WO2024108978A1 - 一种潜孔钻机自动取样分析系统及其应用 - Google Patents

一种潜孔钻机自动取样分析系统及其应用 Download PDF

Info

Publication number
WO2024108978A1
WO2024108978A1 PCT/CN2023/099135 CN2023099135W WO2024108978A1 WO 2024108978 A1 WO2024108978 A1 WO 2024108978A1 CN 2023099135 W CN2023099135 W CN 2023099135W WO 2024108978 A1 WO2024108978 A1 WO 2024108978A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
component
sampling
plate
hole
Prior art date
Application number
PCT/CN2023/099135
Other languages
English (en)
French (fr)
Inventor
张成伟
武艳文
钟根
卓海龙
赵俊
张冠鹏
党静
Original Assignee
南京凯盛国际工程有限公司
中国建材集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京凯盛国际工程有限公司, 中国建材集团有限公司 filed Critical 南京凯盛国际工程有限公司
Publication of WO2024108978A1 publication Critical patent/WO2024108978A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/06Arrangements for treating drilling fluids outside the borehole
    • E21B21/07Arrangements for treating drilling fluids outside the borehole for treating dust-laden gaseous fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor

Definitions

  • the invention relates to the technical field of digital mining engineering in cement mines, and in particular to an automatic sampling and analysis system for a down-the-hole drill and an application thereof.
  • the detection methods mainly use chemical analysis or fluorescence analysis.
  • the chemical analysis method takes a long time to detect and requires a large workload, which affects the work efficiency of the mine.
  • the fluorescence method has different particle effects and mineral effects of different veins and plane limestone samples, resulting in low accuracy of the detection results, and the working curve needs to be calibrated regularly.
  • Patent CN114062026A provides an automatic sampling device and sampling method for a drill, which can realize automatic sampling of the drill, but it still requires manual collection of the barrel and sends it to the laboratory for inspection and analysis, which does not effectively solve the problem of automatic operation and automatic analysis of the drill.
  • Laser induced breakdown spectroscopy is a new material element analysis technology. It uses high-energy pulsed laser to ablate the sample surface into plasma. By measuring the plasma spectrum intensity, the element content of the sample can be accurately and quickly obtained. The matrix effect of the mineral will not affect the accuracy of laser analysis. It is suitable for rapid and accurate detection and analysis of drilling rig rock powder samples.
  • Patent CN101198845B provides a dynamic detection method for drilling rig samples with the help of laser technology. The laser beam passes through a homogenized airflow containing rock powder particles to achieve online monitoring of drilling rig samples.
  • an automatic sampling and analysis system for down-the-hole drill rigs and its application which can automatically sample and prepare rock powder samples of the drill rigs in the limestone mines, perform certain pretreatment on the rock powder samples, and adopt the static detection method to solve the problem that the online quantitative analysis accuracy of rock powder samples is low and the mine operations cannot be accurately guided.
  • the present invention provides an automatic sampling and analysis system for a down-the-hole drill and its application, which solves the above-mentioned problems.
  • an automatic sampling and analysis system for a down-the-hole drill and its application comprising a sampling component, a sample transport component is provided at the output end of the sampling component, a sample pretreatment component is provided at the output end of the sample transport component, the sample pretreatment component comprises a workbench, a stepper motor is fixedly installed on the top of the workbench, the output shaft of the stepper motor is fixedly connected to a detection plate through a coupling, a blocking ring is fixedly connected to the top of the workbench through a connecting rod, the blocking ring is arranged on the outer periphery of the stepper motor, and the top of the blocking ring is in contact with the bottom of the detection plate, four first through holes are sequentially opened on the top of the detection plate in a circumferential direction, the four first through holes are evenly arranged on the detection plate, and the four first through holes are respectively set as a loading station, an extrusion station, a
  • a complete drilling rig automatic sampling and analysis system is constructed, and a stepper motor is used to drive the detection plate to rotate, realizing the coordinated operation of multiple stations, and achieving quantitative, accurate and effective sample construction, providing precise guarantee for sample detection.
  • the loading assembly includes a barrel, a vibration motor is fixedly installed on the top of the barrel, the output shaft of the vibration motor passes through the barrel and is fixedly installed with a vibration rod, a feed hopper is opened on the top of one side of the barrel, and an observation window is provided on the front of the barrel, and the bottom of one side of the barrel is fixedly connected to the left side of the top of the workbench through a bracket.
  • the samples stored in the barrel are vibrated and compacted by utilizing the cooperation of the vibration motor and the vibration rod, thereby ensuring uniform and stable loading in the first through hole corresponding to the loading station.
  • the extrusion assembly includes a mounting plate, a telescopic rod is fixedly mounted on the top of the mounting plate, the telescopic end of the telescopic rod passes through the mounting plate and is fixedly connected to a linkage plate, the front and rear sides of the bottom of the linkage plate are fixedly connected to the extrusion plate via a connecting plate, and the outer periphery of the extrusion plate is adapted to the interior of the first through hole, and the front and rear sides of the bottom of the mounting plate are fixedly connected to the front and rear sides of the top of the workbench respectively via the connecting plate.
  • the linkage plate is driven to move up and down by utilizing the extension and retraction of the telescopic rod, which can not only enable the extrusion plate arranged on the front side to extrude the sample inside the first through hole on the extrusion station, but also enable the extrusion plate arranged on the rear side to extrude the sample after inspection inside the first through hole on the unloading station into the second through hole for discharge.
  • the detection component includes an assembly plate, a laser analyzer is fixedly installed on the bottom of the assembly plate, a side bracket of the assembly plate is fixedly installed on the right side of the top of the workbench, and the laser analyzer is arranged above the detection plate.
  • a laser analyzer is used to perform laser irradiation and ablation on the compacted sample inside the first through hole at the detection station to release plasma, and then the chemical composition analysis results of the sample are obtained through analysis, thereby avoiding sample splashing during laser irradiation, significantly reducing the fluctuation of plasma temperature and electron density, and effectively improving the accuracy of laser analysis technology in rock powder sample detection.
  • the sampling component includes a drilling rig dust hood, a cyclone dust collector, a sampling vacuum pump and a back-blowing cleaning component;
  • the drilling rig dust hood is used to collect rock powder samples drilled by the drilling rig;
  • the drilling rig dust hood and the input end of the cyclone dust collector are connected through a sampling tube;
  • a sample receiving tube is provided below the cyclone dust collector;
  • the output end of the cyclone dust collector is connected to the sampling vacuum pump; by controlling the start and stop of the sampling vacuum pump, the drilling rig rock powder samples are separated by the cyclone dust collector and collected in the sample receiving tube;
  • the back-blowing cleaning component is used to clean the residual samples in the cyclone dust collector and the sampling tube.
  • the collection system is linked with the drilling operation to collect samples at different drilling depths.
  • accurate sampling of the specified drilling depth can be achieved.
  • the results of sampling and analysis can accurately guide the data update of the mine geological model.
  • the sample transport component includes a sample reduction part and a retained sample part
  • the rock powder sample stored in the sample receiving tube is transported to the sample reduction part to obtain the reduced sample
  • the reduced sample is divided into two paths, one path of the reduced sample is stored in the retained sample part and is used for verification and traceability of the automatic analysis results of the sample, and the other path of the reduced sample is transported to the grinding component, the reduced sample is ground and transported to the loading component.
  • the present invention provides an automatic sampling and analysis system for a down-the-hole drill and its application. It has the following beneficial effects:
  • the present invention constructs a complete automatic sampling and analysis system for drilling rigs by coordinating the settings of sampling components, sample transport components, sample pretreatment components and detection components, and uses a stepper motor to drive the detection plate to rotate, thereby realizing coordinated operation of multiple stations, achieving quantitative, accurate and effective sample construction, and providing accurate guarantee for sample detection.
  • the present invention utilizes the cooperation of a vibration motor and a vibration rod to vibrate and compact the sample stored in the barrel, thereby ensuring uniform and stable loading in the first through hole corresponding to the loading station.
  • the telescopic rod is extended and retracted to drive the linkage plate to move up and down, so that not only the extrusion plate arranged on the front side can extrude the sample in the first through hole on the extrusion station, but also the extrusion plate arranged on the rear side can extrude the sample after detection in the first through hole on the unloading station into the second through hole for discharge.
  • the laser analyzer is used to perform laser irradiation and ablation on the compacted sample in the first through hole on the detection station to release plasma, and the chemical composition analysis result of the sample is obtained through analysis, thereby avoiding the sample splashing phenomenon during laser irradiation, significantly reducing the fluctuation of plasma temperature and electron density, and effectively improving the accuracy of laser analysis technology in rock powder sample detection.
  • the automatic sampling and analysis system of the drilling rig can be used in conjunction with the limestone neutron analyzer entering the factory to update the mine geological model in real time and accurately, optimize the mine's blasting plan and mining plan, and can also optimize the digital mine's ore allocation and card adjustment system in real time, ultimately forming a closed-loop control of the mine's mining and allocation system, which is not only conducive to improving the mining efficiency of the mine and increasing the service life of the mine, but also can effectively ensure the stability of cement quality.
  • the present invention realizes precise sampling at a specified drilling depth by interlocking the drilling depth with the start and stop of the vacuum pump of the sampling system, can accurately guide the data update of the mine geological model, and cooperates with the setting of the sampling component and the sample transfer component to effectively improve the representativeness of the sampling.
  • Fig. 1 is a schematic diagram of the principle of the present invention
  • FIG2 is a schematic diagram of the external structure of the sample pretreatment component of the present invention.
  • FIG3 is a schematic diagram of the connection between the stepping motor, the detection plate and the blocking ring structure of the present invention.
  • FIG4 is a schematic diagram of the structure of the detection plate and the blocking ring of the present invention.
  • FIG5 is a fitting diagram of different CaO contents and 422.7 nm spectrum peak intensity in the present invention.
  • FIG6 is a flow chart of automatic sampling of the present invention.
  • FIG7 is a schematic diagram of the structure of a cyclone dust collector according to the present invention.
  • FIG8 is an analysis table diagram in an embodiment of the present invention.
  • An embodiment of the present invention provides a technical solution: an automatic sampling and analysis system for a down-the-hole drill, including a sampling component 1, a sample transport component 2, a sample pretreatment component 3 and a detection component 12.
  • the sampling component 1 is preferably externally mounted on a newly added sampling component 1 of the down-the-hole drilling rig dust removal system.
  • the newly added sampling component 1 includes a drilling rig dust hood 23, a cyclone dust collector 24, a sampling vacuum pump 25 and a back-blowing cleaning component 26.
  • the drilling rig dust hood 23 is used to collect rock powder samples drilled by the drilling rig.
  • the drilling rig dust hood 23 is connected to the input end of the cyclone dust collector 24 through a sampling tube 27.
  • a sample receiving tube 32 is provided below the cyclone dust collector 24.
  • the output end of the cyclone dust collector 24 is connected to the sampling vacuum pump 25.
  • the drilling rig rock powder sample is separated by the cyclone dust collector 24 and collected in the sample receiving tube 32.
  • the back-blowing cleaning component 26 is used to clean the residual sample in the cyclone dust collector 24 and the sampling tube 27.
  • the automatic sampling process of the sampling component 1 is as follows: the drilling rig arrives at the designated position and starts drilling operations.
  • the drilling rig receives an automatic inspection and analysis instruction, and the system automatically generates a sample code.
  • the sample code includes information such as the sampling section, drilling position, drilling depth, and sampling time.
  • the sampling component 1 uses the sampling vacuum pump 25 to suck the drilling particle sample in the dust cover 23 of the drilling rig into the cyclone dust collector 24 for collection.
  • the automatic sampling frequency the start and stop time of the sampling vacuum pump 25 during the operation of the drilling rig is controlled to achieve continuous and timed sampling during the drilling process.
  • a composite sample of the coded sample is formed.
  • high-pressure gas is used to flush and clean the cyclone dust collector 24 and the residual particles in the sampling tube 27 to ensure accurate sampling next time.
  • the high-pressure air in the backflush cleaning component 26 in the sampling component 1 can use the screw air compressor provided by the drilling rig, and a new air machine branch air pipe is added.
  • the cyclone dust collector 24 in the sampling component 1 uses a high-efficiency cyclone dust collector, and the high-efficiency cyclone dust collector package consists of a cyclone dust collector inlet 34, a cyclone dust collector inner cylinder 33, a cyclone dust collector volute 35, a cyclone dust collector straight section 36, a cyclone dust collector cone 37 and a cyclone dust collector discharge port 22, wherein the cyclone dust collector inner cylinder 33 is connected to the cyclone dust collector discharge port 22, the wind speed of the cyclone dust collector inlet 34 is 18-20m/s, the height to diameter ratio D/H of the cyclone dust collector 24 should be greater than 3, the ratio d/D of the diameter d of the cyclone dust collector inner cylinder 33 to the cyclone dust collector diameter D is 30-70%, the ratio h/b of the inner cylinder insertion depth h to the height
  • the air flow velocity in the sampling tube 27 in the sampling assembly 1 is 12-25 m/s, which can ensure that particles of different sizes in the drilling rig rock powder sample can be effectively collected.
  • the sampling tube 27 should avoid being installed horizontally to prevent sample sedimentation.
  • the sampling component 1 is professionally linked with the drilling rig to collect samples at different drilling depths.
  • the drilling depth is linked to the start and stop of the sampling vacuum pump 25 to achieve accurate sampling at the specified drilling depth.
  • the results after sampling and analysis can accurately guide the data update of the mine geological model.
  • the sampling component 1 can achieve a single drilling hole with no less than 2 sampling volumes.
  • the weight of each sample taken at one time is 200-500g.
  • the sample receiving tube 32 can be divided into 2-8 separate areas for placing rock powder samples at different drilling depths.
  • the high-pressure air pressure in the backblowing cleaning component 26 in the sampling component 1 is 0.4-0.6MPa.
  • the sample transport component 2 includes a sample reduction component 28 and a sample retention component 29.
  • the rock powder sample stored in the sample receiving tube 32 is transported to the sample reduction component 28 to obtain the reduced sample.
  • the reduced sample is divided into two paths. One path of the reduced sample is stored in the sample retention component 29 for verification and traceability of the sample automatic analysis results.
  • the other path of the reduced sample is transported to the grinding component 30 for the reduced sample.
  • the sample is ground and transported to the sample pretreatment component 3.
  • the sample is transported to the sample reduction component 28 for mixing and reduction.
  • the quantitative test sample is sent to the grinding component 30, and the remaining sample is sent to the retained sample 29 for verification and traceability of the automatic analysis results of the drilling rig.
  • the retained sample 29 is provided with an automatic sample marking function.
  • the automatic coding of the retained sample is consistent with the English sampling coding, which is used for sample identification and test result verification.
  • the retained sample 29 can collect the retained sample in a retained sample box or a retained sample bag.
  • the amount of sample sent to the grinding component 30 after reduction is 5-50g, and the amount of sample sent to the retained sample 29 is 200-400g.
  • the sample reduction component 28 adopts a separate reduction device with a volume of 20-50L.
  • the grinding component 30 is preferably a small vibration mill and a small tube mill.
  • the grinding component 30 is preferably made of tungsten carbide wear-resistant material.
  • the D90 of the rock powder sample after grinding by the grinding component 30 is 10-200 ⁇ m.
  • the sample pretreatment component 3 includes a workbench 4, a stepper motor 5 is fixedly installed on the top of the workbench 4, and the output shaft of the stepper motor 5 is fixedly connected to the detection plate 6 through a coupling, and a blocking ring 7 is fixedly connected to the top of the workbench 4 through a connecting rod.
  • the blocking ring 7 is arranged on the outer periphery of the stepper motor 5, and the top of the blocking ring 7 contacts the bottom of the detection plate 6.
  • first through holes 8 are sequentially opened on the top of the detection plate 6 in a circumferential direction, and a second through hole 9 matched with the first through hole 8 is opened on the back of the top of the blocking ring 7 for unloading.
  • a loading component 10 matched with the first through hole 8 is fixedly connected to the left side of the top of the workbench 4 through a bracket.
  • the loading component 10 includes a barrel 13, and a vibration motor is fixedly installed on the top of the barrel 13 14, the output shaft of the vibration motor 14 passes through the barrel 13 and is fixedly installed with a vibration rod 31, a feed hopper 15 is provided on the top of one side of the barrel 13, and an observation window is provided on the front of the barrel 13, and the bottom of one side of the barrel 13 is fixedly connected to the left side of the top of the workbench 4 through a bracket, so as to ensure that the first through hole 8 below the barrel 13, i.e., the sample inside the loading station, is evenly and densely packed.
  • the front and rear sides of the top of the workbench 4 are fixedly connected with an extrusion assembly 11 through a connecting plate, and the extrusion assembly 11 is arranged above the detection plate 6.
  • the extrusion assembly 11 includes a mounting plate 16, and a telescopic rod 17 is fixedly installed on the top of the mounting plate 16.
  • the telescopic end of the telescopic rod 17 passes through the mounting plate 16 and is fixedly connected with a linkage plate 18.
  • the front and rear sides of the bottom of the linkage plate 18 are fixedly connected with an extrusion plate 19 through a connecting plate, and the outer periphery of the extrusion plate 19 is adapted to the interior of the first through hole 8.
  • the front and rear sides of the bottom of the mounting plate 16 are respectively fixedly connected to the front and rear sides of the top of the workbench 4 through the connecting plate.
  • the telescopic rod 17 is used to control the extrusion plate 19 arranged on the front side to compact the sample of the first through hole 8 in the extrusion station, so as to facilitate the subsequent detection of the detection assembly 12.
  • the telescopic rod 17 drives the extrusion plate 19 arranged on the rear side to extrude and discharge the sample after detection in the first through hole 8 in the unloading station, so as to facilitate the loading of the first through hole 8 when it is transferred to the loading station.
  • the right side of the top of the workbench 4 is fixedly connected with a detection component 12 through a bracket, and the detection component 12 is arranged above the detection board 6.
  • the detection component 12 includes an assembly plate 20, and a laser analyzer 21 is fixedly installed on the bottom of the assembly plate 20.
  • a side bracket of the assembly plate 20 is fixedly installed on the right side of the top of the workbench 4, and the laser analyzer 21 is arranged above the detection board 6, wherein the laser analyzer 21 is preferably a low-power miniaturized laser analyzer.
  • the vehicle-mounted laser analyzer 21 since the laser analyzer 21 requires a constant detection environment, the vehicle-mounted laser analyzer 21 air conditioner needs to be configured. In addition, in order to ensure the long-term stable and reliable operation of the vehicle-mounted laser analyzer 21, corresponding vehicle-mounted analysis system protection and shock absorption devices are also required.
  • the transmitter power is 50-100W.
  • the grinding assembly 30 and the sample pretreatment assembly 3 are arranged in a fixed analysis cabin in the mine area, and the samples are sent to the fixed analysis cabin after collection to complete the sample detection.
  • the sample pretreatment component 3 and the detection component 12 can realize the detection and analysis of CaO, MgO, and SiO2 components in the rock powder sample.
  • the specific detection and analysis components, analysis range, and static accuracy are shown in FIG8.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种潜孔钻机自动取样分析系统及其应用,通过钻探深度与自动采样系统真空泵(25)的开停连锁,实现指定钻探深度的精准取样,通过研磨和压平的样品预处理,降低等离子温度及电子密度的波动,提高激光分析技术在岩粉样品检测的准确度,通过与进厂石灰石中子分析仪联动使用,实时、精准更新矿山地质模型,优化矿山的爆破计划、开采计划,也可实时优化数字化矿山的配矿和卡调系统,最终实现矿山开采与调配系统的闭环管控,不仅有利于提高矿山开采效率、提高矿山的使用年限,而且可以有效的保障水泥质量的稳定。

Description

一种潜孔钻机自动取样分析系统及其应用 技术领域
本发明涉及水泥矿山数字化采矿工程技术领域,具体为一种潜孔钻机自动取样分析系统及其应用。
背景技术
水泥灰岩矿山潜孔钻机岩粉样品的取样分析现状:钻机在钻探作业过程中,将岩粉由旋流器排出,在作业平面成堆,后由人工将钻机岩粉样合堆均化后,送至工厂化验室进行检测分析,检测方法主要使用化学分析法或荧光分析法,化学分析法检测时间长,工作量大,影响矿山的工作效率,荧光法又由于不同矿脉及平面灰岩矿样品的颗粒效应和矿物效应不同,导致检测结果准确度较低,需要定期校准工作曲线。以上问题造成矿山钻机样品取样化验周期长,滞后大,钻孔化验分析数据无法共享。对于潜孔钻机的自动取样和自动分析技术的研究较少,专利CN114062026A提供了一种钻机的自动取样装置及取样方法,可实现钻机的自动取样,但依旧需要人工收集料筒送至化验室进行检验分析,并未有效解决钻机自动运转和自动分析的问题。急需发展基于新技术的钻机自动取样分析系统。
激光诱导击穿光谱是一种全新的物质元素分析技术,使用高能脉冲激光将样品表面烧蚀成等离子体,通过测量等离子体光谱强度来精确快速获得样品元素含量,矿物的基体效应也不会影响激光分析的准确度,适合于钻机岩粉样品的快速精准检测分析,专利CN101198845B提供了一种借助激光技术的钻机样品动态检测方法,激光束穿过含有岩粉颗粒的均质化气流中,实现钻机样品的在线监测,但如专利中的描述由于钻机岩粉样品的粒度不均一(0.01-8.0mm),样 品的颗粒分布宽,岩粉样品在气流中的分布受颗粒大小的影响,激光动态检测的随机性强,检测样品的代表性较差,与下游的进厂石灰石化验室取样分析的准确度相差较大,无法准确指导矿山的开采作业,为此,特提出一种潜孔钻机自动取样分析系统及其应用,可对灰岩矿的钻机岩粉样品进行自动取样、自动制样,对岩粉样品进行了一定的预处理,采用静态检测的方法,解决了岩粉样品在线定量分析准确度低,无法准确指导矿山作业问题。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种潜孔钻机自动取样分析系统及其应用,解决了上述的问题。
(二)技术方案
为实现上述目的,本发明提供了如下技术方案:一种潜孔钻机自动取样分析系统及其应用,包括采样组件,所述采样组件的输出端设置有样品转运组件,所述样品转运组件的输出端设置有样品预处理组件,所述样品预处理组件包括工作台,所述工作台的顶部固定安装有步进电机,所述步进电机的输出轴通过联轴器固定连接有检测板,所述工作台的顶部通过连接杆固定连接有封堵环,所述封堵环设置在步进电机的外周,且封堵环的顶部与检测板的底部相接触,所述检测板的顶部呈圆周方向依次开设有四个第一通孔,四个第一通孔间隔均匀的设置在检测板上,且将四个第一通孔分别设置为上料工位、挤压工位、检测工位和下料工位,所述封堵环顶部的背部开设有与第一通孔相适配的第二通孔,所述工作台顶部的左侧通过支架固定连接有一个第一通孔相适配的上料组件,上料组件与上料工位配合,所述工作台的顶部的前后两侧通过连接板固定 连接有挤压组件,且挤压组件设置在检测板的上方,挤压组件分别与挤压工位和下料工位配合,所述工作台顶部的右侧通过支架固定连接有检测组件,且检测组件设置在检测板的上方,检测组件与检测工位配合。
通过采用上述技术方案,配合采样组件、样品转运组件、样品预处理组件和检测组件的设置,构建出完成的钻机自动取样分析系统,且利用步进电机驱动检测板转动,实现多工位的协调运转,实现定量且精准有效的样品构建,为样品检测提供精准保障。
本发明进一步设置为:所述上料组件包括料筒,所述料筒的顶部固定安装有震动电机,所述震动电机的输出轴贯穿料筒并固定安装有震动杆,所述料筒的一侧顶部开设有进料斗,且料筒的正面设置有观察窗,所述料筒的一侧底部通过支架与工作台顶部的左侧固定连接。
通过采用上述技术方案,利用震动电机和震动杆的配合,对料筒内部存储的样品进行震动捣实,保证上料工位对应第一通孔中上料的均匀稳定。
本发明进一步设置为:所述挤压组件包括安装板,所述安装板的顶部固定安装有伸缩杆,所述伸缩杆的伸缩端贯穿安装板并固定连接有联动板,所述联动板底部的前后两侧均通过连接板固定连接有挤压板,且挤压板的外周与第一通孔的内部相适配,所述安装板底部的前后两侧均通过连接板分别与工作台顶部的前后两侧固定连接。
通过采用上述技术方案,利用伸缩杆的伸缩,带动联动板进行上下移动,不仅可以使前侧设置的挤压板对挤压工位上第一通孔内部的样品进行挤压,还可以使后侧设置的挤压板对下料工位上第一通孔内部检测后的样品挤压到第二通孔中,进行排出。
本发明进一步设置为:所述检测组件包括装配板,所述装配板的底部固定安装有激光分析仪,所述装配板的一侧支架固定安装在工作台顶部的右侧,且激光分析仪设置在检测板的上方。
通过采用上述技术方案,利用激光分析仪对检测工位上第一通孔内部压实后的样品进行激光照射烧蚀释放等离子体,后经过分析获得样品的化学成分分析结果,避免激光照射时的样品飞溅现象,显著降低等离子温度及电子密度的波动,有效提高激光分析技术在岩粉样品检测的准确度。
本发明进一步设置为:所述采样组件包括钻机捕尘罩、旋风收尘器、采样真空泵与反吹清扫件,所述钻机捕尘罩用于采集钻机钻取的岩粉样品,所述钻机捕尘罩与旋风收尘器输入端之间通过采样管相连,所述旋风收尘器下方设置有接样筒,所述旋风收尘器输出端与采样真空泵相连,通过控制采样真空泵的启停,将钻机岩粉样品通过旋风收尘器分离后收集于接样筒中,所述反吹清扫件用于清理旋风收尘器和采样管中的残余样品。
更进一步的,采集系统与钻机作业连锁,采集不同钻探深度的样品,通过钻探深度与真空泵的开停连锁控制,实现指定钻探深度的精准取样,取样分析后的结果,可精准指导矿山地质模型的数据更新。
本发明进一步设置为:所述样品转运组件包括样品缩分件和留存样件,所述接样筒中存储的岩粉样品运转至样品缩分件,进行缩分样品的获取,缩分样品分两路,一路缩分样品存储在留存样件中,用作样品自动分析结果的校验与追溯,另一路缩分样品输送到研磨组件中,对缩分样品进行研磨处理,并输送至上料组件中。
一种潜孔钻机自动取样分析系统及其应用的应用,用于与进厂石灰石中子 分析仪联动使用。
(三)有益效果
本发明提供了一种潜孔钻机自动取样分析系统及其应用。具备以下有益效果:
(1)本发明通过配合采样组件、样品转运组件、样品预处理组件和检测组件的设置,构建出完成的钻机自动取样分析系统,且利用步进电机驱动检测板转动,实现多工位的协调运转,实现定量且精准有效的样品构建,为样品检测提供精准保障。
(2)本发明通过利用震动电机和震动杆的配合,对料筒内部存储的样品进行震动捣实,保证上料工位对应第一通孔中上料的均匀稳定,利用伸缩杆的伸缩,带动联动板进行上下移动,不仅可以使前侧设置的挤压板对挤压工位上第一通孔内部的样品进行挤压,还可以使后侧设置的挤压板对下料工位上第一通孔内部检测后的样品挤压到第二通孔中,进行排出,利用激光分析仪对检测工位上第一通孔内部压实后的样品进行激光照射烧蚀释放等离子体,经过分析获得样品的化学成分分析结果,避免激光照射时的样品飞溅现象,显著降低等离子温度及电子密度的波动,有效提高激光分析技术在岩粉样品检测的准确度。
(3)本发明由于检测准确度与水泥工厂进厂石灰石皮带的中子分析仪的检测准确度相当,钻机自动取样分析系统可与进厂石灰石中子分析仪联动使用,实时、精准更新矿山地质模型,优化矿山的爆破计划、开采计划,也可实时优化数字化矿山的配矿和卡调系统,最终形成矿山开采与调配系统的闭环管控,不仅有利于提高矿山开采效率、提高矿山的使用年限,而且可以有效的保障水泥质量的稳定。
(4)本发明通过钻探深度与采样系统真空泵的开停连锁,实现指定钻探深度的精准取样,可精准指导矿山地质模型的数据更新,且配合采样组件和样品转运组件的设置,有效提高取样的代表性。
附图说明
图1为本发明的原理示意图;
图2为本发明样品预处理组件的外部结构示意图;
图3为本发明步进电机、检测板和封堵环结构的连接示意图;
图4为本发明检测板和封堵环的结构示意图;
图5为本发明中不同CaO含量与422.7nm谱峰强度拟合图;
图6为本发明的自动采样流程图;
图7为本发明旋风收尘器的结构示意图;
图8为本发明实施例中的分析表图;
图中,1、采样组件;2、样品转运组件;3、样品预处理组件;4、工作台;5、步进电机;6、检测板;7、封堵环;8、第一通孔;9、第二通孔;10、上料组件;11、挤压组件;12、检测组件;13、料筒;14、震动电机;15、进料斗;16、安装板;17、伸缩杆;18、联动板;19、挤压板;20、装配板;21、激光分析仪;22、旋风收尘器出样口;23、钻机捕尘罩;24、旋风收尘器;25、采样真空泵;26、反吹清扫件;27、采样管;28、样品缩分件;29、留存样件;30、研磨组件;31、震动杆;32、接样筒;33、旋风收尘器内筒;34、旋风收尘器进口;35、旋风收尘器蜗壳;36、旋风收尘器直段;37、旋风收尘器锥部。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、完整地描述。
请参阅图1-7,本发明实施例提供一种技术方案:一种潜孔钻机自动取样分析系统,包括采样组件1、样品转运组件2、样品预处理组件3和检测组件12。
作为优选方案,如附图1所示,采样组件1为防止样品污染,采样组件1优选外挂于潜孔钻机除尘系统新增的采样组件1,新增的采样组件1包括钻机捕尘罩23、旋风收尘器24、采样真空泵25与反吹清扫件26,钻机捕尘罩23用于采集钻机钻取的岩粉样品,钻机捕尘罩23与旋风收尘器24输入端之间通过采样管27相连,旋风收尘器24下方设置有接样筒32,旋风收尘器24输出端与采样真空泵25相连,通过控制采样真空泵25的启停,将钻机岩粉样品通过旋风收尘器24分离后收集于接样筒32中,反吹清扫件26用于清理旋风收尘器24和采样管27中的残余样品。
作为详细说明,如附图6所示,采样组件1的自动采样流程如下:钻机到达指定位置开始钻探作业,钻机收到自动化验分析指令,系统自动形成样品编码,样品编码包含采样台段、钻孔位置、钻孔深度、采样时间等信息,在钻机钻探到达指定深度的持续作业过程中,采样组件1通过采样真空泵25将钻机捕尘罩23罩内的钻探颗粒样品吸入旋风收尘器24中进行收集,通过设置自动采样频次,控制钻机作业过程中的采样真空泵25的启停时间,实现钻孔过程中的连续定时采样,在钻孔作业结束后形成该编码样品的合样,样本收集完成后,使用高压气体冲刷清洗旋风收尘器24及采样管27内存留残余颗粒,确保下次采样精确,采样组件1中的反吹清扫件26中的高压空气可使用钻机自带的螺杆空压机,新增空气机支路气管。
作为优选方案,为了防止粉尘污染,如附图7所示,为了防止采样组件1, 的粉尘污染,采样组件1中的旋风收尘器24使用高效旋风收尘器,高效旋风收尘器包由旋风收尘器进口34、旋风收尘器内筒33、旋风收尘器蜗壳35、旋风收尘器直段36、旋风收尘器锥部37和旋风收尘器出料口22组成,其中旋风收尘器内筒33与旋风收尘器出料口22相连,旋风收尘器的进口34风速为18-20m/s,旋风收尘器24的高度与直径比例D/H应大于3,旋风收尘器内筒33的直径d与旋风收尘器直径D的比值d/D为30-70%,内筒插入深度h应与旋风收尘器进口34高度b的比例h/b为90-150%,旋风收尘器进口34应为矩形或五边形,进口的宽高比a/b为0.4-0.7。
进一步的,采样组件1中的采样管27内的气流风速为12-25m/s,可保证钻机岩粉样品中不同粒度大小的颗粒均可被有效采集,采样管27应避免水平安装,防止样品沉积。
更进一步的,采样组件1与钻机专业连锁,可采集不同钻探深度的样品,通过钻探深度与采样真空泵25的开停连锁,实现指定钻探深度的精准取样,取样分析后的结果,可精准指导矿山地质模型的数据更新,采样组件1可实现单个钻孔,不少于2个取样量,为了保证取样的代表性,一次取样的每个合样重量为200-500g,优选的,接样筒32可分隔为2-8个单独区域,用于放置不同钻探深度的岩粉样品,采样组件1中的反吹清扫件26中的高压空气压力为0.4-0.6MPa
作为优选方案,如附图1所示,样品转运组件2包括样品缩分件28和留存样件29,接样筒32中存储的岩粉样品运转至样品缩分件28,进行缩分样品的获取,缩分样品分两路,一路缩分样品存储在留存样件29中,用作样品自动分析结果的校验与追溯,另一路缩分样品输送到研磨组件30中,对缩分样品进行 研磨处理,并输送至样品预处理组件3中。
具体的,在采样组件1作业结束后,将样品合样转运至样品缩分件28内进行混匀和缩分处理,缩分后将定量的检测样品送入研磨组件30中,其余样品送入留存样件29中,用作钻机自动分析结果的校验与追溯,留存样件29设有样品自动标记功能,留存样的自动编码英语取样编码一致,用于样品识别和检测结果校验,留存样件29可将留存样品收集于留样盒或留样袋中,缩分后送入研磨组件30的样品量为5-50g,送入留存样件29的样品量为200-400g,具体的,样品缩分件28采用分离式缩分装置,容积为20-50L。
作为详细说明,经过样品转运组件2的样品缩分件28混匀缩分后的具有代表性的颗粒度不一的钻机岩粉样品约5-50g,送入研磨组件30中,研磨后达到一定的细度要求,避免激光照射时的样品飞溅现象,可有效提高激光分析的准确度。
进一步的,研磨组件30优选震动小磨和小型管磨机,研磨组件30优选碳化钨耐磨材质,经过研磨组件30研磨后的岩粉样品的D90为10-200μm。
作为优选方案,为了实现样品的精准有效分析如附图2、附图3和附图4所示,样品预处理组件3包括工作台4,工作台4的顶部固定安装有步进电机5,步进电机5的输出轴通过联轴器固定连接有检测板6,工作台4的顶部通过连接杆固定连接有封堵环7,封堵环7设置在步进电机5的外周,且封堵环7的顶部与检测板6的底部相接触,检测板6的顶部呈圆周方向依次开设有四个第一通孔8,且封堵环7顶部的背部开设有与第一通孔8相适配的第二通孔9,用于下料,工作台4顶部的左侧通过支架固定连接有一个第一通孔8相适配的上料组件10,具体的,上料组件10包括料筒13,料筒13的顶部固定安装有震动电机 14,震动电机14的输出轴贯穿料筒13并固定安装有震动杆31,料筒13的一侧顶部开设有进料斗15,且料筒13的正面设置有观察窗,料筒13的一侧底部通过支架与工作台4顶部的左侧固定连接,用于保证料筒13下方第一通孔8即上料工位内部样品的均匀密实。
作为优选方案,工作台4的顶部的前后两侧通过连接板固定连接有挤压组件11,且挤压组件11设置在检测板6的上方,具体的,挤压组件11包括安装板16,安装板16的顶部固定安装有伸缩杆17,伸缩杆17的伸缩端贯穿安装板16并固定连接有联动板18,联动板18底部的前后两侧均通过连接板固定连接有挤压板19,且挤压板19的外周与第一通孔8的内部相适配,安装板16底部的前后两侧均通过连接板分别与工作台4顶部的前后两侧固定连接,利用伸缩杆17控制前侧设置的挤压板19对挤压工位中第一通孔8的样本进行压实,方便后续检测组件12的检测,同时,伸缩杆17带动后侧设置的挤压板19对下料工位中第一通孔8中检测后的样本进行挤压下料,为第一通孔8转至上料工位时的上料提供方便。
作为优选方案,工作台4顶部的右侧通过支架固定连接有检测组件12,且检测组件12设置在检测板6的上方,具体的,检测组件12包括装配板20,装配板20的底部固定安装有激光分析仪21,装配板20的一侧支架固定安装在工作台4顶部的右侧,且激光分析仪21设置在检测板6的上方,其中激光分析仪21优选低功率的小型化激光分析仪。
作为详细说明,若使用车载布置,由于激光分析仪21需恒定的检测环境,需配置车载激光分析仪21空调,另为了保证车载激光分析仪21长期稳定可靠的工作,还需配套相应的车载分析系统防护与减震装置,车载的小型化激光发 射器功率为50-100W。
作为详细说明,将研磨组件30和样品预处理组件3布置在矿场区域的固定分析小屋,样品采集后送入固定分析小屋,完成样品的检测。
作为优选方案,样品预处理组件3和检测组件12可实现岩粉样品中CaO、MgO、SiO2成分的检测分析,具体的检测分析成分、分析范围及静态准确度如如附图8所示。
选取了6个具有不同CaO含量梯度的钻机岩粉样品,经过研磨、压平后形成表面光滑平整的样片,样片经过激光分析,检测结果的拟合曲线如附图5所示,R2为0.9834,可见不同CaO含量与422.7nm谱峰强度的线性相关度较好,使用以上方法的自动取样分析技术可用于矿山岩粉样品的检测分析,根据本发明若选用分析仪车载布置,岩粉样品各化学成分的检测准确度为静态准确度的60-80%。

Claims (9)

  1. 一种潜孔钻机自动取样分析系统,包括采样组件(1),其特征在于:所述采样组件(1)的输出端设置有样品转运组件(2),所述样品转运组件(2)的输出端设置有样品预处理组件(3),所述样品预处理组件(3)包括工作台(4),所述工作台(4)的顶部固定安装有步进电机(5),所述步进电机(5)的输出轴通过联轴器固定连接有检测板(6),所述工作台(4)的顶部通过连接杆固定连接有封堵环(7),所述封堵环(7)设置在步进电机(5)的外周,且封堵环(7)的顶部与检测板(6)的底部相接触,所述检测板(6)的顶部呈圆周方向依次开设有四个第一通孔(8),且封堵环(7)顶部的背部开设有与第一通孔(8)相适配的第二通孔(9),所述工作台(4)顶部的左侧通过支架固定连接有一个第一通孔(8)相适配的上料组件(10),所述工作台(4)的顶部的前后两侧通过连接板固定连接有挤压组件(11),且挤压组件(11)设置在检测板(6)的上方,所述工作台(4)顶部的右侧通过支架固定连接有检测组件(12),且检测组件(12)设置在检测板(6)的上方。
  2. 根据权利要求1所述的一种潜孔钻机自动取样分析系统,其特征在于:所述上料组件(10)包括料筒(13),所述料筒(13)的顶部固定安装有震动电机(14),所述震动电机(14)的输出轴贯穿料筒(13)并固定安装有震动杆(31),所述料筒(13)的一侧顶部开设有进料斗(15),且料筒(13)的正面设置有观察窗,所述料筒(13)的一侧底部通过支架与工作台(4)顶部的左侧固定连接。
  3. 根据权利要求1所述的一种潜孔钻机自动取样分析系统,其特征在于:所述挤压组件(11)包括安装板(16),所述安装板(16)的顶部固定安装有伸缩杆(17),所述伸缩杆(17)的伸缩端贯穿安装板(16)并固定连接有联动板(18),所述联动板(18)底部的前后两侧均通过连接板固定连接有挤压板(19), 且挤压板(19)的外周与第一通孔(8)的内部相适配,所述安装板(16)底部的前后两侧均通过连接板分别与工作台(4)顶部的前后两侧固定连接。
  4. 根据权利要求1所述的一种潜孔钻机自动取样分析系统,其特征在于:所述检测组件(12)包括装配板(20),所述装配板(20)的底部固定安装有激光分析仪(21),所述装配板(20)的一侧支架固定安装在工作台(4)顶部的右侧,且激光分析仪(21)设置在检测板(6)的上方。
  5. 根据权利要求1所述的一种潜孔钻机自动取样分析系统,其特征在于:所述采样组件(1)包括钻机捕尘罩(23)、旋风收尘器(24)、采样真空泵(25)与反吹清扫件(26),所述钻机捕尘罩(23)用于采集钻机钻取的岩粉样品,所述钻机捕尘罩(23)与旋风收尘器(24)输入端之间通过采样管(27)相连,所述旋风收尘器(24)下方设置有接样筒(32)。
  6. 根据权利要求5所述的一种潜孔钻机自动取样分析系统,其特征在于:所述旋风收尘器(24)输出端与采样真空泵(25)相连,通过控制采样真空泵(25)的启停,将钻机岩粉样品通过旋风收尘器(24)分离后收集于接样筒(32)中,所述反吹清扫件(26)用于清理旋风收尘器(24)和采样管(27)中的残余样品。
  7. 根据权利要求6所述的一种潜孔钻机自动取样分析系统,其特征在于:所述样品转运组件(2)包括样品缩分件(28)和留存样件(29),所述接样筒(32)中存储的岩粉样品运转至样品缩分件(28),进行缩分样品的获取。
  8. 根据权利要求7所述的一种潜孔钻机自动取样分析系统,其特征在于:所述缩分样品分两路,一路缩分样品存储在留存样件(29)中,用作样品自动分析结果的校验与追溯,另一路缩分样品输送到研磨组件(30)中,对缩分样 品进行研磨处理,并输送至上料组件(10)中。
  9. 一种潜孔钻机自动取样分析系统的应用,其特征在于:用于与进厂石灰石中子分析仪联动使用。
PCT/CN2023/099135 2022-11-25 2023-06-08 一种潜孔钻机自动取样分析系统及其应用 WO2024108978A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211496256.7A CN115901730A (zh) 2022-11-25 2022-11-25 一种潜孔钻机自动取样分析系统及其应用
CN202211496256.7 2022-11-25

Publications (1)

Publication Number Publication Date
WO2024108978A1 true WO2024108978A1 (zh) 2024-05-30

Family

ID=86487640

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099135 WO2024108978A1 (zh) 2022-11-25 2023-06-08 一种潜孔钻机自动取样分析系统及其应用

Country Status (2)

Country Link
CN (1) CN115901730A (zh)
WO (1) WO2024108978A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115901730A (zh) * 2022-11-25 2023-04-04 南京凯盛国际工程有限公司 一种潜孔钻机自动取样分析系统及其应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2191922Y (zh) * 1994-01-13 1995-03-15 惠州市惠通电子科技公司 孔口捕尘器
CA2289333A1 (en) * 1999-11-12 2001-05-12 Konstandinos S. Zamfes Cuttings sample catcher and method of use
WO2010000040A1 (en) * 2008-07-04 2010-01-07 Roesner Pty Ltd Drill cutting sampling assembly
CN104483293A (zh) * 2014-12-31 2015-04-01 清华大学 基于激光诱导击穿光谱的固体样品在线测量系统及方法
CN205246369U (zh) * 2015-11-05 2016-05-18 山东信华电力科技有限公司 一种激光在线煤质检测分析系统
KR101691967B1 (ko) * 2015-09-04 2017-01-02 주식회사 지아이이엔지 코어 샘플링 장치
CN107796950A (zh) * 2017-09-19 2018-03-13 钢铁研究总院 一种快速取样分析系统及取样分析方法
CN109580282A (zh) * 2019-02-01 2019-04-05 云南华联锌铟股份有限公司 一种钻孔设备在线连续自动取样方法及取样装置
CN115901730A (zh) * 2022-11-25 2023-04-04 南京凯盛国际工程有限公司 一种潜孔钻机自动取样分析系统及其应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2191922Y (zh) * 1994-01-13 1995-03-15 惠州市惠通电子科技公司 孔口捕尘器
CA2289333A1 (en) * 1999-11-12 2001-05-12 Konstandinos S. Zamfes Cuttings sample catcher and method of use
WO2010000040A1 (en) * 2008-07-04 2010-01-07 Roesner Pty Ltd Drill cutting sampling assembly
CN104483293A (zh) * 2014-12-31 2015-04-01 清华大学 基于激光诱导击穿光谱的固体样品在线测量系统及方法
KR101691967B1 (ko) * 2015-09-04 2017-01-02 주식회사 지아이이엔지 코어 샘플링 장치
CN205246369U (zh) * 2015-11-05 2016-05-18 山东信华电力科技有限公司 一种激光在线煤质检测分析系统
CN107796950A (zh) * 2017-09-19 2018-03-13 钢铁研究总院 一种快速取样分析系统及取样分析方法
CN109580282A (zh) * 2019-02-01 2019-04-05 云南华联锌铟股份有限公司 一种钻孔设备在线连续自动取样方法及取样装置
CN115901730A (zh) * 2022-11-25 2023-04-04 南京凯盛国际工程有限公司 一种潜孔钻机自动取样分析系统及其应用

Also Published As

Publication number Publication date
CN115901730A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2024108978A1 (zh) 一种潜孔钻机自动取样分析系统及其应用
WO2020220520A1 (zh) 无皮带式火车全自动机械化采样系统
US11959839B2 (en) Belt-free fully-automatic mechanical truck sampling system with improved operation efficiency
WO2019228548A1 (zh) 可同时进行干燥作用的粉碎装置
US20110042143A1 (en) Method and apparatus for intensifying ore prospecting
AU2020343837B2 (en) Tbm-mounted rock quartz content testing system and method
CN209945790U (zh) 一种水泥粉体采样装置
WO2024051781A1 (zh) 粉末物料的自动检测装置
CN201421408Y (zh) 粉料自动取样装置
CN109374665B (zh) 一种自动取样式水泥生料在线x荧光分析装置
CN205067178U (zh) 一种用于激光诱导击穿光谱仪的自动化制样系统
WO2024046030A1 (zh) 矿物分选装置及矿物分选方法
CN202155954U (zh) 干混砂浆制备系统
JPH0318147B2 (zh)
CN207147826U (zh) 一种多功能粮食取样机
CN110142226B (zh) 一种不锈钢机体的智能干选机
CN210059031U (zh) 一种智能干选机
CN211718167U (zh) 一种自动取样式水泥生料在线x荧光分析装置
CN105043837A (zh) 一种用于激光诱导击穿光谱仪的自动化制样系统
CN210449922U (zh) 一种不锈钢机体智能干选机
CN206780677U (zh) 一种搅拌主楼除尘装置
CN216285001U (zh) 一种煤矸识别检测系统
CN201945466U (zh) 一种空气冷却钻切岩样装置
CN214131994U (zh) 一种用于肥料生产中的肥料粉碎装置
CN201735447U (zh) 微粉磨机粒径精密控制设备