WO2024106932A1 - Binder comprising copolymer, negative electrode for secondary battery, comprising binder, and secondary battery comprising negative electrode - Google Patents

Binder comprising copolymer, negative electrode for secondary battery, comprising binder, and secondary battery comprising negative electrode Download PDF

Info

Publication number
WO2024106932A1
WO2024106932A1 PCT/KR2023/018333 KR2023018333W WO2024106932A1 WO 2024106932 A1 WO2024106932 A1 WO 2024106932A1 KR 2023018333 W KR2023018333 W KR 2023018333W WO 2024106932 A1 WO2024106932 A1 WO 2024106932A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
negative electrode
mol
weight
active material
Prior art date
Application number
PCT/KR2023/018333
Other languages
French (fr)
Korean (ko)
Inventor
김균태
박지혜
박소현
박찬수
권현지
조민기
김창범
권세만
Original Assignee
주식회사 한솔케미칼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 한솔케미칼 filed Critical 주식회사 한솔케미칼
Publication of WO2024106932A1 publication Critical patent/WO2024106932A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/08Anhydrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a copolymer that can be used as a binder, a slurry containing the same, an electrode, and a secondary battery.
  • Lithium secondary batteries have a high energy density, so they are widely used in the electrical, electronics, communications, and computer industries. Following small lithium secondary batteries for portable electronic devices, their application areas are expanding to high-capacity secondary batteries such as hybrid vehicles and electric vehicles. there is.
  • lithium secondary batteries are required to have higher capacity and longer lifespan characteristics.
  • An example of a method for increasing the capacity of lithium secondary batteries is using an active material containing silicon atoms for the negative electrode.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2013-0117901
  • the present invention provides a copolymer with excellent electrical conductivity and high stability and coating properties that improves the stability of the slurry by suppressing the generation of bubbles and gases when producing a slurry (e.g., a negative electrode slurry using a silicon negative electrode active material). There is a purpose to doing so.
  • a slurry e.g., a negative electrode slurry using a silicon negative electrode active material.
  • the present invention seeks to provide a slurry composition with excellent electrode swelling inhibition ability using the above copolymer.
  • the present invention seeks to provide an electrode (particularly a negative electrode) with excellent performance to which the slurry composition is applied and a secondary battery with excellent life characteristics (capacity retention rate) including the electrode.
  • One aspect of the present application is a product manufactured by copolymerizing and hydrolyzing an acrylate-based monomer and a vinyl acetate-based monomer.
  • a copolymer is provided.
  • Negative active material containing,
  • Another aspect of the present application is a current collector
  • a negative electrode active material layer comprising the copolymer of any one of claims 1 to 9 formed on the current collector.
  • Another aspect of the present application includes the cathode,
  • the copolymer of the present invention can improve the stability of the slurry by suppressing the generation of bubbles and gases during slurry production.
  • the lifespan characteristics (capacity maintenance rate) of a lithium secondary battery can be improved by improving the ability to suppress electrode expansion.
  • the copolymer according to one aspect of the present application may be produced by copolymerizing and hydrolyzing an acrylate-based monomer and a vinyl acetate-based monomer.
  • the hydrolysis may be alkaline hydrolysis.
  • it can be produced by copolymerizing and hydrolyzing 65 mol% or more and 99 mol% or less of the acrylate-based monomer and 1 mol% or more and 35 mol% or less of the vinyl acetate-based monomer.
  • the copolymer contains 65 mol% or more and 99 mol% or less of acrylate-based monomer units and acrylic acid-based monomer units and 1 mole, based on 100 mol% of the total copolymer weight. It may contain more than % and less than 35 mol% of vinyl acetate-based monomer units and vinyl alcohol-based monomer units.
  • the acrylic acid-based monomer unit and the vinyl alcohol-based monomer unit may exceed 0% by weight.
  • the copolymer contains 0 mol% or more and 5 mol% or less of acrylate-based monomer units and 0 mol% or more and 5 mol% or less of vinyl acetate-based units, based on 100 mol% of the total copolymer weight. It may contain monomer units.
  • the acrylate-based monomer and the vinyl acetate-based monomer may be copolymerized to form the acrylate-based monomer unit and the vinyl acetate-based monomer unit, respectively.
  • the acrylate-based monomer unit is methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, and propyl acrylate.
  • the vinyl acetate series monomer unit may be formed by polymerizing vinyl acetate.
  • vinyl acetate-based monomer units may be changed into vinyl alcohol-based monomer units by the hydrolysis.
  • acrylate-based monomer units may be changed into acrylic acid-based monomer units by the hydrolysis.
  • the degree of hydrolysis can be adjusted to, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, or 95% or more.
  • binding strength may be reduced.
  • the acrylic acid-based monomer unit exceeds or falls below the content range of the present application, it may cause polymer aggregation and precipitation or a decrease in adhesion.
  • the vinyl acetate monomer unit exceeds or falls below the content range of the present application, it may cause stability problems such as storage stability.
  • the vinyl alcohol-based monomer unit exceeds or falls below the content range of the present application, it may cause a decrease in adhesion, an increase in viscosity, and an increase in particle size.
  • the acrylic acid-based monomer unit may be combined with an alkali metal.
  • the carboxylate group of the acrylic acid-based monomer unit can be combined with an alkali metal.
  • the weight ratio of the alkali metal and the copolymer (weight of the alkali metal: weight of the copolymer) may be 0.8 to 6.5:100.
  • the binding characteristics of the binder may be reduced.
  • the binding force of the binder containing the alkali metal may be determined depending on the strength of cohesion and repulsion between elements, and the adhesion may change due to changes in the superiority or inferiority of cohesion, adhesion, and repulsion depending on the change in content.
  • the binding power of the binder can improve the lifespan characteristics of secondary batteries.
  • the copolymer of the present application improves the wettability of the copolymer by combining with an alkali metal and creating an alcohol functional group, and an anchor effect can be induced to maximize adhesion.
  • the copolymer may include a monomer repeating unit represented by the following formula (1).
  • x, y, m, and n correspond to the mole fraction of each monomer unit, and the sum of the mole fractions of each monomer unit is 1.
  • R 1 and R 3 of Formula 1 each independently include one or more selected from the group consisting of hydrogen, methyl, and ethyl, and R 2 and R 4 of Formula 1 each independently include methyl. and ethyl.
  • M in Formula 1 may be Li, Na, or K, but is not limited thereto.
  • the copolymer may be a random or block copolymer depending on the synthesis process.
  • the number average molecular weight of the copolymer may be 250,000 or more and 350,000 or less.
  • the binding strength and binding strength gradient may be reduced, and thus the binding characteristics may be reduced when used as a binder. Additionally, when applied to a secondary battery, the capacity maintenance rate of the secondary battery may decrease and the electrode expansion rate may increase, which may deteriorate the performance of the secondary battery. In addition, when applied to slurry, the amount of gas generated may increase.
  • the coverage of the negative electrode active material (for example, silicon particles) is lowered below an appropriate level or increased beyond an appropriate level.
  • the coverage of the negative electrode active material e.g., silicon particles
  • the binding force, binding force gradient, electrode expansion rate, capacity retention rate of the secondary battery, and slurry Appropriate levels can be maintained in all aspects of gas generation.
  • a negative electrode slurry according to another aspect of the present disclosure may include the above copolymer and a negative electrode active material.
  • the copolymer can be used as a binder for a negative electrode, and in particular, it can be an aqueous binder.
  • the cathode slurry of the present invention may have a pressure change of 0.15 atm or less due to gas generation after being left for 72 hours.
  • the negative electrode active material may be a compound containing one or more types selected from the group consisting of carbon-based materials, silicon, alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, transition metals, and rare earth elements, preferably silicon. Alternatively, it may be a compound containing silicon.
  • the carbon-based material includes, for example, artificial graphite, natural graphite, hard carbon, and soft carbon, but is not limited thereto.
  • the type of the negative electrode active material containing silicon is not particularly limited as long as it is silicon or a compound containing silicon, but is preferably Si, SiO x (0 ⁇ x ⁇ 2), Si-Y alloy (Y is an alkali metal , an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, a rare earth element, or a combination thereof, but not Si.) and a Si-C composite.
  • the negative electrode active material containing silicon when using a mixture of a negative electrode active material containing silicon and another negative electrode active material as the negative electrode active material, the negative electrode active material containing silicon may be included in more than 8% by weight of the total weight of the negative electrode active material.
  • the negative electrode active material may be included in an amount of 50 to 99% by weight, preferably 60 to 80% by weight, based on the total weight of the negative electrode active material layer.
  • the negative active material is included in less than 50% by weight, the energy density decreases, making it impossible to manufacture a high energy density battery, and if it is included in more than 99% by weight, the content of the conductive material and binder decreases, resulting in a decrease in electrical conductivity.
  • the adhesion between the electrode active material layer and the current collector may decrease.
  • the copolymer of the present application may be included in an amount of 2% by weight or more and 5% by weight or less based on the solid content of the anode slurry. If the copolymer is less than 2% by weight, the physical properties of the negative electrode may deteriorate and the negative electrode active material and the conductive material may fall off, and if the copolymer exceeds 5% by weight, the ratio of the negative electrode active material and the conductive material may be relatively reduced, resulting in a decrease in battery capacity. , the electrical conductivity of the cathode may decrease.
  • the negative electrode slurry may include an additional polymer in addition to the copolymer composition of the present application.
  • the polymer specifically includes, for example, polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyacrylic acid (PAA), polyacrylic acid metal salt (Metal-PAA), polymethacrylic acid (PMA), and polymethyl methacrylate.
  • PMMA polyacrylamide
  • PAM polymethacrylamide
  • PAN polyacrylonitrile
  • PI polyimide
  • chitosan Chosan
  • starch polyvinylpyrrolidone, Tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluoroelastomer, hydroxypropylcellulose, regenerated cellulose and various copolymers thereof, etc. Examples include, but are not limited to.
  • a negative electrode according to another aspect of the present application may include a current collector and a negative electrode active material layer including the copolymer of the present application formed on the current collector.
  • the binding force and binding force gradient of the cathode of the present invention may be 7.5 to 9.5 gf/cm and 75 to 79%, respectively.
  • the negative electrode active material layer may additionally include a conductive material.
  • the conductive material is used to further improve the conductivity of the negative electrode active material.
  • These conductive materials are not particularly limited as long as they have conductivity without causing chemical changes in the battery, and examples include graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives, etc. may be used.
  • the conductive material may be included in an amount of 0.5 to 30% by weight, preferably 15 to 25% by weight, based on the total weight of the negative electrode active material layer. If the conductive material is included in less than 0.5% by weight, the electrical conductivity of the cathode is lowered. If it is contained in excess of 30% by weight, the ratio of the silicon-based negative active material to the binder is relatively reduced, thereby reducing battery capacity. Since the content of the binder must be increased to maintain the negative electrode active material layer, the content of the negative electrode active material is reduced, resulting in high energy density. batteries cannot be manufactured.
  • the negative electrode active material layer includes the copolymer of the present application, which can suppress the volume expansion of the negative electrode active material that occurs during charging and discharging of the secondary battery, improve initial efficiency and capacity maintenance per cycle, and lower electrical resistance. You can.
  • the negative electrode includes the steps of (a) preparing a composition for forming a negative electrode active material layer containing a negative electrode active material and the copolymer composition of the present application, and (b) applying the composition for forming a negative electrode active material layer on a negative electrode current collector and then drying it. It can be manufactured through
  • the composition for forming the negative electrode active material layer is manufactured in a negative electrode slurry state, and the solvent for preparing the slurry state must be easy to dry, and can well dissolve the binder of the copolymer composition of the present application, but does not dissolve the negative electrode active material and is in a dispersed state. It is most desirable to be able to maintain it.
  • the solvent according to the present application can be water or an organic solvent, and the organic solvent is at least one selected from the group consisting of methylpyrrolidone, dimethylformamide, isopropyl alcohol, acetonitrile, methanol, ethanol, and tetrahydrofuran.
  • Organic solvents containing are applicable.
  • composition for forming the negative electrode active material layer can be mixed in a conventional manner using a conventional mixer, such as a rate mixer, a high-speed shear mixer, or a homomixer.
  • a conventional mixer such as a rate mixer, a high-speed shear mixer, or a homomixer.
  • Step (b) is a step of manufacturing a negative electrode for a lithium secondary battery by applying the composition for forming a negative electrode active material layer prepared in step (a) on the negative electrode current collector and drying it.
  • the negative electrode current collector may be specifically selected from the group consisting of copper, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof.
  • the stainless steel may be surface treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy.
  • calcined carbon, a non-conductive polymer surface-treated with a conductive material, or a conductive polymer may be used.
  • the composition for forming the negative electrode active material layer prepared in step (a) is applied on the negative electrode current collector, and can be coated on the current collector with an appropriate thickness depending on the thickness to be formed, preferably within the range of 10 to 300 ⁇ m. You can choose.
  • the method of applying the composition for forming the negative electrode active material layer in the slurry form is not limited, for example, doctor blade coating, dip coating, gravure coating, slit die coating ( Slit die coating, spin coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating method, etc. It can be manufactured by performing.
  • a negative electrode for a secondary battery (particularly a lithium secondary battery) with a negative electrode active material layer finally formed can be manufactured.
  • a battery according to another aspect of the present disclosure may include a current collector and a negative electrode in which the negative electrode active material layer is formed on the current collector.
  • the battery may be a secondary battery (particularly, a lithium secondary battery) including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution.
  • a secondary battery particularly, a lithium secondary battery
  • the initial efficiency of the secondary battery may be 80% or more, and the electrical resistance may be 0.02 ⁇ or less.
  • the capacity retention rate may be 80% or more and the expansion rate of the negative electrode may be 33% or less.
  • composition of the positive electrode, separator, and electrolyte of the lithium secondary battery is not particularly limited in the present invention and follows what is known in the field.
  • the positive electrode includes a positive electrode active material formed on the positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon or nickel on the surface of aluminum or stainless steel. , titanium, silver, etc. can be used.
  • the positive electrode current collector can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics with fine irregularities formed on the surface to increase adhesion with the positive electrode active material.
  • the cathode active material constituting the cathode active material layer can be any cathode active material available in the art.
  • the positive electrode active material layer may further include a binder, a conductive material, a filler, and other additives in addition to the positive electrode active material, and the conductive material is the same as that described above for the negative electrode for a lithium secondary battery.
  • the binder is polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyacrylic acid (PAA), polymethacrylic acid (PMA), polymethyl methacrylate (PMMA), polyacrylamide (PAM), Polymethacrylamide, polyacrylonitrile (PAN), polymethacrylonitrile, polyimide (PI), chitosan, starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene , polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluorine rubber, and various copolymers thereof, but are not limited thereto.
  • PVDF polyvinylidene fluoride
  • PVA polyvinyl alcohol
  • PAA polyacrylic acid
  • PMA polymethacrylic acid
  • PMA polymethyl methacrylate
  • the separator may be made of a porous substrate. Any porous substrate commonly used in electrochemical devices can be used. For example, a polyolefin-based porous membrane or non-woven fabric may be used, but it is not specifically limited thereto. That is not the case.
  • the separator is made of polyethylene, polypropylene, polybutylene, polypentene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, It may be a porous substrate made of any one selected from the group consisting of polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalate, or a mixture of two or more of these.
  • the electrolyte solution of the lithium secondary battery is a non-aqueous electrolyte containing a lithium salt and is composed of a lithium salt and a solvent.
  • the solvent used includes a non-aqueous organic solvent, an organic solid electrolyte, and an inorganic solid electrolyte.
  • the lithium salt is a material that is easily soluble in the non-aqueous electrolyte solution, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSCN, LiC 4 BO 8 , LiCF 3 CO 2 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 F) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiC(CF 3 SO 2 ) 3 , (CF 3 SO 2 ) ⁇ 2NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenyl borate imide, etc. may be used.
  • Non-aqueous organic solvents include, for example, N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, gamma-butyrolactone, 1,2 -Dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, 4-methyl-1,3-dioxene, Diethyl ether, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxy methane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3- Aprotic organic solvents such as dimethyl-2-imidazolidinone, propylene
  • the organic solid electrolyte includes, for example, polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, Polymers containing secondary dissociation groups, etc. may be used.
  • Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitride, halide, sulfate, etc. of Li such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 may be used.
  • non-aqueous electrolyte may further contain other additives for the purpose of improving charge/discharge characteristics, flame retardancy, etc.
  • additives include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivatives, sulfur, quinone imine dye, N-substituted oxazolyl.
  • the lithium secondary battery according to the present invention is capable of lamination stacking and folding processes of separators and electrodes in addition to the general winding process.
  • the battery case may be cylindrical, prismatic, pouch-shaped, or coin-shaped.
  • the precipitated hydrolyzate was dissolved in distilled water, heated to 80°C, stirred and stripped for 8 hours to prepare a copolymer for a negative electrode binder.
  • An anode slurry was prepared by mixing 53.2 g of artificial graphite as an electrode active material, 13.3 g of a Si active material, and the anode binder prepared in Preparation Example 1 with distilled water.
  • the prepared negative electrode slurry was uniformly applied on a copper current collector, dried at 110°C, rolled, and vacuum dried in a vacuum oven at 110°C for more than 4 hours to prepare a negative electrode.
  • a non-aqueous electrolyte containing lithium salt was used as an electrolyte, a polyolefin separator was interposed between the positive electrode and the negative electrode, and a lithium secondary battery was manufactured without distinguishing the form into a pouch or coin cell type.
  • non-aqueous electrolyte 5% by weight FEC and 1% by weight LiPO 2 F 2 were added to a solvent in which ethylene carbonate: ethylmethyl carbonate: diethyl carbonate was mixed at a volume ratio of 2:1:7, and LiPF 6 electrolyte was added at 1.5 M. It was used dissolved at a concentration of .
  • a copolymer for a negative electrode binder with a number average molecular weight of 340,000 was prepared according to Preparation Example 1, and then a copolymer for a negative electrode binder was prepared according to Preparation Example 2, containing 3.5 g based on solid content.
  • a negative electrode slurry, negative electrode, and lithium secondary battery were prepared.
  • a copolymer for a negative electrode binder having a number average molecular weight of 280,000 was prepared according to Preparation Example 1, and then, according to Preparation Example 2, a copolymer for a negative electrode binder was prepared in an amount of 3.5 g based on solid content.
  • the included negative electrode slurry, negative electrode, and lithium secondary battery were manufactured.
  • the negative electrode slurry, negative electrode, and lithium secondary battery were prepared in the same manner as Example 1, except that 1.4 g of a copolymer for a negative electrode binder (number average molecular weight: 340,000) was included based on solid content. .
  • the negative electrode slurry, negative electrode, and lithium secondary battery were prepared in the same manner as Example 1, except that 2.45 g of a copolymer for a negative electrode binder (number average molecular weight: 340,000) was included based on solid content. .
  • a copolymer for a negative electrode binder with a number average molecular weight of 240,000 was prepared according to Preparation Example 1, and then a copolymer for a negative electrode binder was prepared according to Preparation Example 2, including 3.5 g based on solid content.
  • a negative electrode slurry, negative electrode, and lithium secondary battery were prepared.
  • a copolymer for a negative electrode binder with a number average molecular weight of 140,000 was prepared according to Preparation Example 1, and then according to Preparation Example 2, the copolymer for a negative electrode binder was mixed with 3.5 g of solid content.
  • a negative electrode slurry, negative electrode, and lithium secondary battery were prepared.
  • a copolymer for a negative electrode binder with a number average molecular weight of 410,000 was prepared according to Preparation Example 1, and then a copolymer for a negative electrode binder was prepared according to Preparation Example 2, containing 3.5 g of solid content.
  • a negative electrode slurry, negative electrode, and lithium secondary battery were prepared.
  • the number average molecular weight of the copolymers for negative electrode binders of Examples 1 and 2 and Comparative Examples 1 to 5 was measured by gel filtration chromatography (GFC) using water as a solvent.
  • the adhesion gradient of the negative electrodes prepared in Examples 1 and 2 and Comparative Examples 1 to 5 was measured using a surface and interfacial cutting analysis system (SAICAS).
  • SAICAS surface and interfacial cutting analysis system
  • the bond strength was measured at 30% depth and 90% depth from the surface of the cathode (composite layer), and then the gap gap gradient was calculated according to Equation 1 below.
  • Cohesion gradient [%] (Cohesion strength at 90% depth from the surface of the composite layer/Cohesion strength at 30% depth from the surface of the composite layer) ⁇ 100
  • the lithium secondary batteries prepared in Examples 1 and 2 and Comparative Examples 1 to 5 were charged and discharged three times at 25°C with a charge/discharge current density of 0.1C, a charge end voltage of 4.8V, and a discharge end voltage of 2.7V. did.
  • charge and discharge were performed 300 times at a charge/discharge current density of 1C, a charge end voltage of 4.8V, and a discharge end voltage of 2.7V, and the capacity retention rate was measured.
  • the capacity retention rate and electrode expansion rate were calculated according to the following equations 2 and 3, respectively.
  • Capacity maintenance rate (%) (Discharge capacity after 300 cycles / Discharge capacity after the initial 3 cycles) ⁇ 100
  • Electrode expansion rate (%) [(Cathode thickness after 300 cycles - Initial cathode thickness after vacuum drying) / Initial cathode thickness after vacuum drying] ⁇ 100
  • Example 2 8.0 75 81 33 0.12 Comparative Example 1 6.4 66 75 51 0.45 Comparative example 2 7.2 72 80 45 0.26 Comparative example 3 4.2 68 76 49 0.50 Comparative example 4 6.0 73 81 38 0.28 Comparative Example 5 9.8 80 79 35 0.18
  • the bonding force of the negative electrodes prepared in Examples 1 and 2 was measured to be 8.0 to 8.4 gf/cm, and the bonding force gradient was measured to be 75 to 77%.
  • the capacity retention rate of the lithium secondary batteries manufactured in Examples 1 and 2 was measured to be 81 to 83%, and the electrode expansion rate was measured to be 30 to 33%.
  • Example 1 In comparison, the same copolymer for the negative electrode binder as in Example 1 is used, but when producing the negative electrode slurry, the content of the copolymer for the negative electrode binder is lowered compared to Example 1 so as to exceed or fall below the range of the content of the copolymer of the present application.
  • Comparative Examples 1 and 2 the bonding force and bonding force gradient of the negative electrode were lowered compared to Example 1, resulting in a decrease in bonding characteristics, and the capacity retention rate of the secondary battery decreased and the electrode expansion rate increased, resulting in a decrease in the performance of the secondary battery cell. .
  • the measured pressure value increased.
  • the copolymer of the present invention can improve the stability of the slurry by suppressing the generation of bubbles and gases during slurry production. Additionally, the lifespan characteristics (capacity maintenance rate) of a lithium secondary battery can be improved by improving the ability to suppress electrode expansion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention relates to a copolymer prepared by copolymerizing and hydrolyzing an acrylate-based monomer and a vinyl acetate-based monomer, and a negative electrode slurry, negative electrode, and secondary battery comprising same.

Description

공중합체를 포함하는 바인더, 상기 바인더를 포함하는 이차전지용 음극 및 상기 음극을 포함하는 이차전지A binder containing a copolymer, a negative electrode for a secondary battery containing the binder, and a secondary battery containing the negative electrode.
본 발명은 바인더로 사용될 수 있는 공중합체와 이를 포함하는 슬러리, 전극 및 이차전지에 관한 것이다.The present invention relates to a copolymer that can be used as a binder, a slurry containing the same, an electrode, and a secondary battery.
리튬 이차전지는 에너지 밀도가 높아서 전기, 전자, 통신 및 컴퓨터 산업분야에 광범위하게 사용되고 있으며, 휴대 전자기기용 소형 리튬 이차전지에 이어 하이브리드 자동차, 전기 자동차 등 고용량 이차전지 등으로도 그 응용분야가 확대되고 있다.Lithium secondary batteries have a high energy density, so they are widely used in the electrical, electronics, communications, and computer industries. Following small lithium secondary batteries for portable electronic devices, their application areas are expanding to high-capacity secondary batteries such as hybrid vehicles and electric vehicles. there is.
응용 분야의 확대에 따라서, 리튬 이차전지의 고용량화와 함께 장수명 특성도 요구되고 있다. 리튬 이차전지의 고용량화를 위한 방법의 한 예로, 규소 원자를 함유하는 활물질을 음극에 이용하는 것을 들 수 있다. As the field of application expands, lithium secondary batteries are required to have higher capacity and longer lifespan characteristics. An example of a method for increasing the capacity of lithium secondary batteries is using an active material containing silicon atoms for the negative electrode.
종래의 탄소계 활물질에 비해 리튬 삽/탈입 양이 많은 규소 원자를 함유하는 활물질을 적용하는 경우 전지 용량의 향상을 기대할 수 있다. 다만, 규소 함유 활물질은 리튬 삽/탈입에 수반하는 체적변화가 크기 때문에, 충방전시에 음극 활물질층이 크게 팽창 수축한다. When an active material containing silicon atoms with a large amount of lithium insertion/extraction is applied compared to conventional carbon-based active materials, improvement in battery capacity can be expected. However, since the silicon-containing active material has a large volume change accompanying lithium insertion/extraction, the negative electrode active material layer expands and contracts significantly during charging and discharging.
그 결과, 음극 활물질-음극 활물질간의 전도성이 저하되거나, 음극 활물질-집전체간의 도전 패스의 차단이 일어나고, 이차전지의 사이클 특성이 악화되는 문제가 있었다. As a result, there was a problem that the conductivity between the negative electrode active material and the negative electrode active material was lowered, the conductive path between the negative electrode active material and the current collector was blocked, and the cycle characteristics of the secondary battery deteriorated.
또한, 음극 활물질로 실리콘을 적용한 음극 슬러리 제조시 염기성이 강한 바인더를 적용할 경우 슬러리 내에서 기포 및 가스가 발생할 수 있다. Additionally, when a highly basic binder is used when manufacturing a negative electrode slurry using silicon as the negative electrode active material, bubbles and gas may be generated within the slurry.
이러한 기포 및 가스의 발생은 실리콘이 물과 만나면 산화되어 수소(H2)가 발생하기 때문인데, 특히 수소의 발생은 염기에 의해 촉진될 수 있다. 한편, 발생한 기포 및 가스는 슬러리의 안정성을 크게 저하시키는 동시에 전극 공정에서의 코팅 불량을 야기할 수 있다. The generation of these bubbles and gases is because silicon is oxidized when it meets water and hydrogen (H 2 ) is generated. In particular, the generation of hydrogen can be promoted by a base. Meanwhile, generated bubbles and gases can significantly reduce the stability of the slurry and cause coating defects in the electrode process.
따라서, 이러한 문제를 해결하여 우수한 특성의 이차전지의 확보가 가능한 바인더가 요구되고 있다.Therefore, there is a need for a binder that can solve these problems and secure secondary batteries with excellent characteristics.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
(특허문헌 1) 대한민국 공개특허공보 제10-2013-0117901호(Patent Document 1) Republic of Korea Patent Publication No. 10-2013-0117901
이에 본 발명은 슬러리(예를 들어, 실리콘 음극 활물질을 사용하는 음극 슬러리) 제조시, 기포 및 가스 발생을 억제하여 슬러리의 안정성을 향상시키는 전기 전도성이 우수하고 안정성 및 코팅성이 높은 공중합체를 제공하는데 그 목적이 있다. Accordingly, the present invention provides a copolymer with excellent electrical conductivity and high stability and coating properties that improves the stability of the slurry by suppressing the generation of bubbles and gases when producing a slurry (e.g., a negative electrode slurry using a silicon negative electrode active material). There is a purpose to doing so.
또한, 본 발명은 상기 공중합체를 사용하여 전극 팽창 억제 능력이 우수한 슬러리 조성물을 제공하고자 한다.In addition, the present invention seeks to provide a slurry composition with excellent electrode swelling inhibition ability using the above copolymer.
더불어, 본 발명은 상기 슬러리 조성물이 적용된 우수한 성능의 전극(특히, 음극) 및 상기 전극을 포함하는 수명 특성(용량 유지율)이 우수한 이차전지를 제공하고자 한다.In addition, the present invention seeks to provide an electrode (particularly a negative electrode) with excellent performance to which the slurry composition is applied and a secondary battery with excellent life characteristics (capacity retention rate) including the electrode.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problem to be solved by the present application is not limited to the problems mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the description below.
본원의 일 측면은, 아크릴레이트 계열의 단량체 및 비닐 아세테이트 계열의 단량체를 공중합하고 가수분해하여 제조한,One aspect of the present application is a product manufactured by copolymerizing and hydrolyzing an acrylate-based monomer and a vinyl acetate-based monomer.
공중합체를 제공한다.A copolymer is provided.
본원의 다른 측면은, 상기 공중합체; 및Another aspect of the present application is the copolymer; and
음극 활물질;을 포함하는,Negative active material; containing,
음극 슬러리를 제공한다.Provide a cathode slurry.
본원의 또 다른 측면은, 집전체; 및Another aspect of the present application is a current collector; and
상기 집전체 상에 형성된 제1항 내지 제9항 중 어느 한 항의 공중합체 를 포함하는 음극 활물질층;을 포함하는,A negative electrode active material layer comprising the copolymer of any one of claims 1 to 9 formed on the current collector.
음극을 제공한다.Provides a cathode.
본원의 또 다른 측면은, 상기 음극을 포함하는,Another aspect of the present application includes the cathode,
이차전지를 제공한다.Secondary batteries are provided.
본 발명의 공중합체는 슬러리 제조시, 기포 및 가스 발생을 억제하여 슬러리의 안정성을 향상시킬 수 있다. 또한, 전극 팽창 억제 능력을 개선하여 리튬 이차 전지의 수명 특성(용량 유지율)을 향상시킬 수 있다.The copolymer of the present invention can improve the stability of the slurry by suppressing the generation of bubbles and gases during slurry production. In addition, the lifespan characteristics (capacity maintenance rate) of a lithium secondary battery can be improved by improving the ability to suppress electrode expansion.
이하, 발명의 구체적인 실시예를 통해, 발명의 작용 및 효과를 보다 상술하기로 한다. 다만, 이러한 실시예는 발명의 예시로 제시된 것에 불과하며, 이에 의해 발명의 권리범위가 정해지는 것은 아니다.Hereinafter, the operation and effects of the invention will be described in more detail through specific examples of the invention. However, these examples are merely presented as examples of the invention, and the scope of the invention is not determined by them.
이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, the terms or words used in this specification and claims should not be construed as limited to their usual or dictionary meanings, and the inventor should appropriately define the concept of terms in order to explain his or her invention in the best way. It must be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle of definability.
따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 하나의 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 존재할 수 있음을 이해하여야 한다.Therefore, the configuration of the embodiments described in this specification is only one of the most preferred embodiments of the present invention and does not represent the entire technical idea of the present invention, so various equivalents and modifications that can replace them at the time of filing the present application It should be understood that examples may exist.
본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this specification, singular expressions include plural expressions, unless the context clearly dictates otherwise. In this specification, terms such as “comprise,” “comprise,” or “have” are intended to designate the presence of implemented features, numbers, steps, components, or a combination thereof, and are intended to indicate the presence of one or more other features or It should be understood that this does not exclude in advance the possibility of the presence or addition of numbers, steps, components, or combinations thereof.
본 명세서에서 수치범위를 나타내는 "a 내지 b" 및 "a~b"에서 "내지" 및 “~”는 ≥ a이고 ≤ b으로 정의한다.In this specification, “a to b” and “a to b” that indicate numerical ranges, “to” and “~” are defined as ≥ a and ≤ b.
본원의 일 측면에 따른 공중합체는 아크릴레이트(acrylate) 계열의 단량체 및 비닐 아세테이트(vinyl acetate) 계열의 단량체를 공중합하고 가수분해하여 제조될 수 있다.The copolymer according to one aspect of the present application may be produced by copolymerizing and hydrolyzing an acrylate-based monomer and a vinyl acetate-based monomer.
상기 가수분해는 알칼리 가수분해(alkaline hydrolysis)일 수 있다.The hydrolysis may be alkaline hydrolysis.
일 구현예에 있어서, 65몰% 이상, 99몰% 이하의 상기 아크릴레이트 계열의 단량체 및 1 몰% 이상, 35 몰% 이하의 상기 비닐 아세테이트 계열의 단량체를 공중합하고 가수분해하여 제조될 수 있다.In one embodiment, it can be produced by copolymerizing and hydrolyzing 65 mol% or more and 99 mol% or less of the acrylate-based monomer and 1 mol% or more and 35 mol% or less of the vinyl acetate-based monomer.
일 구현예에 있어서, 상기 공중합체는 전체 공중합체 중량 100 몰%를 기준으로, 65몰% 이상, 99몰% 이하의 아크릴레이트 계열의 단량체 단위 및 아크릴산(acrylic acid) 계열의 단량체 단위 및 1 몰% 이상, 35 몰% 이하의 비닐 아세테이트 계열의 단량체 단위와 비닐 알코올(vinyl alcohol) 계열의 단량체 단위를 포함할 수 있다.In one embodiment, the copolymer contains 65 mol% or more and 99 mol% or less of acrylate-based monomer units and acrylic acid-based monomer units and 1 mole, based on 100 mol% of the total copolymer weight. It may contain more than % and less than 35 mol% of vinyl acetate-based monomer units and vinyl alcohol-based monomer units.
한편, 상기 아크릴산 계열의 단량체 단위 및 비닐 알코올 계열의 단량체 단위는 0 중량%를 초과할 수 있다.Meanwhile, the acrylic acid-based monomer unit and the vinyl alcohol-based monomer unit may exceed 0% by weight.
예를 들어, 상기 공중합체는 전체 공중합체 중량 100 몰%를 기준으로, 0 몰% 이상, 5 몰% 이하의 아크릴레이트 계열의 단량체 단위 및 0 몰% 이상, 5 몰% 이하의 비닐 아세테이트 계열의 단량체 단위를 포함할 수 있다.For example, the copolymer contains 0 mol% or more and 5 mol% or less of acrylate-based monomer units and 0 mol% or more and 5 mol% or less of vinyl acetate-based units, based on 100 mol% of the total copolymer weight. It may contain monomer units.
즉, 상기 아크릴레이트 계열의 단량체 및 상기 비닐 아세테이트 계열의 단량체는 각각 공중합되어 각각 상기 아크릴레이트 계열의 단량체 단위 및 상기 비닐 아세테이트 계열의 단량체 단위를 형성할 수 있다.That is, the acrylate-based monomer and the vinyl acetate-based monomer may be copolymerized to form the acrylate-based monomer unit and the vinyl acetate-based monomer unit, respectively.
일 구현예에 있어서, 상기 아크릴레이트 계열의 단량체 단위는 메틸 아크릴레이트(methyl acrylate), 메틸 메타크릴레이트(methyl methacrylate), 에틸 아크릴레이트(ethyl acrylate), 에틸 메타크릴레이트(ethyl methacrylate), 프로필 아크릴레이트(propyl acrylate), 프로필 메타크릴레이트(propyl methacrylate), 이소프로필 아크릴레이트(isopropyl acrylate), 이소프로필 메타크릴레이트(isopropyl methacrylate), 부틸 아크릴레이트(butyl acrylate), 부틸 메타크릴레이트(butyl methacrylate), sec-부틸 아크릴레이트(sec-butyl acrylate), sec-부틸 메타크릴레이트(sec-butyl methacrylate), tert-부틸 아크릴레이트(tert-butyl acrylate), tert-부틸 메타크릴레이트(tert-butyl methacrylate), 에틸헥실 아크릴레이트(ethyl hexyl acrylate), 에틸헥실 메타크릴레이트(ethyl hexyl methacrylate), 라우릴 아크릴레이트(lauryl acrylate), 라우릴 메타크릴레이트(lauryl methacrylate), 스티어릴 아크릴레이트(stearyl acrylate) 및 스티어릴 메타크릴레이트(stearyl methacrylate)로 이루어진 그룹에서 선택된 1종 이상이 중합되어 형성될 수 있다.In one embodiment, the acrylate-based monomer unit is methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, and propyl acrylate. propyl acrylate, propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, butyl acrylate, butyl methacrylate , sec-butyl acrylate, sec-butyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate , ethyl hexyl acrylate, ethyl hexyl methacrylate, lauryl acrylate, lauryl methacrylate, stearyl acrylate, and It may be formed by polymerizing one or more types selected from the group consisting of steeryl methacrylate.
또한, 상기 비닐아세테이트 계열의 단량체 단위는 비닐아세테이트(vinyl acetate)가 중합되어 형성될 수 있다.Additionally, the vinyl acetate series monomer unit may be formed by polymerizing vinyl acetate.
한편, 상기 가수 분해에 의해서 상기 비닐 아세테이트 계열의 단량체 단위 중 일부는 비닐 알코올 계열의 단량체 단위로 바뀔 수 있다.Meanwhile, some of the vinyl acetate-based monomer units may be changed into vinyl alcohol-based monomer units by the hydrolysis.
또한, 상기 가수 분해에 의해서 상기 아크릴레이트 계열의 단량체 단위 중 일부는 아크릴산 계열의 단량체 단위로 바뀔 수 있다.Additionally, some of the acrylate-based monomer units may be changed into acrylic acid-based monomer units by the hydrolysis.
상기 가수 분해의 정도는 예를 들어 70 % 이상, 75 % 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상으로 조절될 수 있다.The degree of hydrolysis can be adjusted to, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, or 95% or more.
이는 예를 들어, 상기 비닐 아세테이트 계열의 단량체 단위의 70 % 이상, 75 % 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상이 상기 비닐 알코올 계열의 단량체 단위로 변경될 수 있다는 의미이다.This means, for example, that more than 70%, more than 75%, more than 80%, more than 85%, more than 90%, more than 95% of the monomer units of the vinyl acetate series can be changed to monomer units of the vinyl alcohol series. am.
또한, 예를 들어, 상기 아크릴레이트 계열의 단량체 단위의 70 % 이상, 75 % 이상, 80% 이상, 85% 이상, 90% 이상, 95% 이상이 상기 아크릴산 계열의 단량체 단위로 변경될 수 있다는 의미이다.In addition, for example, it means that at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% of the acrylate-based monomer units can be changed to the acrylic acid-based monomer units. am.
상기 아크릴레이트 계열의 단량체 단위가 본원의 함량 범위를 상회하거나 하회하면 결착력 저하를 야기시킬 수 있다.If the acrylate-based monomer unit exceeds or falls below the content range of the present application, binding strength may be reduced.
상기 아크릴산 계열의 단량체 단위가 본원의 함량 범위를 상회하거나 하회하면 고분자 응집 및 석출 또는 접착력 저하를 야기시킬 수 있다.If the acrylic acid-based monomer unit exceeds or falls below the content range of the present application, it may cause polymer aggregation and precipitation or a decrease in adhesion.
상기 비닐아세테이트 단량체 단위가 본원의 함량 범위를 상회하거나 하회하면 저장 안정성 등의 안정성 문제를 유발할 수 있다.If the vinyl acetate monomer unit exceeds or falls below the content range of the present application, it may cause stability problems such as storage stability.
상기 비닐 알코올 계열의 단량체 단위가 본원의 함량 범위를 상회하거나 하회하면 접착력 저하, 점도 상승 및 입도 상승 등을 유발할 수 있다.If the vinyl alcohol-based monomer unit exceeds or falls below the content range of the present application, it may cause a decrease in adhesion, an increase in viscosity, and an increase in particle size.
일 구현예에 있어서, 상기 아크릴산 계열의 단량체 단위는 알칼리 금속과 결합될 수 있다.In one embodiment, the acrylic acid-based monomer unit may be combined with an alkali metal.
즉, 상기 아크릴산 계열의 단량체 단위의 카르복실레이트(carboxylate)기가 알칼리 금속과 결합될 수 있다,That is, the carboxylate group of the acrylic acid-based monomer unit can be combined with an alkali metal.
한편, 상기 알칼리 금속과 상기 공중합체의 중량비(상기 알칼리 금속의 중량: 상기 공중합체의 중량)은 0.8~6.5:100일 수 있다.Meanwhile, the weight ratio of the alkali metal and the copolymer (weight of the alkali metal: weight of the copolymer) may be 0.8 to 6.5:100.
상기 알칼리 금속과 상기 공중합체의 중량비가 본원의 중량비를 상회하거나 하회하는 경우, 바인더의 결착 특성이 저하될 수 있다. If the weight ratio of the alkali metal and the copolymer exceeds or falls below the weight ratio of the present application, the binding characteristics of the binder may be reduced.
상기 알칼리 금속이 포함되어 있는 바인더의 결착력은 원소 간의 응집력 및 반발력 등의 강도에 따라 결정될 수 있으며, 함량의 변화에 따라서 응집력과 접착력, 반발력의 우열의 변화로 접착력이 변화할 수 있다. The binding force of the binder containing the alkali metal may be determined depending on the strength of cohesion and repulsion between elements, and the adhesion may change due to changes in the superiority or inferiority of cohesion, adhesion, and repulsion depending on the change in content.
바인더의 결착력은 이차전지의 수명 특성을 향상시킬 수 있다.The binding power of the binder can improve the lifespan characteristics of secondary batteries.
본원의 공중합체는 알칼리 금속과 결합 및 알코올 작용기의 생성에 의해서 공중합체의 젖음성이 향상되고, 앵커 효과가 유발되어 접착력을 극대화시킬 수 있다. The copolymer of the present application improves the wettability of the copolymer by combining with an alkali metal and creating an alcohol functional group, and an anchor effect can be induced to maximize adhesion.
일 구현예에 있어서, 상기 공중합체는 하기 화학식 1로 표시되는 단량체 반복 단위를 포함할 수 있다.In one embodiment, the copolymer may include a monomer repeating unit represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2023018333-appb-img-000001
Figure PCTKR2023018333-appb-img-000001
상기 화학식 1에서, In Formula 1,
R1 및 R3는 각각 독립적으로 수소, 탄소수 1 내지 4의 선형 또는 분지형 탄화수소, 또는 이들의 조합이고, R2 및 R4는 각각 독립적으로 탄소수 1 내지 3의 선형 또는 분지형 탄화수소이며, R5는 -OH이고, M은 알칼리 금속이며, x+y+m+n=1일 수 있다. R 1 and R 3 are each independently hydrogen, a linear or branched hydrocarbon having 1 to 4 carbon atoms, or a combination thereof, R 2 and R 4 are each independently a linear or branched hydrocarbon having 1 to 3 carbon atoms, R 5 is -OH, M is an alkali metal, and x+y+m+n=1.
상기 화학식 1의 x, y, m 및 n은 각 단량체 단위의 몰 분율에 해당하고, 각 단량체 단위의 몰 분율의 합은 1이 된다.In Formula 1, x, y, m, and n correspond to the mole fraction of each monomer unit, and the sum of the mole fractions of each monomer unit is 1.
일 구현예에 있어서, 상기 화학식 1의 R1 및 R3는 각각 독립적으로 수소, 메틸 및 에틸로 이루어진 그룹에서 선택된 어느 하나 이상을 포함하고, 상기 화학식 1의 R2 및 R4는 각각 독립적으로 메틸 및 에틸로 이루어진 그룹에서 선택된 어느 하나 이상을 포함할 수 있다.In one embodiment, R 1 and R 3 of Formula 1 each independently include one or more selected from the group consisting of hydrogen, methyl, and ethyl, and R 2 and R 4 of Formula 1 each independently include methyl. and ethyl.
한편, 상기 화학식 1의 M은 Li, Na 또는 K일 수 있으나, 이에 제한되지 않는다.Meanwhile, M in Formula 1 may be Li, Na, or K, but is not limited thereto.
일 구현예에 있어서, 상기 공중합체는 합성 공정에 따라서 랜덤 또는 블록 공중합체일 수 있다.In one embodiment, the copolymer may be a random or block copolymer depending on the synthesis process.
일 구현예에 있어서, 상기 공중합체의 수평균분자량은 250,000 이상, 350,000 이하일 수 있다.In one embodiment, the number average molecular weight of the copolymer may be 250,000 or more and 350,000 or less.
상기 공중합체의 수평균분자량이 본원의 범위를 상회하거나 하회하면, 결착력 및 결착력 구배가 저하될 수 있어서 바인더로 사용시 결착 특성이 저하될 수 있다. 또한, 이차전지에 적용시 이차전지의 용량 유지율이 저하될 수 있고, 전극 팽창율은 높아질 수 있어서, 이차전지 전지의 성능이 저하될 수 있다. 이 외에도, 슬러리에 적용 시, 가스 발생량이 많아질 수 있다.If the number average molecular weight of the copolymer is above or below the range specified herein, the binding strength and binding strength gradient may be reduced, and thus the binding characteristics may be reduced when used as a binder. Additionally, when applied to a secondary battery, the capacity maintenance rate of the secondary battery may decrease and the electrode expansion rate may increase, which may deteriorate the performance of the secondary battery. In addition, when applied to slurry, the amount of gas generated may increase.
이는 본원의 공중합체의 수평균분자량의 범위를 벗어나면, 음극 활물질(예를 들어 실리콘 입자)을 감싸는 정도(coverage)가 적절 수준 미만으로 낮아지거나, 적절 수준을 초과하여 높아지기 떄문이다.This is because if the number average molecular weight of the copolymer of the present application is outside the range, the coverage of the negative electrode active material (for example, silicon particles) is lowered below an appropriate level or increased beyond an appropriate level.
즉, 본원의 적절한 공중합체의 수평균분자량의 범위 내에서만, 음극 활물질(예를 들어 실리콘 입자)을 감싸는 정도(coverage)가 적절하여, 결착력, 결착력 구배, 전극 팽창율, 이차전지의 용량 유지율 및 슬러리 가스 발생량의 모든 측면에서 적절한 수준을 유지할 수 있다.That is, only within the range of the number average molecular weight of the appropriate copolymer of the present application, the coverage of the negative electrode active material (e.g., silicon particles) is appropriate, and the binding force, binding force gradient, electrode expansion rate, capacity retention rate of the secondary battery, and slurry Appropriate levels can be maintained in all aspects of gas generation.
본원의 또 다른 측면에 따른 음극 슬러리는 상기 공중합체 및 음극 활물질을 포함할 수 있다.A negative electrode slurry according to another aspect of the present disclosure may include the above copolymer and a negative electrode active material.
즉, 상기 공중합체는 음극용 바인더로 사용될 수 있고, 특히 수계 바인더일 수 있다.That is, the copolymer can be used as a binder for a negative electrode, and in particular, it can be an aqueous binder.
본원의 음극 슬러리는 72시간 방치 후 가스 발생에 의한 압력의 변화가 0.15 atm 이하일 수 있다.The cathode slurry of the present invention may have a pressure change of 0.15 atm or less due to gas generation after being left for 72 hours.
상기 음극 활물질은 탄소계 물질, 실리콘, 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속 및 희토류 원소로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 화합물일 수 있으며, 바람직하게는 실리콘 또는 실리콘을 포함하는 화합물일 수 있다.The negative electrode active material may be a compound containing one or more types selected from the group consisting of carbon-based materials, silicon, alkali metals, alkaline earth metals, Group 13 elements, Group 14 elements, transition metals, and rare earth elements, preferably silicon. Alternatively, it may be a compound containing silicon.
상기 탄소계 물질은 예를 들어, 인조 흑연, 천연 흑연, 하드 카본, 소프트 카본 등을 들 수 있으나 이에 한정되는 것은 아니다. 상기 실리콘을 포함하는 음극 활물질은 실리콘 또는 실리콘을 포함하는 화합물이라면 그 종류를 특별히 제한하는 것은 아니나, 바람직하게는 Si, SiOx(0<x<2), Si-Y 합금(상기 Y는 알칼리 금속, 알칼리 토금속, 13족 원소, 14족 원소, 전이금속, 희토류 원소 또는 이들의 조합이며, Si은 아님.) 및 Si-C 복합체로 이루어진 군으로부터 선택되는 1종 이상일 수 있다.The carbon-based material includes, for example, artificial graphite, natural graphite, hard carbon, and soft carbon, but is not limited thereto. The type of the negative electrode active material containing silicon is not particularly limited as long as it is silicon or a compound containing silicon, but is preferably Si, SiO x (0<x<2), Si-Y alloy (Y is an alkali metal , an alkaline earth metal, a Group 13 element, a Group 14 element, a transition metal, a rare earth element, or a combination thereof, but not Si.) and a Si-C composite.
또한, 상기 음극 활물질로 실리콘을 포함하는 음극 활물질과 다른 음극 활물질을 혼합하여 사용하는 경우, 상기 실리콘을 포함하는 음극 활물질은 상기 음극 활물질의 전체 중량의 8중량% 이상 포함될 수 있다.In addition, when using a mixture of a negative electrode active material containing silicon and another negative electrode active material as the negative electrode active material, the negative electrode active material containing silicon may be included in more than 8% by weight of the total weight of the negative electrode active material.
상기 음극 활물질은 음극 활물질층의 총 중량에 대하여 50 내지 99 중량%, 바람직하게는 60 내지 80 중량%로 포함될 수 있다. The negative electrode active material may be included in an amount of 50 to 99% by weight, preferably 60 to 80% by weight, based on the total weight of the negative electrode active material layer.
상기 음극 활물질이 50 중량% 미만으로 포함되면 에너지 밀도가 감소하여 고에너지 밀도의 전지를 제조할 수 없으며, 99 중량%를 초과하여 포함되면 도전재 및 바인더의 함량이 감소하여 전기 전도성이 감소하고, 전극 활물질층과 집전체 사이의 접착력이 감소할 수 있다.If the negative active material is included in less than 50% by weight, the energy density decreases, making it impossible to manufacture a high energy density battery, and if it is included in more than 99% by weight, the content of the conductive material and binder decreases, resulting in a decrease in electrical conductivity. The adhesion between the electrode active material layer and the current collector may decrease.
한편, 본원의 공중합체는 음극 슬러리의 고형분 대비 2 중량% 이상, 5 중량% 이하로 포함될 수 있다. 상기 공중합체가 2중량% 미만이면 음극의 물리적 성질이 저하되어 음극 활물질과 도전재가 탈락될 수 있고, 5 중량%를 초과하면 음극 활물질과 도전재의 비율이 상대적으로 감소하여 전지 용량이 감소될 수 있고, 음극의 전기 전도성이 저하될 수 있다.Meanwhile, the copolymer of the present application may be included in an amount of 2% by weight or more and 5% by weight or less based on the solid content of the anode slurry. If the copolymer is less than 2% by weight, the physical properties of the negative electrode may deteriorate and the negative electrode active material and the conductive material may fall off, and if the copolymer exceeds 5% by weight, the ratio of the negative electrode active material and the conductive material may be relatively reduced, resulting in a decrease in battery capacity. , the electrical conductivity of the cathode may decrease.
또한, 상기 음극 슬러리는 본원의 공중합체 조성물 외에 추가로 고분자를 포함할 수 있다. 상기 고분자는 구체적으로 예를 들어, 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올(PVA), 폴리아크릴산(PAA) 폴리아크릴산 금속염(Metal-PAA), 폴리메타크릴산(PMA), 폴리메틸메타크릴레이트(PMMA) 폴리아크릴아미드(PAM), 폴리메타크릴아미드, 폴리아크릴로니트릴(PAN), 폴리메타크릴로니트릴, 폴리이미드(PI), 키토산(Chitosan), 전분, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무, 하이드록시프로필셀룰로오스, 재생 셀룰로오스 및 이들의 다양한 공중합체 등을 들 수 있으나, 이에 제한되는 것은 아니다.In addition, the negative electrode slurry may include an additional polymer in addition to the copolymer composition of the present application. The polymer specifically includes, for example, polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyacrylic acid (PAA), polyacrylic acid metal salt (Metal-PAA), polymethacrylic acid (PMA), and polymethyl methacrylate. Crylate (PMMA), polyacrylamide (PAM), polymethacrylamide, polyacrylonitrile (PAN), polymethacrylonitrile, polyimide (PI), chitosan (Chitosan), starch, polyvinylpyrrolidone, Tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluoroelastomer, hydroxypropylcellulose, regenerated cellulose and various copolymers thereof, etc. Examples include, but are not limited to.
본원의 또 다른 측면에 따른 음극은 집전체 및 상기 집전체 상에 형성된 본원의 공중합체를 포함하는 음극 활물질층을 포함할 수 있다.A negative electrode according to another aspect of the present application may include a current collector and a negative electrode active material layer including the copolymer of the present application formed on the current collector.
본원의 음극의 결착력 및 결착력 구배는 각각 7.5~9.5 gf/cm, 75~79%일 수 있다.The binding force and binding force gradient of the cathode of the present invention may be 7.5 to 9.5 gf/cm and 75 to 79%, respectively.
상기 음극 활물질층은 도전재를 추가로 포함할 수 있다. 상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위해 사용한다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 휘스커; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등이 사용될 수 있다. The negative electrode active material layer may additionally include a conductive material. The conductive material is used to further improve the conductivity of the negative electrode active material. These conductive materials are not particularly limited as long as they have conductivity without causing chemical changes in the battery, and examples include graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskers such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Polyphenylene derivatives, etc. may be used.
상기 도전재는 음극 활물질층의 총 중량에 대하여 0.5 내지 30 중량%, 바람직하게는 15 내지 25 중량%로 포함될 수 있다. 상기 도전재가 0.5 중량% 미만으로 포함되면 음극의 전기 전도성이 낮아진다. 30 중량%를 초과하여 포함되면 실리콘계 음극 활물질과 바인더의 비율이 상대적으로 감소하여 전지 용량이 감소하며, 음극 활물질층 유지를 위하여 바인더의 함량을 증가시켜야 하기 때문에 음극 활물질의 함량이 감소하여 고에너지 밀도의 전지를 제조할 수 없다.The conductive material may be included in an amount of 0.5 to 30% by weight, preferably 15 to 25% by weight, based on the total weight of the negative electrode active material layer. If the conductive material is included in less than 0.5% by weight, the electrical conductivity of the cathode is lowered. If it is contained in excess of 30% by weight, the ratio of the silicon-based negative active material to the binder is relatively reduced, thereby reducing battery capacity. Since the content of the binder must be increased to maintain the negative electrode active material layer, the content of the negative electrode active material is reduced, resulting in high energy density. batteries cannot be manufactured.
본원의 음극은 음극 활물질층이 본원의 공중합체를 포함하여, 이차전지의 충방전시 발생하는 음극 활물질의 부피 팽창을 억제할 수 있고, 초기 효율 및 사이클당 용량 유지율을 향상시키고, 전기 저항을 낮출 수 있다. In the negative electrode of the present application, the negative electrode active material layer includes the copolymer of the present application, which can suppress the volume expansion of the negative electrode active material that occurs during charging and discharging of the secondary battery, improve initial efficiency and capacity maintenance per cycle, and lower electrical resistance. You can.
상기 음극은 (a)음극 활물질 및 본원의 공중합체 조성물을 포함하는 음극 활물질층 형성용 조성물을 제조하는 단계 및 (b)음극 집전체 상에 상기 음극 활물질층 형성용 조성물을 도포 후 건조하는 단계를 통해서 제조될 수 있다.The negative electrode includes the steps of (a) preparing a composition for forming a negative electrode active material layer containing a negative electrode active material and the copolymer composition of the present application, and (b) applying the composition for forming a negative electrode active material layer on a negative electrode current collector and then drying it. It can be manufactured through
상기 음극 활물질층 형성용 조성물은 음극 슬러리 상태로 제조되며, 슬러리 상태로 제조하기 위한 용매는 건조가 용이해야 하며, 본원의 공중합체 조성물 바인더를 잘 용해시킬 수 있되, 음극 활물질은 용해시키지 않고 분산 상태로 유지시킬 수 있는 것이 가장 바람직하다.The composition for forming the negative electrode active material layer is manufactured in a negative electrode slurry state, and the solvent for preparing the slurry state must be easy to dry, and can well dissolve the binder of the copolymer composition of the present application, but does not dissolve the negative electrode active material and is in a dispersed state. It is most desirable to be able to maintain it.
본원에 따른 용매는 물 또는 유기 용매가 가능하며, 상기 유기 용매는 메틸피롤리돈, 디메틸포름아미드, 이소프로필알콜, 아세토니트릴, 메탄올, 에탄올, 및 테트라하이드로퓨란으로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 유기 용매가 적용 가능하다.The solvent according to the present application can be water or an organic solvent, and the organic solvent is at least one selected from the group consisting of methylpyrrolidone, dimethylformamide, isopropyl alcohol, acetonitrile, methanol, ethanol, and tetrahydrofuran. Organic solvents containing are applicable.
상기 음극 활물질층 형성용 조성물의 혼합은 통상의 혼합기, 예컨대 레이트스 믹서, 고속 전단 믹서, 호모 믹서 등을 이용하여 통상의 방법으로 교반할 수 있다.The composition for forming the negative electrode active material layer can be mixed in a conventional manner using a conventional mixer, such as a rate mixer, a high-speed shear mixer, or a homomixer.
상기 (b)단계는 음극 집전체 상에 상기 (a)단계에서 제조한 음극 활물질층 형성용 조성물을 도포 후 건조하여 리튬 이차전지용 음극을 제조하는 단계이다.Step (b) is a step of manufacturing a negative electrode for a lithium secondary battery by applying the composition for forming a negative electrode active material layer prepared in step (a) on the negative electrode current collector and drying it.
상기 음극 집전체는 구체적으로 구리, 스테인리스스틸, 티타늄, 은, 팔라듐, 니켈, 이들의 합금 및 이들의 조합으로 이루어진 군에서 선택되는 것일 수 있다. 상기 스테인리스스틸은 카본, 니켈, 티탄 또는 은으로 표면 처리될 수 있으며, 상기 합금으로는 알루미늄-카드뮴 합금이 사용될 수 있다. 그 외에도 소성 탄소, 도전재로 표면 처리된 비전도성 고분자, 또는 전도성 고분자 등이 사용될 수도 있다.The negative electrode current collector may be specifically selected from the group consisting of copper, stainless steel, titanium, silver, palladium, nickel, alloys thereof, and combinations thereof. The stainless steel may be surface treated with carbon, nickel, titanium, or silver, and an aluminum-cadmium alloy may be used as the alloy. In addition, calcined carbon, a non-conductive polymer surface-treated with a conductive material, or a conductive polymer may be used.
상기 (a)단계에서 제조한 음극 활물질층 형성용 조성물은 음극 집전체 상에 도포되며, 형성하고자 하는 두께에 따라 적절한 두께로 집전체에 코팅할 수 있으며, 바람직하게는 10 내지 300μm 범위 내에서 적절히 선택할 수 있다.The composition for forming the negative electrode active material layer prepared in step (a) is applied on the negative electrode current collector, and can be coated on the current collector with an appropriate thickness depending on the thickness to be formed, preferably within the range of 10 to 300 μm. You can choose.
이때 상기 슬러리 형태의 음극 활물질층 형성용 조성물을 도포하는 방법은 그 제한은 없으며, 예컨대, 닥터 블레이드 코팅(Doctor blade coating), 딥 코팅(Dip coating), 그라비어 코팅(Gravure coating), 슬릿 다이 코팅(Slit die coating), 스핀 코팅(Spin coating), 콤마 코팅(Comma coating), 바 코팅(Bar coating), 리버스 롤 코팅(Reverse roll coating), 스크린 코팅(Screen coating), 캡 코팅(Cap coating)방법 등을 수행하여 제조할 수 있다.At this time, the method of applying the composition for forming the negative electrode active material layer in the slurry form is not limited, for example, doctor blade coating, dip coating, gravure coating, slit die coating ( Slit die coating, spin coating, comma coating, bar coating, reverse roll coating, screen coating, cap coating method, etc. It can be manufactured by performing.
도포 후 건조하여 최종적으로 음극 활물질층이 형성된 이차전지(특히, 리튬 이차전지)용 음극을 제조할 수 있다.After application and drying, a negative electrode for a secondary battery (particularly a lithium secondary battery) with a negative electrode active material layer finally formed can be manufactured.
본원의 또 다른 측면에 따른 전지는 집전체 및 상기 집전체 상에 상기 음극 활물질층이 형성된 음극을 포함할 수 있다.A battery according to another aspect of the present disclosure may include a current collector and a negative electrode in which the negative electrode active material layer is formed on the current collector.
상기 전지는 양극, 상기 음극, 상기 양극과 음극 사이에 개재되는 분리막 및 전해액을 포함하는 이차전지(특히, 리튬 이차전지)일 수 있다.The battery may be a secondary battery (particularly, a lithium secondary battery) including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte solution.
상기 이차전지의 초기 효율은 80% 이상일 수 있고, 전기 저항이 0.02 Ω 이하일 수 있다.The initial efficiency of the secondary battery may be 80% or more, and the electrical resistance may be 0.02 Ω or less.
또한, 상기 이차전지의 충, 방전을 300 사이클 반복하였을 때, 용량 유지율이 80% 이상이고, 음극의 팽창율이 33% 이하일 수 있다.Additionally, when charging and discharging of the secondary battery is repeated for 300 cycles, the capacity retention rate may be 80% or more and the expansion rate of the negative electrode may be 33% or less.
상기 리튬 이차전지의 양극, 분리막 및 전해액의 구성은 본 발명에서 특별히 한정하지 않으며, 이 분야에서 공지된 바를 따른다.The composition of the positive electrode, separator, and electrolyte of the lithium secondary battery is not particularly limited in the present invention and follows what is known in the field.
양극은 양극 집전체 상에 형성된 양극 활물질을 포함한다.The positive electrode includes a positive electrode active material formed on the positive electrode current collector.
양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않으며, 예를 들면 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 이때, 상기 양극 집전체는 양극 활물질과의 접착력을 높일 수 있도록, 표면에 미세한 요철이 형성된 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태를 사용할 수 있다.The positive electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon or nickel on the surface of aluminum or stainless steel. , titanium, silver, etc. can be used. At this time, the positive electrode current collector can be used in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics with fine irregularities formed on the surface to increase adhesion with the positive electrode active material.
양극 활물질층을 구성하는 양극 활물질은 당해 기술분야에서 이용 가능한 모든 양극 활물질이 사용 가능하다. 이러한 양극 활물질의 구체적인 예로서, 리튬 금속; LiCoO2 등의 리튬 코발트계 산화물; Li1+xMn2-xO4(여기서, x는 0 내지 0.33임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간계 산화물; Li2CuO2 등의 리튬 구리산화물; LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; LiNi1-xMxO2 (여기서, M=Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x=0.01 내지 0.3임)으로 표현되는 리튬 니켈계 산화물; LiMn2-xMxO2(여기서, M=Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x=0.01 내지 0.1임) 또는 Li2Mn3MO8(여기서, M=Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합산화물; Li(NiaCobMnc)O2(여기에서, 0<a<1, 0<b<1, 0<c<1, a+b+c=1)으로 표현되는 리튬-니켈-망간-코발트계 산화물; 황 또는 디설파이드 화합물; LiFePO4, LiMnPO4, LiCoPO4, LiNiPO4 등의 인산염; Fe2(MoO4)3 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.The cathode active material constituting the cathode active material layer can be any cathode active material available in the art. Specific examples of such positive electrode active materials include lithium metal; Lithium cobalt-based oxides such as LiCoO 2 ; Lithium manganese-based oxides such as Li 1+x Mn 2-x O 4 (where x is 0 to 0.33), LiMnO 3 , LiMn 2 O 3 , and LiMnO 2 ; Lithium copper oxide such as Li 2 CuO 2 ; Vanadium oxides such as LiV 3 O 8 , LiFe 3 O 4 , V 2 O 5 , and Cu 2 V 2 O 7 ; LiNi 1-x M x O 2 (where M=Co, Mn, Al, Cu, Fe, Mg, B or Ga, and x=0.01 to 0.3) lithium nickel-based oxide; LiMn 2 - x M , Cu or Zn); lithium manganese composite oxide expressed as Lithium-nickel-manganese-cobalt expressed as Li(Ni a Co b Mn c )O2 (where 0<a<1, 0<b<1, 0<c<1, a+b+c=1) based oxide; Sulfur or disulfide compounds; Phosphates such as LiFePO 4 , LiMnPO 4 , LiCoPO 4 , and LiNiPO 4 ; Fe 2 (MoO 4 ) 3 etc. may be mentioned, but it is not limited to these alone.
이 때, 상기 양극 활물질층은 양극 활물질 이외에 바인더, 도전재, 충진제 및 기타 첨가제 등을 추가로 포함할 수 있으며, 상기 도전재는 상기 리튬 이차전지용 음극에 상술한 내용과 동일하다.At this time, the positive electrode active material layer may further include a binder, a conductive material, a filler, and other additives in addition to the positive electrode active material, and the conductive material is the same as that described above for the negative electrode for a lithium secondary battery.
또한, 상기 바인더는 폴리비닐리덴플로라이드(PVDF), 폴리비닐알코올(PVA), 폴리아크릴산(PAA), 폴리메타크릴산(PMA), 폴리메틸메타크릴레이트(PMMA) 폴리아크릴아미드(PAM), 폴리메타크릴아미드, 폴리아크릴로니트릴(PAN), 폴리메타크릴로니트릴, 폴리이미드(PI), 키토산(Chitosan), 전분, 하이드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무(SBR), 불소 고무 및 이들의 다양한 공중합체 등을 들 수 있으나, 이에 제한되는 것은 아니다.In addition, the binder is polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), polyacrylic acid (PAA), polymethacrylic acid (PMA), polymethyl methacrylate (PMMA), polyacrylamide (PAM), Polymethacrylamide, polyacrylonitrile (PAN), polymethacrylonitrile, polyimide (PI), chitosan, starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene , polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber (SBR), fluorine rubber, and various copolymers thereof, but are not limited thereto.
상기 분리막은 다공성 기재로 이루어질 수 있는데, 상기 다공성 기재는, 통상적으로 전기화학소자에 사용되는 다공성 기재라면 모두 사용이 가능하고, 예를 들면 폴리올레핀계 다공성 막 또는 부직포를 사용할 수 있으나, 이에 특별히 한정되는 것은 아니다.The separator may be made of a porous substrate. Any porous substrate commonly used in electrochemical devices can be used. For example, a polyolefin-based porous membrane or non-woven fabric may be used, but it is not specifically limited thereto. That is not the case.
상기 분리막은, 폴리에틸렌, 폴리프로필렌, 폴리부틸렌, 폴리펜텐, 폴리에틸렌 테레프탈레이트, 폴리부틸렌 테레프탈레이트, 폴리에스테르, 폴리아세탈, 폴리아마이드, 폴리카보네이트, 폴리이미드, 폴리에테르에테르케톤, 폴리에테르설폰, 폴리페닐렌 옥사이드, 폴리페닐렌 설파이드, 및 폴리에틸렌 나프탈레이트로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물로 이루어진 다공성 기재일 수 있다.The separator is made of polyethylene, polypropylene, polybutylene, polypentene, polyethylene terephthalate, polybutylene terephthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, It may be a porous substrate made of any one selected from the group consisting of polyphenylene oxide, polyphenylene sulfide, and polyethylene naphthalate, or a mixture of two or more of these.
상기 리튬 이차전지의 전해액은 리튬염을 함유하는 비수계 전해액으로서 리튬염과 용매로 구성되어 있으며, 용매로는 비수계 유기용매, 유기 고체 전해질 및 무기 고체 전해질 등이 사용된다.The electrolyte solution of the lithium secondary battery is a non-aqueous electrolyte containing a lithium salt and is composed of a lithium salt and a solvent. The solvent used includes a non-aqueous organic solvent, an organic solid electrolyte, and an inorganic solid electrolyte.
상기 리튬염은 상기 비수계 전해액에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiAsF6, LiSbF6, LiAlCl4, LiSCN, LiC4BO8, LiCF3CO2, LiCH3SO3, LiCF3SO3, LiN(SO2CF3)2, LiN(SO2F)2, LiN(SO2C2F5)2, LiC4F9SO3, LiC(CF3SO2)3, (CF3SO2)·2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬 이미드 등이 사용될 수 있다.The lithium salt is a material that is easily soluble in the non-aqueous electrolyte solution, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , LiSCN, LiC 4 BO 8 , LiCF 3 CO 2 , LiCH 3 SO 3 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 F) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiC 4 F 9 SO 3 , LiC(CF 3 SO 2 ) 3 , (CF 3 SO 2 )·2NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenyl borate imide, etc. may be used.
비수계 유기용매는, 예를 들어, N-메틸-2-피롤리돈, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 에틸메틸 카보네이트, 감마-부티로락톤, 1,2-디메톡시 에탄, 1,2-디에톡시 에탄, 테트라하이드록시 프랑(franc), 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥솔란, 4-메틸-1,3-디옥센, 디에틸에테르, 포름아미드, 디메틸포름아미드, 디옥솔란, 아세토니트릴, 니트로메탄, 포름산메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥솔란 유도체, 설포란, 메틸설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 프로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Non-aqueous organic solvents include, for example, N-methyl-2-pyrrolidone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, gamma-butyrolactone, 1,2 -Dimethoxy ethane, 1,2-diethoxy ethane, tetrahydroxy franc, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, 4-methyl-1,3-dioxene, Diethyl ether, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, triester phosphate, trimethoxy methane, dioxolane derivatives, sulfolane, methylsulfolane, 1,3- Aprotic organic solvents such as dimethyl-2-imidazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ether, methyl propionate, and ethyl propionate may be used.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐알코올, 폴리 불화 비닐리덴, 이차성 해리기를 포함하는 중합체 등이 사용될 수 있다.The organic solid electrolyte includes, for example, polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, polyvinylidene fluoride, Polymers containing secondary dissociation groups, etc. may be used.
상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitride, halide, sulfate, etc. of Li such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 may be used.
또한, 비수계 전해액에는 충·방전 특성, 난연성 등의 개선을 목적으로 기타 첨가제를 더 포함할 수 있다. 상기 첨가제의 예시로는 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아마이드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시에탄올, 삼염화 알루미늄, 플루오로에틸렌 카보네이트(FEC), 프로펜 설톤(PRS), 비닐렌 카보네이트(VC) 등을 들 수 있다.Additionally, the non-aqueous electrolyte may further contain other additives for the purpose of improving charge/discharge characteristics, flame retardancy, etc. Examples of the additives include pyridine, triethylphosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphate triamide, nitrobenzene derivatives, sulfur, quinone imine dye, N-substituted oxazolyl. Dinone, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol, aluminum trichloride, fluoroethylene carbonate (FEC), propene sultone (PRS), vinylene carbonate ( VC), etc.
본 발명에 따른 리튬 이차전지는, 일반적인 공정인 권취(winding) 이외에도 분리막과 전극의 적층(lamination stack) 및 접음(folding) 공정이 가능하다. 그리고 상기 전지케이스는 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.The lithium secondary battery according to the present invention is capable of lamination stacking and folding processes of separators and electrodes in addition to the general winding process. And the battery case may be cylindrical, prismatic, pouch-shaped, or coin-shaped.
이하, 실시예를 이용하여 본원을 좀 더 구체적으로 설명하지만, 본원이 이에 제한되는 것은 아니다.Hereinafter, the present application will be described in more detail using examples, but the present application is not limited thereto.
[제조예 1] 공중합체의 제조[Preparation Example 1] Preparation of copolymer
반응기에 증류수 1,050g, 알킬디페닐옥사이드 디설포네이트(algyldiphenyloxide disulfonate) 10g 투입한 후, 질소를 투입하며 1시간 동안 교반을 진행하였다.After adding 1,050 g of distilled water and 10 g of alkyldiphenyloxide disulfonate to the reactor, nitrogen was added and stirring was performed for 1 hour.
이후, 함량이 조절된 과황산칼륨(potassium persulfate)을 반응기에 투입하고, 60℃까지 승온시킨 후, 비닐아세테이트 (vinylacetate) 110g 및 에틸아크릴레이트 (ethylacrylate) 330g을 3시간 동안 분할 투입하고, 2시간 온도를 유지시켜서 고형분 30 중량%의 비닐아세테이트-에틸아크릴레이트 공중합체를 얻었다.Afterwards, potassium persulfate of which the content was adjusted was added to the reactor, the temperature was raised to 60°C, and 110 g of vinyl acetate and 330 g of ethyl acrylate were added in portions over 3 hours, and then heated for 2 hours. The temperature was maintained to obtain a vinyl acetate-ethyl acrylate copolymer with a solid content of 30% by weight.
준비된 고형분 30 중량%의 비닐아세테이트-에틸아크릴레이트 공중합체 100g, 에탄올 150g, 수산화물 및 유기염을 반응기에 넣고 60℃에서 4시간동안 교반하면서 가수분해를 진행하였다. 100 g of the prepared vinyl acetate-ethyl acrylate copolymer with a solid content of 30% by weight, 150 g of ethanol, hydroxide, and organic salt were placed in a reactor and hydrolysis was performed while stirring at 60°C for 4 hours.
가수분해 종료 후, 침전된 가수분해물을 증류수에 녹이고 80℃로 승온하여 8시간 동안 교반 및 스트리핑하여 음극 바인더용 공중합체를 제조하였다.After completion of hydrolysis, the precipitated hydrolyzate was dissolved in distilled water, heated to 80°C, stirred and stripped for 8 hours to prepare a copolymer for a negative electrode binder.
[제조예 2] 리튬이차전지의 제조[Manufacture Example 2] Manufacture of lithium secondary battery
전극 활물질로 인조 흑연 53.2g, Si활물질 13.3g, 제조예 1에 의해서 제조된 음극용 바인더를 증류수와 혼합하여 음극 슬러리를 제조하였다.An anode slurry was prepared by mixing 53.2 g of artificial graphite as an electrode active material, 13.3 g of a Si active material, and the anode binder prepared in Preparation Example 1 with distilled water.
제조한 음극 슬러리를 구리 집전체 상에 균일하게 도포한 후 110℃에서 건조하여 나온 전극을 압연하고, 110℃ 진공오븐에서 4시간 이상 진공 건조하여 음극을 제조하였다.The prepared negative electrode slurry was uniformly applied on a copper current collector, dried at 110°C, rolled, and vacuum dried in a vacuum oven at 110°C for more than 4 hours to prepare a negative electrode.
이후, 리튬염이 포함된 비수계 전해액을 전해질로 사용하고 양극과 상기 음극 사이에 폴리올레핀 분리막을 개재시킨 후 리튬 이차전지를 파우치 또는 코인셀 타입으로 형태를 구분하지 않고 리튬 이차전지를 제조하였다.Afterwards, a non-aqueous electrolyte containing lithium salt was used as an electrolyte, a polyolefin separator was interposed between the positive electrode and the negative electrode, and a lithium secondary battery was manufactured without distinguishing the form into a pouch or coin cell type.
상기 비수전해질로는 에틸렌카보네이트: 에틸메틸카보네이트: 디에틸카보네이트가 2:1:7의 부피비로 혼합한 용매에 5 중량% FEC 및 1 중량% LiPO2F2를 첨가하고, LiPF6 전해질을 1.5 M의 농도로 용해시킨 것을 사용하였다.As the non-aqueous electrolyte, 5% by weight FEC and 1% by weight LiPO 2 F 2 were added to a solvent in which ethylene carbonate: ethylmethyl carbonate: diethyl carbonate was mixed at a volume ratio of 2:1:7, and LiPF 6 electrolyte was added at 1.5 M. It was used dissolved at a concentration of .
[실시예 1][Example 1]
2.0g의 과황산칼륨(potassium persulfate)을 사용하여, 제조예 1에 따라서 수평균분자량 340,000인 음극 바인더용 공중합체를 제조한 후, 제조예 2에 따라서 음극 바인더용 공중합체를 고형분 기준 3.5g 포함된 음극 슬러리, 음극 및 리튬이차전지를 제조하였다.Using 2.0 g of potassium persulfate, a copolymer for a negative electrode binder with a number average molecular weight of 340,000 was prepared according to Preparation Example 1, and then a copolymer for a negative electrode binder was prepared according to Preparation Example 2, containing 3.5 g based on solid content. A negative electrode slurry, negative electrode, and lithium secondary battery were prepared.
[실시예 2][Example 2]
2.3g의 과황산칼륨(potassium persulfate)을 사용하여, 제조예 1에 따라서 수평균분자량이 280,000인 음극 바인더용 공중합체를 제조한 후, 제조예 2에 따라서 음극 바인더용 공중합체를 고형분 기준 3.5g 포함된 음극 슬러리, 음극 및 리튬이차전지를 제조하였다.Using 2.3 g of potassium persulfate, a copolymer for a negative electrode binder having a number average molecular weight of 280,000 was prepared according to Preparation Example 1, and then, according to Preparation Example 2, a copolymer for a negative electrode binder was prepared in an amount of 3.5 g based on solid content. The included negative electrode slurry, negative electrode, and lithium secondary battery were manufactured.
[비교예 1][Comparative Example 1]
제조예 2에 따른 음극 슬러리 제조 시, 음극 바인더용 공중합체(수평균분자량: 340,000)를 고형분 기준 1.4 g 포함시킨 것을 제외하고는 실시예 1과 동일하게 음극 슬러리, 음극 및 리튬이차전지를 제조하였다.When preparing the negative electrode slurry according to Preparation Example 2, the negative electrode slurry, negative electrode, and lithium secondary battery were prepared in the same manner as Example 1, except that 1.4 g of a copolymer for a negative electrode binder (number average molecular weight: 340,000) was included based on solid content. .
[비교예 2][Comparative Example 2]
제조예 2에 따른 음극 슬러리 제조 시, 음극 바인더용 공중합체(수평균분자량: 340,000)를 고형분 기준 2.45 g 포함시킨 것을 제외하고는 실시예 1과 동일하게 음극 슬러리, 음극 및 리튬이차전지를 제조하였다.When preparing the negative electrode slurry according to Preparation Example 2, the negative electrode slurry, negative electrode, and lithium secondary battery were prepared in the same manner as Example 1, except that 2.45 g of a copolymer for a negative electrode binder (number average molecular weight: 340,000) was included based on solid content. .
[비교예 3][Comparative Example 3]
2.5g의 과황산칼륨(potassium persulfate)을 사용하여, 제조예 1에 따라서 수평균분자량 240,000인 음극 바인더용 공중합체를 제조한 후, 제조예 2에 따라서 음극 바인더용 공중합체를 고형분 기준 3.5g 포함된 음극 슬러리, 음극 및 리튬이차전지를 제조하였다.Using 2.5 g of potassium persulfate, a copolymer for a negative electrode binder with a number average molecular weight of 240,000 was prepared according to Preparation Example 1, and then a copolymer for a negative electrode binder was prepared according to Preparation Example 2, including 3.5 g based on solid content. A negative electrode slurry, negative electrode, and lithium secondary battery were prepared.
[비교예 4][Comparative Example 4]
3.0g의 과황산칼륨(potassium persulfate)을 사용하여, 제조예 1에 따라서 수평균분자량 140,000인 음극 바인더용 공중합체를 제조한 후, 제조예 2에 따라서 음극 바인더용 공중합체를 고형분 기준 3.5g 포함된 음극 슬러리, 음극 및 리튬이차전지를 제조하였다.Using 3.0 g of potassium persulfate, a copolymer for a negative electrode binder with a number average molecular weight of 140,000 was prepared according to Preparation Example 1, and then according to Preparation Example 2, the copolymer for a negative electrode binder was mixed with 3.5 g of solid content. A negative electrode slurry, negative electrode, and lithium secondary battery were prepared.
[비교예 5][Comparative Example 5]
1.5g의 과황산칼륨(potassium persulfate)을 사용하여, 제조예 1에 따라서 수평균분자량 410,000인 음극 바인더용 공중합체를 제조한 후, 제조예 2에 따라서 음극 바인더용 공중합체를 고형분 기준 3.5g 포함된 음극 슬러리, 음극 및 리튬이차전지를 제조하였다.Using 1.5 g of potassium persulfate, a copolymer for a negative electrode binder with a number average molecular weight of 410,000 was prepared according to Preparation Example 1, and then a copolymer for a negative electrode binder was prepared according to Preparation Example 2, containing 3.5 g of solid content. A negative electrode slurry, negative electrode, and lithium secondary battery were prepared.
실시예 1 및 2와 비교예 1 내지 5의 음극 바인더용 공중합체의 수평균 분자량은 물을 용매로 사용하여 Gel filtration chromatography (GFC)로 측정하였다.The number average molecular weight of the copolymers for negative electrode binders of Examples 1 and 2 and Comparative Examples 1 to 5 was measured by gel filtration chromatography (GFC) using water as a solvent.
[평가예 1] 결착력 평가[Evaluation Example 1] Evaluation of cohesion
실시예 1 및 2와 비교예 1 내지 5에서 제조된 음극의 결착력을 측정하기 위해서, 아크릴판에 실시예 1 및 2와 비교예 1 내지 5에서 제조된 음극 합체측을 부착한 후, UTM을 사용하여 180° 박리 시험을 실시하여 결착력을 측정하였다.In order to measure the binding force of the negative electrodes prepared in Examples 1 and 2 and Comparative Examples 1 to 5, the combined side of the negative electrodes prepared in Examples 1 and 2 and Comparative Examples 1 to 5 were attached to an acrylic plate, and then UTM was used. A 180° peel test was performed to measure the binding force.
[평가예 2] 결착력 구배(층별 결착력) 평가 평가[Evaluation Example 2] Evaluation of cohesion gradient (cohesion by layer)
실시예 1 및 2와 비교예 1 내지 5에서 제조된 음극의 결착력 구배를 표면 및 계면 절단 분석 시스템(surface and interfacial cutting analysis system, SAICAS)를 이용하여 측정하였다.The adhesion gradient of the negative electrodes prepared in Examples 1 and 2 and Comparative Examples 1 to 5 was measured using a surface and interfacial cutting analysis system (SAICAS).
결착력 구배를 측정하기 위하여 음극(합재층) 표면으로부터 30% 깊이 및 90% 깊이에서의 결착력을 각각 측정한 후, 하기 수학식 1에 따라서 결차격 구배를 계산하였다.To measure the bond strength gradient, the bond strength was measured at 30% depth and 90% depth from the surface of the cathode (composite layer), and then the gap gap gradient was calculated according to Equation 1 below.
[수학식 1][Equation 1]
결착력 구배[%]=(합재층 표면으로부터 90% 깊이의 결착력/합재층 표면으로부터 30% 깊이의 결착력)Х100Cohesion gradient [%] = (Cohesion strength at 90% depth from the surface of the composite layer/Cohesion strength at 30% depth from the surface of the composite layer) Х100
[평가예 3] 이차전지의 용량 유지율 및 음극 팽창율 평가[Evaluation Example 3] Evaluation of capacity retention rate and anode expansion rate of secondary battery
실시예 1 및 2와 비교예 1 내지 5에서 제조된 리튬 이차전지를 25℃에서 충방전 전류밀도를 0.1C, 충전 종지 전압을 4.8V, 방전 종지전압을 2.7V로 하여 3회 충방전을 수행하였다.The lithium secondary batteries prepared in Examples 1 and 2 and Comparative Examples 1 to 5 were charged and discharged three times at 25°C with a charge/discharge current density of 0.1C, a charge end voltage of 4.8V, and a discharge end voltage of 2.7V. did.
이후, 충방전 전류 밀도를 1C, 충전 종지 전압을 4.8V, 방전 종지전압을 2.7V로 하여 300회 충방전을 수행하여 용량 유지율을 측정하였다.Afterwards, charge and discharge were performed 300 times at a charge/discharge current density of 1C, a charge end voltage of 4.8V, and a discharge end voltage of 2.7V, and the capacity retention rate was measured.
모든 방전은 정전류/정전압 조건으로 수행하였으며 정전압의 방전의 종지 전류는 0.005C로 하였다.All discharges were performed under constant current/constant voltage conditions, and the termination current of the constant voltage discharge was 0.005C.
용량 유지율 및 전극 팽창율은 각각 하기 수학식 2 및 3에 따라서 계산되었다.The capacity retention rate and electrode expansion rate were calculated according to the following equations 2 and 3, respectively.
[수학식 2][Equation 2]
용량 유지율(%) = (300사이클 후 방전용량 / 초기 3사이클 후 방전 용량) Х 100Capacity maintenance rate (%) = (Discharge capacity after 300 cycles / Discharge capacity after the initial 3 cycles) Х 100
[수학식 3][Equation 3]
전극 팽창율(%) = [(300사이클 후 음극 두께 - 진공 건조를 마친 초기 음극 두께)/ 진공 건조를 마친 초기 음극 두께] Х 100Electrode expansion rate (%) = [(Cathode thickness after 300 cycles - Initial cathode thickness after vacuum drying) / Initial cathode thickness after vacuum drying] Х 100
[평가예 4] 가스 발생 평가[Evaluation Example 4] Gas generation evaluation
실시예 1 및 2와 비교예 1 내지 5에서 제조된 슬러리를 0.2L 스테인리스 강 용기에 100g 투입하였다. 스테인리스 강 용기에 연결된 압력 감지 및 모니터링 장비를 통해 밀봉하여 72시간 방치 후의 압력의 변화를 측정한다.100 g of the slurry prepared in Examples 1 and 2 and Comparative Examples 1 to 5 was added to a 0.2L stainless steel container. Pressure sensing and monitoring equipment connected to a stainless steel container is used to measure the change in pressure after it is sealed and left for 72 hours.
즉, 압력의 변화가 클수록(압력이 높아질수록), 가스의 발생이 많았다고 볼 수 있다. In other words, it can be seen that the greater the change in pressure (the higher the pressure), the more gas was generated.
평가예 1 내기 4에 의해서 평가된 결착력, 결착력 구배, 용량 유지율, 전극 팽창율 및 가스 발생의 측정값을 하기 표 1에 나타내었다.The measured values of binding force, binding force gradient, capacity retention rate, electrode expansion rate, and gas generation evaluated by Evaluation Example 1 and 4 are shown in Table 1 below.
결착력
(gf/cm)
cohesion
(gf/cm)
결착력 구배
(%)
Cohesion gradient
(%)
300 cycle
용량 유지율
(%)
300 cycle
Capacity maintenance rate
(%)
300 cycle
전극 팽창율
(%)
300 cycle
Electrode expansion rate
(%)
가스발생
(△P) 72hr(atm)
Gas generation
(△P) 72hr(atm)
실시예1Example 1 8.48.4 7777 8383 3030 0.130.13
실시예2Example 2 8.08.0 7575 8181 3333 0.120.12
비교예1Comparative Example 1 6.46.4 6666 7575 5151 0.450.45
비교예2Comparative example 2 7.27.2 7272 8080 4545 0.260.26
비교예3Comparative example 3 4.24.2 6868 7676 4949 0.500.50
비교예4Comparative example 4 6.06.0 7373 8181 3838 0.280.28
비교예5Comparative Example 5 9.89.8 8080 7979 3535 0.180.18
상기 표 1에 나타낸 바와 같이, 실시예 1 및 2에 의해서 제조된 음극의 결착력은 8.0~8.4 gf/cm, 결착력 구배는 75~77%로 측정되었다.As shown in Table 1, the bonding force of the negative electrodes prepared in Examples 1 and 2 was measured to be 8.0 to 8.4 gf/cm, and the bonding force gradient was measured to be 75 to 77%.
또한, 실시예 1 및 2에 의해서 제조된 리튬이차전지의 용량 유지율은 81~83%, 전극 팽창율은 30~33%로 측정되었다.In addition, the capacity retention rate of the lithium secondary batteries manufactured in Examples 1 and 2 was measured to be 81 to 83%, and the electrode expansion rate was measured to be 30 to 33%.
한편, 실시예 1 및 2에 의해서 제조된 음극 슬러리의 가스 발생에 따른 압력의 변화는 0.12~0.13 atm으로 측정되었다.Meanwhile, the change in pressure due to gas generation in the cathode slurry prepared in Examples 1 and 2 was measured to be 0.12 to 0.13 atm.
이에 비하여, 실시예 1과 동일한 음극 바인더용 공중합체를 사용하지만, 음극 슬러리 제조 시, 본원의 공중합체의 함량의 범위를 상회하거나 하회하도록 음극 바인더용 공중합체의 함량을 실시예 1에 비하여 낮추거나 높인 비교예 1 및 2의 경우, 실시예 1에 비하여 음극의 결착력 및 결착력 구배가 저하되어 결착 특성이 저하되었고, 이차전지의 용량 유지율이 저하되고 전극 팽창율은 높아져서, 이차전지 전지의 성능도 저하되었다. In comparison, the same copolymer for the negative electrode binder as in Example 1 is used, but when producing the negative electrode slurry, the content of the copolymer for the negative electrode binder is lowered compared to Example 1 so as to exceed or fall below the range of the content of the copolymer of the present application. In the case of Comparative Examples 1 and 2, the bonding force and bonding force gradient of the negative electrode were lowered compared to Example 1, resulting in a decrease in bonding characteristics, and the capacity retention rate of the secondary battery decreased and the electrode expansion rate increased, resulting in a decrease in the performance of the secondary battery cell. .
또한, 가스 발생량이 많아져서 측정된 압력값이 크게 높아졌다.Additionally, as the amount of gas generated increased, the measured pressure value increased significantly.
즉, 음극 슬러리 제조시 음극 바인더용 공중합체의 함량 변화가 음극 슬러리, 음극 및 이차전지의 특성 및 성능에 영향을 미침을 확인할 수 있었다.In other words, it was confirmed that changes in the content of the copolymer for the negative electrode binder during the production of the negative electrode slurry affected the characteristics and performance of the negative electrode slurry, negative electrode, and secondary battery.
한편, 본원의 공중합체의 수평균분자량의 범위를 하회하는 실시예 1및 2보다 낮은 수평균분자량의 음극 바인더용 공중합체를 사용한 비교예 3 및 4의 경우, 실시예 1 및 2에 비하여 음극의 결착력 및 결착력 구배가 저하되어 결착 특성이 저하되었고, 이차전지의 용량 유지율이 저하되고 전극 팽창율은 높아져서, 이차전지 전지의 성능도 저하되었다. On the other hand, in the case of Comparative Examples 3 and 4 using a copolymer for a negative electrode binder with a number average molecular weight lower than that of Examples 1 and 2, which is below the number average molecular weight range of the copolymer of the present application, the The bonding force and the bonding force gradient decreased, resulting in a decrease in bonding characteristics, a decrease in the capacity retention rate of the secondary battery, and an increase in the electrode expansion rate, and a decrease in the performance of the secondary battery cell.
또한, 가스 발생량이 많아져서 측정된 압력값이 크게 높아졌다.Additionally, as the amount of gas generated increased, the measured pressure value increased significantly.
본원의 공중합체의 수평균분자량의 범위를 상회하는 실시예 1및 2보다 높은 수평균분자량의 음극 바인더용 공중합체를 사용한 비교예 5의 경우, 실시예 1 및 2에 비하여 음극의 결착력 및 결착력 구배가 나타낸 결착 특성은 향상되었지만, 이차전지의 용량 유지율이 저하되고 전극 팽창율은 높아져서, 이차전지 전지의 성능도 저하되었다. In the case of Comparative Example 5 using a copolymer for a negative electrode binder with a higher number average molecular weight than Examples 1 and 2, which exceeds the range of the number average molecular weight of the copolymer of the present application, the binding force and binding force gradient of the negative electrode compared to Examples 1 and 2 Although the binding characteristics shown were improved, the capacity retention rate of the secondary battery decreased and the electrode expansion rate increased, and the performance of the secondary battery also deteriorated.
또한, 가스 발생량이 많아져서 측정된 압력값이 높아졌다.Additionally, as the amount of gas generated increased, the measured pressure value increased.
즉, 음극 바인더용 공중합체의 수평균분자량의 변화가 음극 슬러리, 음극 및 이차전지의 특성 및 성능에 영향을 미침을 확인할 수 있었다.In other words, it was confirmed that changes in the number average molecular weight of the copolymer for the negative electrode binder affect the characteristics and performance of the negative electrode slurry, negative electrode, and secondary battery.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위, 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. The scope of the present invention is indicated by the claims described below rather than the detailed description above, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts are interpreted to be included in the scope of the present invention. It has to be.
본 발명의 공중합체는 슬러리 제조시, 기포 및 가스 발생을 억제하여 슬러리의 안정성을 향상시킬 수 있다. 또한, 전극 팽창 억제 능력을 개선하여 리튬 이차 전지의 수명 특성(용량 유지율)을 향상시킬 수 있다.The copolymer of the present invention can improve the stability of the slurry by suppressing the generation of bubbles and gases during slurry production. Additionally, the lifespan characteristics (capacity maintenance rate) of a lithium secondary battery can be improved by improving the ability to suppress electrode expansion.

Claims (13)

  1. 아크릴레이트 계열의 단량체 및 비닐 아세테이트 계열의 단량체를 공중합하고 가수분해하여 제조한,Manufactured by copolymerizing and hydrolyzing acrylate-based monomers and vinyl acetate-based monomers.
    공중합체.copolymer.
  2. 제1항에 있어서,According to paragraph 1,
    65몰% 이상, 99몰% 이하의 상기 아크릴레이트 계열의 단량체 및 1 몰% 이상, 35 몰% 이하의 상기 비닐 아세테이트 계열의 단량체를 공중합하고 가수분해하여 제조한,Prepared by copolymerizing and hydrolyzing 65 mol% or more and 99 mol% or less of the acrylate series monomer and 1 mol% or more and 35 mol% or less of the vinyl acetate series monomer,
    공중합체.copolymer.
  3. 제1항에 있어서,According to paragraph 1,
    전체 공중합체 중량 100 몰%를 기준으로, 65몰% 이상, 99몰% 이하의 아크릴레이트 계열의 단량체 단위 및 아크릴산 계열의 단량체 단위; 및 Based on 100 mol% of the total copolymer weight, 65 mol% or more and 99 mol% or less of acrylate-based monomer units and acrylic acid-based monomer units; and
    1 몰% 이상, 35 몰% 이하의 비닐 아세테이트 계열의 단량체 단위와 비닐 알코올 계열의 단량체 단위를 포함하는,Containing 1 mol% or more and 35 mol% or less of vinyl acetate-based monomer units and vinyl alcohol-based monomer units,
    공중합체.copolymer.
    (단, 상기 아크릴산 계열의 단량체 단위 및 비닐 알코올 계열의 단량체 단위는 0 중량%를 초과한다)(However, the acrylic acid-based monomer unit and vinyl alcohol-based monomer unit exceed 0% by weight)
  4. 제3항에 있어서,According to paragraph 3,
    상기 아크릴산 계열의 단량체 단위는 알칼리 금속과 결합된,The acrylic acid-based monomer unit is combined with an alkali metal,
    공중합체.copolymer.
  5. 제4항에 있어서,According to clause 4,
    상기 알칼리 금속과 상기 공중합체의 중량비(상기 알칼리 금속의 중량: 상기 공중합체의 중량)은 0.8~6.5:100인,The weight ratio of the alkali metal and the copolymer (weight of the alkali metal: weight of the copolymer) is 0.8 to 6.5:100,
    공중합체.copolymer.
  6. 제1항에 있어서,According to paragraph 1,
    하기 화학식 1로 표시되는 단량체 반복 단위를 포함하는, Containing a monomer repeating unit represented by Formula 1 below,
    공중합체.copolymer.
    [화학식 1][Formula 1]
    Figure PCTKR2023018333-appb-img-000002
    Figure PCTKR2023018333-appb-img-000002
    상기 화학식 1에서, In Formula 1,
    R1 및 R3는 각각 독립적으로 수소, 탄소수 1 내지 4의 선형 또는 분지형 탄화수소, 또는 이들의 조합이고, R 1 and R 3 are each independently hydrogen, a linear or branched hydrocarbon having 1 to 4 carbon atoms, or a combination thereof,
    R2 및 R4는 각각 독립적으로 탄소수 1 내지 3의 선형 또는 분지형 탄화수소이며, R 2 and R 4 are each independently a linear or branched hydrocarbon having 1 to 3 carbon atoms,
    R5는 -OH이고, R 5 is -OH,
    M은 알칼리 금속이며, M is an alkali metal,
    x+y+m+n=1이다.x+y+m+n=1.
  7. 제6항에 있어서,According to clause 6,
    상기 화학식 1의 R1 및 R3는 각각 독립적으로 수소, 메틸 및 에틸로 이루어진 그룹에서 선택된 어느 하나 이상을 포함하고, R 1 and R 3 of Formula 1 each independently include one or more selected from the group consisting of hydrogen, methyl, and ethyl,
    상기 화학식 1의 R2 및 R4는 각각 독립적으로 메틸 및 에틸로 이루어진 그룹에서 선택된 어느 하나 이상을 포함하는,R 2 and R 4 of Formula 1 each independently include one or more selected from the group consisting of methyl and ethyl,
    공중합체.copolymer.
  8. 제1항에 있어서,According to paragraph 1,
    상기 공중합체는 랜덤 또는 블록 공중합체인,The copolymer is a random or block copolymer,
    공중합체.copolymer.
  9. 제1항에 있어서,According to paragraph 1,
    상기 공중합체의 수평균분자량은The number average molecular weight of the copolymer is
    수평균분자량이 250,000 이상, 350,000 이하인,A number average molecular weight of 250,000 or more and 350,000 or less,
    공중합체.copolymer.
  10. 제1항 내지 제9항 중 어느 한 항의 공중합체; 및The copolymer of any one of claims 1 to 9; and
    음극 활물질;을 포함하는,Negative active material; containing,
    음극 슬러리.cathode slurry.
  11. 제10항에 있어서,According to clause 10,
    상기 공중합체가 상기 음극 슬러리의 고형분 대비 2 중량% 이상, 5 중량% 이하 포함되는,The copolymer is contained in an amount of 2% by weight or more and 5% by weight or less compared to the solid content of the negative electrode slurry,
    음극 슬러리.cathode slurry.
  12. 집전체; 및house collector; and
    상기 집전체 상에 형성된 제1항 내지 제9항 중 어느 한 항의 공중합체 를 포함하는 음극 활물질층;을 포함하는,A negative electrode active material layer comprising the copolymer of any one of claims 1 to 9 formed on the current collector.
    음극.cathode.
  13. 제12항의 음극을 포함하는,Comprising the cathode of claim 12,
    이차전지.Secondary battery.
PCT/KR2023/018333 2022-11-15 2023-11-15 Binder comprising copolymer, negative electrode for secondary battery, comprising binder, and secondary battery comprising negative electrode WO2024106932A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220152779A KR102660592B1 (en) 2022-11-15 2022-11-15 Binder comprising copolymer composition, anode for secondary battery comprising the same, and secondary battery comprising the anode
KR10-2022-0152779 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024106932A1 true WO2024106932A1 (en) 2024-05-23

Family

ID=90882982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/018333 WO2024106932A1 (en) 2022-11-15 2023-11-15 Binder comprising copolymer, negative electrode for secondary battery, comprising binder, and secondary battery comprising negative electrode

Country Status (2)

Country Link
KR (1) KR102660592B1 (en)
WO (1) WO2024106932A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160127050A (en) * 2014-02-28 2016-11-02 와커 헤미 아게 Polymer compositions as a binder system for lithium-ion batteries
KR20180010789A (en) * 2016-07-22 2018-01-31 삼성전자주식회사 Binder, Anode and Lithium battery comprising binder, and Preparation method thereof
CN114335546A (en) * 2022-03-07 2022-04-12 北京壹金新能源科技有限公司 Binder for battery electrode and battery electrode
KR102432637B1 (en) * 2022-03-15 2022-08-17 주식회사 한솔케미칼 Binder comprising copolymer composition, anode for secondary battery comprising the same, and secondary battery comprising the anode
KR20220131535A (en) * 2020-01-21 2022-09-28 메이산 인디고 테크놀로지 컴퍼니 리미티드 Binder for battery, negative plate of lithium ion battery and lithium ion battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130117901A (en) 2012-04-10 2013-10-29 삼성에스디아이 주식회사 Binder composition, electrode for rechargeable battery employing the same and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160127050A (en) * 2014-02-28 2016-11-02 와커 헤미 아게 Polymer compositions as a binder system for lithium-ion batteries
KR20180010789A (en) * 2016-07-22 2018-01-31 삼성전자주식회사 Binder, Anode and Lithium battery comprising binder, and Preparation method thereof
KR20220131535A (en) * 2020-01-21 2022-09-28 메이산 인디고 테크놀로지 컴퍼니 리미티드 Binder for battery, negative plate of lithium ion battery and lithium ion battery
CN114335546A (en) * 2022-03-07 2022-04-12 北京壹金新能源科技有限公司 Binder for battery electrode and battery electrode
KR102432637B1 (en) * 2022-03-15 2022-08-17 주식회사 한솔케미칼 Binder comprising copolymer composition, anode for secondary battery comprising the same, and secondary battery comprising the anode

Also Published As

Publication number Publication date
KR102660592B1 (en) 2024-04-26

Similar Documents

Publication Publication Date Title
WO2023177169A1 (en) Binder including copolymer composition, anode for secondary battery including same binder, and secondary battery including same anode
WO2019156539A1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising same
WO2021101188A1 (en) Anode and secondary battery comprising same
WO2019004699A1 (en) Lithium secondary battery
WO2017171442A1 (en) Composition for gel polymer electrolyte, gel polymer electrolyte produced therefrom, and electrochemical element comprising same
WO2019045399A2 (en) Lithium secondary battery
WO2018056615A1 (en) Negative electrode comprising multiple protection layers and lithium secondary battery comprising same
WO2021040388A1 (en) Non-aqueous electrolytic solution, and lithium secondary battery comprising same
WO2021060811A1 (en) Method for manufacturing secondary battery
WO2024076199A1 (en) Binder comprising copolymer composition, negative electrode for secondary battery comprising same binder, and secondary battery comprising same negative electrode
WO2020263023A1 (en) Electrode for lithium secondary battery having specific composition conditions and lithium secondary battery comprising same
WO2024080826A1 (en) Binder including copolymer composition, anode for secondary battery including same binder, and secondary battery including same anode
WO2024049190A1 (en) Binder composition, negative electrode for secondary battery comprising binder composition, and secondary battery comprising negative electrode
WO2020149677A1 (en) Non-aqueous electrolyte additive, and non-aqueous electrolyte for lithium secondary battery and lithium secondary battery including same
WO2021049872A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2020185013A1 (en) Secondary battery
WO2020009505A1 (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2023063648A1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2021060803A1 (en) Battery system, method for using same, and battery pack including same
WO2024101867A1 (en) Binder comprising copolymer, negative electrode for secondary battery comprising binder, and secondary battery comprising negative electrode
WO2024106932A1 (en) Binder comprising copolymer, negative electrode for secondary battery, comprising binder, and secondary battery comprising negative electrode
WO2021066462A1 (en) Non-aqueous electrolyte and lithium secondary battery comprising same
WO2021241976A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte for lithium secondary battery comprising same, and lithium secondary battery
WO2021194220A1 (en) Electrolyte additive for secondary battery, non-aqueous electrolyte containing same for lithium secondary battery, and lithium secondary battery
WO2020091448A1 (en) Lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23891998

Country of ref document: EP

Kind code of ref document: A1