WO2024106966A1 - Dual photodiode radiometer - Google Patents

Dual photodiode radiometer Download PDF

Info

Publication number
WO2024106966A1
WO2024106966A1 PCT/KR2023/018431 KR2023018431W WO2024106966A1 WO 2024106966 A1 WO2024106966 A1 WO 2024106966A1 KR 2023018431 W KR2023018431 W KR 2023018431W WO 2024106966 A1 WO2024106966 A1 WO 2024106966A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
radiometer
base substrate
optical sensor
measured
Prior art date
Application number
PCT/KR2023/018431
Other languages
French (fr)
Korean (ko)
Inventor
이동훈
신동주
박성종
Original Assignee
한국표준과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국표준과학연구원 filed Critical 한국표준과학연구원
Publication of WO2024106966A1 publication Critical patent/WO2024106966A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/0271Housings; Attachments or accessories for photometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • G01J1/0407Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings
    • G01J1/0433Optical elements not provided otherwise, e.g. manifolds, windows, holograms, gratings using notch filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/446Photodiode

Definitions

  • a radiometer in its most general sense, is a device that measures optical radiation.
  • the primary use of a radiometer is to characterize a radiation source by measuring or monitoring the optical radiation emitted by the source.
  • the spectral sensitivity of the first and second optical sensors linearly increases as the wavelength value of incident light increases within a preset light wavelength range.
  • the optical filter unit may include a broadband filter having a predetermined transmittance in the set optical wavelength region.
  • the dual photo diode radiometer according to the present invention is provided with an accommodating space inside which the base substrate is accommodated, and an entrance opening is provided on the side opposite to the incident area of the base substrate so that the light to be measured is incident on the base substrate. It may be provided with a formed case and a diffusion plate installed on the entrance side to diffuse the measurement target light incident on the base substrate.
  • Figure 3 is a graph of the spectral responsivity of the first and second optical sensor units of the dual photo diode radiometer of Figure 1;
  • Figure 4 is a graph of the spectral response ratio of the first and second optical sensor units of the dual photo diode radiometer of Figure 1;
  • Figures 5 to 8 are graphs showing the function of the optical filter unit of the dual photo diode radiometer of Figure 1.
  • first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.
  • a first component may be named a second component without departing from the scope of the present invention, and similarly, the second component may also be named a first component.
  • FIG. 1 and 2 show a dual photo diode radiometer 100 according to the present invention.
  • the dual photo diode radiometer 100 includes a case 110, a base substrate 120 installed inside the case 110, and a measurement object installed on the base substrate 120 and emitted from a light source.
  • First and second optical sensor units 130 and 140 for receiving light, and installed on the optical path of the light to be measured between the light source and the base substrate 120, filter the light incident on the base substrate 120. It is provided with a filter unit 150 and an analysis module (not shown) that analyzes the photocurrent signal provided from the first and second optical sensor units 130 and 140.
  • the case 110 is installed on the optical path of the light to be measured emitted from the light source, and a receiving space 111 in which the base substrate 120 is accommodated is formed therein. Additionally, an entrance port 112 is formed on the front of the case 110 to allow the light to be measured to enter the receiving space 111. Meanwhile, in the illustrated example, the case 110 is shown as having a cylindrical structure, but the case 110 is not limited to this and may be formed in various shapes such as a square column or an oval.
  • the case 110 has a diffusion plate 113 installed on the entrance port 112 side to diffuse the measurement target light incident on the receiving space 111. Since the diffusion plate 113 is a diffuser commonly used in the related art to diffuse incident light, detailed description will be omitted.
  • the base substrate 120 is set on the optical path of the light to be measured emitted from the light source, and is installed on the rear inner surface of the case 110.
  • the base substrate 120 has an incident area 121 on the front surface opposite the entrance opening 112, where light to be measured is incident.
  • the first optical sensor unit 130 is provided with a first photo diode 131 installed in the incident area 121 of the base substrate 120 where the measurement target light is incident so as to receive the measurement target light. .
  • the first photodiode 131 is an optical sensor that receives light to be measured and generates a photocurrent signal corresponding to the light to be measured. The photocurrent signal of the first photodiode 131 is transmitted to the analysis module.
  • the second optical sensor unit 140 is installed in the incident area 121 of the base substrate 120 adjacent to the first optical sensor unit 130 and receives the light to be measured. It has a different spectral responsivity from that of the unit 130.
  • the second optical sensor unit 140 includes a second photo diode 141 and a transmission filter layer 142.
  • the second photodiode 141 is installed in the incident area 121 of the base substrate 120 and receives light to be measured to generate a photocurrent signal.
  • the second photo diode 141 is installed in the incident area 121 adjacent to the first photo diode 131, and a light receiving surface for receiving the light to be measured is provided on the front side.
  • the second photo diode 141 uses the same optical sensor as the corresponding first photo diode 131.
  • the transmission filter layer 142 is coated on the light-receiving surface of the second photo diode 141 to change the transmittance according to the wavelength of light incident on the light-receiving surface.
  • the transmission filter layer 142 is formed as a non-metallic dielectric layer coating on the light-receiving surface of the second photo diode 141 to achieve a desired spectral transmittance.
  • the spectral transmittance and spectral reflectance of the corresponding transmission filter layer 142 may be designed to be different from each other. Meanwhile, the transmission filter layer 142 is not limited to this, and any variable means that can change the transmittance according to the wavelength of light incident on the second photo diode 141 can be applied.
  • the spectral sensitivities of the first optical sensor unit 130 and the second optical sensor unit 140 are set to be different from each other by the above-described transmission filter layer 142.
  • the spectral sensitivities of the first optical sensor unit 130 and the second optical sensor unit 140 increase linearly as the wavelength value of incident light increases within a preset light wavelength range.
  • the set light wavelength range is 400 nm to 950 nm, but is not limited to this and can be set in various ways depending on the light to be measured.
  • Figure 3 shows a graph of the spectral responsivity of the first and second optical sensor units 130 and 140 made of silicon photodiodes.
  • A is a graph of the spectral responsivity of the silicon photodiode
  • B is the spectral responsivity of the silicon photodiode coated with the transmission filter layer 142.
  • the spectral sensitivity of a single silicon photodiode, such as the first optical sensor unit 130 may linearly increase as the wavelength of incident light increases in a set light wavelength region.
  • the silicon photodiode coated with the transmission filter layer 142 also has a linear increase in spectral sensitivity within the set light wavelength region, but has a spectral sensitivity different from that of a single silicon photodiode. indicates. Therefore, the second optical sensor unit 140 having a different spectral sensitivity from that of the first optical sensor unit 130 can be easily manufactured by coating the transmission filter layer 142 on the same photo diode as the first optical sensor unit 130. can do.
  • Figure 4 shows a graph of the spectral response ratio of the first and second optical sensor units 130 and 140.
  • the spectral response ratio of the first and second optical sensor units 130 and 140 monotonically increases as the wavelength of the light to be measured increases within the set optical wavelength region so that an inverse function exists.
  • the first and second optical sensor units 130 and 140 may be designed so that the spectral response ratio monotonically decreases as the wavelength of the light to be measured increases within the set optical wavelength region.
  • the analysis module converts the photocurrent signal provided from the first and second optical sensor units 130 and 140 into a digital signal, and analyzes the digital signal to calculate the radiation amount of light to be measured.
  • the analysis module calculates the radiation amount ( ⁇ ) of the light to be measured through Equation 1 below.
  • T( ⁇ ) is the spectral transmittance of the optical filter unit 150
  • ⁇ min and ⁇ max are the minimum and maximum wavelength values of light passing through the optical filter unit 150.
  • the irradiance of the light to be measured is within ⁇ min to ⁇ max , and is the spectral irradiance for the wavelength ⁇ ( ) can be calculated by integration.
  • the photocurrent signals (i A , i B ) from the first optical sensor unit 130 and the second optical sensor unit 140 are the spectral irradiance ( ) can be calculated by introducing the respective spectral sensitivities (S A ( ⁇ ), S B ( ⁇ )) of the first optical sensor unit 130 and the second optical sensor unit 140, and the calculation formula is the following equation Same as 2.
  • Equation 3 the spectral sensitivities (S A ( ⁇ ), S B ( ⁇ )) increase linearly with respect to the incident light wavelength, so each spectral responsivity is expressed in Equation 3 below.
  • a 0 , a 1 , b 0 , b 1 are constants determined from calibration measurements of the radiometer.
  • Equation 5 the photocurrent signals of the first and second optical sensor units 130 and 140 are expressed as Equation 5 below.
  • X ⁇ ( ⁇ ) can be substituted for any spectral measurement quantity.
  • Equation 7 the photocurrent signals (i A , i B ) of the first optical sensor unit 130 and the second optical sensor unit 140, Summarizing the equation for the center wavelength ( ⁇ c ), the photocurrent signals of the first and second optical sensor units 130 and 140 are expressed in Equation 7 below.
  • Equation 8 the radiation amount ( ⁇ ) of the light to be measured is calculated based on Equation 7 above, it is as shown in Equation 8 below.
  • the radiation amount ( ⁇ ) of the light to be measured can be derived from the photocurrent signal value of the first and second optical sensor units 130 and 140.
  • the central wavelength ( ⁇ c ) value can be calculated from the spectral response ratio (r( ⁇ )) of the first and second optical sensor units 130 and 140 as shown in Equation 9 below.
  • the center wavelength ( ⁇ c ) value is calculated using the ratio of the photocurrent signals of the first and second optical sensor units 130 and 140 measured as described above and the inverse function of the previously known spectral response ratio (r( ⁇ )). It can be calculated.
  • the dual photodiode radiometer 100 measures the ratio of the photocurrent signals of the first and second optical sensor units 130 and 140 and the corresponding photocurrent signals, and determines the central wavelength of the light to be measured from the ratio of the photocurrent signals. can be calculated, and using this, the radiation amount value of the light to be measured can be obtained.
  • information on the spectral sensitivities of the first and second optical sensor units 130 and 140 and the spectral transmittance of the optical filter unit 150 are written into the analysis module.
  • the optical filter unit 150 is installed inside the case 110 in front of the first and second optical sensor units 130 and 140 and enters the first and second optical sensor units 130 and 140 according to the type of light source to be measured. Filters the light to be measured.
  • the optical filter unit 150 includes a broadband filter having a predetermined transmittance in the set optical wavelength region.
  • the black graph shows the wavelength range and transmittance of light that can be transmitted through the broadband filter
  • the orange graph shows the amount of radiation for each wavelength band of the light to be measured
  • ⁇ min and ⁇ max are the minimum wavelength value in the set light wavelength range and This is the maximum wavelength value
  • ⁇ c is the central wavelength of the light to be measured.
  • a broadband filter having a constant transmittance in a set light wavelength region can be set inside the case 110 for measurement. Since the transmittance of the optical filter unit 150 between the wavelengths ⁇ min and ⁇ max is constant, the transmittance is replaced with a constant value and can be replaced with 1 through calibration. At this time, it is possible to simultaneously measure the central wavelength and radiation quantity characteristics of the light to be measured through the first and second optical sensor units 130 and 140.
  • the dual photodiode radiometer 100 of the present invention can be used as a laser output meter or a monochromatic light radiometer.
  • the optical filter unit 150 may be equipped with a band-pass filter having a predetermined center wavelength and spectral band to be analyzed, as shown in FIG. 6.
  • the black graph shows the wavelength range and transmittance of light that can be transmitted through the bandpass filter
  • the orange graph shows the amount of radiation for each wavelength band of the light to be measured
  • ⁇ min and ⁇ max represent the wavelength range of light that can be transmitted.
  • the corresponding bandpass filter When measuring the radiation amount of a certain wavelength range from a broadband white light source, the corresponding bandpass filter can be set inside the case 110 for measurement. Depending on the selection of the light transmission (T( ⁇ )) area of the corresponding bandpass filter, the amount of radiation integrated in a specific wavelength area of the light to be measured can be measured through the first and second optical sensor units 130 and 140. At this time, the light transmittance value of a certain bandpass filter can be replaced with 1 through calibration. Depending on the wavelength range of the target light to be measured, multiple bandpass filters with various center wavelengths and spectral bands can be replaced and used. Using the above-described bandpass filter, the dual photo diode radiometer 100 of the present invention can be used as a UV meter, an ultraviolet/visible/infrared selective radiometer, and a PPFD photosynthetic photometric meter.
  • the optical filter unit 150 may include a transmission filter having a spectral transmittance corresponding to a preset weighting function.
  • the measurement can be performed by setting the corresponding transmission filter inside the case 110.
  • the CIE XYZ tristimulus value for the light to be measured is measured using the corresponding transmission filter.
  • the orange graph on the upper side is a graph showing the radiation amount by wavelength of the light to be measured, and the lower graph shows the spectral transmittance of a filter set identically to the three types of CIE color matching functions.
  • the dual photodiode radiometer 100 of the present invention with the transmission filter set has the advantage of being able to design and apply a filter tailored only to the weighting function without considering the characteristics of the detector.
  • the present invention can also add a function that can identify the type of filter from the center wavelength value of the light to be measured.
  • the dual photo diode radiometer 100 of the present invention can be used as a photo illuminance meter, photoluminance meter, and colorimeter.
  • the optical filter unit 150 may include a bandpass filter whose center wavelength is variable according to a preset variable pattern, as shown in FIG. 8.
  • the bandpass filter may be designed to have a relatively narrow spectral band of 10 nm or less.
  • the bandpass filter may be set to change the center wavelength in a variable pattern that increases or decreases at a constant speed or at preset intervals as time passes.
  • the black graph shows the wavelength range and transmittance of light that can be transmitted in the bandpass filter, and the black column represents the wavelength range of light that can be transmitted, and is set to have a width corresponding to the set spectral band area.
  • the orange graph is a graph showing the radiation amount by wavelength of the light to be measured.
  • the band pass filter is capable of electro-optical scanning, and since a wavelength tunable band filter commonly used in the related art is applied, a detailed description will be omitted.
  • the present invention can realize the function of a spectroradiometer.
  • the center wavelength of the bandpass filter can be monitored in real time using the first and second optical sensor units 130 and 140 of the present invention, and sensitivity correction for each wavelength is not required, so when a single photodiode is used, Compared to other methods, it is possible to quickly and accurately measure the amount of radiation by wavelength of the light being measured.
  • the dual photo diode radiometer 100 filters the light to be measured through the optical filter unit 150, so that various types of radiometer functions can be implemented.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

The present invention pertains to a dual photodiode radiometer comprising: a base substrate set on the optical path of to-be-measured light emitted from a light source; a first optical sensor unit installed in an incident area of the base substrate, on which the to-be-measured light is incident, so as to receive the to-be-measured light; and a second optical sensor unit that is installed, adjacent to the first optical sensor unit, in the incident area of the base substrate and receives the to-be-measured light, and has a different spectral sensitivity than the first optical sensor unit. The dual photodiode radiometer according to the present invention generates information about the to-be-measured light from the ratio between optical signals acquired using a plurality of photodiodes, and thus has the advantage of being able to obtain more accurate measurement values regardless of the type of light source or changes in spectral distribution.

Description

듀얼 포토 다이오드 복사계Dual photodiode radiometer
본 발명은 듀얼 포토 다이오드 복사계에 관한 것으로서, 더욱 상세하게는 분광감응도가 상이한 복수의 광 센서를 이용한 듀얼 포토 다이오드 복사계에 관한 것이다. The present invention relates to a dual photodiode radiometer, and more specifically, to a dual photodiode radiometer using a plurality of optical sensors with different spectral sensitivities.
복사계(radiometer)는 가장 일반적인 의미에서 광학 복사(optical radiation)를 측정하는 장치를 말한다. 복사계의 주요 용도는 복사원에서 방출되는 광학 복사를 측정하거나 모니터링하여 복사원을 특성화하는 것이다.A radiometer, in its most general sense, is a device that measures optical radiation. The primary use of a radiometer is to characterize a radiation source by measuring or monitoring the optical radiation emitted by the source.
포토 다이오드 기반의 복사계는 고감도(high sensitivity), 빠른 응답(fastresponse) 및 간단한 구조라는 장점 때문에 응용 분야에서 널리 사용된다. 그러나, 포토 다이오드 기반 복사계는 측정대상 광원의 종류에 따라 분광분포 혹은 파장 특성을 측정하는 별도의 추가 장비가 요구되며, 필터를 교환하여 사용 가능 영역을 확장할 경우, 개별 필터와 검출부 조합 별로 교정(calibration) 작업을 수행해야 한다. Photodiode-based radiometers are widely used in applications due to their advantages of high sensitivity, fast response, and simple structure. However, photodiode-based radiometers require separate additional equipment to measure spectral distribution or wavelength characteristics depending on the type of light source being measured, and when changing the filter to expand the usable area, calibration is required for each combination of individual filters and detectors ( calibration) must be performed.
본 발명은 상기와 같은 문제점을 개선하기 위해 창안된 것으로서, 복수의 포토 다이오드를 사용하고, 해당 포토 다이오드들에서 획득한 광신호의 비율로부터 측정대상 광에 대한 정보를 획득할 수 있는 듀얼 포토 다이오드 복사계를 제공하는데 그 목적이 있다. The present invention was created to improve the above problems, and is a dual photo diode radiometer that uses a plurality of photo diodes and can obtain information about the light to be measured from the ratio of the optical signals obtained from the photo diodes. The purpose is to provide.
상기 목적을 달성하기 위한 본 발명에 따른 듀얼 포토 다이오드 복사계는 광원으로부터 출사되는 측정대상 광의 광 경로 상에 세팅되는 베이스 기판과, 상기 측정대상 광을 수광할 수 있도록 상기 측정대상 광이 입사되는 상기 베이스 기판의 입사영역에 설치되는 제1광센서부와, 상기 제1광센서부에 인접되게 상기 베이스 기판의 입사영역에 설치되어 해당 측정대상 광을 수광하는 것으로서, 상기 제1광센서부와 상이한 분광감응도를 갖는 제2광센서부를 구비한다. A dual photodiode radiometer according to the present invention for achieving the above object includes a base substrate set on the optical path of the measurement target light emitted from a light source, and the base into which the measurement target light is incident so as to receive the measurement target light. A first optical sensor unit installed in the incident area of the substrate, and installed in the incident area of the base substrate adjacent to the first optical sensor unit to receive the light to be measured, and a spectral spectrum different from that of the first optical sensor unit. A second optical sensor unit having sensitivity is provided.
상기 제1 및 제2광센서부는 기설정된 설정 광파장 영역 내에서, 입사되는 광의 파장 값이 증가할수록 분광감응도가 선형적으로 증가한다. The spectral sensitivity of the first and second optical sensors linearly increases as the wavelength value of incident light increases within a preset light wavelength range.
상기 제2광센서부는 상기 베이스 기판의 입사영역에 설치되는 포토 다이오드와, 상기 측정대상 광을 수광하는 해당 포토 다이오드의 수광면에 코팅되어 상기 수광면으로 입사되는 광의 파장을 파장별 투과율을 변형하는 투과필터층을 구비하는 것이 바람직하다. The second optical sensor unit includes a photo diode installed in the incident area of the base substrate, and a light-receiving surface of the photo diode that receives the light to be measured is coated to change the transmittance of the wavelength of light incident on the light-receiving surface for each wavelength. It is desirable to have a transmission filter layer.
상기 제1 및 제2광센서부의 분광감응도 비는 상기 설정 광파장 영역내에서, 상기 측정대상 광의 파장이 증가할수록 단조증가하거나 단조감소한다. The spectral response ratio of the first and second optical sensor units monotonically increases or monotonically decreases as the wavelength of the light to be measured increases within the set light wavelength range.
한편, 본 발명에 따른 듀얼 포토 다이오드 복사계는 상기 광원과 베이스 기판 사이의 측정대상 광의 광 경로 상에 설치되어 상기 베이스 기판으로 입사되는 광을 필터링하는 광 필터부를 더 구비할 수 있다. Meanwhile, the dual photo diode radiometer according to the present invention may further include an optical filter unit installed on the optical path of the light to be measured between the light source and the base substrate to filter the light incident on the base substrate.
상기 광 필터부는 상기 설정 광파장 영역에서 소정의 투과율을 갖는 광대역 필터를 구비할 수 있다. The optical filter unit may include a broadband filter having a predetermined transmittance in the set optical wavelength region.
상기 광 필터부는 분석하고자 하는 소정의 중심파장 및 분광밴드를 가지는 밴드패스 필터를 구비할 수도 있다. The optical filter unit may be equipped with a band-pass filter having a predetermined center wavelength and spectral band to be analyzed.
상기 광 필터부는 기설정된 가중함수(weighting function)에 대응되는 분광투과율을 갖는 투과 필터를 구비할 수도 있다. The optical filter unit may include a transmission filter having a spectral transmittance corresponding to a preset weighting function.
상기 밴드패스 필터는 중심파장이 기설정된 가변패턴에 따라 가변될 수도 있다. The center wavelength of the bandpass filter may be varied according to a preset variable pattern.
한편, 본 발명에 따른 듀얼 포토 다이오드 복사계는 내부에 상기 베이스 기판이 수용되는 수용공간이 마련되며, 상기 베이스 기판으로 상기 측정대상 광이 입사되도록 상기 베이스 기판의 입사영역에 대향되는 측면에 입사구가 형성된 케이스와, 상기 베이스 기판으로 입사되는 측정대상 광을 확산시킬 수 있도록 상기 입사구 측에 설치되는 확산판을 구비할 수 있다. Meanwhile, the dual photo diode radiometer according to the present invention is provided with an accommodating space inside which the base substrate is accommodated, and an entrance opening is provided on the side opposite to the incident area of the base substrate so that the light to be measured is incident on the base substrate. It may be provided with a formed case and a diffusion plate installed on the entrance side to diffuse the measurement target light incident on the base substrate.
본 발명에 따른 듀얼 포토 다이오드 복사계는 복수의 포토 다이오드를 이용하여 획득한 광신호의 비율로부터 측정대상 광에 대한 정보를 산출하므로 광원의 종류나 분광분포 변화에 무관하게 보다 정확한 측정값을 획득할 수 있는 장점이 있다. The dual photodiode radiometer according to the present invention calculates information about the light to be measured from the ratio of optical signals acquired using a plurality of photodiodes, so more accurate measurement values can be obtained regardless of the type of light source or changes in spectral distribution. There is an advantage.
도 1은 본 발명의 실시 예에 따른 듀얼 포토 다이오드 복사계에 대한 개념도이고, 1 is a conceptual diagram of a dual photo diode radiometer according to an embodiment of the present invention,
도 2는 도 1의 듀얼 포토 다이오드 복사계에 대한 단면도이고, Figure 2 is a cross-sectional view of the dual photo diode radiometer of Figure 1;
도 3은 도 1의 듀얼 포토 다이오드 복사계의 제1 및 제2광센서부의 분광감응도에 대한 그래프이고, Figure 3 is a graph of the spectral responsivity of the first and second optical sensor units of the dual photo diode radiometer of Figure 1;
도 4는 도 1의 듀얼 포토 다이오드 복사계의 제1 및 제2광센서부의 분광감응도 비에 대한 그래프이고, Figure 4 is a graph of the spectral response ratio of the first and second optical sensor units of the dual photo diode radiometer of Figure 1;
도 5 내지 도 8은 도 1의 듀얼 포토 다이오드 복사계의 광 필터부의 기능을 나타낸 그래프이다. Figures 5 to 8 are graphs showing the function of the optical filter unit of the dual photo diode radiometer of Figure 1.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 따른 듀얼 포토 다이오드 복사계에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시 예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. 첨부된 도면에 있어서, 구조물들의 치수는 본 발명의 명확성을 기하기 위하여 실제보다 확대하여 도시한 것이다. Hereinafter, a dual photo diode radiometer according to an embodiment of the present invention will be described in detail with reference to the attached drawings. Since the present invention can be subject to various changes and can have various forms, specific embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, and should be understood to include all changes, equivalents, and substitutes included in the spirit and technical scope of the present invention. While describing each drawing, similar reference numerals are used for similar components. In the attached drawings, the dimensions of the structures are enlarged from the actual size for clarity of the present invention.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. Terms such as first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, a first component may be named a second component without departing from the scope of the present invention, and similarly, the second component may also be named a first component.
본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in this application are only used to describe specific embodiments and are not intended to limit the invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that this does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as generally understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless explicitly defined in the present application, should not be interpreted in an ideal or excessively formal sense. No.
도 1 및 도 2에는 본 발명에 따른 듀얼 포토 다이오드 복사계(100)가 도시되어 있다. 1 and 2 show a dual photo diode radiometer 100 according to the present invention.
도면을 참조하면, 상기 듀얼 포토 다이오드 복사계(100)는 케이스(110)와, 상기 케이스(110) 내부에 설치되는 베이스 기판(120)과, 베이스 기판(120)에 설치되어 광원으로부터 출사되는 측정대상 광을 수광하는 제1 및 제2광센서부(130,140)와, 상기 광원과 베이스 기판(120) 사이의 측정대상 광의 광 경로 상에 설치되어 상기 베이스 기판(120)으로 입사되는 광을 필터링하는 광 필터부(150)와, 상기 제1 및 제2광센서부(130,140)에서 제공되는 광전류 신호를 분석하는 분석모듈(미도시)을 구비한다. Referring to the drawing, the dual photo diode radiometer 100 includes a case 110, a base substrate 120 installed inside the case 110, and a measurement object installed on the base substrate 120 and emitted from a light source. First and second optical sensor units 130 and 140 for receiving light, and installed on the optical path of the light to be measured between the light source and the base substrate 120, filter the light incident on the base substrate 120. It is provided with a filter unit 150 and an analysis module (not shown) that analyzes the photocurrent signal provided from the first and second optical sensor units 130 and 140.
상기 케이스(110)는 광원으로부터 출사되는 측정대상 광의 광 경로 상에 설치되며, 내부에 상기 베이스 기판(120)이 수용되는 수용공간(111)이 형성된다. 또한, 케이스(110)는 전면에, 해당 측정대상 광이 수용공간(111) 내부로 입사되도록 입사구(112)가 형성되어 있다. 한편, 도시된 예에서는 해당 케이스(110)가 원통형으로 형성된 구조가 도시되어 있으나, 이에 한정하는 것이 아니라 사각기둥형, 타원형 등 다양한 형상으로 케이스(110)가 형성될 수도 있다. The case 110 is installed on the optical path of the light to be measured emitted from the light source, and a receiving space 111 in which the base substrate 120 is accommodated is formed therein. Additionally, an entrance port 112 is formed on the front of the case 110 to allow the light to be measured to enter the receiving space 111. Meanwhile, in the illustrated example, the case 110 is shown as having a cylindrical structure, but the case 110 is not limited to this and may be formed in various shapes such as a square column or an oval.
또한, 케이스(110)는 수용공간(111)으로 입사되는 측정대상 광을 확산시킬 수 있도록 입사구(112) 측에 확산판(113)이 설치되어 있다. 해당 확산판(113)은 입사되는 광을 확산시키기 위해 종래에 일반적으로 사용되는 확산기가 적용되므로 상세한 설명은 생략한다. In addition, the case 110 has a diffusion plate 113 installed on the entrance port 112 side to diffuse the measurement target light incident on the receiving space 111. Since the diffusion plate 113 is a diffuser commonly used in the related art to diffuse incident light, detailed description will be omitted.
베이스 기판(120)은 광원으로부터 출사되는 측정대상 광의 광 경로 상에 세팅되는 것으로서, 케이스(110)의 후방 내측면에 설치된다. 베이스 기판(120)은 입사구(112)에 대향되는 전면에, 측정대상 광이 입사되는 입사영역(121)이 마련된다. The base substrate 120 is set on the optical path of the light to be measured emitted from the light source, and is installed on the rear inner surface of the case 110. The base substrate 120 has an incident area 121 on the front surface opposite the entrance opening 112, where light to be measured is incident.
제1광센서부(130)는 상기 측정대상 광을 수광할 수 있도록 상기 측정대상 광이 입사되는 상기 베이스 기판(120)의 입사영역(121)에 설치되는 제1포토 다이오드(131)를 구비한다. 상기 제1포토 다이오드(131)는 측정대상 광을 수광하여 해당 측정대상 광에 대응되는 광전류 신호를 생성하는 광센서가 적용된다. 제1포토 다이오드(131)의 광전류 신호는 분석모듈로 전송된다. The first optical sensor unit 130 is provided with a first photo diode 131 installed in the incident area 121 of the base substrate 120 where the measurement target light is incident so as to receive the measurement target light. . The first photodiode 131 is an optical sensor that receives light to be measured and generates a photocurrent signal corresponding to the light to be measured. The photocurrent signal of the first photodiode 131 is transmitted to the analysis module.
제2광센서부(140)는 상기 제1광센서부(130)에 인접되게 상기 베이스 기판(120)의 입사영역(121)에 설치되어 해당 측정대상 광을 수광하는 것으로서, 상기 제1광센서부(130)와 상이한 분광감응도를 갖는다. 상기 제2광센서부(140)는 제2포토 다이오드(141) 및 투과필터층(142)을 구비한다. The second optical sensor unit 140 is installed in the incident area 121 of the base substrate 120 adjacent to the first optical sensor unit 130 and receives the light to be measured. It has a different spectral responsivity from that of the unit 130. The second optical sensor unit 140 includes a second photo diode 141 and a transmission filter layer 142.
상기 제2포토 다이오드(141)는 상기 베이스 기판(120)의 입사영역(121)에 설치되어 측정대상 광을 수광하여 광전류 신호를 생성한다. 여기서, 제2포토 다이오드(141)는 제1포토 다이오드(131)에 인접된 위치의 입사영역(121)에 설치되며, 전면에, 측정대상 광을 수광하는 수광면이 마련되어 있다. 이때, 제2포토 다이오드(141)는 해당 제1포토 다이오드(131)와 동일한 광센서가 적용되는 것이 바람직하다. The second photodiode 141 is installed in the incident area 121 of the base substrate 120 and receives light to be measured to generate a photocurrent signal. Here, the second photo diode 141 is installed in the incident area 121 adjacent to the first photo diode 131, and a light receiving surface for receiving the light to be measured is provided on the front side. At this time, it is preferable that the second photo diode 141 uses the same optical sensor as the corresponding first photo diode 131.
투과필터층(142)은 상기 제2포토 다이오드(141)의 수광면에 코팅되어 상기 수광면으로 입사되는 광의 파장에 따른 투과율을 변화시킨다. 상기 상기 투과필터층(142)은 제2포토 다이오드(141)의 수광면에 비금속 적층 코팅(dielectric layer coating)으로 형성되어 원하는 분광 투과율을 실현할 수 있다. The transmission filter layer 142 is coated on the light-receiving surface of the second photo diode 141 to change the transmittance according to the wavelength of light incident on the light-receiving surface. The transmission filter layer 142 is formed as a non-metallic dielectric layer coating on the light-receiving surface of the second photo diode 141 to achieve a desired spectral transmittance.
해당 투과필터층(142)의 분광 투과율과 분광 반사율은 상호 상이하게 설계될 수 있다. 한편, 상기 투과필터층(142)은 이에 한정하는 것이 아니라 제2포토 다이오드(141)로 입사되는 광의 파장에 따른 투과율을 가변시킬 수 있는 가변수단이면 무엇이든 적용가능하다. 상술된 투과필터층(142)에 의해 제1광센서부(130)와 제2광센서부(140)의 분광 감응도가 상호 상이하게 설정된다. The spectral transmittance and spectral reflectance of the corresponding transmission filter layer 142 may be designed to be different from each other. Meanwhile, the transmission filter layer 142 is not limited to this, and any variable means that can change the transmittance according to the wavelength of light incident on the second photo diode 141 can be applied. The spectral sensitivities of the first optical sensor unit 130 and the second optical sensor unit 140 are set to be different from each other by the above-described transmission filter layer 142.
한편, 제1광센서부(130)와 제2광센서부(140)의 분광감응도는 기설정된 설정 광파장 영역 내에서, 입사되는 광의 파장 값이 증가할수록 선형적으로 증가하는 것이 바람직하다. 여기서, 설정 광파장 영역은 400nm~950nm가 적용되나, 이에 한정하는 것이 아니라 측정대상 광에 따라 다양하게 설정될 수 있다. Meanwhile, it is preferable that the spectral sensitivities of the first optical sensor unit 130 and the second optical sensor unit 140 increase linearly as the wavelength value of incident light increases within a preset light wavelength range. Here, the set light wavelength range is 400 nm to 950 nm, but is not limited to this and can be set in various ways depending on the light to be measured.
도 3에는, 실리콘 광다이오드로 구성한 제1 및 제2광센서부(130,140)의 분광 감응도에 대한 그래프가 도시되어 있다. 여기서, "A"는 실리콘 광다이오드의 분광감응도에 대한 그래프이고, "B"는 투과필터층(142)을 코팅한 실리콘 광다이오드의 분광감응도이다. 도면을 참조하면, 제1광센서부(130)와 같이 단일한 실리콘 광다이오드의 분광 감응도는 설정 광파장 영역에서, 입사되는 광의 파장이 증가할수록 선형적으로 증가함을 할 수 있다. 또한, 제2광센서부(140)와 같이 투과필터층(142)이 코팅된 실리콘 광다이오드도 해당 설정 광파장 영역 내에서, 분광 감응도가 선형적으로 증가하되, 단일한 실리콘 광다이오드와 상이한 분광 감응도를 나타낸다. 따라서, 제1광센서부(130)와 동일한 포토 다이오드에 투과필터층(142)을 코팅하여 해당 제1광센서부(130)와 상이한 분광감응도를 갖는 제2광센서부(140)를 용이하게 제조할 수 있다. Figure 3 shows a graph of the spectral responsivity of the first and second optical sensor units 130 and 140 made of silicon photodiodes. Here, “A” is a graph of the spectral responsivity of the silicon photodiode, and “B” is the spectral responsivity of the silicon photodiode coated with the transmission filter layer 142. Referring to the drawing, the spectral sensitivity of a single silicon photodiode, such as the first optical sensor unit 130, may linearly increase as the wavelength of incident light increases in a set light wavelength region. In addition, like the second optical sensor unit 140, the silicon photodiode coated with the transmission filter layer 142 also has a linear increase in spectral sensitivity within the set light wavelength region, but has a spectral sensitivity different from that of a single silicon photodiode. indicates. Therefore, the second optical sensor unit 140 having a different spectral sensitivity from that of the first optical sensor unit 130 can be easily manufactured by coating the transmission filter layer 142 on the same photo diode as the first optical sensor unit 130. can do.
한편, 도 4에는 제1 및 제2광센서부(130,140)의 분광감응도 비에 대한 그래프가 도시되어 있다. 도면을 참조하면, 제1 및 제2광센서부(130,140)의 분광감응도 비는 역함수가 존재하도록 상기 설정 광파장 영역 내에서 측정대상 광의 파장이 증가할수록 단조증가한다. 한편, 이에 한정하는 것이 아니라 제1 및 제2광센서부(130,140)는 분광감응도 비가 상기 설정 광파장 영역 내에서 측정대상 광의 파장이 증가할수록 단조감소하도록 설계될 수도 있다. Meanwhile, Figure 4 shows a graph of the spectral response ratio of the first and second optical sensor units 130 and 140. Referring to the drawings, the spectral response ratio of the first and second optical sensor units 130 and 140 monotonically increases as the wavelength of the light to be measured increases within the set optical wavelength region so that an inverse function exists. Meanwhile, without being limited to this, the first and second optical sensor units 130 and 140 may be designed so that the spectral response ratio monotonically decreases as the wavelength of the light to be measured increases within the set optical wavelength region.
분석모듈은 제1 및 제2광센서부(130,140)에서 제공되는 광전류 신호를 디지털 신호로 변환하고, 디지털 신호를 분석하여 측정대상 광의 복사량을 산출할 수 있다. 상기 분석모듈은 하기의 수학식 1를 통해 측정대상 광의 복사량(Φ)을 산출한다. The analysis module converts the photocurrent signal provided from the first and second optical sensor units 130 and 140 into a digital signal, and analyzes the digital signal to calculate the radiation amount of light to be measured. The analysis module calculates the radiation amount (Φ) of the light to be measured through Equation 1 below.
Figure PCTKR2023018431-appb-img-000001
Figure PCTKR2023018431-appb-img-000001
여기서, T(λ)는 광 필터부(150)의 분광투과율이고, λmin, λmax는 광 필터부(150)를 투과하는 광의 최소 파장 값 및 최대 파장 값이다. 측정대상 광의 복사량은 λmin 내지 λmax 내에서, 파장 λ에 대한 분광 복사조도(
Figure PCTKR2023018431-appb-img-000002
)의 적분으로 산출될 수 있다.
Here, T(λ) is the spectral transmittance of the optical filter unit 150, and λ min and λ max are the minimum and maximum wavelength values of light passing through the optical filter unit 150. The irradiance of the light to be measured is within λ min to λ max , and is the spectral irradiance for the wavelength λ (
Figure PCTKR2023018431-appb-img-000002
) can be calculated by integration.
여기서, 제1광센서부(130)와 제2광센서부(140)에서의 광전류 신호(iA, iB)는 분광 복사조도(
Figure PCTKR2023018431-appb-img-000003
)에 제1광센서부(130) 및 제2광센서부(140)의 각 분광 감응도(SA(λ),SB(λ))를 도입하여 산출할 수 있는데, 산출식은 하기의 수학식 2와 같다.
Here, the photocurrent signals (i A , i B ) from the first optical sensor unit 130 and the second optical sensor unit 140 are the spectral irradiance (
Figure PCTKR2023018431-appb-img-000003
) can be calculated by introducing the respective spectral sensitivities (S A (λ), S B (λ)) of the first optical sensor unit 130 and the second optical sensor unit 140, and the calculation formula is the following equation Same as 2.
Figure PCTKR2023018431-appb-img-000004
Figure PCTKR2023018431-appb-img-000004
Figure PCTKR2023018431-appb-img-000005
Figure PCTKR2023018431-appb-img-000005
여기서, 분광 감응도 (SA(λ),SB(λ))는 입사되는 광 파장에 대해 선형적으로 증가하므로 각 분광 감응도는 하기의 수학식 3과 같다.Here, the spectral sensitivities (S A (λ), S B (λ)) increase linearly with respect to the incident light wavelength, so each spectral responsivity is expressed in Equation 3 below.
Figure PCTKR2023018431-appb-img-000006
Figure PCTKR2023018431-appb-img-000006
Figure PCTKR2023018431-appb-img-000007
Figure PCTKR2023018431-appb-img-000007
여기서, a0, a1, b0, b1은 복사계의 교정 측정으로부터 결정되는 상수이다. Here, a 0 , a 1 , b 0 , b 1 are constants determined from calibration measurements of the radiometer.
한편, 제1 및 제2광센서부(130,140)는 분광감응도의 비가 단조증가하므로 해당 분광감응도의 비는 하기의 수학식 4와 같다. Meanwhile, since the ratio of spectral sensitivities of the first and second optical sensor units 130 and 140 increases monotonically, the ratio of the spectral sensitivities is expressed in Equation 4 below.
Figure PCTKR2023018431-appb-img-000008
Figure PCTKR2023018431-appb-img-000008
그리고, 수학식 3을 수학식 2에 대입하면, 제1 및 제2광센서부(130,140)의 광전류 신호는 하기의 수학식 5와 같다. And, if Equation 3 is substituted into Equation 2, the photocurrent signals of the first and second optical sensor units 130 and 140 are expressed as Equation 5 below.
Figure PCTKR2023018431-appb-img-000009
Figure PCTKR2023018431-appb-img-000009
Figure PCTKR2023018431-appb-img-000010
Figure PCTKR2023018431-appb-img-000010
한편, 광원의 중심 파장(λc)는 하기의 수학식 6과 같다. Meanwhile, the central wavelength (λ c ) of the light source is expressed in Equation 6 below.
Figure PCTKR2023018431-appb-img-000011
Figure PCTKR2023018431-appb-img-000011
여기서, Xλ(λ)는 어떤 분광측정량도 대입이 가능하다. Here, X λ (λ) can be substituted for any spectral measurement quantity.
한편, 수학식1과 수학식 5를 이용하여 제1광센서부(130)와 제2광센서부(140)의 광전류 신호(iA, iB)와,
Figure PCTKR2023018431-appb-img-000012
에 대한 중심파장(λc)에 관한 식으로 정리하면 제1 및 제2광센서부(130,140)의 광전류 신호는 하기의 수학식 7과 같다.
Meanwhile, using Equation 1 and Equation 5, the photocurrent signals (i A , i B ) of the first optical sensor unit 130 and the second optical sensor unit 140,
Figure PCTKR2023018431-appb-img-000012
Summarizing the equation for the center wavelength (λ c ), the photocurrent signals of the first and second optical sensor units 130 and 140 are expressed in Equation 7 below.
Figure PCTKR2023018431-appb-img-000013
Figure PCTKR2023018431-appb-img-000013
Figure PCTKR2023018431-appb-img-000014
Figure PCTKR2023018431-appb-img-000014
상기 수학식 7을 토대로 측정대상 광의 복사량(Φ)을 산출하면 하기의 수학식 8과 같다. If the radiation amount (Φ) of the light to be measured is calculated based on Equation 7 above, it is as shown in Equation 8 below.
Figure PCTKR2023018431-appb-img-000015
Figure PCTKR2023018431-appb-img-000015
상술된 바와 같이,
Figure PCTKR2023018431-appb-img-000016
에 대한 중심파장(λc) 값만 알면, 제1 및 제2광센서부(130,140)의 광전류 신호 값으로부터 측정대상 광의 복사량(Φ)을 도출할 수 있다.
As described above,
Figure PCTKR2023018431-appb-img-000016
If only the value of the center wavelength (λ c ) is known, the radiation amount (Φ) of the light to be measured can be derived from the photocurrent signal value of the first and second optical sensor units 130 and 140.
한편, 상기 중심파장(λc) 값은 제1 및 제2광센서부(130,140)의 분광감응도 비(r(λ))로부터 하기의 수학식 9와 같이 산출할 수 있다. Meanwhile, the central wavelength (λ c ) value can be calculated from the spectral response ratio (r(λ)) of the first and second optical sensor units 130 and 140 as shown in Equation 9 below.
Figure PCTKR2023018431-appb-img-000017
Figure PCTKR2023018431-appb-img-000017
상술된 바와 같이 측정된 제1 및 제2광센서부(130,140)의 광전류 신호의 비율과, 미리 알고 있는 분광감응도 비(r(λ))의 역함수를 이용하여 상기 중심파장(λc) 값을 산출할 수 있다. The center wavelength (λ c ) value is calculated using the ratio of the photocurrent signals of the first and second optical sensor units 130 and 140 measured as described above and the inverse function of the previously known spectral response ratio (r(λ)). It can be calculated.
즉, 본 발명에 따른 듀얼 포토 다이오드 복사계(100)는 제1 및 제2광센서부(130,140)의 광전류 신호와, 해당 광전류 신호들의 비율을 측정하고, 상기 광전류 신호들의 비율로부터 측정대상 광의 중심파장을 산출할 수 있고, 이를 이용하여 측정대상 광의 복사량 값을 획득할 수 있다. 여기서, 제1 및 제2광센서부(130,140)의 분광감응도 및 광 필터부(150)의 분광투과율에 대한 정보는 분석모듈에 기입되는 것이 바람직하다. That is, the dual photodiode radiometer 100 according to the present invention measures the ratio of the photocurrent signals of the first and second optical sensor units 130 and 140 and the corresponding photocurrent signals, and determines the central wavelength of the light to be measured from the ratio of the photocurrent signals. can be calculated, and using this, the radiation amount value of the light to be measured can be obtained. Here, it is preferable that information on the spectral sensitivities of the first and second optical sensor units 130 and 140 and the spectral transmittance of the optical filter unit 150 are written into the analysis module.
광 필터부(150)는 제1 및 제2광센서부(130,140) 전방의 케이스(110) 내부에 설치되어 측정하고자 하는 광원의 종류에 따라 상기 제1 및 제2광센서부(130,140)로 입사되는 측정대상 광을 필터링한다. The optical filter unit 150 is installed inside the case 110 in front of the first and second optical sensor units 130 and 140 and enters the first and second optical sensor units 130 and 140 according to the type of light source to be measured. Filters the light to be measured.
상기 광 필터부(150)는 도 5에 도시된 바와 같이 상기 설정 광파장 영역에서 소정의 투과율을 갖는 광대역 필터를 구비한다. 도 5에서, 검은색 그래프는 광대역 필터에 투과 가능한 광의 파장 영역 및 투과율을 나타낸 것이고, 주황색 그래프는 측정대상 광의 파장대 별 복사량을 나타낸 그래프이며, λmin 및 λmax는 설정 광파장 영역의 최소 파장 값 및 최대 파장 값이고, λc는 측정대상 광의 중심 파장이다. As shown in FIG. 5, the optical filter unit 150 includes a broadband filter having a predetermined transmittance in the set optical wavelength region. In Figure 5, the black graph shows the wavelength range and transmittance of light that can be transmitted through the broadband filter, the orange graph shows the amount of radiation for each wavelength band of the light to be measured, and λ min and λ max are the minimum wavelength value in the set light wavelength range and This is the maximum wavelength value, and λc is the central wavelength of the light to be measured.
LED, 레이저 등과 같이 선폭이 좁은 분광 광원이나 단색광의 복사량을 측정하는 경우, 설정 광파장 영역에서 일정한 투과율을 가지는 광대역 필터를 케이스(110) 내부에 세팅하여 측정할 수 있다. 파장 λmin 및 λmax 사이의 광 필터부(150)의 투과율이 일정하므로 해당 투과율이 상수값으로 대치되어 교정을 통해 1로 치환이 가능하다. 이때, 제1 및 제2광센서부(130,140)를 통해 측정대상 광의 중심파장과 복사량 특성을 동시에 측정이 가능하다. 해당 광대역 필터를 세팅하여 본 발명의 듀얼 포토 다이오드 복사계(100)를 레이저 출력계 또는 단색광 복사계로 이용할 수 있다. When measuring the radiation amount of a spectral light source or monochromatic light with a narrow line width, such as an LED or a laser, a broadband filter having a constant transmittance in a set light wavelength region can be set inside the case 110 for measurement. Since the transmittance of the optical filter unit 150 between the wavelengths λ min and λ max is constant, the transmittance is replaced with a constant value and can be replaced with 1 through calibration. At this time, it is possible to simultaneously measure the central wavelength and radiation quantity characteristics of the light to be measured through the first and second optical sensor units 130 and 140. By setting the corresponding broadband filter, the dual photodiode radiometer 100 of the present invention can be used as a laser output meter or a monochromatic light radiometer.
한편, 광 필터부(150)는 도 6에 도시된 바와 같이 분석하고자 하는 소정의 중심파장 및 분광밴드를 가지는 밴드패스 필터를 구비할 수도 있다. 도 6에서 검은색 그래프는 밴드패스 필터에서 투과 가능한 광의 파장 영역 및 투과율을 나타낸 것이고, 주황색 그래프는 측정대상 광의 파장대 별 복사량을 나타낸 그래프이며, λmin 및 λmax는 투과 가능한 광의 파장 영역을 나타내는 것으로서, 설정된 중심파장을 기준으로 상기 분광밴드 영역 내의 최소 파장 값 및 최대 파장 값이다. Meanwhile, the optical filter unit 150 may be equipped with a band-pass filter having a predetermined center wavelength and spectral band to be analyzed, as shown in FIG. 6. In Figure 6, the black graph shows the wavelength range and transmittance of light that can be transmitted through the bandpass filter, the orange graph shows the amount of radiation for each wavelength band of the light to be measured, and λ min and λ max represent the wavelength range of light that can be transmitted. , are the minimum and maximum wavelength values within the spectral band area based on the set central wavelength.
광대역 백색 광원의 일정 파장 영역의 복사량을 선별하여 측정하는 경우, 해당 밴드패스 필터를 케이스(110) 내부에 세팅하여 측정할 수 있다. 해당 밴드패스 필터의 광 투과(T(λ)) 영역의 선택에 따라 측정대상 광의 특정 파장영역에서 적분된 복사량을 제1 및 제2광센서부(130,140)를 통해 측정할 수 있다. 이때, 일정한 밴드패스 필터의 광투과율 값은 교정을 통해 1로 치환이 가능하다. 측정대상 광의 측정하고자 하는 광 파장 영역에 따라 다양한 중심파장 및 분광밴드를 갖는 다수의 밴드패스 필터를 교체하여 사용할 수 있다. 상술된 밴드패스 필터를 사용하여 본 발명의 듀얼 포토 다이오드 복사계(100)를 UV 미터, 자외선/가시광/적외선 선별 복사계, PPFD 광합성 광량 측정계로 이용할 수 있다. When measuring the radiation amount of a certain wavelength range from a broadband white light source, the corresponding bandpass filter can be set inside the case 110 for measurement. Depending on the selection of the light transmission (T(λ)) area of the corresponding bandpass filter, the amount of radiation integrated in a specific wavelength area of the light to be measured can be measured through the first and second optical sensor units 130 and 140. At this time, the light transmittance value of a certain bandpass filter can be replaced with 1 through calibration. Depending on the wavelength range of the target light to be measured, multiple bandpass filters with various center wavelengths and spectral bands can be replaced and used. Using the above-described bandpass filter, the dual photo diode radiometer 100 of the present invention can be used as a UV meter, an ultraviolet/visible/infrared selective radiometer, and a PPFD photosynthetic photometric meter.
한편, 광 필터부(150)는 기설정된 가중함수(weighting function)에 대응되는 분광투과율을 갖는 투과 필터를 구비할 수도 있다. 특정한 가중함수를 적용하여 정의된 복사량을 측정하는 경우, 해당 투과 필터를 케이스(110) 내부에 세팅하여 측정할 수 있다. 도 7에는 해당 투과 필터를 이용하여 측정대상 광에 대한 CIE XYZ 삼자극치를 측정한 것이다. 도면에서, 상측의 주황색 그래프는 측정대상 광의 파장대 별 복사량을 나타낸 그래프이고, 하측의 그래프는 CIE 등색함수 3종과 동일하게 세팅한 필터의 분광투과율을 나타낸 것이다. 각 등색함수를 가중함수로 측정대상 광의 복사량을 측정하면, CIE XYZ 삼자극치와 이로부터 대상 광원의 색특성(색좌표)을 계산할 수 있다. Meanwhile, the optical filter unit 150 may include a transmission filter having a spectral transmittance corresponding to a preset weighting function. When measuring the amount of radiation defined by applying a specific weighting function, the measurement can be performed by setting the corresponding transmission filter inside the case 110. In Figure 7, the CIE XYZ tristimulus value for the light to be measured is measured using the corresponding transmission filter. In the figure, the orange graph on the upper side is a graph showing the radiation amount by wavelength of the light to be measured, and the lower graph shows the spectral transmittance of a filter set identically to the three types of CIE color matching functions. By measuring the radiation amount of the target light using each color matching function as a weighting function, the CIE XYZ tristimulus value and the color characteristics (color coordinates) of the target light source can be calculated from this.
상기 투과 필터가 세팅된 본 발명의 듀얼 포토 다이오드 복사계(100)는 검출기의 특성을 고려하지 않고, 가중함수에만 맞춘 필터를 설계하여 적용할 수 있다는 장점이 있다. 스펙이 상이하게 설계된 다수의 투과 필터를 교체하여 사용할 경우, 본 발명은 측정대상 광의 중심파장 값으로부터 필터의 종류를 식별할 수 있는 기능을 추가할 수도 있다. 상술된 투과밴드를 사용하여 본 발명의 듀얼 포토 다이오드 복사계(100)를 광조도계, 광휘도계, 색채계로 이용할 수 있다. The dual photodiode radiometer 100 of the present invention with the transmission filter set has the advantage of being able to design and apply a filter tailored only to the weighting function without considering the characteristics of the detector. When using multiple transmission filters with differently designed specifications, the present invention can also add a function that can identify the type of filter from the center wavelength value of the light to be measured. Using the above-described transmission band, the dual photo diode radiometer 100 of the present invention can be used as a photo illuminance meter, photoluminance meter, and colorimeter.
한편, 광 필터부(150)는 도 8에 도시된 바와 같이 중심파장이 기설정된 가변패턴에 따라 가변되는 밴드패스 필터를 구비할 수도 있다. 여기서, 상기 밴드패스 필터는 분광밴드가 10nm 이하로 비교적 좁게 설계될 수 있다. 일예로, 상기 밴드패스 필터는 시간이 경과할수록 일정한 속도 또는 기설정된 간격으로 증가하거나 감소되는 가변패턴으로 중심파장이 변경되게 설정될 수 있다. 도 8에서 검은색 그래프는 밴드패스 필터에서 투과 가능한 광의 파장 영역 및 투과율을 나타낸 것이고, 검은색 기둥 부분은 투과 가능한 광의 파장 영역을 나타내는 것으로서, 설정된 분광밴드 영역에 대응되는 폭을 갖도록 설정된다. 또한, 주황색 그래프는 측정대상 광의 파장대 별 복사량을 나타낸 그래프이다. Meanwhile, the optical filter unit 150 may include a bandpass filter whose center wavelength is variable according to a preset variable pattern, as shown in FIG. 8. Here, the bandpass filter may be designed to have a relatively narrow spectral band of 10 nm or less. For example, the bandpass filter may be set to change the center wavelength in a variable pattern that increases or decreases at a constant speed or at preset intervals as time passes. In FIG. 8, the black graph shows the wavelength range and transmittance of light that can be transmitted in the bandpass filter, and the black column represents the wavelength range of light that can be transmitted, and is set to have a width corresponding to the set spectral band area. Additionally, the orange graph is a graph showing the radiation amount by wavelength of the light to be measured.
이때, 상기 밴드패스 필터는 전기광학적으로 스캔이 가능한 것으로서, 종래에 일반적으로 사용되는 파장가변형 밴드필터가 적용되므로 상세한 설명은 생략한다. 상술된 밴드패스 필터를 케이스(110) 내부에 세팅하면, 본 발명은 분광복사계의 기능을 실현할 수 있다. 더욱, 본 발명의 제1 및 제2광센서부(130,140)를 이용하여 밴드패스 필터의 중심파장을 실시간으로 모니터링할 수 있고, 파장별 감응도 보정이 요구되지 않아 단일한 포토 다이오드를 사용하는 경우에 비해 신속하고 정확한 측정대상 광의 파장별 복사량을 측정할 수 있다. At this time, the band pass filter is capable of electro-optical scanning, and since a wavelength tunable band filter commonly used in the related art is applied, a detailed description will be omitted. By setting the above-described bandpass filter inside the case 110, the present invention can realize the function of a spectroradiometer. Moreover, the center wavelength of the bandpass filter can be monitored in real time using the first and second optical sensor units 130 and 140 of the present invention, and sensitivity correction for each wavelength is not required, so when a single photodiode is used, Compared to other methods, it is possible to quickly and accurately measure the amount of radiation by wavelength of the light being measured.
상술된 바와 같이 본 발명에 따른 듀얼 포토 다이오드 복사계(100)는 광 필터부(150)를 통해 측정대상 광을 필터링하므로 다양한 종류의 복사계 기능을 구현할 수 있다. As described above, the dual photo diode radiometer 100 according to the present invention filters the light to be measured through the optical filter unit 150, so that various types of radiometer functions can be implemented.
제시된 실시예들에 대한 설명은 임의의 본 발명의 기술분야에서 통상의 지식을 가진 자가 본 발명을 이용하거나 또는 실시할 수 있도록 제공된다. 이러한 실시예들에 대한 다양한 변형들은 본 발명의 기술 분야에서 통상의 지식을 가진자에게 명백할 것이며, 여기에 정의된 일반적인 원리들은 본 발명의 범위를 벗어남이 없이 다른 실시예들에 적용될 수 있다. 그리하여, 본 발명은 여기에 제시된 실시예들로 한정되는 것이 아니라, 여기에 제시된 원리들 및 신규한 특징들과 일관되는 최광의의 범위에서 해석되어야 할 것이다.The description of the presented embodiments is provided to enable any person skilled in the art to use or practice the present invention. Various modifications to these embodiments will be apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments without departing from the scope of the invention. Thus, the present invention is not limited to the embodiments presented herein, but is to be construed in the broadest scope consistent with the principles and novel features presented herein.

Claims (10)

  1. 광원으로부터 출사되는 측정대상 광의 광 경로 상에 세팅되는 베이스 기판;A base substrate set on the optical path of the light to be measured emitted from the light source;
    상기 측정대상 광을 수광할 수 있도록 상기 측정대상 광이 입사되는 상기 베이스 기판의 입사영역에 설치되는 제1광센서부; 및a first optical sensor unit installed in an incident area of the base substrate where the measurement target light is incident so as to receive the measurement target light; and
    상기 제1광센서부에 인접되게 상기 베이스 기판의 입사영역에 설치되어 해당 측정대상 광을 수광하는 것으로서, 상기 제1광센서부와 상이한 분광감응도를 갖는 제2광센서부;를 구비하는,A second optical sensor unit installed in the incident area of the base substrate adjacent to the first optical sensor unit to receive the light to be measured, and having a different spectral sensitivity from the first optical sensor unit,
    듀얼 포토 다이오드 복사계.Dual photodiode radiometer.
  2. 제1항에 있어서, According to paragraph 1,
    상기 제1 및 제2광센서부는 기설정된 설정 광파장 영역 내에서, 입사되는 광의 파장 값이 증가할수록 분광감응도가 선형적으로 증가하는,The first and second optical sensors have spectral sensitivity linearly increasing as the wavelength value of incident light increases within a preset light wavelength range,
    듀얼 포토 다이오드 복사계.Dual photodiode radiometer.
  3. 제1항 또는 제2항에 있어서, According to claim 1 or 2,
    상기 제2광센서부는The second optical sensor unit
    상기 베이스 기판의 입사영역에 설치되는 포토 다이오드; 및a photo diode installed in the incident area of the base substrate; and
    상기 측정대상 광을 수광하는 해당 포토 다이오드의 수광면에 코팅되어 상기 수광면으로 입사되는 상기 측정대상 광의 파장에 따른 투과율을 변화시키는 투과필터층;을 구비하는,A transmission filter layer coated on the light-receiving surface of the photodiode that receives the light to be measured and changing the transmittance according to the wavelength of the light to be measured incident on the light-receiving surface.
    듀얼 포토 다이오드 복사계.Dual photodiode radiometer.
  4. 제2항에 있어서, According to paragraph 2,
    상기 제1 및 제2광센서부의 분광감응도 비는 상기 설정 광파장 영역내에서, 상기 측정대상 광의 파장이 증가할수록 단조증가하거나 단조감소하는,The spectral response ratio of the first and second optical sensor units monotonically increases or monotonically decreases as the wavelength of the light to be measured increases within the set light wavelength region,
    듀얼 포토 다이오드 복사계.Dual photodiode radiometer.
  5. 제2항에 있어서, According to paragraph 2,
    상기 광원과 베이스 기판 사이의 측정대상 광의 광 경로 상에 설치되어 상기 베이스 기판으로 입사되는 광을 필터링하는 광 필터부;를 더 구비하는,Further comprising: an optical filter unit installed on the optical path of the light to be measured between the light source and the base substrate and filtering light incident on the base substrate;
    듀얼 포토 다이오드 복사계. Dual photodiode radiometer.
  6. 제5항에 있어서, According to clause 5,
    상기 광 필터부는 상기 설정 광파장 영역에서 소정의 투과율을 갖는 광대역 필터;를 구비하는,The optical filter unit includes a broadband filter having a predetermined transmittance in the set optical wavelength region,
    듀얼 포토 다이오드 복사계.Dual photodiode radiometer.
  7. 제5항에 있어서, According to clause 5,
    상기 광 필터부는 분석하고자 하는 소정의 중심파장 및 분광밴드를 가지는 밴드패스 필터;를 구비하는, The optical filter unit includes a bandpass filter having a predetermined center wavelength and spectral band to be analyzed,
    듀얼 포토 다이오드 복사계.Dual photodiode radiometer.
  8. 제5항에 있어서, According to clause 5,
    상기 광 필터부는 기설정된 가중함수(weighting function)에 대응되는 분광투과율을 갖는 투과 필터;를 구비하는,The optical filter unit includes a transmission filter having a spectral transmittance corresponding to a preset weighting function,
    듀얼 포토 다이오드 복사계.Dual photodiode radiometer.
  9. 제7항에 있어서, In clause 7,
    상기 밴드패스 필터는 중심파장이 기설정된 가변패턴에 따라 가변되는,The bandpass filter has a center wavelength that varies according to a preset variable pattern,
    듀얼 포토 다이오드 복사계.Dual photodiode radiometer.
  10. 제1항 또는 제2항에 있어서, According to claim 1 or 2,
    내부에 상기 베이스 기판이 수용되는 수용공간이 마련되며, 상기 베이스 기판으로 상기 측정대상 광이 입사되도록 상기 베이스 기판의 입사영역에 대향되는 측면에 입사구가 형성된 케이스; 및a case having an accommodating space therein for accommodating the base substrate, and having an entrance opening formed on a side opposite to an incident area of the base substrate so that the light to be measured is incident on the base substrate; and
    상기 베이스 기판으로 입사되는 측정대상 광을 확산시킬 수 있도록 상기 입사구 측에 설치되는 확산판;을 구비하는,Provided with a diffusion plate installed on the entrance side to diffuse the measurement target light incident on the base substrate,
    듀얼 포토 다이오드 복사계.Dual photodiode radiometer.
PCT/KR2023/018431 2022-11-16 2023-11-16 Dual photodiode radiometer WO2024106966A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220153586A KR20240071738A (en) 2022-11-16 2022-11-16 Dual photodiode radiometer
KR10-2022-0153586 2022-11-16

Publications (1)

Publication Number Publication Date
WO2024106966A1 true WO2024106966A1 (en) 2024-05-23

Family

ID=91084968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018431 WO2024106966A1 (en) 2022-11-16 2023-11-16 Dual photodiode radiometer

Country Status (2)

Country Link
KR (1) KR20240071738A (en)
WO (1) WO2024106966A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120089321A (en) * 2009-10-16 2012-08-09 코닌클리즈케 필립스 일렉트로닉스 엔.브이. A tunable spectral detection device for detecting spectral components received light
KR101465694B1 (en) * 2013-08-19 2014-12-01 한국표준과학연구원 UltraViolet Index Measuring Apparatus
KR20160146265A (en) * 2015-06-12 2016-12-21 한국표준과학연구원 High-accuracy Filter Radiometer
KR20170137380A (en) * 2016-06-03 2017-12-13 한국과학기술원 Sensor Module
KR20190134635A (en) * 2017-03-31 2019-12-04 하마마츠 포토닉스 가부시키가이샤 Photodetector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201319079D0 (en) 2013-10-29 2013-12-11 Univ St Andrews Random Wavelength Meter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120089321A (en) * 2009-10-16 2012-08-09 코닌클리즈케 필립스 일렉트로닉스 엔.브이. A tunable spectral detection device for detecting spectral components received light
KR101465694B1 (en) * 2013-08-19 2014-12-01 한국표준과학연구원 UltraViolet Index Measuring Apparatus
KR20160146265A (en) * 2015-06-12 2016-12-21 한국표준과학연구원 High-accuracy Filter Radiometer
KR20170137380A (en) * 2016-06-03 2017-12-13 한국과학기술원 Sensor Module
KR20190134635A (en) * 2017-03-31 2019-12-04 하마마츠 포토닉스 가부시키가이샤 Photodetector

Also Published As

Publication number Publication date
KR20240071738A (en) 2024-05-23

Similar Documents

Publication Publication Date Title
US6630999B2 (en) Color measuring sensor assembly for spectrometer devices
US6163377A (en) Colorimeter
EP0444689B1 (en) A compensation method adapted for use in color measuring apparatus
US6057925A (en) Compact spectrometer device
US7593105B2 (en) Tristimulus colorimeter having integral dye filters
CN103411676B (en) A kind of colour photometer utilizing linear variable filters to measure object color
CA2456941A1 (en) Color and intensity measuring module for test of light emitting components by automated test equipment
CN217504984U (en) Spectral sensor module and sensor device
US20060146330A1 (en) Color measurements of ambient light
WO2015046875A1 (en) Air-fuel ratio measurement system comprising optical sensor
JP2010133833A (en) Photometric device
US20100321694A1 (en) Color detector having area scaled photodetectors
WO2024106966A1 (en) Dual photodiode radiometer
US6278521B1 (en) Method of and apparatus for bispectral fluorescence colorimetry
US20120105847A1 (en) Spectrometric measurement system and method for compensating for veiling glare
JPS62185128A (en) Light and color measuring apparatus
WO2021208349A1 (en) Integrating sphere photometer spectral response measurement method and system
JP2511902B2 (en) Spectrophotometer
JPH04106430A (en) Spectrophotometric apparatus with wavelength calibrating function
CN114441038A (en) XYZ tristimulus value measuring instrument based on color sensor
RU2366909C1 (en) Multichannel device for measurement of pyrometric characteristics
WO2014129729A1 (en) Led wavelength comparator and method thereof
CN212459386U (en) Optical measuring instrument
WO2019054639A1 (en) Light measurement apparatus, system and method
JPH01143922A (en) Spectrophotometric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23892029

Country of ref document: EP

Kind code of ref document: A1