WO2024108475A1 - 直流输电线路的风险评估方法、装置、设备和存储介质 - Google Patents

直流输电线路的风险评估方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2024108475A1
WO2024108475A1 PCT/CN2022/133960 CN2022133960W WO2024108475A1 WO 2024108475 A1 WO2024108475 A1 WO 2024108475A1 CN 2022133960 W CN2022133960 W CN 2022133960W WO 2024108475 A1 WO2024108475 A1 WO 2024108475A1
Authority
WO
WIPO (PCT)
Prior art keywords
risk assessment
indicator
transmission line
value
risk
Prior art date
Application number
PCT/CN2022/133960
Other languages
English (en)
French (fr)
Inventor
余俊松
肖耀辉
黄和燕
王奇
王玉峰
曾少豪
申晓杰
何园峰
孙萌
宋云海
梁皓云
Original Assignee
中国南方电网有限责任公司超高压输电公司检修试验中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国南方电网有限责任公司超高压输电公司检修试验中心 filed Critical 中国南方电网有限责任公司超高压输电公司检修试验中心
Publication of WO2024108475A1 publication Critical patent/WO2024108475A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply

Definitions

  • the present application relates to the field of direct current transmission technology, in particular to the field of ultra-high voltage direct current transmission technology, and specifically to a method, device, equipment and storage medium for risk assessment of direct current transmission lines.
  • DC transmission technology (such as UHV DC transmission technology) is based on traditional transmission technology and uses new technology to improve transmission capacity and efficiency, achieving efficient, intelligent and environmentally friendly power transmission.
  • DC transmission technology how to ensure the safe and stable transmission of electric energy is a problem that has always been concerned. Different countries and regions have relevant standards for power factor.
  • risk assessment In order to ensure the safety and stability of DC transmission, a comprehensive risk assessment is needed from the perspective of DC transmission risks. At present, risk assessment mainly relies on manual work and considers a single factor, resulting in low accuracy in risk assessment of DC transmission lines, which urgently needs to be improved.
  • the present application provides a method for risk assessment of a DC transmission line.
  • the method comprises:
  • the risk assessment information of each DC transmission line in the DC transmission system to be assessed is determined.
  • determining the objective weight of each risk assessment indicator according to the indicator value includes:
  • the coefficient of variation and conflict quantification value of each risk assessment indicator are determined
  • determining the coefficient of variation of each risk assessment indicator according to the normalized value includes:
  • For each risk assessment indicator determine the standard deviation and mean value of the risk assessment indicator based on the normalized value of the risk assessment indicator;
  • the coefficient of variation of the risk assessment indicator is determined.
  • determining the conflict quantification value of each risk assessment indicator according to the normalized value includes:
  • the conflict quantitative value of each risk assessment indicator is determined.
  • the risk assessment information of each DC transmission line in the DC transmission system to be assessed is determined according to the indicator value, the objective weight and the subjective weight, including:
  • the risk assessment level of each DC transmission line is determined.
  • the risk assessment level of each DC transmission line is determined based on the comprehensive weight and the assessment matrix, including:
  • the risk assessment level of each DC transmission line is determined based on the membership degree and risk level weight.
  • the present application also provides a risk assessment device for a DC transmission line.
  • the device comprises:
  • An acquisition module used to acquire the index value of each risk assessment index of each DC transmission line in the DC transmission system to be assessed
  • the first determination module is used to determine the objective weight of each risk assessment indicator according to the indicator value
  • the second determination module is used to determine the subjective weight of each risk assessment indicator according to the relative importance between different risk assessment indicators
  • the third determination module is used to determine the risk assessment information of each DC transmission line in the DC transmission system to be assessed according to the indicator value, the objective weight and the subjective weight.
  • the present application further provides a computer device.
  • the computer device includes a memory and a processor, the memory stores a computer program, and the processor implements the following steps when executing the computer program:
  • the risk assessment information of each DC transmission line in the DC transmission system to be assessed is determined.
  • the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the following steps are implemented:
  • the risk assessment information of each DC transmission circuit in the DC transmission system to be assessed is determined.
  • the present application further provides a computer program product.
  • the computer program product includes a computer program, and when the computer program is executed by a processor, the following steps are implemented:
  • the risk assessment information of each DC transmission line in the DC transmission system to be assessed is determined.
  • FIG1 is a diagram showing an application environment of a risk assessment method for a DC transmission line in one embodiment
  • FIG2 is a schematic flow chart of a risk assessment method for a DC transmission line in one embodiment
  • FIG3 is a schematic diagram of a process for determining an objective weight in one embodiment
  • FIG4 is a schematic diagram of a process for determining risk assessment information in one embodiment
  • FIG5 is a schematic flow chart of a risk assessment method for a DC transmission line in another embodiment
  • FIG6 is a structural block diagram of a risk assessment device for a DC transmission line in one embodiment
  • FIG7 is a structural block diagram of a risk assessment device for a DC transmission line in another embodiment
  • FIG8 is a structural block diagram of a risk assessment device for a DC transmission line in yet another embodiment
  • FIG. 9 is a diagram showing the internal structure of a computer device in one embodiment.
  • the risk assessment method for a DC transmission line provided in an embodiment of the present application can be applied in an application environment as shown in FIG1.
  • the terminal 102 communicates with the server 104 through a network.
  • the data storage system can store data that the server 104 needs to process.
  • the data storage system can be integrated on the server 104, or placed on a cloud or other network server.
  • the server 104 obtains the index value of each risk assessment index of each DC transmission line in the DC transmission system to be evaluated, and determines the objective weight of each risk assessment index according to the index value; then, according to the relative importance between different risk assessment indicators, the subjective weight of each risk assessment index is determined; and then, according to the index value, the objective weight and the subjective weight, the risk assessment information of each DC transmission line in the DC transmission system to be evaluated can be determined; further, the server 104 can send the risk assessment information to the terminal 102 so that relevant personnel can inspect and repair the DC transmission line according to the risk assessment information.
  • the terminal 102 can be, but is not limited to, various personal computers, laptops, smart phones, tablet computers, Internet of Things devices and portable wearable devices, and the Internet of Things devices can be smart speakers, smart TVs, smart air conditioners, smart car-mounted devices, etc.
  • the portable wearable device may be a smart watch, a smart bracelet, a head-mounted device, etc.
  • the server 104 may be implemented as an independent server or a server cluster consisting of multiple servers.
  • a method for risk assessment of a DC transmission line is provided; optionally, the method can assess the risk of a DC transmission line, and in particular, can assess the risk of an ultra-high voltage DC transmission line; wherein an ultra-high voltage DC transmission line is a DC transmission line that transmits ⁇ 800 kV and above.
  • the method is applied to the server 104 in FIG1 as an example for illustration, and includes the following steps:
  • the DC transmission system to be evaluated is any DC transmission system (especially any UHV DC transmission system) that needs to be risk evaluated; the DC transmission line is the transmission line for DC power transmission in the DC transmission system to be evaluated.
  • the risk assessment index is the index selected according to the transportation environment of the DC transmission system and the risks it faces (such as weather, equipment damage, etc.) for evaluating the risk of the DC transmission system to be evaluated, which may include but is not limited to the operation risk of converter valves, equipment operation risk, icing risk and lightning strike risk.
  • the index value of the DC transmission line under each risk assessment index can be determined.
  • the index value of the converter valve operation risk index of this DC transmission line can be expressed by the system equipment failure risk probability.
  • the index value of the converter valve operation risk index can be calculated by the following formula 1:
  • T represents the duration of a maintenance cycle
  • t represents the fault duration of the converter valve on the DC transmission line during the maintenance cycle
  • the index value of the equipment operation risk index of this DC transmission line can be calculated by the following formula 2:
  • b is the number of devices on the DC transmission line
  • Ta is the maintenance period of the a-th device on the DC transmission line
  • ta is the fault duration of the a-th device on the DC transmission line within the maintenance period.
  • the index value of the icing risk index of this DC transmission line can be calculated by the following formula 3:
  • L is the maximum allowable ice thickness
  • l 1 is the average ice thickness of the sampling points on the DC transmission line
  • k 1 is the environmental coefficient
  • the index value of the lightning risk index of the DC transmission line can be calculated using the average lightning restart rate.
  • the index value of the lightning risk index can be calculated using the following formula 4:
  • k2 is the environmental coefficient
  • Td is the annual average thunderstorm hours of the DC transmission line
  • r is the average number of lightning strikes on the DC transmission line
  • is the probability of occurrence of power frequency arc on the DC transmission line
  • pd is the probability that the lightning current amplitude on the DC transmission line is equal to or greater than the lightning withstand level of the line
  • h is the DC transmission line height of the DC transmission line
  • l2 is the horizontal spacing between two adjacent lightning arresters on the DC transmission line.
  • S202 Determine the objective weight of each risk assessment indicator according to the indicator value.
  • the objective weight is the importance of each risk assessment indicator measured from an objective perspective.
  • an index value set of the risk assessment indicator is constructed for each risk assessment indicator.
  • the DC transmission system to be evaluated includes m DC transmission lines.
  • the index value sets of each risk assessment indicator are input into a pre-trained model, and the model outputs the objective weight of each risk assessment indicator.
  • S203 Determine the subjective weight of each risk assessment indicator according to the relative importance of different risk assessment indicators.
  • the relative importance of different risk assessment indicators can be determined by subjective judgment or based on a certain judgment strategy, which is not limited in this embodiment.
  • the subjective weight is the importance of each risk assessment indicator measured from a subjective perspective.
  • a judgment scale is constructed.
  • the importance judgment scale uses numbers 0 to 5 to represent five levels of importance. The larger the number, the greater its importance.
  • the importance score in the evaluation process can also be a non-integer between 0 and 5.
  • the relative importance of one risk assessment indicator compared to another risk assessment indicator is k, then the relative importance of another risk assessment indicator relative to the risk assessment indicator is 5-k; further, the relative importance of a risk assessment indicator relative to itself is a fixed value, such as 2.5, or 5.
  • a scoring matrix is obtained; the scoring matrix is summed by column, that is, the total score of each column is obtained, and the total score of each column is added to obtain the total score of all risk assessment indicators. The total score of each column is divided by the total score of all risk assessment indicators to obtain the subjective weight ⁇ of each risk assessment indicator.
  • the four risk assessment indicators of converter valve operation risk, equipment operation risk, icing risk and lightning strike risk are scored in order of priority, and a 4*4 scoring matrix can be obtained.
  • the first column is the relative importance of converter valve operation risk relative to converter valve operation risk, equipment operation risk, icing risk and lightning strike risk
  • the second column is the relative importance of equipment operation risk relative to converter valve operation risk, equipment operation risk, icing risk and lightning strike risk
  • the third column is the relative importance of icing risk relative to converter valve operation risk, equipment operation risk, icing risk and lightning strike risk
  • the fourth column is the relative importance of lightning strike risk relative to converter valve operation risk, equipment operation risk, icing risk and lightning strike risk.
  • the scoring matrix is summed up by column to obtain the total score of each column; for example, the first column is summed up to obtain the total score of converter valve operation risk; and then each score total is added to obtain the total score, and the total score of the first column is divided by the total score to obtain the subjective weight of the converter valve operation risk indicator.
  • S204 Determine risk assessment information of each DC transmission line in the DC transmission system to be assessed according to the indicator value, the objective weight and the subjective weight.
  • the risk assessment information of the DC transmission line is the final risk assessment result of the risk assessment on the DC transmission line; optionally, the risk assessment information may include a risk assessment level.
  • the index value of each risk assessment indicator of each DC transmission line in the DC transmission system to be evaluated, the objective weight of each risk assessment indicator and the subjective weight of each risk assessment indicator can be input into a pre-trained model, and the model outputs the risk assessment value of each DC transmission line in the DC transmission system to be evaluated; then, based on the risk assessment value of each DC transmission line, the risk level of each DC transmission line is evaluated to obtain the risk assessment level of each DC transmission line.
  • the determined risk assessment information may be sent to the terminal so that relevant personnel can inspect and repair the DC transmission lines in the DC transmission system to be assessed according to the risk assessment information.
  • the objective weight of each risk assessment indicator can be determined based on the obtained index value of each risk assessment indicator of each DC transmission line in the DC transmission system to be assessed, and the subjective weight of each risk assessment indicator can be determined according to the relative importance between different risk assessment indicators; and then the risk assessment information of each DC transmission line in the DC transmission system to be assessed is determined according to the index value, objective weight and subjective weight.
  • the above-mentioned scheme by introducing subjective weight and objective weight, according to the subjective weight and objective weight of each risk assessment indicator, and the index value of each risk assessment indicator of each DC transmission line, that is, fully considering the subjective and objective dimensions, makes the risk assessment information of each DC transmission line in the DC transmission system to be assessed more accurate and reasonable, and then the DC transmission line is inspected and maintained based on the risk assessment information, which ensures the safety and stability of DC transmission and reduces the risk of DC transmission.
  • S202 is further explained in detail to determine the objective weight of each risk assessment indicator according to the indicator value.
  • the specific process includes:
  • the normalized value is the value obtained after normalizing the indicator value.
  • UHV DC transmission risk assessment indicators positive indicators (the larger the better) and reverse indicators (the smaller the better), and the normalization methods of positive indicators and reverse indicators are different.
  • each risk assessment indicator it can be determined first to which type of indicator the risk assessment indicator belongs; then, according to the normalization processing method of the type of indicator, each indicator value under the risk assessment indicator is normalized.
  • x ij is the index value of the j-th risk assessment index of the ith DC transmission line
  • maxX j , minX j are the maximum and minimum values in the index value set X j corresponding to the j-th risk assessment index, respectively
  • y ij is the normalized value of the j-th risk assessment index of the ith DC transmission line.
  • the normalized value of each risk assessment indicator can constitute a normalized value set, that is, a vector containing m elements.
  • S302 Determine the coefficient of variation and conflict quantification value of each risk assessment indicator according to the normalized value.
  • the normalized value of each risk assessment indicator can be input into a pre-trained model, and the model outputs the coefficient of variation and the conflict quantification value of each risk assessment indicator.
  • the standard deviation and the average value of the risk assessment indicator may be determined according to the normalized values of the risk assessment indicator; and the coefficient of variation of the risk assessment indicator may be determined according to the standard deviation and the average value.
  • the following formula 6 and formula 7 may be combined to determine the standard deviation and the average value of the risk assessment indicator according to each normalized value of the risk assessment indicator.
  • m is the number of DC transmission lines; is the average value of the j-th risk assessment indicator; sj is the standard deviation of the j-th risk assessment indicator.
  • the ratio of the standard deviation of the risk assessment indicator to the mean value can be used as the coefficient of variation of the risk assessment indicator.
  • the coefficient of variation of the risk assessment indicator can be determined according to the following formula 8.
  • vj is the coefficient of variation of the j-th risk assessment indicator.
  • the correlation coefficients between different risk assessment indicators may be determined based on the normalized values; and the conflict quantification values of the risk assessment indicators may be determined based on the correlation coefficients.
  • the correlation coefficients between different risk assessment indicators are determined according to the normalized values of the risk assessment indicators.
  • the correlation coefficients between different risk assessment indicators can be determined according to the following formula 9.
  • the conflict quantification value of the risk assessment indicator can be determined according to the correlation coefficient between the risk assessment indicator and other risk assessment indicators. For example, for the j-th risk assessment indicator, the conflict quantification value of the risk assessment indicator can be determined according to the following formula 10.
  • Aj is the conflict quantitative value of the j-th risk assessment indicator.
  • S303 Determine the information content of each risk assessment indicator according to the coefficient of variation and the conflict quantification value.
  • the product of the coefficient of variation of the risk assessment indicator and the conflict quantification value can be used as the information content of the risk assessment indicator.
  • the information content of the risk assessment indicator can be determined according to the following formula 11.
  • Ej is the information amount of the j-th risk assessment indicator.
  • S304 Determine the objective weight of each risk assessment indicator based on the amount of information.
  • the ratio of the information content of the risk assessment indicator to the sum of the information content of all risk assessment indicators can be used as the objective weight of the risk assessment indicator.
  • the objective weight of the risk assessment indicator can be determined according to the following formula 12.
  • ⁇ j is the objective weight of the j-th risk assessment indicator.
  • the objective weight of each risk assessment indicator can be determined objectively and accurately, which provides an optional method for determining the objective weight of each risk assessment indicator.
  • S204 is further explained in detail for determining the risk assessment information of each DC transmission line in the DC transmission system to be assessed according to the index value, the objective weight and the subjective weight.
  • the specific process includes:
  • the comprehensive weight is the weight obtained by integrating the subjective weight and the objective weight.
  • the comprehensive weight of the risk assessment indicator can be determined according to the objective weight and subjective weight of the risk assessment indicator.
  • the comprehensive weight of the risk assessment indicator can be determined according to the following formula 13.
  • ⁇ j is the subjective weight of the j-th risk assessment indicator
  • ⁇ j is the objective weight of the j-th risk assessment indicator
  • S402 Determine an evaluation matrix for each DC transmission line according to the risk level function and the normalized value of the index value.
  • the risk level function is a function constructed to represent the risk level of the risk assessment indicator.
  • the pre-set risk levels are low risk, relatively low risk, average risk, relatively high risk, and high risk; different risk levels correspond to different risk level functions.
  • the following five risk level functions, Formula 14 to Formula 18, can be constructed in sequence.
  • f V1 (U), f V2 (U), f V3 (U), f V4 (U) and f V5 (U) are risk level functions of low risk, lower risk, average risk, higher risk and high risk in the risk levels respectively.
  • the evaluation matrix of the DC transmission line can be obtained.
  • the evaluation matrix F i of the i-th DC transmission line is shown in Formula 19:
  • S403 Determine the risk assessment level of each DC transmission line according to the comprehensive weight and the assessment matrix.
  • the comprehensive weights of the risk assessment indicators and the assessment matrix of each DC transmission line can be respectively input into a pre-trained model, and the model outputs the risk assessment level of each DC transmission line in the DC transmission system to be assessed.
  • the membership degree of each DC transmission line under each risk level can be determined based on the comprehensive weight and the assessment matrix; and the risk assessment level of each DC transmission line can be determined based on the membership degree and the risk level weight.
  • the degree of membership of the DC transmission line at each risk level includes the degree to which the DC transmission line belongs to the risk levels of low risk, relatively low risk, average risk, relatively high risk and high risk, respectively.
  • the degree of membership of the DC transmission line at each risk level can be determined according to the comprehensive weight and the evaluation matrix of the DC transmission line.
  • the degree of membership of the DC transmission line at each risk level can be determined according to the following formula 20.
  • Bi [ bi ( V1 ) bi ( V2 ) bi ( V3 ) bi ( V4 ) bi ( V5 )] (20)
  • Bi is the membership degree of the ith DC transmission line under each risk level; It indicates the membership degree of low risk of the ith DC transmission line in the risk level.
  • the risk assessment value of the DC transmission line can be determined according to the degree of membership of the DC transmission line at each risk level and the risk level weight of each risk level. For example, for the i-th DC transmission line, the risk assessment value of the DC transmission line can be determined according to the following formula 21.
  • Zi is the risk assessment value of the ith DC transmission line
  • d1 , d2 , d3 , d4 , and d5 are the weights of low risk, lower risk, general risk, higher risk, and high risk in the risk levels, and the values may be 95, 80, 65, 55, and 35, respectively.
  • the risk assessment level of the DC transmission line may be determined based on the risk assessment value of the DC transmission line.
  • the scoring intervals of each risk assessment level are pre-set, for example, the scoring interval of low risk is (85, 100], the scoring interval of relatively low risk is (70, 85], the scoring interval of average risk is (60, 70], the scoring interval of relatively high risk is (50, 60], and the scoring interval of high risk is (0, 50]; based on the scoring intervals of each risk assessment level, according to the obtained risk assessment value of the DC transmission line, it is determined to which risk assessment level the DC transmission line belongs.
  • the subjective weight and objective weight of each risk assessment indicator are integrated to obtain the comprehensive weight of each risk assessment indicator. Then, by combining the risk level function, the normalized value of each risk assessment indicator and the comprehensive weight, the risk assessment value of each DC transmission line in the DC transmission system to be evaluated can be accurately determined, and then the risk assessment level of the DC transmission system to be evaluated can be accurately determined.
  • the present application also provides an optional example of a risk assessment method for a DC transmission line. As shown in FIG5 , the specific process includes:
  • S503 for each risk assessment indicator, determine the standard deviation and the average value of the risk assessment indicator according to the normalized value of the risk assessment indicator.
  • S504 Determine the coefficient of variation of the risk assessment indicator based on the standard deviation and the mean value.
  • S505 Determine the correlation coefficients between different risk assessment indicators based on the normalized values.
  • S506 Determine the conflict quantification value of each risk assessment indicator according to the correlation coefficient.
  • S508 Determine the objective weight of each risk assessment indicator based on the amount of information.
  • S509 Determine the subjective weight of each risk assessment indicator according to the relative importance of different risk assessment indicators.
  • steps in the flowcharts involved in the above-mentioned embodiments can include multiple steps or multiple stages, and these steps or stages are not necessarily executed at the same time, but can be executed at different times, and the execution order of these steps or stages is not necessarily carried out in sequence, but can be executed in turn or alternately with other steps or at least a part of the steps or stages in other steps.
  • the embodiment of the present application also provides a risk assessment device for a DC transmission line for implementing the risk assessment method for a DC transmission line involved above.
  • the implementation scheme for solving the problem provided by the device is similar to the implementation scheme recorded in the above method, so the specific limitations in the embodiments of the risk assessment device for one or more DC transmission lines provided below can refer to the limitations of the risk assessment method for a DC transmission line above, and will not be repeated here.
  • a risk assessment device 1 for a DC transmission line comprising: an acquisition module 10, a first determination module 20, a second determination module 30, and a third determination module 40, wherein:
  • An acquisition module 10 is used to acquire the index value of each risk assessment index of each DC transmission line in the DC transmission system to be assessed;
  • a first determination module 20 is used to determine the objective weight of each risk assessment indicator according to the indicator value
  • a second determination module 30 is used to determine the subjective weight of each risk assessment indicator according to the relative importance between different risk assessment indicators
  • the third determination module 40 is used to determine the risk assessment information of each DC transmission line in the DC transmission system to be assessed according to the indicator value, the objective weight and the subjective weight.
  • the first determination module 20 in FIG. 6 may specifically include:
  • the processing unit 21 is used to perform normalization processing on the indicator value to obtain a normalized value of the indicator value
  • a first determination unit 22 used to determine the coefficient of variation and the conflict quantification value of each risk assessment indicator according to the normalized value
  • a second determination unit 23 used to determine the information amount of each risk assessment indicator according to the coefficient of variation and the conflict quantification value
  • the third determining unit 24 determines the objective weight of each risk assessment indicator according to the amount of information.
  • the first determination unit 22 in FIG. 7 may be specifically used for:
  • the standard deviation and mean value of the risk assessment indicator are determined based on the normalized value of the risk assessment indicator; and the coefficient of variation of the risk assessment indicator is determined based on the standard deviation and the mean value.
  • the first determination unit 22 in FIG. 7 is further specifically configured to:
  • the correlation coefficients between different risk assessment indicators are determined; based on the correlation coefficients, the conflict quantification values of each risk assessment indicator are determined.
  • the third determination module 40 may be further refined based on FIG. 6 or FIG. 7.
  • the third determination module 40 is refined based on FIG. 7.
  • the third determination module 40 may include:
  • the fourth determining unit 41 is used to determine the comprehensive weight of each risk assessment indicator according to the objective weight and the subjective weight;
  • a fifth determining unit 42 configured to determine an evaluation matrix for each DC transmission line according to the risk level function and the normalized value of the index value;
  • the sixth determining unit 43 is used to determine the risk assessment level of each DC transmission line according to the comprehensive weight and the assessment matrix.
  • the sixth determination module 43 in FIG. 8 may be specifically used for:
  • the membership degree of each DC transmission line under each risk level is determined; according to the membership degree and risk level weight, the risk assessment level of each DC transmission line is determined.
  • Each module in the above-mentioned risk assessment device for DC transmission lines can be implemented in whole or in part by software, hardware, or a combination thereof.
  • Each of the above-mentioned modules can be embedded in or independent of a processor in a computer device in the form of hardware, or can be stored in a memory in a computer device in the form of software, so that the processor can call and execute operations corresponding to each of the above modules.
  • a computer device which may be a server, and its internal structure diagram may be shown in FIG9 .
  • the computer device includes a processor, a memory, and a network interface connected via a system bus.
  • the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, a computer program, and a database.
  • the internal memory provides an environment for the operation of the operating system and the computer program in the non-volatile storage medium.
  • the database of the computer device is used to store risk assessment data of a DC transmission line.
  • the network interface of the computer device is used to communicate with an external terminal via a network connection. When the computer program is executed by the processor, a risk assessment method for a DC transmission line is implemented.
  • FIG. 9 is merely a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer device to which the solution of the present application is applied.
  • the specific computer device may include more or fewer components than shown in the figure, or combine certain components, or have a different arrangement of components.
  • a computer device including a memory and a processor, wherein a computer program is stored in the memory, and when the processor executes the computer program, the following steps are implemented:
  • the risk assessment information of each DC transmission line in the DC transmission system to be assessed is determined.
  • the processor executes the logic of determining the objective weight of each risk assessment indicator according to the indicator value in the computer program, the following steps are specifically implemented:
  • the indicator values are normalized to obtain normalized values of the indicator values; based on the normalized values, the coefficient of variation and the quantitative value of conflict of each risk assessment indicator are determined; based on the coefficient of variation and the quantitative value of conflict, the amount of information of each risk assessment indicator is determined; based on the amount of information, the objective weight of each risk assessment indicator is determined.
  • the processor executes the logic of determining the coefficient of variation of each risk assessment indicator according to the normalized value in the computer program, the following steps are specifically implemented:
  • the standard deviation and mean value of the risk assessment indicator are determined based on the normalized value of the risk assessment indicator; and the coefficient of variation of the risk assessment indicator is determined based on the standard deviation and the mean value.
  • the processor executes the logic of determining the conflict quantization value of each risk assessment indicator according to the normalized value in the computer program, the following steps are specifically implemented:
  • the correlation coefficients between different risk assessment indicators are determined; based on the correlation coefficients, the conflict quantification values of each risk assessment indicator are determined.
  • the processor executes the logic of determining the risk assessment information of each DC transmission line in the DC transmission system to be assessed according to the indicator value, the objective weight and the subjective weight in the computer program, the following steps are specifically implemented:
  • the comprehensive weight of each risk assessment indicator is determined; according to the normalized value of the risk level function and the indicator value, the evaluation matrix of each DC transmission line is determined; according to the comprehensive weight and the evaluation matrix, the risk assessment level of each DC transmission line is determined.
  • the processor executes the logic of determining the risk assessment level of each DC transmission line according to the comprehensive weight and the assessment matrix in the computer program, the following steps are specifically implemented:
  • the membership degree of each DC transmission line under each risk level is determined; according to the membership degree and risk level weight, the risk assessment level of each DC transmission line is determined.
  • a computer readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the following steps are implemented:
  • the risk assessment information of each DC transmission line in the DC transmission system to be assessed is determined.
  • the indicator values are normalized to obtain normalized values of the indicator values; based on the normalized values, the coefficient of variation and the quantitative value of conflict of each risk assessment indicator are determined; based on the coefficient of variation and the quantitative value of conflict, the amount of information of each risk assessment indicator is determined; based on the amount of information, the objective weight of each risk assessment indicator is determined.
  • the standard deviation and mean value of the risk assessment indicator are determined based on the normalized value of the risk assessment indicator; and the coefficient of variation of the risk assessment indicator is determined based on the standard deviation and the mean value.
  • the correlation coefficients between different risk assessment indicators are determined; based on the correlation coefficients, the conflict quantification values of each risk assessment indicator are determined.
  • the logic of determining the risk assessment information of each DC transmission line in the DC transmission system to be assessed according to the indicator value, the objective weight and the subjective weight in the computer program is executed by the processor, the following steps are specifically implemented:
  • the comprehensive weight of each risk assessment indicator is determined; according to the normalized value of the risk level function and the indicator value, the evaluation matrix of each DC transmission line is determined; according to the comprehensive weight and the evaluation matrix, the risk assessment level of each DC transmission line is determined.
  • the membership degree of each DC transmission line under each risk level is determined; according to the membership degree and risk level weight, the risk assessment level of each DC transmission line is determined.
  • a computer program product comprising a computer program, which, when executed by a processor, implements the following steps:
  • the risk assessment information of each DC transmission line in the DC transmission system to be assessed is determined.
  • the indicator values are normalized to obtain normalized values of the indicator values; based on the normalized values, the coefficient of variation and the quantitative value of conflict of each risk assessment indicator are determined; based on the coefficient of variation and the quantitative value of conflict, the amount of information of each risk assessment indicator is determined; based on the amount of information, the objective weight of each risk assessment indicator is determined.
  • the standard deviation and mean value of the risk assessment indicator are determined based on the normalized value of the risk assessment indicator; and the coefficient of variation of the risk assessment indicator is determined based on the standard deviation and the mean value.
  • the correlation coefficients between different risk assessment indicators are determined; based on the correlation coefficients, the conflict quantification values of each risk assessment indicator are determined.
  • the logic of determining the risk assessment information of each DC transmission line in the DC transmission system to be assessed according to the indicator value, the objective weight and the subjective weight in the computer program is executed by the processor, the following steps are specifically implemented:
  • the comprehensive weight of each risk assessment indicator is determined; according to the normalized value of the risk level function and the indicator value, the evaluation matrix of each DC transmission line is determined; according to the comprehensive weight and the evaluation matrix, the risk assessment level of each DC transmission line is determined.
  • the membership degree of each DC transmission line under each risk level is determined; according to the membership degree and risk level weight, the risk assessment level of each DC transmission line is determined.
  • any reference to the memory, database or other medium used in the embodiments provided in the present application can include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive random access memory (ReRAM), magnetoresistive random access memory (MRAM), ferroelectric random access memory (FRAM), phase change memory (PCM), graphene memory, etc.
  • Volatile memory can include random access memory (RAM) or external cache memory, etc.
  • RAM can be in various forms, such as static random access memory (SRAM) or dynamic random access memory (DRAM).
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • the database involved in each embodiment provided in this application may include at least one of a relational database and a non-relational database.
  • Non-relational databases may include distributed databases based on blockchain, etc., but are not limited to this.
  • the processor involved in each embodiment provided in this application may be a general-purpose processor, a central processing unit, a graphics processor, a digital signal processor, a programmable logic unit, a data processing logic unit based on quantum computing, etc., but are not limited to this.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本申请公开了一种直流输电线路的风险评估方法、装置、设备和存储介质。该方法包括: (S201)获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值;(S202)根据指标值,确定各风险评估指标的客观权重;(S203)根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重;(S204)根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息。

Description

直流输电线路的风险评估方法、装置、设备和存储介质
本申请要求于2022年11月21日申请的,申请号为2022114583861、名称为“直流输电线路的风险评估方法、装置、设备和存储介质”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及直流输电技术领域,尤其涉及特高压直流输电技术领域,具体涉及一种直流输电线路的风险评估方法、装置、设备和存储介质。
背景技术
直流输电技术(例如特高压直流输电技术)是在传统输电技术的基础上,通过新的技术来提升输送能力和效率,实现高效、智能、环保的电能传输。在直流输电技术应用过程中,如何保证电能的安全稳定输送是目前一直关注的问题。不同国家和地区,对功率因数都有相关的标准,
为保障直流输电安全稳定,需从直流输电风险方面进行综合性风险评估。目前,在风险评估方面,主要依赖于人工,考虑因素单一,导致直流输电线路风险评估准确度低,亟需改进。
发明内容
基于此,有必要针对上述技术问题,提供一种直流输电线路的风险评估方法、装置、设备和存储介质。
第一方面,本申请提供了一种直流输电线路的风险评估方法。所述方法包括:
获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值;
根据指标值,确定各风险评估指标的客观权重;
根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重;
根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息。
在其中一个实施例中,根据指标值,确定各风险评估指标的客观权重包括:
对指标值进行归一化处理,得到指标值的归一化值;
根据归一化值,确定各风险评估指标的变异系数和冲突性量化值;
根据变异系数和冲突性量化值,确定各风险评估指标的信息量;
根据信息量,确定各风险评估指标的客观权重。
在其中一个实施例中,根据归一化值,确定各风险评估指标的变异系数,包括:
针对每一风险评估指标,根据该风险评估指标的归一化值,确定该风险评估指标的标准差和平均值;
根据标准差和平均值,确定该风险评估指标的变异系数。
在其中一个实施例中,根据归一化值,确定各风险评估指标的冲突性量化值,包括:
根据归一化值,确定不同风险评估指标之间的相关系数;
根据相关系数,确定各风险评估指标的冲突性量化值。
在其中一个实施例中,根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息,包括:
根据客观权重和主观权重,确定各风险评估指标的综合权重;
根据风险等级函数和指标值的归一化值,确定每一直流输电线路的评估矩阵;
根据综合权重和评估矩阵,确定每一直流输电线路的风险评估等级。
在其中一个实施例中,根据综合权重和评估矩阵,确定每一直流输电线路的风险评估等级,包括:
根据综合权重和评估矩阵,确定每一直流输电线路在各风险等级下的隶属度;
根据隶属度和风险等级权重,确定每一直流输电线路的风险评估等级。
第二方面,本申请还提供了一种直流输电线路的风险评估装置。所述装置包括:
获取模块,用于获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值;
第一确定模块,用于根据指标值,确定各风险评估指标的客观权重;
第二确定模块,用于根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重;
第三确定模块,用于根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息。
第三方面,本申请还提供了一种计算机设备。所述计算机设备包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现以下步骤:
获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值;
根据指标值,确定各风险评估指标的客观权重;
根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重;
根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息。
第四方面,本申请还提供了一种计算机可读存储介质。所述计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现以下步骤:
获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值;
根据指标值,确定各风险评估指标的客观权重;
根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重;
根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电电路的风险评估信息。
第五方面,本申请还提供了一种计算机程序产品。所述计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:
获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值;
根据指标值,确定各风险评估指标的客观权重;
根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重;
根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中直流输电线路的风险评估方法的应用环境图;
图2为一个实施例中直流输电线路的风险评估方法的流程示意图;
图3为一个实施例中确定客观权重的流程示意图;
图4为一个实施例中确定风险评估信息的流程示意图;
图5为另一个实施例中直流输电线路的风险评估方法的流程示意图;
图6为一个实施例中直流输电线路的风险评估装置的结构框图;
图7为另一个实施例中直流输电线路的风险评估装置的结构框图;
图8为再一个实施例中直流输电线路的风险评估装置的结构框图;
图9为一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
本申请实施例提供的直流输电线路的风险评估方法,可以应用于如图1所示的应用环境中。其中,终端102通过网络与服务器104进行通信。数据存储系统可以存储服务器104需要处理的数据。数据存储系统可以集成在服务器104上,也可以放在云上或其他网络服务器上。可选的,服务器104获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值,并根据指标值,确定各风险评估指标的客观权重;之后根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重;进而可以根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息;进一步的,服务器104可以将风险评估信息发送至终端102,以便相关人员根据风险评估信息对直流输电线路进行检修。其中,终端102可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑、物联网设备和便携式可穿戴设备,物联网设备可为智能音箱、智能电视、智能空调、智能车载设备等。便携式可穿戴设备可为智能手表、智能手环、头戴设备等。服务器104可以用独立的服务器或者是多个服务器组成的服务器集群来实现。
在一个实施例中,如图2所示,提供了一种直流输电线路的风险评估方法;可选的,该方法可以对直流输电线路的风险进行评估,尤其可对特高压直流输电线路的风险进行评估;其中,特高压直流输电线路为输送±800千伏及以上的直流电输电线路。以该方法应用于图1中的服务器104为例进行说明,包括以下步骤:
S201,获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值。
其中,待评估直流输电系统即为需要进行风险评估的任一直流输电系统(尤其是任一特高压直流输电系统);直流输电线路即为待评估直流输电系统中进行直流电输送的输电线路。风险评估指标即为根据直流输电系统的运输环境以及面临风险(例如天气、设备损坏等)所选择的用于评估待评估直流输电系统风险的指标,可以包括但不限于换流阀运行风险、设备运行风险、覆冰风险和雷击风险等。
对于在待评估直流输电系统中的任意一条直流输电线路,都可以确定出该直流输电线路在每一个风险评估指标下的指标值。例如,对于任意一条直流输电线路而言,这条直流输电线路的换流阀运行风险指标的指标值可以采用系统设备失效风险概率来表示。例如可以通过如下公式1,来计算换流阀运行风险指标的指标值:
Figure PCTCN2022133960-appb-000001
其中,T表示一个检修周期时长,t表示该条直流输电线路上的换流阀在检修周期内的故障时长。
对于任意一条直流输电线路而言,这条直流输电线路的设备运行风险指标的指标值可以通过如下公式2来计算:
Figure PCTCN2022133960-appb-000002
其中,b为该条直流输电线路上的设备个数,T a表示该条直流输电线路上第a个设备的检修周期时长,t a表示该条直流输电线路上第a个设备在该检修周期内故障时长。
对于任意一条直流输电线路而言,这条直流输电线路的覆冰风险指标的指标值可以通过如下公式3来计算:
Figure PCTCN2022133960-appb-000003
其中,L为最大允许覆冰厚度,l 1为该条直流输电线路上采样点平均覆冰厚度,k 1为环境系数。
对于任意一条直流输电线路而言,这条直流输电线路的雷击风险指标的指标值可以采用平均雷击重启率计算。例如可以通过如下公式4,来计算雷击风险指标的指标值:
Figure PCTCN2022133960-appb-000004
其中,k 2为环境系数,T d为该条直流输电线路的年平均雷暴小时数,r为该条直流输电线路的平均落雷次数,τ为该条直流输电线路的工频电弧出现概率,p d为在该条直流输电线路上雷电流幅值等于或大于线路耐雷水平的概率,h为该条直流输电线路的直流输电线路高度,l 2为该条直流输电线路上相邻两避雷线间水平间距。
S202,根据指标值,确定各风险评估指标的客观权重。
其中,客观权重即为从客观角度衡量的每一风险评估指标的重要程度。
具体的,获取到待评估直流输电系统中每一直流输电线路在各风险评估指标下的指标值之后,针对每一个风险评估指标,构建一个该风险评估指标的指标值集。例如,待评估直流输电系统包含m条直流输电线路,针对第j个风险评估指标,构建该风险评估指标的指标值集即为X j=[x 1j x 2j x 3j…x ij…x mj] T,其中,x ij为第i条直流输电线路在第j个风险评估指标下的指标值。进一步的,将各风险评估指标的指标值集都输入至预先训练好的模型,由该模型输出每一个风险评估指标的客观权重。
S203,根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重。
其中,不同风险评估指标之间的相对重要性可以是通过主观判断确定的,还可以是基于一定的判断策略确定的,本实施例对此不做限定。主观权重即为从主观角度衡量的每一风险评估指标的重要程度。
具体的,首先构建判断尺度,重要程度判断尺度采用数字0~5表示五级重要性,数字越大,代表其重要性越大,评价过程中重要性评分也可以取0~5之间的非整数。可选的,进行优序对比评分时,如果一个风险评估指标相比于另一个风险评估指标的相对重要性为k,则另一个风险评估指标相对于该风险评估指标的相对重要性为5-k;进一步的,一个风险评估指标相对于自身的相对重要性为固定数值,比如2.5,或者5。完成评价后得到评分矩阵;对评分矩阵按列求和,即得到每列的评分合计,将每列的评分合计相加即得到所有风险评估指标的评分总合计,将每列的评分合计与所有风险评估指标的评分总合计相除,即得到每个风险评估指标的主观权重θ。
例如,对换流阀运行风险、设备运行风险、覆冰风险和雷击风险四个风险评估指标进行优序对比评分,即可以得到一个4*4的评分矩阵,第一列即为换流阀运行风险相对于换流阀运行风险、设备运行风险、覆冰风险和雷击风险的相对重要性,第二列即为设备运行风险相对于换流阀运行风险、设备运行风险、覆冰风险和雷击风险的相对重要性,第三列即为覆冰风险相对于换流阀运行风险、设备运行风险、覆冰风险和雷击风险的相对重要性,第四列即为雷击风险相对于换流阀运行风险、设备运行风险、覆冰风险和雷击风险的相对重要性。进一步的,对评分矩阵按列求和,即得到每列的评分合计;例如对第一列求和,即得到换流阀运行风险的评分合计;进而将得到的每个评分合计相加得到评分总合计,将第一列的评分合计与评分总合计相除,即得到换流阀运行风险指标的主观权重。
S204,根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息。
其中,对于待评估直流输电系统中的每一直流输电线路,该直流输电线路的风险评估信息即为对该直流输电线路进行风险评估的最终风险评估结果;可选的,风险评估信息可以包括风险评估等级。
具体的,可以将待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值、各风险评估指标的客观权重和各风险评估指标的主观权重输入至预先训练好的模型中,由模型输出待评估直流输 电系统中每一直流输电线路的风险评估值;进而基于每一直流输电线路的风险评估值,对每一直流输电线路的风险等级进行评估,得到每一直流输电线路的风险评估等级。
进一步的,可以将所确定的风险评估信息发送至终端,以便相关人员根据风险评估信息对待评估直流输电系统中的直流输电线路进行检修。
上述直流输电线路的风险评估方法中,通过基于获取的待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值,可确定各风险评估指标的客观权重,以及根据不同风险评估指标之间的相对重要性,可确定各风险评估指标的主观权重;进而根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息。上述方案,通过引入主观权重和客观权重,根据每一风险评估指标的主观权重、客观权重,以及每一直流输电线路的各风险评估指标的指标值,即充分考虑主客观两个维度,使得待评估直流输电系统中各直流输电线路的风险评估信息更为精准且合理,进而基于风险评估信息对直流输电线路进行检修,保障了直流输电安全稳定,且降低了直流输电的风险。
在一个实施例中,在上述实施例的基础上,进一步对S202根据指标值,确定各风险评估指标的客观权重进行详细解释说明。如图3所示,具体过程包括:
S301,对指标值进行归一化处理,得到指标值的归一化值。
其中,归一化值即为对指标值进行归一化处理之后得到的值。
可选的,特高压直流输电风险评估指标存在正向指标(越大越好)以及逆向指标(越小越好)两种类型指标,正向指标和逆向指标的归一化处理方式不同。
具体的,结合如下公式5,针对每一个风险评估指标,可以先确定该风险评估指标属于哪一类型指标;之后根据该类型指标的归一化处理方式,对该风险评估指标下的各指标值进行归一化处理。
Figure PCTCN2022133960-appb-000005
其中,x ij为第i条直流输电线路的第j个风险评估指标的指标值;maxX j,minX j分别为第j个风险评估指标对应的指标值集X j中的最大值与最小值;y ij为第i条直流输电线路的第j个风险评估指标的归一化值。
进一步的,每一个风险评估指标的归一化值均可以构成一个归一化值集,也即为包含有m个元素的向量。例如,针对第j个风险评估指标,该风险评估指标的归一化值集即为Y j=[y 1jy 2jy 3j…y ij…y mj] T
S302,根据归一化值,确定各风险评估指标的变异系数和冲突性量化值。
具体的,可以分别将各风险评估指标的归一化值输入至预先训练好的模型中,由模型输出各风险评估指标的变异系数和冲突性量化值。
或者,可以针对每一风险评估指标,根据该风险评估指标的各归一化值,确定该风险评估指标的标准差和平均值;根据标准差和平均值,确定该风险评估指标的变异系数。
例如,针对第j个风险评估指标,可以结合如下公式6和公式7,根据该风险评估指标的各归一化值,来确定该风险评估指标的标准差和平均值。
Figure PCTCN2022133960-appb-000006
Figure PCTCN2022133960-appb-000007
其中,m为直流输电线路的条数;
Figure PCTCN2022133960-appb-000008
为第j个风险评估指标的平均值;s j为第j个风险评估指标的标准差。
进一步的,针对每一风险评估指标,可以将该风险评估指标的标准差与平均值之比,作为该风险评估指标的变异系数。例如,针对第j个风险评估指标,可以根据如下公式8,来确定该风险评估指标的变异系数。
Figure PCTCN2022133960-appb-000009
其中,v j为第j个风险评估指标的变异系数。
可选的,可以根据归一化值,确定不同风险评估指标之间的相关系数;根据相关系数,确定各风险评估指标的冲突性量化值。
具体的,根据各风险评估指标的归一化值,确定不同风险评估指标之间的相关系数。例如,可以根据如下公式9,来确定不同风险评估指标之间的相关系数。
Figure PCTCN2022133960-appb-000010
其中,r gj为第g个风险评估指标与第j个风险评估指标之间的相关系数;
Figure PCTCN2022133960-appb-000011
为第g个风险 评估指标与第j个风险评估指标的协方差;s g为第g个风险评估指标的标准差;n表示风险评估指标的个数。需要说明的是,当g=j时,第j个风险评估指标与第j个风险评估指标之间的相关系数为1。
进一步的,针对每一风险评估指标,可以根据该风险评估指标与其他风险评估指标之间的相关系数,确定该风险评估指标的冲突性量化值。例如,针对第j个风险评估指标,可以根据如下公式10,来确定该风险评估指标的冲突性量化值。
Figure PCTCN2022133960-appb-000012
其中,A j为第j个风险评估指标的冲突性量化值。
S303,根据变异系数和冲突性量化值,确定各风险评估指标的信息量。
具体的,针对每一个风险评估指标,可以将该风险评估指标的变异系数与冲突性量化值之间的乘积,作为该风险评估指标的信息量。例如,针对第j个风险评估指标,可以根据如下公式11,来确定该风险评估指标的信息量。
E j=v j×A j                    (11)
其中,E j为第j个风险评估指标的信息量。
S304,根据信息量,确定各风险评估指标的客观权重。
具体的,针对每一个风险评估指标,可以将该风险评估指标的信息量,与所有风险评估指标的信息量之和的比值,作为该风险评估指标的客观权重。例如,针对第j个风险评估指标,可以根据如下公式12,来确定该风险评估指标的客观权重。
Figure PCTCN2022133960-appb-000013
其中,ω j为第j个风险评估指标的客观权重。
本实施例中,通过引入各风险评估指标的变异系数和冲突性量化值,能够客观且精准确定各风险评估指标的客观权重,为确定各风险评估指标的客观权重提供了一种可选方式。
在一个实施例中,在上述实施例的基础上,进一步对S204根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息进行详细解释说明。如图4所示,具体过程包括:
S401,根据客观权重和主观权重,确定各风险评估指标的综合权重。
其中,综合权重即为将主观权重和客观权重融合之后得到的权重。
具体的,针对每一个风险评估指标,可以根据该风险评估指标的客观权重和主观权重,确定该风险评估指标的综合权重。例如,针对第j个风险评估指标,可以根据如下公式13,来确定该风险评估指标的综合权重。
Figure PCTCN2022133960-appb-000014
其中,θ j为第j个风险评估指标的主观权重;ω j为第j个风险评估指标的客观权重。
S402,根据风险等级函数和指标值的归一化值,确定每一直流输电线路的评估矩阵。
其中,风险等级函数即为构建的用于表示风险评估指标的风险等级程度的函数。可选的,预先设定的风险等级分别为风险低、风险较低、风险一般、风险较高、风险高这五个等级;不同的风险等级对应不同的风险等级函数。例如,对于风险低、风险较低、风险一般、风险较高、风险高这五个等级,可以依次构建如下公式14-公式18五个风险等级函数。
Figure PCTCN2022133960-appb-000015
Figure PCTCN2022133960-appb-000016
Figure PCTCN2022133960-appb-000017
Figure PCTCN2022133960-appb-000018
Figure PCTCN2022133960-appb-000019
其中,f V1(U)、f V2(U)、f V3(U)、f V4(U)和f V5(U)分别为风险等级中的风险低、风险较低、风险一般、风险较高、风险高的风险等级函数。
进一步的,针对第i条直流输电线路,该直流输电线路在各风险评估指标下的归一化值也可以构建一个归一化值集,即Y i=[y i1y i2y i3…y ij…y in] T,其中,y in为第i条直流输电线路的第n个风险评估指标。
将该条直流输电线路在各风险评估指标下的归一化值,均带入上述风险等级函数,即可得到该条直流输电线路的评估矩阵。例如,构建的第i条直流输电线路的评估矩阵F i如公式19所示:
Figure PCTCN2022133960-appb-000020
S403,根据综合权重和评估矩阵,确定每一直流输电线路的风险评估等级。
具体的,可以分别将各风险评估指标的综合权重和每一直流输电线路的评估矩阵输入至预先训练好的模型中,由模型输出待评估直流输电系统中各直流输电线路的风险评估等级。
或者,可以根据综合权重和评估矩阵,确定每一直流输电线路在各风险等级下的隶属度;根据隶属度和风险等级权重,确定每一直流输电线路的风险评估等级。
本实施例中,针对每一直流输电线路,该直流输电线路在各风险等级下的隶属度包括该直流输电线路分别隶属于风险等级中风险低、风险较低、风险一般、风险较高和风险高的程度。
具体的,针对每一直流输电线路,可以根据综合权重和该直流输电线路的评估矩阵,确定该直流输电线路在各风险等级下的隶属度。例如,针对第i条直流输电线路,可以根据如下公式20,来确定该直流输电线路在各风险等级下的隶属度。
B i=[b i(V 1) b i(V 2) b i(V 3) b i(V 4) b i(V 5)]          (20)
其中,B i为第i条直流输电线路在各风险等级下的隶属度;
Figure PCTCN2022133960-appb-000021
表示第i条直流输电线路在风险等级中风险低的隶属度。
进一步的,针对每一直流输电线路,可以根据该直流输电线路在各风险等级下的隶属度,以及各风险等级的风险等级权重,确定该直流输电线路的风险评估值。例如,针对第i条直流输电线路,可以根据如下公式21,来确定该直流输电线路的风险评估值。
Z i=b i(V 1)×d 1+b i(V 2)×d 2+b i(V 3)×d 3+b i(V 4)×d 4+b i(V 5)×d 5     (21)
其中,Z i为第i条直流输电线路的风险评估值;d 1、d 2、d 3、d 4、d 5分别为风险等级中的风险低、风险较低、风险一般、风险较高、风险高的权重,数值分别可以为95、80、65、55、35。
进一步的,可以该直流输电线路的风险评估值,确定该直流输电线路的风险评估等级。
具体的,预先设定各风险评估等级的评分区间,例如,风险低的评分区间为(85,100],风险较低的评分区间为(70,85],风险一般的评分区间为(60,70],风险较高的评分区间为(50,60],风险高的评分区间为(0,50];基于各风险评估等级的评分区间,根据得到的该直流输电线路的风险评估值,判断该直流输电线路属于哪一个风险评估等级。
本实施例中,通过将各风险评估指标的主观权重和客观权重融合,得到各风险评估指标的综合权重,之后结合风险等级函数、各风险评估指标的归一化值和综合权重,即可精准确定出待评估直流输电系统中各直流输电线路的风险评估值,进而可精准确定待评估直流输电系统的风险评估等级。
另外,在一个实施例中,本申请还提供一个直流输电线路的风险评估方法的可选实例。结合图5所示,具体过程包括:
S501,获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值。
S502,对指标值进行归一化处理,得到指标值的归一化值。
S503,针对每一风险评估指标,根据该风险评估指标的归一化值,确定该风险评估指标的标准差和平均值。
S504,根据标准差和平均值,确定该风险评估指标的变异系数。
S505,根据归一化值,确定不同风险评估指标之间的相关系数。
S506,根据相关系数,确定各风险评估指标的冲突性量化值。
S507,根据变异系数和冲突性量化值,确定各风险评估指标的信息量。
S508,根据信息量,确定各风险评估指标的客观权重。
S509,根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重。
S510,根据客观权重和主观权重,确定各风险评估指标的综合权重。
S511,根据风险等级函数和指标值的归一化值,确定每一直流输电线路的评估矩阵。
S512,根据综合权重和评估矩阵,确定每一直流输电线路在各风险等级下的隶属度。
S513,根据隶属度和风险等级权重,确定每一直流输电线路的风险评估信息。
上述S501-S513的具体过程可以参见上述方法实施例的描述,其实现原理和技术效果类似,在此不再赘述。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的直流输电线路的风险评估方法的直流输电线路的风险评估装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个直流输电线路的风险评估装置实施例中的具体限定可以参见上文中对于直流输电线路的风险评估方法的限定,在此不再赘述。
在一个实施例中,如图6所示,提供了一种直流输电线路的风险评估装置1,包括:获取模块10、第一确定模块20、第二确定模块30、和第三确定模块40,其中:
获取模块10,用于获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值;
第一确定模块20,用于根据指标值,确定各风险评估指标的客观权重;
第二确定模块30,用于根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重;
第三确定模块40,用于根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息。
在其中一个实施例中,如图7所示,上图6中的第一确定模块20具体可以包括:
处理单元21,用于对指标值进行归一化处理,得到指标值的归一化值;
第一确定单元22,用于根据归一化值,确定各风险评估指标的变异系数和冲突性量化值;
第二确定单元23,用于根据变异系数和冲突性量化值,确定各风险评估指标的信息量;
第三确定单元24,根据信息量,确定各风险评估指标的客观权重。
在其中一个实施例中,上图7中的第一确定单元22具体可以用于:
针对每一风险评估指标,根据该风险评估指标的归一化值,确定该风险评估指标的标准差和平均值;根据标准差和平均值,确定该风险评估指标的变异系数。
在其中一个实施例中,上图7中的第一确定单元22还具体用于:
根据归一化值,确定不同风险评估指标之间的相关系数;根据相关系数,确定各风险评估指标的冲突性量化值。
在其中一个实施例中,可以在图6或图7的基础上,进一步对第三确定模块40进行细化。例如,如图8所示,在图7的基础上对第三确定模块40进行细化。具体的,第三确定模块40具体可以包括:
第四确定单元41,用于根据客观权重和主观权重,确定各风险评估指标的综合权重;
第五确定单元42,用于根据风险等级函数和指标值的归一化值,确定每一直流输电线路的评估矩阵;
第六确定单元43,用于根据综合权重和评估矩阵,确定每一直流输电线路的风险评估等级。
在其中一个实施例中,上图8中的第六确定模块43具体可以用于:
根据综合权重和评估矩阵,确定每一直流输电线路在各风险等级下的隶属度;根据隶属度和风险等级权重,确定每一直流输电线路的风险评估等级。
上述直流输电线路的风险评估装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图9所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储直流输电线路的风险评估数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种直流输电线路的风险评估方法。
本领域技术人员可以理解,图9中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器中存储有计算机程序,该处理器执行计算机程序时实现以下步骤:
获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值;
根据指标值,确定各风险评估指标的客观权重;
根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重;
根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息。
在其中一个实施例中,处理器执行计算机程序中根据指标值,确定各风险评估指标的客观权重的逻辑时,具体实现以下步骤:
对指标值进行归一化处理,得到指标值的归一化值;根据归一化值,确定各风险评估指标的变异系数和冲突性量化值;根据变异系数和冲突性量化值,确定各风险评估指标的信息量;根据信息量,确定各风险评估指标的客观权重。
在其中一个实施例中,处理器执行计算机程序中根据归一化值,确定各风险评估指标的变异系数的逻辑时,具体实现以下步骤:
针对每一风险评估指标,根据该风险评估指标的归一化值,确定该风险评估指标的标准差和平均值;根据标准差和平均值,确定该风险评估指标的变异系数。
在其中一个实施例中,处理器执行计算机程序中根据归一化值,确定各风险评估指标的冲突性量化值的逻辑时,具体实现以下步骤:
根据归一化值,确定不同风险评估指标之间的相关系数;根据相关系数,确定各风险评估指标的冲突性量化值。
在其中一个实施例中,处理器执行计算机程序中根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息的逻辑时,具体实现以下步骤:
根据客观权重和主观权重,确定各风险评估指标的综合权重;根据风险等级函数和指标值的归一化值,确定每一直流输电线路的评估矩阵;根据综合权重和评估矩阵,确定每一直流输电线路的风险评估等级。
在其中一个实施例中,处理器执行计算机程序中根据综合权重和评估矩阵,确定每一直流输电线路的风险评估等级的逻辑时,具体实现以下步骤:
根据综合权重和评估矩阵,确定每一直流输电线路在各风险等级下的隶属度;根据隶属度和风险等级权重,确定每一直流输电线路的风险评估等级。
上述提供的计算机设备,其在实现各实施例中的原理和具体过程可参见前述实施例中直流输电线路的风险评估方法实施例中的说明,此处不再赘述。
在一个实施例中,提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现以下步骤:
获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值;
根据指标值,确定各风险评估指标的客观权重;
根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重;
根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息。
在其中一个实施例中,计算机程序中根据指标值,确定各风险评估指标的客观权重的逻辑被处理器执行时,具体实现以下步骤:
对指标值进行归一化处理,得到指标值的归一化值;根据归一化值,确定各风险评估指标的变异系数和冲突性量化值;根据变异系数和冲突性量化值,确定各风险评估指标的信息量;根据信息量,确定各风险评估指标的客观权重。
在其中一个实施例中,计算机程序中根据归一化值,确定各风险评估指标的变异系数的逻辑被处理器执行时,具体实现以下步骤:
针对每一风险评估指标,根据该风险评估指标的归一化值,确定该风险评估指标的标准差和平均值;根据标准差和平均值,确定该风险评估指标的变异系数。
在其中一个实施例中,计算机程序中根据归一化值,确定各风险评估指标的冲突性量化值的逻辑被处理器执行时,具体实现以下步骤:
根据归一化值,确定不同风险评估指标之间的相关系数;根据相关系数,确定各风险评估指标的冲突性量化值。
在其中一个实施例中,计算机程序中根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息的逻辑被处理器执行时,具体实现以下步骤:
根据客观权重和主观权重,确定各风险评估指标的综合权重;根据风险等级函数和指标值的归一化值,确定每一直流输电线路的评估矩阵;根据综合权重和评估矩阵,确定每一直流输电线路的风险评估等级。
在其中一个实施例中,计算机程序中根据综合权重和评估矩阵,确定每一直流输电线路的风险评估等级的逻辑被处理器执行时,具体实现以下步骤:
根据综合权重和评估矩阵,确定每一直流输电线路在各风险等级下的隶属度;根据隶属度和风险等级权重,确定每一直流输电线路的风险评估等级。
上述提供的计算机可读存储介质,其在实现各实施例中的原理和具体过程可参见前述实施例中直流输电线路的风险评估方法实施例中的说明,此处不再赘述。
在一个实施例中,提供了一种计算机程序产品,包括计算机程序,该计算机程序被处理器执行时实现以下步骤:
获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值;
根据指标值,确定各风险评估指标的客观权重;
根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重;
根据指标值、客观权重和主观权重,确定待评估直流输电系统中各直流输电线路的风险评估信息。
在其中一个实施例中,计算机程序中根据指标值,确定各风险评估指标的客观权重的逻辑被处理器执行时,具体实现以下步骤:
对指标值进行归一化处理,得到指标值的归一化值;根据归一化值,确定各风险评估指标的变异系数和冲突性量化值;根据变异系数和冲突性量化值,确定各风险评估指标的信息量;根据信息量,确定各风险评估指标的客观权重。
在其中一个实施例中,计算机程序中根据归一化值,确定各风险评估指标的变异系数的逻辑被处理器执行时,具体实现以下步骤:
针对每一风险评估指标,根据该风险评估指标的归一化值,确定该风险评估指标的标准差和平均值;根据标准差和平均值,确定该风险评估指标的变异系数。
在其中一个实施例中,计算机程序中根据归一化值,确定各风险评估指标的冲突性量化值的逻辑被处理器执行时,具体实现以下步骤:
根据归一化值,确定不同风险评估指标之间的相关系数;根据相关系数,确定各风险评估指标的冲突性量化值。
在其中一个实施例中,计算机程序中根据指标值、客观权重和主观权重,确定待评估直流输电系统在中各直流输电线路的风险评估信息的逻辑被处理器执行时,具体实现以下步骤:
根据客观权重和主观权重,确定各风险评估指标的综合权重;根据风险等级函数和指标值的归一化值,确定每一直流输电线路的评估矩阵;根据综合权重和评估矩阵,确定每一直流输电线路的风险评估等级。
在其中一个实施例中,计算机程序中根据综合权重和评估矩阵,确定每一直流输电线路的风险评估等级的逻辑被处理器执行时,具体实现以下步骤:
根据综合权重和评估矩阵,确定每一直流输电线路在各风险等级下的隶属度;根据隶属度和风险等 级权重,确定每一直流输电线路的风险评估等级。
上述提供的计算机程序产品,其在实现各实施例中的原理和具体过程可参见前述实施例中直流输电线路的风险评估方法实施例中的说明,此处不再赘述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种直流输电线路的风险评估方法,其特征在于,所述方法包括:
    获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值;
    根据所述指标值,确定各风险评估指标的客观权重;
    根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重;
    根据所述指标值、所述客观权重和所述主观权重,确定所述待评估直流输电系统中各直流输电线路的风险评估信息。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述指标值,确定各风险评估指标的客观权重,包括:
    对所述指标值进行归一化处理,得到所述指标值的归一化值;
    根据所述归一化值,确定各风险评估指标的变异系数和冲突性量化值;
    根据所述变异系数和所述冲突性量化值,确定各风险评估指标的信息量;
    根据所述信息量,确定各风险评估指标的客观权重。
  3. 根据权利要求2所述的方法,其特征在于,根据所述归一化值,确定各风险评估指标的变异系数,包括:
    针对每一风险评估指标,根据该风险评估指标的归一化值,确定该风险评估指标的标准差和平均值;
    根据所述标准差和所述平均值,确定该风险评估指标的变异系数。
  4. 根据权利要求2所述的方法,其特征在于,根据所述归一化值,确定各风险评估指标的冲突性量化值,包括:
    根据所述归一化值,确定不同风险评估指标之间的相关系数;
    根据所述相关系数,确定各风险评估指标的冲突性量化值。
  5. 根据权利要求2所述的方法,其特征在于,所述根据所述指标值、所述客观权重和所述主观权重,确定所述待评估直流输电系统中各直流输电线路的风险评估信息,包括:
    根据所述客观权重和所述主观权重,确定各风险评估指标的综合权重;
    根据风险等级函数和所述指标值的归一化值,确定每一直流输电线路的评估矩阵;
    根据所述综合权重和所述评估矩阵,确定每一直流输电线路的风险评估等级。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述综合权重和所述评估矩阵,确定每一直流输电线路的风险评估等级,包括:
    根据所述综合权重和所述评估矩阵,确定每一直流输电线路在各风险等级下的隶属度;
    根据所述隶属度和风险等级权重,确定每一直流输电线路的风险评估等级。
  7. 一种直流输电系统的风险评估装置,其特征在于,所述装置包括:
    获取模块,用于获取待评估直流输电系统中每一直流输电线路的各风险评估指标的指标值;
    第一确定模块,用于根据所述指标值,确定各风险评估指标的客观权重;
    第二确定模块,用于根据不同风险评估指标之间的相对重要性,确定各风险评估指标的主观权重;
    第三确定模块,用于根据所述指标值、所述客观权重和所述主观权重,确定所述待评估直流输电系统中各直流输电线路的风险评估信息。
  8. 一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至6中任一项所述的方法的步骤。
  9. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至6中任一项所述的方法的步骤。
  10. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现权利要求1至6中任一项所述的方法的步骤。
PCT/CN2022/133960 2022-11-21 2022-11-24 直流输电线路的风险评估方法、装置、设备和存储介质 WO2024108475A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211458386.1 2022-11-21
CN202211458386.1A CN115796579A (zh) 2022-11-21 2022-11-21 直流输电线路的风险评估方法、装置、设备和存储介质

Publications (1)

Publication Number Publication Date
WO2024108475A1 true WO2024108475A1 (zh) 2024-05-30

Family

ID=85439542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133960 WO2024108475A1 (zh) 2022-11-21 2022-11-24 直流输电线路的风险评估方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN115796579A (zh)
WO (1) WO2024108475A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103793854A (zh) * 2014-01-21 2014-05-14 中国南方电网有限责任公司超高压输电公司检修试验中心 多重组合优化的架空输电线路运行风险信息化评估方法
CN107862433A (zh) * 2017-09-29 2018-03-30 国家电网公司 一种特高压直流输电线路带电作业安全评估方法和系统
CN114154252A (zh) * 2022-02-09 2022-03-08 北京航空航天大学 新能源汽车动力电池系统失效模式的风险评估方法及装置
US20220113695A1 (en) * 2020-02-21 2022-04-14 Shandong University Rolling early warning method and system of dynamic security risk situation for large scale hybrid ac/dc grids
CN114971227A (zh) * 2022-05-10 2022-08-30 河海大学 一种基于marcos方法的配电网设备风险评估方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103793854A (zh) * 2014-01-21 2014-05-14 中国南方电网有限责任公司超高压输电公司检修试验中心 多重组合优化的架空输电线路运行风险信息化评估方法
CN107862433A (zh) * 2017-09-29 2018-03-30 国家电网公司 一种特高压直流输电线路带电作业安全评估方法和系统
US20220113695A1 (en) * 2020-02-21 2022-04-14 Shandong University Rolling early warning method and system of dynamic security risk situation for large scale hybrid ac/dc grids
CN114154252A (zh) * 2022-02-09 2022-03-08 北京航空航天大学 新能源汽车动力电池系统失效模式的风险评估方法及装置
CN114971227A (zh) * 2022-05-10 2022-08-30 河海大学 一种基于marcos方法的配电网设备风险评估方法

Also Published As

Publication number Publication date
CN115796579A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2018157691A1 (zh) 有源配电网的安全性量化方法
CN114239681A (zh) 变压器健康指数评估方法、装置、计算机设备和存储介质
CN109657817A (zh) 一种配电变压器健康评估方法
CN109687426B (zh) 故障率参数建模方法、装置、设备与存储介质
CN112836937A (zh) 基于熵权与bp神经网络技术的洪涝灾害损失评估方法
CN116028730A (zh) 搜索资源异常识别方法、装置及电子设备
CN114862229A (zh) 电能质量评估方法、装置、计算机设备和存储介质
WO2024108475A1 (zh) 直流输电线路的风险评估方法、装置、设备和存储介质
CN112257958A (zh) 一种电力饱和负荷预测方法及装置
CN109993374B (zh) 货物量预测方法及装置
CN108509537B (zh) 一种输电线路舞动概率预报系统及方法
CN116703109A (zh) 一种配电网项目选取方法、装置、设备及存储介质
CN116610547A (zh) 服务器性能评估方法、装置、计算机设备和存储介质
CN113887676B (zh) 设备故障预警方法、装置、设备和存储介质
CN115085368A (zh) 变压器健康状态监测方法、装置、计算机设备和存储介质
CN117131353B (zh) 一种超差电能表确定方法、装置、电子设备及存储介质
CN115408197B (zh) 基于流式处理及多源数据交叉校验的负荷数据校验方法
CN115860463A (zh) 输电线路预警方法、装置、计算机设备和存储介质
CN109861222B (zh) 一种省级电网负荷分区预测方法及系统
CN115775105A (zh) 输电网络方案的选择方法、装置、计算机设备和存储介质
CN117592786A (zh) 线路舞动风险指标确定法、装置、电子设备和存储介质
CN117436603A (zh) 电网设备生命周期故障概率评估方法、装置和计算机设备
CN116938740A (zh) 网络评估方法及装置、电子设备和存储介质
CN117371781A (zh) 一种配电网可靠性评估方法和系统
CN114841457A (zh) 电力负荷估计方法及系统、电子设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22966170

Country of ref document: EP

Kind code of ref document: A1