detection system is based on the capacitance ratio of the two conductive layers, and can effectively identify the two states of holding the steering wheel without gloves and holding the steering wheel with gloves. Then, based on the identified steering wheel holding state, the corresponding threshold is selected and combined with the capacitance value of the conductive layer to determine whether the steering wheel is off the hand, thereby ensuring that steering wheel off-hand detection can be achieved in both cases of holding the steering wheel without gloves and with gloves.
  • Figure 9 is a schematic diagram of the workflow of a steering wheel hand-off detection system provided in an embodiment of the present application.
  • the workflow of the steering wheel hand-off detection system includes the following steps 901-905.
  • Step 901 A capacitance reading module reads a first capacitance value of a first conductive layer and a second capacitance value of a second conductive layer.
  • the capacitance reading module is specifically used to read the capacitance values of the first conductive layer and the second conductive layer in the steering wheel hand-off detection system. Moreover, during the driving process of the vehicle, the capacitance reading module can read the first capacitance value of the first conductive layer and the second capacitance value of the second conductive layer in real time, so as to identify in real time whether the steering wheel is in a hand-off state. In addition, the capacitance reading module can also start working in a specific driving mode. For example, when the vehicle enters the automatic driving mode, the capacitance reading module starts working, so as to identify in real time whether the steering wheel is in a hand-off state in the automatic driving mode.
  • the implementation method of the capacitance reading module can refer to the existing capacitance value reading structure, and this embodiment does not specifically limit it.
  • the capacitance reading module can be deployed on the steering wheel as a part of the steering wheel detection system.
  • the capacitance reading module can also be integrated into the processing module in the steering wheel detection system. This embodiment does not specifically limit the setting method of the capacitance reading module.
  • step 902 the processing module obtains the first capacitance value and the second capacitance value read by the capacitance reading module, and determines a first threshold value based on the ratio between the first capacitance value and the second capacitance value.
  • the ratio between the first capacitance value and the second capacitance value has a mapping relationship with the first threshold value, and different ratios can determine first threshold values of different sizes.
  • the method of determining the first threshold value based on the ratio between the first capacitance value and the second capacitance value can refer to the description of the above embodiment, which will not be repeated here.
  • Step 903 The processing module determines whether the first capacitance value is greater than or equal to a first threshold.
  • the processing module may also implement steering wheel hands-off detection by comparing the first threshold value with the second capacitance value, which is not specifically limited here.
  • Step 904 If the first capacitance value is greater than or equal to the first threshold value, the processing module determines that the steering wheel is not in a hands-off state.
  • Step 905 If the first capacitance value is less than the first threshold value, the processing module determines that the steering wheel is in a hands-off state, and controls the output of an alarm message, where the alarm message is used to prompt that the steering wheel is in a hands-off state.
  • the warning information output by the processing module can be text information, image information or voice information.
  • the processing module outputs text information through the central control display screen or instrument panel on the vehicle, and the text information is specifically "Please hold the steering wheel tightly, otherwise The vehicle will exit autonomous driving in 5 seconds.”
  • the processing module outputs an image through the central control display screen or the instrument panel on the vehicle. The image can be a simple icon of two hands holding the steering wheel tightly to prompt the driver to hold the steering wheel tightly.
  • the processing module outputs a voice message through the speaker on the vehicle. The voice message can also be "Please hold the steering wheel tightly, otherwise the vehicle will exit autonomous driving in 5 seconds" to remind the driver to hold the steering wheel tightly in time.
  • the processing module When the processing module detects that the first capacitance value is less than the first threshold value, the processing module continuously controls the output of the alarm information. In addition, the processing module continuously executes the above steps 901-903 to determine whether the steering wheel is in the hands-off state at each moment. When the processing module determines that the steering wheel is still in the hands-off state, the processing module continues to control the output of the alarm information; when the processing module determines that the steering wheel is not in the hands-off state, the processing module controls the output of the alarm information.
  • the processing module controls the continuous output of the warning information until the steering wheel is no longer in the hands-off state.
  • the above introduces the process of realizing steering wheel hand-off detection based on the first conductive layer and the second conductive layer in the steering wheel hand-off detection system.
  • the following introduces some possible designs of the first conductive layer and the second conductive layer in the steering wheel hand-off detection system.
  • the first conductive layer includes a plurality of first parts, and there is a gap between any two adjacent parts of the plurality of first parts.
  • the second conductive layer includes a plurality of second parts, and there is a gap between any two adjacent parts of the plurality of second parts.
  • the plurality of first parts in the first conductive layer are a comb-tooth structure, that is, the plurality of first parts are parallel to each other, and the tops of the plurality of first parts are connected together by a long strip-shaped structure. That is, the plurality of first parts can be regarded as a plurality of tooth-shaped structures in a comb-tooth structure.
  • the plurality of second parts in the second conductive layer are also a comb-tooth structure, that is, the plurality of second parts are parallel to each other, and the tops of the plurality of second parts are connected together by a long strip-shaped structure. That is, the plurality of second parts can also be regarded as a plurality of tooth-shaped structures in a comb-tooth structure.
  • the plurality of first portions are staggered with the plurality of second portions. Specifically, since the first conductive layer and the second conductive layer are at different distances from the surface of the steering wheel, it can be considered that the first conductive layer and the second conductive layer are on different planes in the direction from the surface of the steering wheel to the inside of the steering wheel. Furthermore, along the direction from the surface of the steering wheel to the inside of the steering wheel, the plurality of first portions are staggered with the plurality of second portions, that is, the first portion and the second portion do not overlap.
  • FIG. 10 is a schematic diagram of a structural comparison of a steering wheel detection system provided in an embodiment of the present application.
  • the first conductive layer and the second conductive layer are flat-plate structures
  • the first conductive layer and the second conductive layer can be regarded as a long strip shape for including the surface of the steering wheel. In the direction from the surface of the steering wheel to the inside of the steering wheel, most areas of the flat-plate-shaped first conductive layer and the second conductive layer overlap.
  • the first conductive layer and the second conductive layer when the first conductive layer and the second conductive layer are comb-tooth structures, the first conductive layer and the second conductive layer can be regarded as long comb-tooth structures for wrapping the surface of the steering wheel.
  • the multiple first portions on the first conductive layer and the multiple second portions on the second conductive layer are staggered, so that most areas of the first conductive layer and the second conductive layer in this direction do not overlap.
  • the overlapping area of the first conductive layer and the second conductive layer in the longitudinal direction can be reduced, thereby reducing the capacitive reading noise of the first conductive layer and the second conductive layer, and improving the detection accuracy of the steering wheel hand-off detection system.
  • the length of each of the plurality of first portions and the plurality of second portions is less than a second threshold, wherein the length of each portion is the length of each portion in the rotation direction of the steering wheel.
  • the length of each portion in the rotation direction of the steering wheel can be regarded as the width of the tooth structure.
  • the length of each part can be set to be less than the second threshold value to ensure that the contact area between the two conductive layers and the driver's hand is as close as possible.
  • the number of parts on each conductive layer touched by the driver's hand may be different, which results in the driver's hand contacting different conductive layers.
  • the driver's hand contacts 5 first parts on the first conductive layer and 4 second parts on the second conductive layer. Since the length of each part is large, the difference of one part will also cause a large difference in the area where the driver's hand contacts different conductive layers, which is easy to affect the capacitance value output by the conductive layer.
  • the length of each part on the conductive layer is set to be small, even if the number of parts on each conductive layer touched by the driver's hand may be different, since the length of each part is set to be small, the contact area of the driver's hand on different conductive layers may not be much different.
  • the driver's hand touches 1000 first parts on the first conductive layer and 999 second parts on the second conductive layer. Since the length of each part is small, when there is only a difference of one part, the area of contact between the driver's hand and different conductive layers is very close, avoiding affecting the capacitance value output by the conductive layer.
  • the second threshold may be determined comprehensively based on manufacturing cost and precision requirements.
  • the second threshold is 1 mm, 2 mm or 5 mm.
  • the specific value of the second threshold is not limited herein.
  • first conductive layer and the second conductive layer are introduced above, and the materials of the first conductive layer, the second conductive layer and the insulating layer are introduced below.
  • the first conductive layer and the second conductive layer can be implemented in various ways.
  • the first conductive layer and the second conductive layer can be conductive fabrics woven from conductive fibers to form conductive layers; or, the first conductive layer and the second conductive layer can be conductive layers formed by sewing conductive fibers on the surface leather and the surface of the insulating substrate.
  • the conductive fiber can be made by coating a conductive coating (metal particles, carbon nanomaterials, silver nanowires, etc.) on the outer surface of a common fiber (such as plant fiber, synthetic fiber, artificial fiber, etc.).
  • a common fiber such as plant fiber, synthetic fiber, artificial fiber, etc.
  • the conductive fiber can also be a fiber that is conductive itself, such as stainless steel fiber, metal fiber, etc.
  • the first conductive layer and the second conductive layer can be formed by printing conductive materials on the surface leather and the surface of the insulating substrate, wherein the conductive materials include conductive ink, conductive resin, conductive silver paste and the like.
  • the first conductive layer and the second conductive layer can also be formed by printing conductive polymer on the surface leather and the insulating substrate surface.
  • the conductive polymer material can be made by mixing nano conductive materials such as carbon and silver into a polymer substrate such as silica gel, PDMS, PU, etc.
  • the first conductive layer and the second conductive layer can be made of flexible film conductive layers as electrodes, the two electrodes are made of metal materials such as gold, copper, aluminum, etc., and the middle insulating layer can be a polyimide film, PET film, etc.
  • the insulating layer between the first conductive layer and the second conductive layer may be made of materials such as leather, non-conductive fabric, polyimide, PET and elastic polymer, including silicone, PDMS, PU and the like.
  • the first conductive layer, the second conductive layer and the insulating layer may also be made of other conductive materials and insulating materials, which is not limited in this embodiment.
  • the first conductive layer includes a plurality of sub-conductive layers, the plurality of sub-conductive layers are not electrically connected to each other, and the plurality of sub-conductive layers are distributed in different areas on the steering wheel along the direction of rotation of the steering wheel, wherein the first capacitance value mentioned above is the largest capacitance value among the plurality of capacitance values corresponding to the plurality of sub-conductive layers, that is, in the process of steering wheel hand-off detection, the capacitance value corresponding to the sub-conductive layer with the largest capacitance value among the plurality of sub-conductive layers may be selected to perform hand-off detection.
  • the capacitance value corresponding to the sub-conductive layer with the largest capacitance value among the plurality of sub-conductive layers may be selected to perform hand-off detection.
  • Figure 11 is a structural schematic diagram of a steering wheel detection system provided in an embodiment of the present application.
  • the first conductive layer includes 4 sub-conductive layers, and the 4 sub-conductive layers are respectively deployed at different positions (i.e., the upper left corner position, the upper right corner position, the lower left corner position and the lower right corner position).
  • the sub-conductive layer Since there is no electrical connection between the sub-conductive layers, only when the position where the sub-conductive layer is deployed is held by the driver's hand, the sub-conductive layer will output the corresponding capacitance value. Therefore, the position where the driver's hand holds the steering wheel is determined based on the capacitance value of each sub-conductive layer.
  • FIG. 11 is an example of a first conductive layer including four sub-conductive layers.
  • the number of sub-conductive layers included in the layer may also be other numbers, such as 2, 6, 8 or 10, etc., which is not specifically limited in this embodiment.
  • the second conductive layer can also include multiple sub-conductive layers, that is, both sub-conductive layers are provided with multiple sub-conductive layers.
  • Figure 12 is another structural schematic diagram of a steering wheel detection system provided in an embodiment of the present application. As shown in Figure 12, from the surface of the steering wheel to the inside of the steering wheel, surface leather, a first conductive layer, an insulating layer, a second conductive layer, an insulating base and a steering wheel are sequentially arranged.
  • the first conductive layer includes 4 sub-conductive layers
  • the second conductive layer also includes 4 sub-conductive layers, and the sub-conductive layers deployed at the same position in the first conductive layer and the second conductive layer cooperate with each other to realize steering wheel hand-off detection.
  • the position of the driver's hand holding the steering wheel can be determined based on the capacitance value of each sub-conductive layer, and then some interactive functions can be triggered based on the changes in the position of holding the steering wheel.
  • the processing module may also be used to control the output of the first instruction based on the maximum values of the capacitance values of the two adjacent sub-conductive layers within the preset time being greater than or equal to the third threshold value.
  • the third threshold value may be related to the above-mentioned first threshold value. The larger the first threshold value, the larger the third threshold value, and the smaller the first threshold value, the smaller the third threshold value. For example, in the case where the first threshold value is used for comparison with the first capacitance value of the first conductive layer, the third threshold value may be the same as the first threshold value.
  • the preset time may be, for example, 0.5 seconds or 1 second, etc., and this embodiment does not specifically limit this.
  • the first instruction may include but is not limited to the following instructions: answering a call, rejecting a call, switching songs, adjusting the volume, adjusting the air-conditioning temperature, raising or lowering windows, or adjusting seats.
  • FIG. 13 is a schematic diagram of triggering interaction with a vehicle by sliding a hand holding a steering wheel provided in an embodiment of the present application.
  • the first conductive layer of the steering wheel detection system includes 8 sub-conductive layers, and the 8 sub-conductive layers are respectively deployed at different positions around the steering wheel.
  • the driver's smartphone receives an incoming call, and the central control screen on the vehicle simultaneously displays the incoming call information to prompt the driver to handle the call.
  • the driver's right hand is held on the second sub-conductive layer on the right side of the steering wheel, that is, the second sub-conductive layer outputs a capacitance value greater than the third threshold.
  • the driver's right hand slides clockwise on the steering wheel, the driver's right hand quickly slides from the second sub-conductive layer on the right side of the steering wheel to the third sub-conductive layer on the right side of the steering wheel, so the third sub-conductive layer also outputs a capacitance value greater than the third threshold.
  • the processing module in the steering wheel hands-off detection system detects that the capacitance values output by the second sub-conductive layer and the third sub-conductive layer within the preset time are both greater than the third threshold, and then controls the output of the answering call instruction to answer the call.
  • the position of the driver's hand holding the steering wheel can be judged based on the capacitance values output by the multiple sub-conductive layers, and then the interaction between the driver and the vehicle can be triggered based on the changes in the holding position of the driver's hand, so that the driver can interact with the vehicle without taking his hands off the steering wheel, thereby ensuring driving safety.
  • the processing module can also control the output of the first instruction only when it detects that one of the driver's hands is tightly holding the steering wheel and the other hand of the driver is sliding on the steering wheel.
  • the processing module can control the output of the first instruction when it detects that the capacitance value output by one sub-conductive layer is always greater than the first threshold value, and the maximum capacitance value output by the other two sub-conductive layers is greater than or equal to the third threshold value within a preset time.
  • the processing module in the steering wheel hand-off detection system triggers the output of the first instruction by detecting the driver's hand sliding on the steering wheel.
  • the processing module in the steering wheel hand-off detection system can also determine the type of trigger output instruction by detecting the direction in which the driver's hand slides on the steering wheel. That is, if the driver's hand slides in different directions on the steering wheel, the instructions controlled by the processing module to output are also different.
  • the processing module is further used to control the output of the first sub-instruction or the second sub-instruction based on the positions of the first sub-conductive layer and the second sub-conductive layer, and the above-mentioned first instruction includes the first sub-instruction and the second sub-instruction.
  • the first sub-conductive layer and the second sub-conductive layer are two adjacent sub-conductive layers, and the maximum capacitance value of the first sub-conductive layer appears earlier than the maximum capacitance value of the second sub-conductive layer within the preset time. That is, the driver's hand slides from the position of the first sub-conductive layer to the position of the second conductive layer, so the first sub-conductive layer outputs the maximum capacitance value first, and then the second sub-conductive layer outputs the maximum capacitance value.
  • the processing module can determine that the driver's hand is sliding in a clockwise direction; if the first sub-conductive layer and the second sub-conductive layer are arranged in a counterclockwise direction on the steering wheel, the processing module can determine that the driver's hand is sliding in a counterclockwise direction. In other words, the processing module can determine the sliding direction of the driver's hand based on the positional relationship between the first sub-conductive layer and the second sub-conductive layer, thereby controlling the output of the corresponding instruction.
  • the processing module determines that the driver's hand is sliding in a clockwise direction, the first sub-instruction is controlled to be output, and the first sub-instruction is, for example, answering a call, switching to the next song, turning up the volume, turning up the air conditioning temperature, raising the window, or raising the seat position; if the processing module determines that the driver's hand is sliding in a counterclockwise direction, the second sub-instruction is controlled to be output, and the second sub-instruction is, for example, rejecting a call, switching to the previous song, turning down the volume, turning down the air conditioning temperature, lowering the window, or lowering the seat position.
  • Figure 13 is a schematic diagram of triggering interaction with a vehicle by sliding a hand holding a steering wheel provided in an embodiment of the present application
  • Figure 14 is another schematic diagram of triggering interaction with a vehicle by sliding a hand holding a steering wheel provided in an embodiment of the present application.
  • the central control screen on the vehicle displays an incoming call message
  • the processing module detects that the driver's hand is sliding in a clockwise direction
  • the control output is output to answer the call, thereby answering the call.
  • the processing module of the steering wheel hand-off detection system controls the output of instructions by detecting the sliding of the driver's hands on the steering wheel to realize the process of interaction between the driver and the vehicle.
  • the processing module in the steering wheel hand-off detection system can also detect the strength of the driver's hand holding the steering wheel, and then determine the driver's state or intention, thereby controlling the output of other instructions to realize more ways of interaction between the driver and the vehicle.
  • the processing module determines that the steering wheel is not in a hands-off state
  • the processing module is also used to control the output of a second instruction based on the grip force of the steering wheel or the change in the grip force of the steering wheel within a preset time range.
  • the processing module may control the output of a second instruction based on the grip force of the steering wheel being greater than or equal to a fourth threshold, and the second instruction may be, for example, answering a call, rejecting a call, switching songs, adjusting the volume, adjusting the air conditioning temperature, raising and lowering windows, or adjusting seats.
  • the fourth threshold may be a larger threshold.
  • the processing module may control the output of the second instruction based on the gradual increase in the grip force of the steering wheel within a preset time range.
  • the preset time range may be, for example, a smaller time range such as 1 second or 2 seconds.
  • the second instruction may be, for example, answering a call, rejecting a call, switching songs, adjusting the volume, adjusting the air conditioning temperature, raising or lowering a window, or adjusting a seat.
  • the processing module may control the output of a second instruction based on the fact that the grip of the steering wheel gradually decreases within a preset time range.
  • the preset time range may be, for example, a larger time range such as 1 hour, 2 hours or 4 hours.
  • the second instruction may be, for example, a prompt message "You are driving fatigued, please take a rest” displayed on the central control display or instrument panel, or a voice message "You are driving fatigued, please take a rest”.
  • the processing module detects that the grip of the steering wheel gradually decreases within a certain time range, it may be considered that the driver has gradually entered a fatigue state, thereby reminding the driver to take a rest to ensure driving safety.
  • the contact area between the driver's hand and the steering wheel is different, and the distance between the driver's hand and the first conductive layer and the second conductive layer on the steering wheel is also different.
  • the capacitance value output by the first conductive layer and the second conductive layer is related to the force with which the driver holds the steering wheel.
  • the steering wheel hands-off detection system detects the state of the driver's hands holding the steering wheel (i.e. holding the steering wheel with gloves or holding the steering wheel without gloves), the capacitance value of the first conductive layer or the second conductive layer can be converted into the grip force through a certain mapping coefficient.
  • the processing module is further used to determine a mapping coefficient based on the ratio between the first capacitance value and the second capacitance value, and determine the grip strength of the steering wheel according to the mapping coefficient and the first capacitance value.
  • the ratio between the first capacitance value and the second capacitance value reflects the state of the driver's hand holding the steering wheel, and the state of the driver's hand holding the steering wheel determines the mapping relationship between the capacitance value and the grip strength
  • the above-mentioned mapping coefficient is related to the ratio between the first capacitance value and the second capacitance value.
  • the processing module in the steering wheel hands-off detection system determines the driver's state or intention by detecting the strength of the driver's hands holding the steering wheel, thereby controlling the output of other instructions, enabling more ways for the driver to interact with the vehicle.
  • An embodiment of the present application also provides a method for detecting hands-off steering wheel, which is applied to a processing module in a steering wheel hands-off steering wheel detection system.
  • the system includes a first conductive layer, a second conductive layer, an insulating layer and a processing module.
  • the insulating layer is arranged between the first conductive layer and the second conductive layer, and the distance between the first conductive layer and the steering wheel surface is different from the distance between the second conductive layer and the steering wheel surface.
  • the method includes: obtaining a first capacitance value and a second capacitance value, wherein the first capacitance value is a capacitance value of the first conductive layer, and the second capacitance value is a capacitance value of the second conductive layer;
  • Whether the steering wheel is in a hands-off state is determined based on a ratio between the first capacitance value and the second capacitance value.
  • determining whether the steering wheel is in a hands-off state based on a ratio between the first capacitance value and the second capacitance value is specifically as follows:
  • a first threshold is determined based on a ratio between a first capacitance value and a second capacitance value, and whether the steering wheel is in a hands-off state is determined by comparing the first capacitance value or the second capacitance value with the first threshold value;
  • the ratio has a positive correlation with the first threshold value
  • the ratio has a negative correlation with the first threshold.
  • determining whether the steering wheel is in a hands-off state by comparing the first capacitance value or the second capacitance value with the first threshold value includes:
  • the method further includes:
  • a control is performed to output an alarm message, where the alarm message is used to prompt that the steering wheel is in the hands-off state.
  • the first conductive layer includes a plurality of sub-conductive layers, the plurality of sub-conductive layers are not electrically connected to each other, and the plurality of sub-conductive layers are distributed in different areas on the steering wheel along the rotation direction of the steering wheel, and the first capacitance value is a maximum capacitance value among a plurality of capacitance values corresponding to the plurality of sub-conductive layers;
  • the method further includes:
  • the first instruction is controlled to be output.
  • the method further includes:
  • the first sub-conductive layer and the second sub-conductive layer are the two adjacent sub-conductive layers, and the maximum capacitance value of the first sub-conductive layer appears earlier than the maximum capacitance value of the second sub-conductive layer within the preset time.
  • the first instruction includes: answering a call, rejecting a call, switching songs, adjusting the volume, adjusting the air-conditioning temperature, raising or lowering a window, or adjusting a seat.
  • the method further includes:
  • control is performed to output a second instruction.
  • the method further includes:
  • a mapping coefficient is determined based on the ratio, and a grip force of the steering wheel is determined according to the mapping coefficient and the first capacitance value.
  • FIG. 15 is a schematic diagram of the structure of a processing module provided in an embodiment of the present application.
  • the processing module 1500 can be specifically expressed as a microcontroller unit (MCU), a chip, a chip system or a circuit system, etc., which is not limited here.
  • the processing module 1500 includes: a transceiver 1501, a processor 1502 and a memory 1503 (wherein the number of processors 1502 in the processing module 1500 can be one or more, and one processor is taken as an example in Figure 15), wherein the processor 1502 may include an application processor 15021 and a communication processor 15022.
  • the transceiver 1501, the processor 1502 and the memory 1503 may be connected via a bus or other means.
  • the memory 1503 may include a read-only memory and a random access memory, and provides instructions and data to the processor 1502. A portion of the memory 1503 may also include a non-volatile random access memory (NVRAM).
  • NVRAM non-volatile random access memory
  • the memory 1503 stores processor and operation instructions, executable modules or data structures, or subsets thereof, or extended sets thereof, wherein the operation instructions may include various operation instructions for implementing various operations.
  • the processor 1502 controls the operation of the hands-off-steering-wheel detection system.
  • the various components of the hands-off-steering-wheel detection system are coupled together through a bus system, wherein the bus system includes not only a data bus but also a power bus, a control bus, and a status signal bus, etc.
  • the bus system includes not only a data bus but also a power bus, a control bus, and a status signal bus, etc.
  • various buses are referred to as bus systems in the figure.
  • the method disclosed in the above embodiment of the present application can be applied to the processor 1502, or implemented by the processor 1502.
  • the processor 1502 can be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the above method can be completed by the hardware integrated logic circuit in the processor 1502 or the instruction in the form of software.
  • the above processor 1502 can be a general processor, a digital signal processor (digital signal processing, DSP), a microprocessor or a microcontroller, and can further include an application specific integrated circuit (application specific integrated circuit, ASIC), a field programmable gate array (field-programmable gate array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the processor 1502 can implement or execute the various methods, steps and logic block diagrams disclosed in the embodiment of the present application.
  • the general processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to be executed, or a combination of hardware and software modules in the decoding processor can be executed.
  • the software module may be located in a storage medium mature in the art, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory 1503, and the processor 1502 reads the information in the memory 1503 and completes the steps of the above method in combination with its hardware.
  • the transceiver 1501 (e.g., a network card) can be used to receive input digital or character information and generate signal input related to the relevant settings and function control of the processing module.
  • the transceiver 1501 can also be used to output digital or character information through the first interface; and send instructions to the disk group through the first interface to modify the data in the disk group.
  • the processing module provided in the embodiment of the present application may be a chip, which includes: a processing unit and a communication unit, wherein the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin or a circuit.
  • the processing unit may execute the computer-executable instructions stored in the storage unit, so that the chip in the processing module executes the method for selecting model hyperparameters described in the above embodiment, or, So that the chip in the training device executes the method for selecting the model hyperparameters described in the above embodiment.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit can also be a storage unit located outside the chip in the wireless access device, such as a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (RAM), etc.
  • FIG. 16 is a schematic diagram of a structure of a chip provided in an embodiment of the present application; the chip can be a neural network processor NPU 1600, which is mounted on the host CPU (Host CPU) as a coprocessor and assigned tasks by the Host CPU.
  • the core part of the NPU is the operation circuit 1603, which is controlled by the controller 1604 to extract matrix data from the memory and perform multiplication operations.
  • the operation circuit 1603 includes multiple processing units (Process Engine, PE) inside.
  • the operation circuit 1603 is a two-dimensional systolic array.
  • the operation circuit 1603 can also be a one-dimensional systolic array or other electronic circuits capable of performing mathematical operations such as multiplication and addition.
  • the operation circuit 1603 is a general-purpose matrix processor.
  • the operation circuit takes the corresponding data of matrix B from the weight memory 1602 and caches it on each PE in the operation circuit.
  • the operation circuit takes the matrix A data from the input memory 1601 and performs matrix operation with matrix B, and the partial result or final result of the matrix is stored in the accumulator 1608.
  • the unified memory 1606 is used to store input data and output data.
  • the weight data is directly transferred to the weight memory 1602 through the direct memory access controller (DMAC) 1605.
  • the input data is also transferred to the unified memory 1606 through the DMAC.
  • DMAC direct memory access controller
  • BIU stands for Bus Interface Unit, that is, the bus interface unit 1610, which is used for the interaction between AXI bus and DMAC and instruction fetch buffer (IFB) 1609.
  • IOB instruction fetch buffer
  • the bus interface unit 1610 (BIU) is used for the instruction fetch memory 1609 to obtain instructions from the external memory, and is also used for the storage unit access controller 1605 to obtain the original data of the input matrix A or the weight matrix B from the external memory.
  • DMAC is mainly used to transfer input data in the external memory DDR to the unified memory 1606 or to transfer weight data to the weight memory 1602 or to transfer input data to the input memory 1601.
  • the vector calculation unit 1607 includes multiple operation processing units, and further processes the output of the operation circuit 1603 when necessary, such as vector multiplication, vector addition, exponential operation, logarithmic operation, size comparison, etc. It is mainly used for non-convolutional/fully connected layer network calculations in neural networks, such as Batch Normalization, pixel-level summation, upsampling of feature planes, etc.
  • the vector calculation unit 1607 can store the processed output vector to the unified memory 1606.
  • the vector calculation unit 1607 can apply a linear function; or a nonlinear function to the output of the operation circuit 1603, such as linear interpolation of the feature plane extracted by the convolution layer, and then, for example, a vector of accumulated values to generate an activation value.
  • the vector calculation unit 1607 generates a normalized value, a pixel-level summed value, or both.
  • the processed output vector can be used as an activation input to the operation circuit 1603, for example, for use in a subsequent layer in a neural network.
  • An instruction fetch buffer 1609 connected to the controller 1604 is used to store instructions used by the controller 1604;
  • Unified memory 1606, input memory 1601, weight memory 1602 and instruction fetch memory 1609 are all on-chip memories. External memories are private to the NPU hardware architecture.
  • the processor mentioned in any of the above places may be a general-purpose central processing unit, a microprocessor, an ASIC, or one or more integrated circuits for controlling the execution of the above program.
  • Figure 17 is a schematic diagram of the structure of a computer-readable storage medium provided in an embodiment of the present application.
  • the present application also provides a computer-readable storage medium.
  • the method disclosed above can be implemented as computer program instructions encoded in a machine-readable format on a computer-readable storage medium or encoded on other non-transitory media or products.
  • FIG. 17 schematically illustrates a conceptual partial view of an example computer-readable storage medium including a computer program for executing a computer process on a computing device, arranged in accordance with at least some embodiments presented herein.
  • the computer readable storage medium 1700 is provided using a signal bearing medium 1701.
  • the signal bearing medium 1701 may include one or more program instructions 1702, which when executed by one or more processors may provide the functions described above with respect to FIG. Or part of the functionality.
  • the program instructions 1702 in Figure 17 also describe example instructions.
  • the signal bearing medium 1701 may include a computer readable medium 1703 such as, but not limited to, a hard drive, a compact disk (CD), a digital video disk (DVD), a digital tape, a memory, a ROM or RAM, and the like.
  • a computer readable medium 1703 such as, but not limited to, a hard drive, a compact disk (CD), a digital video disk (DVD), a digital tape, a memory, a ROM or RAM, and the like.
  • the signal bearing medium 1701 may include a computer recordable medium 1704, such as, but not limited to, a memory, a read/write (R/W) CD, a R/W DVD, etc.
  • the signal bearing medium 1701 may include a communication medium 1705, such as, but not limited to, a digital and/or analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communication link, a wireless communication link, etc.).
  • a wireless form of the communication medium 1705 e.g., a wireless communication medium complying with the IEEE 802 standard or other transmission protocol.
  • the one or more program instructions 1702 may be, for example, computer executable instructions or logic implementation instructions.
  • the computing device of the computing device may be configured to provide various operations, functions, or actions in response to the program instructions 1702 communicated to the computing device via one or more of the computer readable medium 1703, the computer recordable medium 1704, and/or the communication medium 1705.
  • the device embodiments described above are merely schematic, wherein the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed over multiple network units. Some or all of the modules may be selected according to actual needs to achieve the purpose of the scheme of this embodiment.
  • the connection relationship between the modules indicates that there is a communication connection between them, which may be specifically implemented as one or more communication buses or signal lines.
  • the technical solution of the present application is essentially or the part that contributes to the prior art can be embodied in the form of a software product, which is stored in a readable storage medium, such as a computer floppy disk, a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk or an optical disk, etc., including a number of instructions to enable a computer device (which can be a personal computer, a training device, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a computer device which can be a personal computer, a training device, or a network device, etc.
  • all or part of the embodiments may be implemented by software, hardware, firmware or any combination thereof.
  • all or part of the embodiments may be implemented in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website site, a computer, a training device, or a data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, training device, or data center.
  • the computer-readable storage medium may be any available medium that a computer can store or a data storage device such as a training device, a data center, etc. that includes one or more available media integrations.
  • the available medium may be a magnetic medium, (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid-state drive (SSD)), etc.
  • a magnetic medium e.g., a floppy disk, a hard disk, a tape
  • an optical medium e.g., a DVD
  • a semiconductor medium e.g., a solid-state drive (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Steering Controls (AREA)

Abstract

一种方向盘离手检测系统,应用于自动驾驶技术领域。本申请方法包括:第一导电层、第二导电层、绝缘层和处理模块。绝缘层设置于第一导电层和第二导电层之间,且第一导电层与方向盘表面之间的距离和第二导电层与方向盘表面之间的距离不同。处理模块用于基于第一电容值和第二电容值之间的比值来识别方向盘的握持状态,进而基于方向盘的握持状态进一步确定方向盘是否处于离手状态。本方案中,基于两层导电层的电容值比值,能够有效地识别不戴手套握方向盘以及戴手套握方向盘的两种状态,进而基于所识别到的方向盘握持状态进一步判定方向盘是否离手,保证在不戴手套以及戴手套握持方向盘等情况下均能够实现方向盘离手检测。

Description

一种方向盘离手检测系统及方法
本申请要求于2022年11月25日提交中国专利局、申请号为202211491328.9、发明名称为“一种方向盘离手检测系统及方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及自动驾驶技术领域,尤其涉及一种方向盘离手检测系统及方法。
背景技术
汽车自动驾驶等级可分为L1-L5,不同级别的自动驾驶对手握方向盘的状态识别要求不同。L2级别辅助驾驶,手不能脱离方向盘是安全法规要求,系统应能够根据方向盘表面或内置的传感器判定用户的手是否握住方向盘。若系统检测到方向盘离手(即用户的手脱离方向盘),则必须提醒用户;并且,在方向盘离手状态持续一段时间后,系统需要自动退出辅助驾驶或制动,以保证用户的行车安全。因此,在自动驾驶中,准确地检测方向盘是否处于离手状态是很重要的。
目前,通常是在方向盘表面部署电容传感器来识别用户的手是否握住方向盘。具体地,当用户的手接触方向盘表面时,由于用户的手是导电的,因此用户的手会改变方向盘表面的电容传感器的电场分布,引起电容变化,进而基于电容的变化值来识别用户的手是否握住方向盘。
然而,在相关技术中,当用户的手戴上手套后,手与方向盘表面的电容传感器之间引入了较厚的绝缘层,用户的手难以改变电场分布,导致手握方向盘所引起的电容变化不大,进而难以实现方向盘离手检测。
发明内容
本申请提供了一种方向盘离手检测系统,能够有效地识别不戴手套握方向盘以及戴手套握方向盘的两种状态,进而基于所识别得到的方向盘握持状态来判定方向盘是否离手,从而能够在各种复杂情况下实现方向盘离手检测。
本申请第一方面提供一种方向盘离手检测系统,包括:第一导电层、第二导电层、绝缘层和处理模块。绝缘层设置于第一导电层和第二导电层之间,且第一导电层与方向盘表面之间的距离和第二导电层与方向盘表面之间的距离不同。例如,第一导电层设置于方向盘外层,第二导电层则设置于方向盘内层,因此第一导电层与方向盘表面之间的距离要小于第二导电层与方向盘表面之间的距离。
处理模块可以是部署于方向盘上,或者是部署于车辆的控制系统内。处理模块用于基于第一电容值和第二电容值之间的比值来识别方向盘的握持状态,进而基于方向盘的握持状态进一步确定方向盘是否处于离手状态。其中,第一电容值为第一导电层的电容值,第二电容值为第二导电层的电容值。
具体来说,在手直接握住方向盘时,手对相隔较近的导电层的电容值影响较大,对相隔较近的导电层的电容值影响较小,因此两层导电层的电容值比值也会比较大;在用户的手戴上手套握住方向盘时,手对两层导电层的电容值影响均不大,因此两层导电层的电容值比值会比较接近。
这样一来,本方案中基于两层导电层的电容值比值,能够有效地识别不戴手套握方向盘以及戴手套握方向盘的两种状态,进而基于所识别到的方向盘握持状态进一步判定方向盘是否离手,保证在不戴手套以及戴手套握持方向盘等情况下均能够实现方向盘离手检测。
在一种可能的实现方式中,处理模块用于基于第一电容值和第二电容值之间的比值,来确定方向盘是否处于离手状态,具体为:处理模块用于基于第一电容值和第二电容值之间的比值确定第一阈值,并通过对比第一电容值或第二电容值与第一阈值之间的大小,来确定方向盘是否处于离手状态。
其中,在第一导电层与方向盘表面之间的距离小于第二导电层与方向盘表面之间的距离的情况下,比值与第一阈值之间具有正相关关系。即,第一导电层的第一电容值与第二导电层的第二电容值之间的比值越大,则代表驾驶员的手对第一导电层的电容值影响越大(即驾驶员是未戴手套),因此第一阈值也可以是设置得越大;第一导电层的第一电容值与第二导电层的第二电容值之间的比值越小,则代表驾驶员的手对第一导电层的电容值影响越小(即驾驶员是戴上手套),因此第一阈值也可以是设置得越小。
或者,在第一导电层与方向盘表面之间的距离大于第二导电层与方向盘表面之间的距离的情况下, 比值与第一阈值之间具有负相关关系。
在一种可能的实现方式中,在第一电容值或第二电容值大于或等于第一阈值的情况下,处理模块用于确定方向盘不处于离手状态;在第一电容值或第二电容值小于第一阈值的情况下,处理模块用于确定方向盘处于离手状态。
在一种可能的实现方式中,处理模块还用于在确定方向盘处于离手状态时,控制输出告警信息,告警信息用于提示方向盘处于离手状态。示例性地,处理模块控制输出的告警信息可以是为文字信息、图像信息或者是语音信息。例如,处理模块通过车辆上的中控显示屏或者是仪表盘输出文字信息,该文字信息具体为“请握紧方向盘,否则车辆将在5秒内退出自动驾驶”。
在一种可能的实现方式中,第一导电层和第二导电层为柔性导电层,绝缘层为可压缩形变的弹性绝缘层。
本方案中,第一导电层、第二导电层和绝缘层由可形变的材料构成,在驾驶员戴手套并通过多个手指正确握持方向盘时,第一导电层、第二导电层和绝缘层能够产生压缩形变,使得第一导电层和第二导电层均输出不低的电容值,以提高电容值检测的准确率,保证最终方向盘离手状态的识别准确率。
在一种可能的实现方式中,第一导电层包括多个第一部分,多个第一部分中任意两个相邻的部分之间具有间隔。第二导电层包括多个第二部分,多个第二部分中任意两个相邻的部分之间具有间隔。并且,多个第一部分与多个第二部分相互错开。
例如,第一导电层中的多个第一部分为梳齿结构,即多个第一部分互相平行,且多个第一部分的顶部通过长条形状的结构连接在一起。即多个第一部分可以视为梳齿结构中的多个齿状结构。第二导电层中的多个第二部分也为梳齿结构,即多个第二部分互相平行,且多个第二部分的顶部通过长条形状的结构连接在一起。即多个第二部分也可以视为梳齿结构中的多个齿状结构。
本方案中,通过将第一导电层和第二导电层设置为梳齿结构,且第一导电层和第二导电层之间的各个部分相互错开,能够减少第一导电层和第二导电层在纵向方向上的重合面积,进而减少第一导电层和第二导电层的电容读取噪声,提高方向盘离手检测系统的检测准确性。
在一种可能的实现方式中,多个第一部分和多个第二部分中每个部分的长度均小于第二阈值,以保证两个导电层与驾驶员的手的接触面积尽可能接近。其中,每个部分的长度为每个部分在方向盘的转动方向上的长度。
在一种可能的实现方式中,第一导电层包括多个子导电层,多个子导电层彼此之间不具有电连接,且多个子导电层沿着方向盘的转动方向分布于方向盘上的不同区域,第一电容值为多个子导电层对应的多个电容值中最大的一个电容值;处理模块还用于基于相邻的两个子导电层的电容值在预设时间内的最大值均大于或等于第三阈值,控制输出第一指令。
本方案中,通过在方向盘上的不同位置部署多个子导电层,能够基于多个子导电层所输出的电容值判断驾驶员的手握持方向盘的位置,进而基于驾驶员的手的握持位置变化情况来触发驾驶员与车辆的互动,使得驾驶员在手不离开方向盘的情况下实现与车辆的互动,保证了驾驶安全性。
在一种可能的实现方式中,处理模块还用于基于第一子导电层和第二子导电层的位置,控制输出第一子指令或第二子指令,第一指令包括第一子指令和第二子指令;
其中,第一子导电层和第二子导电层为相邻的两个子导电层,第一子导电层的最大电容值在预设时间内的出现时间早于第二子导电层的最大电容值在预设时间内的出现时间。
本方案中,通过在方向盘上的不同位置部署多个子导电层,能够基于多个子导电层所输出的电容值获取驾驶员的手在方向盘上滑动的方向,进而触发输出相应的指令,能够在保证驾驶安全性的同时保证驾驶员与车辆互动的多样化,满足用户的多样化需求。
在一种可能的实现方式中,第一指令包括:接听来电、拒接来电、切换歌曲、调节音量、调节空调温度、升降车窗或调节座椅。
在一种可能的实现方式中,在处理模块确定方向盘不处于离手状态的情况下,处理模块还用于基于方向盘的握力大小或方向盘的握力大小在预设时间范围内的变化情况,控制输出第二指令。
本方案中,方向盘离手检测系统中的处理模块通过检测驾驶员的手握持方向盘的力度大小,进而判 定驾驶员的状态或意图,从而控制输出其他的指令,能够实现驾驶员与车辆更多的互动方式。
在一种可能的实现方式中,处理模块还用于基于比值确定映射系数,并根据映射系数和第一电容值确定方向盘的握力大小。
本申请第二方面提供一种方向盘离手检测方法,应用于方向盘离手检测系统,系统包括第一导电层、第二导电层、绝缘层和处理模块,绝缘层设置于第一导电层和第二导电层之间,且第一导电层与方向盘表面之间的距离和第二导电层与方向盘表面之间的距离不同。
该方法包括:获取第一电容值和第二电容值,第一电容值为第一导电层的电容值,第二电容值为第二导电层的电容值;
基于第一电容值和第二电容值之间的比值,来确定方向盘是否处于离手状态。
在一种可能的实现方式中,基于第一电容值和第二电容值之间的比值,来确定方向盘是否处于离手状态,具体为:
基于第一电容值和第二电容值之间的比值确定第一阈值,并通过对比第一电容值或第二电容值与第一阈值之间的大小,来确定方向盘是否处于离手状态;其中,
在第一导电层与方向盘表面之间的距离小于第二导电层与方向盘表面之间的距离的情况下,比值与第一阈值之间具有正相关关系;
或者,在第一导电层与方向盘表面之间的距离大于第二导电层与方向盘表面之间的距离的情况下,比值与第一阈值之间具有负相关关系。
在一种可能的实现方式中,通过对比第一电容值或第二电容值与第一阈值之间的大小,来确定方向盘是否处于离手状态,包括:
在第一电容值或第二电容值大于或等于第一阈值的情况下,确定方向盘不处于离手状态;
在第一电容值或第二电容值小于第一阈值的情况下,确定方向盘处于离手状态。
在一种可能的实现方式中,该方法还包括:
在确定方向盘处于离手状态时,控制输出告警信息,告警信息用于提示方向盘处于离手状态。
在一种可能的实现方式中,第一导电层包括多个子导电层,多个子导电层彼此之间不具有电连接,且多个子导电层沿着方向盘的转动方向分布于方向盘上的不同区域,第一电容值为多个子导电层对应的多个电容值中最大的一个电容值;
该方法还包括:
基于相邻的两个子导电层的电容值在预设时间内的最大值均大于或等于第三阈值,控制输出第一指令。
在一种可能的实现方式中,该方法还包括:
基于第一子导电层和第二子导电层的位置,控制输出第一子指令或第二子指令,第一指令包括第一子指令和第二子指令;
其中,第一子导电层和第二子导电层为相邻的两个子导电层,第一子导电层的最大电容值在预设时间内的出现时间早于第二子导电层的最大电容值在预设时间内的出现时间。
在一种可能的实现方式中,第一指令包括:接听来电、拒接来电、切换歌曲、调节音量、调节空调温度、升降车窗或调节座椅。
在一种可能的实现方式中,该方法还包括:
在确定方向盘不处于离手状态的情况下,基于方向盘的握力大小或方向盘的握力大小在预设时间范围内的变化情况,控制输出第二指令。
在一种可能的实现方式中,该方法还包括:
基于比值确定映射系数,并根据映射系数和第一电容值确定方向盘的握力大小。
本申请第三方面提供一种方向盘离手检测装置,可以包括处理器,处理器和存储器耦合,存储器存储有程序指令,当存储器存储的程序指令被处理器执行时实现上述第二方面或第二方面任一实现方式的 方法。对于处理器执行第二方面的各个可能实现方式中的步骤,具体均可以参阅第一方面,此处不再赘述。
本申请第四方面提供了一种计算机可读存储介质,计算机可读存储介质中存储有计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面任一实现方式的方法。
本申请第五方面提供了一种电路系统,电路系统包括处理电路,处理电路配置为执行上述第二方面或第二方面任一实现方式的方法。
本申请第六方面提供了一种计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面或第二方面任一实现方式的方法。
本申请第七方面提供了一种芯片系统,该芯片系统包括处理器,用于支持服务器或门限值获取装置实现上述第二方面或第二方面任一实现方式中所涉及的功能,例如,发送或处理上述方法中所涉及的数据和/或信息。在一种可能的设计中,芯片系统还包括存储器,存储器,用于保存服务器或通信设备必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包括芯片和其他分立器件。
上述第二方面至第七方面的有益效果可以参考上述第一方面的介绍,在此不再赘述。
附图说明
图1为相关技术中的一种基于电容传感器识别手是否握住方向盘的示意图;
图2为本申请实施例提供的一种未戴手套和戴上手套后的对比示意图;
图3为相关技术中的一种在不同握持状态下的电容值对比示意图;
图4为本申请实施例提供的一种方向盘离手检测系统的应用场景示意图;
图5为本申请实施例提供的车辆100的一种结构示意图;
图6为本申请实施例提供的一种车辆内的计算机系统101的结构示意图;
图7为本申请实施例提供的一种方向盘离手检测系统的结构示意图;
图8为本申请实施例提供的一种方向盘检测系统在不同握持状态下的电容值对比示意图;
图9为本申请实施例提供的一种方向盘离手检测系统的工作流程示意图;
图10为本申请实施例提供的一种方向盘检测系统的结构对比示意图;
图11为本申请实施例提供的一种方向盘检测系统的结构示意图;
图12为本申请实施例提供的一种方向盘检测系统的另一结构示意图;
图13为本申请实施例提供的一种通过滑动握持方向盘的手来触发与车辆互动的示意图;
图14为本申请实施例提供的另一种通过滑动握持方向盘的手来触发与车辆互动的示意图;
图15为本申请实施例提供的处理模块的一种结构示意图;
图16为本申请实施例提供的芯片的一种结构示意图;
图17为本申请实施例提供的一种计算机可读存储介质的结构示意图。
具体实施方式
下面将结合附图,对本申请的实施例进行描述。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,这仅仅是描述本申请的实施例中对相同属性的对象在描述时所采用的区分方式。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,以便包含一系列单元的过程、方法、系统、产品或设备不必限于那些单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它单元。
为便于理解,以下先介绍本申请实施例所涉及的一些技术术语。
(1)电容
一般来说,电荷在电场中会受力而移动,当导体之间有了介质,则阻碍了电荷移动而使得电荷累积 在导体上,造成电荷的累积储存,储存的电荷量则称为电容。
简单来说,电容是指容纳电荷的能力。任何静电场都是由许多个电容组成,有静电场就有电容,电容是用静电场描述的。一般认为:孤立导体与无穷远处构成电容,导体接地等效于接到无穷远处,并与大地连接成整体。
(2)聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)
PDMS是一种疏水类的有机硅物料。在药品、日化用品、食品、建筑等各领域均有应用,它的衍生物已达数百种,常用的聚硅氧烷主要有:聚二甲基硅氧烷,环甲基硅氧烷,氨基硅氧烷,聚甲基苯基硅氧烷,聚醚聚硅氧烷共聚物等。其中环聚二甲基硅氧烷就为常用的聚硅氧烷一种。
(3)聚氨酯(polyurethane,PU)
PU是一种高分子化合物。PU有聚酯型和聚醚型二大类,可制成聚氨酯塑料(以泡沫塑料为主)、聚氨酯纤维(又称为氨纶)、聚氨酯橡胶及弹性体。
(4)聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate,PET)
PET是由对苯二甲酸二甲酯与乙二醇酯交换或以对苯二甲酸与乙二醇酯化先合成对苯二甲酸双羟乙酯,然后再进行缩聚反应制得。PET属结晶型饱和聚酯,为乳白色或浅黄色、高度结晶的聚合物,表面平滑有光泽,是生活中常见的一种树脂。
(5)中控屏
目前在汽车领域中,车机(也称为车内影音娱乐系统)等车载终端可以固定位于汽车的中控台,其屏幕也可以称之为中控显示屏或中控屏。另外,有一些高端汽车,座舱内逐步全面数字化显示,座舱内设置有多块或一块显示屏,用于显示数字仪表盘、车载娱乐系统等内容。示例性地,汽车的座舱内设置有多块显示屏,如数字仪表显示屏,中控屏,副驾驶位上的乘客(也称为前排乘客)面前的显示屏,左侧后排乘客面前的显示屏以及右侧后排乘客面前的显示屏。
自动驾驶又称为无人驾驶、电脑驾驶或者轮式移动,是一种通过电脑系统实现辅助驾驶员进行驾驶的技术。具体而言,自动驾驶是指车辆能自动实现路径规划、行为决策和运动规划(速度和轨迹规划)等驾驶任务的能力。自动驾驶包括L1、L2、L3、L4、L5五个等级。L1级:辅助驾驶,车辆对方向盘和加减速中的一项操作提供驾驶,人类驾驶员负责其他驾驶动作。L2级:部分自动驾驶,车辆对方向盘和加减速中的多项操作提供驾驶,人类驾驶员负责其他驾驶动作。L3级:有条件自动驾驶,由车辆完成大部分驾驶操作,人类驾驶员需要集中注意力以备不时之需。L4级:高度自动驾驶,由车辆完成所有驾驶操作,人类驾驶员不需要集中注意力,但限定道路和环境条件。L5级:完全自动驾驶,由车辆完成所有驾驶操作,人类驾驶员不需要集中注意力,不限定道路和环境。本申请中的自动驾驶车辆是指能够实现L2级及以上的自动驾驶的车辆。
目前,自动驾驶车辆还未实现完全自动化驾驶,取代驾驶员驾驶。在自动驾驶车辆时,需要驾驶员操控方向盘。如果驾驶员没有用手握住方向盘(即方向盘离手),可能难以对突发情况进行及时处理。因此,需要对方向盘是否处于离手状态进行检测,以提示驾驶员操控方向盘。
目前,通常是在方向盘表面部署电容传感器来识别驾驶员的手是否握住方向盘。具体地,请参阅图1,图1为相关技术中的一种基于电容传感器识别手是否握住方向盘的示意图。如图1所示,电容传感器通常部署于方向盘的表面,且电容传感器上还部署有一层方便驾驶员握持方向盘的表面皮革,电容传感器之下还部署一层绝缘基底。在驾驶员的手未靠近方向盘时,电容传感器具有正常的电场分布。当驾驶员的手靠近并接触方向盘表面时,由于驾驶员的手是导电的,因此驾驶员的手会改变方向盘表面的电容传感器的电场分布,引起电容变化,进而基于电容的变化值来识别驾驶员的手是否握住方向盘。
然而,在相关技术中,当驾驶员的手戴上手套后,手与方向盘表面的电容传感器之间引入了较厚的绝缘层,驾驶员的手难以改变电场分布,导致手握方向盘所引起的电容变化不大,进而难以实现方向盘离手检测。
示例性地,请参阅图2,图2为本申请实施例提供的一种未戴手套和戴上手套后的对比示意图。如图2所示,在未戴手套时,驾驶员的手直接接触电容传感器表面,引起电容传感器产生较大的电容值变 化。在驾驶员的手戴上手套后,手与电容传感器表面间引入了较厚的绝缘层,难以改变电容传感器的电场分布,所引起的电容变化量较小。
可以理解的是,为便于操控方向盘,驾驶员正确握持方向盘的姿势是手上的多根手指同时握持在方向盘上。但是,在一些情况下,可能会出现驾驶员错误握持方向盘的姿势,例如驾驶员仅将一根手指轻轻地搭在方向盘上。因此,在对方向盘是否处于离手状态进行检测的过程中,实际上是要检测驾驶员是否以正确的姿势握持方向盘。例如,在驾驶员通过手上的多根手指同时握持在方向盘时,需要判定方向盘不处于离手状态;在驾驶员没有通过手握持方向盘或者是仅以一根手指搭在方向盘上时,则需要判定方向盘处于离手状态。
由于驾驶员仅以一根手指搭在方向盘上时,也会引起电容传感器的电容值变化,但是电容值变化不大,因此相关技术中往往是通过设定一个较大的阈值,通过对比电容传感器的电容值与该阈值之间的大小关系,来判定方向盘是否处于离手状态。
然而,经申请人研究发现,由于驾驶员戴上手套并以多根手指正确地握持方向盘时,电容传感器的电容值也变化不大,因此相关技术中采用预先设定的较大的阈值与电容值进行对比时,容易误判定为方向盘处于离手状态。
示例性地,请参阅图3,图3为相关技术中的一种在不同握持状态下的电容值对比示意图。如图3所示,在相关技术中,在驾驶员不戴手套并通过多根手指以正确的握持姿势握持在方向盘上时,方向盘上的电容传感器能够输出较高的电容值;在驾驶员不戴手套并通过单根手指搭在方向盘上时,方向盘上的电容传感器输出较低的电容值;在驾驶员戴手套并通过多根手指以正确的握持姿势握持在方向盘上时,方向盘上的电容传感器也是输出较低的电容值。并且,对于驾驶员不戴手套并通过单根手指搭在方向盘上以及驾驶员戴手套并通过多根手指以正确的握持姿势握持在方向盘上这两种情况而言,方向盘上的电容传感器所输出的电容值是接近的。这样一来,在相关技术中通过设定较高的触发区域来实现方向盘离手检测时,往往会将驾驶员不戴手套并通过单根手指搭在方向盘上以及驾驶员戴手套并通过多根手指以正确的握持姿势握持在方向盘上这两种情况均识别为方向盘处于离手状态,从而导致出现误识别的情况。
有鉴于此,本申请实施例提供了一种方向盘离手检测系统,能够有效地识别不戴手套握方向盘以及戴手套握方向盘的两种状态,进而基于所识别得到的方向盘握持状态选取相应的阈值来判定方向盘是否离手,从而能够在各种复杂情况下实现方向盘离手检测。
请参阅图4,图4为本申请实施例提供的一种方向盘离手检测系统的应用场景示意图。如图4所示,方向盘离手检测系统可以部署于车辆的方向盘上,用于在车辆的行驶过程中识别方向盘是否处于离手状态。当方向盘离手检测系统检测到方向盘处于离手状态时,方向盘离手检测系统则输出告警信号,以使得车辆能够通过在中控屏或仪表盘上显示提醒信息(如图4中的“!请握紧方向盘!”)或者是外放提示音来提醒驾驶员握持方向盘。
此外,方向盘离手检测系统中的部分结构(例如产生及检测电容信号的结构)可以是部署于方向盘上,另一部分结构(例如基于电容信号识别离手状态的结构)则可以是部署于车辆的控制系统(例如车辆的中控系统)内。
为了便于理解本方案,本申请实施例中结合图5对本申请提供的车辆的结构进行介绍。请参阅图5,图5为本申请实施例提供的车辆100的一种结构示意图。
如图5所示,在一个实施例中,车辆100可以配置为完全或部分地自动驾驶模式。例如,车辆100可以在处于自动驾驶模式中的同时控制自身,并且可通过人为操作来确定车辆及其周边环境的当前状态,确定周边环境中的至少一个其他车辆的可能行为,并确定该其他车辆执行可能行为的可能性相对应的置信水平,基于所确定的信息来控制车辆100。在车辆100处于自动驾驶模式中时,可以将车辆100置为在没有和人交互的情况下操作。
车辆100可包括各种子系统,例如行进系统102、传感器系统104、控制系统106、一个或多个外围设备108以及电源110、计算机系统101和用户接口116。可选地,车辆100可包括更多或更少的子系统,并且每个子系统可包括多个元件,例如每个子系统包括多个ECU。另外,车辆100的每个子系统和 元件可以通过有线或者无线互连。
行进系统102可包括为车辆100提供动力运动的组件。在一个实施例中,推进系统102可包括引擎118、能量源119、传动装置120和车轮/轮胎121。引擎118可以是内燃引擎、电动机、空气压缩引擎或其他类型的引擎组合,例如汽油发动机和电动机组成的混动引擎,内燃引擎和空气压缩引擎组成的混动引擎。引擎118将能量源119转换成机械能量。
能量源119的示例包括汽油、柴油、其他基于石油的燃料、丙烷、其他基于压缩气体的燃料、乙醇、太阳能电池板、电池和其他电力来源。能量源119也可以为车辆100的其他系统提供能量。
传动装置120可以将来自引擎118的机械动力传送到车轮121。传动装置120可包括变速箱、差速器和驱动轴。在一个实施例中,传动装置120还可以包括其他器件,比如离合器。其中,驱动轴可包括可耦合到一个或多个车轮121的一个或多个轴。
传感器系统104可包括感测关于车辆100周边的环境的信息的若干个传感器。例如,传感器系统104可包括定位系统122(定位系统可以是GPS系统,也可以是北斗系统或者其他定位系统)、惯性测量单元(inertial measurement unit,IMU)124、雷达126、激光测距仪128以及相机130。传感器系统104还可包括被监视车辆100的内部系统的传感器(例如,车内空气质量监测器、燃油量表、机油温度表等)。来自这些传感器中的一个或多个的传感器数据可用于检测对象及其相应特性(位置、形状、方向、速度等)。这种检测和识别是自主车辆100的安全操作的关键功能。
定位系统122可用于估计车辆100的地理位置。IMU 124用于基于惯性加速度来感测车辆100的位置和朝向变化。在一个实施例中,IMU 124可以是加速度计和陀螺仪的组合。
雷达126可利用无线电信号来感测车辆100的周边环境内的物体。在一些实施例中,除了感测物体以外,雷达126还可用于感测物体的速度和/或前进方向。
激光测距仪128可利用激光来感测车辆100所位于的环境中的物体。在一些实施例中,激光测距仪128可包括一个或多个激光源、激光扫描器以及一个或多个处理模块,以及其他系统组件。
相机130可用于捕捉车辆100的周边环境的多个图像。相机130可以是静态相机或视频相机。
控制系统106为控制车辆100及其组件的操作。控制系统106可包括各种元件,其中包括转向系统132、油门134、制动单元136、计算机视觉系统140、路线控制系统142以及障碍物避免系统144。
转向系统132可操作来调整车辆100的前进方向。例如在一个实施例中可以为方向盘系统。
油门134用于控制引擎118的操作速度并进而控制车辆100的速度。
制动单元136用于控制车辆100减速。制动单元136可使用摩擦力来减慢车轮121。在其他实施例中,制动单元136可将车轮121的动能转换为电流。制动单元136也可采取其他形式来减慢车轮121转速从而控制车辆100的速度。
计算机视觉系统140可以操作来处理和分析由相机130捕捉的图像以便识别车辆100周边环境中的物体和/或特征。所述物体和/或特征可包括交通信号、道路边界和障碍物。计算机视觉系统140可使用物体识别算法、运动中恢复结构(Structure from Motion,SFM)算法、视频跟踪和其他计算机视觉技术。在一些实施例中,计算机视觉系统140可以用于为环境绘制地图、跟踪物体、估计物体的速度等等。
路线控制系统142用于确定车辆100的行驶路线。在一些实施例中,路线控制系统142可结合来自GPS 122和一个或多个预定地图的数据以为车辆100确定行驶路线。
障碍物避免系统144用于识别、评估和避免或者以其他方式越过车辆100的环境中的潜在障碍物。
当然,在一个实例中,控制系统106可以增加或替换地包括除了所示出和描述的那些以外的组件。或者也可以减少一部分上述示出的组件。
车辆100通过外围设备108与外部传感器、其他车辆、其他计算机系统或用户之间进行交互。外围设备108可包括无线通信系统146、车载电脑148、麦克风150和/或扬声器152。
在一些实施例中,外围设备108提供车辆100的用户与用户接口116交互的手段。例如,车载电脑148可向车辆100的用户提供信息。用户接口116还可操作车载电脑148来接收用户的输入。车载电脑148可以通过触摸屏进行操作。在其他情况中,外围设备108可提供用于车辆100与位于车内的其它设备通信的手段。例如,麦克风150可从车辆100的用户接收音频(例如,语音命令或其他音频输入)。 类似地,扬声器152可向车辆100的用户输出音频。
无线通信系统146可以直接地或者经由通信网络来与一个或多个设备无线通信。例如,无线通信系统146可使用3G蜂窝通信,例如CDMA、EVD0、GSM/GPRS,或者4G蜂窝通信,例如LTE。或者5G蜂窝通信。无线通信系统146可利用WiFi与无线局域网(wireless local area network,WLAN)通信。在一些实施例中,无线通信系统146可利用红外链路、蓝牙或ZigBee与设备直接通信。其他无线协议,例如各种车辆通信系统,例如,无线通信系统146可包括一个或多个专用短程通信(dedicated short range communications,DSRC)设备,这些设备可包括车辆和/或路边台站之间的公共和/或私有数据通信。
电源110可向车辆100的各种组件提供电力。在一个实施例中,电源110可以为可再充电锂离子或铅酸电池。这种电池的一个或多个电池组可被配置为电源为车辆100的各种组件提供电力。在一些实施例中,电源110和能量源119可一起实现,例如一些全电动车中那样。
车辆100的部分或所有功能受计算机系统101控制。计算机系统101可包括至少一个处理器113,处理器113执行存储在例如存储器114这样的非暂态计算机可读介质中的指令115。计算机系统101还可以是采用分布式方式控制车辆100的个体组件或子系统的多个计算设备。
处理器113可以是任何常规的处理器,诸如商业可获得的CPU。替选地,该处理器可以是诸如ASIC或其它基于硬件的处理器的专用设备。尽管图5功能性地图示了处理器、存储器、和在相同块中的计算机110的其它元件,但是本领域的普通技术人员应该理解该处理器、计算机、或存储器实际上可以包括可以或者可以不存储在相同的物理外壳内的多个处理器、计算机、或存储器。
例如,存储器可以是硬盘驱动器或位于不同于计算机110的外壳内的其它存储介质。因此,对处理器或计算机的引用将被理解为包括对可以或者可以不并行操作的处理器或计算机或存储器的集合的引用。不同于使用单一的处理器来执行此处所描述的步骤,诸如转向组件和减速组件的一些组件每个都可以具有其自己的处理器,所述处理器只执行与特定于组件的功能相关的计算。
在此处所描述的各个方面中,处理器可以位于远离该车辆并且与该车辆进行无线通信。在其它方面中,此处所描述的过程中的一些在布置于车辆内的处理器上执行而其它则由远程处理器执行,包括采取执行单一操纵的必要步骤。
在一些实施例中,存储器114可包含指令115(例如,程序逻辑),指令115可被处理器执行来执行车辆100的各种功能,包括以上描述的那些功能。存储器114也可包含额外的指令,包括向推进系统102、传感器系统104、控制系统106和外围设备108中的一个或多个发送数据、从其接收数据、与其交互和/或对其进行控制的指令。
除了指令115以外,存储器114还可存储数据,例如道路地图、路线信息,车辆的位置、方向、速度以及其它这样的车辆数据,以及其他信息。这种信息可在车辆100在自主、半自主和/或手动模式中操作期间被车辆100和计算机系统101使用。
用户接口116,用于向车辆100的用户提供信息或从其接收信息。可选地,用户接口116可包括在外围设备108的集合内的一个或多个输入/输出设备,例如无线通信系统146、车车在电脑148、麦克风150和扬声器152。
计算机系统101可基于从各种子系统(例如,行进系统102、传感器系统104和控制系统106)以及从用户接口116接收的输入来控制车辆100的功能。例如,计算机系统101可利用来自控制系统106的输入以便控制转向单元132来避免由传感器系统104和障碍物避免系统144检测到的障碍物。在一些实施例中,计算机系统101可操作来对车辆100及其子系统的许多方面提供控制。
可选地,上述这些组件中的一个或多个可与车辆100分开安装或关联。例如,存储器114可以部分或完全地与车辆100分开存在。上述组件可以按有线和/或无线方式来通信地耦合在一起。
可选地,上述组件只是一个示例,实际应用中,上述各个模块中的组件有可能根据实际需要增添或者删除,图5不应理解为对本申请实施例的限制。
在道路行进的自动驾驶汽车,如上面的车辆100,可以识别其周围环境内的物体以确定对当前速度的调整。所述物体可以是其它车辆、交通控制设备、或者其它类型的物体。在一些示例中,可以独立地 考虑每个识别的物体,并且基于物体的各自的特性,诸如它的当前速度、加速度、与车辆的间距等,可以用来确定自动驾驶汽车所要调整的速度。
可选地,自动驾驶汽车车辆100或者与自动驾驶车辆100相关联的计算设备(如图1的计算机系统101、计算机视觉系统140、存储器114)可以基于所识别的物体的特性和周围环境的状态(例如,交通、雨、道路上的冰、等等)来预测所述识别的物体的行为。可选地,每一个所识别的物体都依赖于彼此的行为,因此还可以将所识别的所有物体全部一起考虑来预测单个识别的物体的行为。车辆100能够基于预测的所述识别的物体的行为来调整它的速度。
换句话说,自动驾驶汽车能够基于所预测的物体的行为来确定车辆将需要调整到(例如,加速、减速、或者停止)什么稳定状态。在这个过程中,也可以考虑其它因素来确定车辆100的速度,诸如,车辆100在行驶的道路中的横向位置、道路的曲率、静态和动态物体的接近度等等。
除了提供调整自动驾驶汽车的速度的指令之外,计算设备还可以提供修改车辆100的转向角的指令,以使得自动驾驶汽车遵循给定的轨迹和/或维持与自动驾驶汽车附近的物体(例如,道路上的相邻车道中的轿车)的安全横向和纵向距离。
上述车辆100可以为轿车、卡车、摩托车、公共汽车、娱乐车、游乐场车辆、施工设备、电车、高尔夫球车以及火车等,本申请实施例不做特别的限定。
图5所示的车辆100中,可以配置有用于实现自动驾驶功能的高级驾驶辅助系统,高级驾驶辅助系统中包含有大量的参数需要进行标定。具体来说,车辆的高级驾驶辅助系统的标定实施过程,主要包括执行层、感知层和功能层中各子系统参数的标定工作。执行层涉及动力系统标定、制动系统标定、转向系统标定、四轮定位参数和悬架系统标定等。感知层涉及GNSS与INS(Initial Navigation System,惯性导航系统)标定、摄像头标定、激光雷达标定、毫米波雷达标定、超声波雷达标定等。GNSS包括GPS(Global Position System,全球定位系统)、GLONASS(Global Navigation Satellite System,格洛纳斯卫星导航系统)、Galileo(Galileo navigation satellite system,伽利略卫星导航系统)、BDS(BeiDounavigation satellite system,北斗卫星导航系统)。功能层涉及车辆纵向控制模块标定、横向控制模块标定、ADAS基本功能标定、ADAS驾驶风格标定等。纵向控制主要为速度控制,通过控制刹车、油门、挡位等实现对车速的控制。横向控制主要为控制航向,通过改变方向盘扭矩或角度的大小等,使车辆按照想要的航向行驶。A D A S基本功能例如包括A C C(Adaptive Cruising System,自适应巡航)、LCC(Lane Center Control,车道居中控制)、ALC(Auto Lane Change,自动变道辅助)等。驾驶风格指开车的方式或习惯性的驾驶方法,其包含对驾驶速度的选择、对行车间距的选择等。驾驶风格例如包括激进型、平稳型、谨慎型等。
可以参阅图6,图6为本申请实施例提供的一种车辆内的计算机系统101的结构示意图。计算机系统101包括处理器103,处理器103和系统总线105耦合。其中,处理器103可以用于实现图2所述的处理器的功能。处理器103可以是一个或者多个处理器,其中每个处理器都可以包括一个或多个处理器核。显示适配器(video adapter)107,显示适配器可以驱动显示器109,显示器109和系统总线105耦合。系统总线105通过总线桥111和输入输出(I/O)总线耦合。I/O接口115和I/O总线耦合。I/O接口115和多种I/O设备进行通信,比如输入设备117(如:键盘,鼠标,触摸屏等),多媒体盘(media tray)121,(例如,CD-ROM,多媒体接口等)。收发器123(可以发送和/或接受无线电通信信号),摄像头155(可以捕捉动态数字视频图像)和外部USB端口125。其中,可选地,和I/O接口115相连接的接口可以是USB端口。
其中,处理器103可以是任何传统处理器,包括精简指令集计算(“RISC”)处理器、复杂指令集计算(“CISC”)处理器或上述的组合。可选地,处理器可以是诸如专用集成电路(“ASIC”)的专用装置。可选地,处理器103可以是神经网络处理器或者是神经网络处理器和上述传统处理器的组合。
可选地,在本文所述的各种实施例中,计算机系统101可位于远离自动驾驶车辆的地方,并且可与自动驾驶车辆无线通信。在其它方面,本文所述的一些过程在设置在自动驾驶车辆内的处理器上执行,其它由远程处理器执行,包括采取执行单个操纵所需的动作。
计算机系统101可以通过网络接口129和软件部署服务器149通信。网络接口129是硬件网络接口,比如,网卡。网络127可以是外部网络,比如因特网,也可以是内部网络,比如以太网或者虚拟私人网络(VPN)。可选地,网络127还尅是无线网络,比如WiFi网络,蜂窝网络等。
硬盘驱动接口和系统总线105耦合。硬件驱动接口和硬盘驱动器相连接。系统内存135和系统总线105耦合。运行在系统内存135的数据可以包括计算机101的操作系统137和应用程序143。
操作系统包括Shell 139和内核(kernel)141。Shell 139是介于使用者和操作系统之内核(kernel)间的一个接口。shell是操作系统最外面的一层。shell管理使用者与操作系统之间的交互:等待使用者的输入,向操作系统解释使用者的输入,并且处理各种各样的操作系统的输出结果。
内核141由操作系统中用于管理存储器、文件、外设和系统资源的那些部分组成。直接与硬件交互,操作系统内核通常运行进程,并提供进程间的通信,提供CPU时间片管理、中断、内存管理、IO管理等等。
应用程序143包括方向盘离手检测相关程序147以及控制汽车自动驾驶相关的程序。其中,方向盘离手检测相关程序147用于对方向盘检测系统中处理模块件所传输的电容信号进行处理。计算机系统101通过执行方向盘离手检测相关程序147,可以实现图4所述的方向盘离手检测功能,即检测到方向盘是否处于离手状态。
控制汽车自动驾驶相关的程序例如可以包括管理自动驾驶的汽车和路上障碍物交互的程序,控制自动驾驶汽车路线或者速度的程序,控制自动驾驶汽车和路上其他自动驾驶汽车交互的程序。应用程序143也存在于deploying server 149的系统上。
传感器153和计算机系统101关联。传感器153用于探测计算机系统101周围的环境。举例来说,传感器153可以探测动物,汽车,障碍物和人行横道等,进一步传感器还可以探测上述动物,汽车,障碍物和人行横道等物体周围的环境,比如:动物周围的环境,例如,动物周围出现的其他动物,天气条件,周围环境的光亮度等。
以上介绍了本申请实施例提供的方向盘离手检测系统所应用的场景和车辆,以下将详细介绍本申请提供的方向盘离手检测系统。
请参阅图7,图7为本申请实施例提供的一种方向盘离手检测系统的结构示意图。如图7所示,在方向盘外侧,从外到内依次包裹有表面皮革、第一导电层、绝缘层、第二导电层和绝缘基底。其中,第一导电层、绝缘层和第二导电层用于构成方向盘离手检测系统。并且,方向盘离手检测系统还包括处理模块,该处理模块未在图7中示出。
在方向盘离手检测系统中,所述绝缘层设置于所述第一导电层和所述第二导电层之间,且所述第一导电层与方向盘表面之间的距离和所述第二导电层与所述方向盘表面之间的距离不同。例如,在图7中,第一导电层设置于方向盘外层,第二导电层则设置于方向盘内层,因此第一导电层与方向盘表面之间的距离要小于第二导电层与方向盘表面之间的距离。需要说明的是,图7中是以第一导电层设置于方向盘外层且第二导电层则设置于方向盘内层为例进行说明。在一些实施例中,第一导电层也可以是设置于方向盘内层,第二导电层则设置于方向盘外层,因此第一导电层与方向盘表面之间的距离要大于第二导电层与方向盘表面之间的距离。本实施例对此并不做具体限定。
此外,方向盘离手检测系统中的处理模块可以是部署于方向盘上,或者是部署于车辆的控制系统(例如车辆的中控系统或图5所示的计算机系统101)内。本实施例并不对方向盘离手检测系统中的处理模块所部署的位置进行限定。
在方向盘离手检测系统的工作过程中,所述处理模块用于基于第一电容值和第二电容值之间的比值来识别方向盘的握持状态,进而基于方向盘的握持状态进一步确定所述方向盘是否处于离手状态。其中,所述第一电容值为所述第一导电层的电容值,所述第二电容值为所述第二导电层的电容值。
具体来说,在手直接握住方向盘时,手对相隔较近的导电层的电容值影响较大,对相隔较近的导电层的电容值影响较小,因此两层导电层的电容值比值也会比较大;在用户的手戴上手套握住方向盘时,手对两层导电层的电容值影响均不大,因此两层导电层的电容值比值会比较接近。这样一来,基于两层 导电层的电容值比值,能够有效地识别不戴手套握方向盘以及戴手套握方向盘的两种状态,进而基于所识别到的方向盘握持状态进一步判定方向盘是否离手,保证在不戴手套以及戴手套握持方向盘等情况下均能够实现方向盘离手检测。
在一种可能的实现方式中,处理模块可以是先获取第一导电层的第一电容值和第二导电层的第二电容值,并基于这两个电容值之间的比值来选定识别方向盘是否处于离手状态的第一阈值,进而通过对比第一阈值与导电层的电容值之间的大小,确定方向盘是否处于离手状态。
具体来说,在所述第一电容值或所述第二电容值大于或等于所述第一阈值的情况下,所述处理模块可以确定所述方向盘不处于离手状态;在所述第一电容值或所述第二电容值小于所述第一阈值的情况下,所述处理模块则可以是确定所述方向盘处于离手状态。
需要说明的是,由于第一电容值和第二电容值分别为不同导电层的电容值,这两个电容值在任意一种方向盘握持状态下都具有不同的电容值,因此第一阈值的实际取值也是和与其做比较的第一电容值或第二电容值相关的。例如,在第一导电层为方向盘外层的导电层且第二导电层为方向盘内层的导电层时,第一导电层的第一电容值始终大于第二导电曾的第二电容值。因此,基于同一个比值,如果第一阈值是与第一电容值进行对比以确定方向盘离手状态的话,则第一阈值的取值可以为一个相对较大的值;如果第一阈值是与第二电容值进行对比以确定方向盘离手状态的话,则第一阈值的取值可以为一个相对较小的值。
在另一种可能的实现方式中,处理模块可以是基于第一导电层的第一电容值与第二导电层的第二电容值之间的比值来确定一个系数。然后,处理模块将该系数与导电层的电容值(例如第一电容值或第二电容值)相乘,并将相乘结果与预设阈值进行对比,以确定方向盘是否处于离手状态。如果相乘结果大于或等于预设阈值,处理模块可以确定方向盘不处于离手状态;如果相乘结果小于预设阈值,处理模块可以确定方向盘处于离手状态。
例如,在所述第一导电层与方向盘表面之间的距离小于所述第二导电层与所述方向盘表面之间的距离的情况下,第一电容值为外层导电层的电容值,第二电容值为内层导电层的电容值,第一电容值与第二电容值之间的比值与系数之间具有负相关关系。
即,第一导电层的第一电容值与第二导电层的第二电容值之间的比值越大,则代表驾驶员的手对第一导电层的电容值影响越大(即驾驶员是未戴手套),那么第一电容值也会越大,因此系数可以是设置得越小,以便于区分驾驶员未戴手套正确握持方向盘以及驾驶员未戴手套单指触碰方向盘。第一导电层的第一电容值与第二导电层的第二电容值之间的比值越小,则代表驾驶员的手对第一导电层的电容值影响越小(即驾驶员是戴上手套),那么第一电容值也会越小,因此系数可以是设置得越大,以便于使得第一电容值与系数之间的相乘结果能够大于或等于预设阈值。又例如,在所述第一导电层与方向盘表面之间的距离大于所述第二导电层与所述方向盘表面之间的距离的情况下,第一电容值为内层导电层的电容值,第二电容值为外层导电层的电容值,第一电容值与第二电容值之间的比值与系数之间具有正相关关系。
为便于理解,以下将详细介绍本申请实施例提供的方向盘离手检测系统的工作原理。
在方向盘离手检测系统中,第一导电层和第二导电层通电后都会产生电场。其中,第一导电层所产生的电场会受到手的接触和第二导电层的影响,第二导电层所产生的电场也会受到手的接触和第一导电层的影响。
在驾驶员未戴手套握持方向盘时,驾驶员的手接触方向盘表面时所引起的电场分布变化远大于两个导电层互相影响所引起的电场分布变化,即第一导电层和第二导电层对应的电容值变化量主要是受到驾驶员的手的影响。并且,由于驾驶员的手与外层的导电层之间的距离要小于其与内层的导电层之间的距离,因此驾驶员的手对外层的导电层的电容值变化量影响更大。也就是说,在驾驶员未戴手套握持方向盘时,外层的导电层的电容值要远大于内层的导电层的电容值。
在驾驶员戴手套握持方向盘时,由于受到较厚的绝缘手套的影响,驾驶员戴上手套接触方向盘表面时所引起的电场分布变化大幅度下降。并且,由于驾驶员握持方向盘,会使得第一导电层和第二导电层 之间的绝缘层受到压力而产生压缩形变,进而使得第一导电层和第二导电层由于距离缩短而同时产生电容值变化。在这种情况下,驾驶员戴上手套接触方向盘表面时所引起的电场分布变化要小于两个导电层互相影响所引起的电场分布变化,即第一导电层和第二导电层对应的电容值变化量主要是受到彼此的影响。也就是说,驾驶员戴手套握持方向盘时,外层的导电层的电容值与内层的导电层的电容值接近。
此外,在驾驶员未戴手套并以少量手指搭在方向盘时,得益于导电的手指,驾驶员的手指接触方向盘表面时所引起的电场分布变化也要大于两个导电层互相影响所引起的电场分布变化,即第一导电层和第二导电层对应的电容值变化量同样是主要受到驾驶员的手指的影响。并且,由于驾驶员的手与外层的导电层之间的距离要小于其与内层的导电层之间的距离,因此驾驶员的手对外层的导电层的电容值变化量影响更大。也就是说,在驾驶员未戴手套握持方向盘时,外层的导电层的电容值也是要远大于内层的导电层的电容值。
基于上述的分析可知,通过求取第一导电层的第一电容值与第二导电层的第二电容值之间的比值,则能够基于该比值的大小来识别驾驶员是否有戴上手套。并且,对于导电层而言,由于电容值的变化量是与其与导电物体之间的距离相关的,因此基于电容值之间的比值来识别驾驶员是否有戴上手套,能够符合导电层本身的电容值变化性质,从而提高识别准确率。
在通过两个导电层的电容值比值识别到驾驶员是否有戴上手套的情况下,则可以基于该比值确定一个用于检测方向盘是否处于离手状态的阈值。对于任意一个导电层而言,该导电层在驾驶员未戴手套时的电容值要大于驾驶员戴上手套时的电容值。因此,在识别到驾驶员未戴手套时,可以是确定一个值较大的阈值来检测方向盘是否处于离手状态;在识别到驾驶员戴上手套时,则可以是确定一个值较小的阈值来检测方向盘是否处于离手状态。
也就是说,在所述第一导电层与方向盘表面之间的距离小于所述第二导电层与所述方向盘表面之间的距离的情况下,第一电容值为外层导电层的电容值,第二电容值为内层导电层的电容值,第一电容值与第二电容值之间的比值与所述第一阈值之间具有正相关关系。即,第一导电层的第一电容值与第二导电层的第二电容值之间的比值越大,则代表驾驶员的手对第一导电层的电容值影响越大(即驾驶员是未戴手套),因此第一阈值也可以是设置得越大;第一导电层的第一电容值与第二导电层的第二电容值之间的比值越小,则代表驾驶员的手对第一导电层的电容值影响越小(即驾驶员是戴上手套),因此第一阈值也可以是设置得越小。
类似地,在所述第一导电层与方向盘表面之间的距离大于所述第二导电层与所述方向盘表面之间的距离的情况下,第一电容值为内层导电层的电容值,第二电容值为外层导电层的电容值,第一电容值与第二电容值之间的比值与第一阈值之间具有负相关关系。
可选的,为了保证在驾驶员戴手套正确握持方向盘时,第一导电层和第二导电层均能够输出不低的电容值,所述第一导电层和所述第二导电层为柔性导电层,所述绝缘层为可压缩形变的弹性绝缘层。这样一来,在驾驶员戴手套并通过多个手指正确握持方向盘时,第一导电层、第二导电层和绝缘层能够产生压缩形变,使得第一导电层和第二导电层均输出不低的电容值,以提高电容值检测的准确率,保证最终方向盘离手状态的识别准确率。
需要说明的是,在第一导电层和第二导电层并非柔性导电层,且绝缘层不为弹性绝缘层的情况下,本实施例中的第一导电层和第二导电层也能够输出接近的电容值,进而保证在不同情况下实现方向盘离手状态的检测。
示例性地,请参阅图8,图8为本申请实施例提供的一种方向盘检测系统在不同握持状态下的电容值对比示意图。如图8所示,基于本申请实施例提供的方向盘检测系统,在驾驶员不戴手套并通过多根手指以正确的握持姿势握持在方向盘上时,方向盘上的外层导电层能够输出较高的电容值,方向盘上的内层导电层也能够输出一个不低的电容值。并且,由于方向盘上外层导电层受到手指的影响大于内层导电层所受到的影响,方向盘上的外层导电层所输出的电容值远大于内层导电层所输出的电容值。此时,基于外层导电层所输出的电容值与内层导电层所输出的电容值之间的比值,可以确定一个值较大的触发阈值(即上述的第一阈值)。并且,在这种情况下,由于外层导电层所输出的电容值大于该触发阈值, 因此能够判定驾驶员握持方向盘,即方向盘不处于离手状态。
在驾驶员不戴手套并通过单根手指搭在方向盘上时,方向盘上的外层导电层输出一个不高的电容值,而方向盘上的内层导电层则输出一个较低的电容值。并且,由于方向盘上外层导电层受到手指的影响大于内层导电层所受到的影响,方向盘上的外层导电层所输出的电容值是内层导电层所输出的电容值的几倍。即,外层导电层所输出的电容值与内层导电层所输出的电容值之间的比值同样是一个较大的值。这样一来,基于外层导电层所输出的电容值与内层导电层所输出的电容值之间的比值,可以确定一个值较大的触发阈值(即上述的第一阈值)。并且,在这种单根手指搭在方向盘上的情况下,由于外层导电层所输出的电容值小于该触发阈值,因此能够判定驾驶员没有握持方向盘,即方向盘处于离手状态。
在驾驶员戴手套并通过多根手指以正确的握持姿势握持在方向盘上时,方向盘上的外层导电层和内层导电层均输出不高的电容值。并且,由于方向盘上外层导电层受到手指的影响与内层导电层所受到的影响相接近,因此方向盘上的外层导电层所输出的电容值也是接近于内层导电层所输出的电容值,即外层导电层所输出的电容值与内层导电层所输出的电容值之间的比值较小。此时,基于外层导电层所输出的电容值与内层导电层所输出的电容值之间的比值,可以确定一个值较小的触发阈值。这样一来,在触发阈值较小的情况下,外层导电层所输出的电容值大于该触发阈值,因此能够判定驾驶员握持方向盘,即方向盘不处于离手状态。
总的来说,本实施例提供的方向盘检测系统基于两层导电层的电容值比值,能够有效地识别不戴手套握方向盘以及戴手套握方向盘的两种状态,进而基于所识别到的方向盘握持状态选取相应的阈值并结合导电层的电容值来判定方向盘是否离手,保证在不戴手套以及戴手套握持方向盘等情况下均能够实现方向盘离手检测。
为了便于理解,以下将结合流程图介绍方向盘离手检测系统的工作流程。请参阅图9,图9为本申请实施例提供的一种方向盘离手检测系统的工作流程示意图。如图9所示,该方向盘离手检测系统的工作流程包括以下的步骤901-905。
步骤901,电容读取模块读取第一导电层的第一电容值和第二导电层的第二电容值。
本实施例中,电容读取模块具体用于读取方向盘离手检测系统中的第一导电层和第二导电层的电容值。并且,在车辆的行驶过程中,电容读取模块可以是实时地读取第一导电层的第一电容值和第二导电层的第二电容值,以便于实时识别方向盘是否处于离手状态。此外,电容读取模块也可以是在特定行驶模式下才开始工作。例如,在车辆进入自动驾驶模式时,电容读取模块开始工作,以便于在自动驾驶模式下实时识别方向盘是否处于离手状态。
具体地,电容读取模块的实现方式可以参考现有的电容值读取结构,本实施例在此并不做具体限定。其中,电容读取模块可以是作为方向盘检测系统中的一部分部署于方向盘上。电容读取模块也可以是集成于方向盘检测系统中的处理模块中,本实施例对电容读取模块的设置方式并不做具体限定。
步骤902,处理模块获取电容读取模块所读取到的第一电容值和第二电容值,并基于第一电容值与第二电容值之间的比值确定第一阈值。
具体来说,第一电容值与第二电容值之间的比值与第一阈值具有映射关系,不同的比值可以确定得到不同大小的第一阈值。其中,基于第一电容值与第二电容值之间的比值确定第一阈值的方式可以参考上述实施例的叙述,在此不再赘述。
步骤903,处理模块判断第一电容值是否大于或等于第一阈值。
需要说明的是,在实际应用中,处理模块也可以是通过对比第一阈值和第二电容值之间的大小来实现方向盘离手检测,在此不做具体限定。
步骤904,如果第一电容值大于或等于第一阈值,处理模块确定方向盘不处于离手状态。
步骤905,如果第一电容值小于第一阈值,处理模块确定方向盘处于离手状态,并控制输出告警信息,该告警信息用于提示所述方向盘处于离手状态。
示例性地,处理模块控制输出的告警信息可以是为文字信息、图像信息或者是语音信息。例如,处理模块通过车辆上的中控显示屏或者是仪表盘输出文字信息,该文字信息具体为“请握紧方向盘,否则 车辆将在5秒内退出自动驾驶”。又例如,处理模块通过车辆上的中控显示屏或者是仪表盘输出图像,该图像具体可以为一个两手紧握方向盘的简易图标,以提示驾驶员握紧方向盘。再例如,处理模块通过车辆上的扬声器输出语音信息,该语音信息同样可以为“请握紧方向盘,否则车辆将在5秒内退出自动驾驶”,以提醒驾驶员及时握紧方向盘。
在处理模块检测到第一电容值小于第一阈值的情况下,处理模块持续控制输出告警信息。并且,处理模块持续执行上述的步骤901-903,以确定每个时刻下方向盘是否处于离手状态。在处理模块确定方向盘仍处于离手状态的情况下,处理模块继续控制输出告警信息;在处理模块确定方向盘不处于离手状态的情况下,处理模块控制不再输出告警信息。
也就是说,在处理模块检测到方向盘处于离手状态之后,处理模块控制持续输出告警信息,直至方向盘不再处于离手状态。
以上介绍了基于方向盘离手检测系统中的第一导电层和第二导电层来实现方向盘离手检测的过程,以下将介绍方向盘离手检测系统中的第一导电层和第二导电层的一些可能的设计。
在一些实施例中,所述第一导电层包括多个第一部分,所述多个第一部分中任意两个相邻的部分之间具有间隔。所述第二导电层包括多个第二部分,所述多个第二部分中任意两个相邻的部分之间具有间隔。例如,第一导电层中的多个第一部分为梳齿结构,即多个第一部分互相平行,且多个第一部分的顶部通过长条形状的结构连接在一起。即多个第一部分可以视为梳齿结构中的多个齿状结构。第二导电层中的多个第二部分也为梳齿结构,即多个第二部分互相平行,且多个第二部分的顶部通过长条形状的结构连接在一起。即多个第二部分也可以视为梳齿结构中的多个齿状结构。
并且,所述多个第一部分与所述多个第二部分相互错开。具体来说,由于第一导电层和第二导电层距离方向盘表面的距离不同,可以认为从方向盘表面到方向盘内部的方向上,第一导电层和第二导电层处于不同的平面上。并且,沿着方向盘表面到方向盘内部的方向上,所述多个第一部分与所述多个第二部分相互错开,即第一部分与第二部分并不重叠。
示例性地,请参阅图10,图10为本申请实施例提供的一种方向盘检测系统的结构对比示意图。如图10中的(a)所示,在第一导电层和第二导电层为平板结构时,第一导电层和第二导电层可以视为用于包括方向盘表面的长条形状。沿着方向盘表面到方向盘内部的方向上,平板形状的第一导电层和第二导电层上的大部分区域均重合。
如图10中的(b)所示,在第一导电层和第二导电层为梳齿结构时,第一导电层和第二导电层可以视为用于包裹方向盘表面的长条梳齿结构。沿着方向盘表面到方向盘内部的方向上,第一导电层上的多个第一部分与第二导电层上的多个第二部分相互错开,使得第一导电层和第二导电层在该方向上的大部分区域均不重合。
这样一来,通过将第一导电层和第二导电层设置为梳齿结构,且第一导电层和第二导电层之间的各个部分相互错开,能够减少第一导电层和第二导电层在纵向方向上的重合面积,进而减少第一导电层和第二导电层的电容读取噪声,提高方向盘离手检测系统的检测准确性。
可选的,所述多个第一部分和所述多个第二部分中每个部分的长度均小于第二阈值,其中所述每个部分的长度为所述每个部分在所述方向盘的转动方向上的长度。简单来说,在多个第一部分和多个第二部分中的每个部分可以视为梳齿结构中的齿状结构时,每个部分在所述方向盘的转动方向上的长度则可以认为是齿状结构的宽度。
对于任一导电层而言,该导电层上的多个部分在方向盘的转动方向上的长度越大时,驾驶员的手握持在方向盘上所接触的部分则越少;该导电层上的多个部分在方向盘的转动方向上的长度越小时,驾驶员的手握持在方向盘上所接触的部分则越多。并且,由于多个第一部分和多个第二部分是互相错开的,因此为了保证驾驶员的手握持在方向盘上时所接触到的第一部分和第二部分的数量接近,可以设置各个部分的长度均小于第二阈值,以保证两个导电层与驾驶员的手的接触面积尽可能接近。
简单来说,在导电层上的每个部分的长度较大时,由于不同导电层上的各个部分相互错误,因此驾驶员的手所接触到的各个导电层上的部分数量可能不一样,进而导致驾驶员的手对不同导电层的接触面 积相差较大。例如,驾驶员的手接触到第一导电层上的5个第一部分以及第二导电层上的4个第二部分,由于每个部分的长度均较大,进而在相差一个部分时也会导致驾驶员的手与不同导电层所接触的面积出现较大差距,容易影响导电层所输出的电容值。
然而,当导电层上的每个部分的长度均设置为较小时,即便驾驶员的手所接触到的各个导电层上的部分数量也可能不一样,但是由于每个部分的长度均设置得较小,因此实际上驾驶员的手对不同导电层的接触面积可能相差不大。例如,驾驶员的手接触到第一导电层上的1000个第一部分以及第二导电层上的999个第二部分,由于每个部分的长度均较小,因此在仅相差一个部分时,驾驶员的手与不同导电层所接触的面积非常接近,避免影响导电层所输出的电容值。
具体地,上述的第二阈值可以是根据制造成本以及精度要求来综合决定,例如第二阈值为1mm、2mm或5mm,在此并不限定第二阈值的具体取值。
以上介绍了第一导电层和第二导电层的具体结构形状,以下将介绍第一导电层、第二导电层和绝缘层的材质。
具体来说,第一导电层和第二导电层可以是采用多种方式来实现。
实现方式1
第一导电层和第二导电层可以是由导电纤维编织成导电织物来作为导电层;或者,第一导电层和第二导电层可以是由导电纤维缝制在表面皮革和绝缘基底表面形成导电层。
其中,导电纤维可通过在普通纤维(例如植物纤维、合成纤维、人造纤维等)外围涂覆导电涂层(金属颗粒、碳纳米材料、银纳米线等)制成。导电纤维也可以是采用本身导电的纤维,例如不锈钢纤维、金属纤维等。
实现方式2
第一导电层和第二导电层可以是在表面皮革和绝缘基底表面印刷导电材料形成导电层。其中,导电材料包括导电油墨、导电树脂、导电银浆等材料。
第一导电层和第二导电层也可以是在表面皮革和绝缘基底表面印刷导电聚合物形成导电层。其中,导电聚合物材料可以是由碳、银等纳米导电材料掺入到硅胶、PDMS、PU等聚合物基底中制成。
实现方式3
第一导电层和第二导电层可以是由柔性薄膜导电层作为电极,两层电极为金属材料,例如金、铜、铝等,中间的绝缘层可为聚酰亚胺薄膜、PET薄膜等。
对于第一导电层和第二导电层之间的绝缘层,该绝缘层可为皮革、非导电织物、聚酰亚胺、PET和弹性聚合物等材料,包括硅胶、PDMS、PU等。
除上述材料之外,第一导电层、第二导电层和绝缘层还可以是由其他的导电材料、绝缘材料制成,本实施例对此并不做限制。
可选的,在一些可能的实施例中,所述第一导电层包括多个子导电层,所述多个子导电层彼此之间不具有电连接,且所述多个子导电层沿着所述方向盘的转动方向分布于所述方向盘上的不同区域,其中,上述的第一电容值为所述多个子导电层对应的多个电容值中最大的一个电容值,即在方向盘离手检测过程中可以是选取多个子导电层中电容值最大的子导电层所对应的电容值来执行离手检测。简单来说,只要驾驶员的手握持在方向盘上的任意一个区域,基于该区域的子导电层的电容值,即可判定得到驾驶员正确握持方向盘。
示例性地,请参阅图11,图11为本申请实施例提供的一种方向盘检测系统的结构示意图。如图11所示,从方向盘表面至方向盘内部的方向上,依次设置有表面皮革、第一导电层、绝缘层、第二导电层、绝缘基底和方向盘。其中,第一导电层包括4个子导电层,且4个子导电层分别部署于不同的位置(即左上角位置、右上角位置、左下角位置和右下角位置)上。由于各个子导电层之间并不具有电连接,因此只有子导电层所部署的位置上被驾驶员的手握持住,该子导电层才会输出相应的电容值。因此,基于各个子导电层的电容值来确定驾驶员的手握持方向盘的位置。
需要说明的是,图11是以第一导电层包括4个子导电层为例进行了说明,在实际应用中第一导电 层所包括的子导电层数量也可以是其他数量,例如2个,6个,8个或10个等,本实施例对此并不做具体限定。
此外,除了可以设置第一导电层包括多个子导电层,也可以是设置第二导电层也包括多个子导电层,即两个子导电层均设置有多个子导电层。示例性地,请参阅图12,图12为本申请实施例提供的一种方向盘检测系统的另一结构示意图。如图12所示,从方向盘表面至方向盘内部的方向上,依次设置有表面皮革、第一导电层、绝缘层、第二导电层、绝缘基底和方向盘。其中,第一导电层包括4个子导电层,且第二导电层也包括4个子导电层,第一导电层和第二导电层中部署于相同位置的子导电层共同配合来实现方向盘离手检测。
总的来说,本方案中,通过在方向盘上的不同区域分别设置多个子导电层,能够基于各个子导电层的电容值,确定驾驶员的手握持方向盘的位置,进而基于握持方向盘位置的变化情况来触发一些互动功能。
示例性地,所述处理模块还可以是用于基于相邻的两个子导电层的电容值在预设时间内的最大值均大于或等于第三阈值,控制输出第一指令。其中,第三阈值可以是与上述的第一阈值相关,第一阈值越大,则第三阈值也越大,第一阈值越小,则第三阈值也越小。例如,在第一阈值是用于与第一导电层的第一电容值进行比较的情况下,则第三阈值可以是与第一阈值相同。此外,预设时间例如可以为0.5秒或1秒等时间,本实施例对此并不做具体限定。
可以理解的是,对于一个子导电层而言,只有驾驶员的手握持在该子导电层上时,该子导电层才会输出较高的电容值,否则该子导电层所输出的电容值很低。因此,如果相邻的两个子导电层的电容值在预设时间内的最大值均大于或等于第三阈值,则可以认为驾驶员的手在预设时间内从一个子导电层滑动到了另一个子导电层,即驾驶员的手在方向盘上进行了滑动,从而由处理模块控制输出第一指令,以实现车辆内的互动。
可选的,所述第一指令可以是包括但不限于以下的指令:接听来电、拒接来电、切换歌曲、调节音量、调节空调温度、升降车窗或调节座椅。
示例性地,请参阅图13,图13为本申请实施例提供的一种通过滑动握持方向盘的手来触发与车辆互动的示意图。如图13所示,在车辆的方向盘上,方向盘检测系统的第一导电层包括有8个子导电层,且8个子导电层绕着方向盘分别部署于不同的位置上。在车辆与驾驶员的智能手机连接的情况下,驾驶员的智能手机接收到来电,且车辆上的中控屏幕同时显示来电信息,以提示驾驶员处理来电。在车辆上的中控屏幕显示来电信息时,驾驶员的右手握持在方向盘右侧的第二个子导电层之上,即第二个子导电层输出一个大于第三阈值的电容值。当驾驶员的右手在方向盘上顺时针滑动之后,驾驶员的右手快速地从方向盘右侧的第二个子导电层滑动至方向盘右侧的第三个子导电层,因此第三个子导电层也输出一个大于第三阈值的电容值。这样一来,方向盘离手检测系统中的处理模块检测到第二个子导电层和第三个子导电层在预设时间内所输出的电容值均大于第三阈值,进而控制输出接听来电的指令,实现接听来电。
本方案中,通过在方向盘上的不同位置部署多个子导电层,能够基于多个子导电层所输出的电容值判断驾驶员的手握持方向盘的位置,进而基于驾驶员的手的握持位置变化情况来触发驾驶员与车辆的互动,使得驾驶员在手不离开方向盘的情况下实现与车辆的互动,保证了驾驶安全性。
可选的,当驾驶员的一个手在方向盘上滑动时,为了避免驾驶员的手不会影响到方向盘的正常操控,驾驶员的另一个手往往需要仅仅握持住方向盘。因此,本实施例中,处理模块还可以是在检测到驾驶员的一个手紧握方向盘,且驾驶员的另一个手在方向盘上滑动时,才控制输出第一指令。具体而言,处理模块可以是检测到一个子导电层输出的电容值始终大于第一阈值,且另外两个子导电层所输出的电容最大值在预设时间内大于或等于第三阈值,则控制输出第一指令。
以上介绍了方向盘离手检测系统中的处理模块通过检测驾驶员的手在方向盘上滑动,从而触发输出第一指令的过程。在一些实施例中,方向盘离手检测系统中的处理模块还可以是通过检测驾驶员的手在方向盘上滑动的方向,进而确定触发输出指令的类型。即,如果驾驶员的手在方向盘上往不同的方向滑动,则处理模块控制输出的指令也是不一样的。
示例性地,所述处理模块还用于基于第一子导电层和第二子导电层的位置,控制输出第一子指令或第二子指令,上述的第一指令包括所述第一子指令和所述第二子指令。其中,所述第一子导电层和所述第二子导电层为相邻的两个子导电层,且所述第一子导电层的最大电容值在所述预设时间内的出现时间早于所述第二子导电层的最大电容值在所述预设时间内的出现时间。即,驾驶员的手是从第一子导电层所在的位置滑动至第二导电层所在的位置,因此是第一子导电层先输出最大电容值,再到第二子导电层输出最大电容值。
这样一来,如果第一子导电层和第二子导电层在方向盘上是沿着顺时针方向排列,处理模块则可以确定驾驶员的手是沿着顺时针方向滑动;如果第一子导电层和第二子导电层在方向盘上是沿着逆时针方向排列,处理模块则可以确定驾驶员的手是沿着逆时针方向滑动。也就是说,处理模块基于第一子导电层和第二子导电层之间的位置关系,即可确定驾驶员的手的滑动方向,从而控制输出相应的指令。例如,如果处理模块确定驾驶员的手是沿着顺时针方向滑动,则控制输出第一子指令,该第一子指令例如为接听来电、切换下一首歌曲、调高音量、调高空调温度、升起车窗或调高座椅位置;如果处理模块确定驾驶员的手是沿着逆时针方向滑动,则控制输出第二子指令,该第二子指令例如为拒接来电、切换上一首歌曲、调低音量、调低空调温度、降下车窗或调低座椅位置。
示例性地,请参阅图13和图14,图13为本申请实施例提供的一种通过滑动握持方向盘的手来触发与车辆互动的示意图;图14为本申请实施例提供的另一种通过滑动握持方向盘的手来触发与车辆互动的示意图。如图13所示,在车辆上的中控屏幕显示来电信息的情况下,当处理模块检测到驾驶员的手是沿着顺时针方向滑动时,控制输出接听来电的指令,实现接听来电。
如图14所示,在车辆上的中控屏幕显示来电信息的情况下,当处理模块检测到驾驶员的手是沿着逆时针方向滑动时(即驾驶员的右手快速地从方向盘右侧的第二个子导电层滑动至方向盘右侧的第一个子导电层),控制输出拒接来电的指令,实现拒接来电。
本方案中,通过在方向盘上的不同位置部署多个子导电层,能够基于多个子导电层所输出的电容值获取驾驶员的手在方向盘上滑动的方向,进而触发输出相应的指令,能够在保证驾驶安全性的同时保证驾驶员与车辆互动的多样化,满足用户的多样化需求。
以上介绍了方向盘离手检测系统的处理模块通过检测驾驶员的手在方向盘上的滑动情况来控制输出指令,以实现驾驶员与车辆互动的过程。在一些实施例中,方向盘离手检测系统中的处理模块还可以检测驾驶员的手握持方向盘的力度大小,进而判定驾驶员的状态或意图,从而控制输出其他的指令,实现驾驶员与车辆更多的互动方式。
示例性地,在所述处理模块确定所述方向盘不处于离手状态的情况下,所述处理模块还用于基于所述方向盘的握力大小或所述方向盘的握力大小在预设时间范围内的变化情况,控制输出第二指令。
例如,处理模块可以是基于方向盘的握力大于或等于第四阈值,从而控制输出第二指令,该第二指令例如可以为接听来电、拒接来电、切换歌曲、调节音量、调节空调温度、升降车窗或调节座椅。其中,第四阈值可以为一个较大的阈值。当处理模块检测到方向盘的握力大于或等于第四阈值时,可以认为驾驶员主动捏握方向盘来触发方向盘的捏握功能,从而控制输出第二指令。
又例如,处理模块可以是基于方向盘的握力在预设时间范围内逐渐增大,从而控制输出第二指令。该预设时间范围例如可以为1秒或2秒等较小的时间范围。该第二指令例如可以为接听来电、拒接来电、切换歌曲、调节音量、调节空调温度、升降车窗或调节座椅。
再例如,处理模块可以是基于方向盘的握力在预设时间范围内逐渐减小,从而控制输出第二指令。该预设时间范围例如可以为1小时、2小时或4小时等较大的时间范围。该第二指令例如为在中控显示屏或仪表盘上显示提示信息“你已疲劳驾驶,请注意休息”,或者是通过输出语音信息“你已疲劳驾驶,请注意休息”。也就是说,处理模块通过检测到方向盘的握力大小在一定时间范围内逐渐减小时,可以认为驾驶员已经逐渐进入疲劳状态,从而提醒驾驶员注意休息,以保证行驶安全。
具体来说,由于驾驶员采用不同的力度来握持方向盘时,驾驶员的手与方向盘的接触面积不同,且驾驶员的手距离方向盘上的第一导电层和第二导电层的距离也不同。驾驶员握持方向盘的力度越大,则 驾驶员的手与方向盘的接触面积越大,且驾驶员的手距离方向盘上的第一导电层和第二导电层的距离也越小,因此第一导电层和第二导电层所输出的电容值也越大;类似地,驾驶员握持方向盘的力度越小,则驾驶员的手与方向盘的接触面积越小,且驾驶员的手距离方向盘上的第一导电层和第二导电层的距离也越大,因此第一导电层和第二导电层所输出的电容值也越小。也就是说,第一导电层和第二导电层所输出的电容值大小是与驾驶员握持方向盘的力度大小相关的。
因此,在方向盘离手检测系统检测到驾驶员的手握持方向盘的状态(即戴手套握持方向盘或不戴手套握持方向盘)时,通过一定的映射系数,则可以将第一导电层或第二导电层的电容值转换为握力大小。
示例性地,在确定方向盘不处于离手状态时,所述处理模块还用于基于第一电容值与第二电容值之间的比值确定映射系数,并根据该映射系数和所述第一电容值确定所述方向盘的握力大小。其中,由于第一电容值与第二电容值之间的比值反应了驾驶员的手握持方向盘的状态,而驾驶员的手握持方向盘的状态又决定了电容值与握力大小之间的映射关系,因此上述的映射系数是与第一电容值与第二电容值之间的比值相关的。
本方案中,方向盘离手检测系统中的处理模块通过检测驾驶员的手握持方向盘的力度大小,进而判定驾驶员的状态或意图,从而控制输出其他的指令,能够实现驾驶员与车辆更多的互动方式。
本申请实施例还提供一种方向盘离手检测方法,应用于方向盘离手检测系统中的处理模块,所述系统包括第一导电层、第二导电层、绝缘层和处理模块,所述绝缘层设置于所述第一导电层和所述第二导电层之间,且所述第一导电层与方向盘表面之间的距离和所述第二导电层与所述方向盘表面之间的距离不同。
该方法包括:获取第一电容值和第二电容值,所述第一电容值为所述第一导电层的电容值,所述第二电容值为所述第二导电层的电容值;
基于所述第一电容值和所述第二电容值之间的比值,来确定所述方向盘是否处于离手状态。
在一种可能的实现方式中,所述基于所述第一电容值和所述第二电容值之间的比值,来确定所述方向盘是否处于离手状态,具体为:
基于第一电容值和第二电容值之间的比值确定第一阈值,并通过对比所述第一电容值或所述第二电容值与所述第一阈值之间的大小,来确定所述方向盘是否处于离手状态;其中,
在所述第一导电层与方向盘表面之间的距离小于所述第二导电层与所述方向盘表面之间的距离的情况下,所述比值与所述第一阈值之间具有正相关关系;
或者,在所述第一导电层与方向盘表面之间的距离大于所述第二导电层与所述方向盘表面之间的距离的情况下,所述比值与所述第一阈值之间具有负相关关系。
在一种可能的实现方式中,所述通过对比所述第一电容值或所述第二电容值与所述第一阈值之间的大小,来确定所述方向盘是否处于离手状态,包括:
在所述第一电容值或所述第二电容值大于或等于所述第一阈值的情况下,确定所述方向盘不处于离手状态;
在所述第一电容值或所述第二电容值小于所述第一阈值的情况下,确定所述方向盘处于离手状态。
在一种可能的实现方式中,该方法还包括:
在确定所述方向盘处于离手状态时,控制输出告警信息,所述告警信息用于提示所述方向盘处于离手状态。
在一种可能的实现方式中,所述第一导电层包括多个子导电层,所述多个子导电层彼此之间不具有电连接,且所述多个子导电层沿着所述方向盘的转动方向分布于所述方向盘上的不同区域,所述第一电容值为所述多个子导电层对应的多个电容值中最大的一个电容值;
该方法还包括:
基于相邻的两个子导电层的电容值在预设时间内的最大值均大于或等于第三阈值,控制输出第一指令。
在一种可能的实现方式中,该方法还包括:
基于第一子导电层和第二子导电层的位置,控制输出第一子指令或第二子指令,所述第一指令包括所述第一子指令和所述第二子指令;
其中,所述第一子导电层和所述第二子导电层为所述相邻的两个子导电层,所述第一子导电层的最大电容值在所述预设时间内的出现时间早于所述第二子导电层的最大电容值在所述预设时间内的出现时间。
在一种可能的实现方式中,所述第一指令包括:接听来电、拒接来电、切换歌曲、调节音量、调节空调温度、升降车窗或调节座椅。
在一种可能的实现方式中,该方法还包括:
在确定所述方向盘不处于离手状态的情况下,基于所述方向盘的握力大小或所述方向盘的握力大小在预设时间范围内的变化情况,控制输出第二指令。
在一种可能的实现方式中,该方法还包括:
基于所述比值确定映射系数,并根据所述映射系数和所述第一电容值确定所述方向盘的握力大小。
接下来介绍本申请实施例提供的一种处理模块,请参阅图15,图15为本申请实施例提供的处理模块的一种结构示意图,处理模块1500具体可以表现为微控制单元(Microcontroller Unit;MCU)、芯片、芯片系统或电路系统等,此处不做限定。具体的,处理模块1500包括:收发器1501、处理器1502和存储器1503(其中处理模块1500中的处理器1502的数量可以一个或多个,图15中以一个处理器为例),其中,处理器1502可以包括应用处理器15021和通信处理器15022。在本申请的一些实施例中,收发器1501、处理器1502和存储器1503可通过总线或其它方式连接。
存储器1503可以包括只读存储器和随机存取存储器,并向处理器1502提供指令和数据。存储器1503的一部分还可以包括非易失性随机存取存储器(non-volatile random access memory,NVRAM)。存储器1503存储有处理器和操作指令、可执行模块或者数据结构,或者它们的子集,或者它们的扩展集,其中,操作指令可包括各种操作指令,用于实现各种操作。
处理器1502控制方向盘离手检测系统的操作。具体的应用中,方向盘离手检测系统的各个组件通过总线系统耦合在一起,其中总线系统除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都称为总线系统。
上述本申请实施例揭示的方法可以应用于处理器1502中,或者由处理器1502实现。处理器1502可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1502中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1502可以是通用处理器、数字信号处理器(digital signal processing,DSP)、微处理器或微控制器,还可进一步包括专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。该处理器1502可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1503,处理器1502读取存储器1503中的信息,结合其硬件完成上述方法的步骤。
收发器1501(例如网卡)可用于接收输入的数字或字符信息,以及产生与处理模块的相关设置以及功能控制有关的信号输入。收发器1501还可以用于通过第一接口输出数字或字符信息;以及通过第一接口向磁盘组发送指令,以修改磁盘组中的数据。
本申请实施例提供的处理模块具体可以为芯片,芯片包括:处理单元和通信单元,所述处理单元例如可以是处理器,所述通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行存储单元存储的计算机执行指令,以使处理模块内的芯片执行上述实施例描述的模型超参数的选择方法,或者, 以使训练设备内的芯片执行上述实施例描述的模型超参数的选择方法。可选地,所述存储单元为所述芯片内的存储单元,如寄存器、缓存等,所述存储单元还可以是所述无线接入设备端内的位于所述芯片外部的存储单元,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
具体的,请参阅图16,图16为本申请实施例提供的芯片的一种结构示意图;芯片可以表现为神经网络处理器NPU 1600,NPU 1600作为协处理器挂载到主CPU(Host CPU)上,由Host CPU分配任务。NPU的核心部分为运算电路1603,通过控制器1604控制运算电路1603提取存储器中的矩阵数据并进行乘法运算。
在一些实现中,运算电路1603内部包括多个处理单元(Process Engine,PE)。在一些实现中,运算电路1603是二维脉动阵列。运算电路1603还可以是一维脉动阵列或者能够执行例如乘法和加法这样的数学运算的其它电子线路。在一些实现中,运算电路1603是通用的矩阵处理器。
举例来说,假设有输入矩阵A,权重矩阵B,输出矩阵C。运算电路从权重存储器1602中取矩阵B相应的数据,并缓存在运算电路中每一个PE上。运算电路从输入存储器1601中取矩阵A数据与矩阵B进行矩阵运算,得到的矩阵的部分结果或最终结果,保存在累加器(accumulator)1608中。
统一存储器1606用于存放输入数据以及输出数据。权重数据直接通过存储单元访问控制器(Direct Memory Access Controller,DMAC)1605,DMAC被搬运到权重存储器1602中。输入数据也通过DMAC被搬运到统一存储器1606中。
BIU为Bus Interface Unit即,总线接口单元1610,用于AXI总线与DMAC和取指存储器(Instruction Fetch Buffer,IFB)1609的交互。
总线接口单元1610(Bus Interface Unit,BIU),用于取指存储器1609从外部存储器获取指令,还用于存储单元访问控制器1605从外部存储器获取输入矩阵A或者权重矩阵B的原数据。
DMAC主要用于将外部存储器DDR中的输入数据搬运到统一存储器1606或将权重数据搬运到权重存储器1602中或将输入数据数据搬运到输入存储器1601中。
向量计算单元1607包括多个运算处理单元,在需要的情况下,对运算电路1603的输出做进一步处理,如向量乘,向量加,指数运算,对数运算,大小比较等等。主要用于神经网络中非卷积/全连接层网络计算,如Batch Normalization(批归一化),像素级求和,对特征平面进行上采样等。
在一些实现中,向量计算单元1607能将经处理的输出的向量存储到统一存储器1606。例如,向量计算单元1607可以将线性函数;或,非线性函数应用到运算电路1603的输出,例如对卷积层提取的特征平面进行线性插值,再例如累加值的向量,用以生成激活值。在一些实现中,向量计算单元1607生成归一化的值、像素级求和的值,或二者均有。在一些实现中,处理过的输出的向量能够用作到运算电路1603的激活输入,例如用于在神经网络中的后续层中的使用。
控制器1604连接的取指存储器(instruction fetch buffer)1609,用于存储控制器1604使用的指令;
统一存储器1606,输入存储器1601,权重存储器1602以及取指存储器1609均为On-Chip存储器。外部存储器私有于该NPU硬件架构。
其中,上述任一处提到的处理器,可以是一个通用中央处理器,微处理器,ASIC,或一个或多个用于控制上述程序执行的集成电路。
可以参阅图17,图17为本申请实施例提供的一种计算机可读存储介质的结构示意图。本申请还提供了一种计算机可读存储介质,在一些实施例中,上述所公开的方法可以实施为以机器可读格式被编码在计算机可读存储介质上或者被编码在其它非瞬时性介质或者制品上的计算机程序指令。
图17示意性地示出根据这里展示的至少一些实施例而布置的示例计算机可读存储介质的概念性局部视图,示例计算机可读存储介质包括用于在计算设备上执行计算机进程的计算机程序。
在一个实施例中,计算机可读存储介质1700是使用信号承载介质1701来提供的。信号承载介质1701可以包括一个或多个程序指令1702,其当被一个或多个处理器运行时可以提供以上针对图9描述的功能 或者部分功能。此外,图17中的程序指令1702也描述示例指令。
在一些示例中,信号承载介质1701可以包含计算机可读介质1703,诸如但不限于,硬盘驱动器、紧密盘(CD)、数字视频光盘(DVD)、数字磁带、存储器、ROM或RAM等等。
在一些实施方式中,信号承载介质1701可以包含计算机可记录介质1704,诸如但不限于,存储器、读/写(R/W)CD、R/W DVD、等等。在一些实施方式中,信号承载介质1701可以包含通信介质1705,诸如但不限于,数字和/或模拟通信介质(例如,光纤电缆、波导、有线通信链路、无线通信链路、等等)。因此,例如,信号承载介质1701可以由无线形式的通信介质1705(例如,遵守IEEE 802标准或者其它传输协议的无线通信介质)来传达。
一个或多个程序指令1702可以是,例如,计算机可执行指令或者逻辑实施指令。在一些示例中,计算设备的计算设备可以被配置为,响应于通过计算机可读介质1703、计算机可记录介质1704、和/或通信介质1705中的一个或多个传达到计算设备的程序指令1702,提供各种操作、功能、或者动作。
另外需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本申请提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本申请可借助软件加必需的通用硬件的方式来实现,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现。一般情况下,凡由计算机程序完成的功能都可以很容易地用相应的硬件来实现,而且,用来实现同一功能的具体硬件结构也可以是多种多样的,例如模拟电路、数字电路或专用电路等。但是,对本申请而言更多情况下软件程序实现是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在可读取的存储介质中,如计算机的软盘、U盘、移动硬盘、ROM、RAM、磁碟或者光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,训练设备,或者网络设备等)执行本申请各个实施例所述的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。
所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、训练设备或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、训练设备或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存储的任何可用介质或者是包含一个或多个可用介质集成的训练设备、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(Solid State Disk,SSD))等。

Claims (24)

  1. 一种方向盘离手检测系统,其特征在于,包括:第一导电层、第二导电层、绝缘层和处理模块;
    所述绝缘层设置于所述第一导电层和所述第二导电层之间,且所述第一导电层与方向盘表面之间的距离和所述第二导电层与所述方向盘表面之间的距离不同;
    所述处理模块用于基于第一电容值和第二电容值之间的比值,来确定所述方向盘是否处于离手状态;
    其中,所述第一电容值为所述第一导电层的电容值,所述第二电容值为所述第二导电层的电容值。
  2. 根据权利要求1所述的系统,其特征在于,所述处理模块用于基于第一电容值和第二电容值之间的比值,来确定所述方向盘是否处于离手状态,具体为:
    所述处理模块用于基于第一电容值和第二电容值之间的比值确定第一阈值,并通过对比所述第一电容值或所述第二电容值与所述第一阈值之间的大小,来确定所述方向盘是否处于离手状态;其中,
    在所述第一导电层与方向盘表面之间的距离小于所述第二导电层与所述方向盘表面之间的距离的情况下,所述比值与所述第一阈值之间具有正相关关系;
    或者,在所述第一导电层与方向盘表面之间的距离大于所述第二导电层与所述方向盘表面之间的距离的情况下,所述比值与所述第一阈值之间具有负相关关系。
  3. 根据权利要求2所述的系统,其特征在于,在所述第一电容值或所述第二电容值大于或等于所述第一阈值的情况下,所述处理模块用于确定所述方向盘不处于离手状态;
    在所述第一电容值或所述第二电容值小于所述第一阈值的情况下,所述处理模块用于确定所述方向盘处于离手状态。
  4. 根据权利要求1-3任意一项所述的系统,其特征在于,所述处理模块还用于在确定所述方向盘处于离手状态时,控制输出告警信息,所述告警信息用于提示所述方向盘处于离手状态。
  5. 根据权利要求1-4任意一项所述的系统,其特征在于,所述第一导电层和所述第二导电层为柔性导电层,所述绝缘层为可压缩形变的弹性绝缘层。
  6. 根据权利要求1-5任意一项所述的系统,其特征在于,所述第一导电层包括多个第一部分,所述多个第一部分中任意两个相邻的部分之间具有间隔;
    所述第二导电层包括多个第二部分,所述多个第二部分中任意两个相邻的部分之间具有间隔;
    所述多个第一部分与所述多个第二部分相互错开。
  7. 根据权利要求6所述的系统,其特征在于,所述多个第一部分和所述多个第二部分中每个部分的长度均小于第二阈值,其中所述每个部分的长度为所述每个部分在所述方向盘的转动方向上的长度。
  8. 根据权利要求1-7任意一项所述的系统,其特征在于,所述第一导电层包括多个子导电层,所述多个子导电层彼此之间不具有电连接,且所述多个子导电层沿着所述方向盘的转动方向分布于所述方向盘上的不同区域,所述第一电容值为所述多个子导电层对应的多个电容值中最大的一个电容值;
    所述处理模块还用于基于相邻的两个子导电层的电容值在预设时间内的最大值均大于或等于第三阈值,控制输出第一指令。
  9. 根据权利要求8所述的系统,其特征在于,所述处理模块还用于基于第一子导电层和第二子导电层的位置,控制输出第一子指令或第二子指令,所述第一指令包括所述第一子指令和所述第二子指令;
    其中,所述第一子导电层和所述第二子导电层为所述相邻的两个子导电层,所述第一子导电层的最大电容值在所述预设时间内的出现时间早于所述第二子导电层的最大电容值在所述预设时间内的出现 时间。
  10. 根据权利要求8或9所述的系统,其特征在于,所述第一指令包括:接听来电、拒接来电、切换歌曲、调节音量、调节空调温度、升降车窗或调节座椅。
  11. 根据权利要求1-10任意一项所述的系统,其特征在于,在所述处理模块确定所述方向盘不处于离手状态的情况下,所述处理模块还用于基于所述方向盘的握力大小或所述方向盘的握力大小在预设时间范围内的变化情况,控制输出第二指令。
  12. 根据权利要求11所述的系统,其特征在于,所述处理模块还用于基于所述比值确定映射系数,并根据所述映射系数和所述第一电容值确定所述方向盘的握力大小。
  13. 一种方向盘离手检测方法,其特征在于,应用于方向盘离手检测系统中的处理模块,所述系统包括第一导电层、第二导电层、绝缘层和所述处理模块,所述绝缘层设置于所述第一导电层和所述第二导电层之间,且所述第一导电层与方向盘表面之间的距离和所述第二导电层与所述方向盘表面之间的距离不同;
    所述方法包括:
    获取第一电容值和第二电容值,所述第一电容值为所述第一导电层的电容值,所述第二电容值为所述第二导电层的电容值;
    基于所述第一电容值和所述第二电容值之间的比值,来确定所述方向盘是否处于离手状态。
  14. 根据权利要求13所述的方法,其特征在于,所述基于所述第一电容值和所述第二电容值之间的比值,来确定所述方向盘是否处于离手状态,具体为:
    基于第一电容值和第二电容值之间的比值确定第一阈值,并通过对比所述第一电容值或所述第二电容值与所述第一阈值之间的大小,来确定所述方向盘是否处于离手状态;其中,
    在所述第一导电层与方向盘表面之间的距离小于所述第二导电层与所述方向盘表面之间的距离的情况下,所述比值与所述第一阈值之间具有正相关关系;
    或者,在所述第一导电层与方向盘表面之间的距离大于所述第二导电层与所述方向盘表面之间的距离的情况下,所述比值与所述第一阈值之间具有负相关关系。
  15. 根据权利要求14所述的方法,其特征在于,所述通过对比所述第一电容值或所述第二电容值与所述第一阈值之间的大小,来确定所述方向盘是否处于离手状态,包括:
    在所述第一电容值或所述第二电容值大于或等于所述第一阈值的情况下,确定所述方向盘不处于离手状态;
    在所述第一电容值或所述第二电容值小于所述第一阈值的情况下,确定所述方向盘处于离手状态。
  16. 根据权利要求13-15任意一项所述的方法,其特征在于,所述方法还包括:
    在确定所述方向盘处于离手状态时,控制输出告警信息,所述告警信息用于提示所述方向盘处于离手状态。
  17. 根据权利要求13-16任意一项所述的方法,其特征在于,所述第一导电层包括多个子导电层,所述多个子导电层彼此之间不具有电连接,且所述多个子导电层沿着所述方向盘的转动方向分布于所述方向盘上的不同区域,所述第一电容值为所述多个子导电层对应的多个电容值中最大的一个电容值;
    所述方法还包括:
    基于相邻的两个子导电层的电容值在预设时间内的最大值均大于或等于第三阈值,控制输出第一指令。
  18. 根据权利要求17所述的方法,其特征在于,所述方法还包括:
    基于第一子导电层和第二子导电层的位置,控制输出第一子指令或第二子指令,所述第一指令包括所述第一子指令和所述第二子指令;
    其中,所述第一子导电层和所述第二子导电层为所述相邻的两个子导电层,所述第一子导电层的最大电容值在所述预设时间内的出现时间早于所述第二子导电层的最大电容值在所述预设时间内的出现时间。
  19. 根据权利要求17或18所述的方法,其特征在于,所述第一指令包括:接听来电、拒接来电、切换歌曲、调节音量、调节空调温度、升降车窗或调节座椅。
  20. 根据权利要求13-19任意一项所述的方法,其特征在于,所述方法还包括:
    在确定所述方向盘不处于离手状态的情况下,基于所述方向盘的握力大小或所述方向盘的握力大小在预设时间范围内的变化情况,控制输出第二指令。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    基于所述比值确定映射系数,并根据所述映射系数和所述第一电容值确定所述方向盘的握力大小。
  22. 一种方向盘离手检测装置,其特征在于,包括存储器和处理器;所述存储器存储有代码,所述处理器被配置为执行所述代码,当所述代码被执行时,所述装置执行如权利要求13至21任意一项所述的方法。
  23. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有指令,所述指令在由计算机执行时使得所述计算机实施权利要求13至21任意一项所述的方法。
  24. 一种计算机程序产品,其特征在于,所述计算机程序产品存储有指令,所述指令在由计算机执行时使得所述计算机实施权利要求13至21任意一项所述的方法。
PCT/CN2023/118733 2022-11-25 2023-09-14 一种方向盘离手检测系统及方法 WO2024109280A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211491328.9A CN115771517A (zh) 2022-11-25 2022-11-25 一种方向盘离手检测系统及方法
CN202211491328.9 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024109280A1 true WO2024109280A1 (zh) 2024-05-30

Family

ID=85390467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118733 WO2024109280A1 (zh) 2022-11-25 2023-09-14 一种方向盘离手检测系统及方法

Country Status (2)

Country Link
CN (1) CN115771517A (zh)
WO (1) WO2024109280A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115771517A (zh) * 2022-11-25 2023-03-10 华为技术有限公司 一种方向盘离手检测系统及方法
CN118518141A (zh) * 2024-07-23 2024-08-20 比亚迪股份有限公司 方向盘离手检测系统、方法、装置、存储介质及一种车辆

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016193668A (ja) * 2015-03-31 2016-11-17 株式会社フジクラ 把持検出装置
CN110775139A (zh) * 2019-10-31 2020-02-11 北京有感科技有限责任公司 方向盘结构
JP2020040581A (ja) * 2018-09-12 2020-03-19 本田技研工業株式会社 判定システム、車両制御システム、車両、判定方法、及びプログラム
CN112406699A (zh) * 2019-08-22 2021-02-26 上海汽车集团股份有限公司 一种手脱离方向盘的检测方法、电子控制单元及检测系统
CN214084416U (zh) * 2020-11-24 2021-08-31 上海艾铭思汽车控制系统有限公司 一种汽车方向盘、汽车方向盘的控制系统以及汽车
KR20210133128A (ko) * 2020-04-28 2021-11-05 주식회사 코모스 운전자 파지감지 스티어링 휠
CN113815707A (zh) * 2021-09-27 2021-12-21 同济大学 一种驾驶员方向盘握持姿态监测方法及系统
CN115771517A (zh) * 2022-11-25 2023-03-10 华为技术有限公司 一种方向盘离手检测系统及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016193668A (ja) * 2015-03-31 2016-11-17 株式会社フジクラ 把持検出装置
JP2020040581A (ja) * 2018-09-12 2020-03-19 本田技研工業株式会社 判定システム、車両制御システム、車両、判定方法、及びプログラム
CN112406699A (zh) * 2019-08-22 2021-02-26 上海汽车集团股份有限公司 一种手脱离方向盘的检测方法、电子控制单元及检测系统
CN110775139A (zh) * 2019-10-31 2020-02-11 北京有感科技有限责任公司 方向盘结构
KR20210133128A (ko) * 2020-04-28 2021-11-05 주식회사 코모스 운전자 파지감지 스티어링 휠
CN214084416U (zh) * 2020-11-24 2021-08-31 上海艾铭思汽车控制系统有限公司 一种汽车方向盘、汽车方向盘的控制系统以及汽车
CN113815707A (zh) * 2021-09-27 2021-12-21 同济大学 一种驾驶员方向盘握持姿态监测方法及系统
CN115771517A (zh) * 2022-11-25 2023-03-10 华为技术有限公司 一种方向盘离手检测系统及方法

Also Published As

Publication number Publication date
CN115771517A (zh) 2023-03-10

Similar Documents

Publication Publication Date Title
WO2024109280A1 (zh) 一种方向盘离手检测系统及方法
WO2021052213A1 (zh) 调整油门踏板特性的方法和装置
US12072703B2 (en) Remote operation of a vehicle using virtual representations of a vehicle
CN107776574B (zh) 一种自动驾驶车辆的驾驶模式切换方法和装置
US20230418299A1 (en) Controlling autonomous vehicles using safe arrival times
CN110371132B (zh) 驾驶员接管评估方法及装置
CN112513787B (zh) 车内隔空手势的交互方法、电子装置及系统
CN105900159A (zh) 具有教导的后驾驶总结
CN113525373B (zh) 一种车辆的变道控制系统、控制方法以及变道控制装置
CN110758241B (zh) 乘员保护方法及装置
CN113631452B (zh) 一种变道区域获取方法以及装置
EP4137914A1 (en) Air gesture-based control method and apparatus, and system
CN113859265B (zh) 一种驾驶过程中的提醒方法及设备
CN112997126B (zh) 一种车辆召唤方法、智能车以及设备
CN112771606A (zh) 一种汽车空调噪声控制系统、方法及相关车载设备
CN114531913A (zh) 车道线检测方法、相关设备及计算机可读存储介质
US20230322173A1 (en) Method for automatically controlling vehicle interior devices including driver`s seat and apparatus therefor
WO2022068643A1 (zh) 多任务部署的方法及装置
CN115675504A (zh) 一种车辆告警方法以及相关设备
CN114987549A (zh) 车辆控制方法、装置、存储介质及车辆
CN114852092B (zh) 方向盘脱手检测方法、装置、可读存储介质及车辆
CN118518140B (zh) 方向盘离手检测系统、方法、装置、存储介质及一种车辆
CN115063639B (zh) 生成模型的方法、图像语义分割方法、装置、车辆及介质
WO2024093321A1 (zh) 车辆的位置获取方法、模型的训练方法以及相关设备
CN116872956A (zh) 一种辅助驾驶方法、装置及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23893373

Country of ref document: EP

Kind code of ref document: A1