WO2024106824A1 - Coated aluminum substrate and method for manufacturing same - Google Patents

Coated aluminum substrate and method for manufacturing same Download PDF

Info

Publication number
WO2024106824A1
WO2024106824A1 PCT/KR2023/017553 KR2023017553W WO2024106824A1 WO 2024106824 A1 WO2024106824 A1 WO 2024106824A1 KR 2023017553 W KR2023017553 W KR 2023017553W WO 2024106824 A1 WO2024106824 A1 WO 2024106824A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum
based substrate
fine irregularities
substrate
coated aluminum
Prior art date
Application number
PCT/KR2023/017553
Other languages
French (fr)
Korean (ko)
Inventor
김종서
김순창
윤성중
Original Assignee
주식회사 세아에프에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 세아에프에스 filed Critical 주식회사 세아에프에스
Publication of WO2024106824A1 publication Critical patent/WO2024106824A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/32Alkaline compositions
    • C23F1/36Alkaline compositions for etching aluminium or alloys thereof

Definitions

  • This specification relates to a coated aluminum substrate and a method of manufacturing the same.
  • Aluminum (Al) material has high dimensional precision and can be mass-produced in a shorter time than iron in the production of lightweight castings. Additionally, it is widely used in various industrial fields due to its high castability, low density, high productivity, low shrinkage, and relatively high strength characteristics. Despite these advantages and various applicability, aluminum has the problem of deteriorating mechanical properties due to corrosion occurring even in a not very harsh environment.
  • a method of adding elements such as Mn, Mg, Si and Cr to aluminum and using it as an alloy an anodizing method of creating an artificial anodic oxide film on the surface of the aluminum material, and electrical conduction.
  • anodizing method can provide excellent corrosion resistance in forming a protective film of aluminum alloy material.
  • the anodizing method is advantageous in terms of corrosion resistance, but not only does the anodizing process take an excessive amount of time, but the surface hardness increases excessively during anodizing, making subsequent processing difficult. Therefore, anodizing is used for aluminum materials in a state in which processing has been completed. There are many process limitations as processing must be performed.
  • One aspect is to provide a coated aluminum substrate with excellent corrosion resistance and processability through surface treatment and a method of manufacturing the same.
  • the present invention includes an aluminum-based substrate, a passive film formed on at least one surface of the aluminum-based substrate, and a resin film formed on the passive film, and a plurality of polygons are formed on the surface of the aluminum-based substrate.
  • a coated aluminum-based substrate is provided in which fine irregularities are formed, the average long diameter of the polygonal fine irregularities is 0.1 to 5 ⁇ m, and the area fraction occupied by the plurality of polygonal fine irregularities is 10% or more.
  • the glossiness of the aluminum-based substrate on which the polygonal fine irregularities are formed may be 20 to 60 GU.
  • the arithmetic mean roughness (Ra) of the aluminum-based substrate on which the polygonal fine irregularities are formed may be 0.45 to 0.7 ⁇ m.
  • the passivation film may include at least one selected from the group consisting of a titanium-based compound, a fluorine-based compound, and a fluorine-based compound.
  • the resin film may include urethane resin and acrylic resin.
  • the thickness of the resin film may be 1 to 15 ⁇ m.
  • a) preparing an aluminum-based substrate (b) immersing the aluminum-based substrate in a first etching solution to remove a surface oxide layer on the aluminum-based substrate and forming coarse irregularities on at least one surface of the aluminum-based substrate; (c) immersing the aluminum-based substrate on which the coarse irregularities are formed in a second etching solution to form a plurality of polygonal fine irregularities on at least one surface of the aluminum-based substrate on which the coarse irregularities are formed; (d) forming a passive film on at least one surface of the aluminum-based substrate on which the polygonal fine irregularities are formed; and (e) forming a resin film on the passive film, wherein the average major diameter of the polygonal fine irregularities is 0.1 to 5 ⁇ m, and the area fraction occupied by the plurality of polygonal fine irregularities is 10% or more.
  • a method for manufacturing an aluminum-based substrate is provided.
  • the ratio of the glossiness of the aluminum-based substrate after forming the polygonal fine irregularities to the glossiness of the aluminum-based substrate before forming the coarse irregularities may be 0.15 to 0.55.
  • the ratio of the arithmetic average roughness of the aluminum-based substrate after forming the polygonal fine irregularities to the arithmetic average roughness of the aluminum-based substrate before forming the coarse irregularities may be 1.2 to 2.0.
  • the first etching solution may include a hydroxide of an alkali metal or an alkaline earth metal.
  • the hydroxide of an alkali metal or alkaline earth metal may be at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, magnesium hydroxide, aluminum hydroxide, lithium hydroxide, and ammonium hydroxide.
  • the second etching solution may include an organic acid and a fluorine compound having at least one hydroxy group in the molecule.
  • the organic acid having at least one hydroxy group in the molecule may be at least one selected from the group consisting of gluconic acid, citric acid, tartaric acid, and malic acid.
  • the fluorine compound is ammonium fluoride, acidic ammonium fluoride, potassium fluoride, ammonium borofluoride, potassium bifluoride, potassium borofluoride, sodium fluoride, sodium bifluoride, aluminum fluoride, boronic acid fluoride, lithium fluoride, It may be at least one selected from the group consisting of calcium fluoride and copper fluoride.
  • the second etching solution may not contain hydrogen peroxide and persulfate.
  • the temperature for performing steps (b) and (c) may be 40 to 80°C.
  • the performance time of step (c) may be 1 second to 5 minutes.
  • a plurality of polygonal fine irregularities are formed on an aluminum-based substrate, thereby improving adhesion with a film coated on the substrate, and excellent physical properties such as corrosion resistance and processability can be realized.
  • Figure 1 is an image of the corrosion resistance evaluation of the machined part according to an embodiment of the present specification
  • Figure 1(a) is an image of the corrosion resistance evaluation of the machined part on the substrate before bending processing in Example 1
  • Figure 1(b) is an image of the corrosion resistance of the machined part according to the embodiment of the present specification.
  • This is an image of the corrosion resistance evaluation of the processed part of the substrate after bending in Example 1
  • Figure 1(c) is an image of the corrosion resistance of the processed part of the substrate before and after bending of Comparative Example 1.
  • Figure 2 is an image of adhesion evaluation according to an embodiment of the present specification.
  • Figure 3 is an image of machinability evaluation according to an embodiment of the present specification.
  • Figure 4 shows the results of SEM image analysis before surface treatment, after first etching, and after second etching of Example 1 of the present specification.
  • Figure 5 shows the results of SEM image analysis of the change in secondary etching performance time according to an embodiment of the present specification.
  • Figure 6 shows the results of analysis of the average major axis of Example 1 of the present specification.
  • Figure 7 shows the results of surface roughness analysis according to an embodiment of the present specification.
  • Figure 8 shows the results of gloss analysis according to an embodiment of the present specification.
  • the number 10 includes the range 5.0 to 14.9
  • the number 10.0 includes the range 9.50 to 10.49.
  • a coated aluminum substrate may include an aluminum-based substrate, a passive film formed on at least one side of the aluminum-based substrate, and a resin film formed on the passive film.
  • the aluminum-based substrate may be a commonly used aluminum or aluminum alloy without particular limitation, and may be, for example, pure aluminum, aluminum alloy for casting, or aluminum alloy for whole body, and more specifically, Al 1000 series, Al 3000 series. , it may be one or more selected from Al 4000 series, Al 5000 series, Al 6000 series, and Al 7000 series, and preferably Al 1000 series, but is not limited thereto.
  • the surface of the aluminum-based substrate is characterized in that a plurality of polygonal fine irregularities are formed.
  • the polygonal fine irregularities can improve the bonding strength between the aluminum-based substrate and the passive film, and enhance adhesion with the resin film, which is the final coating layer.
  • the average major diameter of the fine irregularities of the polygon may be 0.1 to 5 ⁇ m.
  • average major axis refers to the long side of a rectangle with the smallest area among the rectangles circumscribed by polygonal fine irregularities measured as the major axis by image analysis of scanning electron microscope (SEM) observation, respectively. It means the diameter of 50% of the cumulative area obtained from the area distribution of .
  • the area fraction occupied by the plurality of polygonal fine irregularities may be 10% or more. For example, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25.
  • the present invention does not specifically limit the upper limit.
  • the upper limit is not particularly limited. The average major diameter may become excessively large due to excessive overlap between adjacent fine irregularities, so taking this into account, the upper limit can be limited to about 85%.
  • the glossiness of the aluminum-based substrate on which polygonal fine irregularities are formed may be 20 to 60 GU.
  • polygonal fine irregularities can be uniformly formed on the surface of the substrate.
  • the arithmetic mean roughness (Ra) of the aluminum-based substrate on which the polygonal fine irregularities are formed may be 0.45 to 0.7 ⁇ m.
  • arithmetic average roughness (Ra) used in this specification is the average value for the center line of the height of the surface of the substrate due to the fine irregularities, and is the average value of the sum of the absolute values of the deviations from the center line to the measured length.
  • the arithmetic mean roughness (Ra) is the most widely used roughness parameter as it is suitable for evaluating gloss, surface strength, surface treatment, friction, and electrical contact resistance, but exceptional peaks and/or valleys are Ra. does not affect
  • the plurality of polygonal fine irregularities are formed on the surface of the aluminum-based substrate, which will be described later. It can be formed by primary and secondary etching processes. A plurality of polygonal fine irregularities are formed on the surface of the substrate that has been subjected to the primary and secondary etching, and the surface area of the substrate is maximized by the fine irregularities, thereby improving the bonding force and adhesion with the passive film and resin film that are subsequently laminated. there is.
  • the passive film may be formed on at least one surface of the aluminum-based substrate, and the substrate is immersed in a chemical treatment solution to form a thin inert chemical film, that is, a passive film, on the surface of the aluminum-based substrate. Oxidation of the surface can be prevented, and the corrosion resistance and processability of the coated aluminum-based substrate can be improved through excellent adhesion with the resin film to be coated afterwards.
  • the passivation film may include at least one selected from the group consisting of titanium-based compounds and fluorine-based compounds.
  • the titanium-based compound may be one selected from the group consisting of titanium phosphate, titanium nitrate, titanium hydroxide, titanium dioxide, and mixtures of two or more thereof, but is not limited thereto.
  • the fluorine-based compound may be one selected from the group consisting of titanium fluoride, manganese fluoride, titanium fluoride oxide, manganese fluoride oxide, and mixtures of two or more of these, but is not limited thereto. Since the passive film does not contain a chromium compound, it can prevent environmental pollution and human health problems caused by the emission of hexavalent chromium and can be excellent in eco-friendliness.
  • the resin film may be formed on the passive film, and may be coated in combination with the passive film.
  • the resin film may include a urethane resin and an acrylic resin, for example, a urethane-acrylic hybrid resin.
  • the urethane-acrylic hybrid resin may be manufactured by adding an acrylic monomer to a polyurethane prepolymer obtained by reacting polyol and isocyanate and copolymerizing it, but is not limited thereto.
  • the urethane-acrylic hybrid resin can compensate for insufficient physical properties by combining urethane resin and acrylic resin with each other, rather than simply blending them. Specifically, it is possible to simultaneously realize the excellent corrosion resistance, abrasion resistance, chemical resistance, processability, weather resistance, and low-temperature properties of urethane resin and the excellent corrosion resistance, solvent resistance, durability, and weather resistance of acrylic resin.
  • urethane-acrylic hybrid resin is a water-based resin and can improve eco-friendliness.
  • the thickness of the resin film may be 1 to 15 ⁇ m.
  • ⁇ m 5.0 ⁇ m, 5.5 ⁇ m, 6.0 ⁇ m, 6.5 ⁇ m, 7.0 ⁇ m, 7.5 ⁇ m, 8.0 ⁇ m, 8.5 ⁇ m, 9.0 ⁇ m, 9.5 ⁇ m, 10.0 ⁇ m, 10.5 ⁇ m, 11.0 ⁇ m, 11.5 ⁇ m, 12.0 ⁇ m, 12.5 ⁇ m, It may be 13.0 ⁇ m, 13.5 ⁇ m, 14.0 ⁇ m, 14.1 ⁇ m, 14.2 ⁇ m, 14.3 ⁇ m, 14.4 ⁇ m, 14.5 ⁇ m, 14.6 ⁇ m, 14.7 ⁇ m, 14.8 ⁇ m, 14.9 ⁇ m, 15.0 ⁇ m, or a value between any two of these values. If the thickness of the resin film is less than the above range, the corrosion resistance of the coated aluminum base may decrease, and if it exceeds the above range, peeling may occur and durability and processability may be reduced.
  • a method of manufacturing a coated aluminum substrate includes the steps of a) preparing an aluminum-based substrate; (b) immersing the aluminum-based substrate in a first etching solution to remove a surface oxide layer on the aluminum-based substrate and forming coarse irregularities on at least one surface of the aluminum-based substrate; (c) immersing the aluminum-based substrate on which the coarse irregularities are formed in a second etching solution to form a plurality of polygonal fine irregularities on at least one surface of the aluminum-based substrate on which the coarse irregularities are formed; (d) forming a passive film on at least one surface of the aluminum-based substrate on which the polygonal fine irregularities are formed; and (e) forming a resin film on the passive film, wherein the average major diameter of the polygonal fine irregularities is 0.1 to 5 ⁇ m, and the area fraction occupied by the plurality of polygonal fine irregularities may be 10% or more. there is.
  • an aluminum-based substrate can be prepared, and a degreasing process can be performed.
  • a degreasing process oil and foreign substances on the surface of the aluminum-based substrate can be primarily removed by immersing the aluminum-based substrate in a degreasing liquid.
  • the degreasing may include solvent degreasing, emulsion cleaning using a liquid emulsifying a surfactant in solvent and water, ultrasonic degreasing, electro cleaning, and alkaline cleaning. etc. can be mentioned.
  • degreasing liquid commonly used for degreasing can be used.
  • a rinsing process may be additionally performed after completing the degreasing process, but is not limited to this.
  • a water washing process may be performed to prevent contamination by degreasing liquid remaining after the degreasing process.
  • step (b) the aluminum-based substrate may be immersed in a first etching solution to remove the surface oxide layer on the aluminum-based substrate and form coarse irregularities on at least one surface of the aluminum-based substrate.
  • step (b) is a primary etching process that secondarily removes oil and foreign substances on the surface of the substrate that were not removed in the degreasing process of step (a), removes the surface oxidation layer, and removes aluminum. This may be a step of forming coarse irregularities on the surface of the base material.
  • the first etching solution may include a hydroxide of an alkali metal or an alkaline earth metal.
  • the hydroxide of the alkali metal or alkaline earth metal may be at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, magnesium hydroxide, aluminum hydroxide, lithium hydroxide, and ammonium hydroxide.
  • the first etching solution contains a hydroxide of an alkali metal or an alkaline earth metal, coarse irregularities can be formed more easily than when the first etching solution does not contain the hydroxide.
  • the first etching solution may further include a surfactant.
  • the surfactant may be at least one nonionic surfactant selected from the group consisting of polyethylene glycol, polypropylene glycol, polyether polyol, polyglycol oleic acid, gelatin, and ethylene oxide (EO)-propylene oxide (PO) copolymer.
  • EO ethylene oxide
  • PO propylene oxide
  • the first etching solution may further include at least one dispersant selected from the group consisting of acrylic acid maleic acid copolymer and its metal salt, polycarboxylic acid, and polyethylene glycol.
  • at least one dispersant selected from the group consisting of acrylic acid maleic acid copolymer and its metal salt, polycarboxylic acid, and polyethylene glycol.
  • a rinsing process may be additionally performed after completing the first etching process, but is not limited to this.
  • a water washing process may be performed to prevent contamination by the first etching solution remaining after the first process.
  • the first etching process is an etching using a base, and a hydrogen radical reaction may occur due to residual ions on the surface of the substrate, which may cause corrosion, so it is preferable to remove the remaining ions through a water washing process.
  • the aluminum-based substrate on which the coarse irregularities are formed in step (c) may be immersed in a second etching solution to form a plurality of polygonal fine irregularities on at least one side of the substrate.
  • the second etching solution may include an organic acid and a fluorine compound having at least one hydroxy group in the molecule.
  • the organic acid having at least one hydroxy group in the molecule and the fluorine compound interact to form polygonal fine irregularities on the surface of the aluminum-based substrate on which coarse irregularities have been formed.
  • the organic acid having at least one hydroxy group in the molecule may be at least one selected from the group consisting of gluconic acid, citric acid, tartaric acid, and malic acid, but is not limited thereto.
  • the fluorine compound includes ammonium fluoride, acidic ammonium fluoride, potassium fluoride, ammonium borofluoride, potassium bifluoride, potassium borofluoride, sodium fluoride, sodium bifluoride, aluminum fluoride, boronic acid, lithium fluoride, calcium fluoride, and It may be at least one selected from the group consisting of copper fluoride, but is not limited thereto.
  • the second etching solution may not contain hydrogen peroxide and persulfate. If the second etching liquid contains hydrogen peroxide or persulfate, productivity may decrease due to changes over time due to the instability of the liquid, the amount of waste liquid may increase, and stability may be reduced due to heat and gas generation due to rapid decomposition. . In addition, it may be difficult to secure the desired level of adhesion and processability by hindering the formation of homogeneous fine irregularities.
  • the average long diameter of the fine irregularities of the polygon may be 0.1 to 5 ⁇ m.
  • the area fraction occupied by the fine irregularities of the plurality of polygons may be 10% or more.
  • the aluminum-based substrate may be subjected to primary etching and secondary etching processes in steps (b) and (c), respectively, and specifically, etching using a base and etching using an acid may be performed alternately.
  • Etching using a base and etching using an acid are different in their surface treatment effect and activity of the surface of the substrate after etching, and thus can effectively improve the bonding force and adhesion with the subsequent passive film and resin film.
  • the first etching solution in step (b) consists of sodium hydroxide, potassium hydroxide, etc., so even if a rinsing process is performed after the etching treatment, there is a high probability that Na + ions and OH - ions remain on the surface of the substrate.
  • the remaining Na + ions and OH - ions can be removed by the second etching solution in step (c), and oxides generated by the residual ions can be removed, so the dismut process can be omitted.
  • the performance temperature of steps (b) and (c) may be 40 to 80°C.
  • the removal of the oxide layer and the formation of fine irregularities on the surface of the substrate may be poor, which may reduce the bonding force and adhesion with the passive film and resin film, and the corrosion resistance and processability of the coated aluminum-based substrate may decrease. You can.
  • the execution time of step (c) may be 1 second to 5 minutes.
  • the execution time is too short, it may be difficult to sufficiently form a plurality of polygonal fine irregularities on the surface of the aluminum-based substrate, and conversely, if the execution time is too long, the average length of the fine irregularities may become excessively large.
  • the ratio of the glossiness of the aluminum-based substrate after steps (b) and (c) to the glossiness of the aluminum-based substrate in step (a) may be 0.15 to 0.55.
  • the ratio of the arithmetic average roughness of the aluminum-based substrate after steps (b) and (c) to the arithmetic average roughness of the aluminum-based substrate in step (a) may be 1.2 to 2.0.
  • it may be 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75, 1.80, 1.85, 1.90, 1.95, 2.00, or a value between two of these values.
  • the arithmetic mean roughness ratio is outside the above range, the formation of fine irregularities may be poor, which may result in reduced bonding and adhesion with the passive film and resin film, and the corrosion resistance and processability of the coated aluminum-based substrate may be reduced.
  • a rinsing process may be additionally performed after completing the secondary etching process, but is not limited to this.
  • a water washing process may be performed to improve bonding strength with the subsequent passivation film.
  • a passive film may be formed on one surface of the aluminum-based substrate on which the polygonal fine irregularities are formed.
  • the passive film is a thin inert chemical film, that is, a passive film, obtained by immersing an aluminum-based substrate in a chemical treatment solution. It can prevent oxidation of the surface of the aluminum-based substrate, and is coated with excellent adhesion to the resin film to be coated afterwards. The corrosion resistance and processability of aluminum-based substrates can be improved.
  • the passivation film may include at least one selected from the group consisting of titanium-based compounds and fluorine-based compounds.
  • the titanium-based compound may be one selected from the group consisting of titanium phosphate, titanium nitrate, titanium hydroxide, titanium dioxide, and mixtures of two or more thereof, but is not limited thereto.
  • the fluorine-based compound may be one selected from the group consisting of titanium fluoride, manganese fluoride, titanium fluoride oxide, manganese fluoride oxide, and mixtures of two or more of these, but is not limited thereto. Since the passive film does not contain a chromium compound, it can prevent environmental pollution and human health problems caused by the emission of hexavalent chromium and can be excellent in eco-friendliness.
  • a resin film may be formed on the passive film.
  • the resin film may include a urethane resin and an acrylic resin, for example, a urethane-acrylic hybrid resin.
  • the urethane-acrylic hybrid resin may be manufactured by adding an acrylic monomer to a polyurethane prepolymer obtained by reacting polyol and isocyanate and copolymerizing it, but is not limited to this, and the physical properties and effects of the urethane-acrylic hybrid resin are not limited thereto. is the same as described above.
  • the thickness of the resin film may be 1 to 15 ⁇ m.
  • ⁇ m 5.0 ⁇ m, 5.5 ⁇ m, 6.0 ⁇ m, 6.5 ⁇ m, 7.0 ⁇ m, 7.5 ⁇ m, 8.0 ⁇ m, 8.5 ⁇ m, 9.0 ⁇ m, 9.5 ⁇ m, 10.0 ⁇ m, 10.5 ⁇ m, 11.0 ⁇ m, 11.5 ⁇ m, 12.0 ⁇ m, 12.5 ⁇ m, It may be 13.0 ⁇ m, 13.5 ⁇ m, 14.0 ⁇ m, 14.1 ⁇ m, 14.2 ⁇ m, 14.3 ⁇ m, 14.4 ⁇ m, 14.5 ⁇ m, 14.6 ⁇ m, 14.7 ⁇ m, 14.8 ⁇ m, 14.9 ⁇ m, 15.0 ⁇ m, or a value between any two of these values. If the thickness of the resin film is less than the above range, the corrosion resistance of the coated aluminum base may decrease, and if it exceeds the above range, peeling may occur and durability and processability may be reduced.
  • a specimen of 10 cm wide, 5 cm long, and 2 cm thick was prepared from an aluminum 1000 series substrate, then immersed in a degreasing solution to perform a degreasing process, and then washed with distilled water.
  • the substrate was immersed in a first etching solution containing sodium hydroxide and potassium hydroxide at 60°C to perform a primary etching treatment, and then washed with distilled water.
  • the substrate was immersed in a second etching solution at 60°C containing tartaric acid and sodium fluoride to perform a secondary etching treatment for 20 seconds, and then washed with distilled water.
  • a passivation film and a urethane-acrylic hybrid resin film were sequentially formed on the first and second etching-treated substrates to prepare a coated aluminum-based substrate.
  • a coated aluminum-based substrate was manufactured in the same manner as Example 1, except that the secondary etching was performed for 8 seconds.
  • a coated aluminum-based substrate was manufactured in the same manner as in Example 1, except that the secondary etching was performed for 12 seconds.
  • a coated aluminum-based substrate was manufactured in the same manner as in Example 1, except that the first and second etching processes were omitted.
  • a coated aluminum-based substrate was manufactured in the same manner as in Example 1, except that the step of forming a passive film was omitted.
  • the aluminum-based substrates of Examples and Comparative Examples were bent at 180° (0T bending), and then the aluminum-based substrates before and after processing were placed in a salt spray tester.
  • the occurrence times of blackening and white rust were measured according to the standard (ASTM B117-11), and the results are shown in Table 1 and Figure 1.
  • 5% salt water temperature 35°C, pH 6.8 was used, and 2 ml/80 cm 2 of salt water was sprayed per hour.
  • the surface-treated substrate of Example 1 was maintained at SST for 240 hours, and the surface-treated substrate of Comparative Example 1 was maintained at SST for 120 hours to measure the time for occurrence of blackening and white rust.
  • test results of the substrate before bending (straight) of Example 1 are shown in FIG. 1(a), and the test results of the substrate after bending (bent) are shown in FIG. 1(b).
  • the test results of the substrate of Comparative Example 1 before and after bending are shown.
  • the test results are shown in Figure 1(c).
  • red rust occurrence time was less than 120 hours, it was evaluated as “
  • Example 1 showed excellent corrosion resistance of the machined part both before and after processing due to surface treatment.
  • Comparative Example 1 in which surface treatment was omitted it can be confirmed that the corrosion resistance of the machined part is poor.
  • Comparative Example 1 in which 180° bending processing was performed a large amount of corrosion can be confirmed with the naked eye, showing that the corrosion resistance of the machined part is poor. You can check the worst ones.
  • 100 lattice shapes with a pitch of 1 mm were formed by making cuts on the surface of the aluminum-based substrate of Examples and Comparative Examples with a cutter reaching to the interface between the aluminum-based substrate and the passive film layer, and using an Ericksen extruder. It was extruded to 6 mm.
  • the Eriksen extrusion conditions were based on JIS-Z-2247-2006 (Eriksen value symbol: IE): punch diameter: 20 mm, die diameter: 27 mm, and drawing width: 27 mm.
  • pH ranges from 3 to 8
  • Example 1 showed excellent adhesion as no peeling occurred in all three evaluations. It can be confirmed that the adhesion between the surface-treated aluminum substrate and the passive film and resin film is improved. On the other hand, Comparative Example 1, in which surface treatment was omitted, showed a peeling area of more than 50% in multiple evaluations, confirming that adhesion was poor, and Comparative Example 2, which was surface treated but did not form a passivation film, showed a peeling area of more than 50% in all evaluations. It can be seen that the adhesion is somewhat reduced due to the omission of the passive film as the peeling area is less than 100%.
  • Example 3 To evaluate processability according to surface treatment, the aluminum substrate of Example 1 was flattened until just before fracture and the degree of peeling was visually evaluated, and the image is shown in Figure 3.
  • the aluminum substrate of Example 1 has no cracks or peeling at all, showing excellent adhesion to the resin film, which is the final coating layer, through surface treatment, and aluminum products using this have excellent corrosion resistance and processability. We can confirm that it can be implemented.
  • Example 1 In order to examine the surface changes of the aluminum substrate according to surface treatment, the surface of the aluminum substrate before surface treatment, after primary etching, and after secondary etching during the manufacturing process of Example 1 was analyzed by SEM at magnifications of 1000x and 3000x, respectively. , the resulting image is shown in Figure 4.
  • Example 2 In the manufacturing process of Example 1, after the secondary etching process, the surface of the aluminum substrate was analyzed by SEM to measure the minimum and maximum lengths, and the results are shown in FIG. 6.
  • the minimum major diameter was measured to be 164nm, and referring to Figure 6(b), the maximum major diameter was measured to be 2.24 ⁇ m, so the average major diameter of fine irregularities formed by secondary etching is 0.1 ⁇ It can be confirmed that it was formed in the 3 ⁇ m range.
  • Examples 1 and 2 surface treated by a secondary etching process had Ra values measured at 0.59 ⁇ m and 0.565 ⁇ m, respectively, and Comparative Example 1 where surface treatment was omitted had an Ra value measured at 0.379 ⁇ m. It has been done. It can be confirmed that the Ra value changes as fine irregularities are formed on the surface of the substrate of Examples 1 and 2 through surface treatment, and in Examples 1 and 2, the surface area is improved by the fine irregularities, resulting in the passive film and resin film. It can be confirmed that adhesion can be improved.
  • Example 2 Comparative Example 1 1 time 24.6 46.3 113.0 Episode 2 32.5 40.3 124.0 3rd time 31.0 54.9 147.0 average value 29.4 48.2 128.0

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)

Abstract

Provided are a coated aluminum substrate and a method for manufacturing same, the aluminum substrate comprising: an aluminum substrate; a passivation film formed on at least one surface of the aluminum substrate; and a resin film formed on the passivation film, wherein multiple polygonal fine irregularities are formed on the surface of the aluminum substrate, the average major diameter of the polygonal fine irregularities being 0.1 to 5 μm, and the area fraction occupied by the multiple polygonal fine irregularities is 10% or less.

Description

코팅된 알루미늄 기재 및 그 제조방법Coated aluminum substrate and manufacturing method thereof
본 명세서는 코팅된 알루미늄 기재 및 그 제조방법에 관한 것이다.This specification relates to a coated aluminum substrate and a method of manufacturing the same.
알루미늄(Al) 소재는 치수 정밀도가 높고, 경량(經粮)인 주물 제작에 있어서는 철(Iron)에 비해 짧은 시간에 대량생산이 가능하다. 또한, 높은 주조성, 낮은 밀도, 높은 생산성, 낮은 수축율 및 상대적으로 높은 강도 특성으로 인해 다양한 산업분야에서 폭넓게 사용된다. 이러한 장점과 다양한 적용가능성에도 불구하고, 알루미늄은 그다지 가혹하지 않은 환경에서도 부식이 발생하여 기계적 물성이 저하되는 문제점이 있다.Aluminum (Al) material has high dimensional precision and can be mass-produced in a shorter time than iron in the production of lightweight castings. Additionally, it is widely used in various industrial fields due to its high castability, low density, high productivity, low shrinkage, and relatively high strength characteristics. Despite these advantages and various applicability, aluminum has the problem of deteriorating mechanical properties due to corrosion occurring even in a not very harsh environment.
이러한 문제점을 해결하기 위해, 알루미늄에 Mn, Mg, Si 및 Cr 등의 원소를 첨가하여 합금으로 사용하는 방법, 알루미늄 재료의 표면에 인공적인 양극산화 피막을 생성시키는 아노다이징(Anodizing) 방법, 전기통전이 가능한 화성피막을 생성시키는 크로메이트 코팅(Chromate coating) 방법, 인산염 피막처리 방법 등이 있다. 이 중에서 아노다이징 방법은 알루미늄 합금 재료의 보호피막을 형성하는데 우수한 내부식성을 부여할 수 있다. 다만, 아노다이징 방법은 내부식성 측면에서는 유리함이 있으나, 아노다이징 처리에 과도한 시간이 소요될 뿐만 아니라, 아노다이징 처리시 표면 경도가 과도하게 높아져 후속 가공이 곤란한 관계로, 가공이 완료된 상태의 알루미늄 재료를 대상으로 아노다이징 처리를 수행해야 하여 많은 공정상 제약이 있다.To solve this problem, a method of adding elements such as Mn, Mg, Si and Cr to aluminum and using it as an alloy, an anodizing method of creating an artificial anodic oxide film on the surface of the aluminum material, and electrical conduction. There are chromate coating methods and phosphate coating methods that create a possible chemical conversion film. Among these, the anodizing method can provide excellent corrosion resistance in forming a protective film of aluminum alloy material. However, the anodizing method is advantageous in terms of corrosion resistance, but not only does the anodizing process take an excessive amount of time, but the surface hardness increases excessively during anodizing, making subsequent processing difficult. Therefore, anodizing is used for aluminum materials in a state in which processing has been completed. There are many process limitations as processing must be performed.
이에 알루미늄 소재에 우수한 내부식성을 부여하면서도 가공성이 우수한 새로운 표면처리 기술의 개발이 필요한 실정이다.Accordingly, there is a need to develop a new surface treatment technology that provides excellent corrosion resistance to aluminum materials and has excellent processability.
일 측면은 표면 처리에 의해 내부식성 및 가공성이 우수한 코팅된 알루미늄 기재 및 그 제조방법을 제공하는 것이다.One aspect is to provide a coated aluminum substrate with excellent corrosion resistance and processability through surface treatment and a method of manufacturing the same.
본 발명의 일 측면에 따르면, 알루미늄계 기재와, 상기 알루미늄계 기재의 적어도 일면 상에 형성된 부동태 피막과, 상기 부동태 피막 상에 형성된 수지 피막을 포함하고, 상기 알루미늄계 기재의 표면에는 복수 개의 다각형의 미세 요철이 형성되어 있고, 상기 다각형의 미세 요철의 평균 장경은 0.1~5μm이고, 상기 복수 개의 다각형의 미세 요철이 차지하는 면적분율은 10% 이상인 코팅된 알루미늄계 기재가 제공된다.According to one aspect of the present invention, it includes an aluminum-based substrate, a passive film formed on at least one surface of the aluminum-based substrate, and a resin film formed on the passive film, and a plurality of polygons are formed on the surface of the aluminum-based substrate. A coated aluminum-based substrate is provided in which fine irregularities are formed, the average long diameter of the polygonal fine irregularities is 0.1 to 5 μm, and the area fraction occupied by the plurality of polygonal fine irregularities is 10% or more.
일 실시예에 있어서, 상기 다각형의 미세 요철이 형성된 알루미늄계 기재의 광택도는 20~60GU일 수 있다. In one embodiment, the glossiness of the aluminum-based substrate on which the polygonal fine irregularities are formed may be 20 to 60 GU.
일 실시예에 있어서, 상기 다각형의 미세 요철이 형성된 알루미늄계 기재의 산술 평균 조도(Ra)는 0.45~0.7μm일 수 있다.In one embodiment, the arithmetic mean roughness (Ra) of the aluminum-based substrate on which the polygonal fine irregularities are formed may be 0.45 to 0.7 μm.
일 실시예에 있어서, 상기 부동태 피막은 티타늄계 화합물 및 불소계 화합물 및 불소계 화합물로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다.In one embodiment, the passivation film may include at least one selected from the group consisting of a titanium-based compound, a fluorine-based compound, and a fluorine-based compound.
일 실시예에 있어서, 상기 수지 피막은 우레탄 수지 및 아크릴 수지를 포함할 수 있다.In one embodiment, the resin film may include urethane resin and acrylic resin.
일 실시예에 있어서, 상기 수지 피막의 두께는 1~15μm일 수 있다.In one embodiment, the thickness of the resin film may be 1 to 15 μm.
본 발명의 다른 측면에 따르면, (a) 알루미늄계 기재를 준비하는 단계; (b) 상기 알루미늄계 기재를 제1 에칭액에 침지하여 상기 알루미늄계 기재 상의 표면 산화층을 제거하고, 상기 알루미늄계 기재의 적어도 일면에 조대 요철을 형성하는 단계; (c) 상기 조대 요철이 형성된 알루미늄계 기재를 제2 에칭액에 침지하여 상기 조대 요철이 형성된 알루미늄계 기재의 적어도 일면에 복수 개의 다각형 미세 요철을 형성하는 단계; (d) 상기 다각형의 미세 요철이 형성된 알루미늄계 기재의 적어도 일면 상에 부동태 피막을 형성하는 단계; 및 (e) 상기 부동태 피막 상에 수지 피막을 형성하는 단계;를 포함하고, 상기 다각형의 미세 요철의 평균 장경은 0.1~5μm이고, 상기 복수 개의 다각형의 미세 요철이 차지하는 면적분율은 10% 이상인 코팅된 알루미늄계 기재의 제조 방법이 제공된다.According to another aspect of the present invention, (a) preparing an aluminum-based substrate; (b) immersing the aluminum-based substrate in a first etching solution to remove a surface oxide layer on the aluminum-based substrate and forming coarse irregularities on at least one surface of the aluminum-based substrate; (c) immersing the aluminum-based substrate on which the coarse irregularities are formed in a second etching solution to form a plurality of polygonal fine irregularities on at least one surface of the aluminum-based substrate on which the coarse irregularities are formed; (d) forming a passive film on at least one surface of the aluminum-based substrate on which the polygonal fine irregularities are formed; and (e) forming a resin film on the passive film, wherein the average major diameter of the polygonal fine irregularities is 0.1 to 5 μm, and the area fraction occupied by the plurality of polygonal fine irregularities is 10% or more. A method for manufacturing an aluminum-based substrate is provided.
일 실시예에 있어서, 상기 조대 요철 형성 전의 알루미늄계 기재의 광택도에 대한 상기 다각형 미세 요철 형성 후의 알루미늄계 기재의 광택도의 비가 0.15 내지 0.55일 수 있다.In one embodiment, the ratio of the glossiness of the aluminum-based substrate after forming the polygonal fine irregularities to the glossiness of the aluminum-based substrate before forming the coarse irregularities may be 0.15 to 0.55.
일 실시예에 있어서, 상기 조대 요철 형성 전의 알루미늄계 기재의 산술 평균 조도에 대한 상기 다각형 미세 요철 형성 후의 알루미늄계 기재의 산술 평균 조도의 비가 1.2 내지 2.0일 수 있다.In one embodiment, the ratio of the arithmetic average roughness of the aluminum-based substrate after forming the polygonal fine irregularities to the arithmetic average roughness of the aluminum-based substrate before forming the coarse irregularities may be 1.2 to 2.0.
일 실시예에 있어서, 상기 제1 에칭액은 알칼리 금속 또는 알칼리 토금속의 수산화물을 포함할 수 있다.In one embodiment, the first etching solution may include a hydroxide of an alkali metal or an alkaline earth metal.
일 실시예에 있어서, 상기 알칼리 금속 또는 알칼리 토금속의 수산화물은, 수산화나트륨, 수산화칼륨, 수산화마그네슘, 수산화알루미늄, 수산화리튬 및 수산화암모늄으로 이루어진 군으로부터 선택되는 적어도 하나일 수 있다.In one embodiment, the hydroxide of an alkali metal or alkaline earth metal may be at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, magnesium hydroxide, aluminum hydroxide, lithium hydroxide, and ammonium hydroxide.
일 실시예에 있어서, 상기 제2 에칭액은 분자 내에 적어도 하나의 히드록시기를 갖는 유기산 및 불소 화합물을 포함할 수 있다.In one embodiment, the second etching solution may include an organic acid and a fluorine compound having at least one hydroxy group in the molecule.
일 실시예에 있어서, 상기 분자 내에 적어도 하나의 히드록시기를 갖는 유기산은, 글루콘산, 구연산, 주석산 및 사과산으로 이루어진 군으로부터 선택되는 적어도 하나일 수 있다.In one embodiment, the organic acid having at least one hydroxy group in the molecule may be at least one selected from the group consisting of gluconic acid, citric acid, tartaric acid, and malic acid.
일 실시예에 있어서, 상기 불소 화합물은, 불화암모늄, 산성불화암모늄, 불화칼륨, 붕불화암모늄, 중불화칼륨, 붕불화칼륨, 불화나트륨, 중불화나트륨, 불화알루미늄, 불화붕소산, 불화리튬, 불화칼슘 및 불화구리로 이루어진 군으로부터 선택되는 적어도 하나일 수 있다.In one embodiment, the fluorine compound is ammonium fluoride, acidic ammonium fluoride, potassium fluoride, ammonium borofluoride, potassium bifluoride, potassium borofluoride, sodium fluoride, sodium bifluoride, aluminum fluoride, boronic acid fluoride, lithium fluoride, It may be at least one selected from the group consisting of calcium fluoride and copper fluoride.
일 실시예에 있어서, 상기 제2 에칭액은 과산화수소 및 과황산염을 포함하지 않는 것일 수 있다.In one embodiment, the second etching solution may not contain hydrogen peroxide and persulfate.
일 실시예에 있어서, 상기 (b) 및 (c) 단계의 수행 온도는 40~80℃일 수 있다.In one embodiment, the temperature for performing steps (b) and (c) may be 40 to 80°C.
일 실시예에 있어서, 상기 (c) 단계의 수행 시간은 1초~5분일 수 있다.In one embodiment, the performance time of step (c) may be 1 second to 5 minutes.
본 발명의 일 실시예에 따르면 알루미늄계 기재 상에 복수 개의 다각형의 미세 요철이 형성됨으로써 기재 상에 코팅되는 피막과의 밀착력이 향상되고, 내부식성, 가공성 등의 우수한 물성이 구현될 수 있다.According to one embodiment of the present invention, a plurality of polygonal fine irregularities are formed on an aluminum-based substrate, thereby improving adhesion with a film coated on the substrate, and excellent physical properties such as corrosion resistance and processability can be realized.
본 명세서의 일 측면의 효과는 상기한 효과로 한정되는 것은 아니며, 본 명세서의 상세한 설명 또는 청구범위에 기재된 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effect of one aspect of the present specification is not limited to the effects described above, and should be understood to include all effects that can be inferred from the configuration described in the detailed description or claims of the present specification.
도 1은 본 명세서의 일 실시예에 따른 가공부 내식성 평가에 대한 이미지이고, 도1(a)는 실시예 1의 굽힘 가공 전 기재에 대한 가공부 내식성 평가 이미지이고, 도 1(b)는 실시예 1의 굽힘 가공 후 기재에 대한 가공부 내식성 평가 이미지이고, 도 1(c)는 비교예 1의 굽힘 가공 전/후 기재에 대한 가공부 내식성 평가 이미지이다.Figure 1 is an image of the corrosion resistance evaluation of the machined part according to an embodiment of the present specification, Figure 1(a) is an image of the corrosion resistance evaluation of the machined part on the substrate before bending processing in Example 1, and Figure 1(b) is an image of the corrosion resistance of the machined part according to the embodiment of the present specification. This is an image of the corrosion resistance evaluation of the processed part of the substrate after bending in Example 1, and Figure 1(c) is an image of the corrosion resistance of the processed part of the substrate before and after bending of Comparative Example 1.
도 2는 본 명세서의 일 실시예에 따른 밀착성 평가에 대한 이미지이다.Figure 2 is an image of adhesion evaluation according to an embodiment of the present specification.
도 3은 본 명세서의 일 실시예에 따른 가공성 평가에 대한 이미지이다.Figure 3 is an image of machinability evaluation according to an embodiment of the present specification.
도 4는 본 명세서의 실시예 1의 표면 처리 전, 1차 에칭 후 및 2차 에칭 후의 SEM 이미지 분석 결과이다.Figure 4 shows the results of SEM image analysis before surface treatment, after first etching, and after second etching of Example 1 of the present specification.
도 5는 본 명세서의 일 실시예에 따른 2차 에칭 수행 시간 변화에 대한 SEM 이미지 분석 결과이다.Figure 5 shows the results of SEM image analysis of the change in secondary etching performance time according to an embodiment of the present specification.
도 6는 본 명세서의 실시예 1의 평균 장경 분석한 결과이다.Figure 6 shows the results of analysis of the average major axis of Example 1 of the present specification.
도 7는 본 명세서의 일 실시예에 따른 표면조도 분석 결과이다.Figure 7 shows the results of surface roughness analysis according to an embodiment of the present specification.
도 8은 본 명세서의 일 실시예에 따른 광택도 분석 결과이다.Figure 8 shows the results of gloss analysis according to an embodiment of the present specification.
이하에서는 본 명세서의 일 측면을 설명하기로 한다. 그러나 본 명세서의 기재사항은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 본 명세서의 일 측면을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다.Below, one aspect of the present specification will be described. However, the description in this specification may be implemented in various different forms, and therefore is not limited to the embodiments described herein. In order to clearly explain one aspect of the present specification, parts unrelated to the description have been omitted.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.Throughout the specification, when a part is said to be “connected” to another part, this includes not only cases where it is “directly connected,” but also cases where it is “indirectly connected” with another member in between. . Additionally, when a part is said to “include” a certain component, this does not mean that other components are excluded, but that other components can be added, unless specifically stated to the contrary.
본 명세서에서 수치적 값의 범위가 기재되었을 때, 이의 구체적인 범위가 달리 기술되지 않는 한 그 값은 유효 숫자에 대한 화학에서의 표준규칙에 따라 제공된 유효 숫자의 정밀도를 갖는다. 예를 들어, 10은 5.0 내지 14.9의 범위를 포함하며, 숫자 10.0은 9.50 내지 10.49의 범위를 포함한다.When a range of numerical values is described herein, unless the specific range is stated otherwise, the value has the precision of significant figures given in accordance with the standard rules in chemistry for significant figures. For example, the number 10 includes the range 5.0 to 14.9, and the number 10.0 includes the range 9.50 to 10.49.
이하, 첨부된 도면을 참고하여 본 명세서의 일 실시예를 상세히 설명하기로 한다.Hereinafter, an embodiment of the present specification will be described in detail with reference to the attached drawings.
코팅된 알루미늄 기재Coated aluminum base
일 측면에 따른 코팅된 알루미늄 기재는, 알루미늄계 기재와, 상기 알루미늄계 기재의 적어도 일면 상에 형성된 부동태 피막과, 상기 부동태 피막 상에 형성된 수지 피막을 포함할 수 있다.A coated aluminum substrate according to one aspect may include an aluminum-based substrate, a passive film formed on at least one side of the aluminum-based substrate, and a resin film formed on the passive film.
상기 알루미늄계 기재는 특별한 제한없이 통상 사용되는 알루미늄 또는 알루미늄 합금일 수 있으며, 예를 들어, 순 알루미늄, 주물용 알루미늄 합금, 전신용 알루미늄 합금일 수 있고, 더욱 상세하게는, Al 1000계열, Al 3000계열, Al 4000계열, Al 5000계열, Al 6000계열, Al 7000계열 중 선택된 1종 이상일 수 있고, 바람직하게는 Al 1000계열일 수 있으나, 이에 한정되는 것은 아니다.The aluminum-based substrate may be a commonly used aluminum or aluminum alloy without particular limitation, and may be, for example, pure aluminum, aluminum alloy for casting, or aluminum alloy for whole body, and more specifically, Al 1000 series, Al 3000 series. , it may be one or more selected from Al 4000 series, Al 5000 series, Al 6000 series, and Al 7000 series, and preferably Al 1000 series, but is not limited thereto.
상기 알루미늄계 기재의 표면에는 복수 개의 다각형의 미세 요철이 형성되어 있는 것을 특징으로 한다. 상기 다각형의 미세 요철에 의해 알루미늄계 기재와 부동태 피막과의 결합력을 향상시킬 수 있고, 최종 코팅층인 수지 피막과의 밀착성을 강화시킬 수 있다.The surface of the aluminum-based substrate is characterized in that a plurality of polygonal fine irregularities are formed. The polygonal fine irregularities can improve the bonding strength between the aluminum-based substrate and the passive film, and enhance adhesion with the resin film, which is the final coating layer.
상기 다각형의 미세 요철의 평균 장경은 0.1~5μm일 수 있다. 예를 들어, 0.1μm, 0.2μm, 0.3μm, 0.4μm, 0.5μm, 0.6μm, 0.7μm, 0.8μm, 0.9μm, 1.0μm, 1.1μm, 1.2μm, 1.3μm, 1.4μm, 1.5μm, 1.6μm, 1.7μm, 1.8μm, 1.9μm, 2.0μm, 2.1μm, 2.2μm, 2.3μm, 2.4μm, 2.5μm, 2.6μm, 2.7μm, 2.8μm, 2.9μm, 3.0μm, 3.1μm, 3.2μm, 3.3μm, 3.4μm, 3.5μm, 3.6μm, 3.7μm, 3.8μm, 3.9μm, 4.0μm, 4.1μm, 4.2μm, 4.3μm, 4.4μm, 4.5μm, 4.6μm, 4.7μm, 4.8μm, 4.9μm, 5.0μm 또는 이들 중 두 값의 사이 값일 수 있다. 다각형의 미세 요철의 평균 장경이 상기 범위를 벗어나면 내부식성 내지 가공성이 저하될 수 있다.The average major diameter of the fine irregularities of the polygon may be 0.1 to 5 μm. For example, 0.1μm, 0.2μm, 0.3μm, 0.4μm, 0.5μm, 0.6μm, 0.7μm, 0.8μm, 0.9μm, 1.0μm, 1.1μm, 1.2μm, 1.3μm, 1.4μm, 1.5μm, 1.6μm μm, 1.7μm, 1.8μm, 1.9μm, 2.0μm, 2.1μm, 2.2μm, 2.3μm, 2.4μm, 2.5μm, 2.6μm, 2.7μm, 2.8μm, 2.9μm, 3.0μm, 3.1μm, 3.2μm, 3.3μm, 3.4μm, 3.5μm, 3.6μm, 3.7μm, 3.8μm, 3.9μm, 4.0μm, 4.1μm, 4.2μm, 4.3μm, 4.4μm, 4.5μm, 4.6μm, 4.7μm, 4.8μm, 4.9μm , 5.0 μm, or a value between these two values. If the average length of the polygonal fine irregularities is outside the above range, corrosion resistance or processability may be reduced.
본 명세서에 사용된 용어 “평균 장경”은, 주사형 전자 현미경(SEM) 관찰의 화상 해석에 의해, 다각형 미세 요철에 외접하는 직사각형 중 최소의 면적을 갖는 직사각형의 긴 변을 장경으로서 계측하고, 각각의 면적 분포로부터 구한 누적 면적 50% 직경을 의미한다.The term “average major axis” used in this specification refers to the long side of a rectangle with the smallest area among the rectangles circumscribed by polygonal fine irregularities measured as the major axis by image analysis of scanning electron microscope (SEM) observation, respectively. It means the diameter of 50% of the cumulative area obtained from the area distribution of .
상기 복수 개의 다각형의 미세 요철이 차지하는 면적분율은 10% 이상일 수 있다. 예를 들어, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100% 또는 이들 중 두 값의 사이 값일 수 있다. 복수 개의 다각형의 미세 요철이 차지하는 면적분율이 10% 미만일 경우 상기 미세 요철에 의한 결합력 및 밀착성이 저하되어 코팅된 알루미늄계 기재의 내부식성 및 가공성이 저하될 수 있다. 한편, 상기 복수 개의 다각형의 미세 요철이 차지하는 면적분율이 커질수록 결합력 및 밀착성에 유리하므로 본 발명에서는 그 상한에 대해서는 특별히 한정하지 않으나, 상기 복수 개의 다각형의 미세 요철이 차지하는 면적분율이 일정 수준 이상일 경우 인접한 미세 요철 간 과도한 중첩으로 인해 평균 장경이 과도하게 커질 수 있으므로, 이를 고려하면 그 상한을 약 85%로 한정할 수는 있다.The area fraction occupied by the plurality of polygonal fine irregularities may be 10% or more. For example, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25. %, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58% , 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75 %, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, It may be 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%, or a value between any two of these values. If the area fraction occupied by the plurality of polygonal fine irregularities is less than 10%, the bonding force and adhesion due to the fine irregularities may be reduced, thereby reducing the corrosion resistance and processability of the coated aluminum-based substrate. Meanwhile, as the area fraction occupied by the fine irregularities of the plurality of polygons increases, it is advantageous for bonding force and adhesion, so the present invention does not specifically limit the upper limit. However, if the area fraction occupied by the fine irregularities of the plurality of polygons is above a certain level, the upper limit is not particularly limited. The average major diameter may become excessively large due to excessive overlap between adjacent fine irregularities, so taking this into account, the upper limit can be limited to about 85%.
일 예시로, 상기 다각형의 미세 요철이 형성된 알루미늄계 기재의 광택도는 20~60GU일 수 있다. 예를 들어, 20GU, 21GU, 22GU, 23GU, 24GU, 25GU, 26GU, 27GU, 28GU, 29GU, 30GU, 31GU, 32GU, 33GU, 34GU, 35GU, 36GU, 37GU, 38GU, 39GU, 40GU, 41GU, 42GU, 43GU, 44GU, 45GU, 46GU, 47GU, 48GU, 49GU, 50GU, 51GU, 52GU, 53GU, 54GU, 55GU, 56GU, 57GU, 58GU, 59GU, 60GU 또는 이들 중 두 값의 사이 값일 수 있다. 알루미늄계 기재의 광택도가 상기 범위를 만족하는 범위에서 다각형의 미세 요철이 상기 기재 표면에 균일하게 형성될 수 있다.As an example, the glossiness of the aluminum-based substrate on which polygonal fine irregularities are formed may be 20 to 60 GU. For example, 20GU, 21GU, 22GU, 23GU, 24GU, 25GU, 26GU, 27GU, 28GU, 29GU, 30GU, 31GU, 32GU, 33GU, 34GU, 35GU, 36GU, 37GU, 38GU, 39GU, 40GU, 41GU, 42GU, It may be 43GU, 44GU, 45GU, 46GU, 47GU, 48GU, 49GU, 50GU, 51GU, 52GU, 53GU, 54GU, 55GU, 56GU, 57GU, 58GU, 59GU, 60GU, or a value between these two values. As long as the glossiness of the aluminum-based substrate satisfies the above range, polygonal fine irregularities can be uniformly formed on the surface of the substrate.
일 예시로, 상기 다각형의 미세 요철이 형성된 알루미늄계 기재의 산술 평균 조도(Ra)는 0.45~0.7μm일 수 있다. 예를 들어, 0.45μm, 0.46μm, 0.47μm, 0.48μm, 0.49μm, 0.50μm, 0.51μm, 0.52μm, 0.53μm, 0.54μm, 0.55μm, 0.56μm, 0.57μm, 0.58μm, 0.59μm, 0.60μm, 0.61μm, 0.62μm, 0.63μm, 0.64μm, 0.65μm, 0.66μm, 0.67μm, 0.68μm, 0.69μm, 0.70μm 또는 이들 중 두 값의 사이 값일 수 있다. 상기 산술 평균 조도(Ra) 가 상기 범위를 벗어나면 미세 요철의 형성이 불량하거나 과도하게 형성되어 동태 피막 및 수지 피막과의 결합력 및 밀착성이 저하될 수 있다.As an example, the arithmetic mean roughness (Ra) of the aluminum-based substrate on which the polygonal fine irregularities are formed may be 0.45 to 0.7 μm. For example, 0.45μm, 0.46μm, 0.47μm, 0.48μm, 0.49μm, 0.50μm, 0.51μm, 0.52μm, 0.53μm, 0.54μm, 0.55μm, 0.56μm, 0.57μm, 0.58μm, , 0.60 It may be μm, 0.61μm, 0.62μm, 0.63μm, 0.64μm, 0.65μm, 0.66μm, 0.67μm, 0.68μm, 0.69μm, 0.70μm or a value between any two of these values. If the arithmetic mean roughness (Ra) is outside the above range, fine irregularities may be formed poorly or excessively, resulting in reduced bonding force and adhesion with the dynamic coating and the resin coating.
본 명세서에 사용된 용어 “상기 산술 평균 조도(Ra)”는 상기 미세 요철에 의해 기재 표면에 높낮이의 중심선에 대한 평균값으로서, 중심선으로부터 측정 길이까지의 편차의 절대값을 합하여 평균한 값이다. 상기 산술 평균 조도(Ra)는 광택, 표면강도, 표면처리, 마찰력, 전기적 접촉저항 등의 평가에 적합하여 거칠기 파라미터 중 가장 널리 사용되고 있으나, 예외적인 피크(peak) 및/또는 밸리(valley)는 Ra에 영향을 미치지 않는다.The term “arithmetic average roughness (Ra)” used in this specification is the average value for the center line of the height of the surface of the substrate due to the fine irregularities, and is the average value of the sum of the absolute values of the deviations from the center line to the measured length. The arithmetic mean roughness (Ra) is the most widely used roughness parameter as it is suitable for evaluating gloss, surface strength, surface treatment, friction, and electrical contact resistance, but exceptional peaks and/or valleys are Ra. does not affect
본 발명에서는 상기 복수 개의 다각형의 미세 요철을 알루미늄계 기재의 표면에 형성하는 방법에 대해서는 특별히 한정하지 않으나, 제한되지 않는 일 예에 따르면, 상기 복수 개의 다각형의 미세 요철은 알루미늄계 기재 표면을 후술할 1차 및 2차 에칭 처리함으로써 형성될 수 있다. 상기 1차 및 2차 에칭 처리된 기재 표면에는 복수 개의 다각형의 미세 요철이 형성되며, 상기 미세 요철에 의해 기재 표면적이 극대화됨으로써 후속되어 적층되는 부동태 피막 및 수지 피막과의 결합력 및 밀착성을 향상시킬 수 있다.In the present invention, there is no particular limitation on the method of forming the plurality of polygonal fine irregularities on the surface of the aluminum-based substrate, but according to a non-limiting example, the plurality of polygonal fine irregularities are formed on the surface of the aluminum-based substrate, which will be described later. It can be formed by primary and secondary etching processes. A plurality of polygonal fine irregularities are formed on the surface of the substrate that has been subjected to the primary and secondary etching, and the surface area of the substrate is maximized by the fine irregularities, thereby improving the bonding force and adhesion with the passive film and resin film that are subsequently laminated. there is.
일 예시로, 상기 부동태 피막은 상기 알루미늄계 기재의 적어도 일면 상에 형성될 수 있고, 기재를 화성 처리용액에 침지하여 상기 알루미늄계 기재의 표면에 얇은 불활성 화학피막 즉, 부동태 피막을 형성시켜 상기 기재 표면의 산화를 방지할 수 있고, 이후 코팅되는 수지 피막과의 우수한 밀착력으로 코팅된 알루미늄계 기재의 내부식성 및 가공성을 향상시킬 수 있다.As an example, the passive film may be formed on at least one surface of the aluminum-based substrate, and the substrate is immersed in a chemical treatment solution to form a thin inert chemical film, that is, a passive film, on the surface of the aluminum-based substrate. Oxidation of the surface can be prevented, and the corrosion resistance and processability of the coated aluminum-based substrate can be improved through excellent adhesion with the resin film to be coated afterwards.
일 예시로, 상기 부동태 피막은 티타늄계 화합물 및 불소계 화합물로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다. 예를 들어, 상기 티타늄계 화합물은, 인산티타늄, 질산티타늄, 수산화티타늄, 이산화티타늄 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있으나 이에 한정되는 것은 아니다. 또한, 예를 들어, 상기 불소계 화합물은, 불화티타늄, 불화망간, 불화산화티타늄 및 불화산화망간 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있으나 이에 한정되는 것은 아니다. 상기 부동태 피막은 크롬 화합물을 포함하지 않아, 6가 크롬의 배출로 인한 환경오염 및 인체의 유해성 문제를 방지할 수 있고 친환경성이 우수할 수 있다.As an example, the passivation film may include at least one selected from the group consisting of titanium-based compounds and fluorine-based compounds. For example, the titanium-based compound may be one selected from the group consisting of titanium phosphate, titanium nitrate, titanium hydroxide, titanium dioxide, and mixtures of two or more thereof, but is not limited thereto. Additionally, for example, the fluorine-based compound may be one selected from the group consisting of titanium fluoride, manganese fluoride, titanium fluoride oxide, manganese fluoride oxide, and mixtures of two or more of these, but is not limited thereto. Since the passive film does not contain a chromium compound, it can prevent environmental pollution and human health problems caused by the emission of hexavalent chromium and can be excellent in eco-friendliness.
상기 수지 피막은 상기 부동태 피막 상에 형성될 수 있고, 상기 부동태 피막과 결합하여 코팅될 수 있다.The resin film may be formed on the passive film, and may be coated in combination with the passive film.
일 예시로, 상기 수지 피막은 우레탄 수지 및 아크릴 수지를 포함할 수 있고, 예를 들어, 우레탄-아크릴 하이브리드 수지일 수 있다. 상기 우레탄-아크릴 하이브리드 수지는 폴리올과 이소시아네이트를 반응시켜 얻은 폴리우레탄 프리폴리머에 아크릴 단량체를 투입하고 공중합하여 제조된 것일 수 있으나, 이에 한정되는 것은 아니다.As an example, the resin film may include a urethane resin and an acrylic resin, for example, a urethane-acrylic hybrid resin. The urethane-acrylic hybrid resin may be manufactured by adding an acrylic monomer to a polyurethane prepolymer obtained by reacting polyol and isocyanate and copolymerizing it, but is not limited thereto.
상기 우레탄-아크릴 하이브리드 수지는 우레탄 수지 및 아크릴 수지를 단순 블렌딩한 것이 아닌, 서로 결합하여 제조함으로써 부족한 물성을 상호 보완할 수 있다. 구체적으로, 우레탄 수지의 우수한 내부식성, 내마모성, 내약품성, 가공성, 내후성, 저온물성과 아크릴 수지의 우수한 내부식성, 내용제성, 내구성 및 내후성 등의 물성을 동시에 구현할 수 있다. 또한, 우레탄-아크릴 하이브리드 수지는 수성 수지로 친환경성을 제고할 수 있다.The urethane-acrylic hybrid resin can compensate for insufficient physical properties by combining urethane resin and acrylic resin with each other, rather than simply blending them. Specifically, it is possible to simultaneously realize the excellent corrosion resistance, abrasion resistance, chemical resistance, processability, weather resistance, and low-temperature properties of urethane resin and the excellent corrosion resistance, solvent resistance, durability, and weather resistance of acrylic resin. In addition, urethane-acrylic hybrid resin is a water-based resin and can improve eco-friendliness.
일 예시로, 상기 수지 피막의 두께는 1~15μm일 수 있다. 예를 들어, 1.0μm, 1.1μm, 1.2μm, 1.3μm, 1.4μm, 1.5μm, 1.6μm, 1.7μm, 1.8μm, 1.9μm, 2.0μm, 2.5μm, 3.0μm, 3.5μm, 4.0μm, 4.5μm, 5.0μm, 5.5μm, 6.0μm, 6.5μm, 7.0μm, 7.5μm, 8.0μm, 8.5μm, 9.0μm, 9.5μm, 10.0μm, 10.5μm, 11.0μm, 11.5μm, 12.0μm, 12.5μm, 13.0μm, 13.5μm, 14.0μm, 14.1μm, 14.2μm, 14.3μm, 14.4μm, 14.5μm, 14.6μm, 14.7μm, 14.8μm, 14.9μm, 15.0μm 또는 이들 중 두 값의 사이 값일 수 있다. 수지 피막의 두께가 상기 범위 미만이면 코팅된 알루미늄계 기재의 내부식성이 저하될 수 있고, 상기 범위 초과이면 박리가 발생할 수 있어 내구성 및 가공성이 저하될 수 있다.As an example, the thickness of the resin film may be 1 to 15 μm. For example, 1.0μm, 1.1μm, 1.2μm, 1.3μm, 1.4μm, 1.5μm, 1.6μm, 1.7μm, 1.8μm, 1.9μm, 2.0μm, 2.5μm, 3.0μm, 3.5μm, 4.0μm, 4.5μm. μm, 5.0μm, 5.5μm, 6.0μm, 6.5μm, 7.0μm, 7.5μm, 8.0μm, 8.5μm, 9.0μm, 9.5μm, 10.0μm, 10.5μm, 11.0μm, 11.5μm, 12.0μm, 12.5μm, It may be 13.0μm, 13.5μm, 14.0μm, 14.1μm, 14.2μm, 14.3μm, 14.4μm, 14.5μm, 14.6μm, 14.7μm, 14.8μm, 14.9μm, 15.0μm, or a value between any two of these values. If the thickness of the resin film is less than the above range, the corrosion resistance of the coated aluminum base may decrease, and if it exceeds the above range, peeling may occur and durability and processability may be reduced.
코팅된 알루미늄 기재의 제조방법Manufacturing method of coated aluminum substrate
다른 일 측면에 따르면 코팅된 알루미늄 기재의 제조방법은 a) 알루미늄계 기재를 준비하는 단계; (b) 상기 알루미늄계 기재를 제1 에칭액에 침지하여 상기 알루미늄계 기재 상의 표면 산화층을 제거하고, 상기 알루미늄계 기재의 적어도 일면에 조대 요철을 형성하는 단계; (c) 상기 조대 요철이 형성된 알루미늄계 기재를 제2 에칭액에 침지하여 상기 조대 요철이 형성된 알루미늄계 기재의 적어도 일면에 복수 개의 다각형 미세 요철을 형성하는 단계; (d) 상기 다각형의 미세 요철이 형성된 알루미늄계 기재의 적어도 일면 상에 부동태 피막을 형성하는 단계; 및 (e) 상기 부동태 피막 상에 수지 피막을 형성하는 단계;를 포함하고, 상기 다각형의 미세 요철의 평균 장경은 0.1~5μm이고, 상기 복수 개의 다각형의 미세 요철이 차지하는 면적분율은 10% 이상일 수 있다.According to another aspect, a method of manufacturing a coated aluminum substrate includes the steps of a) preparing an aluminum-based substrate; (b) immersing the aluminum-based substrate in a first etching solution to remove a surface oxide layer on the aluminum-based substrate and forming coarse irregularities on at least one surface of the aluminum-based substrate; (c) immersing the aluminum-based substrate on which the coarse irregularities are formed in a second etching solution to form a plurality of polygonal fine irregularities on at least one surface of the aluminum-based substrate on which the coarse irregularities are formed; (d) forming a passive film on at least one surface of the aluminum-based substrate on which the polygonal fine irregularities are formed; and (e) forming a resin film on the passive film, wherein the average major diameter of the polygonal fine irregularities is 0.1 to 5 μm, and the area fraction occupied by the plurality of polygonal fine irregularities may be 10% or more. there is.
일 예시로, 상기 (a) 단계에서 알루미늄계 기재를 준비할 수 있고, 탈지 공정을 수행할 수 있다. 상기 탈지 공정은 상기 알루미늄계 기재를 탈지액에 침지하여 기재 표면의 유분 및 이물질을 1차적으로 제거할 수 있다. 상기 탈지 공정을 수행함으로써 후속되는 공정의 효율을 향상시킬 수 있고, 고품질의 코팅된 알루미늄계 기재를 제조할 수 있다.As an example, in step (a), an aluminum-based substrate can be prepared, and a degreasing process can be performed. In the degreasing process, oil and foreign substances on the surface of the aluminum-based substrate can be primarily removed by immersing the aluminum-based substrate in a degreasing liquid. By performing the degreasing process, the efficiency of the subsequent process can be improved and a high-quality coated aluminum-based substrate can be manufactured.
상기 탈지는 종류에 따라서, 용제탈지(solvent degreasing), 용제와 물에 계면활성제를 유화시킨 액을 사용하는 에멀젼탈지(emulsion cleaning), 초음파탈지, 전해탈지(electro cleaning), 알칼리탈지(alkaline cleaning) 등을 들 수 있다. 상기 탈지단계에서는 특별히 한정하지 않으며, 통상적으로 탈지에 사용되는 탈지액을 사용할 수 있다.Depending on the type, the degreasing may include solvent degreasing, emulsion cleaning using a liquid emulsifying a surfactant in solvent and water, ultrasonic degreasing, electro cleaning, and alkaline cleaning. etc. can be mentioned. There is no particular limitation in the degreasing step, and degreasing liquid commonly used for degreasing can be used.
일 예시로, 탈지 공정을 마친 후 수세(rinsing) 공정을 추가적으로 수행할 수 있으나, 이에 한정되는 것은 아니다. 상기 탈지 공정 후 잔류하는 탈지액에 의한 오염을 방지하기 위해 수세 공정을 수행할 수 있다.As an example, a rinsing process may be additionally performed after completing the degreasing process, but is not limited to this. A water washing process may be performed to prevent contamination by degreasing liquid remaining after the degreasing process.
일 예시로, 상기 (b) 단계에서 상기 알루미늄계 기재를 제1 에칭액에 침지하여 상기 알루미늄계 기재 상의 표면 산화층을 제거하고, 상기 알루미늄계 기재의 적어도 일면에 조대 요철을 형성할 수 있다. 구체적으로, 상기 (b) 단계는 1차 에칭 공정으로 상기 (a) 단계의 탈지 공정에서 제거되지 못하고 잔류하고 있는 기재 표면의 유분 및 이물질을 2차적으로 제거하고, 표면 산화층을 제거함과 동시에, 알루미늄계 기재의 표면에 조대 요철을 형성하는 단계일 수 있다.As an example, in step (b), the aluminum-based substrate may be immersed in a first etching solution to remove the surface oxide layer on the aluminum-based substrate and form coarse irregularities on at least one surface of the aluminum-based substrate. Specifically, step (b) is a primary etching process that secondarily removes oil and foreign substances on the surface of the substrate that were not removed in the degreasing process of step (a), removes the surface oxidation layer, and removes aluminum. This may be a step of forming coarse irregularities on the surface of the base material.
일 예시로, 상기 제1 에칭액은 알칼리 금속 또는 알칼리 토금속의 수산화물을 포함할 수 있다.As an example, the first etching solution may include a hydroxide of an alkali metal or an alkaline earth metal.
일 예시로, 상기 알칼리 금속 또는 알칼리 토금속의 수산화물은, 수산화나트륨, 수산화칼륨, 수산화마그네슘, 수산화알루미늄, 수산화리튬 및 수산화암모늄으로 이루어진 군으로부터 선택되는 적어도 하나일 수 있다. 제1 에칭액이 알칼리 금속 또는 알칼리 토금속의 수산화물을 포함할 경우, 이를 포함하지 않는 경우 대비, 조대 요철을 용이하게 형성할 수 있다.As an example, the hydroxide of the alkali metal or alkaline earth metal may be at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, magnesium hydroxide, aluminum hydroxide, lithium hydroxide, and ammonium hydroxide. When the first etching solution contains a hydroxide of an alkali metal or an alkaline earth metal, coarse irregularities can be formed more easily than when the first etching solution does not contain the hydroxide.
일 예시로, 상기 제1 에칭액은 계면활성제를 더 포함할 수 있다. 상기 계면활성제는 폴리에틸렌글리콜, 폴리프로필렌글리콜, 폴리에테르폴리올, 폴리글리콜올레산, 젤라틴, 및 산화에틸렌(EO)-산화프로필렌(PO) 공중합체로 이루어진 군으로부터 선택되는 적어도 하나의 비이온 계면활성제일 수 있으나, 이에 한정되는 것은 아니다. 제1 에칭액이 비이온 계면활성제를 포함할 경우, 조대 요철의 직선성이 개선되며, 다각형의 미세 요철을 형성하기에 적합한 수준의 조대 요철이 형성될 수 있다.As an example, the first etching solution may further include a surfactant. The surfactant may be at least one nonionic surfactant selected from the group consisting of polyethylene glycol, polypropylene glycol, polyether polyol, polyglycol oleic acid, gelatin, and ethylene oxide (EO)-propylene oxide (PO) copolymer. However, it is not limited to this. When the first etching solution contains a nonionic surfactant, the linearity of the coarse irregularities is improved, and coarse irregularities at a level suitable for forming polygonal fine irregularities can be formed.
일 예시로, 상기 제1 에칭액은 아크릴산 말레산 공중합체와 그 금속염, 폴리카르본산, 폴리에틸렌글리콜로 이루어진 군으로부터 선택되는 적어도 하나의 분산제를 더 포함할 수 있다. 이 경우, 온화한 조건(예컨대, 저온, 단시간)에서도 조대 요철을 용이하게 형성할 수 있다.As an example, the first etching solution may further include at least one dispersant selected from the group consisting of acrylic acid maleic acid copolymer and its metal salt, polycarboxylic acid, and polyethylene glycol. In this case, coarse irregularities can be easily formed even under mild conditions (e.g., low temperature, short time).
일 예시로, 1차 에칭 공정을 마친 후 수세(rinsing) 공정을 추가적으로 수행할 수 있으나, 이에 한정되는 것은 아니다. 상기 1차 공정 후 잔류하는 제1 에칭액에 의한 오염을 방지하기 위해 수세 공정을 수행할 수 있다. 특히, 제 1 에칭 공정은 염기에 의한 에칭으로 상기 기재 표면에 잔류 이온에 의해 수소 라디칼 반응이 발생할 수 있어 부식이 발생할 수 있어 수세 공정으로 잔류 이온을 제거하는 것이 바람직하다.As an example, a rinsing process may be additionally performed after completing the first etching process, but is not limited to this. A water washing process may be performed to prevent contamination by the first etching solution remaining after the first process. In particular, the first etching process is an etching using a base, and a hydrogen radical reaction may occur due to residual ions on the surface of the substrate, which may cause corrosion, so it is preferable to remove the remaining ions through a water washing process.
일 예시로, 상기 (c) 단계에서 상기 조대 요철이 형성된 알루미늄계 기재를 제2 에칭액에 침지하여 기재의 적어도 일면에 복수 개의 다각형 미세 요철을 형성할 수 있다.As an example, the aluminum-based substrate on which the coarse irregularities are formed in step (c) may be immersed in a second etching solution to form a plurality of polygonal fine irregularities on at least one side of the substrate.
일 예시로, 상기 제2 에칭액은 분자 내에 적어도 하나의 히드록시기를 갖는 유기산 및 불소 화합물을 포함할 수 있다. 상기 분자 내에 적어도 하나의 히드록시기를 갖는 유기산과 불소 화합물은 상호 작용을 통해 조대 요철이 형성된 알루미늄계 기재의 표면에 다각형의 미세 요철을 형성한다.As an example, the second etching solution may include an organic acid and a fluorine compound having at least one hydroxy group in the molecule. The organic acid having at least one hydroxy group in the molecule and the fluorine compound interact to form polygonal fine irregularities on the surface of the aluminum-based substrate on which coarse irregularities have been formed.
일 예시로, 상기 분자 내에 적어도 하나의 히드록시기를 갖는 유기산은, 글루콘산, 구연산, 주석산 및 사과산으로 이루어진 군으로부터 선택되는 적어도 하나일 수 있으나, 이에 한정되는 것은 아니다.As an example, the organic acid having at least one hydroxy group in the molecule may be at least one selected from the group consisting of gluconic acid, citric acid, tartaric acid, and malic acid, but is not limited thereto.
일 예시로, 상기 불소 화합물은 불화암모늄, 산성불화암모늄, 불화칼륨, 붕불화암모늄, 중불화칼륨, 붕불화칼륨, 불화나트륨, 중불화나트륨, 불화알루미늄, 불화붕소산, 불화리튬, 불화칼슘 및 불화구리로 이루어진 군으로부터 선택되는 적어도 하나일 수 있으나, 이에 한정되는 것은 아니다.As an example, the fluorine compound includes ammonium fluoride, acidic ammonium fluoride, potassium fluoride, ammonium borofluoride, potassium bifluoride, potassium borofluoride, sodium fluoride, sodium bifluoride, aluminum fluoride, boronic acid, lithium fluoride, calcium fluoride, and It may be at least one selected from the group consisting of copper fluoride, but is not limited thereto.
일 예시로, 상기 제2 에칭액은 과산화수소 및 과황산염을 포함하지 않는 것일 수 있다. 만약 제2 에칭액이 과산화수소나 과황산염을 포함할 경우, 액의 불안정성으로 인한 경시 변화에 의해 생산성이 저하되고, 폐액량 증가하며, 또한 급격한 분해에 따라 열 및 가스가 발생하여 안정성이 저하될 수 있다. 게다가 균질한 미세 요철의 형성을 방해하여 목적하는 수준의 밀착력 및 가공성 확보에도 어려움이 있을 수 있다. As an example, the second etching solution may not contain hydrogen peroxide and persulfate. If the second etching liquid contains hydrogen peroxide or persulfate, productivity may decrease due to changes over time due to the instability of the liquid, the amount of waste liquid may increase, and stability may be reduced due to heat and gas generation due to rapid decomposition. . In addition, it may be difficult to secure the desired level of adhesion and processability by hindering the formation of homogeneous fine irregularities.
일 예시로, 상기 다각형의 미세 요철의 평균 장경은 0.1~5μm일 수 있다. 예를 들어, 0.1μm, 0.2μm, 0.3μm, 0.4μm, 0.5μm, 0.6μm, 0.7μm, 0.8μm, 0.9μm, 1.0μm, 1.1μm, 1.2μm, 1.3μm, 1.4μm, 1.5μm, 1.6μm, 1.7μm, 1.8μm, 1.9μm, 2.0μm, 2.1μm, 2.2μm, 2.3μm, 2.4μm, 2.5μm, 2.6μm, 2.7μm, 2.8μm, 2.9μm, 3.0μm, 3.1μm, 3.2μm, 3.3μm, 3.4μm, 3.5μm, 3.6μm, 3.7μm, 3.8μm, 3.9μm, 4.0μm, 4.1μm, 4.2μm, 4.3μm, 4.4μm, 4.5μm, 4.6μm, 4.7μm, 4.8μm, 4.9μm, 5.0μm 또는 이들 중 두 값의 사이 값일 수 있다. 다각형의 미세 요철의 평균 장경이 상기 범위를 벗어나면 내부식성 내지 가공성이 저하될 수 있다. As an example, the average long diameter of the fine irregularities of the polygon may be 0.1 to 5 μm. For example, 0.1μm, 0.2μm, 0.3μm, 0.4μm, 0.5μm, 0.6μm, 0.7μm, 0.8μm, 0.9μm, 1.0μm, 1.1μm, 1.2μm, 1.3μm, 1.4μm, 1.5μm, 1.6μm μm, 1.7μm, 1.8μm, 1.9μm, 2.0μm, 2.1μm, 2.2μm, 2.3μm, 2.4μm, 2.5μm, 2.6μm, 2.7μm, 2.8μm, 2.9μm, 3.0μm, 3.1μm, 3.2μm, 3.3μm, 3.4μm, 3.5μm, 3.6μm, 3.7μm, 3.8μm, 3.9μm, 4.0μm, 4.1μm, 4.2μm, 4.3μm, 4.4μm, 4.5μm, 4.6μm, 4.7μm, 4.8μm, 4.9μm , 5.0 μm, or a value between these two values. If the average length of the polygonal fine irregularities is outside the above range, corrosion resistance or processability may be reduced.
일 예시로, 상기 복수 개의 다각형의 미세 요철이 차지하는 면적분율은 10% 이상일 수 있다. 예를 들어, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25%, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58%, 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100% 또는 이들 중 두 값의 사이 값일 수 있다. 복수 개의 다각형의 미세 요철이 차지하는 면적분율이 10% 미만일 경우 상기 미세 요철에 의한 결합력 및 밀착성이 저하되어 코팅된 알루미늄계 기재의 내부식성 및 가공성이 저하될 수 있다.As an example, the area fraction occupied by the fine irregularities of the plurality of polygons may be 10% or more. For example, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 21%, 22%, 23%, 24%, 25. %, 26%, 27%, 28%, 29%, 30%, 31%, 32%, 33%, 34%, 35%, 36%, 37%, 38%, 39%, 40%, 41%, 42%, 43%, 44%, 45%, 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58% , 59%, 60%, 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69%, 70%, 71%, 72%, 73%, 74%, 75 %, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, It may be 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 100%, or a value between any two of these values. If the area fraction occupied by the plurality of polygonal fine irregularities is less than 10%, the bonding force and adhesion due to the fine irregularities may be reduced, thereby reducing the corrosion resistance and processability of the coated aluminum-based substrate.
일 예시로, 상기 알루미늄계 기재는 (b) 및 (c) 단계에서 각각 1차 에칭 및 2차 에칭 공정이 수행될 수 있고, 구체적으로 염기를 이용한 에칭과 산을 이용한 에칭을 교대로 수행할 수 있다. 상기 염기를 이용한 에칭과 산을 이용한 에칭은 그 표면처리 효과 및 에칭 이후 기재 표면의 활성도가 상이하고, 이에 따라 후속되는 부동태 피막 및 수지 피막과의 결합력 및 밀착성을 효과적으로 향상시킬 수 있다. 또한, 상기 (b) 단계의 제1 에칭액은 수산화나트륨, 수산화칼륨 등으로 이루어져 에칭 처리 후 수세(rinsing) 공정을 하더라도, 기재 표면에 Na+ 이온, OH- 이온이 잔류하고 있을 확률이 높다. 상기 잔류된 Na+ 이온, OH- 이온은 (c) 단계의 제2 에칭액에 의해 제거될 수 있고, 잔류 이온에 의해 발생한 산화물을 제거할 수 있어 디스머트 공정을 생략할 수 있다.As an example, the aluminum-based substrate may be subjected to primary etching and secondary etching processes in steps (b) and (c), respectively, and specifically, etching using a base and etching using an acid may be performed alternately. there is. Etching using a base and etching using an acid are different in their surface treatment effect and activity of the surface of the substrate after etching, and thus can effectively improve the bonding force and adhesion with the subsequent passive film and resin film. In addition, the first etching solution in step (b) consists of sodium hydroxide, potassium hydroxide, etc., so even if a rinsing process is performed after the etching treatment, there is a high probability that Na + ions and OH - ions remain on the surface of the substrate. The remaining Na + ions and OH - ions can be removed by the second etching solution in step (c), and oxides generated by the residual ions can be removed, so the dismut process can be omitted.
일 예시로, 상기 (b) 및 (c) 단계의 수행 온도는 40~80℃일 수 있다. 예를 들어, 40℃, 41℃, 42℃, 43℃, 44℃, 45℃, 46℃, 47℃, 48℃, 49℃, 50℃, 51℃, 52℃, 53℃, 54℃, 55℃, 56℃, 57℃, 58℃, 59℃, 60℃, 61℃, 62℃, 63℃, 64℃, 65℃, 66℃, 67℃, 68℃, 69℃, 70℃, 71℃, 72℃, 73℃, 74℃, 75℃, 76℃, 77℃, 78℃, 79℃, 80℃ 또는 이들 중 두 값의 사이 값일 수 있다. 수행 온도가 상기 범위를 벗어나면 기재 표면의 산화층 제거 및 미세 요철의 형성이 불량하여 부동태 피막 및 수지 피막과의 결합력 및 밀착성이 저하될 수 있고, 코팅된 알루미늄계 기재의 내부식성 및 가공성이 저하될 수 있다.As an example, the performance temperature of steps (b) and (c) may be 40 to 80°C. For example, 40°C, 41°C, 42°C, 43°C, 44°C, 45°C, 46°C, 47°C, 48°C, 49°C, 50°C, 51°C, 52°C, 53°C, 54°C, 55 ℃, 56℃, 57℃, 58℃, 59℃, 60℃, 61℃, 62℃, 63℃, 64℃, 65℃, 66℃, 67℃, 68℃, 69℃, 70℃, 71℃, It may be 72°C, 73°C, 74°C, 75°C, 76°C, 77°C, 78°C, 79°C, 80°C, or a value between two of these values. If the operating temperature is outside the above range, the removal of the oxide layer and the formation of fine irregularities on the surface of the substrate may be poor, which may reduce the bonding force and adhesion with the passive film and resin film, and the corrosion resistance and processability of the coated aluminum-based substrate may decrease. You can.
일 예시로, 상기 (c) 단계의 수행 시간은 1초~5분일 수 있다. 예를 들어, 1초, 2초, 3초, 4초, 5초, 6초, 7초, 8초, 9초, 10초, 11초, 12초, 13초, 14초, 15초, 16초, 17초, 18초, 19초, 20초, 21초, 22초, 23초, 24초, 25초, 26초, 27초, 28초, 29초, 30초, 31초, 32초, 33초, 34초, 35초, 36초, 37초, 38초, 39초, 40초, 41초, 42초, 43초, 44초, 45초, 46초, 47초, 48초, 49초, 50초, 51초, 52초, 53초, 54초, 55초, 56초, 57초, 58초, 59초, 1분, 1.5분, 2분, 2.5분, 3분, 3.5분, 4분, 4.5분, 5분 또는 이들 중 두 값의 사이 값일 수 있다. 수행 시간이 지나치게 짧을 경우 알루미늄계 기재 표면에 복수 개의 다각형의 미세 요철을 충분히 형성시키기 어려울 수 있고, 반대로 지나치게 길 경우 미세 요철의 평균 장경이 과도하게 커질 수 있다.As an example, the execution time of step (c) may be 1 second to 5 minutes. For example, 1 second, 2 seconds, 3 seconds, 4 seconds, 5 seconds, 6 seconds, 7 seconds, 8 seconds, 9 seconds, 10 seconds, 11 seconds, 12 seconds, 13 seconds, 14 seconds, 15 seconds, 16. seconds, 17 seconds, 18 seconds, 19 seconds, 20 seconds, 21 seconds, 22 seconds, 23 seconds, 24 seconds, 25 seconds, 26 seconds, 27 seconds, 28 seconds, 29 seconds, 30 seconds, 31 seconds, 32 seconds, 33 seconds, 34 seconds, 35 seconds, 36 seconds, 37 seconds, 38 seconds, 39 seconds, 40 seconds, 41 seconds, 42 seconds, 43 seconds, 44 seconds, 45 seconds, 46 seconds, 47 seconds, 48 seconds, 49 seconds , 50 seconds, 51 seconds, 52 seconds, 53 seconds, 54 seconds, 55 seconds, 56 seconds, 57 seconds, 58 seconds, 59 seconds, 1 minute, 1.5 minutes, 2 minutes, 2.5 minutes, 3 minutes, 3.5 minutes, 4 It can be minutes, 4.5 minutes, 5 minutes, or any value between the two. If the execution time is too short, it may be difficult to sufficiently form a plurality of polygonal fine irregularities on the surface of the aluminum-based substrate, and conversely, if the execution time is too long, the average length of the fine irregularities may become excessively large.
일 예시로, 상기 (a) 단계의 알루미늄계 기재의 광택도에 대한 상기 (b) 및 (c) 단계를 거친 알루미늄계 기재의 광택도의 비는 0.15 내지 0.55일 수 있다. 예를 들어, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55 또는 이들 중 두 값의 사이 값일 수 있다. 광택도의 비가 상기 범위를 벗어나면 미세 요철의 형성이 불량하여 부동태 피막 및 수지 피막과의 결합력 및 밀착성이 저하될 수 있고, 코팅된 알루미늄계 기재의 내부식성 및 가공성이 저하될 수 있다. As an example, the ratio of the glossiness of the aluminum-based substrate after steps (b) and (c) to the glossiness of the aluminum-based substrate in step (a) may be 0.15 to 0.55. For example, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30, 0.31, 0.32, 0.33, , 0.35, 0.36, 0.37, It may be 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52, 0.53, 0.54, 0.55, or a value between these two values. If the gloss ratio is outside the above range, the formation of fine irregularities may be poor, which may reduce the bonding force and adhesion with the passive film and the resin film, and the corrosion resistance and processability of the coated aluminum-based substrate may decrease.
일 예시로, 상기 (a) 단계의 알루미늄계 기재의 산술 평균 조도에 대한 상기 (b) 및 (c) 단계를 거친 알루미늄계 기재의 산술 평균 조도의 비는 1.2 내지 2.0일 수 있다. 예를 들어, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75, 1.80, 1.85, 1.90, 1.95, 2.00 또는 이들 중 두 값의 사이 값일 수 있다. 산술 평균 조도의 비가 상기 범위를 벗어나면 미세 요철의 형성이 불량하여 부동태 피막 및 수지 피막과의 결합력 및 밀착성이 저하될 수 있고, 코팅된 알루미늄계 기재의 내부식성 및 가공성이 저하될 수 있다. As an example, the ratio of the arithmetic average roughness of the aluminum-based substrate after steps (b) and (c) to the arithmetic average roughness of the aluminum-based substrate in step (a) may be 1.2 to 2.0. For example, it may be 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.55, 1.60, 1.65, 1.70, 1.75, 1.80, 1.85, 1.90, 1.95, 2.00, or a value between two of these values. If the arithmetic mean roughness ratio is outside the above range, the formation of fine irregularities may be poor, which may result in reduced bonding and adhesion with the passive film and resin film, and the corrosion resistance and processability of the coated aluminum-based substrate may be reduced.
일 예시로, 2차 에칭 공정을 마친 후 수세(rinsing) 공정을 추가적으로 수행할 수 있으나, 이에 한정되는 것은 아니다. 상기 2차 공정 후 잔류하는 제2에칭액에 의한 오염을 방지하기 위고, 후속되는 부동태 피막과의 결합력을 향상시키기 위해 수세 공정을 수행할 수 있다.As an example, a rinsing process may be additionally performed after completing the secondary etching process, but is not limited to this. In order to prevent contamination by the second etchant remaining after the secondary process, a water washing process may be performed to improve bonding strength with the subsequent passivation film.
일 예시로, 상기 (d) 단계에서 상기 다각형의 미세 요철이 형성된 알루미늄계 기재의 일면 상에 부동태 피막을 형성할 수 있다.As an example, in step (d), a passive film may be formed on one surface of the aluminum-based substrate on which the polygonal fine irregularities are formed.
상기 부동태 피막은 알루미늄계 기재를 화성 처리 용액에 침지하여 얻어지는 얇은 불활성 화학피막 즉, 부동태 피막으로서, 상기 알루미늄계 기재 표면의 산화를 방지할 수 있고, 이후 코팅되는 수지 피막과의 우수한 밀착력으로 코팅된 알루미늄계 기재의 내부식성 및 가공성을 향상시킬 수 있다.The passive film is a thin inert chemical film, that is, a passive film, obtained by immersing an aluminum-based substrate in a chemical treatment solution. It can prevent oxidation of the surface of the aluminum-based substrate, and is coated with excellent adhesion to the resin film to be coated afterwards. The corrosion resistance and processability of aluminum-based substrates can be improved.
일 예시로, 상기 부동태 피막은 티타늄계 화합물 및 불소계 화합물로 이루어진 군으로부터 선택되는 적어도 하나를 포함할 수 있다. 예를 들어, 상기 티타늄계 화합물은, 인산티타늄, 질산티타늄, 수산화티타늄, 이산화티타늄 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있으나 이에 한정되는 것은 아니다. 또한, 예를 들어, 상기 불소계 화합물은, 불화티타늄, 불화망간, 불화산화티타늄 및 불화산화망간 및 이들 중 2 이상의 혼합물로 이루어진 군에서 선택된 하나일 수 있으나 이에 한정되는 것은 아니다. 상기 부동태 피막은 크롬 화합물을 포함하지 않아, 6가 크롬의 배출로 인한 환경오염 및 인체의 유해성 문제를 방지할 수 있고 친환경성이 우수할 수 있다.As an example, the passivation film may include at least one selected from the group consisting of titanium-based compounds and fluorine-based compounds. For example, the titanium-based compound may be one selected from the group consisting of titanium phosphate, titanium nitrate, titanium hydroxide, titanium dioxide, and mixtures of two or more thereof, but is not limited thereto. Additionally, for example, the fluorine-based compound may be one selected from the group consisting of titanium fluoride, manganese fluoride, titanium fluoride oxide, manganese fluoride oxide, and mixtures of two or more of these, but is not limited thereto. Since the passive film does not contain a chromium compound, it can prevent environmental pollution and human health problems caused by the emission of hexavalent chromium and can be excellent in eco-friendliness.
일 예시로, 상기 (e) 단계에서 상기 부동태 피막 상에 수지 피막을 형성할 수 있다.As an example, in step (e), a resin film may be formed on the passive film.
상기 수지 피막은 우레탄 수지 및 아크릴 수지를 포함할 수 있고, 예를 들어, 우레탄-아크릴 하이브리드 수지일 수 있다. 상기 우레탄-아크릴 하이브리드 수지는 폴리올과 이소시아네이트를 반응시켜 얻은 폴리우레탄 프리폴리머에 아크릴 단량체를 투입하고 공중합하여 제조된 것일 수 있으나, 이에 한정되는 것은 아니고, 상기 우레탄-아크릴 하이브리드 수지에 대한 물성 및 이에 따른 효과는 전술한 바와 같다.The resin film may include a urethane resin and an acrylic resin, for example, a urethane-acrylic hybrid resin. The urethane-acrylic hybrid resin may be manufactured by adding an acrylic monomer to a polyurethane prepolymer obtained by reacting polyol and isocyanate and copolymerizing it, but is not limited to this, and the physical properties and effects of the urethane-acrylic hybrid resin are not limited thereto. is the same as described above.
일 예시로, 상기 수지 피막의 두께는 1~15μm일 수 있다. 예를 들어, 1.0μm, 1.1μm, 1.2μm, 1.3μm, 1.4μm, 1.5μm, 1.6μm, 1.7μm, 1.8μm, 1.9μm, 2.0μm, 2.5μm, 3.0μm, 3.5μm, 4.0μm, 4.5μm, 5.0μm, 5.5μm, 6.0μm, 6.5μm, 7.0μm, 7.5μm, 8.0μm, 8.5μm, 9.0μm, 9.5μm, 10.0μm, 10.5μm, 11.0μm, 11.5μm, 12.0μm, 12.5μm, 13.0μm, 13.5μm, 14.0μm, 14.1μm, 14.2μm, 14.3μm, 14.4μm, 14.5μm, 14.6μm, 14.7μm, 14.8μm, 14.9μm, 15.0μm 또는 이들 중 두 값의 사이 값일 수 있다. 수지 피막의 두께가 상기 범위 미만이면 코팅된 알루미늄계 기재의 내부식성이 저하될 수 있고, 상기 범위 초과이면 박리가 발생할 수 있어 내구성 및 가공성이 저하될 수 있다.As an example, the thickness of the resin film may be 1 to 15 μm. For example, 1.0μm, 1.1μm, 1.2μm, 1.3μm, 1.4μm, 1.5μm, 1.6μm, 1.7μm, 1.8μm, 1.9μm, 2.0μm, 2.5μm, 3.0μm, 3.5μm, 4.0μm, 4.5μm. μm, 5.0μm, 5.5μm, 6.0μm, 6.5μm, 7.0μm, 7.5μm, 8.0μm, 8.5μm, 9.0μm, 9.5μm, 10.0μm, 10.5μm, 11.0μm, 11.5μm, 12.0μm, 12.5μm, It may be 13.0μm, 13.5μm, 14.0μm, 14.1μm, 14.2μm, 14.3μm, 14.4μm, 14.5μm, 14.6μm, 14.7μm, 14.8μm, 14.9μm, 15.0μm, or a value between any two of these values. If the thickness of the resin film is less than the above range, the corrosion resistance of the coated aluminum base may decrease, and if it exceeds the above range, peeling may occur and durability and processability may be reduced.
이하, 본 명세서의 실시예에 관하여 더욱 상세히 설명하기로 한다. 다만, 이하의 실험 결과는 상기 실시예 중 대표적인 실험 결과만을 기재한 것이며, 실시예 등에 의해 본 명세서의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 아래에서 명시적으로 제시하지 않은 본 명세서의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다.Hereinafter, embodiments of the present specification will be described in more detail. However, the following experimental results describe only representative experimental results among the above examples, and the scope and content of the present specification cannot be interpreted as being reduced or limited by the examples. Each effect of various implementations of the present specification that are not explicitly presented below will be described in detail in the corresponding section.
실시예 1Example 1
알루미늄 1000계열의 기재를 가로 10cm, 세로5cm, 두께 2cm의 시편을 준비한 다음, 탈지액에 침지시켜 탈지 공정을 수행한 후 증류수로 수세하였다.A specimen of 10 cm wide, 5 cm long, and 2 cm thick was prepared from an aluminum 1000 series substrate, then immersed in a degreasing solution to perform a degreasing process, and then washed with distilled water.
다음으로, 기재를 수산화나트륨 및 수산화칼륨을 포함하는 60℃의 제1 에칭액에 침지시켜 1차 에칭 처리를 수행한 후 증류수로 수세하였다.Next, the substrate was immersed in a first etching solution containing sodium hydroxide and potassium hydroxide at 60°C to perform a primary etching treatment, and then washed with distilled water.
다음으로, 기재를 주석산 및 불화나트륨을 포함하는 60℃의 제2 에칭액에 침지시켜 20초 동안 2차 에칭 처리를 수행한 후 증류수로 수세하였다.Next, the substrate was immersed in a second etching solution at 60°C containing tartaric acid and sodium fluoride to perform a secondary etching treatment for 20 seconds, and then washed with distilled water.
1차 및 2차 에칭 처리된 기재 상에 부동태 피막과 우레탄-아크릴 하이브리드 수지 피막을 순차로 형성하여, 코팅된 알루미늄계 기재를 제조하였다.A passivation film and a urethane-acrylic hybrid resin film were sequentially formed on the first and second etching-treated substrates to prepare a coated aluminum-based substrate.
실시예 2Example 2
2차 에칭을 8초 동안 수행한 것을 제외하면, 실시예 1과 동일한 방법으로 코팅된 알루미늄계 기재를 제조하였다.A coated aluminum-based substrate was manufactured in the same manner as Example 1, except that the secondary etching was performed for 8 seconds.
실시예 3Example 3
2차 에칭을 12초 동안 수행한 것을 제외하면, 실시예 1과 동일한 방법으로 코팅된 알루미늄계 기재를 제조하였다.A coated aluminum-based substrate was manufactured in the same manner as in Example 1, except that the secondary etching was performed for 12 seconds.
비교예 1Comparative Example 1
1차 및 2차 에칭 공정을 생략한 것을 제외하면, 실시예 1과 동일한 방법으로 코팅된 알루미늄계 기재를 제조하였다.A coated aluminum-based substrate was manufactured in the same manner as in Example 1, except that the first and second etching processes were omitted.
비교예 2Comparative Example 2
부동태 피막을 형성 단계를 생략한 것을 제외하면, 실시예 1과 동일한 방법으로 코팅된 알루미늄계 기재를 제조하였다.A coated aluminum-based substrate was manufactured in the same manner as in Example 1, except that the step of forming a passive film was omitted.
실험예 1: 가공부 내식성 평가Experimental Example 1: Evaluation of corrosion resistance of machined parts
표면 처리 유무에 따른 가공부 내식성을 평가하기 위해, 실시예 및 비교예의 알루미늄계 기재를 180° 굽힘 가공(0T bending)한 후, 가공 전과 굽힘 가공된 알루미늄계 기재를 염수 분무 시험기에 장입하였으며, 국제 규격(ASTM B117-11)에 의해 흑변 및 백청 발생 시간을 측정하였고, 그 결과를 표 1 및 도 1에 나타내었다. 이 때, 5% 염수(온도 35℃, pH 6.8)를 이용하였으며, 시간당 2ml/80cm2의 염수를 분무하였다. 표면 처리된 실시예 1의 기재는 SST 240시간을 유지하였고, 표면 처리를 생략한 비교예 1은 SST 120시간을 유지하여 흑변 및 백청 발생 시간을 측정하였다. 실시예 1의 굽힘 가공 전(straight) 기재의 시험 결과는 도 1(a), 굽힘 가공(bent)한 기재의 시험 결과는 도 1(b)에 나타내었고, 비교예 1 기재의 굽힘 가공 전과 후의 시험 결과는 도 1(c)에 함께 나타내었다.In order to evaluate the corrosion resistance of the machined part with or without surface treatment, the aluminum-based substrates of Examples and Comparative Examples were bent at 180° (0T bending), and then the aluminum-based substrates before and after processing were placed in a salt spray tester. The occurrence times of blackening and white rust were measured according to the standard (ASTM B117-11), and the results are shown in Table 1 and Figure 1. At this time, 5% salt water (temperature 35°C, pH 6.8) was used, and 2 ml/80 cm 2 of salt water was sprayed per hour. The surface-treated substrate of Example 1 was maintained at SST for 240 hours, and the surface-treated substrate of Comparative Example 1 was maintained at SST for 120 hours to measure the time for occurrence of blackening and white rust. The test results of the substrate before bending (straight) of Example 1 are shown in FIG. 1(a), and the test results of the substrate after bending (bent) are shown in FIG. 1(b). The test results of the substrate of Comparative Example 1 before and after bending are shown. The test results are shown in Figure 1(c).
적청 발생 시간이 120시간 미만인 경우 "X", 120시간 이상 180시간 미만인 경우 "○”, 180시간 초과인 경우 “◎”으로 평가하였다.If the red rust occurrence time was less than 120 hours, it was evaluated as “
구분division 비교예 1Comparative Example 1 실시예 1Example 1
굽힘 가공 전(straight)Before bending processing (straight) XX
굽힘 가공 후(bent)After bending (bent) XX
표 1 및 도 1을 참고하면, 실시예 1은 표면 처리에 의해 가공부 내식성이 가공 전과 후 모두 우수한 것으로 나타났다. 이에 반해, 표면 처리가 생략된 비교예 1은 모두 가공부 내식성이 불량한 것을 확인할 수 있고, 특히 180° 굽힘 가공을 진행한 비교예 1은 육안으로도 많은 양의 부식을 확인할 수 있어 가공부 내식성이 가장 불량한 것을 확인할 수 있다.Referring to Table 1 and Figure 1, Example 1 showed excellent corrosion resistance of the machined part both before and after processing due to surface treatment. On the other hand, in Comparative Example 1 in which surface treatment was omitted, it can be confirmed that the corrosion resistance of the machined part is poor. In particular, in Comparative Example 1 in which 180° bending processing was performed, a large amount of corrosion can be confirmed with the naked eye, showing that the corrosion resistance of the machined part is poor. You can check the worst ones.
실험예 2: 밀착성 평가Experimental Example 2: Adhesion evaluation
표면 처리 유무에 따른 밀착성 평가를 위해, 실시예 및 비교예의 알루미늄계 기재의 표면에 커터로 알루미늄계 기재와 부동태 피막층의 계면까지 이르는 칼집을 넣어 1mm 피치의 격자 모양을 100개 형성하였고, 에릭센 압출기로 6mm 압출하였다.To evaluate adhesion according to the presence or absence of surface treatment, 100 lattice shapes with a pitch of 1 mm were formed by making cuts on the surface of the aluminum-based substrate of Examples and Comparative Examples with a cutter reaching to the interface between the aluminum-based substrate and the passive film layer, and using an Ericksen extruder. It was extruded to 6 mm.
에릭센 압출 조건은 JIS-Z-2247-2006(에릭센값 기호:IE)에 준거하여, 펀치 지름: 20mm, 다이스 지름: 27mm, 드로잉 폭: 27mm로 하였다.The Eriksen extrusion conditions were based on JIS-Z-2247-2006 (Eriksen value symbol: IE): punch diameter: 20 mm, die diameter: 27 mm, and drawing width: 27 mm.
에릭센 압출 후 테이프 박리 시험을 수행하였고, 수지 피막의 잔존 상황의 판정에 의해 밀착성 평가를 총 3회 수행하였고, 그 결과를 표 2 및 도 2에 나타내었다. 판정 기준은 이하와 같다.After Ericksen extrusion, a tape peeling test was performed, and adhesion was evaluated three times in total by determining the remaining state of the resin film, and the results are shown in Table 2 and Figure 2. The judgment criteria are as follows.
◎: 박리 면적 5% 미만 및 박리 없음◎: Peeling area less than 5% and no peeling
O: 박리 면적 30% 미만 5% 이상O: Peeling area less than 30% 5% or more
△: 박리 면적 50% 미만 30% 이상△: Peeling area less than 50% but more than 30%
X: 박리 면적 50% 이상X: Peeling area 50% or more
pH는 3~8의 범위pH ranges from 3 to 8
구분division 비교예 1Comparative Example 1 비교예 2Comparative Example 2 실시예 1Example 1
1회1 time XX OO
2회Episode 2 XX OO
3회3rd time OO
표 2 및 도 2를 참고하면, 실시예 1의 기재는 3회 평가에서 모두 박리가 발생하지 않아 밀착성이 우수한 것으로 나타났다. 이는 표면 처리된 알루미늄 기재와 부동태 피막 및 수지 피막의 밀착성이 향상됨을 확인할 수 있다. 이에 반해, 표면 처리가 생략된 비교예 1은 다수의 평가에서 박리 면적이 50% 이상으로 나타나 밀착성이 불량함을 확인할 수 있고, 표면 처리되었으나, 부동태 피막을 형성하지 않은 비교예 2는 모두 10% 미만의 박리 면적을 나타내어 부동태 피막의 생략에 따른 밀착성이 다소 저하됨을 확인할 수 있다.Referring to Table 2 and Figure 2, the substrate of Example 1 showed excellent adhesion as no peeling occurred in all three evaluations. It can be confirmed that the adhesion between the surface-treated aluminum substrate and the passive film and resin film is improved. On the other hand, Comparative Example 1, in which surface treatment was omitted, showed a peeling area of more than 50% in multiple evaluations, confirming that adhesion was poor, and Comparative Example 2, which was surface treated but did not form a passivation film, showed a peeling area of more than 50% in all evaluations. It can be seen that the adhesion is somewhat reduced due to the omission of the passive film as the peeling area is less than 100%.
실험예 3 : 가공성 평가Experimental Example 3: Machinability evaluation
표면 처리에 따른 가공성 평가를 위해 실시예 1의 알루미늄 기재를 파단 직전까지 평탄화(flattening)시켜 박리 정도를 육안으로 평가하였고, 그 이미지를 도 3에 나타내었다. To evaluate processability according to surface treatment, the aluminum substrate of Example 1 was flattened until just before fracture and the degree of peeling was visually evaluated, and the image is shown in Figure 3.
도 3을 참고하면, 실시예 1의 알루미늄 기재는 크랙 및 박리가 전혀 발생하지 않아 표면 처리에 의해 최종 코팅층인 수지 피막의 밀착성이 우수함을 확인할 수 있고, 이를 이용한 알루미늄 제품은 우수한 내부식성 및 가공성을 구현할 수 있음을 확인할 수 있다.Referring to Figure 3, it can be seen that the aluminum substrate of Example 1 has no cracks or peeling at all, showing excellent adhesion to the resin film, which is the final coating layer, through surface treatment, and aluminum products using this have excellent corrosion resistance and processability. We can confirm that it can be implemented.
실험예 4 : 표면 처리에 따른 SEM 분석Experimental Example 4: SEM analysis according to surface treatment
표면 처리에 따른 알루미늄 기재의 표면 변화를 살펴보기 위해, 실시예 1의 제조 과정에서 표면 처리 전, 1차 에칭 후, 2차 에칭 후의 알루미늄 기재의 표면을 각각 배율 1000배 및 3000배에서 SEM 분석하였고, 그 결과 이미지를 도 4에 나타내었다.In order to examine the surface changes of the aluminum substrate according to surface treatment, the surface of the aluminum substrate before surface treatment, after primary etching, and after secondary etching during the manufacturing process of Example 1 was analyzed by SEM at magnifications of 1000x and 3000x, respectively. , the resulting image is shown in Figure 4.
도 4를 참고하면, 표면 처리 전과 1차 에칭 후의 이미지를 비교하면, 1차 에칭 후 이물질 등의 유분 제거와 산화층이 제거되었음을 확인할 수 있다. 2차 에칭 후의 기재 표면 이미지를 살펴보면 복수 개의 다각형의 미세 요철이 기재 표면에 형성되었음을 확인할 수 있다.Referring to Figure 4, by comparing the images before surface treatment and after the first etching, it can be confirmed that oil such as foreign substances were removed and the oxide layer was removed after the first etching. Looking at the image of the surface of the substrate after secondary etching, it can be seen that a plurality of polygonal fine irregularities were formed on the surface of the substrate.
실험예 5: 2차 에칭 수행 시간에 따른 SEM 분석Experimental Example 5: SEM analysis according to secondary etching performance time
2차 에칭 수행 시간에 따른 알루미늄 기재의 SEM 분석을 각각 배율 1000배 및 3000배에서 수행하였고, 그 결과 이미지를 도 5에 나타내었다.SEM analysis of the aluminum substrate according to the secondary etching time was performed at 1000x and 3000x magnification, respectively, and the resulting images are shown in Figure 5.
도 5를 살펴보면, 실시예 1~3은 모든 기재 표면에서 복수 개의 다각형의 미세 요철이 형성되었음을 확인할 수 있고, 특히 실시예 1의 기재에서 가장 많은 미세 요철이 형성되었음을 확인할 수 있다.Looking at Figure 5, it can be seen that in Examples 1 to 3, a plurality of polygonal fine irregularities were formed on the surfaces of all substrates, and in particular, it can be confirmed that the most fine irregularities were formed on the substrate of Example 1.
실험예 6: 미세 요철의 평균 장경 분석Experimental Example 6: Analysis of average major axis of fine irregularities
실시예 1의 제조 과정에서 2차 에칭 공정 후 알루미늄 기재의 표면을 SEM 분석하여 최소 장경 및 최대 장경을 측정하였고, 그 결과를 도 6에 나타내었다.In the manufacturing process of Example 1, after the secondary etching process, the surface of the aluminum substrate was analyzed by SEM to measure the minimum and maximum lengths, and the results are shown in FIG. 6.
도 6(a)를 참고하면, 최소 장경은 164㎚로 측정되었고, 도 6(b)를 참고하면, 최대 장경이 2.24㎛으로 측정되어 2차 에칭에 의해 형성되는 미세 요철의 평균 장경이 0.1~3㎛ 범위에서 형성되었음을 확인할 수 있다.Referring to Figure 6(a), the minimum major diameter was measured to be 164㎚, and referring to Figure 6(b), the maximum major diameter was measured to be 2.24㎛, so the average major diameter of fine irregularities formed by secondary etching is 0.1 ~ It can be confirmed that it was formed in the 3㎛ range.
실험예 7: 표면 처리에 따른 표면조도 분석Experimental Example 7: Surface roughness analysis according to surface treatment
표면 처리에 따른 알루미늄 기재의 표면조도를 분석하기 위해, 실시예 1, 2 및 비교예 1의 제조 공정에서 2차 에칭 공정 직후 기재 표면을 비접촉식 조도계를 이용하여 산술 평균 조도(Ra) 값을 측정하였고, 그 결과를 도 7에 나타내었다.In order to analyze the surface roughness of the aluminum substrate according to surface treatment, the arithmetic mean roughness (Ra) value was measured on the surface of the substrate immediately after the secondary etching process in the manufacturing process of Examples 1 and 2 and Comparative Example 1 using a non-contact roughness meter. , the results are shown in Figure 7.
도 7을 참고하면, 2차 에칭 공정에 의해 표면 처리된 실시예 1 및 2은 Ra 값이 각각 0.59μm 및 0.565μm로 측정되었고, 표면 처리가 생략된 비교예 1은 Ra값이 0.379μm로 측정되었다. 이는 표면 처리에 의해 실시예 1 및 2의 기재 표면에 형성된 미세 요철이 형성됨에 따라 Ra값이 변화함을 확인할 수 있고, 실시예 1 및 2는 미세 요철에 의해 표면적이 향상되어 부동태 피막 및 수지 피막과의 밀착성이 향상시킬 수 있음을 확인할 수 있다.Referring to Figure 7, Examples 1 and 2 surface treated by a secondary etching process had Ra values measured at 0.59 μm and 0.565 μm, respectively, and Comparative Example 1 where surface treatment was omitted had an Ra value measured at 0.379 μm. It has been done. It can be confirmed that the Ra value changes as fine irregularities are formed on the surface of the substrate of Examples 1 and 2 through surface treatment, and in Examples 1 and 2, the surface area is improved by the fine irregularities, resulting in the passive film and resin film. It can be confirmed that adhesion can be improved.
실험예 8: 표면 처리에 따른 광택도 분석Experimental Example 8: Analysis of glossiness according to surface treatment
표면 처리에 따른 알루미늄 기재의 광택도를 분석하기 위해, 실시예 1, 2 및 비교예 1의 제조 공정에서 2차 에칭 공정 직후 기재 표면을 BYK 광택계를 이용하여 측정각도 60°에서 광택도를 3회 측정하였고, 그 결과를 표 3 및 도 8에 나타내었다.In order to analyze the gloss of the aluminum substrate according to surface treatment, the surface of the substrate immediately after the secondary etching process in the manufacturing process of Examples 1 and 2 and Comparative Example 1 was measured at a glossiness of 3 at a measuring angle of 60° using a BYK gloss meter. Measurements were made several times, and the results are shown in Table 3 and Figure 8.
구분division 실시예 1Example 1 실시예 2Example 2 비교예 1Comparative Example 1
1회1 time 24.624.6 46.346.3 113.0113.0
2회Episode 2 32.532.5 40.340.3 124.0124.0
3회3rd time 31.031.0 54.954.9 147.0147.0
평균 값average value 29.429.4 48.248.2 128.0128.0
(단위: GU)표 3 및 도 8을 참고하면, 표면 처리된 실시예 1 및 2는 비교예 1에 비해 미세 요철의 형성으로 인해 광택도가 대폭 감소하였음을 확인할 수 있다.(Unit: GU) Referring to Table 3 and Figure 8, it can be seen that the gloss of surface treated Examples 1 and 2 was significantly reduced due to the formation of fine irregularities compared to Comparative Example 1.
전술한 본 명세서의 설명은 예시를 위한 것이며, 본 명세서의 일 측면이 속하는 기술분야의 통상의 지식을 가진 자는 본 명세서에 기재된 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The description of the present specification described above is for illustrative purposes, and a person skilled in the art to which an aspect of the present specification pertains can easily transform it into another specific form without changing the technical idea or essential features described in the present specification. You will be able to understand it. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. For example, each component described as single may be implemented in a distributed manner, and similarly, components described as distributed may also be implemented in a combined form.
본 명세서의 범위는 후술하는 청구범위에 의하여 나타내어지며, 청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 명세서의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present specification is indicated by the claims described below, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present specification.

Claims (17)

  1. 알루미늄계 기재와,An aluminum base material,
    상기 알루미늄계 기재의 적어도 일면 상에 형성된 부동태 피막과,A passive film formed on at least one surface of the aluminum-based substrate,
    상기 부동태 피막 상에 형성된 수지 피막을 포함하고,It includes a resin film formed on the passive film,
    상기 알루미늄계 기재의 표면에는 복수 개의 다각형의 미세 요철이 형성되어 있고,A plurality of polygonal fine irregularities are formed on the surface of the aluminum-based substrate,
    상기 다각형의 미세 요철의 평균 장경은 0.1~5μm이고,The average major diameter of the fine irregularities of the polygon is 0.1 to 5 μm,
    상기 복수 개의 다각형의 미세 요철이 차지하는 면적분율은 10% 이상인, 코팅된 알루미늄계 기재.A coated aluminum-based substrate, wherein the area fraction occupied by the plurality of polygonal fine irregularities is 10% or more.
  2. 제1항에 있어서,According to paragraph 1,
    상기 다각형의 미세 요철이 형성된 알루미늄계 기재의 광택도는 20~60GU인, 코팅된 알루미늄계 기재. A coated aluminum-based substrate having a glossiness of 20 to 60 GU.
  3. 제1항에 있어서,According to paragraph 1,
    상기 다각형의 미세 요철이 형성된 알루미늄계 기재의 산술 평균 조도(Ra)는 0.45~0.7μm인, 코팅된 알루미늄계 기재. A coated aluminum-based substrate wherein the arithmetic average roughness (Ra) of the aluminum-based substrate on which polygonal fine irregularities are formed is 0.45 to 0.7 μm.
  4. 제1항에 있어서,According to paragraph 1,
    상기 부동태 피막은 티타늄계 화합물 및 불소계 화합물로 이루어진 군으로부터 선택되는 적어도 하나를 포함하는, 코팅된 알루미늄계 기재.A coated aluminum-based substrate, wherein the passive film includes at least one selected from the group consisting of titanium-based compounds and fluorine-based compounds.
  5. 제1항에 있어서,According to paragraph 1,
    상기 수지 피막은 우레탄 수지 및 아크릴 수지를 포함하는, 코팅된 알루미늄계 기재.A coated aluminum-based substrate, wherein the resin film includes a urethane resin and an acrylic resin.
  6. 제1항에 있어서,According to paragraph 1,
    상기 수지 피막의 두께는 1~15μm인, 코팅된 알루미늄계 기재.A coated aluminum-based substrate wherein the resin film has a thickness of 1 to 15 μm.
  7. (a) 알루미늄계 기재를 준비하는 단계;(a) preparing an aluminum-based substrate;
    (b) 상기 알루미늄계 기재를 제1 에칭액에 침지하여 상기 알루미늄계 기재 상의 표면 산화층을 제거하고, 상기 알루미늄계 기재의 적어도 일면에 조대 요철을 형성하는 단계;(b) immersing the aluminum-based substrate in a first etching solution to remove a surface oxide layer on the aluminum-based substrate and forming coarse irregularities on at least one surface of the aluminum-based substrate;
    (c) 상기 조대 요철이 형성된 알루미늄계 기재를 제2 에칭액에 침지하여 상기 조대 요철이 형성된 알루미늄계 기재의 적어도 일면에 복수 개의 다각형 미세 요철을 형성하는 단계;(c) immersing the aluminum-based substrate on which the coarse irregularities are formed in a second etching solution to form a plurality of polygonal fine irregularities on at least one surface of the aluminum-based substrate on which the coarse irregularities are formed;
    (d) 상기 다각형의 미세 요철이 형성된 알루미늄계 기재의 적어도 일면 상에 부동태 피막을 형성하는 단계; 및(d) forming a passive film on at least one surface of the aluminum-based substrate on which the polygonal fine irregularities are formed; and
    (e) 상기 부동태 피막 상에 수지 피막을 형성하는 단계;를 포함하고,(e) forming a resin film on the passive film,
    상기 다각형의 미세 요철의 평균 장경은 0.1~5μm이고,The average major diameter of the fine irregularities of the polygon is 0.1 to 5 μm,
    상기 복수 개의 다각형의 미세 요철이 차지하는 면적분율은 10% 이상인, 코팅된 알루미늄계 기재의 제조 방법.A method of manufacturing a coated aluminum-based substrate, wherein the area fraction occupied by the plurality of polygonal fine irregularities is 10% or more.
  8. 제7항에 있어서,In clause 7,
    상기 조대 요철 형성 전의 알루미늄계 기재의 광택도에 대한 상기 다각형 미세 요철 형성 후의 알루미늄계 기재의 광택도의 비가 0.15 내지 0.55인, 코팅된 알루미늄계 기재의 제조 방법.A method for producing a coated aluminum-based substrate, wherein the ratio of the glossiness of the aluminum-based substrate after forming the polygonal fine irregularities to the glossiness of the aluminum-based substrate before forming the coarse irregularities is 0.15 to 0.55.
  9. 제7항에 있어서,In clause 7,
    상기 조대 요철 형성 전의 알루미늄계 기재의 산술 평균 조도에 대한 상기 다각형 미세 요철 형성 후의 알루미늄계 기재의 산술 평균 조도의 비가 1.2 내지 2.0인, 코팅된 알루미늄계 기재의 제조 방법.A method for producing a coated aluminum-based substrate, wherein the ratio of the arithmetic average roughness of the aluminum-based substrate after forming the polygonal fine irregularities to the arithmetic average roughness of the aluminum-based substrate before forming the coarse irregularities is 1.2 to 2.0.
  10. 제7항에 있어서,In clause 7,
    상기 제1 에칭액은 알칼리 금속 또는 알칼리 토금속의 수산화물 및 계면활성제를 포함하는, 코팅된 알루미늄계 기재의 제조 방법.A method of producing a coated aluminum-based substrate, wherein the first etching solution includes a hydroxide of an alkali metal or an alkaline earth metal and a surfactant.
  11. 제10항에 있어서,According to clause 10,
    상기 알칼리 금속 또는 알칼리 토금속의 수산화물은, 수산화나트륨, 수산화칼륨, 수산화마그네슘, 수산화알루미늄, 수산화리튬 및 수산화암모늄으로 이루어진 군으로부터 선택되는 적어도 하나인, 코팅된 알루미늄계 기재의 제조 방법.The hydroxide of the alkali metal or alkaline earth metal is at least one selected from the group consisting of sodium hydroxide, potassium hydroxide, magnesium hydroxide, aluminum hydroxide, lithium hydroxide, and ammonium hydroxide.
  12. 제7항에 있어서,In clause 7,
    상기 제2 에칭액은 분자 내에 적어도 하나의 히드록시기를 갖는 유기산 및 불소 화합물을 포함하는, 코팅된 알루미늄계 기재의 제조 방법.A method of producing a coated aluminum-based substrate, wherein the second etching solution includes an organic acid and a fluorine compound having at least one hydroxy group in the molecule.
  13. 제12항에 있어서,According to clause 12,
    상기 분자 내에 적어도 하나의 히드록시기를 갖는 유기산은, 글루콘산, 구연산, 주석산 및 사과산으로 이루어진 군으로부터 선택되는 적어도 하나인, 코팅된 알루미늄계 기재의 제조 방법.The organic acid having at least one hydroxy group in the molecule is at least one selected from the group consisting of gluconic acid, citric acid, tartaric acid, and malic acid.
  14. 제12항에 있어서,According to clause 12,
    상기 불소 화합물은, 불화암모늄, 산성불화암모늄, 불화칼륨, 붕불화암모늄, 중불화칼륨, 붕불화칼륨, 불화나트륨, 중불화나트륨, 불화알루미늄, 불화붕소산, 불화리튬, 불화칼슘 및 불화구리로 이루어진 군으로부터 선택되는 적어도 하나인, 코팅된 알루미늄계 기재의 제조 방법.The fluorine compounds include ammonium fluoride, acidic ammonium fluoride, potassium fluoride, ammonium borofluoride, potassium bifluoride, potassium borofluoride, sodium fluoride, sodium bifluoride, aluminum fluoride, boronic acid, lithium fluoride, calcium fluoride, and copper fluoride. A method of producing a coated aluminum-based substrate, which is at least one selected from the group consisting of.
  15. 제7항에 있어서,In clause 7,
    상기 제2 에칭액은 과산화수소 및 과황산염을 포함하지 않는, 코팅된 알루미늄계 기재의 제조 방법.A method of producing a coated aluminum-based substrate, wherein the second etchant does not contain hydrogen peroxide and persulfate.
  16. 제7항에 있어서,In clause 7,
    상기 (b) 및 (c) 단계의 수행 온도는 40~80℃인, 코팅된 알루미늄계 기재의 제조 방법.A method for producing a coated aluminum-based substrate, wherein steps (b) and (c) are performed at a temperature of 40 to 80°C.
  17. 제7항에 있어서,In clause 7,
    상기 (c) 단계의 수행 시간은 1초~5분인, 코팅된 알루미늄계 기재의 제조 방법. A method for producing a coated aluminum-based substrate, wherein the performance time of step (c) is 1 second to 5 minutes.
PCT/KR2023/017553 2022-11-17 2023-11-03 Coated aluminum substrate and method for manufacturing same WO2024106824A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220154444A KR20240072631A (en) 2022-11-17 2022-11-17 Coated aluminum substrate and method for preparing thereof
KR10-2022-0154444 2022-11-17

Publications (1)

Publication Number Publication Date
WO2024106824A1 true WO2024106824A1 (en) 2024-05-23

Family

ID=91084813

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/017553 WO2024106824A1 (en) 2022-11-17 2023-11-03 Coated aluminum substrate and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR20240072631A (en)
WO (1) WO2024106824A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040256089A1 (en) * 2003-05-13 2004-12-23 Kengo Kobayashi Method of surface treating aluminum alloy base body of heat exchanger and heat exchanger produced by the method
KR20110012440A (en) * 2009-07-30 2011-02-09 포스코강판 주식회사 Fingerprint free aluminum plate and manufacturing method of the same
KR20140136217A (en) * 2013-05-20 2014-11-28 한국제이씨씨(주) A method of current collector with cubic pattern by photolithography and a capacitor using thereof
KR101529568B1 (en) * 2013-12-16 2015-06-18 (주)보코트 Metallic coating layer forming method of aluminum products using wet and dry coating and the aluminum products using therof
JP2018156921A (en) * 2017-03-21 2018-10-04 日本軽金属株式会社 Method of producing aluminum conductive member and aluminum conductive member

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040256089A1 (en) * 2003-05-13 2004-12-23 Kengo Kobayashi Method of surface treating aluminum alloy base body of heat exchanger and heat exchanger produced by the method
KR20110012440A (en) * 2009-07-30 2011-02-09 포스코강판 주식회사 Fingerprint free aluminum plate and manufacturing method of the same
KR20140136217A (en) * 2013-05-20 2014-11-28 한국제이씨씨(주) A method of current collector with cubic pattern by photolithography and a capacitor using thereof
KR101529568B1 (en) * 2013-12-16 2015-06-18 (주)보코트 Metallic coating layer forming method of aluminum products using wet and dry coating and the aluminum products using therof
JP2018156921A (en) * 2017-03-21 2018-10-04 日本軽金属株式会社 Method of producing aluminum conductive member and aluminum conductive member

Also Published As

Publication number Publication date
KR20240072631A (en) 2024-05-24

Similar Documents

Publication Publication Date Title
WO2019132337A1 (en) Zinc alloy plated steel material having excellent surface quality and corrosion resistance, and method for manufacturing same
WO2016158427A1 (en) Austenitic stainless steel sheet, cover member, and method for producing austenitic stainless steel sheet
KR20040086479A (en) Surface treatment for vacuum chamber made of aluminum or its alloy
KR20170121276A (en) Ferritic stainless steel sheet, cover member and method for manufacturing ferritic stainless steel sheet
WO2016105070A1 (en) Stainless steel for polymer fuel cell separator plate and method for preparing same
WO2024106824A1 (en) Coated aluminum substrate and method for manufacturing same
WO2015099496A1 (en) Surface-treated substrate and substrate surface treatment method for same
WO2022139367A1 (en) Plated steel sheet having excellent sealer adhesion and method for manufacturing same
WO2021112584A1 (en) Galvanized steel sheet having excellent surface quality and spot weldability, and manufacturing method therefor
WO2016105163A1 (en) Zinc alloy plated steel having excellent weldability and processing unit corrosion resistance and method for manufacturing same
TW201402876A (en) Black passivation treatment method of steel surface
KR20180107422A (en) Stainless steel with excellent surface gloss and corrosion resistance, method of method for treating surface the same
WO2022139355A1 (en) Steel sheet with excellent phosphatability and manufacturing method therefor
WO2022124826A1 (en) High-strength hot-dip galvanized steel sheet with excellent plating quality, steel sheet for plating, and manufacturing methods therefor
WO2022124825A1 (en) High-strength hot-dip galvanized steel sheet having excellent plating quality, steel sheet for plating, and methods for manufacturing same
KR100507677B1 (en) Ni-plated steel plate for alkali-manganese dry cell anode can and alkali-manganese dry cell anode can
WO2017051993A1 (en) Color-treated substrate and color treatment method therefor
JP2013208638A (en) Ferritic stainless steel having excellent washability and method for producing the same
WO2023149586A1 (en) Plated steel sheet for hot press forming having excellent surface properties and method for manufacturing same
WO2017010636A1 (en) Color-treated substrate and color treatment method therefor
KR20240072632A (en) Heat exchanger and method for preparing thereof
CN111705204A (en) Oxidation heat treatment process for glass mold
WO2019177215A1 (en) Method for manufacturing copper alloy, having high strength and excellent bending workability, for automobiles and electrical and electronic components
KR100714320B1 (en) Inner magnetic shielding material and method for production thereof
WO2024025330A1 (en) Aluminum alloy surface treatment method and aluminum alloy thereby