WO2024106477A1 - Electrochemical cell device, module, and module accommodating device - Google Patents

Electrochemical cell device, module, and module accommodating device Download PDF

Info

Publication number
WO2024106477A1
WO2024106477A1 PCT/JP2023/041126 JP2023041126W WO2024106477A1 WO 2024106477 A1 WO2024106477 A1 WO 2024106477A1 JP 2023041126 W JP2023041126 W JP 2023041126W WO 2024106477 A1 WO2024106477 A1 WO 2024106477A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
cell
conductive member
infrared light
electrochemical cell
Prior art date
Application number
PCT/JP2023/041126
Other languages
French (fr)
Japanese (ja)
Inventor
和也 今仲
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2024106477A1 publication Critical patent/WO2024106477A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • C25B1/042Hydrogen or oxygen by electrolysis of water by electrolysis of steam
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/70Assemblies comprising two or more cells
    • C25B9/73Assemblies comprising two or more cells of the filter-press type
    • C25B9/77Assemblies comprising two or more cells of the filter-press type having diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells

Definitions

  • This disclosure relates to electrochemical cell devices, modules, and module housing devices.
  • a fuel cell is a type of electrochemical cell that can generate electricity using a fuel gas such as a hydrogen-containing gas and an oxygen-containing gas such as air.
  • the electrochemical cell device includes a plurality of element parts and a conductive member.
  • the plurality of element parts are aligned in a first direction.
  • the conductive members are respectively positioned between the element parts adjacent to each other in the first direction.
  • a first member is positioned in a first region positioned in the center of the first direction.
  • a second member is positioned in a second region positioned at an end of the first direction.
  • the first member has a first portion and a second portion having a different reflectance of infrared light from the first portion.
  • the second member has a lower reflectance of infrared light than the first portion.
  • An electrochemical cell device includes a plurality of element parts and a conductive member.
  • the plurality of element parts are arranged in a first direction.
  • the conductive members are respectively positioned between the element parts adjacent to each other in the first direction.
  • a first member and a second member having a different infrared light reflectance from the first member are positioned in a first region positioned at the center in the first direction.
  • a third member is positioned in a second region positioned at an end in the first direction. The third member has a lower infrared light reflectance than the first member.
  • the module of the present disclosure also includes the electrochemical cell device described above and a storage container for storing the electrochemical cell device.
  • the module housing device of the present disclosure also includes the module described above, an auxiliary device for operating the module, and an exterior case that houses the module and the auxiliary device.
  • FIG. 1A is a cross-sectional view illustrating an example of an electrochemical cell according to a first embodiment.
  • FIG. 1B is a side view of an example of the electrochemical cell according to the first embodiment, as viewed from the air electrode side.
  • FIG. 1C is a side view of an example of an electrochemical cell according to the first embodiment, viewed from the interconnector side.
  • FIG. 2A is a perspective view showing an example of an electrochemical cell device according to the first embodiment.
  • FIG. 2B is a cross-sectional view taken along line XX shown in FIG. 2A.
  • FIG. 2C is a top view illustrating an example of the electrochemical cell device according to the first embodiment.
  • FIG. 3 is a cross-sectional view showing an example of the temperature distribution in an electrochemical cell device.
  • FIG. 4 is an enlarged cross-sectional view of the electrochemical cell device according to the first embodiment.
  • FIG. 5A is a cross-sectional view illustrating an example of the conductive member according to the first embodiment.
  • FIG. 5B is a cross-sectional view taken along line AA shown in FIG. 5A.
  • FIG. 6A is a cross-sectional view illustrating an example of a conductive member located in a first region.
  • FIG. 6B is a cross-sectional view illustrating an example of a conductive member located in a second region.
  • FIG. 7 is a cross-sectional view illustrating an example of an electrochemical cell according to the first embodiment.
  • FIG. 8 is an external perspective view illustrating an example of the module according to the first embodiment.
  • FIG. 9 is an exploded perspective view illustrating an example of a module housing device according to the first embodiment.
  • FIG. 10 is a cross-sectional view showing another example of the electrochemical cell device according to the first embodiment.
  • FIG. 11 is a perspective view showing an example of an electrochemical cell device according to the second embodiment.
  • FIG. 12 is a cross-sectional view showing an example of the temperature distribution in a flat electrochemical cell device.
  • FIG. 13 is a cross-sectional view showing an example of an electrochemical cell device according to the second embodiment.
  • FIG. 14 is a cross-sectional view showing an example of the first region R1 shown in FIG.
  • FIG. 15 is a cross-sectional view showing another example of the electrochemical cell device according to the second embodiment.
  • FIG. 16A is a cross-sectional view showing an example of an electrochemical cell constituting the electrochemical cell device according to the third embodiment.
  • FIG. 16B is a cross-sectional view showing another example of the electrochemical cell according to the third embodiment.
  • FIG. 16C is a cross-sectional view showing another example of the electrochemical cell according to the third embodiment.
  • the electrochemical cell device may include a cell stack having a plurality of electrochemical cells.
  • An electrochemical cell device having a plurality of electrochemical cells will be simply referred to as a cell stack device.
  • FIG. 1A is a cross-sectional view showing an example of an electrochemical cell according to an embodiment.
  • FIG. 1B is a side view of an example of an electrochemical cell according to an embodiment, viewed from the air electrode side.
  • FIG. 1C is a side view of an example of an electrochemical cell according to an embodiment, viewed from the interconnector side. Note that FIGS. 1A to 1C show enlarged views of a portion of each component of the electrochemical cell.
  • the electrochemical cell may also be simply referred to as a cell.
  • cell 1 is a hollow flat plate-like elongated plate.
  • the shape of cell 1 as a whole viewed from the side is, for example, a rectangle with a side length in the length direction L of 5 cm to 50 cm and a length in the width direction W perpendicular to the length direction L of, for example, 1 cm to 10 cm.
  • the overall thickness of cell 1 in the thickness direction T is, for example, 1 mm to 5 mm.
  • the cell 1 includes a conductive support substrate 2, an element section 3, and an interconnector 4.
  • the support substrate 2 is columnar and has a pair of opposing flat surfaces n1, n2, and a pair of arc-shaped side surfaces m that connect the flat surfaces n1, n2.
  • the element section 3 is provided on the flat surface n1 of the support substrate 2.
  • the element section 3 has a fuel electrode layer 5, a solid electrolyte layer 6, and an air electrode layer 8.
  • the interconnector 4 is located on the flat surface n2 of the cell 1.
  • the cell 1 may also have an intermediate layer 7 between the solid electrolyte layer 6 and the air electrode layer 8.
  • the air electrode layer 8 does not extend to the lower end of the cell 1.
  • the air electrode layer 8 does not extend to the lower end of the cell 1.
  • the interconnector 4 may extend to the lower end of the cell 1.
  • the interconnector 4 and the solid electrolyte layer 6 are exposed on the surface.
  • the solid electrolyte layer 6 is exposed on the surface of a pair of arc-shaped side surfaces m of the cell 1. The interconnector 4 does not have to extend to the lower end of the cell 1.
  • the support substrate 2 has gas flow paths 2a therein through which gas flows.
  • the example of the support substrate 2 shown in FIG. 1A has six gas flow paths 2a.
  • the support substrate 2 has gas permeability, and allows the fuel gas flowing through the gas flow paths 2a to pass through to the fuel electrode layer 5.
  • the support substrate 2 may be conductive.
  • the conductive support substrate 2 collects electricity generated in the element section 3 to the interconnector 4.
  • the material of the support substrate 2 includes, for example, an iron group metal component and an inorganic oxide.
  • the iron group metal component may be, for example, Ni (nickel) and/or NiO.
  • the inorganic oxide may be, for example, a specific rare earth element oxide.
  • the rare earth element oxide may include, for example, one or more rare earth elements selected from Sc, Y, La, Nd, Sm, Gd, Dy, and Yb.
  • the material of the fuel electrode layer 5 may be a generally known material.
  • the fuel electrode layer 5 may be made of a porous conductive ceramic, such as a ceramic containing calcium oxide, magnesium oxide, or ZrO 2 in which a rare earth element oxide is dissolved, and Ni and/or NiO.
  • the rare earth element oxide may contain a plurality of rare earth elements selected from Sc, Y, La, Nd, Sm, Gd, Dy, and Yb. Calcium oxide, magnesium oxide, or ZrO 2 in which a rare earth element oxide is dissolved may be referred to as stabilized zirconia.
  • the stabilized zirconia may also include partially stabilized zirconia.
  • the solid electrolyte layer 6 is an electrolyte and transfers ions between the fuel electrode layer 5 and the air electrode layer 8. At the same time, the solid electrolyte layer 6 has gas barrier properties, making it difficult for leakage of fuel gas and oxygen-containing gas to occur.
  • the material of the solid electrolyte layer 6 may be, for example, ZrO2 in which 3 mol% to 15 mol% of rare earth element oxide, calcium oxide, or magnesium oxide is dissolved.
  • the rare earth element oxide may include, for example, one or more rare earth elements selected from Sc, Y, La, Nd, Sm, Gd, Dy, and Yb.
  • the solid electrolyte layer 6 may include, for example, CeO2 in which La, Nd, Sm, Gd, or Yb is dissolved, BaZrO3 in which Sc or Yb is dissolved, or BaCeO3 in which Sc or Yb is dissolved.
  • the air electrode layer 8 is gas permeable.
  • the open porosity of the air electrode layer 8 may be in the range of, for example, 20% to 50%, particularly 30% to 50%.
  • the material of the air electrode layer 8 may be, for example, a conductive ceramic such as a so-called ABO3 -type perovskite oxide.
  • the material of the air electrode layer 8 may be, for example, a composite oxide in which Sr (strontium ) and La ( lanthanum ) coexist at the A site.
  • composite oxides include LaxSr1 -xCoyFe1-yO3, LaxSr1-xMnO3 , LaxSr1 - xFeO3 , and LaxSr1 - xCoO3 , where x is 0 ⁇ x ⁇ 1 and y is 0 ⁇ y ⁇ 1.
  • the intermediate layer 7 functions as a diffusion suppression layer.
  • elements such as Sr (strontium) contained in the air electrode layer 8 diffuse into the solid electrolyte layer 6, a resistive layer such as SrZrO3 is formed in the solid electrolyte layer 6.
  • the intermediate layer 7 makes it difficult for Sr to diffuse, thereby making it difficult for SrZrO3 and other oxides having electrical insulation to be formed.
  • the material of the intermediate layer 7 is not particularly limited as long as it generally prevents diffusion of elements between the air electrode layer 8 and the solid electrolyte layer 6.
  • the material of the intermediate layer 7 may contain, for example, cerium oxide (CeO 2 ) in which a rare earth element other than Ce (cerium) is dissolved. Examples of such rare earth elements include Gd (gadolinium) and Sm (samarium).
  • the interconnector 4 is dense, which makes it difficult for the fuel gas flowing through the gas flow passage 2a located inside the support substrate 2 and the oxygen-containing gas flowing outside the support substrate 2 to leak.
  • the interconnector 4 may have a relative density of 93% or more, particularly 95% or more.
  • the material of the interconnector 4 may be a lanthanum chromite-based perovskite oxide ( LaCrO3 -based oxide), a lanthanum strontium titanium-based perovskite oxide ( LaSrTiO3 -based oxide), or the like. These materials are conductive and are not easily reduced or oxidized even when in contact with a fuel gas such as a hydrogen-containing gas and an oxygen-containing gas such as air.
  • the material of the interconnector 4 may be a metal or an alloy. Details of the electrochemical cell according to this embodiment will be described later.
  • FIG. 2A is a perspective view showing an example of the electrochemical cell device according to the first embodiment.
  • Figure 2B is a cross-sectional view taken along line XX shown in Figure 2A.
  • Figure 2C is a top view showing an example of the electrochemical cell device according to the first embodiment.
  • the cell stack device 10 includes a cell stack 11 having a plurality of cells 1 arranged (stacked) in the thickness direction T of the cells 1 (see FIG. 1A), and a fixing member 12.
  • the fixing member 12 has a fixing material 13 and a support member 14.
  • the support member 14 supports the cell 1.
  • the fixing material 13 fixes the cell 1 to the support member 14.
  • the support member 14 also has a support 15 and a gas tank 16.
  • the support member 14, which is made of a metal, has electrical conductivity.
  • the support 15 has insertion holes 15a into which the lower ends of the multiple cells 1 are inserted.
  • the lower ends of the multiple cells 1 and the inner wall of the insertion holes 15a are joined with a fixing material 13.
  • the gas tank 16 has an opening for supplying reactive gas to the multiple cells 1 through the insertion holes 15a, and a groove 16a located around the opening.
  • the outer peripheral edge of the support 15 is joined to the gas tank 16 by a bonding material 21 filled in the groove 16a of the gas tank 16.
  • fuel gas is stored in an internal space 22 formed by a support body 15, which is the support member 14, and a gas tank 16.
  • a gas circulation pipe 20 is connected to the gas tank 16.
  • the fuel gas is supplied to the gas tank 16 through this gas circulation pipe 20, and is supplied from the gas tank 16 to a gas flow path 2a (see FIG. 1A) inside the cell 1.
  • the fuel gas supplied to the gas tank 16 is generated in a reformer 102 (see FIG. 8), which will be described later.
  • Hydrogen-rich fuel gas can be produced by, for example, steam reforming the raw fuel.
  • fuel gas is produced by steam reforming, the fuel gas contains water vapor.
  • FIG. 2A includes two rows of cell stacks 11, a support member 14, two supports 15, and a gas tank 16.
  • Each of the two rows of cell stacks 11 has a plurality of cells 1.
  • Each cell stack 11 is fixed to each support 15.
  • the gas tank 16 has two through holes on the upper surface.
  • Each support 15 is disposed in each through hole.
  • the internal space 22 is formed by one gas tank 16 and two supports 15.
  • FIG. 2A shows a cell stack device 10 having two rows of cell stacks 11, the electrochemical cell device may have one row of cell stacks 11 or three or more rows of cell stacks 11.
  • the shape of the insertion hole 15a is, for example, an oval shape when viewed from above.
  • the length of the insertion hole 15a in the arrangement direction of the cells 1, i.e., the thickness direction T, is greater than the distance between the two end current collecting members 17 located at both ends of the cell stack 11.
  • the width of the insertion hole 15a is, for example, greater than the length of the cell 1 in the width direction W (see FIG. 1A).
  • the joint between the inner wall of the insertion hole 15a and the lower end of the cell 1 is filled with a fixing material 13 and solidified. This bonds and fixes the inner wall of the insertion hole 15a to the lower ends of the multiple cells 1, and also bonds and fixes the lower ends of the cells 1 to each other.
  • the gas flow path 2a of each cell 1 communicates with the internal space 22 of the support member 14 at its lower end.
  • the fixing material 13 and the bonding material 21 may be made of a material with low electrical conductivity, such as glass.
  • Specific materials for the fixing material 13 and the bonding material 21 may include amorphous glass, and in particular, crystallized glass.
  • any of SiO 2 -CaO based, MgO-B 2 O 3 based, La 2 O 3 -B 2 O 3 -MgO based, La 2 O 3 -B 2 O 3 -ZnO based, SiO 2 -CaO-ZnO based materials may be used, and in particular, SiO 2 -MgO based materials may be used.
  • a conductive member 18 is interposed between adjacent cells 1 among the multiple cells 1.
  • the conductive member 18 electrically connects the fuel electrode layer 5 of one adjacent cell 1 to the air electrode layer 8 of the other cell 1 in series. More specifically, the conductive member 18 connects the interconnector 4 electrically connected to the fuel electrode layer 5 of one adjacent cell 1 to the air electrode layer 8 of the other cell 1.
  • the interconnector 4 is a metal or alloy
  • the interconnector 4 and the conductive member 18 may be integrated, or the conductive member 18 may also function as the interconnector 4. Details of the conductive member 18 will be described later.
  • an end current collecting member 17 is electrically connected to the cell 1 located on the outermost side in the arrangement direction of the multiple cells 1.
  • the end current collecting member 17 is connected to a conductive part 19 that protrudes to the outside of the cell stack 11.
  • the conductive part 19 collects electricity generated by power generation in the cell 1 and draws it out to the outside. Note that the end current collecting member 17 is not shown in FIG. 2A.
  • the cell stack device 10 has two cell stacks 11A and 11B connected in series and functions as a single battery. Therefore, the conductive parts 19 of the cell stack device 10 are divided into a positive terminal 19A, a negative terminal 19B, and a connection terminal 19C.
  • the positive terminal 19A is the positive electrode when the power generated by the cell stack 11 is output to the outside, and is electrically connected to the positive end current collector 17 of the cell stack 11A.
  • the negative terminal 19B is the negative electrode when the power generated by the cell stack 11 is output to the outside, and is electrically connected to the negative end current collector 17 of the cell stack 11B.
  • connection terminal 19C electrically connects the end current collecting member 17 on the negative electrode side of the cell stack 11A to the end current collecting member 17 on the positive electrode side of the cell stack 11B.
  • FIG. 3 is a cross-sectional view showing an example of the temperature distribution in the electrochemical cell device.
  • the cell stack device 10X shown in FIG. 3 corresponds to an enlarged view of a part of the cell stack 11 included in the cell stack device 10 shown in FIG. 2B.
  • the cells 1, the conductive members 18, etc. are illustrated in a simplified form in FIG. 3.
  • the components may be illustrated in a simplified form.
  • the number of cells 1 included in the cell stack device is illustrated as 8 in FIG. 3 and FIG. 4 described later.
  • conductive members 18 extending in the length direction L are located, electrically connecting the adjacent cells 1 to each other.
  • temperatures t1 to t6 are located in the center of the thickness direction T (first direction) of the cells 1 in the order of t1>t2>t3>t4>t5>t6, and the upper end side of the length direction L away from the fixing material 13 is likely to become high temperature.
  • the temperature during power generation is likely to decrease toward the end side of the thickness direction T away from such a portion and the lower end side of the length direction L.
  • the first region R1 located in the center of the thickness direction T (first direction) of the cells 1 may become higher in temperature than the second region R2 located at both ends of the thickness direction T (first direction) of the cells 1, for example, and durability may be easily reduced.
  • a conductive member 18 and/or a cell 1 with different infrared light reflectances are applied between the first region R1 and the second region R2.
  • ⁇ Conductive member> 4 is an enlarged cross-sectional view of the electrochemical cell device according to the first embodiment.
  • the conductive member 18 as the first member located in the first region R1 has a first portion 181 and a second portion 182.
  • the first portion 181 is located at the upper end side of the first region R1 in the length direction L, which is likely to become hot during power generation.
  • the second portion 182 is located at the lower end side of the first region R1 in the length direction L, which is less likely to become hot than the first portion 181.
  • the first portion 181 has a higher reflectance of infrared light than the second portion 182.
  • the amount of heat absorbed by the conductive member 18 is reduced in the first portion 181 compared to the second portion 182, and the temperature rise of the conductive member 18 can be reduced. This makes it less likely that the durability of the conductive member 18 will decrease due to overheating.
  • the amount of heat absorbed by the conductive member 18 is greater than in the first portion 181, accelerating the rise in temperature of the conductive member 18. This makes it less likely that a decrease in power generation performance due to insufficient heating of the cell stack device 10 will occur.
  • the conductive member 183 as the second member located in the second region R2 has a lower reflectance of infrared light than the first portion 181.
  • the heat absorbed by the conductive member 183 can promote a temperature rise. This reduces temperature variation during power generation, improving the power generation performance of the cell stack device 10.
  • the conductive member 183 may have a smaller reflectance of infrared light overall than the first portion 181.
  • the conductive member 183 may have a larger or smaller reflectance of infrared light than the second portion 182.
  • the conductive member 183 may have the same reflectance of infrared light as the second portion 182.
  • the conductive member 183 may have a portion with a different reflectance of infrared light.
  • the difference in the reflectance of infrared light between the portion with high reflectance of infrared light (hereinafter referred to as the "high reflectance portion”) and the portion with low reflectance of infrared light (hereinafter referred to as the "low reflectance portion”) may be smaller than the difference in the reflectance of infrared light between the first portion 181 and the second portion 182.
  • the highly reflective portion of the conductive member 183 may have the same reflectance of infrared light as the first portion 181, or may have a smaller reflectance than the first portion 181.
  • the conductive member 183 may have a generally uniform reflectance of infrared light overall.
  • the reflectance of infrared light in the first portion 181 can be, for example, 8% or more and 50% or less.
  • the reflectance of infrared light in the second portion 182 can be, for example, 3% or more and 35% or less.
  • the reflectance of infrared light in the conductive member 183 can be, for example, 3% or more and 35% or less.
  • Such reflectance of infrared light can be measured by a near-infrared/infrared spectrophotometer or a Fourier transform infrared spectrophotometer (FTIR).
  • Infrared light refers to light having a wavelength of 700 nm or more.
  • the average reflectance in the wavelength range of 1500 nm to 2500 nm can be compared.
  • the reflectance of infrared light here refers to the average reflectance in the wavelength range of 1500 nm to 2500 nm.
  • Figure 5A is a cross-sectional view showing an example of a conductive member according to the first embodiment.
  • the conductive member 18 has a connection portion 18a that is connected to cell 1A, one of the adjacent cells 1, and a connection portion 18b that is connected to cell 1B, the other cell 1.
  • the conductive member 18 also has connecting portions 18c at both ends in the width direction W, which connect the connection portions 18a and 18b. This allows the conductive member 18 to electrically connect the cells 1 adjacent to each other in the thickness direction T.
  • connection parts 18a and 18b have contact parts 18a1 and 18b1 that are in contact with the cells 1A and 1B, and non-contact parts 18a2 and 18b2 that are not in contact with the cells 1A and 1B.
  • FIG. 5B is a cross-sectional view taken along line A-A in FIG. 5A.
  • the conductive member 18 extends in the longitudinal direction L of the cell 1.
  • the conductive member 18 has a comb-like shape in cross-section, and the connection portions 18a and 18b extend alternately from the connecting portion 18c toward the cells 1A and 1B.
  • Figure 6A is a cross-sectional view showing an example of a conductive member located in the first region.
  • Figure 6B is a cross-sectional view showing an example of a conductive member located in the second region.
  • the conductive member 18 may have a substrate 180 and a coating 30 covering the substrate 180.
  • the substrate 180 is conductive and heat resistant.
  • the substrate 180 contains chromium.
  • the substrate 180 is, for example, stainless steel.
  • the substrate 180 may contain, for example, a metal oxide.
  • the coating 30 may have insulating properties or low insulating properties.
  • the coating 30 may contain, for example, chromium oxide (Cr 2 O 3 ), aluminum oxide (Al 2 O 3 ), metal oxides containing Al and/or Si, and the like.
  • the metal oxide contained in the coating 30 may be, for example, a composite oxide having a spinel structure, such as Zn(Co x Mn 1-x ) 2 O 4 (0 ⁇ x ⁇ 1) such as ZnMnCoO 4 , Mn 1.5 Co 1.5 O 4 , MnCo 2 O 4 , CoMn 2 O 4 , and the like.
  • the metal oxide contained in the coating 30 may be a so-called ABO 3 type perovskite oxide.
  • the conductive member 18 shown in FIG. 6A can have a first portion 181 and a second portion 182 with different infrared light reflectances, for example, by making the surface roughness of the coating 30 different. Specifically, the surface roughness of the coating 30 located at the first portion 181 may be smaller than the surface roughness of the coating 30 located at the second portion 182.
  • the surface roughness of the coating 30 located in the first portion 181 can be, for example, 0.01 ⁇ m or more and 1 ⁇ m or less. Also, the surface roughness of the coating 30 located in the second portion 182 can be, for example, 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the conductive member 18 may have a first portion 181 and a second portion 182 that have different infrared light reflectances, for example, by making the surface roughness of the substrate 180 different. Specifically, the surface roughness of the substrate 180 located at the first portion 181 may be smaller than the surface roughness of the substrate 180 located at the second portion 182.
  • the surface roughness of the substrate 180 located in the first portion 181 can be, for example, 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the surface roughness of the substrate 180 located in the second portion 182 can be, for example, 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the amount of heat absorbed by the conductive member 18 in the first portion 181 is less than that in the second portion 182, and the temperature rise in the cell stack device 10 can be reduced. This makes it less likely that the durability of the cell stack device 10 will decrease due to overheating.
  • the conductive member 18 shown in FIG. 6A may form the first portion 181 and the second portion 182, for example, by roughening or smoothing a portion of the surface of the coating 30 or the substrate 180.
  • the conductive member 18 may form the first portion 181 and the second portion 182 by changing the degree of roughening and/or smoothing.
  • the conductive member 18 may also have different reflectances for infrared light, for example, by varying the porosity of the coating 30. Specifically, the porosity of the coating 30 located in the first portion 181 may be smaller than the porosity of the coating 30 located in the second portion 182.
  • the porosity of the coating 30 located in the first portion 181 can be, for example, 0.1% or more and 30% or less. Also, the porosity of the coating 30 located in the second portion 182 can be, for example, 10% or more and 60% or less.
  • the amount of heat absorbed by the conductive member 18 is reduced compared to the second portion 182, and the temperature rise of the cell stack device 10 can be reduced. This makes it possible to prevent a decrease in durability due to overheating of the cell stack device 10.
  • the conductive member 183 shown in FIG. 6B has a lower reflectance of infrared light than the first portion 181 of the conductive member 18 shown in FIG. 6A.
  • Such a conductive member 183 may have, for example, a coating 30 with a greater surface roughness than the coating 30 located at the first portion 181.
  • the surface roughness of the coating 30 located in the first portion 181 can be, for example, 0.01 ⁇ m or more and 1 ⁇ m or less. Also, the surface roughness of the coating 30 of the conductive member 183 can be, for example, 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the conductive member 183 may have a lower reflectance of infrared light than the first portion 181, for example, by making the surface roughness of the base material 180 different from that of the first portion 181. Specifically, the surface roughness of the base material 180 possessed by the conductive member 183 may be greater than the surface roughness of the base material 180 located at the first portion 181.
  • the surface roughness of the substrate 180 located in the first portion 181 can be, for example, 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the surface roughness of the substrate 180 of the conductive member 183 can be, for example, 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the conductive member 183 may have a different reflectance of infrared light, for example, by making the porosity of the coating 30 different from that of the first portion 181. Specifically, the porosity of the coating 30 of the conductive member 183 may be greater than the porosity of the coating 30 located in the first portion 181.
  • the porosity of the coating 30 located in the first portion 181 can be, for example, 0.1% or more and 30% or less. Also, the porosity of the coating 30 of the conductive member 183 can be, for example, 10% or more and 60% or less.
  • the conductive member 183 may have a different reflectance of infrared light, for example, by making the porosity of the substrate 180 different from that of the first portion 181. Specifically, the porosity of the substrate 180 that the conductive member 183 has may be greater than the porosity of the substrate 180 located in the first portion 181.
  • the porosity of the substrate 180 located in the first portion 181 can be, for example, 0% or more and 30% or less.
  • the porosity of the substrate 180 of the conductive member 183 can be, for example, 1% or more and 30% or less.
  • the heat absorbed by the conductive member 183 can promote temperature rise in the second region R2, which is less likely to become hot than the first region R1. This reduces temperature variation during power generation, improving the power generation performance of the cell stack device 10.
  • ⁇ Electrochemical cell> 4 has been described using an example in which the first member located in the first region R1 and the second member located in the second region R2 are conductive members 18, but the cell 1 may have a first member and a second member.
  • the cell 1 as the first member has a first portion located at the upper end side of the first region R1 in the length direction L, and a second portion located at the lower end side of the length direction L.
  • the first portion of the cell 1 has a higher reflectance of infrared light than the second portion.
  • the amount of heat absorbed by the cell 1 in the first portion of the cell 1 is reduced compared to the second portion, and the temperature rise in the cell stack device 10 can be reduced. This makes it less likely that the durability of the cell stack device 10 will decrease due to overheating.
  • the amount of heat absorbed by cell 1 is greater than in the first portion, accelerating the temperature rise of the cell stack device 10. This makes it less likely that a decrease in power generation performance due to insufficient heating of the cell stack device 10 will occur.
  • the cell 1 as the second member located in the second region R2 has a lower reflectance of infrared light than the first portion of the cell 1 located in the first region R1. This allows the heat absorbed by the cell 1 to promote temperature rise in the second region R2, which is less likely to become hot than the first region R1. This reduces temperature variation during power generation, improving the power generation performance of the cell stack device 10.
  • FIG. 7 is a cross-sectional view showing an example of an electrochemical cell according to the first embodiment.
  • each element of the cell 1 shown in FIG. 1A is shown in a simplified form.
  • the element portion 3 is located on the flat surface n2 of the support substrate 2, and the interconnector 4 is located on the flat surface n1 opposite the flat surface n2.
  • the fuel electrode layer 5 and solid electrolyte layer 6 extend from the flat surface n2 of the support substrate 2, around the side surface m, and onto the flat surface n1. Note that the gas flow path 2a is not shown in FIG. 7.
  • a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2 can be positioned.
  • the surface roughness of the surface 8a of the cathode layer 8 located in the first portion may be smaller than the surface roughness of the surface 8a of the cathode layer 8 located in the second portion.
  • the surface roughness of the surface 8a of the cathode layer 8 located in the second region R2 may be larger than the surface roughness of the surface 8a of the cathode layer 8 located in the first portion.
  • the surface roughness of the surface 8a located in the first portion can be, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the surface roughness of the surface 8a located in the second portion can be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the surface roughness of the surface 8a located in the second region R2 can be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the cell 1 can be configured to have a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, for example, by varying the porosity of the cathode layer 8.
  • the porosity of the cathode layer 8 located in the first portion may be smaller than the porosity of the cathode layer 8 located in the second portion.
  • the porosity of the cathode layer 8 located in the second region R2 may be larger than the porosity of the cathode layer 8 located in the first portion.
  • the porosity of the air electrode layer 8 located in the first portion can be, for example, 20% or more and 50% or less.
  • the porosity of the air electrode layer 8 located in the second portion can be, for example, 30% or more and 60% or less.
  • the porosity of the air electrode layer 8 located in the second region R2 can be, for example, 30% or more and 60% or less.
  • the cell 1 can be configured to position a first member having a first portion and a second portion with different infrared light reflectance, and a second member located in the second region R2.
  • the length of the width direction W of the intermediate layer 7 located in the first portion may be greater than the length of the width direction W of the intermediate layer 7 located in the second portion.
  • the length of the width direction W of the intermediate layer 7 located in the second region R2 may be less than the length of the width direction W of the intermediate layer 7 located in the first portion.
  • the length in the width direction W of the intermediate layer 7 located in the first portion can be, for example, 1.1 times or more the length in the width direction W of the air electrode layer 8.
  • the length in the width direction W of the intermediate layer 7 located in the second portion can be, for example, 1.01 times or more the length in the width direction W of the air electrode layer 8.
  • the length in the width direction W of the intermediate layer 7 located in the second region R2 can be, for example, 1.01 times or more the length in the width direction W of the air electrode layer 8.
  • the cell 1 can be configured to have a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, by, for example, varying the surface roughness of the intermediate layer 7.
  • the surface roughness of the surface 7a of the intermediate layer 7 located in the first portion may be smaller than the surface roughness of the surface 7a of the intermediate layer 7 located in the second portion.
  • the surface roughness of the surface 7a of the intermediate layer 7 located in the second region R2 may be larger than the surface roughness of the surface 7a of the intermediate layer 7 located in the first portion.
  • the surface roughness of the surface 7a located in the first portion can be, for example, 0.01 ⁇ m or more and 2 ⁇ m or less.
  • the surface roughness of the surface 7a located in the second portion can be, for example, 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the surface roughness of the surface 7a located in the second region R2 can be, for example, 0.5 ⁇ m or more and 3 ⁇ m or less.
  • the cell 1 can be configured to have a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, by, for example, varying the porosity of the intermediate layer 7.
  • the porosity of the intermediate layer 7 located in the first portion may be smaller than the porosity of the intermediate layer 7 located in the second portion.
  • the porosity of the intermediate layer 7 located in the second region R2 may be larger than the porosity of the intermediate layer 7 located in the first portion.
  • the porosity of the intermediate layer 7 located in the first portion can be, for example, 0.1% or more and 30% or less.
  • the porosity of the intermediate layer 7 located in the second portion can be, for example, 10% or more and 50% or less.
  • the porosity of the intermediate layer 7 located in the second region R2 can be, for example, 10% or more and 50% or less.
  • the cell 1 can be configured such that, for example, by varying the surface roughness of the solid electrolyte layer 6, a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, are positioned.
  • the surface roughness of the surface 6a of the solid electrolyte layer 6 located in the first portion may be smaller than the surface roughness of the surface 6a of the solid electrolyte layer 6 located in the second portion.
  • the surface roughness of the surface 6a of the solid electrolyte layer 6 located in the second region R2 may be larger than the surface roughness of the surface 6a of the solid electrolyte layer 6 located in the first portion.
  • the surface roughness of the surface 6a located in the first portion can be, for example, 0.01 ⁇ m or more and 2 ⁇ m or less.
  • the surface roughness of the surface 6a located in the second portion can be, for example, 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the surface roughness of the surface 6a located in the second region R2 can be, for example, 0.5 ⁇ m or more and 5 ⁇ m or less.
  • the cell 1 can be configured to have a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, by, for example, varying the porosity of the solid electrolyte layer 6.
  • the porosity of the solid electrolyte layer 6 located in the first portion may be smaller than the porosity of the solid electrolyte layer 6 located in the second portion.
  • the porosity of the solid electrolyte layer 6 located in the second region R2 may be larger than the porosity of the solid electrolyte layer 6 located in the first portion.
  • the porosity of the solid electrolyte layer 6 located in the first portion can be, for example, 0.1% or more and 3% or less.
  • the porosity of the solid electrolyte layer 6 located in the second portion can be, for example, 1% or more and 10% or less.
  • the porosity of the solid electrolyte layer 6 located in the second region R2 can be, for example, 1% or more and 10% or less.
  • the cell 1 can be configured to position a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, for example, by varying the length of the width direction W of the interconnector 4.
  • the length of the width direction W of the interconnector 4 located in the first portion may be smaller than the length of the width direction W of the interconnector 4 located in the second portion.
  • the length of the width direction W of the interconnector 4 located in the second region R2 may be larger than the length of the width direction W of the interconnector 4 located in the first portion.
  • the length in the width direction W of the interconnector 4 located in the first region can be, for example, 1.01 times or more the length in the width direction W of the air electrode layer 8.
  • the length in the width direction W of the interconnector 4 located in the second region can be, for example, 1.1 times or more the length in the width direction W of the air electrode layer 8.
  • the length in the width direction W of the interconnector 4 located in the second region R2 can be, for example, 1.1 times or more the length in the width direction W of the air electrode layer 8.
  • the cell 1 can be configured to have a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, for example, by varying the surface roughness of the interconnector 4.
  • the surface roughness of the surface 4a of the interconnector 4 located in the first portion may be smaller than the surface roughness of the surface 4a of the interconnector 4 located in the second portion.
  • the surface roughness of the surface 4a of the interconnector 4 located in the second region R2 may be larger than the surface roughness of the surface 4a of the interconnector 4 located in the first portion.
  • the surface roughness of the surface 4a located in the first portion can be, for example, 0.01 ⁇ m or more and 2 ⁇ m or less.
  • the surface roughness of the surface 4a located in the second portion can be, for example, 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the surface roughness of the surface 4a located in the second region R2 can be, for example, 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the cell 1 can be configured to have a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, for example, by varying the porosity of the interconnector 4.
  • the porosity of the interconnector 4 located in the first portion may be smaller than the porosity of the interconnector 4 located in the second portion.
  • the porosity of the interconnector 4 located in the second region R2 may be larger than the porosity of the interconnector 4 located in the first portion.
  • the porosity of the interconnector 4 located in the first portion can be, for example, 0.1% or more and 3% or less.
  • the porosity of the interconnector 4 located in the second portion can be, for example, 1% or more and 10% or less.
  • the porosity of the interconnector 4 located in the second region R2 can be, for example, 1% or more and 10% or less.
  • the surface roughness of the bonding material located in the first portion may be smaller than the surface roughness of the bonding material located in the second portion.
  • the surface roughness of the bonding material located in the second region R2 may be larger than the surface roughness of the bonding material located in the first portion.
  • the surface roughness of the bonding material located in the first portion can be, for example, 0.1 ⁇ m or more and 10 ⁇ m or less.
  • the surface roughness of the bonding material located in the second portion can be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the surface roughness of the bonding material located in the second region R2 can be, for example, 1 ⁇ m or more and 100 ⁇ m or less.
  • the porosity of the bonding material located in the first portion may be smaller than the porosity of the bonding material located in the second portion.
  • the porosity of the bonding material located in the second region R2 may be larger than the porosity of the bonding material located in the first portion.
  • the porosity of the bonding material located in the first region can be, for example, 20% or more and 50% or less.
  • the porosity of the bonding material located in the second region can be, for example, 30% or more and 60% or less.
  • the porosity of the bonding material located in the second region R2 can be, for example, 30% or more and 60% or less.
  • the conductive member 18 and cell 1 described above may have different surface roughnesses, for example, by roughening or smoothing a portion of the surface of each portion, or by changing the degree of roughening and/or smoothing.
  • the surface roughness of each member can be determined based on the arithmetic mean roughness Ra defined in JIS B0633;2001.
  • the arithmetic mean roughness Ra can be calculated by image analysis of a cross section perpendicular to the surface of the conductive member 18 or cell 1, respectively.
  • the porosity of each portion of the conductive member 18 and the cell 1 can be measured based on the results of observing a cross section of the conductive member 18 or the cell 1 with a SEM (Scanning Electron Microscope).
  • the conductive member 18 and cell 1 according to this embodiment may be produced by any method, and are not particularly limited.
  • Fig. 8 is an external perspective view showing the module according to the first embodiment.
  • Fig. 8 shows a state in which the front and rear surfaces, which are part of the storage container 101, have been removed and the cell stack device 10 of the fuel cell stored inside has been removed to the rear.
  • the module 100 includes a storage container 101 and a cell stack device 10 stored in the storage container 101.
  • a reformer 102 is disposed above the cell stack device 10.
  • the reformer 102 reforms raw fuel such as natural gas or kerosene to generate fuel gas, which is then supplied to the cell 1.
  • the raw fuel is supplied through a raw fuel supply pipe 103.
  • the reformer 102 may also include a vaporizer 102a that vaporizes water, and a reformer 102b.
  • the reformer 102b includes a reforming catalyst (not shown) and reforms the raw fuel into fuel gas.
  • Such a reformer 102 can perform steam reforming, which is a highly efficient reforming reaction.
  • the fuel gas generated in the reformer 102 is then supplied to the gas flow path 2a (see Figure 1A) of the cell 1 through the gas flow pipe 20, the gas tank 16, and the support member 14.
  • the temperature inside the module 100 during normal power generation is approximately 500°C to 1000°C due to the combustion of gas and power generation by the cell 1.
  • the highly durable cell stack device 10 is housed and configured, thereby making the module 100 highly durable.
  • Fig. 9 is an exploded perspective view showing an example of a module housing device according to the first embodiment.
  • the module housing device 110 includes an outer case 111, the module 100 shown in Fig. 8, and auxiliary equipment (not shown).
  • the auxiliary equipment operates the module 100.
  • the module 100 and the auxiliary equipment are housed in the outer case 111. Note that some components are omitted in Fig. 9.
  • the exterior case 111 of the module accommodating device 110 shown in Figure 9 has support posts 112 and an exterior plate 113.
  • a partition plate 114 divides the interior of the exterior case 111 into upper and lower sections.
  • the space above the partition plate 114 in the exterior case 111 is a module accommodating chamber 115 that accommodates the module 100, and the space below the partition plate 114 in the exterior case 111 is an auxiliary equipment accommodating chamber 116 that accommodates the auxiliary equipment that operates the module 100. Note that in Figure 8, the auxiliary equipment accommodated in the auxiliary equipment accommodating chamber 116 is omitted.
  • the partition plate 114 also has an air flow port 117 for allowing air from the auxiliary equipment housing chamber 116 to flow toward the module housing chamber 115.
  • the exterior plate 113 that constitutes the module housing chamber 115 has an exhaust port 118 for exhausting air from within the module housing chamber 115.
  • a highly durable module 100 is provided in the module storage chamber 115, thereby making the module storage device 110 highly durable.
  • the cell stack device 10 is a cross-sectional view showing another example of the electrochemical cell device according to the first embodiment.
  • the cell stack device 10 shown in FIG. 10 differs from the conductive member 18 according to the above embodiment in that the conductive member 18 includes a first member 18A and a second member 18B having different infrared light reflectances.
  • the first member 18A is configured to have a higher infrared light reflectance than the second member 18B, and the first member 18A and the second member 18B are disposed between adjacent cells 1. In this way, even when the first member 18A and the second member 18B having different infrared light reflectances are used as the conductive member 18, the temperature variation in the first region R1 (see FIG. 4) is reduced. Therefore, according to this configuration, the durability of the cell stack device 10 is increased.
  • the first member 18A and the second member 18B can be fabricated, for example, in accordance with the conductive member 183 shown in FIG. 6B.
  • the first member 18A and the second member 18B can be in contact with each other or spaced apart.
  • FIG. 11 is a perspective view showing an example of an electrochemical cell device according to the second embodiment.
  • the cell stack device 10A shown in FIG. 11 is an electrochemical cell device in which flat electrochemical cells each having an element unit 3A and a conductive member 18 sandwiching the element unit 3A are stacked.
  • the element unit 3A has a solid electrolyte layer (for example, a solid electrolyte layer 6), and a first electrode layer (for example, a fuel electrode layer 5) and a second electrode layer (for example, an air electrode layer 8) sandwiching the solid electrolyte layer.
  • the element unit 3A may have an intermediate layer (for example, an intermediate layer 7) located between the solid electrolyte layer and the second electrode layer.
  • the conductive member 18 has a flow path (not shown) through which a reactant gas flows, and is sealed with a sealing member (not shown) or the like.
  • the cell stack device 10A has end current collecting members 91 and 92 located at both ends.
  • FIG. 12 is a cross-sectional view showing an example of temperature distribution in a flat electrochemical cell.
  • the cell stack device 10Y is likely to have high temperatures in the center of the cell stack device 10Y during power generation, with temperatures t11 to t15 being in the order of t11>t12>t13>t14>t15.
  • the temperature during power generation is likely to decrease toward both ends in the Y-axis direction and Z-axis direction away from the center.
  • the first region R1 located in the center of the element unit 3A in the thickness direction (Z-axis direction) may become hotter than the second region R2 located at both ends of the element unit 3A in the thickness direction (Z-axis direction), for example, and durability may be easily reduced.
  • FIG. 12 shows a cross-sectional view along the YZ plane
  • the cross-section along the ZX plane is generally the same as FIG. 12.
  • Figure 13 is a cross-sectional view showing an example of an electrochemical cell device according to the second embodiment.
  • the conductive member 18 located in the first region R1 has a first portion 181 and a second portion 182.
  • the first portion 181 has a higher reflectance of infrared light than the second portion 182.
  • the amount of heat absorbed by the conductive member 18 is greater than in the first portion 181, which promotes a temperature rise in the cell stack device 10. This makes it less likely that a decrease in power generation performance due to insufficient heating of the cell stack device 10 will occur.
  • the conductive member 183 as the second member located in the second region R2 has a lower reflectance of infrared light than the first portion 181.
  • the heat absorbed by the conductive member 183 can promote a temperature rise. This reduces temperature variation during power generation, improving the power generation performance of the cell stack device 10A.
  • FIG. 14 is a cross-sectional view showing an example of the first region R1 shown in FIG. 13.
  • the conductive members 18 located in the first region R1 of the cell stack device 10A are electrically connected via conductive member 18-3, which is an interconnector, with conductive member 18-1 connected to one adjacent element unit 3A and conductive member 18-2 connected to the other adjacent element unit 3A.
  • conductive members 18-1 to 18-3 located between element units 3A may be collectively referred to as conductive members 18.
  • the temperature near the center of the cell stack device 10A becomes hot during power generation and is difficult to cool, which can cause temperature variations within the cell stack device 10A.
  • the temperature in the center of the cell stack device 10A is more likely to rise than on the outer edge side away from the center of the cell stack device 10A, and for example, the temperature may become higher than that suitable for power generation, which can lead to a decrease in durability.
  • temperature variation may be reduced by applying a conductive member 18 having a first portion 181 and a second portion 182 between element portions 3A located in the first region R1 of the cell stack device 10A.
  • the conductive member 18 is positioned so that the first portion 181 is connected to the central portion in the X-axis direction and/or Y-axis direction between the element portions 3A, and the second portion 182 is connected to a portion away from the central portion in the X-axis direction and/or Y-axis direction between the element portions 3A.
  • the reflectance of infrared light at the first portion 181 is smaller than the reflectance of infrared light at the second portion 182.
  • the amount of current flowing through the first portion 181 is less than that through the second portion 182, and the temperature rise in the first portion 181 is reduced. Therefore, according to this embodiment, the durability of the cell stack device 10A is increased.
  • conductive members 18-1 to 18-3 are collectively described as conductive member 18, but conductive member 18-3, which is different from conductive members 18-1 and 18-2, may be used as a third member, and conductive members 18-1 and 18-2 may be connected in series.
  • the surface roughness and/or porosity of conductive members 18-1 to 18-3 may be the same or different.
  • FIG. 15 is a cross-sectional view showing another example of an electrochemical cell device according to the second embodiment.
  • the cell stack device 10B shown in FIG. 15 differs from the conductive member 18 shown in FIG. 14 in that the conductive member 18 located in the first region R1 includes a first member 18A and a second member 18B having different infrared light reflectances.
  • the infrared light reflectance of the first member 18A is higher than that of the second member 18B, and the first member 18A and the second member 18B are disposed between adjacent element portions 3A. In this way, even when the first member 18A and the second member 18B having different infrared light reflectances are used as the conductive member 18, the temperature rise in the central portion of the cell stack device 10B is reduced. Therefore, according to this configuration, the durability of the cell stack device 10B is increased.
  • the conductive member 183 located in the second region R2 has a lower infrared light reflectance than the second portion 182 or the second member 18B.
  • the heat absorbed by the conductive member 183 can promote a temperature rise. This reduces the temperature variation during power generation, improving power generation performance.
  • the conductive member 18-1 connected to one adjacent element portion 3A and the conductive member 18-2 connected to the other adjacent element portion 3A may also be electrically connected via the conductive member 18-3, which is an interconnector, in the conductive member 18 located in the second region R2.
  • the cell stack devices 10A and 10B are exemplified in which the first member located in the first region R1 and the second member located in the second region R2 are conductive members 18, but the element portion 3A may have a first member and a second member.
  • the element portion 3A as the first member has a first portion located in the central portion of the first region R1 in the X-axis direction and/or Y-axis direction, and a second portion located outside the first portion.
  • the first portion of the element portion 3A has a higher reflectance of infrared light than the second portion.
  • the amount of heat absorbed by the element unit 3A is less in the first portion of the element unit 3A than in the second portion, and the temperature rise in the cell stack devices 10A, 10B can be reduced. This makes it less likely that the durability of the cell stack devices 10A, 10B will decrease due to overheating.
  • the amount of heat absorbed by the element portion 3A is greater than in the first portion, which promotes a temperature rise in the cell stack devices 10A, 10B. This makes it less likely that a decrease in power generation performance due to insufficient heating of the cell stack devices 10A, 10B will occur.
  • the element portion 3A as the second member located in the second region R2 has a lower reflectance of infrared light than the first portion of the element portion 3A located in the first region R1.
  • the heat absorbed by the element portion 3A can promote a temperature rise. This reduces temperature variation during power generation, improving the power generation performance of the cell stack devices 10A, 10B.
  • Fig. 16A is a cross-sectional view showing an example of an electrochemical cell constituting the electrochemical cell device according to the third embodiment.
  • Figs. 16B and 16C are cross-sectional views showing another example of the electrochemical cell according to the third embodiment.
  • a cell stack device 10C is obtained by applying the cell 1 shown in Figs. 16A to 16C to the electrochemical cell device shown in Fig. 2A or 11.
  • the cell 1 has an element section 3C in which a fuel electrode layer 5, a solid electrolyte layer 6, and an air electrode layer 8 are laminated, and a support substrate 2.
  • the element section 3C may have an intermediate layer 7 located between the solid electrolyte layer 6 and the air electrode layer 8.
  • the support substrate 2 has a through hole or a fine hole at a portion of the element section 3C that contacts the fuel electrode layer 5, and has a member 120 located outside the gas flow path 2a.
  • the support substrate 2 can circulate gas between the gas flow path 2a and the element section 3C.
  • the support substrate 2 may include, for example, one or more metal members.
  • the material of the metal member may be an alloy containing chromium.
  • the metal member may have a conductive coating layer.
  • the support substrate 2 is a conductive member that electrically connects adjacent cells 1 to each other.
  • the element section 3C may be formed directly on the support substrate 2, or may be bonded to the support substrate 2 by a bonding material.
  • the side of the fuel electrode layer 5 is covered with a solid electrolyte layer 6, which airtightly seals the gas flow path 2a through which the fuel gas flows.
  • the side of the fuel electrode layer 5 may be covered and sealed with a dense sealing material 9.
  • the sealing material 9 that covers the side of the fuel electrode layer 5 may have electrical insulation properties.
  • the material of the sealing material 9 may be, for example, glass or ceramics.
  • the gas flow path 2a of the support substrate 2 may also be formed by a member 120 having projections and recesses as shown in FIG. 16C.
  • the member 120 is joined to the air electrode layer 8 of another adjacent cell 1 via other conductive members such as inter-cell connection members and bonding materials. Note that the member 120 may be in direct contact with the air electrode layer 8 of another cell 1 without being connected to other conductive members, etc.
  • the cell 1 including the support substrate 2 (conductive member 18) having the first portion 181 and the second portion 182 is placed in the first region R1 of the cell stack device 10C.
  • the first portion 181 of the support substrate 2 (conductive member 18) is positioned in the portion 1a of the cell 1 that is likely to become relatively hot
  • the second portion 182 is positioned in the portion 1b of the cell 1 that is likely to become relatively cold. Since the reflectance of infrared light in the first portion 181 is smaller than that in the second portion 182, the first portion 181 absorbs less heat than the second portion 182, and the temperature rise in the portion 1a is reduced. Therefore, according to this embodiment, the durability of the support substrate 2 (conductive member 18) and the cell stack device 10C is increased.
  • the first region R1 and the second region R2 are not limited to the examples shown in Figures 3, 4, 12, and 13.
  • the first region R1 and the second region R2 can be set appropriately according to the structure, characteristics, etc. of the cell stack of the electrochemical cell device.
  • one conductive member 18 sandwiched between two cells 1 located adjacent to the first region R1 at the center of the cell stack may have a first portion and a second portion, and the reflectance of infrared light in one conductive member 18 located in the second region R2 at one end of the cell stack may be smaller than the reflectance of infrared light in the first portion 181.
  • the arrangement and ratio of the first portion 181 and the second portion 182 of the conductive member 18 located in the first region R1 can be set appropriately according to the structure of the cell 1 located in the first region R1.
  • the cell stack device 10C is exemplified in which the first member located in the first region R1 and the second member located in the second region R2 are conductive members 18, but the element portion 3C may have a first member and a second member.
  • the element portion 3C as the first member has a first portion located in the portion 1a of the cell 1 in the first region R1, and a second portion located in the portion 1b.
  • the first portion of the element portion 3C has a higher reflectance of infrared light than the second portion.
  • the amount of heat absorbed by the element unit 3C in the first portion is less than that absorbed in the element unit 3C in the second portion, and the temperature rise in the cell stack device 10C can be reduced. This makes it less likely that the durability of the cell stack device 10C will decrease due to overheating.
  • the amount of heat absorbed by the element portion 3C is greater than in the first portion, accelerating the temperature rise of the cell stack device 10C. This makes it less likely that a decrease in power generation performance due to insufficient heating of the cell stack device 10C will occur.
  • the element portion 3C as the second member located in the second region R2 has a lower reflectance of infrared light than the first portion of the element portion 3C located in the first region R1.
  • the heat absorbed by the element portion 3C can promote a temperature rise. This reduces temperature variation during power generation, improving the power generation performance of the cell stack device 10C.
  • a fuel cell, a fuel cell stack device, a fuel cell module, and a fuel cell device are shown as examples of the "battery chemical cell”, “battery chemical cell device”, “module”, and “module housing device”, but other examples may be an electrolytic cell, an electrolytic cell stack device, an electrolytic module, and an electrolytic device, respectively.
  • the electrolytic cell has a hydrogen electrode and an oxygen electrode, and decomposes water vapor into hydrogen and oxygen, or decomposes carbon dioxide into carbon monoxide and oxygen, when supplied with electric power.
  • an oxide ion conductor or a hydrogen ion conductor is shown as an example of the electrolyte material of the electrochemical cell, but a hydroxide ion conductor may also be used.
  • Such an electrolytic cell, an electrolytic cell stack device, an electrolytic module, and an electrolytic device can improve durability. Also, electrolytic performance can be improved.
  • an electrochemical cell device comprising: A plurality of element portions arranged in a first direction; and a conductive member located between each of the element portions adjacent to each other in the first direction, a first member having a first portion and a second portion having a reflectance of infrared light different from that of the first portion is located in a first region located at a center portion in the first direction; A second member having a lower reflectance for infrared light than the first portion is located in a second region located at an end in the first direction.
  • the first portion may have a higher reflectance to infrared light than the second portion.
  • the first region may have a higher maximum temperature than the second region.
  • the first member and the second member may be included in the element portion.
  • the first member and the second member may be included in the conductive member.
  • the first portion is located on one end side in a second direction intersecting the first direction,
  • the second portion may be located on the other end side in the second direction.
  • the first portion is located at a center portion in a second direction intersecting the first direction,
  • the second portion may be located at an end in the second direction.
  • an electrochemical cell device comprising: A plurality of element portions arranged in a first direction; and a conductive member located between each of the element portions adjacent to each other in the first direction, a first member and a second member having a reflectance of infrared light different from that of the first member are located in a first region located at a center portion in the first direction; A third member having a lower reflectance for infrared light than the first member is located in a second region located at an end in the first direction.
  • the module (9) comprises: an electrochemical cell device according to any one of the above (1) to (8); and a container for housing the electrochemical cell device.
  • the module housing device (10) includes the module (9) and Auxiliary equipment for operating the module; and an exterior case that houses the module and the auxiliary equipment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

This electrochemical cell device comprises a plurality of element parts and conductive members. The plurality of element parts are arranged side by side in a first direction. The conductive members are respectively positioned between the element parts adjacent to each other in the first direction. A first member is positioned in a first region positioned at a central section in the first direction. A second member is positioned in a second region positioned at an end section in the first direction. The first member has a first portion and a second portion which has a different infrared light reflectance from the first portion. The second member has a lower infrared light reflectance than the first portion.

Description

電気化学セル装置、モジュールおよびモジュール収容装置Electrochemical cell device, module and module housing device
 本開示は、電気化学セル装置、モジュールおよびモジュール収容装置に関する。 This disclosure relates to electrochemical cell devices, modules, and module housing devices.
 近年、次世代エネルギーとして、燃料電池セルを複数有する燃料電池セルスタック装置が種々提案されている。燃料電池セルは、水素含有ガス等の燃料ガスと空気等の酸素含有ガスとを用いて電力を得ることができる電気化学セルの一種である。 In recent years, various fuel cell stack devices containing multiple fuel cell cells have been proposed as next-generation energy sources. A fuel cell is a type of electrochemical cell that can generate electricity using a fuel gas such as a hydrogen-containing gas and an oxygen-containing gas such as air.
特開2021-180164号公報JP 2021-180164 A 特開2015-220022号公報JP 2015-220022 A
 実施形態の一態様に係る電気化学セル装置は、複数の素子部と、導電部材とを備える。複数の素子部は、第1方向に並ぶ。導電部材は、前記第1方向に隣り合う前記素子部の間にそれぞれ位置する。前記第1方向の中央部に位置する第1領域には、第1部材が位置する。前記第1方向の端部に位置する第2領域には、第2部材が位置する。第1部材は、第1部位および該第1部位とは赤外光の反射率が異なる第2部位を有する。第2部材は、前記第1部位よりも赤外光の反射率が小さい。 The electrochemical cell device according to one aspect of the embodiment includes a plurality of element parts and a conductive member. The plurality of element parts are aligned in a first direction. The conductive members are respectively positioned between the element parts adjacent to each other in the first direction. A first member is positioned in a first region positioned in the center of the first direction. A second member is positioned in a second region positioned at an end of the first direction. The first member has a first portion and a second portion having a different reflectance of infrared light from the first portion. The second member has a lower reflectance of infrared light than the first portion.
 また、実施形態の一態様に係る電気化学セル装置は、複数の素子部と、導電部材とを備える。複数の素子部は、第1方向に並ぶ。導電部材は、前記第1方向に隣り合う前記素子部の間にそれぞれ位置する。前記第1方向の中央部に位置する第1領域には、第1部材および該第1部材とは赤外光の反射率が異なる第2部材が位置する。前記第1方向の端部に位置する第2領域には、第3部材が位置する。第3部材は、前記第1部材よりも赤外光の反射率が小さい。 An electrochemical cell device according to one aspect of the embodiment includes a plurality of element parts and a conductive member. The plurality of element parts are arranged in a first direction. The conductive members are respectively positioned between the element parts adjacent to each other in the first direction. A first member and a second member having a different infrared light reflectance from the first member are positioned in a first region positioned at the center in the first direction. A third member is positioned in a second region positioned at an end in the first direction. The third member has a lower infrared light reflectance than the first member.
 また、本開示のモジュールは、上記に記載の電気化学セル装置と、前記電気化学セル装置を収納する収納容器とを備える。 The module of the present disclosure also includes the electrochemical cell device described above and a storage container for storing the electrochemical cell device.
 また、本開示のモジュール収容装置は、上記に記載のモジュールと、前記モジュールの運転を行うための補機と、前記モジュールおよび前記補機を収容する外装ケースとを備える。 The module housing device of the present disclosure also includes the module described above, an auxiliary device for operating the module, and an exterior case that houses the module and the auxiliary device.
図1Aは、第1の実施形態に係る電気化学セルの一例を示す横断面図である。FIG. 1A is a cross-sectional view illustrating an example of an electrochemical cell according to a first embodiment. 図1Bは、第1の実施形態に係る電気化学セルの一例を空気極側からみた側面図である。FIG. 1B is a side view of an example of the electrochemical cell according to the first embodiment, as viewed from the air electrode side. 図1Cは、第1の実施形態に係る電気化学セルの一例をインターコネクタ側からみた側面図である。FIG. 1C is a side view of an example of an electrochemical cell according to the first embodiment, viewed from the interconnector side. 図2Aは、第1の実施形態に係る電気化学セル装置の一例を示す斜視図である。FIG. 2A is a perspective view showing an example of an electrochemical cell device according to the first embodiment. 図2Bは、図2Aに示すX-X線の断面図である。FIG. 2B is a cross-sectional view taken along line XX shown in FIG. 2A. 図2Cは、第1の実施形態に係る電気化学セル装置の一例を示す上面図である。FIG. 2C is a top view illustrating an example of the electrochemical cell device according to the first embodiment. 図3は、電気化学セル装置における温度分布の一例を示す断面図である。FIG. 3 is a cross-sectional view showing an example of the temperature distribution in an electrochemical cell device. 図4は、第1の実施形態に係る電気化学セル装置を拡大した断面図である。FIG. 4 is an enlarged cross-sectional view of the electrochemical cell device according to the first embodiment. 図5Aは、第1の実施形態に係る導電部材の一例を示す横断面図である。FIG. 5A is a cross-sectional view illustrating an example of the conductive member according to the first embodiment. 図5Bは、図5Aに示すA-A線に沿った断面図である。FIG. 5B is a cross-sectional view taken along line AA shown in FIG. 5A. 図6Aは、第1領域に位置する導電部材の一例を示す断面図である。FIG. 6A is a cross-sectional view illustrating an example of a conductive member located in a first region. 図6Bは、第2領域に位置する導電部材の一例を示す断面図である。FIG. 6B is a cross-sectional view illustrating an example of a conductive member located in a second region. 図7は、第1の実施形態に係る電気化学セルの一例を示す断面図である。FIG. 7 is a cross-sectional view illustrating an example of an electrochemical cell according to the first embodiment. 図8は、第1の実施形態に係るモジュールの一例を示す外観斜視図である。FIG. 8 is an external perspective view illustrating an example of the module according to the first embodiment. 図9は、第1の実施形態に係るモジュール収容装置の一例を概略的に示す分解斜視図である。FIG. 9 is an exploded perspective view illustrating an example of a module housing device according to the first embodiment. 図10は、第1の実施形態に係る電気化学セル装置の別の一例を示す断面図である。FIG. 10 is a cross-sectional view showing another example of the electrochemical cell device according to the first embodiment. 図11は、第2の実施形態に係る電気化学セル装置の一例を示す斜視図である。FIG. 11 is a perspective view showing an example of an electrochemical cell device according to the second embodiment. 図12は、平板型の電気化学セル装置における温度分布の一例を示す断面図である。FIG. 12 is a cross-sectional view showing an example of the temperature distribution in a flat electrochemical cell device. 図13は、第2の実施形態に係る電気化学セル装置の一例を示す断面図である。FIG. 13 is a cross-sectional view showing an example of an electrochemical cell device according to the second embodiment. 図14は、図13に示す第1領域R1の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of the first region R1 shown in FIG. 図15は、第2の実施形態に係る電気化学セル装置の別の一例を示す断面図である。FIG. 15 is a cross-sectional view showing another example of the electrochemical cell device according to the second embodiment. 図16Aは、第3の実施形態に係る電気化学セル装置を構成する電気化学セルの一例を示す横断面図である。FIG. 16A is a cross-sectional view showing an example of an electrochemical cell constituting the electrochemical cell device according to the third embodiment. 図16Bは、第3の実施形態に係る電気化学セルの他の一例を示す横断面図である。FIG. 16B is a cross-sectional view showing another example of the electrochemical cell according to the third embodiment. 図16Cは、第3の実施形態に係る電気化学セルの他の一例を示す横断面図である。FIG. 16C is a cross-sectional view showing another example of the electrochemical cell according to the third embodiment.
 従来の燃料電池セルスタック装置では、たとえば、発電時の温度にばらつきが生じる場合があり、耐久性に改善の余地があった。  In conventional fuel cell stack devices, for example, there could be variations in temperature during power generation, and there was room for improvement in durability.
 そこで、耐久性が高い電気化学セル装置、モジュールおよびモジュール収容装置の提供が期待されている。 Therefore, there is a need to provide highly durable electrochemical cell devices, modules, and module housing devices.
 以下、添付図面を参照して、本願の開示する電気化学セル装置、モジュールおよびモジュール収容装置の実施形態を詳細に説明する。なお、以下に示す実施形態によりこの開示が限定されるものではない。 Below, embodiments of the electrochemical cell device, module, and module housing device disclosed in the present application will be described in detail with reference to the attached drawings. Note that this disclosure is not limited to the embodiments shown below.
 また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係、比率などが異なる部分が含まれている場合がある。 It should also be noted that the drawings are schematic, and that the dimensional relationships and ratios of each element may differ from reality. Furthermore, there may be parts in which the dimensional relationships and ratios of each element differ between the drawings.
[第1の実施形態]
<電気化学セル>
 まず、図1A~図1Cを参照しながら、第1の実施形態に係る電気化学セル装置を構成する電気化学セルとして、固体酸化物形の燃料電池セルの例を用いて説明する。電気化学セル装置は、複数の電気化学セルを有するセルスタックを備えていてもよい。複数の電気化学セルを有する電気化学セル装置を、単にセルスタック装置と称する。
[First embodiment]
<Electrochemical cell>
First, with reference to Figures 1A to 1C, an electrochemical cell constituting an electrochemical cell device according to a first embodiment will be described using an example of a solid oxide fuel cell. The electrochemical cell device may include a cell stack having a plurality of electrochemical cells. An electrochemical cell device having a plurality of electrochemical cells will be simply referred to as a cell stack device.
 図1Aは、実施形態に係る電気化学セルの一例を示す横断面図である。図1Bは、実施形態に係る電気化学セルの一例を空気極側からみた側面図である。図1Cは、実施形態に係る電気化学セルの一例をインターコネクタ側からみた側面図である。なお、図1A~図1Cは、電気化学セルの各構成の一部を拡大して示している。以下、電気化学セルを単にセルという場合もある。 FIG. 1A is a cross-sectional view showing an example of an electrochemical cell according to an embodiment. FIG. 1B is a side view of an example of an electrochemical cell according to an embodiment, viewed from the air electrode side. FIG. 1C is a side view of an example of an electrochemical cell according to an embodiment, viewed from the interconnector side. Note that FIGS. 1A to 1C show enlarged views of a portion of each component of the electrochemical cell. Hereinafter, the electrochemical cell may also be simply referred to as a cell.
 図1A~図1Cに示す例において、セル1は中空平板型で、細長い板状である。図1Bに示すように、セル1の全体を側面から見た形状は、たとえば、長さ方向Lの辺の長さが5cm~50cmで、この長さ方向Lに直交する幅方向Wの長さが、たとえば1cm~10cmの長方形である。このセル1の全体の厚み方向Tの厚さは、たとえば1mm~5mmである。 In the example shown in Figures 1A to 1C, cell 1 is a hollow flat plate-like elongated plate. As shown in Figure 1B, the shape of cell 1 as a whole viewed from the side is, for example, a rectangle with a side length in the length direction L of 5 cm to 50 cm and a length in the width direction W perpendicular to the length direction L of, for example, 1 cm to 10 cm. The overall thickness of cell 1 in the thickness direction T is, for example, 1 mm to 5 mm.
 図1Aに示すように、セル1は、導電性の支持基板2と、素子部3と、インターコネクタ4とを備えている。支持基板2は、一対の対向する平坦面n1、n2、およびかかる平坦面n1、n2を接続する一対の円弧状の側面mを有する柱状である。 As shown in FIG. 1A, the cell 1 includes a conductive support substrate 2, an element section 3, and an interconnector 4. The support substrate 2 is columnar and has a pair of opposing flat surfaces n1, n2, and a pair of arc-shaped side surfaces m that connect the flat surfaces n1, n2.
 素子部3は、支持基板2の平坦面n1上に設けられている。かかる素子部3は、燃料極層5と、固体電解質層6と、空気極層8とを有している。また、図1Aに示す例では、セル1の平坦面n2上にインターコネクタ4が位置している。なお、セル1は、固体電解質層6と空気極層8との間に中間層7を備えていてもよい。 The element section 3 is provided on the flat surface n1 of the support substrate 2. The element section 3 has a fuel electrode layer 5, a solid electrolyte layer 6, and an air electrode layer 8. In the example shown in FIG. 1A, the interconnector 4 is located on the flat surface n2 of the cell 1. The cell 1 may also have an intermediate layer 7 between the solid electrolyte layer 6 and the air electrode layer 8.
 また、図1Bに示すように、空気極層8はセル1の下端まで延びていない。セル1の下端部では、固体電解質層6のみが平坦面n1の表面に露出している。また、図1Cに示すように、インターコネクタ4がセル1の下端まで延びていてもよい。セル1の下端部では、インターコネクタ4および固体電解質層6が表面に露出している。なお、図1Aに示すように、セル1の一対の円弧状の側面mにおける表面では、固体電解質層6が露出している。インターコネクタ4は、セル1の下端まで延びていなくてもよい。 Also, as shown in FIG. 1B, the air electrode layer 8 does not extend to the lower end of the cell 1. At the lower end of the cell 1, only the solid electrolyte layer 6 is exposed on the surface of the flat surface n1. Also, as shown in FIG. 1C, the interconnector 4 may extend to the lower end of the cell 1. At the lower end of the cell 1, the interconnector 4 and the solid electrolyte layer 6 are exposed on the surface. Note that, as shown in FIG. 1A, the solid electrolyte layer 6 is exposed on the surface of a pair of arc-shaped side surfaces m of the cell 1. The interconnector 4 does not have to extend to the lower end of the cell 1.
 以下、セル1を構成する各構成部材について説明する。 The components that make up Cell 1 are explained below.
 支持基板2は、ガスが流れるガス流路2aを内部に有している。図1Aに示す支持基板2の例は、6つのガス流路2aを有している。支持基板2は、ガス透過性を有し、ガス流路2aを流れる燃料ガスを燃料極層5まで透過させる。支持基板2は、導電性を有していてもよい。導電性を有する支持基板2は、素子部3で生じた電気をインターコネクタ4に集電する。 The support substrate 2 has gas flow paths 2a therein through which gas flows. The example of the support substrate 2 shown in FIG. 1A has six gas flow paths 2a. The support substrate 2 has gas permeability, and allows the fuel gas flowing through the gas flow paths 2a to pass through to the fuel electrode layer 5. The support substrate 2 may be conductive. The conductive support substrate 2 collects electricity generated in the element section 3 to the interconnector 4.
 支持基板2の材料は、たとえば、鉄族金属成分および無機酸化物を含む。鉄族金属成分は、たとえば、Ni(ニッケル)および/またはNiOであってもよい。無機酸化物は、たとえば、特定の希土類元素酸化物であってもよい。希土類元素酸化物は、たとえば、Sc、Y、La、Nd、Sm、Gd、DyおよびYbから選択される1以上の希土類元素を含んでよい。 The material of the support substrate 2 includes, for example, an iron group metal component and an inorganic oxide. The iron group metal component may be, for example, Ni (nickel) and/or NiO. The inorganic oxide may be, for example, a specific rare earth element oxide. The rare earth element oxide may include, for example, one or more rare earth elements selected from Sc, Y, La, Nd, Sm, Gd, Dy, and Yb.
 燃料極層5の材料には、一般的に公知のものを使用することができる。燃料極層5は、多孔質の導電性セラミックス、たとえば酸化カルシウム、酸化マグネシウム、または希土類元素酸化物が固溶しているZrOと、Niおよび/またはNiOとを含むセラミックスなどを用いてもよい。この希土類元素酸化物は、たとえば、Sc、Y、La、Nd、Sm、Gd、DyおよびYbから選択される複数の希土類元素を含んでもよい。酸化カルシウム、酸化マグネシウム、または希土類元素酸化物が固溶しているZrOを安定化ジルコニアと称する場合もある。安定化ジルコニアは、部分安定化ジルコニアも含んでもよい。 The material of the fuel electrode layer 5 may be a generally known material. The fuel electrode layer 5 may be made of a porous conductive ceramic, such as a ceramic containing calcium oxide, magnesium oxide, or ZrO 2 in which a rare earth element oxide is dissolved, and Ni and/or NiO. The rare earth element oxide may contain a plurality of rare earth elements selected from Sc, Y, La, Nd, Sm, Gd, Dy, and Yb. Calcium oxide, magnesium oxide, or ZrO 2 in which a rare earth element oxide is dissolved may be referred to as stabilized zirconia. The stabilized zirconia may also include partially stabilized zirconia.
 固体電解質層6は、電解質であり、燃料極層5と空気極層8との間でイオンの受け渡しをする。同時に、固体電解質層6は、ガス遮断性を有し、燃料ガスと酸素含有ガスとのリークを生じにくくする。 The solid electrolyte layer 6 is an electrolyte and transfers ions between the fuel electrode layer 5 and the air electrode layer 8. At the same time, the solid electrolyte layer 6 has gas barrier properties, making it difficult for leakage of fuel gas and oxygen-containing gas to occur.
 固体電解質層6の材料は、たとえば、3モル%~15モル%の希土類元素酸化物、酸化カルシウム、酸化マグネシウムが固溶したZrOであってもよい。希土類元素酸化物は、たとえば、Sc、Y、La、Nd、Sm、Gd、DyおよびYbから選択される1以上の希土類元素を含んでよい。固体電解質層6は、たとえば、La、Nd、Sm、GdまたはYbが固溶したCeOを含んでもよく、ScまたはYbが固溶したBaZrOを含んでもよく、ScまたはYbが固溶したBaCeOを含んでもよい。 The material of the solid electrolyte layer 6 may be, for example, ZrO2 in which 3 mol% to 15 mol% of rare earth element oxide, calcium oxide, or magnesium oxide is dissolved. The rare earth element oxide may include, for example, one or more rare earth elements selected from Sc, Y, La, Nd, Sm, Gd, Dy, and Yb. The solid electrolyte layer 6 may include, for example, CeO2 in which La, Nd, Sm, Gd, or Yb is dissolved, BaZrO3 in which Sc or Yb is dissolved, or BaCeO3 in which Sc or Yb is dissolved.
 空気極層8は、ガス透過性を有している。空気極層8の開気孔率は、たとえば20%~50%、特に30%~50%の範囲であってもよい。 The air electrode layer 8 is gas permeable. The open porosity of the air electrode layer 8 may be in the range of, for example, 20% to 50%, particularly 30% to 50%.
 空気極層8の材料は、一般的に空気極に用いられるものであれば特に制限はない。空気極層8の材料は、たとえば、いわゆるABO型のペロブスカイト型酸化物など導電性セラミックスでもよい。 There are no particular limitations on the material of the air electrode layer 8 as long as it is a material generally used for air electrodes. The material of the air electrode layer 8 may be, for example, a conductive ceramic such as a so-called ABO3 -type perovskite oxide.
 空気極層8の材料は、たとえば、AサイトにSr(ストロンチウム)とLa(ランタン)が共存する複合酸化物であってもよい。このような複合酸化物の例としては、LaSr1-xCoFe1-y、LaSr1-xMnO、LaSr1-xFeO、LaSr1-xCoOなどが挙げられる。なお、xは0<x<1、yは0<y<1である。 The material of the air electrode layer 8 may be, for example, a composite oxide in which Sr (strontium ) and La ( lanthanum ) coexist at the A site. Examples of such composite oxides include LaxSr1 -xCoyFe1-yO3, LaxSr1-xMnO3 , LaxSr1 - xFeO3 , and LaxSr1 - xCoO3 , where x is 0<x<1 and y is 0<y<1.
 また、素子部3が中間層7を有する場合、中間層7は、拡散抑制層としての機能を有する。空気極層8に含まれるSr(ストロンチウム)などの元素が固体電解質層6に拡散すると、かかる固体電解質層6にたとえばSrZrOなどの抵抗層が形成される。中間層7は、Srを拡散させにくくすることで、SrZrOその他の電気絶縁性を有する酸化物が形成されにくくする。 Furthermore, when the element section 3 has the intermediate layer 7, the intermediate layer 7 functions as a diffusion suppression layer. When elements such as Sr (strontium) contained in the air electrode layer 8 diffuse into the solid electrolyte layer 6, a resistive layer such as SrZrO3 is formed in the solid electrolyte layer 6. The intermediate layer 7 makes it difficult for Sr to diffuse, thereby making it difficult for SrZrO3 and other oxides having electrical insulation to be formed.
 中間層7の材料は、一般的に空気極層8と固体電解質層6との間の元素の拡散を生じにくくするものであれば特に制限はない。中間層7の材料は、たとえば、Ce(セリウム)を除く希土類元素が固溶した酸化セリウム(CeO)を含んでもよい。かかる希土類元素としては、たとえば、Gd(ガドリニウム)、Sm(サマリウム)などを用いてもよい。 The material of the intermediate layer 7 is not particularly limited as long as it generally prevents diffusion of elements between the air electrode layer 8 and the solid electrolyte layer 6. The material of the intermediate layer 7 may contain, for example, cerium oxide (CeO 2 ) in which a rare earth element other than Ce (cerium) is dissolved. Examples of such rare earth elements include Gd (gadolinium) and Sm (samarium).
 また、インターコネクタ4は、緻密質であり、支持基板2の内部に位置するガス流路2aを流通する燃料ガス、および支持基板2の外側を流通する酸素含有ガスのリークを生じにくくする。インターコネクタ4は、93%以上、特に95%以上の相対密度を有していてもよい。 The interconnector 4 is dense, which makes it difficult for the fuel gas flowing through the gas flow passage 2a located inside the support substrate 2 and the oxygen-containing gas flowing outside the support substrate 2 to leak. The interconnector 4 may have a relative density of 93% or more, particularly 95% or more.
 インターコネクタ4の材料には、ランタンクロマイト系のペロブスカイト型酸化物(LaCrO系酸化物)、ランタンストロンチウムチタン系のペロブスカイト型酸化物(LaSrTiO系酸化物)などを用いてもよい。これらの材料は、導電性を有し、かつ水素含有ガスなどの燃料ガスおよび空気などの酸素含有ガスと接触しても還元も酸化もされにくい。また、インターコネクタ4の材料には、金属または合金を用いてもよい。なお、本実施形態に係る電気化学セルの詳細については後述する。 The material of the interconnector 4 may be a lanthanum chromite-based perovskite oxide ( LaCrO3 -based oxide), a lanthanum strontium titanium-based perovskite oxide ( LaSrTiO3 -based oxide), or the like. These materials are conductive and are not easily reduced or oxidized even when in contact with a fuel gas such as a hydrogen-containing gas and an oxygen-containing gas such as air. The material of the interconnector 4 may be a metal or an alloy. Details of the electrochemical cell according to this embodiment will be described later.
<電気化学セル装置>
 次に、上述したセル1を用いた本実施形態に係る電気化学セル装置について、図2A~図2Cを参照しながら説明する。図2Aは、第1の実施形態に係る電気化学セル装置の一例を示す斜視図である。図2Bは、図2Aに示すX-X線の断面図である。図2Cは、第1の実施形態に係る電気化学セル装置の一例を示す上面図である。
<Electrochemical cell device>
Next, an electrochemical cell device according to the present embodiment using the above-mentioned cell 1 will be described with reference to Figures 2A to 2C. Figure 2A is a perspective view showing an example of the electrochemical cell device according to the first embodiment. Figure 2B is a cross-sectional view taken along line XX shown in Figure 2A. Figure 2C is a top view showing an example of the electrochemical cell device according to the first embodiment.
 図2Aに示すように、セルスタック装置10は、セル1の厚み方向T(図1A参照)に配列(積層)された複数のセル1を有するセルスタック11と、固定部材12とを備える。 As shown in FIG. 2A, the cell stack device 10 includes a cell stack 11 having a plurality of cells 1 arranged (stacked) in the thickness direction T of the cells 1 (see FIG. 1A), and a fixing member 12.
 固定部材12は、固定材13と、支持部材14とを有する。支持部材14は、セル1を支持する。固定材13は、セル1を支持部材14に固定する。また、支持部材14は、支持体15と、ガスタンク16とを有する。支持部材14である支持体15およびガスタンク16は、たとえば金属製であり導電性を有している。 The fixing member 12 has a fixing material 13 and a support member 14. The support member 14 supports the cell 1. The fixing material 13 fixes the cell 1 to the support member 14. The support member 14 also has a support 15 and a gas tank 16. The support member 14, which is made of a metal, has electrical conductivity.
 図2Bに示すように、支持体15は、複数のセル1の下端部が挿入される挿入孔15aを有している。複数のセル1の下端部と挿入孔15aの内壁とは、固定材13で接合されている。 As shown in FIG. 2B, the support 15 has insertion holes 15a into which the lower ends of the multiple cells 1 are inserted. The lower ends of the multiple cells 1 and the inner wall of the insertion holes 15a are joined with a fixing material 13.
 ガスタンク16は、挿入孔15aを通じて複数のセル1に反応ガスを供給する開口部と、かかる開口部の周囲に位置する凹溝16aとを有する。支持体15の外周の端部は、ガスタンク16の凹溝16aに充填された接合材21によって、ガスタンク16と接合されている。 The gas tank 16 has an opening for supplying reactive gas to the multiple cells 1 through the insertion holes 15a, and a groove 16a located around the opening. The outer peripheral edge of the support 15 is joined to the gas tank 16 by a bonding material 21 filled in the groove 16a of the gas tank 16.
 図2Aに示す例では、支持部材14である支持体15とガスタンク16とで形成される内部空間22に燃料ガスが貯留される。ガスタンク16にはガス流通管20が接続されている。燃料ガスは、このガス流通管20を通してガスタンク16に供給され、ガスタンク16からセル1の内部のガス流路2a(図1A参照)に供給される。ガスタンク16に供給される燃料ガスは、後述する改質器102(図8参照)で生成される。 In the example shown in FIG. 2A, fuel gas is stored in an internal space 22 formed by a support body 15, which is the support member 14, and a gas tank 16. A gas circulation pipe 20 is connected to the gas tank 16. The fuel gas is supplied to the gas tank 16 through this gas circulation pipe 20, and is supplied from the gas tank 16 to a gas flow path 2a (see FIG. 1A) inside the cell 1. The fuel gas supplied to the gas tank 16 is generated in a reformer 102 (see FIG. 8), which will be described later.
 水素リッチな燃料ガスは、原燃料を水蒸気改質などすることによって生成することができる。水蒸気改質により燃料ガスを生成する場合には、燃料ガスは水蒸気を含む。 Hydrogen-rich fuel gas can be produced by, for example, steam reforming the raw fuel. When fuel gas is produced by steam reforming, the fuel gas contains water vapor.
 図2Aに示す例では、2列のセルスタック11、支持部材14、2つの支持体15、およびガスタンク16を備えている。2列のセルスタック11はそれぞれ、複数のセル1を有する。各セルスタック11は、各支持体15に固定されている。ガスタンク16は上面に2つの貫通孔を有している。各貫通孔には、各支持体15が配置されている。内部空間22は、1つのガスタンク16と、2つの支持体15とで形成される。図2Aでは、2列のセルスタック11を有するセルスタック装置10を示したが、電気化学セル装置は1列のセルスタック11を有してもよいし、3列以上のセルスタック11を有してもよい。 The example shown in FIG. 2A includes two rows of cell stacks 11, a support member 14, two supports 15, and a gas tank 16. Each of the two rows of cell stacks 11 has a plurality of cells 1. Each cell stack 11 is fixed to each support 15. The gas tank 16 has two through holes on the upper surface. Each support 15 is disposed in each through hole. The internal space 22 is formed by one gas tank 16 and two supports 15. Although FIG. 2A shows a cell stack device 10 having two rows of cell stacks 11, the electrochemical cell device may have one row of cell stacks 11 or three or more rows of cell stacks 11.
 挿入孔15aの形状は、たとえば、上面視で長円形状である。挿入孔15aは、たとえば、セル1の配列方向すなわち厚み方向Tの長さが、セルスタック11の両端に位置する2つの端部集電部材17の間の距離よりも大きい。挿入孔15aの幅は、たとえば、セル1の幅方向W(図1A参照)の長さよりも大きい。 The shape of the insertion hole 15a is, for example, an oval shape when viewed from above. For example, the length of the insertion hole 15a in the arrangement direction of the cells 1, i.e., the thickness direction T, is greater than the distance between the two end current collecting members 17 located at both ends of the cell stack 11. The width of the insertion hole 15a is, for example, greater than the length of the cell 1 in the width direction W (see FIG. 1A).
 図2Bに示すように、挿入孔15aの内壁とセル1の下端部との接合部は、固定材13が充填され、固化されている。これにより、挿入孔15aの内壁と複数個のセル1の下端部とがそれぞれ接合・固定され、また、セル1の下端部同士が接合・固定されている。各セル1のガス流路2aは、下端部で支持部材14の内部空間22と連通している。 As shown in FIG. 2B, the joint between the inner wall of the insertion hole 15a and the lower end of the cell 1 is filled with a fixing material 13 and solidified. This bonds and fixes the inner wall of the insertion hole 15a to the lower ends of the multiple cells 1, and also bonds and fixes the lower ends of the cells 1 to each other. The gas flow path 2a of each cell 1 communicates with the internal space 22 of the support member 14 at its lower end.
 固定材13および接合材21は、ガラスなどの導電性が低いものを用いることができる。固定材13および接合材21の具体的な材料としては、非晶質ガラスなどを用いてもよく、特に結晶化ガラスなどを用いてもよい。 The fixing material 13 and the bonding material 21 may be made of a material with low electrical conductivity, such as glass. Specific materials for the fixing material 13 and the bonding material 21 may include amorphous glass, and in particular, crystallized glass.
 結晶化ガラスとしては、たとえば、SiO-CaO系、MgO-B系、La-B-MgO系、La-B-ZnO系、SiO-CaO-ZnO系などの材料のいずれかを用いてもよく、特にSiO-MgO系の材料を用いてもよい。 As the crystallized glass, for example, any of SiO 2 -CaO based, MgO-B 2 O 3 based, La 2 O 3 -B 2 O 3 -MgO based, La 2 O 3 -B 2 O 3 -ZnO based, SiO 2 -CaO-ZnO based materials may be used, and in particular, SiO 2 -MgO based materials may be used.
 また、図2Bに示すように、複数のセル1のうち隣接するセル1の間には、導電部材18が介在している。導電部材18は、隣接する一方のセル1の燃料極層5と他方のセル1の空気極層8とを電気的に直列に接続する。より具体的には、導電部材18は、隣接する一方のセル1の燃料極層5と電気的に接続されたインターコネクタ4と、他方のセル1の空気極層8とを接続している。インターコネクタ4が金属または合金である場合、インターコネクタ4と導電部材18とが一体化していてもよいし、導電部材18がインターコネクタ4を兼ねてもよい。なお、導電部材18の詳細については後述する。 Also, as shown in FIG. 2B, a conductive member 18 is interposed between adjacent cells 1 among the multiple cells 1. The conductive member 18 electrically connects the fuel electrode layer 5 of one adjacent cell 1 to the air electrode layer 8 of the other cell 1 in series. More specifically, the conductive member 18 connects the interconnector 4 electrically connected to the fuel electrode layer 5 of one adjacent cell 1 to the air electrode layer 8 of the other cell 1. When the interconnector 4 is a metal or alloy, the interconnector 4 and the conductive member 18 may be integrated, or the conductive member 18 may also function as the interconnector 4. Details of the conductive member 18 will be described later.
 また、図2Bに示すように、複数のセル1の配列方向における最も外側に位置するセル1に、端部集電部材17が電気的に接続されている。端部集電部材17は、セルスタック11の外側に突出する導電部19に接続されている。導電部19は、セル1の発電により生じた電気を集電して外部に引き出す。なお、図2Aでは、端部集電部材17の図示を省略している。 As shown in FIG. 2B, an end current collecting member 17 is electrically connected to the cell 1 located on the outermost side in the arrangement direction of the multiple cells 1. The end current collecting member 17 is connected to a conductive part 19 that protrudes to the outside of the cell stack 11. The conductive part 19 collects electricity generated by power generation in the cell 1 and draws it out to the outside. Note that the end current collecting member 17 is not shown in FIG. 2A.
 また、図2Cに示すように、セルスタック装置10は、2つのセルスタック11A、11Bが直列に接続され、一つの電池として機能する。そのため、セルスタック装置10の導電部19は、正極端子19Aと、負極端子19Bと、接続端子19Cとに区別される。 As shown in FIG. 2C, the cell stack device 10 has two cell stacks 11A and 11B connected in series and functions as a single battery. Therefore, the conductive parts 19 of the cell stack device 10 are divided into a positive terminal 19A, a negative terminal 19B, and a connection terminal 19C.
 正極端子19Aは、セルスタック11が発電した電力を外部に出力する場合の正極であり、セルスタック11Aにおける正極側の端部集電部材17に電気的に接続される。負極端子19Bは、セルスタック11が発電した電力を外部に出力する場合の負極であり、セルスタック11Bにおける負極側の端部集電部材17に電気的に接続される。 The positive terminal 19A is the positive electrode when the power generated by the cell stack 11 is output to the outside, and is electrically connected to the positive end current collector 17 of the cell stack 11A. The negative terminal 19B is the negative electrode when the power generated by the cell stack 11 is output to the outside, and is electrically connected to the negative end current collector 17 of the cell stack 11B.
 接続端子19Cは、セルスタック11Aにおける負極側の端部集電部材17と、セルスタック11Bにおける正極側の端部集電部材17とを電気的に接続する。 The connection terminal 19C electrically connects the end current collecting member 17 on the negative electrode side of the cell stack 11A to the end current collecting member 17 on the positive electrode side of the cell stack 11B.
(発電時の温度分布)
 つづいて、電気化学セル装置における発電時の温度分布について、図3を参照しながら説明する。図3は、電気化学セル装置における温度分布の一例を示す断面図である。図3に示すセルスタック装置10Xは、図2Bに示すセルスタック装置10が有するセルスタック11の一部を拡大視したものに相当する。なお、図3では、たとえばセル1、導電部材18などを単純化して図示している。また、後述する他の図面でも、構成要素を単純化して図示する場合がある。説明を容易にするために、図3および後述する図4では、セルスタック装置が有するセル1の数を8として図示している。
(Temperature distribution during power generation)
Next, the temperature distribution during power generation in the electrochemical cell device will be described with reference to FIG. 3. FIG. 3 is a cross-sectional view showing an example of the temperature distribution in the electrochemical cell device. The cell stack device 10X shown in FIG. 3 corresponds to an enlarged view of a part of the cell stack 11 included in the cell stack device 10 shown in FIG. 2B. Note that, for example, the cells 1, the conductive members 18, etc. are illustrated in a simplified form in FIG. 3. Also, in other drawings described later, the components may be illustrated in a simplified form. For ease of explanation, the number of cells 1 included in the cell stack device is illustrated as 8 in FIG. 3 and FIG. 4 described later.
 図3に示すように、セル1の厚み方向Tに隣り合うセル1の間には、長さ方向Lに延びる導電部材18が位置し、隣り合うセル1同士を電気的に接続している。セルスタック装置10Xは、発電時には温度t1~t6が、t1>t2>t3>t4>t5>t6の順にセル1の厚み方向T(第1方向)の中央に位置し、かつ固定材13から離れた長さ方向Lの上端側が高温となりやすい。また、かかる部分から離れた厚み方向Tの端部側、長さ方向Lの下端側に向かって発電時の温度が低下しやすい。このため、セル1の厚み方向T(第1方向)の中央に位置する第1領域R1では、たとえば、セル1の厚み方向T(第1方向)の両端部に位置する第2領域R2よりも高温となり、耐久性が低下しやすくなる場合がある。 As shown in FIG. 3, between adjacent cells 1 in the thickness direction T of the cells 1, conductive members 18 extending in the length direction L are located, electrically connecting the adjacent cells 1 to each other. In the cell stack device 10X, during power generation, temperatures t1 to t6 are located in the center of the thickness direction T (first direction) of the cells 1 in the order of t1>t2>t3>t4>t5>t6, and the upper end side of the length direction L away from the fixing material 13 is likely to become high temperature. In addition, the temperature during power generation is likely to decrease toward the end side of the thickness direction T away from such a portion and the lower end side of the length direction L. For this reason, the first region R1 located in the center of the thickness direction T (first direction) of the cells 1 may become higher in temperature than the second region R2 located at both ends of the thickness direction T (first direction) of the cells 1, for example, and durability may be easily reduced.
 そこで、本実施形態では、第1領域R1と第2領域R2との間で、赤外光の反射率が互いに異なる導電部材18および/またはセル1を適用する。 Therefore, in this embodiment, a conductive member 18 and/or a cell 1 with different infrared light reflectances are applied between the first region R1 and the second region R2.
<導電部材>
 図4は、第1の実施形態に係る電気化学セル装置を拡大した断面図である。図4に示すように、第1領域R1に位置する第1部材としての導電部材18は、第1部位181と、第2部位182とを有する。第1部位181は、第1領域R1のうち、発電時に高温になりやすい、長さ方向Lの上端側に位置している。第2部位182は、第1領域R1のうち、第1部位181と比較して高温になりにくい、長さ方向Lの下端側に位置している。第1部位181は、第2部位182よりも赤外光の反射率が大きい。
<Conductive member>
4 is an enlarged cross-sectional view of the electrochemical cell device according to the first embodiment. As shown in FIG. 4, the conductive member 18 as the first member located in the first region R1 has a first portion 181 and a second portion 182. The first portion 181 is located at the upper end side of the first region R1 in the length direction L, which is likely to become hot during power generation. The second portion 182 is located at the lower end side of the first region R1 in the length direction L, which is less likely to become hot than the first portion 181. The first portion 181 has a higher reflectance of infrared light than the second portion 182.
 これにより、第1部位181では、第2部位182と比較して導電部材18に吸収される熱量が減少し、導電部材18の温度上昇を低減することができる。このため、導電部材18の過熱に伴う耐久性の低下を生じにくくすることができる。 As a result, the amount of heat absorbed by the conductive member 18 is reduced in the first portion 181 compared to the second portion 182, and the temperature rise of the conductive member 18 can be reduced. This makes it less likely that the durability of the conductive member 18 will decrease due to overheating.
 一方、第2部位182では、第1部位181と比較して導電部材18に吸収される熱量が増大することで、導電部材18の温度上昇が促進される。これにより、セルスタック装置10の加熱不足に伴う発電性能の低下が生じにくくなる。 On the other hand, in the second portion 182, the amount of heat absorbed by the conductive member 18 is greater than in the first portion 181, accelerating the rise in temperature of the conductive member 18. This makes it less likely that a decrease in power generation performance due to insufficient heating of the cell stack device 10 will occur.
 また、第2領域R2に位置する第2部材としての導電部材183は、第1部位181よりも赤外光の反射率が小さい。これにより、第1領域R1と比較して高温になりにくい第2領域R2において、導電部材183に吸収される熱量により温度上昇を促進させることができる。このため、発電時における温度のばらつきが低減し、セルスタック装置10の発電性能が向上する。 In addition, the conductive member 183 as the second member located in the second region R2 has a lower reflectance of infrared light than the first portion 181. As a result, in the second region R2, which is less likely to become hot compared to the first region R1, the heat absorbed by the conductive member 183 can promote a temperature rise. This reduces temperature variation during power generation, improving the power generation performance of the cell stack device 10.
 導電部材183は、全体として第1部位181よりも赤外光の反射率が小さければよい。導電部材183は、第2部位182よりも赤外光の反射率が大きくてもよいし、小さくてもよい。また、導電部材183は、赤外光の反射率が第2部位182と同じであってもよい。導電部材183は、赤外光の反射率が異なる部分を有していてもよい。導電部材183が、赤外光の反射率が異なる部分を有する場合、赤外光の反射率が高い部分(以下、「高反射部」と称する)と低い部分(以下、「低反射部」と称する)における赤外光の反射率の差は、第1部位181と第2部位182における赤外光の反射率の差よりも小さくてもよい。導電部材183の高反射部は、赤外光の反射率が第1部位181と同じであってもよく、第1部位181より小さくてもよい。導電部材183は、赤外光の反射率が全体的に概ね均一であってもよい。 The conductive member 183 may have a smaller reflectance of infrared light overall than the first portion 181. The conductive member 183 may have a larger or smaller reflectance of infrared light than the second portion 182. The conductive member 183 may have the same reflectance of infrared light as the second portion 182. The conductive member 183 may have a portion with a different reflectance of infrared light. When the conductive member 183 has a portion with a different reflectance of infrared light, the difference in the reflectance of infrared light between the portion with high reflectance of infrared light (hereinafter referred to as the "high reflectance portion") and the portion with low reflectance of infrared light (hereinafter referred to as the "low reflectance portion") may be smaller than the difference in the reflectance of infrared light between the first portion 181 and the second portion 182. The highly reflective portion of the conductive member 183 may have the same reflectance of infrared light as the first portion 181, or may have a smaller reflectance than the first portion 181. The conductive member 183 may have a generally uniform reflectance of infrared light overall.
 ここで、第1部位181における赤外光の反射率は、たとえば、8%以上50%以下とすることができる。また、第2部位182における赤外光の反射率は、たとえば、3%以上35%以下とすることができる。また、導電部材183における赤外光の反射率は、たとえば、3%以上35%以下とすることができる。かかる赤外光の反射率は、近赤外・赤外分光光度計またはフーリエ変換赤外分光(FTIR)光度計により測定することができる。赤外光とは、700nm以上の波長を有する光をいう。赤外光の反射率を比較する場合、たとえば1500nm~2500nmの波長の範囲における反射率の平均を比較すればよい。ここでいう赤外光の反射率とは、1500nm~2500nmの波長の範囲における反射率の平均とする。 Here, the reflectance of infrared light in the first portion 181 can be, for example, 8% or more and 50% or less. The reflectance of infrared light in the second portion 182 can be, for example, 3% or more and 35% or less. The reflectance of infrared light in the conductive member 183 can be, for example, 3% or more and 35% or less. Such reflectance of infrared light can be measured by a near-infrared/infrared spectrophotometer or a Fourier transform infrared spectrophotometer (FTIR). Infrared light refers to light having a wavelength of 700 nm or more. When comparing the reflectance of infrared light, for example, the average reflectance in the wavelength range of 1500 nm to 2500 nm can be compared. The reflectance of infrared light here refers to the average reflectance in the wavelength range of 1500 nm to 2500 nm.
 ここで、導電部材18の具体的な構成の一例につき、図5A、図5Bを用いて説明する。図5Aは、第1の実施形態に係る導電部材の一例を示す横断面図である。 Here, an example of a specific configuration of the conductive member 18 will be described with reference to Figures 5A and 5B. Figure 5A is a cross-sectional view showing an example of a conductive member according to the first embodiment.
 図5Aに示すように、導電部材18は、隣接するセル1のうち、一方のセル1であるセル1Aに接続される接続部18aと、他方のセル1であるセル1Bに接続される接続部18bとを有する。また、導電部材18は、幅方向Wの両端に連結部18cを有しており、接続部18a,18bを接続する。これにより、導電部材18は、厚み方向Tに隣り合うセル1同士を電気的に接続することができる。 As shown in FIG. 5A, the conductive member 18 has a connection portion 18a that is connected to cell 1A, one of the adjacent cells 1, and a connection portion 18b that is connected to cell 1B, the other cell 1. The conductive member 18 also has connecting portions 18c at both ends in the width direction W, which connect the connection portions 18a and 18b. This allows the conductive member 18 to electrically connect the cells 1 adjacent to each other in the thickness direction T.
 また、接続部18a,18bは、セル1A,1Bと接触する接触部18a1,18b1と、セル1A,1Bとは非接触の非接触部18a2,18b2とを有している。 In addition, the connection parts 18a and 18b have contact parts 18a1 and 18b1 that are in contact with the cells 1A and 1B, and non-contact parts 18a2 and 18b2 that are not in contact with the cells 1A and 1B.
 図5Bは、図5Aに示すA-A線に沿った断面図である。導電部材18は、セル1の長さ方向Lに延在している。導電部材18は、断面視で櫛歯状を有しており、接続部18a,18bは、連結部18cからセル1A,1Bに向かって互い違いに伸びている。 FIG. 5B is a cross-sectional view taken along line A-A in FIG. 5A. The conductive member 18 extends in the longitudinal direction L of the cell 1. The conductive member 18 has a comb-like shape in cross-section, and the connection portions 18a and 18b extend alternately from the connecting portion 18c toward the cells 1A and 1B.
 次に、第1領域R1および第2領域R2にそれぞれ位置する導電部材18の詳細につき、図6A、図6Bを用いて説明する。図6Aは、第1領域に位置する導電部材の一例を示す断面図である。図6Bは、第2領域に位置する導電部材の一例を示す断面図である。 Next, the conductive members 18 located in the first region R1 and the second region R2 will be described in detail with reference to Figures 6A and 6B. Figure 6A is a cross-sectional view showing an example of a conductive member located in the first region. Figure 6B is a cross-sectional view showing an example of a conductive member located in the second region.
 図6Aおよび図6Bに示すように、導電部材18は、基材180と、基材180を覆う被膜30とを有してもよい。基材180は、導電性および耐熱性を有する。基材180は、クロムを含有する。基材180は、たとえば、ステンレス鋼である。基材180は、たとえば、金属酸化物を含有してもよい。 As shown in Figures 6A and 6B, the conductive member 18 may have a substrate 180 and a coating 30 covering the substrate 180. The substrate 180 is conductive and heat resistant. The substrate 180 contains chromium. The substrate 180 is, for example, stainless steel. The substrate 180 may contain, for example, a metal oxide.
 被膜30は、絶縁性または低い絶縁性を有していてもよい。被膜30は、たとえば、酸化クロム(Cr)、酸化アルミニウム(Al)、Alおよび/またはSiを含む金属酸化物などを含有してもよい。被膜30に含まれる金属酸化物は、たとえばスピネル構造を有する複合酸化物、たとえば、ZnMnCoOなどのZn(CoMn1-x(0<x<1)、Mn1.5Co1.5、MnCo、CoMn、などであってもよい。被膜30に含まれる金属酸化物は、いわゆるABO型のペロブスカイト型酸化物であってもよい。 The coating 30 may have insulating properties or low insulating properties. The coating 30 may contain, for example, chromium oxide (Cr 2 O 3 ), aluminum oxide (Al 2 O 3 ), metal oxides containing Al and/or Si, and the like. The metal oxide contained in the coating 30 may be, for example, a composite oxide having a spinel structure, such as Zn(Co x Mn 1-x ) 2 O 4 (0<x<1) such as ZnMnCoO 4 , Mn 1.5 Co 1.5 O 4 , MnCo 2 O 4 , CoMn 2 O 4 , and the like. The metal oxide contained in the coating 30 may be a so-called ABO 3 type perovskite oxide.
 図6Aに示す導電部材18は、たとえば、被膜30の表面粗さを異ならせることにより、赤外光の反射率が異なる第1部位181および第2部位182を有することができる。具体的には、第1部位181に位置する被膜30の表面粗さは、第2部位182に位置する被膜30の表面粗さより小さくてもよい。 The conductive member 18 shown in FIG. 6A can have a first portion 181 and a second portion 182 with different infrared light reflectances, for example, by making the surface roughness of the coating 30 different. Specifically, the surface roughness of the coating 30 located at the first portion 181 may be smaller than the surface roughness of the coating 30 located at the second portion 182.
 第1部位181および第2部位182において被膜30の表面粗さが異なる場合、第1部位181に位置する被膜30の表面粗さは、たとえば、0.01μm以上1μm以下とすることができる。また、第2部位182に位置する被膜30の表面粗さは、たとえば、0.5μm以上10μm以下とすることができる。 When the surface roughness of the coating 30 differs between the first portion 181 and the second portion 182, the surface roughness of the coating 30 located in the first portion 181 can be, for example, 0.01 μm or more and 1 μm or less. Also, the surface roughness of the coating 30 located in the second portion 182 can be, for example, 0.5 μm or more and 10 μm or less.
 また、導電部材18は、たとえば、基材180の表面粗さを異ならせることにより、赤外光の反射率が異なる第1部位181および第2部位182を有してもよい。具体的には、第1部位181に位置する基材180の表面粗さは、第2部位182に位置する基材180の表面粗さより小さくてもよい。 In addition, the conductive member 18 may have a first portion 181 and a second portion 182 that have different infrared light reflectances, for example, by making the surface roughness of the substrate 180 different. Specifically, the surface roughness of the substrate 180 located at the first portion 181 may be smaller than the surface roughness of the substrate 180 located at the second portion 182.
 第1部位181および第2部位182において基材180の表面粗さが異なる場合、第1部位181に位置する基材180の表面粗さは、たとえば、0.01μm以上1μm以下とすることができる。また、第2部位182に位置する基材180の表面粗さは、たとえば、0.5μm以上10μm以下とすることができる。 When the surface roughness of the substrate 180 differs between the first portion 181 and the second portion 182, the surface roughness of the substrate 180 located in the first portion 181 can be, for example, 0.01 μm or more and 1 μm or less. The surface roughness of the substrate 180 located in the second portion 182 can be, for example, 0.5 μm or more and 10 μm or less.
 これにより、第1部位181では、第2部位182と比較して導電部材18に吸収される熱量が減少し、セルスタック装置10の温度上昇を低減することができる。このため、セルスタック装置10の過熱に伴う耐久性の低下を生じにくくすることができる。 As a result, the amount of heat absorbed by the conductive member 18 in the first portion 181 is less than that in the second portion 182, and the temperature rise in the cell stack device 10 can be reduced. This makes it less likely that the durability of the cell stack device 10 will decrease due to overheating.
 なお、図6Aに示す導電部材18は、たとえば、被膜30または基材180の表面の一部を粗面化または平滑化することにより、第1部位181および第2部位182を形成してもよい。また、導電部材18は、粗面化および/または平滑化の程度を変更することにより、第1部位181および第2部位182を形成してもよい。 In addition, the conductive member 18 shown in FIG. 6A may form the first portion 181 and the second portion 182, for example, by roughening or smoothing a portion of the surface of the coating 30 or the substrate 180. In addition, the conductive member 18 may form the first portion 181 and the second portion 182 by changing the degree of roughening and/or smoothing.
 また、導電部材18は、たとえば、被膜30の気孔率を異ならせることにより、赤外光の反射率を異ならせてもよい。具体的には、第1部位181に位置する被膜30の気孔率は、第2部位182に位置する被膜30の気孔率より小さくてもよい。 The conductive member 18 may also have different reflectances for infrared light, for example, by varying the porosity of the coating 30. Specifically, the porosity of the coating 30 located in the first portion 181 may be smaller than the porosity of the coating 30 located in the second portion 182.
 第1部位181および第2部位182において被膜30の気孔率が異なる場合、第1部位181に位置する被膜30の気孔率は、たとえば、0.1%以上30%以下とすることができる。また、第2部位182に位置する被膜30の気孔率は、たとえば、10%以上60%以下とすることができる。 When the porosity of the coating 30 differs between the first portion 181 and the second portion 182, the porosity of the coating 30 located in the first portion 181 can be, for example, 0.1% or more and 30% or less. Also, the porosity of the coating 30 located in the second portion 182 can be, for example, 10% or more and 60% or less.
 このように、第2部位182と比較して被膜30の気孔率が小さい第1部位181では、第2部位182と比較して導電部材18に吸収される熱量が減少し、セルスタック装置10の温度上昇を低減することができる。このため、セルスタック装置10の過熱に伴う耐久性の低下を生じにくくすることができる。 In this way, in the first portion 181, where the porosity of the coating 30 is smaller than that of the second portion 182, the amount of heat absorbed by the conductive member 18 is reduced compared to the second portion 182, and the temperature rise of the cell stack device 10 can be reduced. This makes it possible to prevent a decrease in durability due to overheating of the cell stack device 10.
 また、図6Bに示す導電部材183は、図6Aに示す導電部材18の第1部位181よりも赤外光の反射率が小さい。かかる導電部材183は、たとえば、第1部位181に位置する被膜30より表面粗さが大きい被膜30を有してもよい。 The conductive member 183 shown in FIG. 6B has a lower reflectance of infrared light than the first portion 181 of the conductive member 18 shown in FIG. 6A. Such a conductive member 183 may have, for example, a coating 30 with a greater surface roughness than the coating 30 located at the first portion 181.
 第1部位181および導電部材183において被膜30の表面粗さが異なる場合、第1部位181に位置する被膜30の表面粗さは、たとえば、0.01μm以上1μm以下とすることができる。また、導電部材183が有する被膜30の表面粗さは、たとえば、0.5μm以上10μm以下とすることができる。 When the surface roughness of the coating 30 differs between the first portion 181 and the conductive member 183, the surface roughness of the coating 30 located in the first portion 181 can be, for example, 0.01 μm or more and 1 μm or less. Also, the surface roughness of the coating 30 of the conductive member 183 can be, for example, 0.5 μm or more and 10 μm or less.
 また、導電部材183は、たとえば、基材180の表面粗さを第1部位181と異ならせることにより、赤外光の反射率を第1部位181よりも小さくしてもよい。具体的には、導電部材183が有する基材180の表面粗さは、第1部位181に位置する基材180の表面粗さより大きくてもよい。 In addition, the conductive member 183 may have a lower reflectance of infrared light than the first portion 181, for example, by making the surface roughness of the base material 180 different from that of the first portion 181. Specifically, the surface roughness of the base material 180 possessed by the conductive member 183 may be greater than the surface roughness of the base material 180 located at the first portion 181.
 第1部位181および導電部材183において基材180の表面粗さが異なる場合、第1部位181に位置する基材180の表面粗さは、たとえば、0.01μm以上1μm以下とすることができる。また、導電部材183が有する基材180の表面粗さは、たとえば、0.5μm以上10μm以下とすることができる。 When the surface roughness of the substrate 180 differs between the first portion 181 and the conductive member 183, the surface roughness of the substrate 180 located in the first portion 181 can be, for example, 0.01 μm or more and 1 μm or less. In addition, the surface roughness of the substrate 180 of the conductive member 183 can be, for example, 0.5 μm or more and 10 μm or less.
 また、導電部材183は、たとえば、被膜30の気孔率を第1部位181と異ならせることにより、赤外光の反射率を異ならせてもよい。具体的には、導電部材183が有する被膜30の気孔率は、第1部位181に位置する被膜30の気孔率より大きくてもよい。 In addition, the conductive member 183 may have a different reflectance of infrared light, for example, by making the porosity of the coating 30 different from that of the first portion 181. Specifically, the porosity of the coating 30 of the conductive member 183 may be greater than the porosity of the coating 30 located in the first portion 181.
 第1部位181および導電部材183において被膜30の気孔率が異なる場合、第1部位181に位置する被膜30の気孔率は、たとえば、0.1%以上30%以下とすることができる。また、導電部材183が有する被膜30の気孔率は、たとえば、10%以上60%以下とすることができる。 When the porosity of the coating 30 differs between the first portion 181 and the conductive member 183, the porosity of the coating 30 located in the first portion 181 can be, for example, 0.1% or more and 30% or less. Also, the porosity of the coating 30 of the conductive member 183 can be, for example, 10% or more and 60% or less.
 また、導電部材183は、たとえば、基材180の気孔率を第1部位181と異ならせることにより、赤外光の反射率を異ならせてもよい。具体的には、導電部材183が有する基材180の気孔率は、第1部位181に位置する基材180の気孔率より大きくてもよい。 In addition, the conductive member 183 may have a different reflectance of infrared light, for example, by making the porosity of the substrate 180 different from that of the first portion 181. Specifically, the porosity of the substrate 180 that the conductive member 183 has may be greater than the porosity of the substrate 180 located in the first portion 181.
 第1部位181および導電部材183において基材180の気孔率が異なる場合、第1部位181に位置する基材180の気孔率は、たとえば、0%以上30%以下とすることができる。また、導電部材183が有する基材180の気孔率は、たとえば、1%以上30%以下とすることができる。 When the porosity of the substrate 180 differs between the first portion 181 and the conductive member 183, the porosity of the substrate 180 located in the first portion 181 can be, for example, 0% or more and 30% or less. In addition, the porosity of the substrate 180 of the conductive member 183 can be, for example, 1% or more and 30% or less.
 このように、第2領域R2に位置する導電部材183における赤外光の反射率を、第1部位181における赤外光の反射率より小さくすることにより、第1領域R1と比較して高温になりにくい第2領域R2において、導電部材183に吸収される熱量により温度上昇を促進させることができる。このため、発電時における温度のばらつきが低減し、セルスタック装置10の発電性能が向上する。 In this way, by making the reflectance of infrared light in the conductive member 183 located in the second region R2 smaller than the reflectance of infrared light in the first portion 181, the heat absorbed by the conductive member 183 can promote temperature rise in the second region R2, which is less likely to become hot than the first region R1. This reduces temperature variation during power generation, improving the power generation performance of the cell stack device 10.
<電気化学セル>
 図4に示すセルスタック装置10は、第1領域R1に位置する第1部材および第2領域R2に位置する第2部材が導電部材18である場合を例に挙げて説明したが、セル1が第1部材および第2部材を有してもよい。かかる場合、第1部材としてのセル1は、第1領域R1のうち長さ方向Lの上端側に位置する第1部位と、長さ方向Lの下端側に位置する第2部位とを有する。セル1の第1部位は、第2部位よりも赤外光の反射率が大きい。
<Electrochemical cell>
4 has been described using an example in which the first member located in the first region R1 and the second member located in the second region R2 are conductive members 18, but the cell 1 may have a first member and a second member. In such a case, the cell 1 as the first member has a first portion located at the upper end side of the first region R1 in the length direction L, and a second portion located at the lower end side of the length direction L. The first portion of the cell 1 has a higher reflectance of infrared light than the second portion.
 これにより、セル1の第1部位では、第2部位と比較してセル1に吸収される熱量が減少し、セルスタック装置10の温度上昇を低減することができる。このため、セルスタック装置10の過熱に伴う耐久性の低下を生じにくくすることができる。 As a result, the amount of heat absorbed by the cell 1 in the first portion of the cell 1 is reduced compared to the second portion, and the temperature rise in the cell stack device 10 can be reduced. This makes it less likely that the durability of the cell stack device 10 will decrease due to overheating.
 一方、セル1の第2部位では、第1部位と比較してセル1に吸収される熱量が増大することで、セルスタック装置10の温度上昇が促進される。これにより、セルスタック装置10の加熱不足に伴う発電性能の低下が生じにくくなる。 On the other hand, in the second portion of cell 1, the amount of heat absorbed by cell 1 is greater than in the first portion, accelerating the temperature rise of the cell stack device 10. This makes it less likely that a decrease in power generation performance due to insufficient heating of the cell stack device 10 will occur.
 また、第2領域R2に位置する第2部材としてのセル1は、第1領域R1に位置するセル1の第1部位よりも赤外光の反射率が小さい。これにより、第1領域R1と比較して高温になりにくい第2領域R2において、セル1に吸収される熱量により温度上昇を促進させることができる。このため、発電時における温度のばらつきが低減し、セルスタック装置10の発電性能が向上する。 In addition, the cell 1 as the second member located in the second region R2 has a lower reflectance of infrared light than the first portion of the cell 1 located in the first region R1. This allows the heat absorbed by the cell 1 to promote temperature rise in the second region R2, which is less likely to become hot than the first region R1. This reduces temperature variation during power generation, improving the power generation performance of the cell stack device 10.
 次に、第1領域R1および第2領域R2にそれぞれ位置するセル1の詳細につき、図7を用いてさらに説明する。図7は、第1の実施形態に係る電気化学セルの一例を示す断面図である。図7では、図1Aに示すセル1の各要素を単純化して示している。 Next, the details of the cell 1 located in the first region R1 and the second region R2 will be further described with reference to FIG. 7. FIG. 7 is a cross-sectional view showing an example of an electrochemical cell according to the first embodiment. In FIG. 7, each element of the cell 1 shown in FIG. 1A is shown in a simplified form.
 図7に示すように、セル1は、支持基板2の平坦面n2上に素子部3が位置しており、平坦面n2と対向する平坦面n1上にインターコネクタ4が位置している。素子部3のうち、燃料極層5および固体電解質層6は、支持基板2の平坦面n2上から側面m上を回り込んで平坦面n1上まで延びている。なお、図7では、ガス流路2aの図示を省略している。 As shown in FIG. 7, in the cell 1, the element portion 3 is located on the flat surface n2 of the support substrate 2, and the interconnector 4 is located on the flat surface n1 opposite the flat surface n2. Of the element portion 3, the fuel electrode layer 5 and solid electrolyte layer 6 extend from the flat surface n2 of the support substrate 2, around the side surface m, and onto the flat surface n1. Note that the gas flow path 2a is not shown in FIG. 7.
 図7に示すセル1は、たとえば、空気極層8の表面粗さを異ならせることにより、赤外光の反射率が異なる第1部位および第2部位を有する第1部材と、第2領域R2に位置する第2部材とを位置させることができる。具体的には、第1部位に位置する空気極層8が有する面8aの表面粗さは、第2部位に位置する空気極層8が有する面8aの表面粗さより小さくてもよい。また、第2領域R2に位置する空気極層8が有する面8aの表面粗さは、第1部位に位置する空気極層8が有する面8aの表面粗さより大きくてもよい。 In the cell 1 shown in FIG. 7, for example, by varying the surface roughness of the cathode layer 8, a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2 can be positioned. Specifically, the surface roughness of the surface 8a of the cathode layer 8 located in the first portion may be smaller than the surface roughness of the surface 8a of the cathode layer 8 located in the second portion. Also, the surface roughness of the surface 8a of the cathode layer 8 located in the second region R2 may be larger than the surface roughness of the surface 8a of the cathode layer 8 located in the first portion.
 第1部位に位置する面8aの表面粗さは、たとえば、0.1μm以上10μm以下とすることができる。また、第2部位に位置する面8aの表面粗さは、たとえば、1μm以上100μm以下とすることができる。また、第2領域R2に位置する面8aの表面粗さは、たとえば、1μm以上100μm以下とすることができる。 The surface roughness of the surface 8a located in the first portion can be, for example, 0.1 μm or more and 10 μm or less. The surface roughness of the surface 8a located in the second portion can be, for example, 1 μm or more and 100 μm or less. The surface roughness of the surface 8a located in the second region R2 can be, for example, 1 μm or more and 100 μm or less.
 また、セル1は、たとえば、空気極層8の気孔率を異ならせることにより、赤外光の反射率が異なる第1部位および第2部位を有する第1部材と、第2領域R2に位置する第2部材とを位置させることができる。具体的には、第1部位に位置する空気極層8の気孔率は、第2部位に位置する空気極層8の気孔率より小さくてもよい。また、第2領域R2に位置する空気極層8の気孔率は、第1部位に位置する空気極層8の気孔率より大きくてもよい。 Furthermore, the cell 1 can be configured to have a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, for example, by varying the porosity of the cathode layer 8. Specifically, the porosity of the cathode layer 8 located in the first portion may be smaller than the porosity of the cathode layer 8 located in the second portion. Furthermore, the porosity of the cathode layer 8 located in the second region R2 may be larger than the porosity of the cathode layer 8 located in the first portion.
 第1部位に位置する空気極層8の気孔率は、たとえば、20%以上50%以下とすることができる。また、第2部位に位置する空気極層8の気孔率は、たとえば、30%以上60%以下とすることができる。また、第2領域R2に位置する空気極層8の気孔率は、たとえば、30%以上60%以下とすることができる。 The porosity of the air electrode layer 8 located in the first portion can be, for example, 20% or more and 50% or less. The porosity of the air electrode layer 8 located in the second portion can be, for example, 30% or more and 60% or less. The porosity of the air electrode layer 8 located in the second region R2 can be, for example, 30% or more and 60% or less.
 また、セル1は、たとえば、中間層7の幅方向Wの長さを異ならせることにより、赤外光の反射率が異なる第1部位および第2部位を有する第1部材と、第2領域R2に位置する第2部材とを位置させることができる。具体的には、第1部位に位置する中間層7の幅方向Wの長さは、第2部位に位置する中間層7の幅方向Wの長さより大きくてもよい。また、第2領域R2に位置する中間層7の幅方向Wの長さは、第1部位に位置する中間層7の幅方向Wの長さより小さくてもよい。 Furthermore, by varying the length of the width direction W of the intermediate layer 7, for example, the cell 1 can be configured to position a first member having a first portion and a second portion with different infrared light reflectance, and a second member located in the second region R2. Specifically, the length of the width direction W of the intermediate layer 7 located in the first portion may be greater than the length of the width direction W of the intermediate layer 7 located in the second portion. Furthermore, the length of the width direction W of the intermediate layer 7 located in the second region R2 may be less than the length of the width direction W of the intermediate layer 7 located in the first portion.
 第1部位に位置する中間層7の幅方向Wの長さは、たとえば、空気極層8の幅方向Wの長さに対して1.1倍以上とすることができる。また、第2部位に位置する中間層7の幅方向Wの長さは、たとえば、空気極層8の幅方向Wの長さに対して1.01倍以上とすることができる。また、第2領域R2に位置する中間層7の幅方向Wの長さは、たとえば、空気極層8の幅方向Wの長さに対して1.01倍以上とすることができる。 The length in the width direction W of the intermediate layer 7 located in the first portion can be, for example, 1.1 times or more the length in the width direction W of the air electrode layer 8. The length in the width direction W of the intermediate layer 7 located in the second portion can be, for example, 1.01 times or more the length in the width direction W of the air electrode layer 8. The length in the width direction W of the intermediate layer 7 located in the second region R2 can be, for example, 1.01 times or more the length in the width direction W of the air electrode layer 8.
 また、セル1は、たとえば、中間層7の表面粗さを異ならせることにより、赤外光の反射率が異なる第1部位および第2部位を有する第1部材と、第2領域R2に位置する第2部材とを位置させることができる。具体的には、第1部位に位置する中間層7が有する面7aの表面粗さは、第2部位に位置する中間層7が有する面7aの表面粗さより小さくてもよい。また、第2領域R2に位置する中間層7が有する面7aの表面粗さは、第1部位に位置する中間層7が有する面7aの表面粗さより大きくてもよい。 Furthermore, the cell 1 can be configured to have a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, by, for example, varying the surface roughness of the intermediate layer 7. Specifically, the surface roughness of the surface 7a of the intermediate layer 7 located in the first portion may be smaller than the surface roughness of the surface 7a of the intermediate layer 7 located in the second portion. Furthermore, the surface roughness of the surface 7a of the intermediate layer 7 located in the second region R2 may be larger than the surface roughness of the surface 7a of the intermediate layer 7 located in the first portion.
 第1部位に位置する面7aの表面粗さは、たとえば、0.01μm以上2μm以下とすることができる。また、第2部位に位置する面7aの表面粗さは、たとえば、0.5μm以上3μm以下とすることができる。また、第2領域R2に位置する面7aの表面粗さは、たとえば、0.5μm以上3μm以下とすることができる。 The surface roughness of the surface 7a located in the first portion can be, for example, 0.01 μm or more and 2 μm or less. The surface roughness of the surface 7a located in the second portion can be, for example, 0.5 μm or more and 3 μm or less. The surface roughness of the surface 7a located in the second region R2 can be, for example, 0.5 μm or more and 3 μm or less.
 また、セル1は、たとえば、中間層7の気孔率を異ならせることにより、赤外光の反射率が異なる第1部位および第2部位を有する第1部材と、第2領域R2に位置する第2部材とを位置させることができる。具体的には、第1部位に位置する中間層7の気孔率は、第2部位に位置する中間層7の気孔率より小さくてもよい。また、第2領域R2に位置する中間層7の気孔率は、第1部位に位置する中間層7の気孔率より大きくてもよい。 Furthermore, the cell 1 can be configured to have a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, by, for example, varying the porosity of the intermediate layer 7. Specifically, the porosity of the intermediate layer 7 located in the first portion may be smaller than the porosity of the intermediate layer 7 located in the second portion. Furthermore, the porosity of the intermediate layer 7 located in the second region R2 may be larger than the porosity of the intermediate layer 7 located in the first portion.
 第1部位に位置する中間層7の気孔率は、たとえば、0.1%以上30%以下とすることができる。また、第2部位に位置する中間層7の気孔率は、たとえば、10%以上50%以下とすることができる。また、第2領域R2に位置する中間層7の気孔率は、たとえば、10%以上50%以下とすることができる。 The porosity of the intermediate layer 7 located in the first portion can be, for example, 0.1% or more and 30% or less. The porosity of the intermediate layer 7 located in the second portion can be, for example, 10% or more and 50% or less. The porosity of the intermediate layer 7 located in the second region R2 can be, for example, 10% or more and 50% or less.
 また、セル1は、たとえば、固体電解質層6の表面粗さを異ならせることにより、赤外光の反射率が異なる第1部位および第2部位を有する第1部材と、第2領域R2に位置する第2部材とを位置させることができる。具体的には、第1部位に位置する固体電解質層6が有する面6aの表面粗さは、第2部位に位置する固体電解質層6が有する面6aの表面粗さより小さくてもよい。また、第2領域R2に位置する固体電解質層6が有する面6aの表面粗さは、第1部位に位置する固体電解質層6が有する面6aの表面粗さより大きくてもよい。 Furthermore, the cell 1 can be configured such that, for example, by varying the surface roughness of the solid electrolyte layer 6, a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, are positioned. Specifically, the surface roughness of the surface 6a of the solid electrolyte layer 6 located in the first portion may be smaller than the surface roughness of the surface 6a of the solid electrolyte layer 6 located in the second portion. Furthermore, the surface roughness of the surface 6a of the solid electrolyte layer 6 located in the second region R2 may be larger than the surface roughness of the surface 6a of the solid electrolyte layer 6 located in the first portion.
 第1部位に位置する面6aの表面粗さは、たとえば、0.01μm以上2μm以下とすることができる。また、第2部位に位置する面6aの表面粗さは、たとえば、0.5μm以上5μm以下とすることができる。また、第2領域R2に位置する面6aの表面粗さは、たとえば、0.5μm以上5μm以下とすることができる。 The surface roughness of the surface 6a located in the first portion can be, for example, 0.01 μm or more and 2 μm or less. The surface roughness of the surface 6a located in the second portion can be, for example, 0.5 μm or more and 5 μm or less. The surface roughness of the surface 6a located in the second region R2 can be, for example, 0.5 μm or more and 5 μm or less.
 また、セル1は、たとえば、固体電解質層6の気孔率を異ならせることにより、赤外光の反射率が異なる第1部位および第2部位を有する第1部材と、第2領域R2に位置する第2部材とを位置させることができる。具体的には、第1部位に位置する固体電解質層6の気孔率は、第2部位に位置する固体電解質層6の気孔率より小さくてもよい。また、第2領域R2に位置する固体電解質層6の気孔率は、第1部位に位置する固体電解質層6の気孔率より大きくてもよい。 Furthermore, the cell 1 can be configured to have a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, by, for example, varying the porosity of the solid electrolyte layer 6. Specifically, the porosity of the solid electrolyte layer 6 located in the first portion may be smaller than the porosity of the solid electrolyte layer 6 located in the second portion. Furthermore, the porosity of the solid electrolyte layer 6 located in the second region R2 may be larger than the porosity of the solid electrolyte layer 6 located in the first portion.
 第1部位に位置する固体電解質層6の気孔率は、たとえば、0.1%以上3%以下とすることができる。また、第2部位に位置する固体電解質層6の気孔率は、たとえば、1%以上10%以下とすることができる。また、第2領域R2に位置する固体電解質層6の気孔率は、たとえば、1%以上10%以下とすることができる。 The porosity of the solid electrolyte layer 6 located in the first portion can be, for example, 0.1% or more and 3% or less. The porosity of the solid electrolyte layer 6 located in the second portion can be, for example, 1% or more and 10% or less. The porosity of the solid electrolyte layer 6 located in the second region R2 can be, for example, 1% or more and 10% or less.
 また、セル1は、たとえば、インターコネクタ4の幅方向Wの長さを異ならせることにより、赤外光の反射率が異なる第1部位および第2部位を有する第1部材と、第2領域R2に位置する第2部材とを位置させることができる。具体的には、第1部位に位置するインターコネクタ4の幅方向Wの長さは、第2部位に位置するインターコネクタ4の幅方向Wの長さより小さくてもよい。また、第2領域R2に位置するインターコネクタ4の幅方向Wの長さは、第1部位に位置するインターコネクタ4の幅方向Wの長さより大きくてもよい。 Furthermore, the cell 1 can be configured to position a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, for example, by varying the length of the width direction W of the interconnector 4. Specifically, the length of the width direction W of the interconnector 4 located in the first portion may be smaller than the length of the width direction W of the interconnector 4 located in the second portion. Furthermore, the length of the width direction W of the interconnector 4 located in the second region R2 may be larger than the length of the width direction W of the interconnector 4 located in the first portion.
 第1部位に位置するインターコネクタ4の幅方向Wの長さは、たとえば、空気極層8の幅方向Wの長さに対して1.01倍以上とすることができる。また、第2部位に位置するインターコネクタ4の幅方向Wの長さは、たとえば、空気極層8の幅方向Wの長さに対して1.1倍以上とすることができる。また、第2領域R2に位置するインターコネクタ4の幅方向Wの長さは、たとえば、空気極層8の幅方向Wの長さに対して1.1倍以上とすることができる。 The length in the width direction W of the interconnector 4 located in the first region can be, for example, 1.01 times or more the length in the width direction W of the air electrode layer 8. The length in the width direction W of the interconnector 4 located in the second region can be, for example, 1.1 times or more the length in the width direction W of the air electrode layer 8. The length in the width direction W of the interconnector 4 located in the second region R2 can be, for example, 1.1 times or more the length in the width direction W of the air electrode layer 8.
 また、セル1は、たとえば、インターコネクタ4の表面粗さを異ならせることにより、赤外光の反射率が異なる第1部位および第2部位を有する第1部材と、第2領域R2に位置する第2部材とを位置させることができる。具体的には、第1部位に位置するインターコネクタ4が有する面4aの表面粗さは、第2部位に位置するインターコネクタ4が有する面4aの表面粗さより小さくてもよい。また、第2領域R2に位置するインターコネクタ4が有する面4aの表面粗さは、第1部位に位置するインターコネクタ4が有する面4aの表面粗さより大きくてもよい。 Furthermore, the cell 1 can be configured to have a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, for example, by varying the surface roughness of the interconnector 4. Specifically, the surface roughness of the surface 4a of the interconnector 4 located in the first portion may be smaller than the surface roughness of the surface 4a of the interconnector 4 located in the second portion. Furthermore, the surface roughness of the surface 4a of the interconnector 4 located in the second region R2 may be larger than the surface roughness of the surface 4a of the interconnector 4 located in the first portion.
 第1部位に位置する面4aの表面粗さは、たとえば、0.01μm以上2μm以下とすることができる。また、第2部位に位置する面4aの表面粗さは、たとえば、0.5μm以上10μm以下とすることができる。また、第2領域R2に位置する面4aの表面粗さは、たとえば、0.5μm以上10μm以下とすることができる。 The surface roughness of the surface 4a located in the first portion can be, for example, 0.01 μm or more and 2 μm or less. The surface roughness of the surface 4a located in the second portion can be, for example, 0.5 μm or more and 10 μm or less. The surface roughness of the surface 4a located in the second region R2 can be, for example, 0.5 μm or more and 10 μm or less.
 また、セル1は、たとえば、インターコネクタ4の気孔率を異ならせることにより、赤外光の反射率が異なる第1部位および第2部位を有する第1部材と、第2領域R2に位置する第2部材とを位置させることができる。具体的には、第1部位に位置するインターコネクタ4の気孔率は、第2部位に位置するインターコネクタ4の気孔率より小さくてもよい。また、第2領域R2に位置するインターコネクタ4の気孔率は、第1部位に位置するインターコネクタ4の気孔率より大きくてもよい。 Furthermore, the cell 1 can be configured to have a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2, for example, by varying the porosity of the interconnector 4. Specifically, the porosity of the interconnector 4 located in the first portion may be smaller than the porosity of the interconnector 4 located in the second portion. Furthermore, the porosity of the interconnector 4 located in the second region R2 may be larger than the porosity of the interconnector 4 located in the first portion.
 第1部位に位置するインターコネクタ4の気孔率は、たとえば、0.1%以上3%以下とすることができる。また、第2部位に位置するインターコネクタ4の気孔率は、たとえば、1%以上10%以下とすることができる。また、第2領域R2に位置するインターコネクタ4の気孔率は、たとえば、1%以上10%以下とすることができる。 The porosity of the interconnector 4 located in the first portion can be, for example, 0.1% or more and 3% or less. The porosity of the interconnector 4 located in the second portion can be, for example, 1% or more and 10% or less. The porosity of the interconnector 4 located in the second region R2 can be, for example, 1% or more and 10% or less.
 また、厚み方向Tに隣り合うセル1が不図示の接合材を介して接合されている場合、かかる接合材の表面粗さを異ならせることにより、赤外光の反射率が異なる第1部位および第2部位を有する第1部材と、第2領域R2に位置する第2部材とを位置させることができる。具体的には、第1部位に位置する接合材の表面粗さは、第2部位に位置する接合材の表面粗さより小さくてもよい。また、第2領域R2に位置する接合材の表面粗さは、第1部位に位置する接合材の表面粗さより大きくてもよい。 Furthermore, when adjacent cells 1 in the thickness direction T are joined via a bonding material (not shown), by making the surface roughness of the bonding material different, it is possible to position a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2. Specifically, the surface roughness of the bonding material located in the first portion may be smaller than the surface roughness of the bonding material located in the second portion. Furthermore, the surface roughness of the bonding material located in the second region R2 may be larger than the surface roughness of the bonding material located in the first portion.
 第1部位に位置する接合材の表面粗さは、たとえば、0.1μm以上10μm以下とすることができる。また、第2部位に位置する接合材の表面粗さは、たとえば、1μm以上100μm以下とすることができる。また、第2領域R2に位置する接合材の表面粗さは、たとえば、1μm以上100μm以下とすることができる。 The surface roughness of the bonding material located in the first portion can be, for example, 0.1 μm or more and 10 μm or less. The surface roughness of the bonding material located in the second portion can be, for example, 1 μm or more and 100 μm or less. The surface roughness of the bonding material located in the second region R2 can be, for example, 1 μm or more and 100 μm or less.
 また、厚み方向Tに隣り合うセル1が不図示の接合材を介して接合されている場合、かかる接合材の気孔率を異ならせることにより、赤外光の反射率が異なる第1部位および第2部位を有する第1部材と、第2領域R2に位置する第2部材とを位置させることができる。具体的には、第1部位に位置する接合材の気孔率は、第2部位に位置する接合材の気孔率より小さくてもよい。また、第2領域R2に位置する接合材の気孔率は、第1部位に位置する接合材の気孔率より大きくてもよい。 Furthermore, when adjacent cells 1 in the thickness direction T are joined via a bonding material (not shown), by making the porosity of the bonding material different, it is possible to position a first member having a first portion and a second portion with different infrared light reflectances, and a second member located in the second region R2. Specifically, the porosity of the bonding material located in the first portion may be smaller than the porosity of the bonding material located in the second portion. Furthermore, the porosity of the bonding material located in the second region R2 may be larger than the porosity of the bonding material located in the first portion.
 第1部位に位置する接合材の気孔率は、たとえば、20%以上50%以下とすることができる。また、第2部位に位置する接合材の気孔率は、たとえば、30%以上60%以下とすることができる。また、第2領域R2に位置する接合材の気孔率は、たとえば、30%以上60%以下とすることができる。 The porosity of the bonding material located in the first region can be, for example, 20% or more and 50% or less. The porosity of the bonding material located in the second region can be, for example, 30% or more and 60% or less. The porosity of the bonding material located in the second region R2 can be, for example, 30% or more and 60% or less.
 なお、上述した導電部材18およびセル1は、たとえば、各部位の表面の一部を粗面化または平滑化することにより、表面粗さを異ならせることとしてもよく、粗面化および/または平滑化の程度を変更することにより、表面粗さを異ならせることとしてもよい。各部材の表面粗さは、JIS B0633;2001に規定された算術平均粗さRaに基づいて判定することができる。算術平均粗さRaは、導電部材18またはセル1の表面に垂直な断面の画像解析によりそれぞれ算出することができる。 The conductive member 18 and cell 1 described above may have different surface roughnesses, for example, by roughening or smoothing a portion of the surface of each portion, or by changing the degree of roughening and/or smoothing. The surface roughness of each member can be determined based on the arithmetic mean roughness Ra defined in JIS B0633;2001. The arithmetic mean roughness Ra can be calculated by image analysis of a cross section perpendicular to the surface of the conductive member 18 or cell 1, respectively.
 また、導電部材18およびセル1が有する各部位の気孔率は、導電部材18またはセル1の断面をSEM(Scanning Electron Microscope)で観察した結果に基づいて測定することができる。 In addition, the porosity of each portion of the conductive member 18 and the cell 1 can be measured based on the results of observing a cross section of the conductive member 18 or the cell 1 with a SEM (Scanning Electron Microscope).
 なお、本実施形態に係る導電部材18およびセル1は、いかなる方法により作製されたものであってもよく、特に限定されるものではない。 The conductive member 18 and cell 1 according to this embodiment may be produced by any method, and are not particularly limited.
<モジュール>
 次に、上述したセルスタック装置10を用いた本実施形態に係るモジュールについて、図8を用いて説明する。図8は、第1の実施形態に係るモジュールを示す外観斜視図である。図8では、収納容器101の一部である前面および後面を取り外し、内部に収納される燃料電池のセルスタック装置10を後方に取り出した状態を示している。
<Module>
Next, a module according to this embodiment using the above-mentioned cell stack device 10 will be described with reference to Fig. 8. Fig. 8 is an external perspective view showing the module according to the first embodiment. Fig. 8 shows a state in which the front and rear surfaces, which are part of the storage container 101, have been removed and the cell stack device 10 of the fuel cell stored inside has been removed to the rear.
 図8に示すように、モジュール100は、収納容器101と、収納容器101内に収納されたセルスタック装置10とを備えている。また、セルスタック装置10の上方には、改質器102が配置されている。 As shown in FIG. 8, the module 100 includes a storage container 101 and a cell stack device 10 stored in the storage container 101. In addition, a reformer 102 is disposed above the cell stack device 10.
 かかる改質器102は、天然ガス、灯油などの原燃料を改質して燃料ガスを生成し、セル1に供給する。原燃料は、原燃料供給管103を通じて供給される。なお、改質器102は、水を気化させる気化部102aと、改質部102bとを備えていてもよい。改質部102bは、図示しない改質触媒を備えており、原燃料を燃料ガスに改質する。このような改質器102は、効率の高い改質反応である水蒸気改質を行うことができる。 The reformer 102 reforms raw fuel such as natural gas or kerosene to generate fuel gas, which is then supplied to the cell 1. The raw fuel is supplied through a raw fuel supply pipe 103. The reformer 102 may also include a vaporizer 102a that vaporizes water, and a reformer 102b. The reformer 102b includes a reforming catalyst (not shown) and reforms the raw fuel into fuel gas. Such a reformer 102 can perform steam reforming, which is a highly efficient reforming reaction.
 そして、改質器102で生成された燃料ガスは、ガス流通管20、ガスタンク16、および支持部材14を通じて、セル1のガス流路2a(図1A参照)に供給される。 The fuel gas generated in the reformer 102 is then supplied to the gas flow path 2a (see Figure 1A) of the cell 1 through the gas flow pipe 20, the gas tank 16, and the support member 14.
 また、上述の構成のモジュール100においては、ガスの燃焼およびセル1の発電に伴い、通常発電時におけるモジュール100内の温度が500℃~1000℃程度となる。 In addition, in the module 100 configured as described above, the temperature inside the module 100 during normal power generation is approximately 500°C to 1000°C due to the combustion of gas and power generation by the cell 1.
 このようなモジュール100においては、上述したように、耐久性が高いセルスタック装置10を収納して構成されることにより、耐久性が高いモジュール100とすることができる。 In such a module 100, as described above, the highly durable cell stack device 10 is housed and configured, thereby making the module 100 highly durable.
<モジュール収容装置>
 図9は、第1の実施形態に係るモジュール収容装置の一例を示す分解斜視図である。モジュール収容装置110は、外装ケース111と、図8で示したモジュール100と、図示しない補機と、を備えている。補器は、モジュール100の運転を行う。モジュール100および補器は、外装ケース111内に収容されている。なお、図9においては一部構成を省略して示している。
<Module housing device>
Fig. 9 is an exploded perspective view showing an example of a module housing device according to the first embodiment. The module housing device 110 includes an outer case 111, the module 100 shown in Fig. 8, and auxiliary equipment (not shown). The auxiliary equipment operates the module 100. The module 100 and the auxiliary equipment are housed in the outer case 111. Note that some components are omitted in Fig. 9.
 図9に示すモジュール収容装置110の外装ケース111は、支柱112と外装板113とを有する。仕切板114は、外装ケース111内を上下に区画している。外装ケース111内の仕切板114より上側の空間は、モジュール100を収容するモジュール収容室115であり、外装ケース111内の仕切板114より下側の空間は、モジュール100を運転する補機を収容する補機収容室116である。なお、図8では、補機収容室116に収容する補機を省略して示している。 The exterior case 111 of the module accommodating device 110 shown in Figure 9 has support posts 112 and an exterior plate 113. A partition plate 114 divides the interior of the exterior case 111 into upper and lower sections. The space above the partition plate 114 in the exterior case 111 is a module accommodating chamber 115 that accommodates the module 100, and the space below the partition plate 114 in the exterior case 111 is an auxiliary equipment accommodating chamber 116 that accommodates the auxiliary equipment that operates the module 100. Note that in Figure 8, the auxiliary equipment accommodated in the auxiliary equipment accommodating chamber 116 is omitted.
 また、仕切板114は、補機収容室116の空気をモジュール収容室115側に流すための空気流通口117を有している。モジュール収容室115を構成する外装板113は、モジュール収容室115内の空気を排気するための排気口118を有している。 The partition plate 114 also has an air flow port 117 for allowing air from the auxiliary equipment housing chamber 116 to flow toward the module housing chamber 115. The exterior plate 113 that constitutes the module housing chamber 115 has an exhaust port 118 for exhausting air from within the module housing chamber 115.
 このようなモジュール収容装置110においては、上述したように、耐久性が高いモジュール100をモジュール収容室115に備えていることにより、耐久性が高いモジュール収容装置110とすることができる。 In such a module storage device 110, as described above, a highly durable module 100 is provided in the module storage chamber 115, thereby making the module storage device 110 highly durable.
 図10は、第1の実施形態に係る電気化学セル装置の別の一例を示す断面図である。図10に示すセルスタック装置10は、導電部材18として赤外光の反射率が異なる第1部材18Aと第2部材18Bとを有する点で上記した実施形態に係る導電部材18と相違する。第1部材18Aにおける赤外光の反射率は、第2部材18Bにおける赤外光の反射率よりも大きくなるように構成されており、第1部材18Aおよび第2部材18Bは、隣り合うセル1間にそれぞれ配置される。このように、導電部材18として赤外光の反射率の異なる第1部材18Aおよび第2部材18Bを使用した場合であっても、第1領域R1(図4参照)での温度のばらつきが低減される。このため、本構成によれば、セルスタック装置10の耐久性が高くなる。 10 is a cross-sectional view showing another example of the electrochemical cell device according to the first embodiment. The cell stack device 10 shown in FIG. 10 differs from the conductive member 18 according to the above embodiment in that the conductive member 18 includes a first member 18A and a second member 18B having different infrared light reflectances. The first member 18A is configured to have a higher infrared light reflectance than the second member 18B, and the first member 18A and the second member 18B are disposed between adjacent cells 1. In this way, even when the first member 18A and the second member 18B having different infrared light reflectances are used as the conductive member 18, the temperature variation in the first region R1 (see FIG. 4) is reduced. Therefore, according to this configuration, the durability of the cell stack device 10 is increased.
 第1部材18Aおよび第2部材18Bは、たとえば、図6Bに示す導電部材183に準じてそれぞれ作製することができる。また、第1部材18Aおよび第2部材18Bは、互いに接触させてもよく、離間させてもよい。 The first member 18A and the second member 18B can be fabricated, for example, in accordance with the conductive member 183 shown in FIG. 6B. The first member 18A and the second member 18B can be in contact with each other or spaced apart.
[第2の実施形態]
 図11は、第2の実施形態に係る電気化学セル装置の一例を示す斜視図である。図11に示すセルスタック装置10Aは、素子部3Aと、素子部3Aを挟む導電部材18とを有する平板型の電気化学セルを積層させた電気化学セル装置である。素子部3Aは、固体電解質層(たとえば、固体電解質層6)と、固体電解質層を挟む第1電極層(たとえば、燃料極層5)および第2電極層(たとえば、空気極層8)を有する。素子部3Aは、固体電解質層と第2電極層との間に位置する中間層(たとえば、中間層7)を有してもよい。導電部材18は、反応ガスが流れる不図示の流路を有しており、不図示のシール部材等で封止されている。セルスタック装置10Aは、両端部に端部集電部材91,92がそれぞれ位置している。
Second Embodiment
FIG. 11 is a perspective view showing an example of an electrochemical cell device according to the second embodiment. The cell stack device 10A shown in FIG. 11 is an electrochemical cell device in which flat electrochemical cells each having an element unit 3A and a conductive member 18 sandwiching the element unit 3A are stacked. The element unit 3A has a solid electrolyte layer (for example, a solid electrolyte layer 6), and a first electrode layer (for example, a fuel electrode layer 5) and a second electrode layer (for example, an air electrode layer 8) sandwiching the solid electrolyte layer. The element unit 3A may have an intermediate layer (for example, an intermediate layer 7) located between the solid electrolyte layer and the second electrode layer. The conductive member 18 has a flow path (not shown) through which a reactant gas flows, and is sealed with a sealing member (not shown) or the like. The cell stack device 10A has end current collecting members 91 and 92 located at both ends.
 図12は、平板型の電気化学セルにおける温度分布の一例を示す断面図である。図12に示すように、セルスタック装置10Yは、発電時には温度t11~t15が、t11>t12>t13>t14>t15の順にセルスタック装置10Yの中心部分が高温となりやすい。また、かかる中心部分から離れたY軸方向およびZ軸方向の両端側に向かって発電時の温度が低下しやすい。このため、素子部3Aの厚み方向(Z軸方向)の中央に位置する第1領域R1では、たとえば、素子部3Aの厚み方向(Z軸方向)の両端部に位置する第2領域R2よりも高温となり、耐久性が低下しやすくなる場合がある。図12では、YZ平面に沿った断面図を示したが、ZX平面に沿った断面もおおむね図12と同じことがいえる。 FIG. 12 is a cross-sectional view showing an example of temperature distribution in a flat electrochemical cell. As shown in FIG. 12, the cell stack device 10Y is likely to have high temperatures in the center of the cell stack device 10Y during power generation, with temperatures t11 to t15 being in the order of t11>t12>t13>t14>t15. In addition, the temperature during power generation is likely to decrease toward both ends in the Y-axis direction and Z-axis direction away from the center. For this reason, the first region R1 located in the center of the element unit 3A in the thickness direction (Z-axis direction) may become hotter than the second region R2 located at both ends of the element unit 3A in the thickness direction (Z-axis direction), for example, and durability may be easily reduced. Although FIG. 12 shows a cross-sectional view along the YZ plane, the cross-section along the ZX plane is generally the same as FIG. 12.
 そこで、本実施形態では、第1領域R1と第2領域R2との間で、赤外光の反射率が互いに異なる導電部材18を適用する。図13は、第2の実施形態に係る電気化学セル装置の一例を示す断面図である。 In this embodiment, therefore, a conductive member 18 with different infrared light reflectances is applied between the first region R1 and the second region R2. Figure 13 is a cross-sectional view showing an example of an electrochemical cell device according to the second embodiment.
 図13に示すように、第1領域R1に位置する導電部材18は、第1部位181と第2部位182とを有する。第1部位181は、第2部位182よりも赤外光の反射率が大きい。これにより、高温になりやすい部分である第1部位181に位置する導電部材18における赤外光の反射率を他の部分よりも大きくすることで導電部材18に吸収される熱量が減少し、セルスタック装置10Aの温度上昇を低減することができる。このため、セルスタック装置10Aの過熱に伴う耐久性の低下を生じにくくすることができる。 As shown in FIG. 13, the conductive member 18 located in the first region R1 has a first portion 181 and a second portion 182. The first portion 181 has a higher reflectance of infrared light than the second portion 182. As a result, by making the reflectance of infrared light in the conductive member 18 located in the first portion 181, which is a portion that is prone to high temperatures, higher than in other portions, the amount of heat absorbed by the conductive member 18 is reduced, and the temperature rise of the cell stack device 10A can be reduced. This makes it less likely that the durability of the cell stack device 10A will decrease due to overheating.
 一方、第2部位182では、第1部位181と比較して導電部材18に吸収される熱量が増大することで、セルスタック装置10の温度上昇が促進される。これにより、セルスタック装置10の加熱不足に伴う発電性能の低下が生じにくくなる。 On the other hand, in the second portion 182, the amount of heat absorbed by the conductive member 18 is greater than in the first portion 181, which promotes a temperature rise in the cell stack device 10. This makes it less likely that a decrease in power generation performance due to insufficient heating of the cell stack device 10 will occur.
 また、第2領域R2に位置する第2部材としての導電部材183は、第1部位181よりも赤外光の反射率が小さい。これにより、第1領域R1と比較して高温になりにくい第2領域R2において、導電部材183に吸収される熱量により温度上昇を促進させることができる。このため、発電時における温度のばらつきが低減し、セルスタック装置10Aの発電性能が向上する。 In addition, the conductive member 183 as the second member located in the second region R2 has a lower reflectance of infrared light than the first portion 181. As a result, in the second region R2, which is less likely to become hot than the first region R1, the heat absorbed by the conductive member 183 can promote a temperature rise. This reduces temperature variation during power generation, improving the power generation performance of the cell stack device 10A.
 図14は、図13に示す第1領域R1の一例を示す断面図である。セルスタック装置10Aの第1領域R1に位置する導電部材18は、互いに隣り合う一方の素子部3Aに接続された導電部材18-1と他方の素子部3Aに接続された導電部材18-2とが、インターコネクタである導電部材18-3を介して電気的に接続されている。以下、素子部3A間に位置する導電部材18-1~導電部材18-3をまとめて導電部材18と称する場合がある。 FIG. 14 is a cross-sectional view showing an example of the first region R1 shown in FIG. 13. The conductive members 18 located in the first region R1 of the cell stack device 10A are electrically connected via conductive member 18-3, which is an interconnector, with conductive member 18-1 connected to one adjacent element unit 3A and conductive member 18-2 connected to the other adjacent element unit 3A. Hereinafter, conductive members 18-1 to 18-3 located between element units 3A may be collectively referred to as conductive members 18.
 上述したように、発電時に高温となったセルスタック装置10Aの中心付近では、温度が低下しにくいことから、セルスタック装置10A内の温度にばらつきが生じる場合がある。具体的には、セルスタック装置10Aの中央部は、セルスタック装置10Aの中心から離れた外縁側よりも温度が上昇しやすく、たとえば、発電に適した温度よりも高温となり、耐久性が低下しやすくなる場合がある。 As mentioned above, the temperature near the center of the cell stack device 10A becomes hot during power generation and is difficult to cool, which can cause temperature variations within the cell stack device 10A. Specifically, the temperature in the center of the cell stack device 10A is more likely to rise than on the outer edge side away from the center of the cell stack device 10A, and for example, the temperature may become higher than that suitable for power generation, which can lead to a decrease in durability.
 そこで、図14に示すように、セルスタック装置10Aが有する第1領域R1に位置する素子部3A間に、第1部位181と第2部位182とを有する導電部材18を適用することで温度のばらつきを低減させてもよい。具体的には、第1部位181が素子部3A間のX軸方向および/またはY軸方向の中央部分に接続され、第2部位182が素子部3A間のX軸方向および/またはY軸方向の中央部分から離れた部位に接続されるように導電部材18を位置させる。第1部位181における赤外光の反射率は、第2部位182における赤外光の反射率よりも小さい。 Therefore, as shown in FIG. 14, temperature variation may be reduced by applying a conductive member 18 having a first portion 181 and a second portion 182 between element portions 3A located in the first region R1 of the cell stack device 10A. Specifically, the conductive member 18 is positioned so that the first portion 181 is connected to the central portion in the X-axis direction and/or Y-axis direction between the element portions 3A, and the second portion 182 is connected to a portion away from the central portion in the X-axis direction and/or Y-axis direction between the element portions 3A. The reflectance of infrared light at the first portion 181 is smaller than the reflectance of infrared light at the second portion 182.
 これにより、第1部位181では、第2部位182よりも通電量が低減し、第1部位181の温度上昇が低減される。このため、本実施形態によれば、セルスタック装置10Aの耐久性が高くなる。 As a result, the amount of current flowing through the first portion 181 is less than that through the second portion 182, and the temperature rise in the first portion 181 is reduced. Therefore, according to this embodiment, the durability of the cell stack device 10A is increased.
 なお、上記では、導電部材18-1~導電部材18-3をまとめて導電部材18として説明したが、導電部材18-1および導電部材18-2とは異なる導電部材18-3を第3部材として適用し、導電部材18-1および導電部材18-2を直列に接続してもよい。導電部材18-1~導電部材18-3の表面粗さおよび/または気孔率は、同じであってもよく、異なっていてもよい。 In the above, conductive members 18-1 to 18-3 are collectively described as conductive member 18, but conductive member 18-3, which is different from conductive members 18-1 and 18-2, may be used as a third member, and conductive members 18-1 and 18-2 may be connected in series. The surface roughness and/or porosity of conductive members 18-1 to 18-3 may be the same or different.
 図15は、第2の実施形態に係る電気化学セル装置の別の一例を示す断面図である。図15に示すセルスタック装置10Bは、第1領域R1に位置する導電部材18として赤外光の反射率が異なる第1部材18Aと第2部材18Bとを有する点で図14に示す導電部材18と相違する。第1部材18Aにおける赤外光の反射率は、第2部材18Bにおける赤外光の反射率よりも大きく、第1部材18Aおよび第2部材18Bは、隣り合う素子部3A間にそれぞれ配置される。このように、導電部材18として赤外光の反射率が異なる第1部材18Aおよび第2部材18Bを使用した場合であっても、セルスタック装置10Bの中心部分での温度上昇が低減される。このため、本構成によれば、セルスタック装置10Bの耐久性が高くなる。 FIG. 15 is a cross-sectional view showing another example of an electrochemical cell device according to the second embodiment. The cell stack device 10B shown in FIG. 15 differs from the conductive member 18 shown in FIG. 14 in that the conductive member 18 located in the first region R1 includes a first member 18A and a second member 18B having different infrared light reflectances. The infrared light reflectance of the first member 18A is higher than that of the second member 18B, and the first member 18A and the second member 18B are disposed between adjacent element portions 3A. In this way, even when the first member 18A and the second member 18B having different infrared light reflectances are used as the conductive member 18, the temperature rise in the central portion of the cell stack device 10B is reduced. Therefore, according to this configuration, the durability of the cell stack device 10B is increased.
 また、第2領域R2(図13参照)に位置する導電部材183は、第2部位182または第2部材18Bよりも赤外光の反射率が小さい。これにより、高温になりにくい第2領域R2において、導電部材183に吸収される熱量により温度上昇を促進させることができる。このため、発電時における温度のばらつきが低減し、発電性能が向上する。なお、第2領域R2に位置する導電部材183も、第1領域R1に位置する導電部材18のように、互いに隣り合う一方の素子部3Aに接続された導電部材18-1と他方の素子部3Aに接続された導電部材18-2とが、インターコネクタである導電部材18-3を介して電気的に接続されていてもよい。 Furthermore, the conductive member 183 located in the second region R2 (see FIG. 13) has a lower infrared light reflectance than the second portion 182 or the second member 18B. As a result, in the second region R2, where the temperature is less likely to become high, the heat absorbed by the conductive member 183 can promote a temperature rise. This reduces the temperature variation during power generation, improving power generation performance. Note that, like the conductive member 18 located in the first region R1, the conductive member 18-1 connected to one adjacent element portion 3A and the conductive member 18-2 connected to the other adjacent element portion 3A may also be electrically connected via the conductive member 18-3, which is an interconnector, in the conductive member 18 located in the second region R2.
 また、上述した説明では、第1領域R1に位置する第1部材および第2領域R2に位置する第2部材が導電部材18であるセルスタック装置10A,10Bを例に挙げたが、素子部3Aが第1部材および第2部材を有してもよい。かかる場合、第1部材としての素子部3Aは、第1領域R1のうちX軸方向および/またはY軸方向の中央部分に位置する第1部位と、第1部位の外側に位置する第2部位とを有する。素子部3Aの第1部位は、第2部位よりも赤外光の反射率が大きい。 In the above description, the cell stack devices 10A and 10B are exemplified in which the first member located in the first region R1 and the second member located in the second region R2 are conductive members 18, but the element portion 3A may have a first member and a second member. In such a case, the element portion 3A as the first member has a first portion located in the central portion of the first region R1 in the X-axis direction and/or Y-axis direction, and a second portion located outside the first portion. The first portion of the element portion 3A has a higher reflectance of infrared light than the second portion.
 これにより、素子部3Aの第1部位では、第2部位と比較して素子部3Aに吸収される熱量が減少し、セルスタック装置10A,10Bの温度上昇を低減することができる。このため、セルスタック装置10A,10Bの過熱に伴う耐久性の低下を生じにくくすることができる。 As a result, the amount of heat absorbed by the element unit 3A is less in the first portion of the element unit 3A than in the second portion, and the temperature rise in the cell stack devices 10A, 10B can be reduced. This makes it less likely that the durability of the cell stack devices 10A, 10B will decrease due to overheating.
 一方、素子部3Aの第2部位では、第1部位と比較して素子部3Aに吸収される熱量が増大することで、セルスタック装置10A,10Bの温度上昇が促進される。これにより、セルスタック装置10A,10Bの加熱不足に伴う発電性能の低下が生じにくくなる。 On the other hand, in the second portion of the element portion 3A, the amount of heat absorbed by the element portion 3A is greater than in the first portion, which promotes a temperature rise in the cell stack devices 10A, 10B. This makes it less likely that a decrease in power generation performance due to insufficient heating of the cell stack devices 10A, 10B will occur.
 また、第2領域R2に位置する第2部材としての素子部3Aは、第1領域R1に位置する素子部3Aの第1部位よりも赤外光の反射率が小さい。これにより、第1領域R1と比較して高温になりにくい第2領域R2において、素子部3Aに吸収される熱量により温度上昇を促進させることができる。このため、発電時における温度のばらつきが低減し、セルスタック装置10A,10Bの発電性能が向上する。 Furthermore, the element portion 3A as the second member located in the second region R2 has a lower reflectance of infrared light than the first portion of the element portion 3A located in the first region R1. As a result, in the second region R2, which is less likely to become hot than the first region R1, the heat absorbed by the element portion 3A can promote a temperature rise. This reduces temperature variation during power generation, improving the power generation performance of the cell stack devices 10A, 10B.
[第3の実施形態]
 図16Aは、第3の実施形態に係る電気化学セル装置を構成する電気化学セルの一例を示す横断面図である。図16B、図16Cは、第3の実施形態に係る電気化学セルの他の一例を示す横断面図である。本実施形態においては、図2Aまたは図11に示す電気化学セル装置に、図16A~図16Cに示すセル1を適用したものをセルスタック装置10Cとする。
[Third embodiment]
Fig. 16A is a cross-sectional view showing an example of an electrochemical cell constituting the electrochemical cell device according to the third embodiment. Figs. 16B and 16C are cross-sectional views showing another example of the electrochemical cell according to the third embodiment. In this embodiment, a cell stack device 10C is obtained by applying the cell 1 shown in Figs. 16A to 16C to the electrochemical cell device shown in Fig. 2A or 11.
 図16A~図16Cに示すように、セル1は、燃料極層5、固体電解質層6および空気極層8が積層された素子部3Cと、支持基板2とを有している。素子部3Cは、固体電解質層6と空気極層8との間に位置する中間層7を有してもよい。支持基板2は、素子部3Cの燃料極層5と接する部位に貫通孔または細孔を有するとともに、ガス流路2aの外側に位置する部材120を有する。支持基板2は、ガス流路2aと素子部3Cとの間でガスを流通させることができる。支持基板2は、例えば、1または2以上の金属部材を含んでもよい。金属部材の材料は、クロムを含有する合金であってもよい。金属部材は、導電性の被覆層を有していてもよい。支持基板2は、隣接するセル1同士を電気的に接続する導電部材である。素子部3Cは、支持基板2上に直接形成されていてもよいし、接合材により支持基板2に接合されていてもよい。 As shown in Figs. 16A to 16C, the cell 1 has an element section 3C in which a fuel electrode layer 5, a solid electrolyte layer 6, and an air electrode layer 8 are laminated, and a support substrate 2. The element section 3C may have an intermediate layer 7 located between the solid electrolyte layer 6 and the air electrode layer 8. The support substrate 2 has a through hole or a fine hole at a portion of the element section 3C that contacts the fuel electrode layer 5, and has a member 120 located outside the gas flow path 2a. The support substrate 2 can circulate gas between the gas flow path 2a and the element section 3C. The support substrate 2 may include, for example, one or more metal members. The material of the metal member may be an alloy containing chromium. The metal member may have a conductive coating layer. The support substrate 2 is a conductive member that electrically connects adjacent cells 1 to each other. The element section 3C may be formed directly on the support substrate 2, or may be bonded to the support substrate 2 by a bonding material.
 図16Aに示す例では、燃料極層5の側面は固体電解質層6により被覆され、燃料ガスが流れるガス流路2aを気密に封止している。図16Bに示すように、燃料極層5の側面は緻密な封止材9で被覆され、封止されていてもよい。燃料極層5の側面を被覆する封止材9は、電気絶縁性を有していてもよい。封止材9の材料は、例えばガラスまたはセラミックスであってもよい。 In the example shown in FIG. 16A, the side of the fuel electrode layer 5 is covered with a solid electrolyte layer 6, which airtightly seals the gas flow path 2a through which the fuel gas flows. As shown in FIG. 16B, the side of the fuel electrode layer 5 may be covered and sealed with a dense sealing material 9. The sealing material 9 that covers the side of the fuel electrode layer 5 may have electrical insulation properties. The material of the sealing material 9 may be, for example, glass or ceramics.
 また、支持基板2のガス流路2aは、図16Cに示すように凹凸を有する部材120により形成されていてもよい。 The gas flow path 2a of the support substrate 2 may also be formed by a member 120 having projections and recesses as shown in FIG. 16C.
 本実施形態において、部材120は、隣接する別のセル1の空気極層8と、セル間接続部材などの他の導電部材および接合材を介して接合されている。なお、部材120は、他の導電部材等を介さずに直接別のセル1の空気極層8と接触していてもよい。 In this embodiment, the member 120 is joined to the air electrode layer 8 of another adjacent cell 1 via other conductive members such as inter-cell connection members and bonding materials. Note that the member 120 may be in direct contact with the air electrode layer 8 of another cell 1 without being connected to other conductive members, etc.
 本実施形態では、第1部位181と第2部位182とを有する支持基板2(導電部材18)を備えるセル1を、セルスタック装置10Cの第1領域R1に配置する。具体的には、支持基板2(導電部材18)の第1部位181を比較的高温となりやすいセル1の部分1aに位置させ、第2部位182を比較的低温となりやすいセル1の部分1bに位置させる。第1部位181における赤外光の反射率が、第2部位182における赤外光の反射率よりも小さいことにより、第1部位181では、第2部位182よりも吸収する熱量が低減し、部分1aでの温度上昇が低減される。このため、本実施形態によれば、支持基板2(導電部材18)およびセルスタック装置10Cの耐久性が高くなる。なお、図16A~図16Cでは、高温となりやすいセル1の部分1aとして、第2の実施形態のように素子部3Cの中心に近い部分を示したが、第1の実施形態のように燃料ガスの排出口側に近い部分が、高温となりやすいセル1の部分1aとなる場合もある。 In this embodiment, the cell 1 including the support substrate 2 (conductive member 18) having the first portion 181 and the second portion 182 is placed in the first region R1 of the cell stack device 10C. Specifically, the first portion 181 of the support substrate 2 (conductive member 18) is positioned in the portion 1a of the cell 1 that is likely to become relatively hot, and the second portion 182 is positioned in the portion 1b of the cell 1 that is likely to become relatively cold. Since the reflectance of infrared light in the first portion 181 is smaller than that in the second portion 182, the first portion 181 absorbs less heat than the second portion 182, and the temperature rise in the portion 1a is reduced. Therefore, according to this embodiment, the durability of the support substrate 2 (conductive member 18) and the cell stack device 10C is increased. Note that in Figures 16A to 16C, the portion 1a of the cell 1 that is likely to become hot is shown as being close to the center of the element portion 3C as in the second embodiment, but the portion 1a of the cell 1 that is likely to become hot may be close to the fuel gas exhaust port as in the first embodiment.
 なお、第1領域R1および第2領域R2は、図3、4、12、13に示した例に限定されない。第1領域R1および第2領域R2は、電気化学セル装置が有するセルスタックの構造、特性などに応じて適宜設定することができる。たとえば、セルスタックの中央である第1領域R1に隣接して位置する2つのセル1に挟まれた1つの導電部材18が、第1部位と第2部位を有し、セルスタックの一方の端部である第2領域R2に位置する1つの導電部材18における赤外光の反射率が、第1部位181における赤外光の反射率より小さくてもよい。 The first region R1 and the second region R2 are not limited to the examples shown in Figures 3, 4, 12, and 13. The first region R1 and the second region R2 can be set appropriately according to the structure, characteristics, etc. of the cell stack of the electrochemical cell device. For example, one conductive member 18 sandwiched between two cells 1 located adjacent to the first region R1 at the center of the cell stack may have a first portion and a second portion, and the reflectance of infrared light in one conductive member 18 located in the second region R2 at one end of the cell stack may be smaller than the reflectance of infrared light in the first portion 181.
 また、第1領域R1に位置する導電部材18の第1部位181と第2部位182との配置および比率は、第1領域R1に位置するセル1の構造に応じて適宜設定することができる。 In addition, the arrangement and ratio of the first portion 181 and the second portion 182 of the conductive member 18 located in the first region R1 can be set appropriately according to the structure of the cell 1 located in the first region R1.
 また、上述した説明では、第1領域R1に位置する第1部材および第2領域R2に位置する第2部材が導電部材18であるセルスタック装置10Cを例に挙げたが、素子部3Cが第1部材および第2部材を有してもよい。かかる場合、第1部材としての素子部3Cは、第1領域R1のうちセル1の部分1aに位置する第1部位と、部分1bに位置する第2部位とを有する。素子部3Cの第1部位は、第2部位よりも赤外光の反射率が大きい。 In the above explanation, the cell stack device 10C is exemplified in which the first member located in the first region R1 and the second member located in the second region R2 are conductive members 18, but the element portion 3C may have a first member and a second member. In such a case, the element portion 3C as the first member has a first portion located in the portion 1a of the cell 1 in the first region R1, and a second portion located in the portion 1b. The first portion of the element portion 3C has a higher reflectance of infrared light than the second portion.
 これにより、素子部3Cの第1部位では、第2部位と比較して素子部3Cに吸収される熱量が減少し、セルスタック装置10Cの温度上昇を低減することができる。このため、セルスタック装置10Cの過熱に伴う耐久性の低下を生じにくくすることができる。 As a result, the amount of heat absorbed by the element unit 3C in the first portion is less than that absorbed in the element unit 3C in the second portion, and the temperature rise in the cell stack device 10C can be reduced. This makes it less likely that the durability of the cell stack device 10C will decrease due to overheating.
 一方、素子部3Cの第2部位では、第1部位と比較して素子部3Cに吸収される熱量が増大することで、セルスタック装置10Cの温度上昇が促進される。これにより、セルスタック装置10Cの加熱不足に伴う発電性能の低下が生じにくくなる。 On the other hand, in the second portion of the element portion 3C, the amount of heat absorbed by the element portion 3C is greater than in the first portion, accelerating the temperature rise of the cell stack device 10C. This makes it less likely that a decrease in power generation performance due to insufficient heating of the cell stack device 10C will occur.
 また、第2領域R2に位置する第2部材としての素子部3Cは、第1領域R1に位置する素子部3Cの第1部位よりも赤外光の反射率が小さい。これにより、第1領域R1と比較して高温になりにくい第2領域R2において、素子部3Cに吸収される熱量により温度上昇を促進させることができる。このため、発電時における温度のばらつきが低減し、セルスタック装置10Cの発電性能が向上する。 Furthermore, the element portion 3C as the second member located in the second region R2 has a lower reflectance of infrared light than the first portion of the element portion 3C located in the first region R1. As a result, in the second region R2, which is less likely to become hot than the first region R1, the heat absorbed by the element portion 3C can promote a temperature rise. This reduces temperature variation during power generation, improving the power generation performance of the cell stack device 10C.
[その他の実施形態]
 上述の各実施形態では、「電池化学セル」、「電池化学セル装置」、「モジュール」および「モジュール収容装置」の一例として燃料電池セル、燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置を示したが、他の例としてはそれぞれ、電解セル、電解セルスタック装置、電解モジュールおよび電解装置であってもよい。電解セルは、水素極および酸素極を有し、電力の供給により水蒸気を水素と酸素に分解する、または二酸化炭素を一酸化炭素と酸素に分解する。また、上記実施形態では電気化学セルの電解質材料の一例として酸化物イオン伝導体または水素イオン伝導体を示したが、水酸化物イオン伝導体であってもよい。このような電解セル、電解セルスタック装置、電解モジュールおよび電解装置によれば、耐久性を向上することができる。また、電解性能を向上することができる。
[Other embodiments]
In the above-mentioned embodiments, a fuel cell, a fuel cell stack device, a fuel cell module, and a fuel cell device are shown as examples of the "battery chemical cell", "battery chemical cell device", "module", and "module housing device", but other examples may be an electrolytic cell, an electrolytic cell stack device, an electrolytic module, and an electrolytic device, respectively. The electrolytic cell has a hydrogen electrode and an oxygen electrode, and decomposes water vapor into hydrogen and oxygen, or decomposes carbon dioxide into carbon monoxide and oxygen, when supplied with electric power. In the above-mentioned embodiments, an oxide ion conductor or a hydrogen ion conductor is shown as an example of the electrolyte material of the electrochemical cell, but a hydroxide ion conductor may also be used. Such an electrolytic cell, an electrolytic cell stack device, an electrolytic module, and an electrolytic device can improve durability. Also, electrolytic performance can be improved.
 以上、本開示について詳細に説明したが、本開示は上述の実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。 The present disclosure has been described in detail above, but the present disclosure is not limited to the above-described embodiment, and various modifications and improvements are possible without departing from the gist of the present disclosure.
 一実施形態において、(1)電気化学セル装置は、
 第1方向に並ぶ複数の素子部と、
 前記第1方向に隣り合う前記素子部の間にそれぞれ位置する導電部材と
 を備え、
 前記第1方向の中央部に位置する第1領域には、第1部位および該第1部位とは赤外光の反射率が異なる第2部位を有する第1部材が位置し、
 前記第1方向の端部に位置する第2領域には、前記第1部位よりも赤外光の反射率が小さい第2部材が位置する。
In one embodiment, (1) an electrochemical cell device comprising:
A plurality of element portions arranged in a first direction;
and a conductive member located between each of the element portions adjacent to each other in the first direction,
a first member having a first portion and a second portion having a reflectance of infrared light different from that of the first portion is located in a first region located at a center portion in the first direction;
A second member having a lower reflectance for infrared light than the first portion is located in a second region located at an end in the first direction.
 (2)上記(1)の電気化学セル装置において、前記第1部位は、前記第2部位よりも赤外光の反射率が大きくてもよい。 (2) In the electrochemical cell device of (1) above, the first portion may have a higher reflectance to infrared light than the second portion.
 (3)上記(1)または(2)の電気化学セル装置において、前記第1領域は、前記第2領域よりも最高温度が高くてもよい。 (3) In the electrochemical cell device of (1) or (2) above, the first region may have a higher maximum temperature than the second region.
 (4)上記(1)~(3)のいずれか1つの電気化学セル装置において、前記第1部材および前記第2部材は、前記素子部が有していてもよい。 (4) In any one of the electrochemical cell devices (1) to (3) above, the first member and the second member may be included in the element portion.
 (5)上記(1)~(4)のいずれか1つの電気化学セル装置において、前記第1部材および前記第2部材は、前記導電部材が有していてもよい。 (5) In any one of the electrochemical cell devices (1) to (4) above, the first member and the second member may be included in the conductive member.
 (6)上記(1)~(5)のいずれか1つの電気化学セル装置において、
 前記第1部位は、前記第1方向に交差する第2方向の一端側に位置し、
 前記第2部位は、前記第2方向の他端側に位置してもよい。
(6) In the electrochemical cell device according to any one of (1) to (5),
The first portion is located on one end side in a second direction intersecting the first direction,
The second portion may be located on the other end side in the second direction.
 (7)上記(1)~(5)のいずれか1つの電気化学セル装置において、
 前記第1部位は、前記第1方向に交差する第2方向の中央部に位置し、
 前記第2部位は、前記第2方向の端部に位置してもよい。
(7) In the electrochemical cell device according to any one of (1) to (5),
The first portion is located at a center portion in a second direction intersecting the first direction,
The second portion may be located at an end in the second direction.
 一実施形態において、(8)電気化学セル装置は、
 第1方向に並ぶ複数の素子部と、
 前記第1方向に隣り合う前記素子部の間にそれぞれ位置する導電部材と
 を備え、
 前記第1方向の中央部に位置する第1領域には、第1部材および該第1部材とは赤外光の反射率が異なる第2部材が位置し、
 前記第1方向の端部に位置する第2領域には、前記第1部材よりも赤外光の反射率が小さい第3部材が位置する。
In one embodiment, (8) an electrochemical cell device comprising:
A plurality of element portions arranged in a first direction;
and a conductive member located between each of the element portions adjacent to each other in the first direction,
a first member and a second member having a reflectance of infrared light different from that of the first member are located in a first region located at a center portion in the first direction;
A third member having a lower reflectance for infrared light than the first member is located in a second region located at an end in the first direction.
 一実施形態において、(9)モジュールは、上記(1)~(8)のいずれか1つの電気化学セル装置と、
 前記電気化学セル装置を収納する収納容器とを備える。
In one embodiment, the module (9) comprises: an electrochemical cell device according to any one of the above (1) to (8);
and a container for housing the electrochemical cell device.
 一実施形態において、(10)モジュール収容装置は、上記(9)のモジュールと、
 前記モジュールの運転を行うための補機と、
 前記モジュールおよび前記補機を収容する外装ケースとを備える。
In one embodiment, the module housing device (10) includes the module (9) and
Auxiliary equipment for operating the module;
and an exterior case that houses the module and the auxiliary equipment.
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed herein should be considered in all respects as illustrative and not restrictive. Indeed, the above-described embodiments may be embodied in a variety of forms. Furthermore, the above-described embodiments may be omitted, substituted, or modified in various forms without departing from the scope and spirit of the appended claims.
 1    セル
 3,3A,3C    素子部
 10   セルスタック装置
 11   セルスタック
 12   固定部材
 13   固定材
 14   支持部材
 15   支持体
 16   ガスタンク
 17   端部集電部材
 18   導電部材
100   モジュール
110   モジュール収容装置
181   第1部位
182   第2部位
183   導電部材
REFERENCE SIGNS LIST 1 Cell 3, 3A, 3C Element section 10 Cell stack device 11 Cell stack 12 Fixing member 13 Fixing material 14 Supporting member 15 Support body 16 Gas tank 17 End current collecting member 18 Conductive member 100 Module 110 Module accommodating device 181 First portion 182 Second portion 183 Conductive member

Claims (10)

  1.  第1方向に並ぶ複数の素子部と、
     前記第1方向に隣り合う前記素子部の間にそれぞれ位置する導電部材と
     を備え、
     前記第1方向の中央部に位置する第1領域には、第1部位および該第1部位とは赤外光の反射率が異なる第2部位を有する第1部材が位置し、
     前記第1方向の端部に位置する第2領域には、前記第1部位よりも赤外光の反射率が小さい第2部材が位置する
     電気化学セル装置。
    A plurality of element portions arranged in a first direction;
    and a conductive member located between each of the element portions adjacent to each other in the first direction,
    a first member having a first portion and a second portion having a reflectance of infrared light different from that of the first portion is located in a first region located at a center portion in the first direction;
    a second member having a lower reflectance for infrared light than the first portion is located in a second region located at an end in the first direction.
  2.  前記第1部位は、前記第2部位よりも赤外光の反射率が大きい
     請求項1に記載の電気化学セル装置。
    The electrochemical cell device according to claim 1 , wherein the first portion has a higher reflectance for infrared light than the second portion.
  3.  前記第1領域は、前記第2領域よりも最高温度が高い
     請求項1または2に記載の電気化学セル装置。
    The electrochemical cell device according to claim 1 , wherein the first region has a higher maximum temperature than the second region.
  4.  前記第1部材および前記第2部材は、前記素子部が有している
     請求項1~3のいずれか1つに記載の電気化学セル装置。
    4. The electrochemical cell device according to claim 1, wherein the first member and the second member are included in the element portion.
  5.  前記第1部材および前記第2部材は、前記導電部材が有している
     請求項1~3のいずれか1つに記載の電気化学セル装置。
    4. The electrochemical cell device according to claim 1, wherein the first member and the second member are included in the conductive member.
  6.  前記第1部位は、前記第1方向に交差する第2方向の一端側に位置し、
     前記第2部位は、前記第2方向の他端側に位置する
     請求項1~5のいずれか1つに記載の電気化学セル装置。
    The first portion is located on one end side in a second direction intersecting the first direction,
    The electrochemical cell device according to claim 1 , wherein the second portion is located on the other end side in the second direction.
  7.  前記第1部位は、前記第1方向に交差する第2方向の中央部に位置し、
     前記第2部位は、前記第2方向の端部に位置する
     請求項1~5のいずれか1つに記載の電気化学セル装置。
    The first portion is located at a center portion in a second direction intersecting the first direction,
    The electrochemical cell device according to claim 1 , wherein the second portion is located at an end in the second direction.
  8.  第1方向に並ぶ複数の素子部と、
     前記第1方向に隣り合う前記素子部の間にそれぞれ位置する導電部材と
     を備え、
     前記第1方向の中央部に位置する第1領域には、第1部材および該第1部材とは赤外光の反射率が異なる第2部材が位置し、
     前記第1方向の端部に位置する第2領域には、前記第1部材よりも赤外光の反射率が小さい第3部材が位置する
     電気化学セル装置。
    A plurality of element portions arranged in a first direction;
    and a conductive member located between each of the element portions adjacent to each other in the first direction,
    a first member and a second member having a reflectance of infrared light different from that of the first member are located in a first region located at a center portion in the first direction;
    a third member having a lower reflectance for infrared light than the first member is located in the second region located at the end in the first direction.
  9.  請求項1~8のいずれか1つに記載の電気化学セル装置と、
     前記電気化学セル装置を収納する収納容器と
     を備えるモジュール。
    An electrochemical cell device according to any one of claims 1 to 8;
    and a container for housing the electrochemical cell device.
  10.  請求項9に記載のモジュールと、
     前記モジュールの運転を行うための補機と、
     前記モジュールおよび前記補機を収容する外装ケースと
     を備えるモジュール収容装置。
    A module according to claim 9;
    Auxiliary equipment for operating the module;
    and an exterior case that houses the module and the auxiliary equipment.
PCT/JP2023/041126 2022-11-15 2023-11-15 Electrochemical cell device, module, and module accommodating device WO2024106477A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-182856 2022-11-15
JP2022182856 2022-11-15

Publications (1)

Publication Number Publication Date
WO2024106477A1 true WO2024106477A1 (en) 2024-05-23

Family

ID=91084436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/041126 WO2024106477A1 (en) 2022-11-15 2023-11-15 Electrochemical cell device, module, and module accommodating device

Country Status (1)

Country Link
WO (1) WO2024106477A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158123A (en) * 2007-12-25 2009-07-16 Kyocera Corp Fuel cell stack device, fuel cell module, and fuel cell device
JP2010080266A (en) * 2008-09-26 2010-04-08 Kyocera Corp Fuel battery cell stack device, and fuel cell module equipped with the same, and fuel cell device
JP2010097928A (en) * 2008-07-10 2010-04-30 Toshiba Corp Fuel cell
JP2011210411A (en) * 2010-03-29 2011-10-20 Kyocera Corp Cell stack device, fuel cell module, and fuel cell device
JP7311728B1 (en) * 2021-08-31 2023-07-19 京セラ株式会社 Electrochemical cell equipment, modules and module housing equipment
WO2023200016A1 (en) * 2022-04-15 2023-10-19 京セラ株式会社 Electroconductive member, electrochemical cell device, module, and module accommodation device
JP2024013791A (en) * 2022-07-21 2024-02-01 京セラ株式会社 Electrochemical cell device, module, and module storage device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009158123A (en) * 2007-12-25 2009-07-16 Kyocera Corp Fuel cell stack device, fuel cell module, and fuel cell device
JP2010097928A (en) * 2008-07-10 2010-04-30 Toshiba Corp Fuel cell
JP2010080266A (en) * 2008-09-26 2010-04-08 Kyocera Corp Fuel battery cell stack device, and fuel cell module equipped with the same, and fuel cell device
JP2011210411A (en) * 2010-03-29 2011-10-20 Kyocera Corp Cell stack device, fuel cell module, and fuel cell device
JP7311728B1 (en) * 2021-08-31 2023-07-19 京セラ株式会社 Electrochemical cell equipment, modules and module housing equipment
JP2023139044A (en) * 2021-08-31 2023-10-03 京セラ株式会社 Electrochemical cell device, module, and module storage device
WO2023200016A1 (en) * 2022-04-15 2023-10-19 京セラ株式会社 Electroconductive member, electrochemical cell device, module, and module accommodation device
JP2024013791A (en) * 2022-07-21 2024-02-01 京セラ株式会社 Electrochemical cell device, module, and module storage device

Similar Documents

Publication Publication Date Title
JP2023139044A (en) Electrochemical cell device, module, and module storage device
WO2023200016A1 (en) Electroconductive member, electrochemical cell device, module, and module accommodation device
US11296349B2 (en) Cell stack device, module, and module housing device
JP2024013791A (en) Electrochemical cell device, module, and module storage device
US20230387422A1 (en) Cell, cell stack device, module, and module housing device
WO2024106477A1 (en) Electrochemical cell device, module, and module accommodating device
EP4145574A1 (en) Cell, cell stack device, module, and module accommodating device
JP6960556B1 (en) Cell stack device, module, module accommodating device and metal parts
US11799095B2 (en) Conductive member, cell, cell stack device, module, and module housing device
JP7413502B2 (en) Cell stack device, module, module housing device, and conductive member
US20230123142A1 (en) Composite member, cell stack device, module, and module housing device
WO2024071416A1 (en) Electrochemical cell, electrochemical cell device, module, and module accommodating device
WO2024117052A1 (en) Composite member, electrochemical cell, electrochemical cell device, module, and module storage device
WO2024071093A1 (en) Electroconductive member, electrochemical cell device, module, and module accommodation device
WO2024095998A1 (en) Electrochemical cell, electrochemical cell device, module, and module-accommodating device
US20230327162A1 (en) Cell, cell stack device, module, and module housing device
JP7453485B1 (en) Electrochemical cells, electrochemical cell equipment, modules and module housing equipment
EP4394958A1 (en) Electrochemical cell, electrochemical cell device, module, and module storage device
WO2023190754A1 (en) Electrochemical cell, electrochemical cell device, module, and module accommodating device
JP2024048859A (en) Electrochemical cell device, module and module housing device
WO2024048629A1 (en) Electrochemical cell device, module, and module housing device
WO2023195520A1 (en) Electrochemical cell, electrochemical cell device, module, and module accommodating device
WO2023074807A1 (en) Electroconductive member, electrochemical cell, electrochemical cell device, module and module storage device
WO2023286749A1 (en) Electrochemical cell, electrochemical cell device, module, and module storage device
US20230223565A1 (en) Cell stack device, module, and module housing device