WO2024109088A1 - 性能测试的方法和测试装置 - Google Patents

性能测试的方法和测试装置 Download PDF

Info

Publication number
WO2024109088A1
WO2024109088A1 PCT/CN2023/105350 CN2023105350W WO2024109088A1 WO 2024109088 A1 WO2024109088 A1 WO 2024109088A1 CN 2023105350 W CN2023105350 W CN 2023105350W WO 2024109088 A1 WO2024109088 A1 WO 2024109088A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
terminal
server
aps
interference
Prior art date
Application number
PCT/CN2023/105350
Other languages
English (en)
French (fr)
Inventor
韩晓亮
樊东雷
汤国望
高林
王树起
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024109088A1 publication Critical patent/WO2024109088A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0876Network utilisation, e.g. volume of load or congestion level
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/141Setup of application sessions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/16Implementation or adaptation of Internet protocol [IP], of transmission control protocol [TCP] or of user datagram protocol [UDP]
    • H04L69/163In-band adaptation of TCP data exchange; In-band control procedures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present application relates to the field of communications, and more specifically, to a performance testing method and testing device.
  • WiFi wireless fidelity
  • OBSS overlapping basic service sets
  • APs wireless access points
  • OFDMA orthogonal frequency division multiple access
  • the current WiFi communication performance test system includes a multi-user module, a multipath emulator (MPE) module, an interference module, and a main test box.
  • the multi-user module consists of 16 Intelax200s, which are placed on the same printed circuit board (PCB).
  • the 16 Intelax200s are combined by a power divider and connected to the MPE module, and the MPE module is connected to the main test box.
  • the multi-user module supports a maximum of 16 users, the number of users supported by the multi-user module is small, and the implementation cost is high.
  • the present application provides a performance test method and a test device.
  • the test device provided in the embodiment of the present application can increase the number of users and reduce the implementation cost of the performance test device for WiFi communication.
  • the performance test method provided in the embodiment of the present application can avoid the throughput of some users being 0Mbps during multi-user testing.
  • a test device for performance testing of wireless fidelity communication, comprising: a multi-user module, the multi-user module comprising a processing module, a PCIE bridge, and multiple terminal interfaces, the PICE bridge is used for communication between the processing module and the multiple terminal interfaces, the PICE bridge is connected to the processing module, the PICE bridge comprises multiple branch nodes, and the multiple branch nodes are connected to the multiple terminal interfaces in a one-to-one correspondence.
  • the multi-user module includes a processing module, a PCIE bridge, and multiple terminal interfaces
  • the PCIE bridge is used for communication between the processing module and the multiple terminal interfaces
  • one end of the PICE bridge is connected to the processing module
  • the other end of the PICE bridge is connected to the multiple terminal interfaces
  • each terminal interface can be connected to an auxiliary terminal/user. Therefore, the multi-user module can include multiple auxiliary terminals, and the multi-user module has high integration and low price.
  • the multiple terminal interfaces are connected to the multiple auxiliary terminals in a one-to-one correspondence
  • the first branch node is used to control the on and off of the first branch corresponding to the first branch node
  • the first branch includes the first branch node, the first terminal interface connected to the first branch node, and the first auxiliary terminal connected to the first terminal interface
  • the multiple branch nodes include the first branch node
  • the multiple terminal interfaces include the first terminal interface
  • the multiple auxiliary terminals include the first auxiliary terminal.
  • the multiple auxiliary terminals are connected to a first combiner, and the first combiner is used to combine M signals into N signals, where M is greater than N, and M and N are positive integers.
  • the first combiner is connected to a plurality of first attenuators, and the attenuation coefficients of the plurality of first attenuators are adjustable.
  • the device further includes: a clock synchronization module, wherein the clock synchronization module is connected to the multi-user module via a wired network.
  • the clock synchronization module can synchronize the clock of the auxiliary terminal in the multi-user module. Synchronize with the server's clock so that the one-way delay of the auxiliary terminal WiFi communication can be measured.
  • the clock synchronization module is connected to the terminal under test via a wired network.
  • the clock synchronization module can synchronize the clock of the terminal under test with the clock of the server, thereby measuring the one-way delay of WiFi communication of the terminal under test.
  • the device further includes: a flow testing module, and the flow testing module is connected to the multi-user module via a wired network.
  • the traffic testing module includes a wired interface and a wireless interface, the wired interface is used to transmit management messages through a wired network, and the wireless interface is used to transmit data messages through a wireless fidelity network.
  • the traffic test module can transmit management messages for establishing TCP connection with the auxiliary terminal in the multi-user module through the wired interface, and the traffic test module can transmit data messages with the auxiliary terminal through the wireless interface and measure the flow of data messages.
  • the management message channel and the data message channel can be separated, which can avoid the failure of TCP link establishment between the auxiliary terminal and the server in the multi-user scenario, thereby avoiding the traffic of service data of some users being 0Mbps during multi-user testing.
  • the device further includes: an interference module, the interference module including multiple interference wireless access points AP, and the multiple interference APs are used to perform wireless fidelity communication with the multiple auxiliary terminals in the multi-user module.
  • the number of interference APs included in the interference module is multiple, and the multiple interference APs can provide multi-path WiFi interference, and the WiFi interference emitted by the interference AP is conflict yielding.
  • At least one parameter of the bandwidth, rate, contention air interface parameter, contention air interface frequency, channel, or signal strength of the multiple interfering APs is configurable.
  • the multiple interfering APs are connected to multiple second attenuators, and the attenuation coefficients of the multiple second attenuators are adjustable.
  • the plurality of second attenuators are connected to a second combiner, and the second combiner is used to combine M signals into N signals.
  • the device further includes: a multi-function module, the multi-function module including a plurality of grid APs, and the plurality of grid APs are used to perform wireless fidelity communication with the plurality of auxiliary terminals in the multi-user module.
  • the grid AP is connected to a third attenuator, and the attenuation coefficient of the third attenuator is adjustable.
  • the multiple mesh APs are APs capable of forming a mesh network
  • the mesh network is formed by the multiple mesh APs through network cables, optical fibers, power lines, or wireless connections.
  • the design of the multifunctional module can realize the delay and throughput test of mesh relay scenario and mesh roaming scenario. Therefore, the test device provided by the embodiment of the present application can realize the performance measurement of the mesh network composed of mesh APs.
  • a performance testing method which is applied to the performance testing of wireless fidelity communication, and the method includes: a client sends a management message to a server through a wired network, and the management message is used to establish a TCP connection between the client and the server; the client sends a data message to the server through an AP; the server uses a flow measurement module to measure the flow of the data message, and the server includes the flow measurement module.
  • the client and the server are connected through a wired network.
  • the client can send management messages for establishing a TCP connection to the server through the wired network.
  • the client and the server transmit data messages through a wireless fidelity network, which can achieve the separation of the management message channel and the data message channel, and avoid the client throughput of 0Mbps caused by the failure of TCP link establishment between the client and the server.
  • the method further includes: the server obtaining a source IP address and a source port number of the client.
  • the client and the server include a clock synchronization module; the method also includes: the clock synchronization module synchronizes the clock of the server with the clock of the client through a wired network.
  • the method further includes: the server measuring the one-way delay of the data message. Since the clocks of the client and the server are synchronized, not only the round-trip delay of the data message transmitted between the server and the client can be measured, but also the one-way delay of the data message transmitted between the server and the client can be measured.
  • a test device comprising: a processor and a transceiver, wherein the transceiver is used to receive a computer code or instruction and transmit it to the processor, and the processor runs the computer code or instruction to implement any possible implementation of the second aspect. Method in the present way.
  • a computer-readable storage medium on which a computer program is stored.
  • the testing device implements the method in any possible implementation of the second aspect.
  • a computer program product is provided.
  • the computer program product is run on a computer, the computer is enabled to execute the method in any possible implementation of the second aspect.
  • FIG. 1 is a schematic diagram of a performance test system for WiFi communication.
  • FIG. 2 is a schematic diagram of a multi-user module in a performance test system for WiFi communication.
  • FIG. 3 is a schematic diagram of a testing device provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a PC in a multi-user module according to an embodiment of the present application.
  • FIG5 is a schematic diagram of a clock synchronization module in a test device according to an embodiment of the present application being connected to a terminal via a wired network.
  • FIG6 is a schematic diagram showing the connection between the flow test module and multiple auxiliary terminals in the multi-user module via a wired network.
  • FIG. 7 is a schematic diagram of an interference module in a testing device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a multifunctional module and an interference module in a testing device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the structure of a testing device according to an embodiment of the present application.
  • FIG. 10 is a schematic flow chart of the performance testing method according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the structure of a testing device according to an embodiment of the present application.
  • WiFi protocol is a competition-based protocol.
  • OBSS networks in the same area, the probability of interference conflicts gradually increases, and the experience of WiFi users deteriorates.
  • AP can schedule multiple terminals at the same time, multiple terminals need to compete for channels.
  • WiFi6 introduces OFDMA technology to reduce channel conflicts and improve user experience.
  • complex and time-varying interference and multiple users competing for channels at the same time bring challenges to WiFi performance testing.
  • the current WiFi performance test system has problems such as single interference and small number of supported users.
  • FIG1 is a schematic diagram of a performance test system for WiFi communication.
  • the test system includes a multi-user module, an MPE module, an interference generator module, and a main test box.
  • the main test box includes a turntable on which the AP or terminal to be tested is placed.
  • the MPE module has a built-in attenuator, and the MPE module is used to simulate the path channel between the multi-user module and the main test box.
  • the test system can realize the signal peak, rate vs range (RVR), anti-interference, and directionality tests of a single user, and can also realize the throughput and delay tests of less than 16 users.
  • RVR rate vs range
  • the interference generator module of the WiFi communication performance test system can be referred to as the interference module.
  • the interference module uses the principle of interference recording to capture interference messages from other environments and import them into the Igen module for playback. However, the played back interference messages will not make conflict concessions, which does not meet the WiFi protocol requirements.
  • FIG2 is a schematic diagram of a multi-user module in a performance test system for WiFi communication.
  • the multi-user module is the multi-user module in FIG1 , and the multi-user module is composed of 16 Intel ax200 chips, which are placed on the same PCB board through peripheral component interconnect express (PCIE) slots, and the 16 Intel ax200 chips are connected to the MPE module after being combined by a power divider. Since the multi-user module supports a maximum of 16 users, the number of users supported by the multi-user module is relatively small.
  • PCIE peripheral component interconnect express
  • Data measurement modules are deployed on the multi-user module, the terminal to be tested, and the personal computer (PC)/server.
  • the data measurement module uses the open source tools iper2 and iperf3.
  • the test results of iperf2 and iperf3 are prone to 0Mbps, especially in multi-user scenarios, where the throughput of several users is often 0Mbps.
  • the synchronization (SYC) message used to establish a transmission control protocol (TCP) connection may be lost on the air interface, resulting in TCP link failure; especially in multi-user scenarios, different users compete for air interface resources, which increases the possibility of SYC message transmission failure.
  • the performance test system of this WiFi communication has the following disadvantages: (1) The user integration of the multi-user module is low and the price is expensive; (2) There are defects in the test system, and the throughput of some users will be 0Mbps during multi-user testing; (3) The interference module only generates one-way interference, and the WiFi interference emitted by the interference module will not make conflict concessions, which is inconsistent with the actual WiFi interference.
  • an embodiment of the present application proposes a test device, which is applied to the performance test of wireless fidelity communication, and can increase the number of users and reduce the cost of the performance test device of WiFi communication.
  • FIG3 is a schematic diagram of a test device provided in an embodiment of the present application.
  • the test device includes: a multi-user module 310, wherein the multi-user module 310 includes a processing module 311, a PCIE bridge 312, and a plurality of terminal interfaces 313.
  • the PCIE bridge 312 is used for communication between the processing module 311 and the plurality of terminal interfaces 313, the PICE bridge 312 is connected to the processing module 311, the PICE bridge 312 includes a plurality of branch nodes 314, and the plurality of branch nodes 314 are connected one-to-one with the plurality of terminal interfaces 313.
  • the processing module 311 can be a central processing unit (CPU), and the terminal interface can be an M.2 interface or a PCIE X1 interface.
  • the plurality of terminal interfaces are connected to the plurality of auxiliary terminals in a one-to-one correspondence, and the multi-user module further comprises a plurality of auxiliary terminals.
  • a first branch node among the plurality of branch nodes is used to control the on/off of a first branch corresponding to the first branch node, the first branch comprising a first branch node, a first terminal interface connected to the first branch node, and a first auxiliary terminal connected to the first terminal interface, wherein the plurality of terminal interfaces comprises a first terminal interface, and the plurality of auxiliary terminals comprises a first auxiliary terminal.
  • multiple auxiliary terminals are connected to the first combiner, and the first combiner is used to combine M signals into N signals, where M is greater than N, and M and N are positive integers.
  • the first combiner is connected to multiple first attenuators, and the attenuation coefficient of each first attenuator in the multiple first attenuators is adjustable; by adjusting the attenuation coefficient of the first attenuator, the signal strength of the signal generated by the auxiliary terminal can be adjusted.
  • the number of first attenuators is less than or equal to N.
  • the first combiner can combine 12 signals into 4 signals, and every 2 signals of the 4 signals after being combined by the first combiner can be connected to a first attenuator, or every 1 signal of the 4 signals after being combined by the first combiner can be connected to a first attenuator.
  • the multi-user module includes multiple PCs, each PC includes a processing module, a PCIE bridge, and multiple terminal interfaces, and each terminal interface is connected to an auxiliary terminal.
  • Figure 4 is a schematic diagram of a PC in a multi-user module of an embodiment of the present application.
  • the CPU is connected to the PICE bridge, the multiple branch nodes included in the PICE bridge are connected to the multiple terminal interfaces in a one-to-one correspondence, and the multiple terminal interfaces are connected to the multiple auxiliary terminals in a one-to-one correspondence.
  • the multiple auxiliary terminals are connected to the first combiner, and the first combiner is connected to the multiple first attenuators.
  • the multiple auxiliary terminals can introduce the generated signals into the main test box through the first combiner, the multiple first attenuators with adjustable attenuation coefficients, and the antenna.
  • the main test box is used to place the terminal to be tested or the AP to be tested.
  • the multi-user module includes a processing module, a PCIE bridge, and multiple terminal interfaces.
  • the PCIE bridge is used for communication between the processing module and the multiple terminal interfaces.
  • One end of the PICE bridge is connected to the processing module, and the other end of the PICE bridge is connected to the multiple terminal interfaces.
  • Each terminal interface can be connected to an auxiliary terminal/user. Therefore, the multi-user module can include multiple auxiliary terminals, and the multi-user module has high integration and low price.
  • the test device further includes a clock synchronization module, which is connected to the multi-user module via a wired network, and the clock synchronization module is installed on a server/host computer, and the clock synchronization module can be implemented by software.
  • the clock synchronization module is used to synchronize the clocks of multiple auxiliary terminals with the clock of the server/host computer on which the clock synchronization module is installed via a wired network.
  • the wired network in the embodiment of the present application is used to transmit management messages.
  • the clock synchronization module is connected to the terminal to be tested in the main test box through a wired network.
  • the clock synchronization module is also used to synchronize the clock of the terminal to be tested with the clock of the server/host computer installed with the clock synchronization module through the wired network.
  • FIG5 is a schematic diagram of the clock synchronization module in the test device of the embodiment of the present application being connected to the terminal to be tested through a wired network.
  • the terminal to be tested can build a wired network with the server installed with the clock synchronization module through a type C to Ethernet card.
  • the clock synchronization module can synchronize the clock of the terminal to be tested with the clock of the server through the wired network, so as to measure the one-way delay and round-trip delay between the terminal to be tested and the server.
  • the server and the AP are also connected through a wired network, and the AP and the terminal to be tested communicate through WiFi.
  • the test device provided in the embodiment of the present application can not only measure the round-trip delay of the auxiliary terminal/terminal to be tested WiFi communication, but also measure the one-way delay of the auxiliary terminal/terminal to be tested WiFi communication.
  • the testing device also includes a traffic testing module, which is installed on a server/host computer.
  • the traffic testing module is connected to the multi-user module via a wired network.
  • the traffic testing module is used to measure the traffic of business data from multiple auxiliary terminals in the multi-user module.
  • the flow test module is connected to the terminal to be tested in the main test box through a wired network, and the flow test module is also used to measure the flow of business data from the terminal to be tested.
  • the traffic test module includes a wired interface and a wireless interface
  • the wired interface is used to transmit management messages through a wired network
  • the wireless interface is used to transmit data messages through a wireless fidelity network.
  • FIG6 is a schematic diagram of a flow test module connected to multiple auxiliary terminals in a multi-user module via a wired network.
  • the multi-user module includes 6 PCs, each of which includes a processing module, a PCIE bridge, and 12 terminal interfaces, each of which is connected to an auxiliary terminal, and the multi-user module includes a total of 72 auxiliary terminals.
  • the wired interface of the flow test module is used to transmit management messages with the auxiliary terminals in the multi-user module via a wired network
  • the wireless interface of the flow test module is used to transmit data messages with the auxiliary terminals via a wireless fidelity network.
  • the number of PCs included in the multi-user module in the embodiment of the present application may also be more than 6, and no specific limitation is made to this.
  • the auxiliary terminal/terminal to be tested can be connected to a server including a traffic test module through a wired network, and management messages for establishing a TCP connection are transmitted between the auxiliary terminal/terminal to be tested and the server/traffic test module through the wired network, and data messages are transmitted between the auxiliary terminal/terminal to be tested and the server/traffic test module through a wireless fidelity network, thereby achieving separation of management message channels and data message channels, and avoiding TCP link establishment failure between the auxiliary terminal/terminal to be tested and the server/traffic test module in a multi-user scenario, thereby avoiding the situation where the traffic of business data of some users is 0Mbps during multi-user testing, thereby improving the robustness of the multi-user testing scenario.
  • the flow test module connected to the multi-user module or the terminal to be tested through the wired network can be called the first flow test module.
  • the clock synchronization module and the first flow test module can be deployed in the same server/host computer or in different servers/host computers.
  • the terminal to be tested includes a second flow test module, which is used to measure the flow of business data from the server/host computer.
  • the auxiliary terminal includes a third flow test module, which is used to measure the flow of business data from the server/host computer.
  • the test device further includes an interference module, which includes a plurality of interference APs, and the plurality of interference APs are used to perform wireless fidelity communications with a plurality of auxiliary terminals in the multi-user module.
  • an interference module which includes a plurality of interference APs, and the plurality of interference APs are used to perform wireless fidelity communications with a plurality of auxiliary terminals in the multi-user module.
  • At least one of the bandwidth, rate, contention air interface parameters, contention air interface frequency, channel, or signal strength of multiple interfering APs is configurable/adjustable, which can simulate complex interference in scenes such as homes, offices, airports, and train stations.
  • the WiFi interference emitted by multiple interfering APs is conflict-yielding, which is consistent with real WiFi interference.
  • the frequency of contention air interface of the interfering AP can be understood as the maximum traffic volume of business data that the interfering AP can support.
  • the parameters of contention air interface include arbitration interframe spacing number (AIFSN), minimum contention window, maximum contention window, and transmit opportunity.
  • the multiple interfering APs are connected to the multiple second attenuators, and the attenuation coefficients of the multiple second attenuators are adjustable; by adjusting the attenuation coefficient of the second attenuator, the signal strength of the signal generated by the interfering AP connected to the second attenuator can be adjusted, wherein the number of the multiple second attenuators is less than or equal to the number of the multiple interfering APs.
  • the multiple attenuators are connected to the second combiner, and the second combiner is used to combine M signals into N signals.
  • FIG7 is a schematic diagram of an interference module in a test device according to an embodiment of the present application.
  • Multiple interference APs are connected to multiple second attenuators, and the attenuation coefficients of the multiple second attenuators are adjustable; multiple second attenuators are connected to the second combiner.
  • Multiple interference APs can introduce the generated signals into the main test box through multiple second attenuators with adjustable attenuation coefficients, the second combiner, and the antenna, so that wireless fidelity communication can be performed between the auxiliary terminal in the multi-user module and the interference AP.
  • the interference module includes multiple interference APs, and the multiple interference APs can provide multi-channel WiFi interference, and the WiFi interference emitted by the interference AP is conflict-yielding.
  • the test device further includes a multifunctional module, which includes a plurality of mesh APs, and the plurality of mesh APs are used to perform wireless fidelity communication with a plurality of auxiliary terminal interfaces in the multi-user module.
  • the plurality of mesh APs are APs capable of forming a mesh network, and the mesh network is formed by connecting the plurality of mesh APs via network cables, optical fibers, power lines, or wireless/WiFi.
  • the grid AP is connected to a third attenuator, and the attenuation coefficient of the third attenuator is adjustable; by adjusting the attenuation coefficient of the third attenuator, the signal strength of the signal generated by the grid AP connected to the third attenuator can be adjusted.
  • FIG8 is a schematic diagram of a multifunctional module and an interference module in a test device according to an embodiment of the present application.
  • mesh AP1, mesh AP2, and mesh AP3 can introduce signals into the main test box through an adjustable third attenuator and an antenna, so that wireless fidelity communication can be performed between the auxiliary terminal in the multifunctional module and the mesh AP.
  • Each mesh AP is placed in a multifunctional box, and each multifunctional box has a 10Gbps Ethernet port and a waveguide, which improves the diversity of mesh networking and can cover application scenarios such as WiFi mesh networking, network cable networking, power line networking, and optical fiber networking.
  • the design of this multifunctional module can realize the latency and throughput test of mesh relay scenarios and mesh roaming scenarios.
  • the relay scenario is mesh AP1-WiFi-mesh AP2-WiFi-auxiliary terminal.
  • the latency and throughput performance of data transmission between the auxiliary terminal and mesh AP1 can be tested.
  • the auxiliary terminal in a mesh roaming scenario, can roam between mesh AP1 and mesh AP3.
  • the attenuation coefficient of the third attenuator By adjusting the attenuation coefficient of the third attenuator, the change in signal strength of WiFi communication between the auxiliary terminal and different mesh APs can be measured. Therefore, the test device provided in the embodiment of the present application can realize the performance measurement of a mesh network composed of mesh APs.
  • FIG9 is a schematic diagram of a structure of a test device according to an embodiment of the present application.
  • the test device includes a multi-user module, a clock synchronization module, a flow test module, a main test box, an interference module, and a multi-function module.
  • the multi-user module includes 6 PCs, each of which includes a processing module, a PCIE bridge, and 12 terminal interfaces, each of which is connected to an auxiliary terminal, and the multi-user module includes a total of 72 auxiliary terminals.
  • the clock synchronization module and the flow test module are deployed in the same server, and the server is connected to the multi-user module via a wired network.
  • the main test box is used to place the device to be tested, and the device to be tested includes an AP to be tested or a terminal to be tested.
  • the interference module includes multiple interference APs, and the multiple interference APs are used to communicate with multiple auxiliary terminals in wireless fidelity.
  • the multi-function module includes multiple grid APs, and the multiple grid APs can form a grid network, and the multiple grid APs are used to communicate with multiple auxiliary terminals in wireless fidelity.
  • the multi-function module can also include multiple auxiliary APs, and the auxiliary APs are used to communicate with the terminal to be tested in wireless fidelity. It should be understood that the number of auxiliary terminals included in the multi-user module in the embodiment of the present application can also be more than 72, and no specific limitation is made to this.
  • the terminal to be tested communicates with at least one of the multiple auxiliary APs in the multi-function module via wireless fidelity, and multiple interfering APs can communicate with multiple auxiliary terminals via wireless fidelity.
  • the AP to be tested communicates with at least one first auxiliary terminal among multiple auxiliary terminals through wireless fidelity, and multiple interfering APs communicate with at least one second auxiliary terminal among multiple auxiliary terminals through wireless fidelity.
  • the multiple mesh APs are used to perform wireless fidelity communication with multiple auxiliary terminals, and the multiple interference APs communicate with the multiple auxiliary terminals through wireless fidelity.
  • the embodiment of the present application proposes a performance testing method, which is applied to the performance testing of wireless fidelity communication.
  • the method can avoid the failure of TCP link establishment between the client and the server, thereby avoiding the throughput of some users being 0 Mbps during multi-user testing.
  • Fig. 10 is a schematic flow diagram of a performance test method 1000 according to an embodiment of the present application.
  • the client in the embodiment of the present application may be the above-mentioned terminal to be tested or auxiliary terminal, and the server may be the above-mentioned server/host computer, and the server includes a flow measurement module.
  • the client sends a management message to the server through the wired network, and the management message is used to establish a TCP connection between the client and the server, and the client and the server are connected through the wired network.
  • the server receives the management message from the client through the wired network, and the client and the server can establish a TCP connection through the management message.
  • the client sends a data message to the server through the AP, where the data message includes service data.
  • the server receives the data message from the client.
  • the server obtains the source IP address and source port number of the client.
  • the server receives the data message from the client according to the source IP address and source port number of the client.
  • the source IP address and source port number of the client may be provided to the server by the test staff.
  • the server uses a flow measurement module to measure the flow of data packets from the client.
  • the server and the client further include a clock synchronization module, which synchronizes the server's clock with the client's clock via a wired network.
  • the server can measure the one-way delay of the data message from the client.
  • the client and the server are connected via a wired network.
  • the client can send management messages for establishing a TCP connection to the server via the wired network.
  • Data messages are transmitted between the client and the server via a wireless fidelity network, which can achieve the separation of the management message channel and the data message channel, and can avoid the client throughput of 0Mbps caused by the failure of TCP link establishment between the client and the server.
  • FIG11 shows a structural schematic diagram of a testing device 1100 of an embodiment of the present application.
  • the device 1100 includes: a processor 1110 and a transceiver 1120, wherein the transceiver 1120 is used to receive computer codes or instructions and transmit them to the processor 1110, and the processor 1110 executes the computer codes or instructions, such as the method in any possible implementation method in the embodiments of the present application.
  • the processor 1110 may be an integrated circuit chip with signal processing capability. Each step of the embodiment can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the methods, steps and logic block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor can be a microprocessor or the processor can also be any conventional processor, etc.
  • the steps of the method disclosed in the embodiment of the present application can be directly embodied as a hardware decoding processor to perform, or the hardware and software modules in the decoding processor can be combined to perform.
  • the software module can be located in a mature storage medium in the field such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the present application also provides a computer-readable storage medium on which a computer program for implementing the method in the above method embodiment is stored.
  • a computer program for implementing the method in the above method embodiment is stored.
  • the computer program is run on a computer or a processor, the computer or processor can implement the method in the above method embodiment.
  • An embodiment of the present application further provides a computer program product, which includes a computer program code.
  • a computer program product which includes a computer program code.
  • An embodiment of the present application also provides a chip, including a processor, wherein the processor is connected to a memory, the memory is used to store a computer program, and the processor is used to execute the computer program stored in the memory, so that the chip executes the method in the above method embodiment.
  • the character "/" in this article generally indicates that the objects associated with each other are in an "or” relationship; the term “at least one” in this application can mean “one” and “two or more”, for example, A, B and C can mean: A exists alone, B exists alone, C exists alone, A and B exist at the same time, A and C exist at the same time, C and B exist at the same time, and A, B and C exist at the same time.
  • “Install”, "connect”, “connected” and the like should be understood in a broad sense, for example, it can be a fixed connection, or a detachable connection, or an integral connection; it can be a direct connection, or it can be indirect through an intermediate medium, or it can be the internal connection of two elements.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application can essentially be embodied in the form of a software product, or in other words, the part that contributes to the prior art or the part of the technical solution.
  • the computer software product is stored in a storage medium, including a number of instructions for enabling a computer device (which can be a personal computer, server, or network device, etc.) to execute all or part of the steps of the methods described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk, etc., which can store The medium of program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种性能测试的方法和测试装置,该测试装置能够提升用户数量,降低测试装置的实现成本。该测试装置包括:多用户模块,多用户模块包括处理模块、PCIE桥、和多个终端接口,PICE桥用于处理模块与多个终端接口之间的通信,PICE桥的一端与处理模块是连接的,PICE桥包括多个支路节点,多个支路节点与多个终端接口是一一对应连接的,多个终端接口可以与多个辅助终端一一对应连接。

Description

性能测试的方法和测试装置
本申请要求于2022年11月24日提交中华人民共和国知识产权局、申请号为202211484341.1、发明名称为“性能测试的方法和测试装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种性能测试的方法和测试装置。
背景技术
随着无线保真(wireless fidelity,WiFi)技术的普及,每年都有海量WiFi产品发货,WiFi协议是基于竞争的协议,同一区域内重叠基本服务集(overlap basic service sets,OBSS)网络增多,干扰冲突的概率逐渐变大,WiFi用户的体验变差。由于无线接入点(wireless access point,AP)可以同时调度多个终端,多个终端需要竞争信道,WiFi6引入正交频分多址(orthogonal frequency division mulTIple acces,OFDMA)技术,可以减少信道冲突,提升用户体验。但是,复杂、时变的干扰以及多个用户同时竞争信道给WiFi通信的性能测试带来了挑战。
当前的WiFi通信的性能测试系统包括多用户模块、多径仿真器(multipath emulator,MPE)模块、干扰模块、以及主测箱体。该多用户模块由16个Intelax200组成,16个Intelax200放在同一个印制电路板(printed circuit board,PCB)上,16个Intelax200通过功分器合路后与MPE模块连接,MPE模块与主测箱体连接。该多用户模块最多支持16个用户,该多用户模块支持的用户数较少,且实现成本较高。
发明内容
本申请提供了一种性能测试的方法和测试装置,本申请实施例提供的测试装置能够提升用户数量,降低WiFi通信的性能测试装置的实现成本。本申请实施例提供的性能测试的方法能够避免多用户测试时部分用户的吞吐为0Mbps。
第一方面,提供一种测试装置,应用于无线保真通信的性能测试,包括:多用户模块,所述多用户模块包括处理模块、PCIE桥、和多个终端接口,所述PICE桥用于所述处理模块与所述多个终端接口之间的通信,所述PICE桥与所述处理模块是连接的,所述PICE桥包括多个支路节点,所述多个支路节点与所述多个终端接口是一一对应连接的。
基于上述技术方案,多用户模块包括处理模块、PCIE桥、和多个终端接口,PCIE桥用于处理模块与多个终端接口之间的通信,PICE桥的一端与处理模块是连接的,PICE桥的另一端与多个终端接口是连接的,每个终端接口可以连接一个辅助终端/用户。因此,该多用户模块可以包括多个辅助终端,且该多用户模块的集成度高、价格便宜。
结合第一方面,在第一方面的某些实现方式中,所述多个终端接口与多个辅助终端是一一对应连接的,第一支路节点用于控制所述第一支路节点对应的第一支路的通断,所述第一支路包括所述第一支路节点、所述第一支路节点连接的第一终端接口、以及所述第一终端接口连接的第一辅助终端,其中,所述多个支路节点包括所述第一支路节点,所述多个终端接口包括所述第一终端接口,所述多个辅助终端包括所述第一辅助终端。
结合第一方面,在第一方面的某些实现方式中,所述多个辅助终端与第一合路器是连接的,所述第一合路器用于将M路信号合为N路信号,M大于N,M、N为正整数。
结合第一方面,在第一方面的某些实现方式中,所述第一合路器与多个第一衰减器是连接的,所述多个第一衰减器的衰减系数是可调的。
结合第一方面,在第一方面的某些实现方式中,所述装置还包括:时钟同步模块,所述时钟同步模块是通过有线网络与所述多用户模块连接的。时钟同步模块可以将多用户模块中的辅助终端的时钟 与服务器的时钟进行同步,从而可以测量辅助终端WiFi通信的单向时延。
结合第一方面,在第一方面的某些实现方式中,所述时钟同步模块是通过有线网络与待测终端连接的。时钟同步模块可以将待测终端的时钟与服务器的时钟进行同步,从而可以测量待测终端WiFi通信的单向时延。
结合第一方面,在第一方面的某些实现方式中,所述装置还包括:流量测试模块,所述流量测试模块是通过有线网络与所述多用户模块连接的。
结合第一方面,在第一方面的某些实现方式中,所述流量测试模块包括有线接口和无线接口,所述有线接口用于通过有线网络传输管理报文,所述无线接口用于通过无线保真网络传输数据报文。
基于上述方案,流量测试模块可以通过有线接口与多用户模块中的辅助终端传输用于建立TCP连接的管理报文,流量测试模块可以通过无线接口与辅助终端传输数据报文,并测量数据报文的流量。能够实现管理报文通道与数据报文通道的分离,可以避免多用户场景下辅助终端与服务器之间的TCP建链失败,从而可以避免多用户测试时部分用户的业务数据的流量为0Mbps。
结合第一方面,在第一方面的某些实现方式中,所述装置还包括:干扰模块,所述干扰模块包括多个干扰无线接入点AP,所述多个干扰AP用于与所述多用户模块中的所述多个辅助终端进行无线保真通信。本申请实施例中干扰模块包括的干扰AP的数量为多个,多个干扰AP可以提供多路WiFi干扰,且干扰AP发出的WiFi干扰是冲突退让的。
结合第一方面,在第一方面的某些实现方式中,所述多个干扰AP的带宽、速率、竞争空口的参数、竞争空口的频度、信道、或信号强度中的至少一种参数是可配的。
结合第一方面,在第一方面的某些实现方式中,所述多个干扰AP与多个第二衰减器是连接的,所述多个第二衰减器的衰减系数是可调的。
结合第一方面,在第一方面的某些实现方式中,所述多个第二衰减器与第二合路器是连接的,所述第二合路器用于将M路信号合为N路信号。
结合第一方面,在第一方面的某些实现方式中,所述装置还包括:多功能模块,所述多功能模块包括多个网格AP,所述多个网格AP用于与所述多用户模块中的所述多个辅助终端进行无线保真通信。
结合第一方面,在第一方面的某些实现方式中,所述网格AP与第三衰减器是连接的,所述第三衰减器的衰减系数是可调的。
结合第一方面,在第一方面的某些实现方式中,所述多个网格AP是具有组成网格网络能力的AP,所述网格网络是所述多个网格AP通过网线、光纤、电力线、或无线连接组成的。
基于上述方案,该多功能模块的设计可以实现mesh中继场景和mesh漫游场景的时延和吞吐测试。因此,本申请实施例提供的测试装置可以实现测量网格AP组成的网格网络的性能。
第二方面,提供了一种性能测试的方法,应用于无线保真通信的性能测试,该方法包括:客户端通过有线网络向服务端发送管理报文,所述管理报文用于建立所述客户端与所述服务端之间的TCP连接;所述客户端通过AP向所述服务端发送数据报文;所述服务端利用流量测量模块,测量所述数据报文的流量,所述服务端包括所述流量测量模块。
基于上述技术方案,客户端与服务端之间是通过有线网络连接的,客户端可以通过有线网络可以向服务端发送用于建立TCP连接的管理报文,客户端与服务端之间通过无线保真网络传输数据报文,能够实现管理报文通道与数据报文通道的分离,可以避免客户端与服务端之间的TCP建链失败而导致的客户端的吞吐为0Mbps。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述服务端获取所述客户端的源IP地址和源端口号。
结合第二方面,在第二方面的某些实现方式中,所述客户端和所述服务端包括时钟同步模块;所述方法还包括:所述时钟同步模块通过有线网络将所述服务端的时钟与所述客户端的时钟进行同步。
结合第二方面,在第二方面的某些实现方式中,所述方法还包括:所述服务端测量所述数据报文的单向时延。由于客户端和服务端的时钟是同步的,因此,不仅可以测量服务端与客户端之间传输的数据报文的往返时延,还可以测量服务端与客户端之间传输的数据报文的单向时延。
第三方面,提供一种测试设备,包括:处理器和收发器,所述收发器用于接收计算机代码或指令,并传输至所述处理器,所述处理器运行所述计算机代码或指令,以实现上述第二方面中任一种可能实 现方式中的方法。
第四方面,提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被测试装置执行时,使得所述测试装置实现上述第二方面中任一种可能实现方式中的方法。
第五方面,提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得计算机执行如第二方面中任一种可能实现方式中的方法。
附图说明
图1是一种WiFi通信的性能测试系统的示意图。
图2是WiFi通信的性能测试系统中的多用户模块的示意图。
图3是本申请实施例提供的测试装置的示意图。
图4是本申请实施例的多用户模块中一个PC的示意图。
图5是本申请实施例的测试装置中的时钟同步模块与终端通过有线网络连接的示意图。
图6是流量测试模块与多用户模块中多个辅助终端通过有线网络连接的示意图。
图7是本申请实施例的测试装置中的干扰模块的一种示意图。
图8是本申请实施例的测试装置中的多功能模块和干扰模块的示意图。
图9是本申请实施例的测试装置的一种结构示意图。
图10是本申请实施例的性能测试的方法的示意性流程交互图。
图11是本申请实施例的一种测试设备的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
随着WiFi技术的普及,每年都有海量WiFi产品发货,WiFi协议是基于竞争的协议,同一区域内OBSS网络增多,干扰冲突的概率逐渐变大,WiFi用户的体验变差。由于AP可以同时调度多个终端,多个终端需要竞争信道,WiFi6引入OFDMA技术,可以减少信道冲突,提升用户体验。但是,复杂、时变的干扰以及多个用户同时竞争信道给WiFi性能测试带来了挑战。当前的WiFi性能测试系统存在干扰单一,支持的用户数少等问题。
图1为一种WiFi通信的性能测试系统的示意图。该测试系统包括多用户模块、MPE模块、干扰生成器模块、以及主测箱体。主测箱体中包括转台,转台上用于放置待测AP或待测终端。MPE模块内置衰减器,MPE模块用于模拟多用户模块至主测箱体之间的路径通道。该测试系统可以实现单用户的信号峰值、速度和距离(rate vs range,RVR)、抗干扰、方向性测试,也可以实现16个用户以下的吞吐和时延测试。
该WiFi通信的性能测试系统的干扰生成器模块可以简称为干扰模块,该干扰模块采用干扰录制的原理把其他环境的干扰报文抓包后导入到Igen模块进行回放,但是回放的干扰报文是不会进行冲突退让的,不符合WiFi协议要求。
图2为WiFi通信的性能测试系统中的多用户模块的示意图。该多用户模块为图1中的多用户模块,该多用户模块由16个Intelax200芯片组成,16个Intelax200芯片通过快捷外围部件互连标准(peripheral component interconnect express,PCIE)插槽放在同一个PCB板上,16个Intelax200芯片通过功分器合路后与MPE模块连接。由于该多用户模块最多支持16个用户,该多用户模块支持的用户数较少。
多用户模块、待测终端和个人计算机(personal computer,PC)/服务器上都部署了数据测量模块,数据测量模块采用开源工具iper2和iperf3,在WiFi性能测试时iperf2和iperf3的测试结果容易出现0Mbps的情况,尤其是多用户场景,经常会出现几个用户的吞吐为0Mbps。因为空口传输是不可靠传输,用于建立传输控制协议(transmission control protocol,TCP)连接的同步(synchronize,SYC)报文可能会在空口上丢失,导致TCP建链失败;尤其是在多用户场景中不同用户竞争空口资源,加剧了SYC报文传输失败的可能。
该WiFi通信的性能测试系统存在如下缺点:(1)多用户模块的用户集成度低,价格昂贵;(2)测试系统存在缺陷,多用户测试时会出现部分用户的吞吐为0Mbps;(3)干扰模块只产生1路干扰,且干扰模块发出的WiFi干扰不会进行冲突退让,和真实的WiFi干扰不符。
为此,本申请实施例提出了一种测试装置,应用于无线保真通信的性能测试,能够提升用户数量,降低WiFi通信的性能测试装置的成本。
图3为本申请实施例提供的测试装置的示意图。该测试装置包括:多用户模块310,所述多用户模块310包括处理模块311、PCIE桥312、和多个终端接口313。PCIE桥312用于处理模块311与多个终端接口313之间的通信,PICE桥312与处理模块311是连接的,PICE桥312包括多个支路节点314,多个支路节点314与多个终端接口313是一一对应连接的。可以理解为,PICE桥312的一端与处理模块311是连接的,PICE桥312的另一端与多个终端接口313是连接的。其中,处理模块311可以为中央处理器(central processing unit,CPU),终端接口可以为M.2接口,也可以是PCIE X1接口。
可选的,多个终端接口与多个辅助终端是一一对应连接的,多用户模块还包括多个辅助终端。多个支路节点中的第一支路节点用于控制该第一支路节点对应的第一支路的通断,第一支路包括第一支路节点、第一支路节点连接的第一终端接口、以及第一终端接口连接的第一辅助终端,其中,多个终端接口包括第一终端接口,多个辅助终端包括第一辅助终端。
可选的,多个辅助终端与第一合路器是连接的,第一合路器用于将M路信号合为N路信号,M大于N,M、N为正整数。可选的,第一合路器与多个第一衰减器是连接的,多个第一衰减器中每个第一衰减器的衰减系数是可调的;通过调整第一衰减器的衰减系数,可以调整辅助终端所产生的信号的信号强度。其中,第一衰减器的数量小于或等于N。例如,M=12、N=4,第一合路器可以将12路信号合为4路信号,经过第一合路器合路后的4路信号中每2路信号可以连接一个第一衰减器,或者,经过第一合路器合路后的4路信号中每1路信号可以连接一个第一衰减器。
示例性地,多用户模块包括多个PC,每个PC包括处理模块、PCIE桥、和多个终端接口,每个终端接口连接一个辅助终端。图4为本申请实施例的多用户模块中一个PC的示意图。处理模块以CPU为例,CPU与PICE桥是连接的,PICE桥包括的多个支路节点与多个终端接口一一对应是连接的,多个终端接口与多个辅助终端是一一对应连接的。多个辅助终端与第一合路器是连接的,第一合路器与多个第一衰减器是连接的。多个辅助终端通过第一合路器、衰减系数可调的多个第一衰减器、以及天线可以将产生的信号引入主测箱体,主测箱体用于放置待测终端或待测AP。
本申请实施例提供的技术方案中,多用户模块包括处理模块、PCIE桥、和多个终端接口,PCIE桥用于处理模块与多个终端接口之间的通信,PICE桥的一端与处理模块是连接的,PICE桥的另一端与多个终端接口是连接的,每个终端接口可以连接一个辅助终端/用户。因此,该多用户模块可以包括多个辅助终端,且该多用户模块的集成度高、价格便宜。
在一种实现方式中,该测试装置还包括时钟同步模块,该时钟同步模块是通过有线网络与多用户模块连接的,该时钟同步模块是安装在服务器/主机电脑上的,该时钟同步模块可以通过软件的方式实现。该时钟同步模块用于通过有线网络将多个辅助终端的时钟与安装了该时钟同步模块的服务器/主机电脑的时钟进行同步。本申请实施例中的有线网络用于传输管理报文。
可选的,该时钟同步模块是通过有线网络与主测箱体中的待测终端连接的。该时钟同步模块还用于通过有线网络将待测终端的时钟与安装了该时钟同步模块的服务器/主机电脑的时钟进行同步。
图5为本申请实施例的测试装置中的时钟同步模块与待测终端通过有线网络连接的示意图。以时钟同步模块安装在服务器上为例,待测终端可以通过type C转以太网卡与该安装了时钟同步模块的服务器之间搭建一条有线网络,时钟同步模块通过有线网络可以将待测终端的时钟与该服务器的时钟进行同步,从而可以测量待测终端与服务器之间的单向时延和往返时延。其中,服务器与AP之间也是通过有线网络连接的,AP与待测终端之间是通过WiFi通信的。
因此,本申请实施例提供的测试装置不仅可以测量辅助终端/待测终端WiFi通信的往返时延,还可以测量辅助终端/待测终端WiFi通信的单向时延。
在一种实现方式中,该测试装置还包括流量测试模块,该流量测试模块是安装在服务器/主机电脑上的,该流量测试模块是通过有线网络与多用户模块连接的,该流量测试模块用于测量来自多用户模块中多个辅助终端的业务数据的流量。
可选的,该流量测试模块是通过有线网络与主测箱体中的待测终端连接的,该流量测试模块还用于测量来自待测终端的业务数据的流量。
示例性地,该流量测试模块包括有线接口和无线接口,有线接口用于通过有线网络传输管理报文,无线接口用于通过无线保真网络传输数据报文。
图6为流量测试模块与多用户模块中多个辅助终端通过有线网络连接的示意图。示例性地,多用户模块包括6个PC,每个PC包括处理模块、PCIE桥、和12个终端接口,每个终端接口连接一个辅助终端,该多用户模块共包括72个辅助终端。该流量测试模块的有线接口是用于通过有线网络与多用户模块中的辅助终端传输管理报文的,该流量测试模块的无线接口是用于通过无线保真网络与辅助终端传输数据报文的。应理解,本申请实施例中的多用户模块包括的PC的数量也可以为6个以上,对此不做具体限定。
本申请实施例中辅助终端/待测终端可以通过有线网络与包括流量测试模块的服务器连接,辅助终端/待测终端与服务器/流量测试模块之间通过有线网络传输用于建立TCP连接的管理报文,辅助终端/待测终端与服务器/流量测试模块之间通过无线保真网络传输数据报文,能够实现管理报文通道与数据报文通道的分离,可以避免多用户场景下辅助终端/待测终端与服务器/流量测试模块之间的TCP建链失败,从而可以避免多用户测试时部分用户的业务数据的流量为0Mbps,从而提高了多用户测试场景的健壮性。
在本申请实施例中通过有线网络与多用户模块或待测终端连接的流量测试模块可以称为第一流量测试模块。示例性地,时钟同步模块与第一流量测试模块可以是部署在同一服务器/主机电脑中,也可以部署在不同的服务器/主机电脑中。
可选的,待测终端包括第二流量测试模块,第二流量测试模块用于测量来自服务器/主机电脑的业务数据的流量。可选的,辅助终端包括第三流量测试模块,第三流量测试模块用于测量来自服务器/主机电脑的业务数据的流量。
在一种实现方式中,该测试装置还包括干扰模块,该干扰模块包括多个干扰AP,多个干扰AP用于与多用户模块中的多个辅助终端进行无线保真通信。
可选的,多个干扰AP的带宽、速率、竞争空口的参数、竞争空口的频度、信道、或信号强度中的至少一种参数是可配的/可调整的,可以模拟家庭、办公区、机场、火车站等场景的复杂干扰,多个干扰AP发出的WiFi干扰是冲突退让的,与真实的WiFi干扰相符。干扰AP的竞争空口的频度,可以理解为,干扰AP能够支持的最大的业务数据的流量。竞争空口的参数包括仲裁帧间隙数(arbitration interframe spacing numbe,AIFSN)、最小竞争窗口(minimum contention window)、最大竞争窗口(maximum contention window)、和传输机会(transmit opportunity)等参数。
可选的,多个干扰AP与多个第二衰减器是连接的,多个第二衰减器的衰减系数是可调的;通过调整第二衰减器的衰减系数,可以调整该第二衰减器连接的干扰AP所产生的信号的信号强度,其中,多个第二衰减器的数量小于或等于多个干扰AP的数量。可选的,多个衰减器与第二合路器是连接的,第二合路器用于将M路信号合为N路信号。
图7为本申请实施例的测试装置中的干扰模块的一种示意图。多个干扰AP与多个第二衰减器是连接的,多个第二衰减器的衰减系数是可调的;多个第二衰减器与第二合路器是连接的。多个干扰AP通过衰减系数可调的多个第二衰减器、第二合路器、以及天线可以将产生的信号引入主测箱体,可以使多用户模块中的辅助终端与干扰AP之间进行无线保真通信。本申请实施例中干扰模块包括的干扰AP的数量为多个,多个干扰AP可以提供多路WiFi干扰,且干扰AP发出的WiFi干扰是冲突退让的。
在一种实现方式中,该测试装置还包括多功能模块,该多功能模块包括多个网格(mesh)AP,多个网格AP用于与多用户模块中的多个辅助终端接口进行无线保真通信。多个网格AP是具有组成网格网络能力的AP,该网格网络是多个网格AP通过网线、光纤、电力线、或无线/WiFi连接组成的。
可选的,网格AP与第三衰减器是连接的,第三衰减器的衰减系数是可调的;通过调整第三衰减器的衰减系数,可以调整该第三衰减器连接的网格AP所产生的信号的信号强度。
图8为本申请实施例的测试装置中的多功能模块与干扰模块的示意图。以网格AP包括网格AP1、网格AP2、和网格AP3为例,网格AP1、网格AP2、和网格AP3通过可调的第三衰减器和天线可以将信号引入主测箱体,使多功能模块中的辅助终端与网格AP之间进行无线保真通信。每个网格AP都放置于一个多功能箱体中,每个多功能箱体都有10Gbps的以太网口和波导管,提高了mesh组网的多样性,可覆盖WiFi mesh组网、网线组网、电力线组网、光纤组网等应用场景。
该多功能模块的设计可以实现mesh中继场景和mesh漫游场景的时延和吞吐测试。例如,中继场景为网格AP1-WiFi-网格AP2-WiFi-辅助终端,在该中继场景中可以测试辅助终端与网格AP1之间传输数据的时延和吞吐性能。又例如,在mesh漫游场景,辅助终端可以在网格AP1~网格AP3之间漫游,通过调整第三衰减器的衰减系数,可以测量辅助终端与不同网格AP之间WiFi通信的信号强度的变化。因此,本申请实施例提供的测试装置可以实现测量网格AP组成的网格网络的性能。
图9为本申请实施例的测试装置的一种结构示意图。该测试装置包括多用户模块、时钟同步模块、流量测试模块、主测箱体、干扰模块以及多功能模块。示例性地,多用户模块包括6个PC,每个PC包括处理模块、PCIE桥、和12个终端接口,每个终端接口连接一个辅助终端,该多用户模块共包括72个辅助终端。时钟同步模块和流量测试模块部署在同一服务器中,该服务器与多用户模块是通过有线网络连接的。主测箱体中用于放置待测设备,待测设备包括待测AP或待测终端。干扰模块中包括多个干扰AP,多个干扰AP用于与多个辅助终端进行无线保真通信。多功能模块中包括多个网格AP,多个网格AP可以组成网格网络,多个网格AP用于与多个辅助终端进行无线保真通信。多功能模块中还可以包括多个辅助AP,辅助AP用于与待测终端进行无线保真通信。应理解,本申请实施例中的多用户模块包括的辅助终端的数量也可以为72个以上,对此不做具体限定。
当主测箱体中的待测设备为待测终端时,该待测终端与多功能模块中的多个辅助AP中的至少一个辅助AP通过无线保真通信,多个干扰AP可以与多个辅助终端通过无线保真通信。
当主测箱体中的待测设备为待测AP时,该待测AP与多个辅助终端中的至少一个第一辅助终端通过无线保真通信,多个干扰AP与多个辅助终端中的至少一个第二辅助终端通过无线保真通信。
当多个网格AP组成的网格网络的性能为测试对象时,多个网格AP用于与多个辅助终端进行无线保真通信,多个干扰AP与多个辅助终端通过无线保真通信。
本申请实施例提出了一种性能测试的方法,应用于无线保真通信的性能测试,该方法能够避免客户端与服务端之间的TCP建链失败,从而避免多用户测试时部分用户的吞吐为0Mbps。
图10为本申请实施例的性能测试的方法1000的示意性流程交互图。本申请实施例中的客户端可以为上述待测终端或辅助终端,服务端可以上述服务器/主机电脑,服务端中包括流量测量模块。
1010,客户端通过有线网络向服务端发送管理报文,管理报文用于建立客户端与服务端之间的TCP连接,客户端与服务端之间是通过有线网络连接的。对应地,服务端通过有线网络接收来自客户端的管理报文,客户端和服务端通过管理报文可以建立TCP连接。
1020,客户端通过AP向服务端发送数据报文,数据报文包括业务数据。对应地,服务端接收来自客户端的数据报文。
可选的,服务端获取客户端的源IP地址和源端口号。服务端根据客户端的源IP地址和源端口号,接收来自客户端的数据报文。示例性地,客户端的源IP地址和源端口号可以是测试工作人员提供给服务端的。
1030,服务端利用流量测量模块,测量来自客户端的数据报文的流量。
可选的,服务端和客户端还包括时钟同步模块,时钟同步模块通过有线网络将服务端的时钟与客户端的时钟进行同步。服务端的时钟与客户端的时钟同步后,服务端可以测量来自客户端的数据报文的单向时延。
本申请实施例中客户端与服务端之间是通过有线网络连接的,客户端可以通过有线网络可以向服务端发送用于建立TCP连接的管理报文,客户端与服务端之间通过无线保真网络传输数据报文,能够实现管理报文通道与数据报文通道的分离,可以避免客户端与服务端之间的TCP建链失败而导致的客户端的吞吐为0Mbps。
本申请实施例提供了一种测试设备,如图11所示,出示了本申请实施例的一种测试设备1100的结构示意图。
该设备1100包括:处理器1110和收发器1120,所述收发器1120用于接收计算机代码或指令,并传输至所述处理器1110,所述处理器1110运行所述计算机代码或指令,如本申请实施例中任意可能的实现方式中的方法。
上述的处理器1110可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实 施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,其上存储有用于实现上述方法实施例中的方法的计算机程序。当该计算机程序在计算机或处理器上运行时,使得该计算机或处理器可以实现上述方法实施例中的方法。
本申请实施例还提供了一种计算机程序产品,所述计算机程序产品包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得上述方法实施例中的方法被执行。
本申请实施例还提供了一种芯片,包括处理器,所述处理器与存储器相连,所述存储器用于存储计算机程序,所述处理器用于执行所述存储器中存储的计算机程序,以使得所述芯片执行上述方法实施例中的方法。
应理解,在本申请实施例中,编号“第一”、“第二”…仅仅为了区分不同的对象,比如为了区分流量测试模块,并不对本申请实施例的范围构成限制,本申请实施例并不限于此。
另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;本申请中术语“至少一个”,可以表示“一个”和“两个或两个以上”,例如,A、B和C中,可以表示:单独存在A,单独存在B,单独存在C、同时存在A和B,同时存在A和C,同时存在C和B,同时存在A和B和C,这七种情况。“安装”、“连接”、“相连”等应做广义理解,例如可以是固定连接,也可以是可拆卸连接,或者一体地连接;可以是直接连接,也可以是通过中间媒介间接,也可以是两个元件内部的连通。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元。方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储 程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种测试装置,其特征在于,应用于无线保真通信的性能测试,包括:
    多用户模块,所述多用户模块包括处理模块、快捷外围部件互连标准PCIE桥、和多个终端接口,所述PICE桥用于所述处理模块与所述多个终端接口之间的通信,所述PICE桥与所述处理模块是连接的,所述PICE桥包括多个支路节点,所述多个支路节点与所述多个终端接口是一一对应连接的。
  2. 根据权利要求1所述的装置,其特征在于,
    所述多个终端接口与多个辅助终端是一一对应连接的,第一支路节点用于控制所述第一支路节点对应的第一支路的通断,所述第一支路包括所述第一支路节点、所述第一支路节点连接的第一终端接口、以及所述第一终端接口连接的第一辅助终端,其中,所述多个支路节点包括所述第一支路节点,所述多个终端接口包括所述第一终端接口,所述多个辅助终端包括所述第一辅助终端。
  3. 根据权利要求2所述的装置,其特征在于,
    所述多个辅助终端与第一合路器是连接的,所述第一合路器用于将M路信号合为N路信号,M大于N,M、N为正整数。
  4. 根据权利要求3所述的装置,其特征在于,
    所述第一合路器与多个第一衰减器是连接的,所述多个第一衰减器的衰减系数是可调的。
  5. 根据权利要求1至4中任一项所述的装置,其特征在于,所述装置还包括:
    时钟同步模块,所述时钟同步模块是通过有线网络与所述多用户模块连接的。
  6. 根据权利要求5所述的装置,其特征在于,
    所述时钟同步模块是通过有线网络与待测终端连接的。
  7. 根据权利要求1至6中任一项所述的装置,其特征在于,所述装置还包括:
    流量测试模块,所述流量测试模块是通过有线网络与所述多用户模块连接的。
  8. 根据权利要求7所述的装置,其特征在于,
    所述流量测试模块包括有线接口和无线接口,所述有线接口用于通过有线网络传输管理报文,所述无线接口用于通过无线保真网络传输数据报文。
  9. 根据权利要求2至8中任一项所述的装置,其特征在于,所述装置还包括:
    干扰模块,所述干扰模块包括多个干扰无线接入点AP,所述多个干扰AP用于与所述多用户模块中的所述多个辅助终端进行无线保真通信。
  10. 根据权利要求9所述的装置,其特征在于,
    所述多个干扰AP的带宽、速率、竞争空口的参数、竞争空口的频度、信道、或信号强度中的至少一种参数是可配的。
  11. 根据权利要求9或10所述的装置,其特征在于,
    所述多个干扰AP与多个第二衰减器是连接的,所述多个第二衰减器的衰减系数是可调的。
  12. 根据权利要求11所述的装置,其特征在于,
    所述多个第二衰减器与第二合路器是连接的,所述第二合路器用于将M路信号合为N路信号。
  13. 根据权利要求2至12中任一项所述的装置,其特征在于,所述装置还包括:
    多功能模块,所述多功能模块包括多个网格AP,所述多个网格AP用于与所述多用户模块中的所述多个辅助终端进行无线保真通信。
  14. 根据权利要求13所述的装置,其特征在于,
    所述网格AP与第三衰减器是连接的,所述第三衰减器的衰减系数是可调的。
  15. 根据权利要求13或14所述的装置,其特征在于,
    所述多个网格AP是具有组成网格网络能力的AP,所述网格网络是所述多个网格AP通过网线、光纤、电力线、或无线连接组成的。
  16. 一种性能测量的方法,其特征在于,应用于无线保真通信的性能测试,所述方法包括:
    客户端通过有线网络向服务端发送管理报文,所述管理报文用于建立所述客户端与所述服务端之间的TCP连接;
    所述客户端通过AP向所述服务端发送数据报文;
    所述服务端利用流量测量模块,测量所述数据报文的流量,所述服务端包括所述流量测量模块。
  17. 根据权利要求16所述的方法,其特征在于,所述方法还包括:
    所述服务端获取所述客户端的源IP地址和源端口号。
  18. 根据权利要求16或17所述的方法,其特征在于,所述客户端和所述服务端包括时钟同步模块;
    所述方法还包括:所述时钟同步模块通过有线网络将所述服务端的时钟与所述客户端的时钟进行同步。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    所述服务端测量所述数据报文的单向时延。
  20. 一种测试设备,其特征在于,包括:处理器和收发器,所述收发器用于接收计算机代码或指令,并传输至所述处理器,所述处理器运行所述计算机代码或指令,以实现如权利要求16至19中任一项所述的方法。
  21. 一种计算机可读存储介质,其特征在于,包括:
    所述计算机可读存储介质中存储有计算机程序;
    所述计算机程序在计算机或处理器上运行时,使得所述计算机或所述处理器执行权利要求16至19中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,包括计算机程序,当所述计算机程序被执行时,使得如权利要求16至19任一项所述的方法被实现。
PCT/CN2023/105350 2022-11-24 2023-06-30 性能测试的方法和测试装置 WO2024109088A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211484341.1 2022-11-24
CN202211484341.1A CN118075803A (zh) 2022-11-24 2022-11-24 性能测试的方法和测试装置

Publications (1)

Publication Number Publication Date
WO2024109088A1 true WO2024109088A1 (zh) 2024-05-30

Family

ID=91095941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/105350 WO2024109088A1 (zh) 2022-11-24 2023-06-30 性能测试的方法和测试装置

Country Status (2)

Country Link
CN (1) CN118075803A (zh)
WO (1) WO2024109088A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514586A (zh) * 2002-12-31 2004-07-21 深圳市中兴通讯股份有限公司 模拟多用户、多连接的数据通讯设备测试系统及方法
WO2013080027A2 (en) * 2011-11-30 2013-06-06 Marvell World Trade Ltd. Interrupt handling systems and methods for pcie bridges with multiple buses
CN110456772A (zh) * 2019-08-12 2019-11-15 四川九洲电器集团有限责任公司 一种通用设备测试、控制方法及系统
CN114039880A (zh) * 2021-11-08 2022-02-11 北京天融信网络安全技术有限公司 一种无连接服务的性能测试方法、装置及系统
CN114167173A (zh) * 2021-11-29 2022-03-11 苏州浪潮智能科技有限公司 一种pcie信号测试装置、方法及其存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1514586A (zh) * 2002-12-31 2004-07-21 深圳市中兴通讯股份有限公司 模拟多用户、多连接的数据通讯设备测试系统及方法
WO2013080027A2 (en) * 2011-11-30 2013-06-06 Marvell World Trade Ltd. Interrupt handling systems and methods for pcie bridges with multiple buses
CN110456772A (zh) * 2019-08-12 2019-11-15 四川九洲电器集团有限责任公司 一种通用设备测试、控制方法及系统
CN114039880A (zh) * 2021-11-08 2022-02-11 北京天融信网络安全技术有限公司 一种无连接服务的性能测试方法、装置及系统
CN114167173A (zh) * 2021-11-29 2022-03-11 苏州浪潮智能科技有限公司 一种pcie信号测试装置、方法及其存储介质

Also Published As

Publication number Publication date
CN118075803A (zh) 2024-05-24

Similar Documents

Publication Publication Date Title
CN108494681B (zh) 多链路的数据流传输方法、无线通信设备及存储介质
US7319688B2 (en) LAN with message interleaving
US7349670B2 (en) Modular wireless test architecture and method
US8213456B2 (en) Communications system and communication apparatus
US20060229018A1 (en) Apparatus and method for use in testing wireless devices
US20060233111A1 (en) Latency measurment apparatus and method
US20110286393A1 (en) Communications device
JP2006503479A (ja) ワイヤードlanインフラストラクチャを用いたワイヤレスlanアクセス・ポイント間の協力
US20190045534A1 (en) Apparatuses, Devices and Methods for a Wireless Network Access Device, a Network Gateway Device, a Wireless Communication Device and for a Network Device
JP2012505619A (ja) Tdmaベースプロトコルにおけるチャネル利用を向上させる方法
JP2022537239A (ja) 無線lanにおいてデータを受送信する方法、端末、システム及びネットワークアクセス機器
CN110492909A (zh) 无线隔离型电力线载波通信性能测试方法及系统
TW201203941A (en) System and method for using multiple network addresses to establish synchronization of a device under test and test equipment controlling the test
JP2005519554A (ja) 無線環境をシミュレートするための試験システム及びその使用方法
CN106330324B (zh) 一种控制方法及装置
KR101589077B1 (ko) 통신 네트워크에서 유휴 측정 기간들
WO2013127321A1 (zh) 一种基带转接设备及其进行转接的方法
Gvozdenovic et al. IoT-scan: Network reconnaissance for the Internet of Things
WO2024109088A1 (zh) 性能测试的方法和测试装置
WO2019001442A1 (zh) 一种点对多点光纤传输方法及相关设备
CN114422614B (zh) 控制多链路设备发送数据的方法、装置、设备及存储介质
CN114024598B (zh) 前传接口测试方法及装置
TW201240366A (en) Method for testing communication performance of more than two wireless signal access devices
JP4127133B2 (ja) 受動的光ネットワーク試験装置
Boncagni et al. Switched ethernet in synchronized distributed control systems using RTnet